
Succinct LWE Sampling, Random Polynomials,
and Obfuscation

Lalita Devadas1, Willy Quach2, Vinod Vaikuntanathan1, Hoeteck Wee3, and
Daniel Wichs2,3

1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{lali,vinodv}@mit.edu

2 Northeastern University, Boston, MA 02115, USA
quach.w@northeastern.edu, wichs@ccs.neu.edu

3 NTT Research, Sunnyvale, CA 94085, USA
wee@di.ens.fr

Abstract. We present a construction of indistinguishability obfuscation
(iO) that relies on the learning with errors (LWE) assumption together
with a new notion of succinctly sampling pseudorandom LWE samples.
We then present a candidate LWE sampler whose security is related to
the hardness of solving systems of polynomial equations. Our construc-
tion improves on the recent iO candidate of Wee and Wichs (Eurocrypt
2021) in two ways: first, we show that a much weaker and simpler no-
tion of LWE sampling suffices for iO; and secondly, our candidate LWE
sampler is secure based on a compactly specified and falsifiable assump-
tion about random polynomials, with a simple error distribution that
facilitates cryptanalysis.

Keywords: Indistinguishability Obfuscation · Learning With Errors

1 Introduction

Indistinguishability obfuscation (iO) [BGI+01,GR07] is a probabilistic polynomial-
time algorithm O that takes as input a circuit C and outputs an (obfuscated)
circuit C ′ = O(C) satisfying two properties: (a) functionality: C and C ′ com-
pute the same function; and (b) security: for any two circuits C1 and C2 that
compute the same function (and have the same size), O(C1) and O(C2) are com-
putationally indistinguishable. Since the first candidate for iO was introduced
in [GGH+13], a series of works have shown that iO would have a huge impact
on cryptography.

In this work, we build upon the recent line of works on lattice-inspired iO
candidates [Agr19, CHVW19, AP20, BDGM20b, BDGM20a, WW21, GP21] that
are plausibly post-quantum secure. The dream goal here is to ultimately base
iO on the hardness of the learning with errors (LWE) problem together with an
assumption about simple Boolean or integer pseudorandom generators (PRGs).
Such a result would, in particular, eliminate pairings from the recent break-
through result basing iO on well-founded assumptions [JLS21].

2 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

1.1 Our Contributions

We present a candidate construction of iO that relies on LWE together with a
new notion of succinctly sampling pseudorandom LWE samples. In addition, we
present a candidate sampler whose security is related to the hardness of solv-
ing systems of polynomial equations. Our construction improves on the recent
iO candidate of Wee and Wichs [WW21] (henceforth referred to as the WW
construction) in two ways:

– First, our new notion of succinct LWE sampling simplifies and relaxes the
notion of oblivious LWE sampling from WW. Instead of a simulation-based
definition as in WW, we have a simple indistinguishability-based definition,
where the generated LWE sample can be used to drown out the differences
between certain error distributions. Furthermore, we put forth two variants
of succinct LWE sampling, and provide a general amplification from a weak
(falsifiable) notion that refers to a specific error distribution to a strong
(non-falsifiable) notion that refers to general error distributions.

– Next, our candidate succinct LWE sampler is easy to describe and is based
on random polynomials. It yields an LWE sample with a simple error dis-
tribution that facilitates cryptanalysis. This is in contrast to WW, where
the LWE sampler involved complex FHE evaluation, and the resulting error
distribution in the samples was dependent on the concrete implementation
of the circuit being evaluated. Indeed, a recent work of [HJL21] carefully
crafted circuit implementations that would render the WW candidate as
well as the related candidate in [GP21] insecure (see Section 1.3 for a more
detailed discussion).

1.2 Technical Overview

The starting point of our construction is essentially the same as that of the Wee-
Wichs (WW) iO candidate, which in turn builds on [BDGM20a]. We begin by
describing a notion of succinct randomized encoding (SRE), which can be seen
as a relaxation of the notions of split FHE and functional encodings used in prior
works. It is also very related to the notion of exponentially efficient iO (XiO)
from [LPST16], and is easily seen to imply it, but we find the SRE abstraction
easier to work with in the context of our work. By leveraging prior results on
XiO [LPST16], our notion of SRE implies iO under the LWE assumption.

Succinct Randomized Encodings. A succinct randomized encoding4 [BGL+15,
LPST16] of a function f : {0, 1}` → {0, 1}N is an efficient probabilistic algorithm
Encode such that:

– functionality: we can efficiently recover f(x) given f and Encode(f, x);
4 Our notion of succinct randomized encodings is weaker than prior works: indeed,

[BGL+15] required the encoder to run in time sublinear in N , whereas we allow the
encoder run-time to be polynomial in N .

Succinct LWE Sampling, Random Polynomials, and Obfuscation 3

– security: for any x0, x1 such that f(x0) = f(x1), we have Encode(f, x0) ≈c
Encode(f, x1); and

– succinctness: Encode(f, x) is shorter than the output length of f . That is,
|Encode(f, x)| = Õ(Nδ) for some constant δ < 1, ignoring factors polynomial
in ` and the security parameter.

Henceforth, we will focus on building SRE for circuits.

Base Scheme. We start with a base scheme for succinct randomized encod-
ings implicit in WW, which is insecure, but serves as the basis of our even-
tual construction. The base scheme uses a variant of the homomorphic encryp-
tion/commitment schemes of [GSW13,GVW15], along with the “packing” tech-
niques in [PVW08, MW16, BTVW17, PS19, GH19, BDGM19]. Given a commit-
ment C to an input x ∈ {0, 1}`, along with a circuit f : {0, 1}` → {0, 1}N ,
this scheme allows us to homomorphically compute a commitment Cf to the
output f(x). Moreover, the opening for the output commitment is shorter than
the output size N . Concretely, we define C,Cf as follows:

– We treat the function f : {0, 1}` → {0, 1}N as a function f : {0, 1}` →
{0, 1}M×K , where M and K are parameters we shall specify shortly, such
that MK = N .

– Given a public random matrix A ∈ ZM×wq where M � w, we define a
commitment C to an input x as

C := AR + x⊗G + E

where A← ZM×wq , R ← Zw×`M log q
q are uniformly random, E← χM×`M log q

has its entries chosen from an error distribution χ, G ∈ ZM×M log q
q is the

gadget matrix [MP12], and we treat x as a row vector of length ` in x⊗G.
– Homomorphic evaluation of f on C yields Cf satisfying

Cf = ARf,x + Ef,x + f(x) · q2 ∈ ZM×Kq (1)

where f(x) ∈ {0, 1}M×K , Rf,x ∈ Zw×Kq and Ef,x has small entries.

A
R

x⊗G+ + E 7→ A
Rf,x

f(x) · q2+ + Ef,x

Our base scheme5 simply outputs

A, C := AR + x⊗G + E, Rf,x

as the encoding of x. Decoding computes Cf given (C, f), subtracts A ·Rf,x to
obtain f(x) · q2 plus error (following equation 1) and rounds to obtain f(x).
5 In the WW terminology, this would be a candidate K-sim functional encoding for
f1, . . . , fK : {0, 1}` → {0, 1}M .

4 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

The encoding is also succinct: The total size of the encoding (in bits) is

O((Mw +M2`+ wK) · log q).

Setting M = N1/3,K = N2/3, w = O(λ) yields encoding size Õ(N2/3), where
Õ(·) hides polynomial factors in λ, ` and the depth of the circuit computing f .

The scheme is, however, completely insecure as written because, given C,Rf,x

and a “guess” for x, we can recover R by solving a system of linear equations,
and test if our guess was correct (see WW). This allows us to easily distinguish
between encodings of any x0 and x1.

“Pseudorandom” LWE Sampling. Following [WW21], we fix the insecurity of
the base scheme by masking Rf,x using a “pseudorandom” LWE sample; similar
ideas were used in several prior works [BDGM20a, GP21, JLS21, AR17, Agr19,
JLMS19,AJL+19] with “pseudorandom” noise. That is, we generate a “pseudo-
random” LWE sample B∗ = AS∗ + E∗ ∈ ZM×Kq and output

seedB∗ , A, AR + x⊗G + E, Rf,x + S∗ (2)

where seedB∗ is a succinct description of B∗, with |seedB∗ | ≤ (MK)δ for some
δ < 1. Correctness now relies on the fact that

A · (Rf,x + S∗) ≈ B∗ + Cf + f(x) · q2 .

WW’s security requirement for the pseudorandom LWE sample, “oblivious
LWE sampling”, was cumbersome to define, required a simulator, and only made
sense in the common reference string model. The reliance on a simulator means
the definition did not have an inherently falsifiable format that enables demon-
strating insecurity by constructing an efficient attacker. Here, we reformulate a
simpler and falsifiable variant that we call “succinct LWE sampling”.6

Defining pseudorandom LWE sampling, in WW and in our work, is difficult
because we want B∗ = AS∗ + E∗ to look like a random LWE sample, but this
is impossible since it is succinctly described in seedB∗ . Instead, we essentially
want E∗ to drown out the difference between any two sufficiently small error
distributions Z0 and Z1, in the sense that seedB∗ ,E∗−Zb hides b. Unfortunately,
this too is impossible, since seedB∗ lets us get B∗ = AS∗ + E∗ from which we
can then derive AS∗ + Zb; this allows us to distinguish between (say) Z0 = 0
and Z1 being a small Gaussian by checking rank. Our main observation is that
we don’t need indistinguishability to hold for worst-case distributions Zb, but
rather only for ones where an LWE sample AR + Zb with the error Zb and a
truly random R would hide the bit b. Formally, the definition says that for any
two distributions of (Zb, auxb) where Zb is sufficiently short:

If (aux0,A,AR + Z0) ≈c (aux1,A,AR + Z1), (3)
then (seedB∗ , aux0,A,E∗ − Z0) ≈c (seedB∗ , aux1,A,E∗ − Z1). (4)

6 It is simpler in terms of syntax, since we do not refer to LWE trapdoors for A, and
in terms of the security requirement since we do not require a simulator, but instead
have a simple indistinguishability criterion.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 5

Note that, since seedB∗ defines AS∗+ E∗, giving E∗−Zb in (4) is equivalent to
giving AS∗ + Zb, and hence we use these interchangeably in the definition.

