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Abstract. Digital hardware Trojans are integrated circuits whose im-
plementation differ from the specification in an arbitrary and malicious
way. For example, the circuit can differ from its specified input/output
behavior after some fixed number of queries (known as “time bombs”) or
on some particular input (known as “cheat codes”).
To detect such Trojans, countermeasures using multiparty computation
(MPC) or verifiable computation (VC) have been proposed. On a high
level, to realize a circuit with specification F one has more sophisticated
circuits F� manufactured (where F� specifies a MPC or VC of F), and
then embeds these F�’s into a master circuit which must be trusted but
is relatively simple compared to F . Those solutions impose a significant
overhead as F� is much more complex than F , also the master circuits
are not exactly trivial.
In this work, we show that in restricted settings, where F has no evolving
state and is queried on independent inputs, we can achieve a relaxed
security notion using very simple constructions. In particular, we do not
change the specification of the circuit at all (i.e., F = F�). Moreover the
master circuit basically just queries a subset of its manufactured circuits
and checks if they’re all the same.
The security we achieve guarantees that, if the manufactured circuits are
initially tested on up to T inputs, the master circuit will catch Trojans
that try to deviate on significantly more than a 1/T fraction of the
inputs. This bound is optimal for the type of construction considered,
and we provably achieve it using a construction where 12 instantiations
of F need to be embedded into the master. We also discuss an extremely
simple construction with just 2 instantiations for which we conjecture
that it already achieves the optimal bound.

1 Hardware Trojans

Preventing attacks on cryptographic hardware that are based on leakage and
tampering has been a popular topic both in the theory in the practical research
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communities [10,9,8,7,15,6]. Despite being very powerful, the models considered
in this area are restricted in the sense that it is typically assumed that a given
device has been manufactured correctly, i.e., the adversary is present during the
execution of the device, but not when it is produced. As it turns out, this as-
sumption is not always justifiable, and in particular in some cases the adversary
may be able to modify the device at the production time. This is because, for
economic reasons, private companies and government agencies are often forced to
use hardware that they did not produce themselves. The contemporary, highly-
specialized digital technology requires components that are produced by many
different enterprises, usually operating in different geographic locations. Even a
single chip is often manufactured in a production cycle that involves different
entities. In a very popular method of hardware production, called the foundry
model, the product designer is only developing the abstract description of a
device. The real hardware fabrication happens in foundry. Only few major com-
panies (like Intel) still manufacture chips by themselves [16].

Modifications to the original circuit specification introduced during the man-
ufacturing process (in a way that is hard to detect by inspection and simple test-
ing) are called hardware Trojans, and can be viewed as the extreme version of
hardware attacks. For more on the practical feasibility of such attacks the reader
may consult, e.g., books [16,13], or popular-science articles [1,12]. Hardware Tro-
jans can be loosely classified into digital and physical ones. Physical hardware
Trojans can be triggered and/or communicate via a physical side-channel, while
digital hardware Trojans only use the regular communication interfaces. In this
paper we only consider digital hardware Trojans.

1.1 Detecting digital hardware Trojans

A simple non-cryptographic countermeasure to detect whether a circuit F con-
tains a hardware Trojan or follows the specification F is testing: one samples
inputs x1, . . . , xT , queries yi ← F(xi) and checks whether yi = F(xi) for all
i. Two types of digital hardware Trojans discussed in the literature that evade
detection by such simple testing are time bombs and cheat codes (see, e.g., [5]).
A time bomb is a hardware Trojan where the circuit starts deviating after a
fixed number of queries. Cheat codes refer to hardware Trojans where the cir-
cuits deviate on a set of hard-coded inputs. To achieve some robustness against
all digital hardware Trojans, solutions using cryptographic tools, in particular
verifiable computation (VC) [17,2] and multiparty computation (MPC) [5] were
suggested. In both cases the idea is to take the specification F of the desired
circuit and replace it with a more sophisticated construction of one or more
circuits F�. The circuit(s) F� that (presumably) are manufactured according to
specification F� are then embedded into a master circuit M to get a circuit MF�

which is proven to follow specification F with high probability as long as it pro-
duces outputs. The master circuit must be trusted, but hopefully can be much
simpler than F . We elaborate on these two methods below.
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Method Specification
of circuit F�
(to be man-
ufactured by
untrusted fab)
to realize F

Test and
(trusted) Mas-
ter Circuit

Security with
Trojans

Functionality
when no Tro-
jans present

MPC [5] Different
than F :
Implements
functionality F
in terms of a
3-player MPC
computation.

Testing: T test
queries.
Master’s com-
putation —
non-trivial:
Master secret
shares inputs
and reconstructs
outputs. It
needs lots of
randomness.

Gives n < T/2
correct and
guaranteed out-
puts with prob.
1− exp(−k).
No restriction on
F .

Limited:
Behaves like F
for n = T/2
queries, then
stops.

VC [17,2] Different
than F :
F plus succinct
proof of correct
computation

Testing: no
test queries.
Master’s com-
putation —
non-trivial:
Master verifies
succinct proof.

No guarantee on
number of out-
puts, but as long
as outputs are
provided they are
correct.
No restriction on
F

Ideal:
behaves like F
for unbounded
number of out-
puts.

This work Same as F :
12 instantia-
tions needed
in our provable
construction,
2 conjectured
to be already
sufficient.

Testing: T test
queries.
Master’s com-
putation —
very simple:
Master only
does equality
checks and Mul-
tiplexer. Needs
tiny amount of
randomness.

Either the Tro-
jans will be de-
tected with prob-
ability 1−o(1), or
at most a O(1/T )
fraction of the
outputs is wrong.
Requires that F
has no evolving
state and inputs
are independent.

Ideal:
(as above)

Fig. 1. Comparison of cryptographic solutions with our new construction. We achieve
weaker security, but with a much simpler construction.
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Using verifiable computation. Here the idea is to let F�(x) output a tuple (y, π)
where y = F(x) and π is a succinct zero-knowledge proof (see [3]) that y is the
correct output. In the compiled circuit MF� the master M in input x invokes
(y, π) ← F�, then verifies the proof π and only outputs y if the check passes. If
verification fails, the master aborts with a warning. As long as the compiled cir-
cuit provides outputs, they are guaranteed to be correct. If there are no Trojans,
the number of outputs is unbounded; but if there is a Trojan, they can make the
compiled circuit abort already at the first query. See [17,2] for the details.

Using multiparty computation. In this case, the idea is to use secure multiparty
computation protocols (MPCs, see, e.g., [4]). The compiled circuit MF� contains
some number of sub-components F� that communicate only via the master cir-
cuit. In [5], this number is 3k (where k is a parameter). The sub-components
are grouped in triples, each of them executing a 3-party protocol. In order to
avoid the “cheat code” attacks, the master secret shares the input between the
3 parties. To get assurance that the sub-components are not misbehaving they
are tested before deployment. In order to avoid the “time bomb” attacks, the
number of times each sub-component is tested is an independently chosen ran-
dom number from 1 to T . The output of each triple is secret-shared between
its sub-components. Each of them sends its share to the master circuit, who
reconstructs the k secrets, and outputs the value that is equal to the majority
of these secrets. For the details see [5].

Simple schemes. In this work we consider compilers as discussed above, but only
particularly simple ones which have the potential of being actually practical.
In particular, we require that F ≡ F�. That is, the specification F� of the
functionality given to the untrusted manufacturer is the actual functionality
F : X → Y we want to implement. Moreover, our master just invokes (a random
subset of) the circuits on the input and checks if the outputs are consistent.

This restricted model has very appealing properties. For example, it means
one can use our countermeasures with circuits that have already been manufac-
tured. But there are also limitations on what type of security one can achieve.
Informally, the security we prove for our construction roughly states that for any
constant c > 0 there exists a constant c′ such that no malicious manufacturer
can create Trojans which (1) will not be detected with probability at least c,
and (2) if not detected, will output a ≥ c′/T fraction of wrong outputs. Here T
is an upper bound on the number of test queries we can make to the Trojans
before they are released.

In particular, we only guarantee that most outputs are correct, and we addi-
tionally require that the inputs are iid. Unfortunately, it’s not hard to see that
for the simple class of constructions considered these assumptions are not far
from necessary.3 We will state the security of the VC and MPC solutions using
our notion of Trojan-resilience in §2.7.
3 We show that a small fraction of wrong outputs must be allowed in §2.4. The iid
assumption can be somewhat relaxed, but as we don’t have a clean necessary condi-
tion we will not discuss this further in this paper. Informally, a sufficient condition
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It’s fair to ask whether our notion has any interesting applications at all. Two
settings in which Trojan resilience might be required are (1) in settings where a
computation is performed where false (or at least too many false) outputs would
have serious consequences, and (2) cryptographic settings where the circuit holds
a key or other secret values that should not leak.

For (1) our compiler would only be provably sufficient if the inputs are iid,
and only useful if a small fraction of false outputs can be tolerated. This is
certainly a major restriction, but as outlined above, if one doesn’t have the luxury
to manufacture circuits that are much more sophisticated than the required
functionality, it’s basically the best one can get. Depending on the setting, one
can potentially use our compiler in some mode – exploiting redundancy or using
repetition – to fix those issues. We sketch some measures in the cryptographic
setting below.

