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Abstract

A number of arithmetization-oriented ciphers emerge for use in advanced cryptographic pro-
tocols such as secure multi-party computation (MPC), fully homomorphic encryption (FHE) and
zero-knowledge proofs (ZK) in recent years. The standard block ciphers like AES and the hash
functions SHA2/SHA3 are proved to be efficient in software and hardware but not optimal to use
in this field, for this reason, new kind of cryptographic primitives were proposed recently. However,
unlike traditional ones, there is no standard approach to design and analyze such block ciphers and
the hash functions, therefore their security analysis needs to be done carefully. In 2018, StarkWare
launched a public STARK-Friendly Hash (SFH) Challenge to select an efficient and secure hash
function to be used within ZK-STARKs, transparent and post-quantum secure proof systems. The
block cipher JARVIS is one of the first ciphers designed for STARK applications but, shortly after
its publication, the cipher has been shown vulnerable to Gröbner basis attack. This paper aims to
describe a Gröbner basis attack on new block ciphers, MiMC, GMiMCerf (SFH candidates) and the
variants of JARVIS. We present the complexity of Gröbner basis attack on JARVIS-like ciphers.
Then we give results from our experiments for the attack on reduced-round MiMC and a structure
we found in the Gröbner basis attack for GMiMCerf.

1 Introduction

Block ciphers are the fundamental tools of modern cryptography. They are pseudo-random permuta-
tions operating on fixed-size blocks and used to secure different types of data. Their design and security
considerations are well understood in the literature. However, the design of symmetric-key primitives
for use in advanced cryptographic protocols such as secure multi-party computation (MPC), fully
homomorphic encryption (FHE) or new proof systems like SNARKs, STARKs, Bulletproofs studied
in the past few years because of the recent progress in practical applications of this field.

Secure multi-party computation (MPC) is a cryptographic protocol that enables the parties to
evaluate output of a function securely without knowing anything about their private inputs. In MPC
systems, the arithmetic operations on secret sharing values are often performed over a finite field
with large prime characteristic Fp. The problem of using traditional block ciphers like AES in MPC
setting is the hardness of representing such block ciphers using arithmetic over finite fields. Their
design strategy aims to provide mostly good performance in hardware or software implementations.
Therefore, we have a new area of designing efficient symmetric primitives for use in MPC or ZK-proof
systems. We refer reader to [6] that gives detailed information for the design of such primitives.

One of the design of pseudo-random functions (PRFs) for MPC applications is given in [5], where
the designers propose a blockcipher LowMC with low multiplicative depth and low multiplicative
complexity which operates over GF(2). After that, several bit-oriented primitives have appeared like
Kreyvium [14] or FLIP [26] considering the same design strategy as LowMC. Because most of the
advanced cryptographic protocols support operations over large prime fields, MiMC family [2], includ-
ing a block cipher and a cryptographic hash function, were presented by offering multiplications over
large fields GF(2n) and GF(p). The block cipher MiMC was designed mainly for SNARK applica-
tions like Zerocash [28], but it is also competitive for use in STARKs and MPC applications. The
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designers of MiMC improved cipher to Generalized MiMC (GMiMC) [4] in order to provide efficient
performance also in the area of PQ-secure signature schemes, where MiMC was not so competitive
in this area. MARVELlous family [7], the block cipher JARVIS and the hash function FRIDAY, are
the first designs to propose efficiency in STARK applications, however it has been shown that these
designs do not provide adequate security as claimed [3]. The paper [6] calls these new primitives as
arithmetization-oriented algorithms.