The above definition is not falsifiable since it quantifies over all (auxb,Zb)
satisfying the pre-condition (3). However, we also consider a weaker, falsifiable
definition, where we fix a specific (aux∗b ,Z∗b) that satisfies the pre-condition (3).
We then show a generic transformation that lifts any scheme realizing the weak
definition into one that realizes the general definition. Specifically, in the weak
definition, we fix aux∗b = (B̂,C) to consist of a commitment B̂ to 0, along with
a commitment C to −b. We then homomorphically evaluate an AND operation
(multiplication) on the commitments B̂,C, which results in a commitment to 0,
and we define Z∗b to be the error term for this commitment. Formally,

aux∗b =
(
B̂ = AS0 + F, C = AR + E− bG

)
and Z∗b = EG−1(B̂)− bF,

where E and F are matrices with small entries. The transformation is inspired by
a trick employed in WW to frame the security of their candidate oblivious LWE
sampler construction as a falsifiable assumption. Here, we are able to abstract
this trick out and formally prove that it amplifies a weak definition of security
to a strong one. Therefore, we get a simple and falsifiable definition of succinct
LWE sampling as our target. We refer to the full version for more details.

Our final definition introduces additional relaxations. Instead of a uniformly
random matrix A, we allow the use of matrices A∗, which may not be uniformly
random and can have some additional structure, as long as LWE still holds
w.r.t. A∗. We also allow the succinct sampler to rely on a non-succinct common
reference string (CRS) of length poly(N). This is analogous to the reliance on a
CRS in WW (as well as [BDGM20a,GP21]) and suffices for iO.

Our Succinct Randomized Encoding. To go from succinct LWE sampling to SRE,
we essentially follow WW, and replace A with A∗ in (2). The SRE consists of:

seedB∗ , A∗, A∗R + x⊗G + E, Rf,x + S∗ . (5)

Correctness and succinctness follow readily as before. To prove security, we need
to argue as follows that Encode(f, xb) hides b as long as f(x0) = f(x1).
– As long as A∗ is full-rank, (Rf,xb + S∗) can be computed from A∗ and

A∗ · (Rf,xb + S∗), so it suffices to argue that:

seedB∗ , A∗, A∗R + xb ⊗G + E, A∗ · (Rf,xb + S∗)

hides b.
– Using Cf = A∗Rf,xb + Ef,xb + f(xb) · q2 and deriving B∗ = A∗S∗+ E∗ from

seedB∗ , we can write

A∗ · (Rf,xb + S∗) = Cf − f(xb) · q2 + B∗ −E∗ −Ef,xb ,

so it suffices to argue that

seedB∗ , A∗, A∗R + xb ⊗G + E, E∗ + Ef,xb

hides b.

6 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

– At this point, we will invoke security of our succinct LWE sampler with

auxb = A∗R + xb ⊗G + E, Zb = Ef,xb

For this step, we need to show that the pre-condition (3) holds:

(A∗R+x0⊗G+E, A∗, A∗S′+Ef,x0) ≈c (A∗R+x1⊗G+E, A∗, A∗S′+Ef,x1).

This follows from LWE w.r.t. A∗ and the fact that A∗S′ + Ef,xb ≡ A∗S′ +
Cf − f(xb) · q2 , where f(x0) = f(x1).

Note that, in the above, we only relied on the security of the LWE sampler for
the special case where auxb is an encryption of xb and Zb is the error in the
ciphertext one gets by homomorphically computing f(xb) for some function f
such that f(x0) = f(x1). However, as mentioned previously, we can also rely
on an even more restricted form of (auxb,Zb), essentially corresponding to the
extremely simple case where f just computes the AND of b and 0, and generically
lift security to the completely general case.

Our Candidate Succinct LWE Sampler. We want to design a succinct LWE
sampler generating B∗ = A∗S∗ + E∗. The security requirement in Equation (4)
implies that E∗ −Zb hides b for any short matrices Z0,Z1 satisfying some addi-
tional properties which we shall ignore in the rest of this overview. In addition,
we want B∗ to admit a short description seedB∗ , which means that E∗ ∈ ZM×K
should compute a “pseudorandom” noise-flooding distribution.

Following [JLMS19, AJL+19], a good candidate for E∗ is to evaluate MK
random degree-d polynomials in dmk variables drawn from independent Gaus-
sian distributions, where MK � (dmk)d/2 to avoid linearization and potential
sum-of-squares-based attacks; the ensuing distribution is plausibly indistinguish-
able from MK independent samples from a “noise-flooding” distribution D for
a suitable choice of parameters. Concretely, thinking of d as a small constant,
we sample “secret” Gaussian matrices E1, . . . ,Ed ← χm×k and public Gaussian
matrices P← χM×m

d and P′ ← χk
d×K and we define

E∗ := P(E1 ⊗E2 ⊗ · · · ⊗Ed)P′ ∈ ZM×K

where P,P′ are published in the CRS. In the special case of m = M = 1 and
P = 1, the distribution of E∗ ∈ ZK corresponds roughly to the evaluation of
K random (i.e. Gaussian) degree-d (multilinear) polynomials in dk variables
(where the dk variables are the entries of the E1, . . . ,Ed and the coefficients of
the polynomial are specified by P′). In the general case, we have a collection of
polynomials, where each one looks at a certain structured set of monomials. For
more details, see Section 4.5.

Next, we specify (B∗,A∗,S∗, seedB∗), starting with seedB∗ . Following [JLMS19],
we additionally sample Ai ← Zm×wq ,Si ← Zw×kq for i = 1, . . . , d and some
w � m, k, and we define:

seedB∗ := (B1 := A1S1 + E1 , . . . , Bd := AdSd + Ed) ∈ (Zm×kq)d.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 7

Inspired by the homomorphic operations of the Brakerski-Vaikuntanathan FHE [BV11],
we want to relate E∗ to B1 ⊗ · · · ⊗ Bd and from there, derive B∗,A∗,S∗ such
that B∗ = A∗S∗ + E∗ (we will discuss succinctness after that). We start with
d = 2 for simplicity. By the mixed product property:

B1 ⊗B2 = A1S1 ⊗B2 + E1 ⊗A2S2 + E1 ⊗E2

= [A1 ⊗ Im | Im ⊗A2]
(

S1 ⊗B2

E1 ⊗ S2

)
+ E1 ⊗E2.

We start by defining B∗ and “pre-cursor” values A∗,S∗, which we will use to
derive the final A∗,S∗ later, via:

B∗︷ ︸︸ ︷
P · (B1 ⊗B2) ·P′ =

A∗︷ ︸︸ ︷
P[A1 ⊗ Im | Im ⊗A2] ·

S∗︷ ︸︸ ︷(
S1 ⊗B2
E1 ⊗ S2

)
P′+

E∗︷ ︸︸ ︷
P(E1 ⊗E2)P′

For general d, we have:

B∗ = P · (B1 ⊗ · · · ⊗Bd) ·P′ ∈ ZM×Kq , E∗ = P(E1 ⊗E2 ⊗ · · · ⊗Ed)P′ ∈ ZM×K ,

A∗ = P · (A1 ⊗ Im ⊗ · · · ⊗ Im‖ · · · · · · ‖Im ⊗ · · · ⊗ Im ⊗Ad) ∈ ZM×dwm
d−1

q ,

S∗ =


S1 ⊗B2 ⊗ · · · ⊗Bd

E1 ⊗ S2 ⊗ · · · ⊗Bd

...
E1 ⊗E2 ⊗ · · · ⊗ Sd

 ·P′ ∈ Zdwm
d−1×K

q , which we show satisfy

B∗ = A∗ · S∗ + E∗.

Note that while the width of A in both the base scheme and WW is w = poly(λ),
the width of A∗ is much larger and will in fact grow with N .

As mentioned above, it seems reasonable to conjecture that E∗ on its own is
pseudo-iid. However, S∗ is structured and does not look random on its own, which
is problematic since we want S∗+Rf,x to drown out differences in the distribution
of Rf,x. Therefore, we will rely on a variant of Kilian randomization [Kil88] to
hide the structure of A∗,S∗. We compute a random basis A∗ of the column span
of A∗ and then solve for S∗ subject to A∗S∗ = A∗ ·S∗. This ensures that A∗,S∗
essentially do not reveal more than the product A∗S∗.

Succinctness. With the above implementation of succinct LWE sampling, from
(5), the encodings of the resulting SRE have size

|Encode(f, x)| = Õ

 M2︸︷︷︸
A∗R+x⊗G+E

+ dmk︸︷︷︸
seedB∗

+Mdwmd−1︸ ︷︷ ︸
A∗

+Kdwmd−1︸ ︷︷ ︸
S∗+Rf,x



8 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

where Õ(·) hides poly(λ, log q, `) factors, which is in turn polynomial in λ, ` and
circuit depth of f . We set

w = poly(λ),

m = N
1

2d ,

k = m5 = N
5

2d ,

M = md−1/2 = N
1
2−

1
4d ,

K = md+1/2 = N
1
2 + 1

4d .

Then, |Encode(f, x)| = Õ(m2d−1/6) = Õ(N1− 1
12d), that is, our scheme achieves

(1− 1
12d)-succinctness, which can then be lifted to iO using [AJ15,BV15,LPST16].

Our Final Assumption: Subspace Flooding. Combined with the transformation
discussed earlier, we only need our sampler to satisfy weak security, which boils
down to the following subspace flooding assumption: that

P,P′, seedB∗ , A∗, B̂ = A∗S0+F, C = A∗R+E−bG, E∗+E·G−1(B̂)−bF (6)

hides b where P ∈ ZM×md , P′ ∈ Zkd×K , E ∈ ZM×M log q, and F ∈ ZM×K and
{Ei}i∈[d] are sampled from small distributions;

E∗ = P(E1 ⊗E2 ⊗ · · · ⊗Ed)P′ ∈ ZM×K ;

for i = 1, . . . , d, Ai is sampled from Zm×wq and Si is sampled from Zw×kq ;

seedB∗ = {Bi = AiSi + Ei}i∈[d] ∈ (Zm×wq)d;

S0 is sampled from Zdwmd−1×K
q and R is sampled from Zdwmd−1×M log q

q so B̂ ∈
ZM×Kq and C ∈ ZM×M log q

q ; and A∗ is the result of the Kilian randomization
process described above.