For the cryptographic setting (2) our notion seems even less useful: if the
adversary can learn outputs of the Trojans, he can use the Θ(1/T ) fraction of
wrong outputs to embed (and thus leak) its secrets. While using the compiler
directly might not be a good idea, we see it as a first but major step towards
simple and Trojan-resilient constructions in the cryptographic setting. As an
example, consider a weak PRF F : K × X → Y (a weak PRF is defined like
a regular PRF, but the outputs are only pseudorandom if queried on random
inputs). While implementing F(k, ·) using our compiler directly is not a good
idea as discussed above,4 we can compile t > 1 weak PRFs with independent keys
and inputs and finally XOR the outputs of the t master circuits to implement a
weak PRF F3((k1, . . . , kt), (x1, . . . , xt)) = ⊕ti=1F(ki, xi). Intuitively, the output
can only leak significant information about the keys if all t outputs are wrong
as otherwise the at least one pseudorandom output will mask everything. If each
output is wrong with probability, say 1/T for a modest T = 230 and we use t = 3,
then for each query we only have a probability of 1/T 3 = 2−90 that all t = 3
outputs deviate, which we can safely assume will never happen. Unfortunately, at
this point we can’t prove the above intuition and leave this for future work. For
one thing, while we know that the XOR will not leak much if at least one of the t
values is correct when the weak PRFs are modelled as ideal ciphers [11], we don’t
have a similar result in the computational setting. More importantly, we only
prove that at most a 1/T fraction of the outputs is wrong once a sufficiently large
number of queries was made, but to conclude that in the above construction all t
instances fail at the same time with probability at most 1/T t we need a stronger
statement saying that for each individual query the probability of failure is 1/T

seems to just require that there is no (efficiently recognisable) subset of inputs which
appear rarely (not more than with probability around 1/T ) but can come in “bursts”,
say two such inputs are consecutive with prob. � 1/T 2.

4 It’s acceptable by our construction if the inputs are iid conditioned on some secret, so
the master on input x and key k can forward (k, x) to the circuits. Alternatively the
key k can be hard-coded in the circuit (probably not a good idea if the manufacturer
is not trusted in the first place) or, if the circuits have some storage, one can give
them k after receiving the circuits from the manufacturer.
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(we believe that this is indeed true for our construction, but the current proof
does not imply this).

Weak PRFs are sufficient for many basic symmetric-key cryptographic tasks
like authentication or encryption5. Even if a fraction of outputs can be wrong,
as long as they don’t leak the key (as it seems to be the case for the construction
just sketched), this will only affect completeness, but not security. An even more
interesting construction, and the original motivation for this work, is a trojan-
resilient stream cipher. This could then be used to e.g., generate the high amount
of randomness required in side-channel countermeasures like masking schemes.
The appealing property of a stream-cipher in this setting is that we don’t care
about correctness at all, we just want the output to be pseudorandom. It’s
not difficult to come up with a candidate for such a stream-cipher based on
our compiler, but again, a proof will require more ideas. One such construction
would start with the weak PRF construction just discussed, and then use two
instantiations of it in the leakage-resilient mode from [14].

2 Definition and Security of Simple Schemes

For m ∈ N, an m-redundant simple construction Πm = (T∗,M∗) is specified by
a master circuit M∗ : X → Y ∪ {abort} and a test setup T∗ : N → {fail, pass}.6
The ∗ indicates that they expect access to some “oracles”. The following oracles
will be used: (a) F1, . . . ,Fm — the Trojan circuits that presumably implement
the functionality F : X → Y, (b) F — a trusted implementation of F (only
available in the test phase), and (c) $ — a source of random bits (sometimes we
will provide the randomness as input instead),

2.1 Test and deployment

The construction Πm which implements F in a Trojan-resilient way using the
untrusted F1, . . . ,Fm is tested and deployed as follows.

Lab Phase (test): In this first phase we execute {pass, fail} ← TF1,...,Fm,F,$(T )
The input T specifies that each Fi may be queried at most T times. If the
output is fail, a Trojan was detected. Otherwise (i.e. the output is pass) we
move to the next phase.

Wild Phase (deployment): If the test outputs pass, the Fi’s are embedded into
the master to get a circuit MF1,...,Fm,$ : X → Y ∪ abort.

2.2 Completeness

The completeness requirement states that if every Fi correctly implements F ,
then the test phase outputs pass with probability 1 and the master truthfully

5 To encrypt m sample a random r and compute the ciphertext (r,F(k, r)⊕m)
6 We consider much strongerM∗,T∗ for the lower bounds compared to what we require
in the constructions as discussed in Sec. 2.5
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implements the functionality F . That is, for every sequence x1, x2, . . . , xq (of
arbitrary length and potentially with repetitions) we have

Pr[∀i ∈ [q] : yi = F(xi)] = 1 where for i = 1 to q : yi := MF1,...,Fm,$(xi)

The reason we define completeness this way and not simply for all x we have
Pr[MF1,...,Fm,$(x) = F(x)] is that the Trojan Fi can be stateful, so the order in
which queries are made does matter.

2.3 Security of simple schemes

We consider a security game TrojanGame(Π,T,Q) where, for some T,Q ∈ Z, an
adversary Adv can choose the functionality F and the Trojan circuits F1, . . . ,Fm.
We first run the test phase τ ← TF1,...,Fm,F,$(T ) We then run the wild phase by
quering the master on Q iid inputs x1, . . . , xQ.

for i = 1, . . . , Q : yi ← MF1,...,Fm,$(xi).

The goal of the adversary is two-fold:

1. They do not want to be caught, if either τ = fail or yi = abort for some
i ∈ [Q] we say the adversary was detected and define the predicate

detect = false ⇐⇒ (τ = pass) ∧ (∀i ∈ [Q] : yi 6= abort)

2. They want the master to output as many wrong outputs as possible. We
denote the number of wrong outputs by Y def

= |{i : yi 6= F(xi)}|.

Informally, we call a compiler (like our simple schemes) (win,wrng)-Trojan re-
silient, or simply (win,wrng)-secure, if for every Trojan, the probability that it
causes the master to output ≥ wrng fraction of wrong outputs without being
detected is at most win. In the formal definition win and wrng are allowed to be
a function of the number of test queries T .

Definition 1 ((win,wrng)-Trojan resilience). And adversary (win,wrng)-wins
in TrojanGame(Π,T,Q) if the master outputs more than a wrng fraction of wrong
values without the Trojans being detected with probability greater than win, i.e.,

Pr
TrojanGame(Π,T,Q)

[(detect = false) ∧ (Y/Q ≥ wrng)] ≥ win

For win : N → [0, 1],wrng : N → [0, 1], q : N → N, we say that Π is
(win(T ),wrng(T ), q(T ))-Trojan-resilient (or simply “secure”) if there exists a con-
stant T0, such that for all T ≥ T0 and Q ≥ q(T ) no adversary (win(T ),wrng(T ))-
wins in TrojanGame(Π,T,Q).

We say Π is (win(T ),wrng(T )) Trojan-resilient if it is (win(T ),wrng(T ), q(T ))-
Trojan-resilient for some (sufficiently large) polynomial q(T ) ∈ poly(T ).

In all our simple constructions the test and master only use the outputs of the
Fi (and for the test also F) oracles to check for equivalence. This fact will allow
us to consider somewhat restricted adversaries in the security proof.
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Definition 2 (Generic Simple Scheme). A generic simple scheme T∗,M∗

treats the outputs of the Fi (and for T∗ additionally F) oracles like variables.
Concretely, two or more oracles can be queried on the same input, and then one
checks if the outputs are identical. Moreover the master can use the output of an
Fi as its own output.

By the following lemma, to prove security of generic simple schemes, it will
be sufficient to consider restricted adversaries that always choose to attack the
trivial functionality F(x) = 0 and where the output range of the Trojans is a
bit.

Lemma 1. For any generic simple scheme Πm, assume an adversary Adv exists
that (win,wrng)-wins in TrojanGame(Πm, T,Q) and let F : X → Y , F1, . . . ,Fm :
X → Y denote its choices for the attack. Then there exists an adversary Adv′

who also (win,wrng)-wins in TrojanGame(Πm, T,Q) and chooses F ′ : X →
{0, 1} , F′1, . . . ,F

′
m : X → {0, 1} where moreover ∀x ∈ X : F ′(x) = 0.

Proof. Adv′ firstly runs Adv to learn (i) the functionality F : X → Y which it
wants to attack and (ii) its Trojans F1, . . . ,Fm. It then outputs (as its choice
of function to attack) an F ′ where ∀x ∈ X : F ′(x) = 0 and, for every i ∈ [m],
it chooses the Trojan F′i to output 0 if Fi would output the correct value, and
1 otherwise. More formally, F′i(x) invokes the original Trojan y ← Fi(x) and
outputs 0 if F(x) = y and 1 otherwise.

By construction, whenever one of the F′i’s deviates (i.e., outputs 1), also
the original Fi would have deviated. And whenever the test or master detect
an inconsistency in the new construction, they would also have detected an
inconsistency with the original F and Fi.7 �

2.4 Lower bounds

By definition, (win,wrng)-security implies (win′,wrng′)-security for any win′ ≥
win,wrng′ ≥ wrng. The completeness property implies that no scheme is (1, 0)-
secure (as by behaving honestly an adversary can (1, 0)-win). And also no scheme
is (0, 1)-secure (as Pr[E] ≥ 0 holds for every event E). Thus our (win,wrng)-
security notion is only interesting if both, win and wrng are > 0. We will prove
the following lower bound:

Lemma 2 (Lower bound for simple schemes). For any c > 0 and m ∈ N
there exists a constant c′ = c′(c,m) > 0 such that no m-redundant simple scheme
Πm is (c, c

′

T )-Trojan-resilient.