The design strategies of standard block ciphers like AES (Advanced Encryption Standard) [27]
or 3DES (Triple DES, Data Encryption Standard) [25] and the arithmetization–oriented ciphers are
different. Therefore, their security analysis and the corresponding attack techniques are also different.
Statistical attacks such as differential and linear cryptanalysis are widely used for the cryptanalysis of
block ciphers. Algebraic attacks are a different type of cryptanalysis which aims to exploit algebraic
structure of the cipher. This kind of attacks tries to represent the cipher as a system of polynomial
equations and then solves to recover the key using a suitable method like SAT solvers, Gröbner basis
methods, Mixed-Integer Linear Programming (MILP) Solvers or algebraic higher-order differentials. A
common belief is that the statistical attacks are generally faster than the algebraic attacks because of
the high complexity of algebraic attacks. Not a single proper block cipher has been broken using pure
algebraic techniques faster than with other techniques [3]. Algebraic techniques were mostly considered
against some public-key schemes and stream ciphers because they were proved to be successful against
them. However, the target applications like MPC/FHE/ZK-STARKs are algebraic systems, and
therefore algebraic attacks gain attention again from the cryptographers.

The design of arithmetization-oriented algorithms which are both efficient and secure still in
progress. Two design strategies, MARVELlous [6] and HADES [22, 23], provide a generic way for
the demand in design space relative to these target applications. After JARVIS was shown to be inse-
cure againsts Gröbner basis attack, the designers of MARVELlous together with Ben-Sasson proposed
a Marvellous family design strategy which includes two ciphers Vision for binary fields and Rescue
for prime fields. These ciphers were candidates for STARK-Friendly Hash (SFH) Challenge [1]. The
HADES design strategy proposed by Grassi et al. [23] and the HadesMiMC family of algorithms,
the hash functions Starkad and Poseidon [22], were also candidate in SFH challenge. In this public
competition, the security of four families of algorithms – MiMC, GMiMC, HadesMiMC and MAR-
VELlous, was analyzed by the cryptanalysts. At the end of the selection process of STARK-Friendly
hash function, the hash function Rescue is recommended by Ben-Sasson et al. [10].

1.1 Our motivation

The new arithmetic-oriented primitives designed for applications of advanced cryptographic protocols
may be vulnerable to algebraic attacks, particularly Gröbner basis attacks. The security of these
ciphers was examined against various algebraic attacks but not focus directly on Gröbner basis attacks.
However, as said in [6], it is the common question for these new designs:

“Consequently, the question of security against Gröbner basis attacks seems to be the crucial con-
cern raised by arithmetization-oriented ciphers, and no such proposal is complete without explicitly
addressing it”.

The success of the attack strategy on JARVIS and FRIDAY motivated us to study Gröbner basis
attack against variants of JARVIS and the other proposed ciphers, MiMC and GMiMCerf.

1.2 Structure of the paper

Sections 2 and 3 will present mathematical background for Gröbner bases and Gröbner basis attacks.
In Section 4, we will briefly describe the block cipher JARVIS and in Section 4.2, we will mention
successful Gröbner basis attack on JARVIS by Albrecht et al. [3], then we generalize the attack
strategy on JARVIS-like ciphers. We will give a formula to estimate the complexity of the attack
and using this formula we will show JARVIS with degree 8 polynomials is still vulnerable to Gröbner
basis attack in Section 5. Furthermore, we will compare S-boxes of JARVIS and AES in Section 5.1
and estimate the complexity of the attack on JARVIS with AES S-box in Section 5.2. If we replace
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the S-box of JARVIS with AES S-box, we see that the complexity of the attack with 8-bits input is
around ≈ 97 bits for 10 rounds.

Section 6 will express our other target cipher MiMC and present results from our experiments for
the Gröbner basis attack on reduced round MiMC. We see that MiMC with 82 rounds is resistant
against Gröbner basis attack. Then, Section 7 will give a brief description of the block cipher GMiMCerf

and describe our results for the Gröbner basis attack against the primitive. We will say that GMiMCerf

is secure against Gröbner basis attack not because of the high complexity of basis computation but
for a different reason. Section 8 will conclude our results in this paper and end up with discussion and
future work section.