Note that the columns of E ·G−1(B̂) ∈ ZM×K live in a low-rank subspace
defined by the columns of E ∈ ZM×M log q where K �M log q and F is sampled
independently from a small distribution. Thus, the assumption states that E∗
masks whether the error EG−1(B̂)−bF ∈ ZM×K lives in this low-rank subspace,
hence the name “subspace flooding”.

A different, less syntactic, perspective on the subspace flooding assumption
tells us that to protect arbitrary computations, it is sufficient to protect a single
homomorphic multiplication. Indeed, consider C to be a GSW encryption of −b
and B̂ to be a GSW encryption of 0. Their homomorphic multiplication gives us

C ·G−1(B̂) = A∗(RG−1(B̂)− bS0) + (E ·G−1(B̂)− bF)

Subspace flooding says that adding E∗ “protects” the error E ·G−1(B̂)− bF in
the evaluated ciphertext in the sense of hiding b.

Theorem 1 (Informal). Under the (subexponential hardness of the) learning
with errors assumption and the subspace flooding assumption (Equation 6 above),
there exists an indistinguishability obfuscation scheme.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 9

1.3 Discussion

Noise Distribution in Prior Works. The sampler in WW sampler works by homo-
morphically generating pseudorandom LWE samples using an encrypted (weak)
pseudorandom function, such as that given by k, u 7→ round(〈k, u〉) for key k
and random input u. Prior works used the GSW FHE for homomorphic evalua-
tion, but did not specify the circuit implementation for the PRF. Hopkins, Jain
and Lin (HJL) [HJL21] presented attacks on these prior LWE samplers that
“exploit the flexibility to choose specific implementations of circuits and LWE
error distributions in the Gay-Pass and Wee-Wichs assumptions.” Specifically,
they showed how to introduce redundancy into the circuit used in homomorphic
evaluation following the GSW FHE so that the last two bits of E∗ + Zb leak b.

Note that the above attack can be circumvented by fixing some natural choice
of a concrete weak PRF, such as the aforementioned, which corresponds to FHE
decryption; and a circuit evaluation of it, such as [AP14], which is in fact a
read-once branching program with k hardwired. Unfortunately, writing down an
explicit expression for the error distribution in the pseudorandom LWE sample
is far from straightforward, which in turn impedes any cryptanalytic efforts. In
this work, we avoid such considerations by directly considering succinct LWE
samplers, as opposed to homomorphically evaluated weak PRFs.

Relation to the “LWE with Leakage” Assumption of [JLMS19]. Our assumption
basically asserts that for small Z0,Z1 satisfying some precondition:

A1, . . . ,Ad, (Bi := AiSi + Ei)i∈[d], P,P′, P(E1 ⊗ · · · ⊗Ed)P′ − Zb

hides b. (In fact, we do not give away A1, . . . ,Ad, rather a random basis for the
column span of A∗. We ignore this difference for the rest of the comparison.)

The LWE with leakage assumption of [JLMS19] basically asserts that for
small z0, z1, and Ai ∈ Zm×wq , si ∈ Zw×1

q , ei ∈ χm×1:

A1, . . . ,Ad−2, (bi := Aisi + ei)i∈[d−2], P, P(e1 ⊗ · · · ⊗ ed) + zb

hides b.
The LWE with leakage assumption of [JLMS19] can be viewed as a variant

of our flooding assumption. Syntactically, their definition can be recovered from
ours with three modifications:

1. Set k = 1 as opposed to our assumption where k � m;
2. Set P to be very compressing, namely, the output has length M � md/2,

whereas in our case M ≈ md−1/2; and
3. Do not release Ad−1,Ad,Bd−1,Bd to the distinguisher, ensuring that the

only leakage about ed−1, ed comes from E∗.

These syntactic differences have the following consequences:

– With k = 1 and M ≈ md−1/2, the assumption can indeed be broken with
sum-of-squares attacks (see, e.g., [BHJ+19].) Thus, our source of security

10 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

comes from the fact that k is large. Semantically, this means that we take
multiple, albeit correlated, instances of the [JLMS19] problem, defined by
the kd columns of our matrix E1 ⊗ · · · ⊗ Ed, and output a “few”, namely,
K � kd/2 linear combinations of them.

– An adversary in our setting can check the rank of

P(B1 ⊗ · · · ⊗Bd)P′ −E∗ + Zb mod q

which is something that cannot be computed in the [JLMS19] assumption
since Bd−1,Bd are not given to the distinguisher. This allows the latter
to plausibly handle worst-case small zb, whereas we require an additional
pre-condition on Zb.

Their final iO scheme additionally assume bilinear groups (in addition to
LWE), which we do not.

Cryptanalytic Challenges. A central open problem from this work is to design
succinct LWE samplers based on weaker assumptions and to carry out cryptanal-
ysis of our candidate succinct LWE sampler. To facilitate the latter, we describe
concrete cryptanalytic challenges in Section 4.6. Thanks to our amplification
theorem, in order to base iO on our candidate LWE sampler, it suffices for se-
curity to hold for a specific pair of distributions (Z0,Z1). On the other hand,
the heuristic underlying our candidate sampler (related to random polynomials
being indistinguishable from independent copies of a noise-flooding distribution
D) does not refer to properties of the specific distribution. For this reason, our
cryptanalytic challenges also refer to more general distributions Z0,Z1 that may
not correspond to those which are sufficient for iO.

2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such
that f(λ) = O(λc) for some c > 0. For a probabilistic algorithm alg(inputs), we
might explicitly refer to its random coins by writting alg(inputs; coins). We will
denote vectors by bold lower case letters (e.g. a) and matrices by bold upper
cases letters (e.g. A). We will denote by a> and A> the transposes of a and A,
respectively. We will denote by bxe the nearest integer to x, rounding towards
0 for half-integers. For matrices A,B of appropriate dimensions, we will denote
by (A‖B) their horizontal concatenation and

(A
B
)

their vertical concatenation.
For an integer n ≥ 1, we denote by In the identity matrix of dimension n. For
integral vectors and matrices (i.e., those over Z), we use the notation ‖r‖, ‖R‖
to denote the maximum absolute value over all the entries.

For matrices A,B, we denote by A ⊗ B their tensor (or Kronecker) prod-
uct. We’ll use the following mixed-product property: for matrices A,B,C,D of
appropriate dimensions, we have (AB)⊗ (CD) = (A⊗C) · (B⊗D).

Succinct LWE Sampling, Random Polynomials, and Obfuscation 11

For p ∈ Q, we write Roundp(x) = bx · 1/pe. If X is a matrix, Roundp(X) de-
notes the rounded value applied component-wise. We denote by dxe the smallest
integer larger or equal to x.

For a finite set S, s ← S denotes sampling uniformly in S. We define the
statistical distance between two random variables X and Y over some domain Ω
as: SD(X,Y) = 1

2
∑
w∈Ω |X(w)− Y (w)| . We say that two ensembles of random

variables X = {Xλ}, Y = {Yλ} are statistically indistinguishable, denoted X ≈s
Y , if SD(Xλ, Yλ) ≤ negl(λ).

We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ}
are computationally indistinguishable, denoted X ≈c Y , if, for all (non-uniform)
PPT distinguishers A, we have |Pr[A(Xλ) = 1]− Pr[A(Yλ) = 1]| ≤ negl(λ). We
also refer to sub-exponential security, meaning that there exists some ε > 0 such
that the distinguishing advantage is at most 2−λε .

2.2 Learning With Errors

Definition 1 (B-bounded distribution). We say that a distribution χ over
Z is B-bounded if

Pr[χ ∈ [−B,B]] = 1.

We recall the definition of the (decision) Learning with Errors problem, intro-
duced by Regev [Reg05].

Definition 2 ((Decision) Learning with Errors ([Reg05])). Let n = n(λ)
and q = q(λ) be integer parameters and χ = χ(λ) be a distribution over Z. The
Learning with Errors (LWE) assumption LWEn,q,χ states that for all polynomi-
als m = poly(λ) the following distributions are computationally indistinguish-
able:

(A,As + e) ≈c (A,u)

where A← Zm×nq , s← Znq , e← χm,u← Zmq .

Just like many prior works, we rely on LWE security with the following
range of parameters. We assume that for any polynomial p = p(λ) = poly(λ)
there exists some polynomial n = n(λ) = poly(λ), some q = q(λ) = 2poly(λ) and
some B = B(λ)-bounded distribution χ = χ(λ) such that q/B ≥ 2p and the
LWEn,q,χ assumption holds. Throughout the paper, the LWE assumption with-
out further specification refers to the above parameters. The sub-exponentially
secure LWE assumption further assumes that LWEn,q,χ with the above param-
eters is sub-exponentially secure, meaning that there exists some ε > 0 such that
the distinguishing advantage of any polynomial-time distinguisher is 2−λε .

The works of [Reg05,Pei09] showed that the (sub-exponentially secure) LWE
assumption with the above parameters follows from the worst-case (sub-exponential)
quantum hardness SIVP and classical hardness of GapSVP with sub-exponential
approximation factors.

12 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

2.3 Lattice Tools
Noise Flooding. We will use the following fact.
Lemma 1 (Flooding Lemma (e.g., [AJL+12])). Let B = B(λ), B′ =
B′(λ) ∈ Z be parameters and let U([−B,B]) be the uniform distribution over
the integer interval [−B,B]. Then for any e ∈ [−B′, B′], the statistical distance
between U([−B,B]) and U([−B,B]) + e is B′/B.

Gadget Matrix [MP12]. For an integer q ≥ 2, define: g = (1, 2, · · · , 2dlog qe−1) ∈
Z1×dlog qe
q . The gadget matrix G is defined as G = g ⊗ In ∈ Zn×mq where n ∈ N

and m = ndlog qe. There exists an efficiently computable deterministic function
G−1 : Znq → {0, 1}m such for all u ∈ Znq we have G · G−1(u) = u. We
let G−1($) denote the distribution obtained by sampling u ← Znq uniformly at
random and outputting t = G−1(u). These extend directly to matrices: G−1 :
Zn×kq → {0, 1}m×k by concatenating the outputs.