Proof. Adv chooses the constant functionality F(x) = 0 with a sufficiently large
input domain |X | � (m · T )2 (so that sampling m · T elements at random from

7 Let us mention that the opposite is not true (it’s possible that for some i 6= j we
have F′i(x) = F′j(x) = 1, while Fi(x) 6= Fj(x)). This just captures the observation
that an adversary who wants to deviate as often as possible without being detected
can wlog. always deviate to the same value.
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X with or without repetition is basically the same). Now Adv samples a random
subset X ′ ⊂ X , |X ′|/|X | = 1.1·c′

T (for c′ to be determined) and then defines
Trojans which deviate on inputs from X ′

∀i ∈ [m] : Fi(x) =

{
1 if x ∈ X ′ (deviate)
0 if x 6∈ X ′ (correct)

Should the test pass, the master will deviate on each input with probability
1.1 · c′/T , if we set the number of queries Q large enough, the fraction of wrong
outputs will be close to its expectation 1.1·c′/T , and thus almost certainly larger
than c′/T .

It remains to prove that the test passes with probability ≥ c. By correctness,
the testing procedure TF1,...,Fm,F,$ must output pass unless one of the total≤ m·T
queries it made to the Fis falls into the random subset X ′. The probability that
no such query is made is at least(

1− 1.1 · c′

T

)m·T
and this expression goes to 1 as c′ goes to 0. We now choose c′ > 0 sufficiently
small so the expression becomes > c. To get a quantitive bound one can use the
well known inequality limT→∞(1− 1/T )T = 1/e ≈ 0.367879. �

The (proof of) the previous lemma also implies the following.

Corollary 1. If a simple scheme Πm is (win(T ),wrng(T )) secure with

1. win(T ) ∈ 1− o(1) then wrng(T ) ∈ o(1/T ).
2. wrng(T ) ∈ ω(1/T ) then win(T ) ∈ o(1).

The first item means that if Adv wants to make sure the Trojan is only detected
with sub-constant probability, then he can only force the master to output a
o(1/T ) fraction of wrong outputs during deployment. The second item means
that if Adv wants to deviate on a asymptotically larger than 1/T fraction of
outputs, it will be detected with a probability going to 1.

Not interesting security for 1-redundant schemes. For m = 1 redundant cir-
cuits a much stronger lower bound compared to Lemma 2 holds. The following
Lemma implies that no 1-redundant scheme is (ε(T ), δ(T ))-Trojan-resilient for
any ε(T ) > 0 and δ(T ) = 1/poly(T ) (say ε(T ) = 2−T , δ(T ) = T−100).

Lemma 3 (Lower bound for m = 1). For any 1-redundant scheme Π1 and
any polynomial p(T ) > 0, there is an adversary that (1, 1− 1/p(T ))-wins in the
TrojanGame(Π1, T,Q) game for Q ≥ p(T ) · T .

Proof. Consider an adversary who chooses a “time bomb” Trojan F1 which cor-
rectly outputs F(x) for the first T queries and also stores those queries, so it can
output the correct value if one of those queries is repeated in the future. From
query T + 1 the Trojan outputs wrong values unless it is given one of the first
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T queries as input, in which case it outputs the correct value. This Trojan will
pass any test making at most T invocations, while the master will deviate on
almost all queries, i.e., all except the first T .

To see why we store the first T queries and do not deviate on them when
they repeat in the future, consider a master which stores the outputs it observes
on the first T queries so it can later detect inconsistencies. �

2.5 Efficiency of lower bound vs. constructions

For the lower bounds in the previous section, the only restriction on the test
TF1,...,Fm,F,$(T ) is that each Fi can only be queried at most T times. There are
no restrictions on the master MF1,...,Fm,$(·) at all. In particular, it can be stateful,
computationally unbounded, use an arbitrary amount of randomness, and query
the Fis on an unbounded number of inputs (as the Trojan Fis can be stateful
this is not the same as learning the function table of the Fi’s).

While the lack of any restrictions makes the lower bound stronger, we want
our upper bounds, i.e., the actual constructions, to be as efficient (in terms of
computational, query and randomness complexity) and simple as possible, and
they will indeed be very simple.

Let us stress that one thing the definition does not allow is the test to pass a
message to the master. If we would allow a message of unbounded length to be
passed this way no non-trivial lower bound would hold as T could send the entire
function table of F to M, which then could perfectly implement F . Of course
such a “construction” would get against the entire motivation for simple schemes
where M∗ should be much simpler and independent of F . Still, constructions
where the test phase sends a short message to the master (say, a few correct
input/output pairs of F which the master could later use to “audit” the Trojans)
could be an interesting relaxation to be considered.

2.6 Our results and conjecturesOur main technical result is a construction of a simple scheme which basically
matches the lower bound from Lem. 2. Of course for any constant c > 0, the
constant c′ in the theorem below must be larger than in Lem. 2 so there’s no
contradiction.

Theorem 1 (Main, optimal security of Π12). For any constant c > 0 there
is a constant c′ such that the simple construction Π12 from Fig. 3 is (c, c

′

T )-Trojan
resilient.

While (c, cT )-Trojan-resilience matches our lower bound, the construction is m =
12-redundant (recall this means we need 12 instantiations of F manufactured
to instantiate the scheme). While for m = 1 redundancy is not sufficient to get
any interesting security, as we showed in Lem. 3, we conjecture that m = 2 is
sufficient to match the lower bound, and give a candidate construction.

Conjecture 1 (Optimal security of Πφ
2 ). For any 0 < φ < 1 and any constant

c > 0 there is a constant c′ = c′(c, φ) such that the simple construction Πφ
2 from

Sec. 3 is (c, c
′

T )-Trojan resilient.
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F1

Test Phase
TF1,F2(T )

sample ∆←$ [T − 1]0
xi ←$ X for i ∈ [∆]

F

?
=

xi (for i = 1 . . .∆)

Output pass if all outputs
= 1, output fail otherwise.

F1 F2

xi

?
=

Wild Phase
MF1,F2

{
1 if y = z
0 if y 6= z

?
=

y z

y z

?
={

y if y = z
abort if y 6= z

Test (trusted)

Manufactured (not trusted)

Master (trusted)

Fig. 2. Construction Π?
2 (discussed in Sec. 2.9), which is (c, c

′

T
) secure for history-

independent Trojans.

Fj

Test Phase
TF1,...,F12,F,$(T )

sample ∆←$ [T − 1]0
xi ←$ X for i ∈ [∆]

F

?
=

Output pass if all ∆ outputs
= 1, output fail otherwise.

For i ∈ [∆]
j ∈ {1, 4, 5, 8, 9, 12}

xi

Wild Phase MF1,...,F12,$(x)
set x1 := x and sample

x2, x3 ←$ X
sample b←$ {0, 1}

F1 F2 F3 F4

x1 x2

b

b

?
=

?
=

F5 F6 F7 F8

x1 x2 x3

b

?
=

?
=

b b b

Master outputs y1 = F1(x) if all output ok and outputs
abort otherwise

y1

F9 F10 F11 F12

x1 x2 x3

b

?
=

?
=

b bb

?
=

y7 y10

?
=

y3 y11

?
=

y2 y6

y2

y6

y3

y7y11y10

Π12 = (T∗,M∗)

Test (trusted)

Manufactured (not trusted)

Master (trusted)

x0 x1

b ∈ {0, 1}

xb x1−b

y z

?
={

ok if y = z
abort if y 6= z

{
1 if y = z
0 if y 6= z

?
=

y z

?
=

Fig. 3. Construction Π12 for which we prove optimal Trojan-resilience as stated in
Thm. 1. Very informally, the security proof is by contradiction: via a sequence of hybrids
an attack against Π12 is shown to imply an attack where the yellow part basically
corresponds to Π?

2 with two history independent circuits. This attack contradicts the
security of Π?

2 as stated in Thm. 2.
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The parameter φ in this construction basically specifies that the master will
query both oracles F1 and F2 on a (random) T−φ fraction of the input, and
check consistency in this case. While the conjecture is wrong for φ = 0 and
φ ≥ 1, the φ = 0 case (i.e., when we always query both, F1 and F2) will be
of interest to us as security of the Π?

2
def
= Π0

2 construction against a limited
adversary (termed history-independent and discussed in Sec. 2.9 below) will be
a crucial step towards our proof of our main theorem.

2.7 Comparison with VC and MPC

Let us shortly compare the security we achieve with the more costly solutions
based on verifiable computation (VC) [17,2] and multiparty computation (MPC)
[5] discussed in the introduction. We can consider (win,wrng)-security as in Defi-
nition 1 also for the VC and MPC construction, here one would need change the
TrojanGame(Π,T,Q) from §2.3 to allow the trojans Fi to implement a different
functionality than the target F (for VC one needs to compute an extra succinct
proof, for MPC the trojans implement the players in an MPC computation). For
VC there’s no test (so T = 0) and only one m = 1 Trojan, and for MPC and
VC we can drop the requirement that the inputs are iid.

In the VC construction the master will catch every wrong output (except with
negligible probability), so for any polynomial poly there is a negligible function
negl (in the security parameter of the underlying succinct proof system), such
that the scheme is (1/poly, negl,Q) secure for any polynomial Q.

For the MPC construction the master will provide Q < c0T outputs with
probability cm1 (where c0 ∈ [0, 1/2] and c1 ∈ [0, 1] are some constants), but while
outputs are provided they are most likely correct, so for any polynomial Q,T we
have (1− cm1 , negl,Q) security.