Note that all the experiments in this paper are performed in Sage 9.0. ”Sage: Software for Algebra
and Geometry Experimentation ” is a free and open source computational algebra system [30]. The
full source codes of the attacks given in this paper are provided in:

https://github.com/gizemmkara/masters_thesis

2 Mathematical background

In this section, we will give some main theorems and definitions to understand the concept of Gröbner
basis and Gröbner basis attacks. For more detailed information, we refer to [16].

2.1 Monomial orders and monomial ideals

Definition 2.1. A multivarite polynomial f in k variables x0, . . . , xk−1 with coefficients c0, . . . , ck−1
over a field F can be expressed as

f =
∑
i∈Zk
≥0

cix
i

where xi = xi00 · x
i1
1 · · ·x

ik−1

k−1 is a monomial with total degree i0 + i1 + · · · + ik−1. The degree of f is
defined as the maximum value of the total degrees of the monomials.

For multivariate polynomials, the order of terms monomial ordering is not just important to write
and read terms but also to decide the leading term of the polynomial and how to store and operate
the polynomials in a computer since they affect the complexity. For example, while using division
algorithm on univariate polynomials, a polynomial depends only one variable, over F[x], we write
terms in decreasing order on degrees of the terms, · · · > xt+2 > xt+1 > xt > · · · > x2 > x1 > x > 1.
Also, in row-reduction algorithm for the matrices, we deal with the linear equations in k variables
x1, . . . , xk in decreasing order, written as x1 > · · · > xk. Now, we may define ordering in monomials.

Definition 2.2 (Monomial ordering). A monomial ordering on F[x1, . . . , xk] is a relation > on
Zk≥0 ( i.e, exponents of monomials) or a relation on monomials xa, a ∈ Zk≥0, such that:

1. The relation > is a total ordering on Zk≥0. That means for any pairs of xa and xb exactly one

of the three statements, xa > xb, xa = xb, xa < xb should be satisfied.

2. If a > b and c ∈ Zk≥0, then a+ c > b+ c.

3. The relation > has well-ordering which means every non-empty subset has a smallest element
under >.

For example, the numerical order t+ 1 > t > · · · > 2 > 1 > 0 on N, satisfies the above conditions,
hence the degree ordering on monomials over F[x] is a monomial ordering. In computational algebra,
the following three term orderings are mostly used

Definition 2.3 (Lexicografic Order). We say a >lex b if the left most non-zero entry in a− b ∈ Zk
is positive.

Definition 2.4 (Graded Lexicografic Order). We say a >grlex b if the total degrees |a| > |b| or if
|a| = |b| and a >lex b.

3

https://github.com/gizemmkara/masters_thesis


Definition 2.5 (Graded Reverse Lexicografic Order). We say a >grevlex b if the total degrees
|a| > |b| or if |a| = |b| and the rightmost non-zero enrty of vector difference a− b ∈ Zk is negative.

Before giving the definition of Gröbner basis, we first define the monomial ideals.

Definition 2.6. An ideal I ⊆ F[x1, . . . , xk] is called a monomial ideal if it can be generated by
monomials.

For example, I =
〈
x2y, xy3

〉
⊆ F[x, y] is a monomial ideal generated by the monomials x2y and xy3.

Theorem 2.1 (Dickson’s Lemma). Every monomial ideal I ⊆ F[x1, . . . , xk] is finitely generated,
i.e. I has a finite basis.

Proof. See [16, Chapter 2, Section 4, Theorem 5].

Definition 2.7. Consider a non-zero ideal I ⊆ F [x1, . . . , xk] and fix a monomial ordering. The set
LT (I) is the set of leading terms of the polynomials in I

LT (I) = {LT (f)| f ∈ I}.

The ideal generated by the elements of LT (I) is denoted by
〈
LT (I)

〉
.

Note that for the ideal I, say I =
〈
g1, . . . , gt

〉
, the ideals

〈
LT (g1), . . . , LT (gt)

〉
and

〈
LT (I)

〉
may

be different.