2.4 Homomorphic Operations
In this section, we describe how to perform homomorphic operations over certain
encodings of inputs. For readers familiar with lattice-based primitives, these
essentially are packed versions of the GSW homomorphism.

Our operations follow readily from [WW21] (building on [GSW13,GVW15],
along with the “packing” techniques in [PVW08,MW16,BTVW17,PS19,GH19,
BDGM19]), who build homomorphic operations for f : {0, 1}` → {0, 1}M ,
producing some vector cf ∈ ZMq . We extend these operations to functions
f : {0, 1}` → {0, 1}M×K to produce some matrix Cf ∈ ZM×Kq , obtained by
concatenating K vectors cfi . This yields the following.
Definition 3 (Homomorphic operations). Let M,W, q, `,K, t be parame-
ters. We define the following efficient algorithms:
– Eval(f : {0, 1}` → {0, 1}M×K , C ∈ ZM×`M log q

q): deterministically outputs a
matrix Cf ∈ ZM×Qq .

– Evalopen(f,A ∈ ZM×Wq , x ∈ {0, 1}`,R ∈ ZW×`M log q
q ,E ∈ ZM×`M log q): de-

terministically outputs two matrices (Rf,x ∈ ZW×Qq ,Ef,x ∈ ZM×Q).

These operations have the following property. For all f : {0, 1}` → {0, 1}M×K
of depth t, x ∈ {0, 1}`, A ∈ ZM×Wq , R ∈ ZW×`M log q

q and E ∈ ZM×`M log q, if

C = AR + x> ⊗G + E ∈ ZM×`M log q
q ,

Cf = Eval(f,C),
(Rf,x,Ef,x) = Evalopen(f,A, x,R,E),

where we view x as a row vector x ∈ {0, 1}1×`, then

Cf = ARf,x + q/2 · f(x) + Ef,x ∈ ZM×Kq ,

where f(x) ∈ {0, 1}M×K . Furthermore ‖Ef,x‖ = ‖E‖ ·Mg(t) for some efficiently
computable g such that g(t) = O(t).

Succinct LWE Sampling, Random Polynomials, and Obfuscation 13

Similarly to [WW21], these algorithms extend to functions f with outputs
in Zq.

– Evalq(f : {0, 1}` → ZM×Kq , C ∈ ZM×`M log q
q): deterministically outputs a

matrix Cf ∈ ZM×Qq .
– Evalqopen(f,A ∈ ZM×Wq , x ∈ {0, 1}`,R ∈ ZW×`M log q

q ,E ∈ ZM×`M log q): de-
terministically outputs two matrices (Rf ∈ ZW×Qq ,Ef ∈ ZM×Q).

The correctness requirement becomes:

Cf = ARf,x + f(x) + Ef,x ∈ ZM×Kq ,

where C = AR + x⊗G + E ∈ ZM×`M log q
q , x being again seen as a row vector,

Cf = Evalq(f,C) and (Rf,x,Ef,x) = Evalqopen(f,A, x,R,E), and f(x) ∈ ZM×Kq .
Again, ‖Ef,x‖ = ‖E‖ ·Mg(t).

2.5 Succinct Randomized Encodings

Next, we define succinct randomized encodings [BGL+15,BCG+18,LPST16].

Definition 4. A succinct randomized encoding scheme (SRE) for the function
family F`,N,t = {f : {0, 1}` → {0, 1}N} of circuits of depth at most t, is a tuple
of PPT algorithms (CRSGen,Encode,Decode) with the following syntax:

– CRSGen(1λ,F`,N,t) → crs: on input the security parameter and a function
family, outputs crs.

– Encode(crs, f, x) → C: on input crs, a function f ∈ F`,N,t and x ∈ {0, 1}`,
outputs an encoding C.

– Decode(crs, C, f) → y: a deterministic algorithm which, on input crs, an
encoding C, and a function f ∈ F`,N,t, outputs a value y ∈ {0, 1}N .

We require the following properties:

Correctness: For f ∈ F`,N,t and any x ∈ {0, 1}`:

Pr [Decode(crs,Encode(crs, f, x), f) = f(x)] ≥ 1− negl(λ),

where crs← CRSGen(1λ,F`,N,t) (over the randomness of CRSGen,Encode).

δ-Succinctness: There exists a constant δ < 1 such that, for all crs← CRSGen(1λ,
F`,N,t), C ← Encode(crs, f, x), we have:

|C| = Nδ · poly(λ, `, t).

Indistinguishability-based Security: For all PPT A, all x0, x1 ∈ `, and all f ∈
Ft,`,N such that f(x0) = f(x1), the following distributions are indistinguishable
for b = 0 and b = 1:

– Db: Sample crs← CRSGen(1λ,Ft,`,N), Cb ← Encode(crs, f, xb). Output (crs, Cb).

14 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Relation to XiO. Our notion of SRE is also very related to the notion of expo-
nentially efficient iO (XiO) from [LPST16]. An XiO scheme obfuscates a circuit
C : {0, 1}logN → {0, 1} with the same security guarantee as iO, but the run-
time of the obfuscator can be as high as poly(λ, |C|, N) and the only constraint
that makes the problem non-trivial is that the obfuscated circuit is succinct, of
size at most Nδpoly(λ, |C|) for δ < 1. An SRE scheme immediately yields an
XiO scheme by thinking of f as the universal circuit that takes as input a circuit
x = C an evaluates it on all N inputs in {0, 1}logN . The output size of f is N
and the depth of f can be bounded by t = poly(|C|), so the succinctness of the
SRE yields the corresponding succinctness of the XiO. Therefore, by leveraging
the prior work of [LPST16] that shows how to go from XiO (in the CRS model)
to iO via LWE, we get the following theorem.
Theorem 2. [AJ15, BV15, LPST16] Assuming sub-exponentially secure SRE
exist and sub-exponentially secure LWE, there exists an iO scheme.

3 Succinct LWE Sampler: Definition and Amplification

In Section 3.1, we define the notion of succinct LWE samplers. In Section 3.2, we
describe a seemingly weaker notion of LWE sampler, and prove that it implies
the first (and stronger) notion.

3.1 Definition and Discussion
Definition 5 (Succinct LWE Sampler). A succinct LWE sampler is a tuple
of PPT algorithms (SampCRSGen, LWEGen,Expand) with the following syntax:
– SampCRSGen(1λ, 1N , α): on input the security parameter λ, a size parameter
N and a blow-up factor α, samples a common reference string crs, which
include parameters params = (q,M,K, χ,B).

– LWEGen(crs): samples (seedB∗ ,A∗,S∗).
– Expand(crs, seedB∗) is a deterministic algorithm that outputs a matrix B∗.

Domains and Parameters. The outputs of LWEGen and Expand satisfy:

A∗ ∈ ZM×Wq , S∗ ∈ ZW×Kq , B∗ ∈ ZM×Kq ,

for some integer W . We require that:
– N = MK;
– B = poly(N);
– χ is a B-bounded noise distribution; and
– q ≥ 8 · 2λ · α ·B.

Correctness. We require that

||B∗ −A∗S∗|| := β ≤ q/8

where crs← SampCRSGen(1λ, 1N , α), (seedB∗ ,A∗,S∗)← LWEGen(crs) and B∗ :=
Expand(crs, seedB∗). Furthermore, we require that A∗ is full-rank with over-
whelming probability over the randomness of SampCRSGen and LWEGen.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 15

δ-Succinctness. We require the total bit length of the output of LWEGen is small.
That is,

bitlength(seedB∗ ,A∗,S∗) ≤ Nδ · poly(λ, log q) = (MK)δ · poly(λ, log q) ,

where δ < 1 is a constant. When we omit δ, it means succinctness holds for
some constant δ < 1.

LWE with respect to A∗. We require that

(coinscrs, coinsseed,A∗s′ + e′) ≈c (coinscrs, coinsseed,b),

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ ,A∗,S∗) ← LWEGen(crs;
coinsseed), s′ ← ZWq , and e′ ← χM .

Security (or β0-Flooding). Let D0, D1 be any two polynomial-time samplable
distributions such that (auxb,Zb) ← Db(A∗) satisfies Zb ∈ ZM×K , ‖Zb‖ ≤ β0
where β0 · 2λ ≤ β and

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux1)

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ ,A∗,S∗) = LWEGen(crs;
coinsseed) and S′ ← ZW×Kq . Then,

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).

We will refer to the assumption on D0, D1 as the pre-condition for security, and
the resulting indistinguishability the post-condition.
Furthermore, as we will later describe a relaxed notion of security, we will some-
times refer to the notion above as strong security to avoid ambiguity.

Remark 1 (Alternate formulation). Since the sampler allows us to compute
Expand(crs, seedB∗) = B∗ = A∗S∗ + E∗, the security post-condition can be
equivalently stated as:

(crs, seedB∗ ,A∗,E∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E∗ − Z1, aux1).

Remark 2 (Implied Statements). The randomness coinscrs and coinsseed respec-
tively used by SampCRSGen and LWEGen allow us to compute crs, seedB∗ ,A∗,S∗.
In particular, LWE with respect to A∗ implies that

(crs, seedB∗ ,A∗,S∗,A∗s′ + e) ≈c (crs, seedB∗ ,A∗,S∗,b),

and the pre-condition on D0, D1 for security implies that

(crs, seedB∗ ,A∗,S∗, aux0,A∗S′ + Z0) ≈c (crs, seedB∗ ,A∗,S∗, aux1,A∗S′ + Z1).

16 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Remark 3 (Restrictions on Z0,Z1). We note that security (namely, the post-
conditionition) cannot hold for arbitrary Z0,Z1, for which the pre-condition
does not hold. Even if one only required that Z0 and Z1 had small entries, one
can efficiently distinguish Z0 = 0 from any Z1 not in the column span of A∗. In
particular, the rank of A∗S∗ + Zb would leak b: this is because A∗S∗ is rank-
deficient by succinctness. We can rule out such distinguishers simply by requiring
that Z0 − Z1 lies in the column span of A∗; our pre-condition is in some sense
a “distributional” or “computational” relaxation of such a requirement.