2.8 Stateless Trojans

In our security definition we put no restriction on the Trojans Fi provided by the
adversary (other than being digital hardware Trojans as discussed in the intro-
duction), in particular, the Fi’s can have arbitrary complex evolving state while
honestly manufactured circuits could be stateless. We can consider a variant of
our security definition (Def. 1) where the adversary is only allowed to choose
stateless Trojan circuits Fi. Note that the lower bound from Lem. 2 still holds
as in its proof we did only consider stateless Fi’s. There’s an extremely simple
1-redundant construction that matches the lower bound when the adversary is
only allowed to chose stateless Trojans.

Consider a construction Π1 = (T∗,M∗) where the master is the simplest
imaginable: it just forwards inputs/outputs to/from its oracle, if F1 is stateless
this simply means MF1(·) = F1(·). The test TF1,F,$(T ) queries F1 and the trusted
F on T random inputs and outputs fail iff there is a mismatch.

Proposition 1 (Optimal security for 1-redundant scheme for stateless
Trojans). For any constant c > 0 there is a constant c′ > 0 such that Π1
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is (c, c
′

T )-Trojan resilient if the adversary is additionally restricted to choose a
stateless Trojan.

Proof. If wrng′ denotes the fraction of inputs on which the Trojan F1 differs from
the specification F (both chosen by an adversary Adv, note that wrng′ is only
well defined here as F1 is stateless), then wrng′ must satisfy c > (1− wrng′)T if
the adversary wants to (c,wrng)-win for any wrng, as otherwise already the test
catches the Trojan with probability (1 − wrng′)T > c. For c > (1 − wrng′)T to
hold wrng′ ∈ Ω(1/T ), in particular, wrng′ ≥ c′/T for some c′ > 0. �

2.9 History-independent Trojans

A notion of in-between general (stateful) Trojans and stateless Trojans will play
a central role in our security proof. We say a trojan Fi is history-independent if
its only state is a counter which is incremented by one on every invocation, so
it’s answer to the i’th query can depend on the current index i, but not on any
inputs it saw in the past.

We observe that Lem. 3 stating that no 1-redundant simple scheme can be
secure still holds if we restrict the choice of the adversary to history-independent
Trojans as the “time-bomb” Trojan used in the proof is history-independent. We
will show a 2-redundant construction Π?

2 that achieves optimal security against
history-independent Trojans.

Theorem 2 (History-Independent Security of Π?
2 ). For any constant c >

0 there is a constant c′ = c′(c) > 0 such that Π?
2 from Fig. 2 is (c, c

′

T )-Trojan
resilient if the adversary is additionally restricted to choose a history-independent
Trojans.

The technical Lem. 4 we prove and which implies this theorem, actually implies
a stronger statement: for any positive integer k, the above holds even if we
relax the security notion and declare the adversary a winner as long a Trojan is
detected by the test or master at most k − 1 times. What this exactly means is
explained in Sec. 4.2.1. Note that this notion coincides with the standard notion
for k = 1.

The Π?
2 scheme is just the Πφ

2 scheme from Conjecture 1 for φ = 0, where
we conjecture that Πφ

2 is (in some sense) optimally secure for 0 < φ < 1. For
φ the conjecture is wrong, but somewhat ironically we are only able to prove
security against history-independent Trojans for φ = 0, and this result will be
key towards proving the security of Π12 as stated in our main Thm. 1.

2.10 Proof outline

The proof of our main Thm. 1 stating that Π12 is optimally Trojan-resilient is
done in two steps. As just discussed, we first prove security ofΠ?

2 against history-
independent Trojans, and in a second step we reduce the security of Π12 against
general Trojans to the security of Π?

2 against history-independent Trojans. We
outline the main ideas of the two parts below.
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Part 1: security of Π?
2 against history-independent Trojans (Thm. 2,Lem. 4).

Π?
2 is a very simple scheme where the test TF1,F2,F,$ just queries F1 on a random

number ∆, 0 ≤ ∆ < T of inputs and checks if they are correct (the test ignores
F2). The master MF1,F2,$(x) queries y ← F1(x) and y′ ← F2(x) on x and aborts
if they disagree.

In the proof of Lem. 4 we define pi and qi as the probability that F1 and F2

outputs a wrong value in the ith query on a random input, respectively. As F1,F2

are history independent, this is well defined as this probability only depends on
i (but not previous queries).

Let the variable Φ∆ denote the number of times the Trojans will be detected
conditioned on the random number of test queries being ∆. This value is (below
Q is the number of queries to the master and we use the convention qi = 0 for
i < 0)

E[Φ∆] =

Q+∆∑
i=1

|pi − qi−∆| (1)

In this sum, the first ∆ terms account for the test, and the last Q terms for the
wild-phase. Moreover let Y∆ denote the number of times F1 deviates (and thus
the master outputs a wrong value), its expectation is

E[Y∆] =

Q+∆∑
i=∆+1

pi

To prove Trojan-resilience of Π?
2 as stated in Lem. 4 boils down to proving that,

for most ∆, whenever the probability of Φ∆ = 0 (i.e., the Trojan is not detected)
is constant, the fraction of wrong outputs Y∆/Q must be “small” (concretely,
O(1/T )).

The core technical result establishing this fact is Lem. 5. Unfortunately, this
Lem. only establishes this fact for the expectation, i.e., whenever E[Φ∆] is small,
also E[Y∆] is small. Here is where we use the fact that the F1,F2 are history
independent: in the history independent case Φ∆ and Y∆ can be written as the
sum of independent boolean variables, so using a Chernoff bound (see Appx. ??)
it follows that their actual value will be close to their expectation with high
probability.

It is instructive to see why for example setting pi = qi = δ for some fixed
δ > 0 does not contradict Thm. 2. To contradict it, the fraction of wrong outputs
(which here is simply δ) must be ω(1/T ). In this case, E[Φ∆] = ∆ · δ = ω(∆/T ),
which to contradict the lemma must be at least constant, which in turn means
∆ ∈ o(T ) must hold. As ∆, 0 ≥ ∆ < T is uniform, t’s o(T ) with o(1) probability,
but for a contradiction we also need this probability to be constant.

Part 2: reducing the security of Π12 against general Trojans to the security of
Π?

2 against history independent Trojans (Thm. 1). While the random shift ∆
makes Π?

2 secure against history-independent attacks (like time-bombs, where
a Trojan starts deviating after some fixed number of queries), it succumbs to
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cheat codes: as the master always queries F1,F2 on the same inputs, a Trojan can
specify some set of trigger inputs, and after receiving such a trigger the Trojans
will deviate forever. By making the fraction of inputs that are triggers sparse,
the Trojans will likely not be detected during testing (a 1/T fraction will survive
testing with constant probability).

To prevent such a coordination via the inputs, in Π12 inputs are somewhat
randomly assigned to the different Trojans. In particular, as emphasized in the
yellow area in Fig. 3, the F1 is always queried on the input x, and then the
random bit b determines whether F2 or F3 are queried on x. If an input x were
to trigger the Trojans to always deviate, F1 and one of F2 and F3 will be triggered,
say it’s F2. But now, as soon as F3 is queried in a future round the master will
abort as F1 will deviate, but F3 will not (except if this query also happens to
be a trigger, which is unlikely as triggers must be sparse to survive the testing
phase).

This just shows why a particular attack does not work on Π12. But we want
a proof showing security against all possible Trojans. Our proof proceeds by
a sequence of hybrids, where we start with assuming a successful attack on
Π12, and then, by carefully switching some circuits and redefining them by hard
coding “fake histories”, we arrive at a hybrid game where there is still a successful
attack, but now the circuits in the yellow area basically correspond to two theΠ?

2

construction instantiated with history-independent Trojans, but such an attack
contradicts our security proof for Π?

2 as stated in Lem. 4.

3 Conjectured Security of 2-redundant Schemes

While the main technical result in this paper is a simple scheme Π12 that prov-
ably achieves optimal security as stated in Thm. 1, this construction is not really
practical as it is 12-redundant. Recall that k-redundant means the master needs
k instantiations of the functionality F , so it’s in some sense the hardware cost.
For this section let us also define a computational cost: the rate of a simple
construction is the average number of invocations to its Fi oracles the master
MF1,...,Fm,$(·) makes with any query.

3.1 A 2-redundant scheme Πφ
2

We will now define a scheme Πφ
2 which in terms of redundancy and rate is as

efficient as we possibly could hope for a scheme with non-trivial security: it’s
2-redundant and has a rate of slightly above (the trivial lower bound of) 1. The
construction Πφ

2 = (M∗,T∗), where φ ∈ R, φ ≥ 0 is illustrated in Fig. 4.

test: In the test phase, TF1,F2,F(T ) picks a random ∆, 0 ≤ ∆ ≤ T − 1, then
queries F1 on ∆ random inputs and checks if the outputs are correct by
comparing with the trusted F.

master: With probability 1− T−φ the master MF1,F2,$(x) picks either F1 or F2

at random, queries it on x and uses the output as its output. Otherwise,
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with probability T−φ, the master queries both oracles and outputs abort if
their outputs don’t match, and forwards the output of F1 otherwise.

Test (trusted)

{
1 if y = z
0 if y 6= z

?
=

y z

y z

b ∈ {0, 1, 2}×?
y if b = 0
z if b = 1
y if b = 2 and y = z

abort if b = 2 and y 6= z

x 1

⊥ x

x 2

x x

x 0

x ⊥
Wild Phase MF1,F2,$(.)

on input x
sample b ∈ {0, 1, 2} with
distribution Pr[b = 0] =
Pr[b = 1] = (1− T−φ)/2,

Pr[b = 2] = T−φ.

x b

F1 F2

×?