3 Gröbner bases and Gröbner basis attack

3.1 Gröbner bases

The concept of Gröbner basis and the algorithm to construct it introduced by Buchberger [12] in 1965.
Gröbner bases have many applications in computational algebra such as, ideal membership problem,
ideal description problem and the problem of solving polynomial equations. We will mainly focus on
the solving polynomial equations.

Definition 3.1 (Polynomial Systems Solving (PoSSo) Problem). Given a set of polynomial
equations P = {f1, f2, . . . , fm} ∈ F[x1, . . . , xk]. Find -if any- common solutions of the polynomial
system such that:

f1(x1, . . . , xk) = f2(x1, . . . , xk) = · · · = fm(x1, . . . , xk) = 0.

When the number of variables is high, this problem is hard to solve.

Definition 3.2 (Gröbner Basis). Fix a monomial ordering on F[x1, . . . , xk] and an ideal I. A finite
subset G = {g1, . . . , gt} of an ideal I is a Gröbner basis of I if the ideal generated by the leading
term of every element of I is generated by the leading terms of the gi, i.e.〈

LT (I)
〉

=
〈
LT (g1), . . . , LT (gt)

〉
or informally, if any element of I is divisible by one of LT (gi).

Theorem 3.1. Every ideal I ⊆ F[x1, . . . , xk] has a Gröbner basis G = {g1, . . . , gt} for a fixed monomial
order. Furthermore, any Gröbner basis for the ideal I is a basis of I.

Proof. See [16, Chapter 2, Section 5, Corollary 6].

Buchberger formulated an algorithm, known as Burchberger’s algorithm, for computing Gröbner
basis. This algorithm comes from the idea behind Buchberger’s criterion and used to determine if a
given basis for an ideal is Gröbner or not.
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Definition 3.3 (S-polynomial). Let f, g ∈ F[x1, . . . , xk] be two non zero polynomials. The S-
polynomial of f and g is defined as the combination

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g,

where xγ is the least common multiple of the leading monomials of f and g, written as xγ = lcm(LM(f), LM(g)).

Theorem 3.2 (Buchberger’s Criterion). Let I be an ideal. A basis G = {g1, . . . , gt} is a Gröbner
basis of I if and only if for any pairs i 6= j, the remainder on the divison of S(gi, gj) by G listed in
some order is zero written as

S(gi, gj)
G

= 0.

Proof. See [16, Chapter 2, Section 7, Theorem 2].

This criterion leads the Buchberger’s algorithm to construct a Gröbner basis for a given ideal, see
Algorithm 1.

Algorithm 1 Buchberger’s Algorithm

Input: F = (f1, . . . , ft) . F ⊆ F[x1, . . . , xk]
Output: A gröbner basis G = (g1, . . . , gs) for the ideal I =

〈
F
〉

G = F
G
′

= set()
while G

′ 6= G do
G
′

= G
for each pair {p, q}, p 6= q in G

′
do

r := S(p, q)
G
′

if r 6= 0 then
G.add(r)

return G

This algorithm terminates as G
′

= G in finitely many steps due to the Ascending Chain Condition
which stabilizes the ascending chain of ideals. The runtime of the algorithm is affected by the choice
of monomial ordering, the order of which p, q are selected and the unnecessary reductions to 0.

One may view Buchberger’s algorithm as a generalization of Euclidean algorithm for computing
greatest common divisor of polynomials and Gaussian elimination to solve linear equations. There are
other algorithms such as F4 and F5 to compute Gröbner basis effectively using some linear algebra
techniques [18, 19].

3.2 Gröbner basis attack

Algebraic attack is a type of cryptographic attack that exploits the algebraic structure of the cipher
to recover the secret by solving multivariate polynomial system of equations which consists of key,
plaintext and ciphertext bits. Gröbner basis attack is an example for algebraic attacks. The first
step of the attack is to represent the cipher as a system of polynomial equations. Then, the attacker
computes the Gröbner basis for the ideal generated by corresponding equations and finally solve the
system for unknown variables. The phases of Gröbner basis attack are detailed below.