Remark 4 (Triviality without succinctness). We remark that it is easy to build
a succinct LWE sampler if there are no restrictions on the bit-length of seedB∗

(looking ahead, such a sampler would not be sufficient to build iO). Indeed,
without any succinctness requirement, we could set:

crs = ∅, seedB∗ = A∗S∗ + E∗ ∈ ZM×Kq

where S∗ is random and E∗ has small entries, but large enough to “noise-flood”
Zb (namely, β0/β = 2−λ).

For convenience, we consider the equivalent notion of security from Remark 1.
We claim that this construction (unconditionally) satisfies security. To see this,
first note that for all b ∈ {0, 1}:

(seedB∗ , A∗, E∗ − Zb, auxb) ≈s (A∗S∗ + (E∗ + Zb), A∗, E∗, auxb)

by noise flooding, where we use that E∗ is sampled independently of auxb,Zb.
The pre-condition then implies that

(A∗, (A∗S∗ + Z0) + E∗,E∗, aux0) ≈c (A∗, (A∗S∗ + Z1) + E∗,E∗, aux1),

where we again use that E∗ is sampled independently of auxb,Zb,S∗, and that
S∗ is sampled uniformly at random independently of the other components (and
takes the role of S′ in the pre-condition).

Remark 5 (Heuristic necessity of a CRS). We heuristically show that security
requires a (long) CRS if seedB∗ is required to be short, namely the CRS needs
to be of length ≈ N for any δ-succinct scheme with δ < 1.

Suppose for contradiction that there is such a sampler that expands some
short input (crs, seedB∗) of length at most Nδ · poly(λ, log q) to some
Expand(seedB∗) = B∗ = A∗S∗ + E∗ of bit-length N log q. Let Zb be a random
LWE error and let auxb be an obfuscation of the following program:

Pb,A∗,Zb : on input (crs, seedB∗) of bit-length Nδ · poly(λ, log q), and B̃ of bit-
length N log q,
– Check that B̃− Zb is in the column span of A∗, and output ⊥ if not.
– Compute B∗ = Expand(crs, seedB∗) = A∗S∗ + E∗. Output b if ‖B∗ −

B̃ + Zb‖ ≤ β, and output ⊥ otherwise.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 17

Then (crs, seedB∗ , B̃ = A∗S∗ + Z0, aux0) is efficiently distinguishable from (crs,
seedB∗ , B̃ = A∗S∗ + Z1, aux1), by running auxb on input ((crs, seedB∗), B̃) and
using the fact that (crs, seedB∗) has bit-length at most Õ(Nδ) by assumption,
that ‖E∗‖ ≤ β, that A∗S∗ has low rank by succinctness, and that A∗S∗+Z0−Z1
has high rank w.h.p.

Furthermore, suppose heuristically that auxb acts like an ideal obfuscation
of Pb,Zb , meaning that it does not reveal more than black-box access to the
program. Then, the pre-condition would hold since given (coinscrs, coinsseed,Bb =
A∗S′+Zb) and black-box access to Pb,Zb , one cannot distinguish b = 0 vs b = 1.
The idea is that the only way to learn anything about b is to provide a “good”
input to Pb,Zb that makes it output something other than ⊥. Any good input
must be of the form ((crs′, seed′B∗),Bb + A∗S) for some S ∈ ZW×Kq . But if Bb

was uniform, there would be no inputs of this form, where (crs′, seed′B∗) is short,
such that ‖Expand(crs′, seed′B∗) − Bb + A∗S‖ is also small, meaning that Pb,Zb
would always output ⊥ in this case. This follows by a counting argument, where
the sizes of crs′, seed′B∗ and S are much smaller than the size of Bb whenever δ
is sufficiently small, and β is relatively small compared to q. Therefore finding a
good input to Pb,Zb would require breaking LWE with respect to A∗.

3.2 Weak Succinct LWE Samplers

We now present a weaker security notion for succinct LWE samplers. Instead
of quantifying over all (Zb, auxb) that satisfy the specified pre-condition as we
did previously, we now fix one particular and simple choice of (Zb, auxb). In
particular, this makes the definition falsifiable. We then show in Theorem 3
that there is a generic compiler that upgrades this type of weak security to the
previous definition of strong security (Definition 5).

Definition 6. Weak Security (or Weak β0-Flooding). Define D0, D1 as follows.

Db : auxb =
(
B̂ := A∗Ŝ + Ê, C = A∗R + E− b ·G

)
Zb = EG−1(B̂)− bÊ,

where

– SampCRSGen defines (q,M,K, χ,B) = params;
– LWEGen defines A∗ ∈ ZM×Wq ;
– B̂ ∈ ZM×Kq , Ŝ ← ZW×Kq , and Ê ← [−Bflood, Bflood]M×K , where Bflood =

(β0 +B) · 2λ;
– C ∈ ZM×M log q

q , R ← ZW×M log q
q , and E← χM×M log q.

We say that the sampler (SampCRSGen, LWEGen,Expand) is weakly secure if

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).

18 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Remark 6 (Alternate formulation of security). Similar to Remark 1, as the sam-
pler allows us to compute Expand(crs, seedB∗) = B∗ = A∗S∗+E∗, weak security
equivalently states that:

(crs, seedB∗ ,A∗,E∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E∗ − Z1, aux1).

Remark 7 (Pre-condition from LWE). We note that the distributions D0, D1
satisfy the pre-condition for security of Definition 5, assuming LWE, namely:

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux0), (7)

where (auxb,Zb)← Db and S′ ← ZW×Kq .
This is true because one can efficiently sample A∗S′+Zb given only (A∗, auxb),

as follows:

– Compute CB̂ = CG−1(B̂) ∈ ZM×Kq ; and
– Output CB̂ + A∗S for some random S← ZW×Kq .

Indeed,

CB̂ + A∗S = (A∗R + E− bG)G−1(B̂) + A∗S

= A∗(RG−1(B̂)− bŜ + S) + (EG−1(B̂)− bÊ)

and the latter term is distributed identically to A∗S′ + Zb with a random S′.
Therefore, to show the precondition equation (7), it suffices to prove that

(coinscrs, coinsseed, auxb) hides b. But this follows from LWE with respect to A∗
(Definition 5) with noise distribution χ.

3.3 Amplification

The following theorem allows to lift weak security (Definition 6) to strong secu-
rity (Definition 5).

Theorem 3. Suppose there exists a weakly secure, δ-succinct LWE sampler
(Definition 6). Suppose furthermore that it satisfies M2 ≤ Nδ · poly(λ, log q).
Then, assuming LWE, there exists a secure δ-succinct LWE sampler, satisfying
strong security (Definition 5). Moreover, with the parameters of Definition 6,
there exists such a sampler that is (strongly) β0-flooding.

We refer to the full version for a construction and a proof.

4 Candidate Succinct LWE Sampler

In Section 4.1, we present the template of our main candidate. In Section 4.2,
we state correctness and succinctness (and refer to the full version for proofs).
In Section 4.3, we explain how to setup parameters, and state our conjectured
security. Last, we discuss the plausibility of our conjecture in Section 4.5.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 19

4.1 A Basic Framework

We describe a basic template to build succinct LWE samplers. Looking ahead,
the SRE construction in Section 5 requires an additional succinctness require-
ment, namely, that additional encodings produced by the SRE are succinct. We
make sure that our template and the parameters we propose are compatible with
that constraint.

We now describe our framework. It uses a set of parameters:

parameters := (d,m, k, w,M,K, χ, χ, β, q)

which in particular includes params = (q,M,K, χ,B, χ) directly output by
SampCRSGen. Informally,

– the security of our sampler is related to the hardness of solving systems of
random degree d polynomials;

– q is the underlying LWE modulus;
– m, k,w define the dimensions of the ”seed” LWE samples Ai,Si,Ei, which

together with d, determine M,K, which are the dimensions for “expanded”
sample B∗;

– χ is the noise distribution for Ei; it is B-bounded over Z;
– χ is the noise distribution used for LWE w.r.t A∗; it is B-bounded over Z;
– DP a σ-bounded distribution over Z. We will take DP = χ for simplicity.

We now describe our candidate (SampCRSGen, LWEGen,Expand).

– SampCRSGen(1λ, 1N , α): Derive parameters = (d,m, k, w,M,K, χ,B, χ, β, q)
from (1λ, 1N , α) as described later in Section 4.3. Set params = (q,M,K, χ,
B, χ).
Sample P′ ← χk

d×K and P← χM×m
d . Output

crs = (params,P,P′).

– LWEGen(crs): On input crs = (params,P,P′), sample, for i ∈ [d], Ai ←
Zm×wq , Si ← Zw×kq , Ei ← χm×k where χ is specified in params. Compute:

Bi = AiSi + Ei ∈ Zm×kq .

Set:

A∗ = P ·
(

A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ · · ·

· · · ‖ Im ⊗ · · · ⊗ Im ⊗Ad

)
∈ ZM×dwm

d−1

q

S∗ =


S1 ⊗B2 ⊗ · · · ⊗Bd

E1 ⊗ S2 ⊗ · · · ⊗Bd

...
E1 ⊗E2 ⊗ · · · ⊗ Sd

 ·P′ ∈ Zdwm
d−1×K

q .

20 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Sample a random basis A∗ ∈ ZM×Wq of the column space of A∗, and solve
for S∗ ∈ ZW×Kq such that A∗S∗ = A∗ · S∗. Output:

seedB∗ = {Bi}i∈[d], A∗, S∗.

– Expand(crs, seedB∗): On input crs = (params,P,P′) and seedB∗ = {Bi}i∈[d],
output:

B∗ = P · (B1 ⊗ · · · ⊗Bd) ·P′ ∈ ZM×Kq .

4.2 Correctness, Succinctness, and LWE with respect to A∗

We show that for appropriate parameters, the sampler described above is correct
and succinct.

Claim 1. Assume β ≥ B2(mkB)d. Then the sampler (SampCRSGen, LWEGen,
Expand) described above satisfies correctness (Definition 5).

Claim 2. Suppose there exists δ < 1 such that

(dmk +MW +WK) ≤ Nδ · poly(λ, log q),

where W is the width of A∗. Then (SampCRSGen, LWEGen,Expand) described
above is δ-succinct.

Proof. This follows as bitlength({Bi}i∈[d],A∗,S∗) = (dmk+MW +WK) · log q.