F1

Test Phase TF1,F2,F,$(T )
sample ∆←$ [T ]0
xi ←$ X for i ∈ [∆]

F

?
=

xi (for i = 1 . . .∆)

Output pass if all outputs
= 1, output fail otherwise.

Manufactured (not trusted)

Master (trusted)

Πφ
2 = (T∗,M∗) , φ ≥ 0

Fig. 4. Construction Πφ
2 from Conjecture 1.

Our Conjecture 1 states that this construction achieves optimal security (optimal
in the sense of matching the lower bound from Lem. 2) for any 0 < φ < 1, i.e.,

For any 0 < φ < 1 and any constant c > 0 there is a constant c′ such
that Πφ

2 is (c, c
′

T )-Trojan resilient.

We discuss how Πφ
2 performs against typical Trojans like time-bombs and cheat

codes. Our conjecture only talks about (win(T ),wrng(T ))-security where the
winning probability win(T ) = c is a constant, and here the exact value of φ
does not seem to matter much as long as it is bounded away from 0 and 1. For
win(T ) = o(1) the parameter φ will matter as those attacks will illustrate. (the
o(1) always denotes any value that goes to 0 as T →∞).

Proposition 2 (Time Bomb against Πφ
2 ). For any φ, there exists an adver-

sary that (Θ(T−φ), 1− o(1))-wins in TrojanGame(Θ(Πφ
2 ), T, ω(T ))

Proof (sketch). Let Adv choose the constant functionality ∀x ∈ X : F(x) = 0,
and a Trojan F1 which outputs the correct value 0 for the first T queries, and 1
for all queries > T , while F2 always outputs 1.

F1 will always pass the test. The master will abort iff one of its first T −∆
queries to F1 (where the output is 0) is a “b = 2” query (as then F1(x) = 1 6= 0 =
F2(x)). With probability T−φ we have ∆ ≥ T − Tφ, and in this case such a bad
event only happens with constant probability (using (1−ε)1/ε ≈ 1/e = 0.368 . . .).
So the Trojan will not be detected with probability T−φ/e, and in this case also
almost all outputs will be wrong. �
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Proposition 3 (Cheat Code against Πφ
2 ). For any φ, there exists an adver-

sary that (Θ(Tφ−1), 1− o(1))-wins in TrojanGame(Θ(Πφ
2 ), T, ω(T ))

Proof (sketch). Let Adv choose the constant functionality ∀x ∈ X : F(x) = 0.
The Trojans F1,F2 output 0 until they get a query from a “trigger set” X ′ ⊂ X ,
after this query they always deviate and output 1.

If we set |X ′|/|X | = 1/T , then the test will pass with constant probability
(1 − 1/T )∆ ≥ (1 − 1/T )T ≈ 1/e. Assuming the Trojans passed the test phase,
the master will not catch the Trojans if the first trigger query to F1 and F2

happen in-between the same b = 2 queries (or in such a query). This happens
with probability ≈ Tφ−1. �

The two propositions above imply that the adversary can always (Tmax{−φ,φ−1}, 1−
o(1))-win by either using a time-bomb or cheat-code depending on φ. The win-
ning probability is minimized if −φ = φ − 1 which holds for φ = 0.5. We con-
jecture that the above two attacks are basically all one can do to attack Πφ

2 .

Conjecture 2 (Security of Π0.5
2 for low winning probabilities). For win(T ) ∈

ω(T−0.5), Π0.5
2 is (win(T ),wrng(T ))-Trojan resilient for some wrng(T ) ∈ o(1).

4 A Scheme for History-Independent Trojans

In this section we define the simple scheme Π?
2 and prove its security as claimed

in Thm. 2. Recall that a history-independent Trojan circuit is a stateless circuit,
except that it maintains a counter. We recall that a trojan is history-independent
if its state is a counter which is incremented by one on every invocation, so its
answer to the i’th query can depend on the current index i and current input
xi, but not on any inputs it saw in the past.

4.1 Notation

For an integer n we define [n]
def
= {1, . . . , n} and [n]0

def
= {0, . . . , n}. We will also

use the Chernoff bound.

4.2 Security of Π?
2

4.2.1 Relaxing the winning condition. We can think of the security ex-
periment TrojanGame(Π?

2 , T,Q) as proceeding in rounds. First, for a random
∆ ∈ [T ], we run the test for ∆ rounds (in each quering F1 and F on a random
input and checking equivalence), and then Q rounds for quering the master (in
each round quering F1 and F2 and checking for equivalence). The adversary im-
mediately loses the game if a comparison fails (outputs 0 in the test or abort in
the master) in any round.

We consider a relaxed notion of (win,wrng)-winning, “relaxed” as we make it
easier for the adversary, and thus proving security against this adversary gives
a stronger statement. We define (win,wrng)-k-winning like (win,wrng)-winning,
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but the adversary is allowed to be detected in up to k−1 rounds, so (win,wrng)-
1-winning is (win,wrng)-winning.

This relaxed notion is not of practical interested, as one would immediately
abort the moment a Trojan is detected. We consider this notion as we need it
for the security proof of our main Thm. 1, where we will only be able to reduce
security of Π12 to the security of Π?

2 (against history-independent Trojans) if
Π?

2 satisfies this stronger notion.

4.2.2 Proof of Thm. 2. The following lemma implies Thm. 2 for k = 1, as
discussed after the statement of the theorem the lemma below is somewhat more
general as we’ll need the stronger security for any k.

Lemma 4. For any constant c > 0 and positive integer k, there exists a constant
c′, and integer T0 and polynomial q(.) such that no adversary Adv exists that only
chooses history-independent Trojans and that for any

T ≥ T0 , Q ≥ q(T )

can (c, c′/T )-k-win TrojanGame(Π?
2 , T,Q).

Proof. For a given c > 0 define

c′′ = max{64k,−256 ln(c/2)}

we then set c′, q(T ) and T0 as

c′ = c′′/c2 , q(T ) =
5 · T 2c

c′′
+ 5T , T0 = 1 (2)

These values are just chosen so that later our inequalities work out nicely, we
did not try to optimise them.

By Lem. 1 we can consider the security experiment where an adversary Adv
chooses the constant functionality F : X → 0 as target and the two (history-
independent) Trojans F1,F2 : X → {0, 1} output a bit (so they can either cor-
rectly output 0 or deviate by outputting 1). As the F1,F2 are history indepen-
dent, we can think of F1 as a sequence F1

1,F
2
1, . . . of functions where Fi1 behaves

like F1 on the ith query. Let pi and qi denote the probability that F1 and F2

deviates on the ith query, respectively

pi
def
= Pr

x←X
[Fi1(x) = 1] , qi

def
= Pr

x←X
[Fi2(x) = 1]

In TrojanGame(Π?
2 , T,Q), for δ ∈ [T − 1]0 let the variable Yδ denote the number

of wrong outputs by F1 conditioned on the number of test queries ∆←$ [T −1]0
being ∆ = δ. The expectation is

E(Yδ) =

Q∑
i=1

pi+δ (3)
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Let the variables ΦTδ and ΦMδ denote the number of times the test and the master
“catch” a Trojan conditioned on ∆ = δ

E[ΦTδ ] =

δ∑
i=1

|pi| , E[ΦMδ ] ≥
Q∑
i=1

|pi+δ − qi|

let Φδ
def
= ΦTδ + ΦMδ denote the total number of times the Trojans are detected,

and Φ′δ being the same but we ignore the last δ queries. With the convention
that qi = 0 for i < 1

E[Φδ] ≥
Q+δ∑
i=1

|pi − qi−δ| , E[Φ′δ] ≥
Q∑
i=1

|pi − qi−δ| , E[Φδ] ≥ E[Φ′δ] (4)

As we consider history-independent Trojans the Yδ, Φδ variables are sums of
independent Bernoulli random variables. Using a Chernoff bound we will later
be able to use the fact that for such variables are close to their expectation with
high probability.

Claim. For any δ ∈ [T − 1]0, τ ∈ [T − 1− δ] (so δ + τ ≤ T − 1)

E[Φδ] + E[Φδ+τ ] ≥ τ · E[Yδ]− T
Q+ T

(5)

Proof (of Claim). Assume for a moment that p1, . . . , pτ = 0 as required to apply
Lem. 16, then

E[Φδ] + E[Φδ+τ ]
(4)

≥ E[Φ′δ] + E[Φ′δ+τ ] (6)

≥
∑

∆∈{δ,δ+τ}

Q∑
i=1

|pi − qi−∆| (7)

Lem.5
≥ τ ·

∑Q
i=1 pi
Q

= τ · E[Y0]

Q
(8)

≥ τ · E[Yδ]− T
Q

(9)

The last step used E[Y0] + δ ≥ E[Yδ] and δ ≤ T .
We now justify our assumption p1, . . . , pτ = 0. For this change the security

experiment and replace the Trojans F1,F2 chosen by the adversary with Trojans
that first behave correctly for the first T inputs, and only then start behaving
like F1,F2 (technically, the new Trojans deviate with probabilities p′i, q′i satisfying
p′1, . . . , p

′
T = 0, q′1, . . . , q

′
T = 0 and for i > T : : p′i = pi−T and q′i = qi−T ). At

the same time, we increase Q to Q + T . This change leaves E[Yδ] unaffected,
while E[Φ′δ],E[Φ′δ+τ ] can only increase. This proves the claim, note that in (5)
the denominator is Q+ T not Q as in (9) to account for this shift. 4
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Claim. For all but at most a c/2 fraction of the δ ∈ [T ]0

E[Φδ] ≥
c · T

8
· E[Yδ]− T

Q+ T
(10)