1. Set up a multivariate polynomial system of equations that describes the cipher. Note that one
can always find a polynomial representation of a function over a finite field, but the crucial point
is to find the simplest description due to the complexity of algebraic attacks.

2. Compute a Gröbner basis for the polynomial system, which forms an ideal, in degree reverse
lexicografic order (mostly preferred for performance reasons) using Gröbner basis algorithms
such as Buchberger’s, F4, F5 or Macaulay matrices. In general, this is the most expensive step.
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3. Change the ordering in Gröbner basis from degrevlex order to the lex order via Gröbner basis
conversion algorithms like FGLM [20], which works only for zero dimensional ideals, or Gröbner
Walk algorithm [15]. Lex ordered coefficient matrix of Gröbner basis is in triangular shape
and the last row gives the solution for univariate equation, that’s why the lex order is used to
eliminate the variables.

4. Factorize the last element in lexicographic Gröbner basis (lex ordered Gröbner basis guarantees
there is at least one univariate polynomial) using polynomial factorization algorithms such as
Berlekamp algorithm [21]. Finally, compute the full solution of the system by back substituting
roots of the univariate polynomial.

A general algorithm for key recovery using Gröbner bases [13] is provided below:

Algorithm 2 Gröbner basis attack [13]

1. Set up a polynomial system of equations P = {pi = 0} for the cipher in question which consists
of both cipher and key schedule equations.

2. Request a plaintext/ciphertext pair ((P0, . . . , Pt−1), (C0, . . . , Ct−1)). This gives rise to the fol-
lowing additional system of linear equations G : {gi = 0}:

x
(0)
0 + P0 = 0 . . . x

(r)
0 + C0 = 0

x
(0)
1 + P1 = 0 . . . x

(r)
1 + C1 = 0

...
...

x
(0)
t−1 + Pt−1 = 0 . . . x

(r)
t−1 + Ct−1 = 0

Let I be the ideal generated by the set of polynomials J = (
⋃
i{pi}) ∪ (

⋃
i{gi}). We call this

ideal as the key recovery ideal.

3. Compute a degree reverse lexicographic ordered Gröbner basis G
′
degrevlex of I. For ciphers

using a multiplicative inverse as S-box function, the system may be inconsistent, resulting in
G
′
degrevlex = 1.

4. If G
′
degrevlex = 1 go to step 2, otherwise continue.

5. Use a Gröbner basis order conversion algorithm to obtain a lexicographical Gröbner basis Glex
from G

′
degrevlex. The variable ordering should be such that the key variables of the first round

are the least elements.

6. Compute the variety Z of I using the Gröbner basis Glex.

7. Request another plaintext/ciphertext pair (P,C).

8. Try all elements k ∈ Z as key candidates to encrypt P . If k does not encrypt P to C, remove k
from Z, otherwise retain.

9. If Z contains more than one element, go to step 7.

10. Terminate

Note that the above algorithm is very general, many changes are possible such as computing
Gröbner basis with a different monomial ordering rather than degrevlex or lex. Variety of an ideal is
the set of all common solutions of the elements in ideal. Observe that in Step 6, to compute variety Z
of I, one needs to factor univariate polynomials and substitute the roots into other equations to check
if that root is a solution for whole system. In the following sections, we will discuss the complexity of
each step.
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3.3 Complexity of Gröbner basis computation

For a generic system of m equations in k variables

f1(x1, . . . , xk) = · · · = fm(x1, . . . , xk) = 0

the complexity of computing Gröbner basis is

O
((

k + dreg
dreg

)ω)
, (1)

operations over the field F, where 2 ≤ ω < 3 is the exponent for the complexity of matrix multiplication
and dreg is the degree of regularity [9, 11]. The degree of regularity is informally the highest degree
reached during Gröbner basis computation and therefore is the key concept to analyze the complexity
of polynomial solving algorithms. There is a common belief that this degree determines when the
solving algorithm will terminate, that’s why it is used to parametrize the complexity [29]. In general,
computing degree of regularity for the overdetermined systems (m > k) is a hard problem and still
an active research area [3]. Notice that the complexity does not contain the number m of equations
explicitly but, the degree of regularity depends on the number of equations.