Next, we show that LWE holds with respect to A∗ (assuming standard LWE),
for our candidate sampler. We first show that it holds with respect to A∗.

Lemma 2 (LWE with respect to A∗). Let χ(λ) be a B(λ)-bounded distribu-
tion. Let DP be a σ-bounded distribution over Z such that if P = DM×md

P (coinsP)
is sampled using randomness coinsP , then with overwhelming probability over
coinsP , P is full-rank. Suppose furthermore that M ≤ md.

Suppose LWEw,q,χ holds. Let χ = U([−B,B]) be the uniform distribution in
[−B,B], where B ≥ σmdB · 2λ. Then:(

coinsP ,P, {Ai}i∈[d],A
∗
,A∗ · s + e

)
≈c
(

coinsP ,P, {Ai}i∈[d],A
∗
,b
)
,

where P = DM×md
P (coinsP), b← ZMq , s← Zdwmd−1

q , e← χM .

Corollary 1 (LWE with respect to A∗). Let χ(λ) be a B(λ)-bounded distri-
bution. Suppose furthermore that M ≤ md. Then, assuming LWEw,χ,q,
(SampCRSGen, LWEGen,Expand) satisfies LWE with respect to A∗ with noise
distribution χ = U([−B,B]) where B = B2 ·md · 2λ.

We refer to the full version for proofs of Claim 1, Lemma 2, and Corollary 1.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 21

4.3 Instantiating the Parameters

Parameters. We first go through our parameters, and show that they satisfy the
constraints of Definition 5.

Our candidate is a “degree-d” sampler, where d ≥ 2 is a fixed constant integer.
It expands LWE samples Bi ∈ Zm×kq to a matrix B∗ ∈ ZM×Kq , using matrices
P← χM×m

d and P′ ← χk
d×K .7 This expansion has stretch γ, in the sense that

MK = (mk)γ . w and W are the respective widths of the underlying matrices
Ai ∈ Zm×wq and A∗ ∈ ZM×Wq . δ is the succinctness parameter of our sampler.

χ denotes a B-bounded distribution used to sample seedB∗ , namely the ma-
trices {Ei}i∈[d], and we assume that LWEw,q,χ holds. β is a bound on ‖E∗‖
which depends on B.

χ denotes a B-bounded distribution such that LWE with respect to A∗ holds
(assuming LWE holding for some fixed parameters only dependent on the secu-
rity parameter λ). α denotes a blow-up factor that defines the noise bound β0
that the sampler is masking in the security property, namely β0 = αB.

We gather the constraints on our parameters below:

– N = MK //constraint of the sampler
– (dmk +MW +WK) ≤ Nδ · poly(λ, log q) for some δ < 1 //δ-succinctness
– M2 ≤ Nδ · poly(λ, log q) //for SRE succinctness
– M ≤ md //LWE with respect to A∗ (Corollary 1)
– χ is a B-bounded distribution s.t. LWEw,q,χ holds. //base LWE assumption
– B = B2md · 2λ //LWE with respect to A∗ (Corollary 1)
– β = B2(mkB)d //bound on ‖E∗‖
– B large enough s.t. β ≥ β0 · 2λ where β0 = αB. //constraint of the sampler
– q ≥ 8β. //constraint of the sampler

We additionally add the following constraints to ensure security:

– γ < d/2 //to avoid SOS attacks (Section 4.5).
– M ≤ md,K ≤ kd //to avoid rank attacks8 (Section 4.5).

Next, we show our candidate sampler satisfies these constraints. Given the
security parameter λ, fix a degree d = O(1), a dimension w = w(λ), and a bound
B = B(λ). Given additional parameters N ≥ w6d and α as input, our candidate
sets the following parameters.

It fixes a stretch parameter γ ∈
[

2d
2d−1/6 , d/2

)
.

Set m = N1/2d ≥ w3. It then defines the following “dimension” parameters
k,M,K:

k = m
2d
γ −1, M = md−1/2, K = md+1/2

7 In general, we can use a different (small) distributions DP and DP ′ for P, P′. We
only set DP = D′P = χ to minimize the number of distributions and parameters.

8 The first constraint is redundant with the constraints of Corollary 1.

22 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

and wmd−1 ≤ W = rank
(
A∗
)
≤ md − (m − w)d < dwmd−1 = width

(
A∗
)

by
construction of A∗.9 Note that the second inequality is strict as m > w,10 that
is, A∗ is rank deficient.

It then defines the following “bound” parameters B, β:

B = B2md · 2λ, β = B2(mkB)d,

where we assume that χ is B-bounded with B ≥ (α·22λ)1/d

k such that LWEw,q,χ
holds.11

Let χ = U([−B,B]) be the uniform distribution over [−B,B]. It finally sets
the modulus q as

q = 8β.

We show that the setting of parameters satisfy all the constraints described
above. First, by definition, N = m2d = MK. Furthermore:

bitlength(seedB∗ ,A∗,S∗) = dmk log q + M ·W log q + W ·K log q

<
(
dm2d/γ + dwm2d−3/2 + dwm2d−1/2

)
· log q

=
(
m2d− 1

6 + dm2d/γ
)
· log q

= Nδ · poly(λ, log q)

with δ = 1 − 1
12d = 2d−1/6

2d , where we used W < dwmd−1, w ≤ m1/3, which
follows as N ≥ w6d and m = N1/2d, and 1/γ ≤ δ.

We furthermore have M2 = m2d−1 ≤ Nδ.
We have by construction: B = B2md · 2λ, β0 = αB , β = β0 · 2λ, β ≥

B2(mkB)d and q = 8β, so that the constraint β ≥ β0 · 2λ can be rewritten as:

B2(mkB)d ≥ α · 2λ · (B2md2λ),

which is exactly our constraint on B.
Last, we have γ < d/2 by definition, M = md−1/2 ≤ md, and K = md+1/2 ≤

(m3)d.

Remark 8 (Length of the CRS). As noted in Remark 5, a long CRS is required for
security to hold if we allow arbitrary auxiliary information aux. We note this is
the case for the parameters of Conjecture 1. Indeed: bitlength(P′) = kdK log q ≥
m4d+1/2 log q ≥ N poly(λ, log q) = m2d poly(λ, log q).
9 We prove that rank

(
A∗
)
≤ md− (m−w)d in Section 4.5, paragraph Rank of A∗S∗.

10 Writing m = m′+w where m′ > 0, the difference (m′+w)d−(m′d+dw(m′+w)d−1)
is the sum of monomials in m′, w with positive coefficients.

11 This is without loss of generality by defining for instance χ′ = χ+ [−B,B] where B′
is large enough to satisfy the previous constraint. A direct reduction ensures that if
LWE holds with χ, then it holds with χ′.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 23

Remark 9 (Parameters as a function of γ.). Our construction induces different
parameters, according the choice of γ. The main affected parameter is k, which
goes from k = m3+o(1) to k ≈ m2d. We note here that it also makes sense to use
a constant γ ∈

(
1, 2d

2d−1/6

]
for our construction. The only difference is that the

succinctness of the scheme then becomes 1/γ as opposed to 1−O(1/d).
We gather some example parameters in the table below. In all cases, we set

d ≥ 4 be a constant, m ≥ w3 so that N = m2d, M = md−1/2 and K = md+1/2.
The third column represent the components that should have size bounded by
Nδ to satisfy δ-succinctness.

Stretch γ Dimension k M2 + bitlength(seedB∗ ,A∗,S∗) Succinctness δ

γ = d/3 k = m5 O(m2d−1/6) δ = 1− 1
12d

γ = 2d
2d−1/6 k = m2d−7/6 O(m2d−1/6) δ = 1− 1

12d = 1/γ

γ = 2d
2d−ε k = m2d−ε−1 O(m2d−ε) δ = 1/γ

Fig. 1. Example parameters. In the above, we fix a constant d ≥ 4 and w = w(λ). The
output size is N = m2d where N ≥ w6d.

Next, we state our main conjecture for our candidate, namely that it satisfies
the weak notion of security of Definition 6. Looking ahead, thanks to Theorem 3,
this suffices to imply iO.
Conjecture 1 (Conjectured security). Let χ be a B-bounded distribution, and
assume LWEw,q,χ holds. Then (SampCRSGen, LWEGen,Expand) with any of the
parameters above satisfies weak β0-flooding (Definition 6), where β0 = αB.
Remark 10 (Security as a function of d). Our constructions decouples the stretch
γ, defined as (bitlength({Bi}i∈[d))γ = bitlength(B∗) (up to polynomial factors
in λ, log q), from the degree d. In particular, for a fixed (constant) stretch γ ≥

2d
2d−1/6 , we expect Conjecture 1 to be weaker as d increases.

Next, combining the above with Theorem 3, we describe two distributions
whose indistinguishability would imply the existence of succinct LWE sampler
with θ-flooding (Definition 5) for some parameter θ. Looking ahead, combined
with Theorem 4, this suffices to imply an iO scheme.
Conjecture 2 (Stand-alone θ-flooding). Let β0 = θ ·2λ. With any of the parame-
ters params described above, the following distributions ∆b are indistinguishable:

∆b =
(
P,P′, seedB∗ , A∗, B̂ = A∗S0 + F,

C = A∗R + E− bG, E∗ + E ·G−1(B̂)− bF
)

24 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

where
P← χM×m

d

, P′ ← χk
d×K ,

seedB∗ = {Bi}i∈[d] ∈ (Zm×wq)d

B̂ ∈ ZM×Kq , where S0 ← ZW×Kq , F← χM×Kflood

C ∈ ZM×M log q
q , where R ← ZW×M log q

q , E← χM×M log q

where (seedB∗ ,A∗,S∗) ← LWEGen(params,P,P′), B∗ = Expand(params,P,P′,
seedB∗), and E∗ = B∗ −A∗S∗. Furthermore, χ is a noise distribution such that
LWE with respect to A∗ holds, and χflood is a β0-bounded distribution that
floods θ-bounded distributions.

4.4 Alternate Candidate Construction

In the full version, we present a variant of the construction in Section 4.1. The
main intuition is that this new variant sums T copies of the candidate of Sec-
tion 4.1, but reusing the same matrices Ai across all copies. We refer to the full
version for a complete description of that candidate.