Proof (of Claim). We use Eq. (5) which can be understood as stating that if
E[Φδ] is “small” for some δ, then all E[Φδ′ ] with |δ − δ′| large enough can’t be
small too. Concretely, consider any δ for which (if no such δ exists the claim
already follows)

E[Φδ] <
c · T

8
· E[Yδ]− T

Q+ T

then for all δ′ ∈ [T ]0 for with |δ − δ′| ≥ c·T
4 (note this is at least a c/2 fraction)

by Eq. (5)

E[Φδ] + E[Φδ′ ] ≥
c · T

4
· E[Yδ]− T

Q+ T

the two equations above now give

E[Φδ′ ] ≥
c · T

8
· E[Yδ]− T

Q+ T

as claimed. 4

To prove the lemma we need to show that when Q is sufficiently large, any
adversary attacking at least c′/T fraction of times, can win at most k times with
probability less than c. Since the duration of test phase δ is chosen randomly
from the set {0, ..., T − 1}, we start with the following equation:

1

T

T−1∑
δ=0

Pr[(Yδ/Q ≥ c′/T ) ∧ (Φδ < k)] < c (11)

Let cδ denote the probability the adversary k-wins conditioned on ∆ = δ

cδ
def
= Pr[(Yδ/Q ≥ c′/T ) ∧ (Φδ < k)] (12)

With this notation we need to show

1

T

T−1∑
δ=0

cδ < c

which follow from the claim below

Claim. cδ < c/2 holds for all δ, except (the at most c/2 fraction of) the δ ∈ [T ]0
for which (10) does not hold

Proof (of Claim). Consider any δ for which (10) holds. If for this δ Pr[Yδ ≥
Q · c′/T ] < c/2 we’re done as by (12) also cδ < c/2 (using that Pr[a ∧ b] ≤ Pr[a]
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for all events a, b). To finish the proof of the claim we need to show that otherwise,
i.e., if

Pr[Yδ ≥ Q · c′/T ] ≥ c/2 (13)

then
Pr[Φδ < k] < c/2 (14)

as this again implies cδ < c/2. Eq. (13) (using Pr[V ≥ x] ≥ p ⇒ E[V ] ≥ x · p
which follows from Markov’s inequality) gives

E[Yδ] ≥ Q · c′ · c/2T (15)

Plugging this into (10), then using or choice (2) of c′ = c′′/c2 and in the last
step of Q ≥ q(T ) = 5 ·T 2 · c/c′′+ 5T (this bound for q(T ) was just chosen so the
last inequality below works out nice)

E[Φδ]
(10)

≥ c · T
8
· E[Yδ]− T

Q+ T

(15)

≥ c · T
8
·
Q·c′·c

2T − T
Q+ T

(2)

≥ Q · c′′ − 2T 2 · c
16(Q+ T )

≥ c′′/32

Using the Chernoff bound as in Proposition ?? (see Appx. ??) with ε = 1/2
and c′′ ≥ −256 ln(c/2).

Pr[Φδ < c′′/64] ≤ Pr[Φδ < E[Φδ]/2] ≤ e−E[Φδ]/8 ≤ e−c
′′/256 ≤ c/2

With our choice (2) of c′′ = max{64k,−256 ln(c/2)} we get the bound Pr[Φδ <
k] ≤ c/2 claimed in (14). 4

�

4.3 A technical lemma

Consider any t, z ∈ N, z > t, t = 0 mod 2 and p1, . . . , pz ∈ [0, 1]. Denote with
p̄

def
=

∑z
i=1 pi
z be the average value.

Lemma 5. For any q1, . . . , qz ∈ [0, 1], (defining qi = 0 for i ≤ 0) and integers
∆′, τ where 0 ≥ ∆′, τ ≥ 0, if p1 = p2 = . . . = pτ = 0 then

∑
∆∈{∆′,∆′+τ}

z∑
i=1

|pi − qi−∆| ≥ τ · p̄ (16)
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(∆, i) entry contains value |pi − qi−∆|
1 2 3 4 5 6 7 8 9 10 11 12

0

2

3

1

i =

∆ =
|p10 − q9|

|p2 − q−1|

z = 12, t = 4, τ = 2,∆′ = 1

τ

∆′ Sτ=2,∆′=1

|p12 − q9||p10 − q7|Z6

Fig. 5. Illustration of the main variables used in the proof of Lem. 5.

We refer the reader to our technical report for the full proof, but let us observe
that for example it implies, that if p1 = p2 = . . . = pt = 0, then

1

t

t−1∑
∆=0

z∑
i=1

|pi − qi−∆| =
1

t

t/2−1∑
∆′=0

∑
∆∈{∆′,∆′+t/2}

z∑
i=1

|pi − qi−∆|︸ ︷︷ ︸
≥t·p̄/2 by (16)

≥ t

4
· p̄ (17)

Looking ahead, the lhs. of Eq. (17) will denote the expected number of times
the master circuit detects an inconsistency in the experiment, while p̄ denotes
the fraction of outputs where F1 diverts. So if the fraction of wrong outputs is
larger than 4/t, the master circuit will on average raise an alert once. To get a
bound on the security the expected number of alerts is not relevant, only in the
probability that it’s larger than one, as this means that a Trojan was detected.
The more fine grained statement Eq. (16) will be more useful to argue this.

5 A 12-redundant scheme Π12

In this section we define a scheme Π12 and we will show that the lower bound for
achievable security for very simple schemes (shown in Lem. 2) is asymptotically
tight. Our proof is constructive - the analysis of our Π12 construction shows that
it is (c, c

′

T )-Trojan resilient for suitable constants.
Our Π12 scheme operates with three independent input streams and one

independent bit stream. On each query, every circuit in Π12 receives one of
the three inputs and produces an output. The master circuit then checks the
consistency of the outputs, i.e. verifies if there is no mismatch between any pair
of circuits receiving the same input.

As stated in Sec. 1, digital Trojans mainly employ two types of strategies:
time bombs (where time is measured in the number of usages) and cheat codes
(as a part of the input). To counter these strategies, Π12 desynchronizes the
circuits in two ways. First, some of the circuits are tested in the test phase for
a randomly chosen time (already employed in the Π∗2 scheme). This effectively
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makes it difficult for time bomb Trojans to coordinate the time in which they
start deviating. In Π12, half of the circuits are tested for T times where T is a
random variable with uniform distribution on [t].

The second method of desynchronization involves using the value of the afore-
mentioned input bit to alternate the way inputs are distributed among the cir-
cuits. Consequently, cheat code Trojans are rendered ineffective as only a subset
of the circuits share the same input. Moreover, at any given point in time a cir-
cuit never “knows” which alternating state it is in (i.e. it does not know whether
its output would be compared with deviating circuits or not).

F F F F

b = 0

x x′

?
=

?
=

F F F F

b = 1

x x′

?
=

?
=

x, x′ ←$ X , b←$ {0, 1}

Fig. 6. In a given group of circuits, depending on the value of b, the leftmost and
rightmost circuits (outer circuits) are paired with the circuits in the middle (inner
circuits). Circuits in a pairing are given the same input, and their outputs are checked
for equivalence.

The main building block of the Π12-scheme is a group of four circuits: two
outer ones and two inner ones (see Fig. 6). On each query, every group of cir-
cuits receives two inputs - the first is given to the outer circuit on the left and
the second to the outer circuit on the right. Additionally, in every step a fresh
decision/alternation bit b is sampled. According to its value these two inputs are
given to the inner circuits. Π12 consists of three such groups. Crosschecks are
performed whenever two distinct circuits receive the same input (both within a
group and among groups).

The proof that the construction Π12 is actually Trojan-resilient starts with
assuming that it is not secure, goes via a hybrid argument and leads to a contra-
diction with security ofΠ∗2 construction. In every hybrid we change the construc-
tion slightly by swapping some pairs of circuits, arguing that the advantage of the
adversary does not change much between each successive hybrids. In the final hy-
brid we show that the modified construction contains Π?

2 as a sub-construction.
It turns out, that any adversary who wins with reasonable good probability in
the final hybrid can be used to build an adversary who breaks the security of
Π?

2 which is a contradiction with Theorem 2.
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5.1 The Π12 scheme

We will now define our Π12 construction. It is illustrated in Fig. 3 (see page
11). We view our 12-circuit construction as three groups of four circuits each.
Group 1 consists of circuits F1, . . . ,F4, group 2 consists of F5, . . . ,F8, and group
3 consists of F9, . . . ,F12. At the beginning the three independent and identically
distributed sequences of inputs are sampled. Moreover, independent sequence of
bits is sampled (it is used to alternate the inputs’ distribution in the wild). For
every query in the wild, the construction performs two steps: (i) the querying
step, where the inputs are distributed to all the 12 circuits depending on the
value of the corresponding bit (ii) the cross-checking step, where the master
circuit checks the consistency of the outputs of the circuits who receive the same
inputs.