For the regular systems, where the number of equations is equal to the number of variables, m = k,
one can calculate this degree by using the formula:

dreg = 1 +
m∑
i=1

(di − 1), (2)

where di is the degree of fi, see [8]. In general, for the semi-regular (random) systems with the number
of equations greater than the number of variables, over-determined systems (m > k), the degree of
regularity can be computed using Hilbert series expansion of the ideal generated by the polynomials
f1, . . . , fm. In this case, dreg is defined [8] as the first non-positive coefficient in

H(t) =
1

(1− t)k
×

m∏
i=1

(1− t)di .

3.4 Complexity of change of term ordering

The input of the FGLM algorithm is the Gröbner basis (degrevlex ordered in our case) of a zero-
dimensional ideal I, having finitely many solutions, and it returns the Gröbner basis with respect to
the lex order. The complexity of the FGLM algorithm [20] is

O(k ·D3),

where k is the number of variables and D is the degree of the ideal I which is the dimension of the
vector space of the quotient ring F[x1, . . . , xk]/I. In general, it is known that FGLM algorithm is faster
than the Gröbner Walk algorithm [13].

3.5 Complexity of factorization

Finally, we need to factorize the last univariate polynomial and find its roots in lex ordered Gröbner
basis we discovered. A polynomial of degree d over a finite field F2n can be factorized using the
improved version of Berklekamp algorithm [21]. The complexity of the algorithm is

O(d3n2 + dn3).

In the following sections, we will describe three block ciphers, JARVIS, MiMC and GMiMCerf . We
will present Gröbner basis attacks for each cipher, then we will analyze the complexity of the attack
for variants of JARVIS. After that, we will show our experimental results for key recovery attack on
MiMC and our attack strategy on GMiMCerf .

7



4 The block cipher JARVIS

Ashur and Dhooghe [7] proposed JARVIS as a STARK-friendly block cipher in 2018. Its design
is inspired from the design of the AES in order to gain resistance against differential and linear
cryptanalysis. They instantiate JARVIS to offer 128, 160, 192 and 256-bit security levels.

4.1 Description of JARVIS

JARVIS is a family of SPN block ciphers designed for STARK-applications. It uses wide-trail strategy
similar to AES, which ensures the security againsts differential and linear cryptanalysis. JARVIS
works on an entire n-bit state and an n-bit key over the finite field F2n . The non-linear layer in
JARVIS uses a single S-box over F2n and defined as a multiplicative inverse function

S : F2n −→ F2n

x −→ x2
n−2,

or in rational form

S(x) :=

{ 1

x
, x 6= 0

0, x = 0.

The linear part in JARVIS is defined as the composition of two affine polynomials. These affine
polynomials are created by adding a constant value to a linearized polynomial. Remember that an F2

linearized permutation polynomial is defined as

L(x) =
n−1∑
i=0

lix
2i ∈ F2n [x].

The affine polynomial obtained from L(x) is

A(x) = l−1 +

n−1∑
i=0

lix
2i ∈ F2n [x].

In JARVIS, two monic affine polynomials B and C of degree 4 are chosen in the form

B(x) = x4 + b2x
2 + b1x+ b0 and C(x) = x4 + c2x

2 + c1x+ c0,

so that the linear layer A(x) is splitted as

A(x) = C ◦B−1(x), (3)

where B−1 is the compositional inverse satisfying B−1(B(x)) = x. Note that the compositional inverse
of B is still an affine polynomial but it has much higher degree. The round function of JARVIS is
depicted below in Figure 1.