4.5 Cryptanalysis

Recall that security of a succinct LWE sampler requires

(crs, seedB∗ ,A∗,E∗ − Zb, auxb)

to hide b for appropriate auxb and small Zb.
Ignoring the auxiliary information related to the sampler for now, the crucial

requirement is that E∗−Zb (or, equivalently, A∗S∗+ Zb) hides b for sufficiently
small Zb. As noted in the technical overview, pseudorandomness of E∗ cannot
hold given seedB∗ : one can compute B∗ − E∗ and check that it is low rank.
Nonetheless, as a sanity check, we would like to ensure that the marginal dis-
tribution of E∗ is pseudorandom by itself, i.e. in the absence of seedB∗ . We first
describe some attacks on the pseudorandomness of E∗, and their influence on
our parameters in Section 4.3.

Linearization Attacks. A strong break for the pseudorandomness of E∗ is
to recover the initial errors Ei ∈ Zm×k such that P

(⊗d
i=1 Ei

)
P′ = E∗. This

would be enough to break pseudorandomness: only a small fraction of small
E∗ ∈ ZM×K have such a succinct description as long as N = MK is large
enough compared to m and k (say MK = (mk)γ for some constant γ > 1).

One way of recovering the Ei’s given E∗, P and P′ is to view the equation

P
(

d⊗
i=1

Ei

)
P′ = E∗

Succinct LWE Sampling, Random Polynomials, and Obfuscation 25

as a set of linear equations with the (mk)d variables

Xi1,j1,··· ,id,jd = Ei1,j1
1 × · · · ×Eid,jd

d

where i1, · · · , id ∈ [m] and j1, · · · , jd ∈ [k], and where Ei,j denotes the (i, j)th
component of E. In particular, this is solvable as long as the number of equations
is no smaller than the number of variables, that is:

MK ≥ (mk)d.

Our choice of parameters reflects security against linearization attacks. We also
note that the linearization attack (in contrast to the sum of squares attack)
works just as well over any finite field as it does over the integers.

Low-Degree Polynomials and Sum of Squares. The recovery attack de-
scribed above can be generically improved using the more refined sum of squares
(SOS) attacks. These ensure that pseudorandomness of E∗ cannot hold whenever

MK ≥ (mk)d/2.

We refer the reader to [BHJ+19] for more details on sum of squares attacks.
In our scheme, we explicitly require that the stretch of our sampler, namely γ
such that MK = (mk)γ , is smaller than d/2.

Security when m = 1. When m = 1, P is a scalar that we will ignore. We are
given

e∗ =
(

d⊗
i=1

ei

)
P′

which is a vector of length K. Since
⊗d

i=1 ei is simply the set of all degree-d mul-
tilinear monomials with a variable from each of the ei, this can be interpreted as
evaluating K degree-d polynomials with Gaussian coefficients on the dk variables
in e1, . . . , ed. Since K � kd/2, neither linearization nor sum of squares seems to
apply [BHJ+19].

The work of Kosov [Kos20] tells us each entry in E∗ by itself, namely a
polynomial with Gaussian coefficients evaluated on Gaussian inputs, comes from
a noise-flooding distribution (for mild choices of parameters).

This analysis also points to the qualitative distinction between our assump-
tion and the analysis above for m = 1. When m = 2, for example, we obtain
MK polynomials evaluated on a number of correlated random variables. That
is, setting the two rows of Ei to be ei1 and ei2,

E∗ = P


e11 ⊗ e21 ⊗ · · · ⊗ ed1
e12 ⊗ e21 ⊗ · · · ⊗ ed1

...
e12 ⊗ e22 ⊗ · · · ⊗ ed2

P′

To the best of our knowledge, all attacks described above still fail. In fact, we
don’t even have an attack if P = I2d was the identity and M = 2d. However,
this is certainly a cryptanalytic avenue worth pursuing in the future.

26 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Rank Attacks. Towards analyzing the case of larger m, we attempt another
class of attacks which consist of looking at the rank of the various matrices that
arise in the assumption.

Rank Attack on E∗. Note that a random (e.g. Gaussian) E∗ would be full-rank
with overwhelming probability. In particular, as

E∗ = P
(

d⊗
i=1

Ei

)
P′,

where P ∈ ZM×md and P′ ∈ Zkd×K , the rank of E∗ is at most the rank of P,P′.
In particular, P and P′ need to be full-rank and compressing, meaning that
M ≤ md and K ≤ kd, respectively. Our setting of parameters (see Section 4.3)
ensure these restrictions hold.

The rank of
⊗d

i=1 Ei is the product of the ranks of Ei, and is therefore,
min(md, kd) with high probability. Heuristically, then, the rank of E∗ is exactly
min(K,M) with high probability, as long as the Gaussians have sufficiently large
width, a statement that we verified experimentally.

Rank Attack on A∗S∗. Note that if A∗S∗ is computationally indistinguishable
from A∗S′ for a uniformly random S′ given crs, seedB∗ ,A∗, auxb, then the pre-
condition implies the post-condition in Definition 5, guaranteeing security. Thus,
we evaluate possible distinguishers between A∗S∗ and A∗S′.

One such class of attacks consist in comparing the rank of A∗S∗ to the rank
of A∗. We heuristically and experimentally analyzed the ranks of A∗ and A∗S∗
to reason about these attacks.

First, note that A∗S∗ = A∗S∗. Recall that the matrices Ai ∈ Zm×wq are
random and therefore w.h.p. full-rank (i.e., rank w). Let A⊥i ∈ Z(m−w)×m

q be a
basis for the left-kernel of Ai, that is, they are rank-(m−w) matrices such that

A⊥i Ai = 0 (mod q)

We note that w.h.p. the rank of the matrix

(A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ · · · ‖ Im ⊗ · · · ⊗ Im ⊗Ad)

is at most md−(m−w)d ≈ dwmd−1−d2w2md−2/2 (the approximation assumes
that m � w which is the case for us) since the row-span of A∗ is contained in
the right kernel of (A⊥1 ⊗ · · · ⊗ A⊥d), and the latter has rank md − (m − w)d.
Our experiments indicate that the rank is indeed md− (m−w)d w.h.p. In other
words, this matrix is rank-deficient by approximately d2w2md−2/2.

Heuristically,

A∗ = P · (A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗A2 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ · · · ⊗ Im ⊗Ad)

has the same rank since P ∈ ZM×md is Gaussian and nearly full-rank, i.e., rank
M ≈ md−1/2. That is, w.h.p., (heuristically)

rank(A∗) = md − (m− w)d

Succinct LWE Sampling, Random Polynomials, and Obfuscation 27

Also, heuristically, A∗S∗ has this rank as long as S∗ has sufficiently many
columns, i.e. as long as K is large enough compared to rank(A∗). (Note that
the entries of A∗ and S∗ are correlated.)

To test these heuristic statements, we ran experiments for d = 3 and a range
of values of m, k and q. We found that A∗ had rank md−(m−w)d as expected (in
all the runs of our experiment, suggesting a high probability statement). We also
found that when k ≥ m and K is large enough so that S∗ is wide, A∗S∗ = A∗S∗
also had rank md − (m − w)d with high probability. This is the same as one
would expect from A∗S′ for a random S′, suggesting that rank attacks fail.

4.6 Cryptanalytic Challenges

We describe a few cryptanalytic challenges and how they relate to our candidate
and our assumptions. For each of these problems, we can also consider easier
challenges where (a) the challenger also gets A∗; and (b) we replace P with the
identity matrix.

Pseudo-flooding in the Absence of seedB∗ . Our intuition says that for any two
low-norm matrices Z0 and Z1, E∗ + Zb hides b. Concretely, let χ be a discrete
Gaussian of sufficiently large parameter σ. A challenge is to come up with ma-
trices Z0 and Z1 where ||Zb|| < σ/2λ such that the bit b can be recovered given

P
(

d⊗
i=1

Ei

)
P′ + Zb .

We note that when m = 1 and P = 1, as argued above, this seems to follow from
the noise-flooding properties of random (e.g. Gaussian) polynomials [BHJ+19].

Pseudo-flooding in the Presence of seedB∗ . Our stronger notion of security (Def-
inition 5) would imply that it would be hard to recover b from

(seedB∗ , A∗S∗ + Zb, E∗ − Zb), b← {0, 1}

for the following concrete distributions of Z0,Z1:

– (norm and ideal membership) Z0 is drawn from a Gaussian, and Z1 = 2Z0,
and q is odd. In particular, an attacker that manages to learn the parity of
Zb or accurately approximate the norm of Zb will be able to learn b.

– (subspace membership) Zb = E0M + bÊ where ‖E0‖ � ‖Ê‖ and M is a
public low-norm matrix. The distribution here is closely related to that for
weak flooding. Here, ‖Z0‖ ≈ ‖Z1‖, but an attacker that manages to learn
whether Zb lies in the row span of M will be able to learn b.

In both cases, an attacker could try to exploit the leakage on b from A∗S∗+Zb or
from E∗ −Zb. For instance, an efficient algorithm that recovers E∗ from seedB∗

or one that recovers b from E∗ − Zb solves this problem.

28 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Distinguishing A∗S∗ from A∗S′. As described above, we think the following
claim is plausible:

A∗S∗ ≈c A∗S′

where S′ ← ZW×Kq . As A∗S∗ = A∗ ·S∗ (where A∗,S∗ are defined in Section 4.1),
and given that A∗ and A∗ have the same column span, this is equivalent to

A∗ · S∗ ≈c A∗ · S′′

where S′′ ← Zdwmd−1×K
q , and A∗,S∗ have closed form expressions described in

Section 4.1.
A distinguisher here does not immediately break strong or weak-flooding,

but we believe it constitutes strong evidence that strong-flooding is false.

5 Our Succinct Randomized Encoding Construction

Let (SampCRSGen, LWEGen,Expand) be a succinct LWE sampler (Definition 5)
with parameters to be determined later.

We now describe our SRE for the family F`,N,t = {f : {0, 1}` → {0, 1}N} of
depth-t circuits. Let q be a modulus and χ be a B-bounded distribution to be
determined later.

Let g(t) = O(t) be the function defined in Definition 3.