Now we can take a closer look on our construction. There are three pairs of
circuits that share the same input throughout the course of the game regardless
of the value of the random bit (see Fig. 3). For instance, the circuit pairs (F2,F6),
(F3,F11) and (F7,F10) share the exact same inputs throughout the game. The
outer two circuits within each circuit group (circuits Fi for i ≡ 0, 1 mod 4) are
uniquely paired with exactly one of the middle circuits, i.e. given the same input,
depending on the value of the random bit bi sampled by the master circuit at
each step of the game. For instance, in circuit group 1 if bi = 0, F1 is paired with
F2 and both circuits given x1

i as input, and F4 is paired with F3 and both given
x2
i as input. After the querying phase, the master cross-checks the output of the

circuits which share the same input streams. If any of the cross checks in any
round fail, then the master aborts and the adversary looses. We now provide a
more detailed description of the construction as follows:

test: In the test phase, TF1,··· ,F12,F(T ) picks a random ∆ such that 0 ≤ ∆ ≤
T − 1, then queries F1,F4,F5,F8,F9 and F12 on ∆ random and independent
inputs x1

i , x
4
i , x

5
i , x

8
i , x

9
i and x12

i respectively and checks if the outputs of the
corresponding circuits are correct by comparing them with the trusted F.

master: The master samples three independent input streams ~x1 = (x1
1, x

1
2, x

1
3,

· · · ), ~x2 = (x2
1, x

2
2, x

2
3, · · · ), ~x3 = (x3

1, x
3
2, x

3
3, · · · .) and an independent bit

string ~b = (b1, b2, · · · ). The operation of the master circuit is split into two
phases: (i) querying phase and (ii) cross-checking phase.

Querying step. For all i ∈ [Q], it queries the functions F1,F2 · · · ,F12 as
follows:
1. If bi = 0,

– The functions F1,F2,F5,F6 get x1
i as input,

– The functions F3,F4,F11,F12 get x2
i as input, and

– The functions F7,F8,F9,F10 get x3
i as input.

2. if bi = 1,
– The functions F1,F3,F9,F11 get x1

i as input,
– The functions F2,F4,F6,F8 get x2

i as input, and
– The functions F5,F7,F10,F12 get x3

i as input
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Cross-checking step. For all i ∈ [Q], the the master circuit pairwise compares
the outputs of the circuits that receive the same inputs (refer to the technical
report for the details of the cross-checking phase). If at any round any of the
checks fail, the master outputs abort and the adversary looses.
Output. If all the checks succeed in the cross-checking phase, the master
outputs the output of the circuit F1, i.e., ~y = F1( ~x1) as the output of Π12.

5.2 Security of Π12

In this section we prove Thm. 1, which states that the construction presented
in Sec. 5.1 is (c, c

′

T )-secure for appropriate choice of constants c and c′. More
precisely, we show that the security of the 2-circuit construction from Sec. 2.9 can
be reduced to the security of the 12-circuit construction presented above. Before
proceeding with the proof, we introduce some useful definitions and notations.

5.2.1 History hardcoded circuits and plaits. We observe that the nota-
tion F(x) for stateful circuits is ambiguous, since its value depends also on the
history of queries to F (which is not provided as a parameter). We can thus
assume that each F is associated with some stream x = (x1, x2, ...) and that
F(xi) := F(xi|x1, x2, ..., xi−1). This notation uniquely describes the i-th query to
F given the stream x.

In our proof we will however need a slightly different notion called history-
hardcoded circuits. Given any stateful circuit F and two arbitrary streams x =
(x1, x2, x3, ...) and w = (w1, w2, w3, ...), we say Fx is an x-history-hardcoded
circuit if at the i-th query it hardcodes the stream values x1, . . . , xi−1 as its
history and takes wi from the stream w as the input to query i. Thus Fx on the
i-th query with input wi returns the value: Fx,i(wi) = F(wi|x1, x2, ..., xi−1) and
on the i+ 1-th query returns Fx,i+1(wi+1) = F(wi+1|x1, x2, ..., xi−1, xi). We call
the stream x the hardcoded history stream and w the input stream.

For a random variable X which takes values from {X1, X2, ...} and a circuit
F we define another random variable FX as follows. Its value for X = x is simply
Fx. We will call this random variable an X-history-hardcoded circuit. Note that
as long as FX receives inputs from a stream W independent from X, we can say
that Fx is a history-independent circuit.

We emphasize that when the hardcoded history stream is equal to the ac-
tual input stream, the history-hardcoded circuit returns the same results as the
original stateful circuit receiving the same input stream. In other words:

F(Xi) = FX,i(Xi), (18)

for all i ∈ N with probability 1.
Another idea exploited in our construction is the concept of alternating inputs

depending on the values of random bits. We will express this idea using the notion
of b-plaits, where b is a stream of random bits. A b-plait of two streams a0 and
a1 is a new stream (a0a1)b, where its i-th value is either a0

i from stream a0 or
a1
i from stream a1 depending on the i-th value of the decision stream b. More

precisely:
(a0a1)b = (ab11 , a

b2
2 , a

b3
3 , ...)

25



In our construction, there is only one decision stream used for every plait, there-
fore the b will be omitted for simplicity. Thus to express the plait of two streams
a0, a1 we will simply write a0a1. A plait of two identical streams of say s will
simply be written as s, rather than ss.

Similarly to b-plaits of streams we can define the plaits of history-hardcoded
circuits. Let Gx0

0 be an x0-history-hardcoded circuit and Gx1

1 be an x1-history-
hardcoded circuit. We say (Gx0

0 Gx1

1 )b is b-plait for Gx0

0 ,G
x1

1 iff

(Gx0

0 Gx1

1 )ib(x) = Gxbi ,i
bi

(x). (19)

Note that the plaited circuit (Gx0

0 Gx1

1 )b can be expressed as a function of G0,G1

and streams x0,x1. Looking ahead, this notion of plaited circuits will be crucial
in our final reduction of the security of Π12 to Π?

2

Finally, we define an operation on history-hardcoded circuits in the context
of our construction:

Swap(Fx,Gt) : Given two history hardcoded circuits Fx and Gt in our construc-
tion, this operation physically exchanges the positions of both circuits. That is,
that Ft physically replaces Gx and vice versa. Swapped circuits keep their his-
tories, but since they change their place in the construction, they now receive
potentially different inputs and are crosschecked with different circuits.

An important notion related to the Swap operation which we will exploit
in a proof is a red edge. We say there is a red edge in the k-th query between
two history hardcoded circuits Fx and Gt iff after performing the Swap(F,G)
operation there is a change in either of the outputs of the swapped circuits on
the k-th query compared to the outputs of the circuits if the Swap operation was
not performed. Looking ahead, the notion of swaps and red edges would be used
in our proof to show that modifying the original Π12 construction by some Swap
operations does not change much the security parameters.

Now, given these definitions, we are ready to present an intuition that lies
behind our construction. We might (and should) ask the authors "but why 12 cir-
cuits?". The reason is understandable: it is hard to perform any direct proof for
history-dependent circuits; things become too complicated. Fortunately, there
exist reductions. As long as we have a valid proof of theorem 2 for history-
independent circuits, we can try to find some construction of history-dependent
circuits which can be reduced to it. The main goal is to design the crosschecks
is such a way, that, informally speaking, making circuit more history-dependent
make the whole construction more secure. It is not hard to believe in such a
statement; thanks to the alternating random bit, you never know which of some
two circuits will receive a specific input. If these two circuits are very history
dependent and have independent histories, there is a high probability, that on
the given input they would answer differently. Thank to crosschecks, the master
may detect such inconsistency with high probability. To make a practical ad-
vantage of this remark, we need to perform many Swap operations and analyze
the behaviour of various parameters describing our construction. We were able
to handle such design and analysis for 12 circuits construction.
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Now we will give a more detailed description of the intuition. As written
a few lines before, the main idea of the proof is to reduce the construction
which consists of (possibly) history-dependent circuits to Π?

2 . Π?
2 consists of

2 history-independent circuits (alternatively speaking - pairs of circuits with
different hardcoded histories, independent of the inputs that they receive). The
Swap operation Swap(Fx,Gt) is legit whenever either one of the conditions holds
- the circuits F and G are engaged in the cross-checking process as pictured in the
Figure 6 (e.g. circuits F1 and F4 or circuits F6 and F7 in the Figure 7 (Hyb0) or
the circuits received the same inputs before performing any swaps (e.g. circuits
F2 and F7 swapped in Hyb2 which are placed at the positions of F2 and F6 from
Hyb0 in the Figure 7). Now, the main idea of the proof is that by performing a
series of Swap operations on the setting with 3 rows of 4-circuit groups, we are
able to end up with a setting Hyb2 that contains 2 pairs of history-independent
circuits at the place of cross-checked circuit pairs (F1, F2) and (F3, F4). We need
just 1 Swap operation in the middle row to have history-independent circuits in
the place of F1 and F4, but for F2 (and F2) we will need an additional input
stream that goes with a new row.
We are now ready to proceed to the proof of Thm. 1.

5.2.2 Proof of Thm. 1. The proof of Thm. 1 proceeds in two parts. We
ultimately want to prove a reduction from the security of Π12 to that of Π?

2 .
Nevertheless recall in Lem. 4 the security of Π?

2 crucially depends on history
independent circuits. Thus the first part of our proof constructs a sequence of
three hybrids, Hyb0, Hyb1, Hyb2, to get a pair of history independent circuits,
F2

4 and F3
7F

3
10, in the final hybrid. Hyb0 is the original construction. To get from

Hyb0 to Hyb1, we perform the Swap operation on the following pairs of circuits in
Hyb0: (F1

1 ,F
2
4); (F12

6 ,F3
7); (F3

10,F
21
11 ). To get from Hyb1 to Hyb2, we perform the

Swap operation on the following pairs of circuits in Hyb1: (F12
2 ,F3

7); (F21
3 ,F3

10)
(refer to Fig. 7). Note that in the final hybrid Hyb2, it is crucial that F2

4 and
F3

7F
3
10 are not just history independent, but also take in the same inputs from

input stream 1 regardless of the value of the random bit (F3
7F

3
10 takes inputs from

stream 1 due to the definition of plaited circuit in (19)). This will be necessary
for the second part of our proof which uses F2

4 and F3
7F

3
10 in the final hybrid as

the two history independent circuits needed for the Π?
2 construction and uses

the Π?
2 construction with these circuits as a subroutine.

Proof. For a given F1, ...,F12 , we can define some random variables as follows.
Let φFA

j ;B be the total number of queries, where FA
j gets input from a stream B

and has a mismatch with any other circuit getting input from the same stream
in this query. We will refer to random variables related to the i-th hybrid by
adding a superscript i. For example, φ0

F1
1 ;2

= 0, since in Hyb0 no crosschecks are
made between F1

1 and the circuits receiving inputs from stream 2 . Let Φ be the
total number of mismatches detected by the master circuit. Recall from Sec. 2.3
that Y is the total number of mistakes the master circuit makes. The probability
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F5 F6 F7 F8

F1 F2 F3 F4

13

13

12

12

3

3

32

32

1

1

12

12

21

21

2

2

F9 F10 F11 F12
31

31

3

3

21

21
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1

2
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23

Hyb2

F5 F6 F8

F4 F1
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13

3

12

32

32

1

2

2

1

F9 F11 F12
31

31

3

21

23

23
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1

F7
12
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3

12
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3
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3
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12

12
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12

3 F10
21

3

F3
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21

Fig. 7. Hybrids with the circuits and their corresponding plaited hardcoded history
and input streams (above and below each circuit in black respectively). In Hyb2, F

2
4

and the plaited circuit F3
7F

3
10 (in red) are history independent.

space of these random variables is the set of all choices of a stream of random
bits b and streams of random inputs 1,2,3 and a number of tests ∆.

We prove our statement by contradiction. To this end, we assume that

∃c>0∀c′>0,T0∈N,q∈poly∃T>T0,Q>q(T )∃Adv such that

Adv
(
c, c
′

T

)
−wins TrojanGame(Π12, T,Q)

(20)

Therefore for some c and for all c′ there exists an infinite set T ⊂ N such that for
every t ∈ T there exists an infinite set Qt ⊂ N such that for every t ∈ T , z ∈ Qt
there exists an adversary Adv = Adv(c, c′, z, t) such that the following formula is
true:

Pr
[
Φ0 = 0 and Y 0 ≥ c′ ·

(
z

t

)]
≥ c. (21)

Now we will look what happens to inequality (21) as we move through each
hybrid:

Hyb0 : Hybrid 0 corresponds to the original construction due to equality (18).
Hence, the probability that the adversary Adv(c, c′, z, t) wins in this hybrid is
precisely that in Equation (21).

Hyb1: In this hybrid we simply perform three Swap operations on the following
pairs of circuits: (F1

1 ,F
2
4); (F12

6 ,F3
7);

(F3
10,F

21
11 ).

Claim. Pr
[
φ1
F2
4 ,1
, φ1

F3
7 ,12

, φ1
F3
10,21

≤ k ∧Φ0 = 0∧ Y 1 ≥ c′ · ( zt )− 3k
]
≥ c− 3 · 2−k.

Proof of the claim is in the technical report.

Hyb2 : In this hybrid we simply perform two Swap operations on the following
pairs of circuits: (F12

2 ,F3
7); (F21

3 ,F3
10).

28



Claim.
Pr
[
(φ2

F2
4 ,1
≤ 3k) ∧ (Y 2 ≥ c′(z

t
)− 5k)

]
≥ c− 3 · 2−k. (22)

Proof. Every Swap operation performed in Hyb2 changes the value of Y 2, φ2
F2
4 ,1

by at most k (since inequality (??) holds). The inequality is explicit. 4

Claim. For every k ∈ N and every adversary Adv who (c, c
′

t )-wins (Π12, T,Q)−
TrojanGame there exists an adversary Adv′ who (c−3 ·2−k, c

′

t −
5k
z )-(3k+1)-wins

the game TrojanGame(Π?
2 , T,Q).

We want to conclude, that the above statement contradicts Lem. 4. So we
want to show, that this incorrect statement is implied by our construction.

∃c̃>0∀c̃′>0,T0∈N,q∈poly∃T>T0,Q>q(T )∃Ãdv such that

Ãdv (c̃, c̃
′

T )−wins TrojanGame(Π?
2 , T,Q).

(23)

Let k = 2 + log( 1
c ) and c̃ = c− 3 · 2−k = c

4 > 0. Choose c̃′ arbitrarily and let
c′ = ·c̃′. Let T̃ = T . Let

Q̃t = {z ∈ Qt : z > t

(
5k

c̃′
+ 1

)
}.

Obviously Q̃t is infinite. As a result, for every q ∈ poly there exists z ∈ Q̃t
such that z > q(t).

Now we can construct the adversary Ãdv which would break the security of
Π?

2 which lead us to contradiction. Thanks to the analysis of the hybrids we
know, that for Adv the inequality (22) holds. Define the circuits F̃1, F̃2 given to
Ãdv in the following way:

F̃1 = F2
4 , F̃2 = F3

7F
3
10,

where the latter is a b-plait (as defined in Equation (19)). Actual values of
streams 2,3,b are sampled uniformly and independently by Ãdv, and hardcoded
in F̃1, F̃2. Obviously F̃1, F̃2 are history independent, therefore Ãdv meets the
requirements for the Π?

2 scheme.
Now we can bound a random variable Φ̃ - the number of queries in a (Π?

2 , T,Q)−
TrojanGame where the adversary is caught on deviating. If φ2

F2
4 ,1
≤ 3k, then

Φ̃ ≤ 3k, since if in the i-th query there was any inconsistency between F̃1, F̃2,
there must had been a mismatch between F3

4 and any other circuit receiving the
same input. Which concludes in:

c̃ = c− 3 · 2−k ≤ Pr
[
(φ2

F2
4 ,1
≤ 3k) ∧ (Y 2 ≥ c′( zt )− 5k)

]
≤ Pr

[
Φ̃ ≤ 3k ∧ (Ỹ ≥ c′( zt )− 5k)

]
≤

≤ Pr
[
Φ̃ ≤ 3k ∧ (Ỹ ≥ c̃′( 5k

c̃′
+ 1)− 5k = c̃′)

]
.
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Note that Ỹ is the number of mistakes made by the master circuit in the
TrojanGame(Π?

2 , T,Q) and the last inequality comes from z > t
(

5k
c′ + 1

)
. We

conclude, that that there exists c̃, such that for every c̃′ there exists Ãdv who
(c̃, c̃

′

t )-(3k+1)-wins TrojanGame(Π?
2 , T,Q). It is with contradiction with Lem. 4,

which ends the proof. �

5.3 Reapplying the hybrid argument

In the previous section, we have used the outputs produced on the input stream
1 in place of F1 as an output stream of the construction. By symmetry, the
argument from the previous section works for the input stream 2 in place of
F4. Now we will show that in fact the outputs from F5 or F8 may be used as
an output stream of the construction, which also implies the possibility of using
input stream 3 to produce the output stream of the construction.

Now, in Hyb0 (Figure 7) firstly swapping the labels of the input streams 3
and 2 on the input bit 0 and the labels of the input streams 3 and 1 on the
input bit 1 and secondly visually swapping the rows 1 and 2 does not change the
setting. We achieve the Hyb′′0 construction as shown in Fig. 8.

Hyb′′0

F1 F2 F3 F4

F5 F6 F7 F8

13

13

12

12

3

3

32

32

1

1

12

12

21

21

2

2

F9 F10 F11 F12
23

23

21

21

3

3

31

31

Fig. 8. Hyb′′0 construction.

We can still reapply the hybrid argument from the previous section to the
modified Hyb′′0 construction by applying the following swaps. Hyb′′0 → Hyb′′1 swaps :
(F1

5 ,F
2
8); (F12

2 ,F3
3); (F3

11,F
21
10 ). Hyb′′1 → Hyb′′2 swaps : (F12

3 ,F3
6); (F21

7 ,F3
11). Fi-

nally we conclude that the output streams of either F5 or F8 (by symmetry) may
be used as an output stream of the construction, what implies that by taking
outputs from circuit F8 on input bit 0 and circuit F5 on input bit 1 could be
used as an output of the construction produced with input stream 3.

The above argument implies that in each round our construction may output
3 outputs produced by consuming inputs from the same number of 3 input
streams.
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6 Outlook and Open Problems

In this work we introduced countermeasures against hardware Trojans which
compared to existing solutions based on multiparty or verifiable computation
are extremely simple and efficient, but only achieve limited security guarantees
(i.e., we only guarantee that most outputs are correct or the Trojan is detected
with high probability) in a restricted setting (iid inputs and no evolving state).

Because of this, the scope of application for our schemes is limited, but as
discussed in the introduction, we believe they will serve as a first but major step
towards solving some of the main application targets like randomness generation.
In particular, creating pseudorandomness for “randomness hungry” side-channel
countermeasures like masking in a Trojan-resilient way is one of the main mo-
tivations for this work. The reason our simple schemes are a promising starting
point towards Trojan-resilient pseudorandomness generation is the fact that in
most settings (like masking) one does not need that the pseudorandomness is
correctly generated, only that it is indistinguishable from uniform, so the relaxed
security of our schemes is not a deal breaker. Another reason is the fact that
one could use some of the pseudorandomness that is created to implement the
master’s randomness source, thus making it deterministic. Fleshing these ideas
out will require a better understanding of amplification and circularity issues in
this setting.

The main concrete technical question left open problem in this work is to
prove the security of the “minimal” and thus really practical scheme Πφ

2 as stated
in Conjecture 1. A positive resolution of the conjecture will need techniques that
go beyond our proof via history-independence used in the proof for Π12.
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