– CRSGen(1λ,F`,N,t): Output crs← SampCRSGen(1λ, 1N , Ng(t)). It in partic-
ular includes parameters params = (q,M,K, χ,B).

– Encode(crs, f, x): Compute (seedB∗ ,A∗,S∗) ← LWEGen(crs), where A∗ ∈
ZM×Wq , S∗ ∈ ZW×Kq .
Sample R ← {0, 1}W×`M log q, and E← χM×`M log q. Compute

C = A∗R + x⊗G + E ∈ ZM×`M log q
q ,

where we view x ∈ {0, 1}1×` as a row vector, and compute (Rf,x,Ef,x) =
Evalopen(f,A∗, x,R,E).
Output:

C = (seedB∗ , C, A∗, (Rf,x + S∗)).

– Decode(crs, C, f)): On input C = (seedB∗ ,C,A∗,V), compute Cf = Eval(f,
C), and B∗ = Expand(crs, seedB∗). Output

f(x) = Roundq/2 (Cf + B∗ −A∗ ·V) ∈ {0, 1}M×K .

Theorem 4. Suppose (SampCRSGen, LWEGen,Expand) is a succinct LWE sam-
pler satisfying δ-succinctness and β0-flooding (Definition 5) with β0 = B ·Ng(t).
Suppose furthermore that:

M2 = Nδ · poly(λ, `, t).

Then (CRSGen,Encode,Decode) is an SRE for F`,N,t satisfying δ-succinctness.

Succinct LWE Sampling, Random Polynomials, and Obfuscation 29

Next, we show that the construction above satisfies correctness and succinct-
ness.
Claim 3 (Correctness). Suppose (SampCRSGen, LWEGen,Expand) satisfy the
parameters constraints and correctness Definition 5. Then (CRSGen,Encode,
Decode) is correct.
Proof. Define V = (Rf,x + S∗). By Definition 3, we have

Cf + B∗ −A∗ · (Rf,x + S∗) = f(x) · q/2 + Ef,x + E∗.

Let β0 = B · Ng(t). The setting of parameters β, B and q from (SampCRSGen,
LWEGen,Expand) imply ‖E‖ ≤ B and therefore ‖Ef,x‖ ≤ BMg(t) ≤ Ng(t) = β0
by definition of g (Definition 3), and using M ≤ N . Furthremore β ≥ β0 ·2λ and
q ≥ 8β so that ‖Ef,x + E∗‖ < q/4, and therefore

Roundq/2 (Cf + B∗ −A∗ ·V)) = Roundq/2 (f(x) · q/2 + Ef,x + E∗) = f(x).

Claim 4. Suppose the sampler (SampCRSGen, LWEGen,Expand) is δ-succinct
(Definition 5), and suppose that the sampler furthermore satisfies

M2 = Nδ · poly(λ, `, t).

Then (CRSGen,Encode,Decode) is δ-succinct.
Proof. The setting of the parameters implies log q = poly(λ, t). Then `M2 log2 q =
Nδ · poly(λ, `, t).

Furthermore V = (Rf,x+S∗) ∈ ZW×Kq and therefore bitlength(seedB∗ ,C,A∗,
V) ≤ Nδ · poly(λ, `, t) by δ-succinctness of (SampCRSGen, LWEGen,Expand).
Therefore the SRE is δ-succinct.

5.1 Security
Claim 5 (Indistinguishability-based security.). Let f : {0, 1}` → {0, 1}N
of depth t, and x0, x1 ∈ {0, 1}` such that f(x0) = f(x1). Suppose (SampCRSGen,
LWEGen,Expand) is secure (Definition 5), and LWE hold. Then:

(crs,Encode(crs, f, x0)) ≈c (crs,Encode(crs, f, x1)),

where crs← CRSGen(1λ,F`,N,t).
We refer to the full version for a proof of Claim 5. Combining Theorem 4

with our candidate succinct LWE sampler (Sections 4.1 and 4.3), noting that
our proposed parameters in Section 4.3 satisfy M2 = Nδ · poly(λ, `, t), gives a
candidate SRE. Invoking Theorem 2, we obtain the following.
Corollary 2. Assuming Conjecture 1 and sub-exponential LWE, there exists an
iO scheme.

We can furthermore use Theorem 3 to relax the requirement on our candi-
date succinct LWE sampler (Section 4.1), and only rely on weak security (Defi-
nition 6), thus obtaining the following.
Corollary 3. Assuming Conjecture 2 and sub-exponential LWE, there exists an
iO scheme.

30 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

Acknowledgements

We thank Pravesh Kothari for his pointers to and conversations about the
literature on SOS and low-degree polynomial attacks. LD and VV were sup-
ported by DARPA under Agreement No. HR00112020023, a grant from the
MIT-IBM Watson AI, a grant from Analog Devices, a Microsoft Trustwor-
thy AI grant, and a DARPA Young Faculty Award. WQ completed part of
this work during an internship at NTT Research. DW was supported by NSF
grant CNS-1750795, CNS-2055510, and the Alfred P. Sloan Research Fellow-
ship.

References

Agr19. Shweta Agrawal. Indistinguishability obfuscation without multilinear
maps: New methods for bootstrapping and instantiation. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476
of LNCS, pages 191–225. Springer, Heidelberg, May 2019. 1, 4

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation
from compact functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 308–326. Springer, Heidelberg, August 2015. 8, 14

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012. 12

AJL+19. Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit
Sahai. Indistinguishability obfuscation without multilinear maps: New
paradigms via low degree weak pseudorandomness and security am-
plification. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 284–332. Springer,
Heidelberg, August 2019. 4, 6

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with
polynomial error. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314. Springer,
Heidelberg, August 2014. 9

AP20. Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation
without maps: Attacks and fixes for noisy linear FE. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of
LNCS, pages 110–140. Springer, Heidelberg, May 2020. 1

AR17. Shweta Agrawal and Alon Rosen. Functional encryption for bounded col-
lusions, revisited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part I, volume 10677 of LNCS, pages 173–205. Springer, Heidelberg,
November 2017. 4

BCG+18. Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain,
Huijia Lin, Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. In-
distinguishability obfuscation for RAM programs and succinct randomized
encodings. SIAM J. Comput., 47(3):1123–1210, 2018. 13

Succinct LWE Sampling, Random Polynomials, and Obfuscation 31

BDGM19. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Leveraging linear decryption: Rate-1 fully-homomorphic encryption and
time-lock puzzles. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 407–437. Springer, Heidelberg, De-
cember 2019. 3, 12

BDGM20a. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Can-
didate iO from homomorphic encryption schemes. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 79–109. Springer, Heidelberg, May 2020. 1, 2, 4, 5

BDGM20b. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Fac-
toring and pairings are not necessary for iO: Circular-secure LWE suffices.
Cryptology ePrint Archive, Report 2020/1024, 2020. 1

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001. 1

BGL+15. Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang.
Succinct randomized encodings and their applications. In Rocco A. Serve-
dio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 439–448. ACM
Press, June 2015. 2, 13

BHJ+19. Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari, and Amit
Sahai. Sum-of-squares meets program obfuscation, revisited. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 226–250. Springer, Heidelberg, May 2019. 9, 25, 27

BTVW17. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck
Wee. Private constrained PRFs (and more) from LWE. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages
264–302. Springer, Heidelberg, November 2017. 3, 12

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS,
pages 97–106. IEEE Computer Society Press, October 2011. 7

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation
from functional encryption. In Venkatesan Guruswami, editor, 56th FOCS,
pages 171–190. IEEE Computer Society Press, October 2015. 8, 14

CHVW19. Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Ma-
trix PRFs: Constructions, attacks, and applications to obfuscation. In
Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891
of LNCS, pages 55–80. Springer, Heidelberg, December 2019. 1

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sa-
hai, and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE
Computer Society Press, October 2013. 1

GH19. Craig Gentry and Shai Halevi. Compressible FHE with applications to
PIR. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II,
volume 11892 of LNCS, pages 438–464. Springer, Heidelberg, December
2019. 3, 12

GP21. Romain Gay and Rafael Pass. Indistinguishability obfuscation from cir-
cular security. In STOC, 2021. 1, 2, 4, 5

GR07. Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 194–213.
Springer, Heidelberg, February 2007. 1

32 L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, and D. Wichs

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer,
Heidelberg, August 2013. 3, 12

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press,
June 2015. 3, 12

HJL21. Sam Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to new
circular security assumptions underlying iO, 2021. 2, 9

JLMS19. Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage
hardness of constant-degree expanding polynomials overa R to build iO.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May 2019.
4, 6, 9, 10

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In STOC, 2021. 1, 4

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM
STOC, pages 20–31. ACM Press, May 1988. 7

Kos20. Egor Kosov. Distributions of polynomials in gaussian random variables
under structural constraints, 2020. 25

LPST16. Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguisha-
bility obfuscation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min
Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II,
volume 9615 of LNCS, pages 447–462. Springer, Heidelberg, March 2016.
2, 8, 13, 14

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, April 2012. 3, 12

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computa-
tion via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763.
Springer, Heidelberg, May 2016. 3, 12

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vec-
tor problem: extended abstract. In Michael Mitzenmacher, editor, 41st
ACM STOC, pages 333–342. ACM Press, May / June 2009. 11

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP
from (plain) learning with errors. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
89–114. Springer, Heidelberg, August 2019. 3, 12

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, Heidel-
berg, August 2008. 3, 12

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005. 11

WW21. Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE
sampling. In EUROCRYPT, 2021. 1, 2, 4, 12, 13

	Succinct LWE Sampling, Random Polynomials, and Obfuscation
	Introduction
	Our Contributions
	Technical Overview
	Discussion

	Preliminaries
	Notations
	Learning With Errors
	Lattice Tools
	Homomorphic Operations
	Succinct Randomized Encodings

	Succinct LWE Sampler: Definition and Amplification
	Definition and Discussion
	Weak Succinct LWE Samplers
	Amplification

	Candidate Succinct LWE Sampler
	A Basic Framework
	Correctness, Succinctness, and LWE with respect to A*
	Instantiating the Parameters
	Alternate Candidate Construction
	Cryptanalysis
	Cryptanalytic Challenges

	Our Succinct Randomized Encoding Construction
	Security