⊕Si
B

−1(x)x
−1 C(x)

Ki

Si+1

Figure 1: One round of the JARVIS block cipher

Key Schedule: The key schedule in JARVIS is similar to the round function. It uses the same S-box
as in the round function whereas the affine part is omitted. The first key k0 is the master key and
the round keys are generated by adding a round constant ci to the output of the S-box in the key
schedule. One round of the key schedule is shown in Figure 2.
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Ki Ki+1⊕

Ci

x
−1

Figure 2: One round of the key schedule used in JARVIS block cipher

The designers of JARVIS propose the security levels for four different block sizes and different
number of rounds r = 10, 11, 12, 14 for the polynomials B and C with fixed round constants, see in
Table 1.

Table 1: Instances of JARVIS [7]
Instances n number of rounds r

JARVIS-128 128 10

JARVIS-160 160 11

JARVIS-192 192 12

JARVIS-256 256 14

However, it has been shown that the specified number of rounds for JARVIS does not provide
above security levels as claimed. In the following section, we will give successful Gröbner basis attack
on JARVIS given in Albrecht et al. [3].

4.2 Gröbner basis attack on JARVIS

Albrecht et al. [3] showed that the JARVIS is not secure as claimed since the certain characteristics of
JARVIS makes the cipher vulnerable to Gröbner basis attack. The one is that the S-box of JARVIS,
S(x) = x2

n−2, can be written as a degree-2 polynomial

S(x) = x−1 = y,

where x · y = 1 for any non zero element x ∈ F2n . For a sufficiently large n, it is claimed that x
is not equal to zero with a high probability. The other is that whereas the affine polynomial A has
high degree, it is a decomposition of two low degree polynomials, see Equation (3), and setting up
equations by avoiding the inverse computation of high degree B−1 makes the system vulnerable to the
attack.

4.2.1 Gröbner basis attack on reduced round JARVIS

In the original proposal, the authors of [3] first present the Gröbner basis attack approach on reduced
round JARVIS and then they improve the attack to apply the full round of JARVIS.

They describe the primitive by introducing an intermediate variable xi for the i-th round where
1 ≤ i ≤ r, see in Figure 3.

⊕Si
B

−1(x)x
−1 C(x)

Ki

Si+1

xi

Figure 3: Introducing new intermediate variable xi for the one round of the JARVIS block cipher

The two consecutive rounds of JARVIS is expressed by the equation

(C(xi) + ki) ·B(xi+1) = 1 (4)
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for 1 ≤ i ≤ r − 1, where r is the number of rounds and the equations for the plaintext p and the
ciphertext c described as

(p+ k0) ·B(x1) = 1, (5)

C(xr) + kr = c. (6)

The two consecutive round keys in JARVIS are defined by the equation

ki+1 =
1

k i
+ ci

which can be written as
(ki+1 + ci) · ki = 1, 0 ≤ i ≤ r − 1. (7)

Since B and C are both degree 4 polynomials, the equations in (4), (5), (6), (7) respectively result in:

• (r − 1) equations of degree 8 with (2 · r − 1) variables, x1, . . . , xr and k1, . . . , kr−1,

• one equation of degree 5 in two variables k0 and x1,

• one degree-4 equation with two variables xr and kr,

• r equations having degree 2.

Overall, the above polynomial system of equations that describes the primitive has 2r+1 equations in
2r + 1 variables x1, . . . , xr and k0, . . . , kr. Since the number of equations and the number of variables
are equal and assuming system behaves like regular sequences, one may calculate the degree of regu-
larity using (2) and estimate the complexity of computing Gröbner basis (1). Even for the number
of rounds r = 6, this complexity is almost 120 bits and 85 bits for ω = 2.8 and ω = 2, respectively.
However, it is shown in [3] that these theoretical estimations are too pessimistic. In practice, the au-
thors compute the Gröbner basis for the above polynomial system and apply the attack to full-round
of JARVIS by improving the attack.

4.2.2 Improved attack: A more efficient description of JARVIS

The authors of [3] improved the attack described in previous section by reducing the number of
equations and the number of variables. In order to reduce the number of variables for round equations,
they fix the intermediate variables xi for the even number of rounds and express them using previous
xi−1 and next following intermediate variables xi+1. For each intermediate variable xi

B(xi) =
1

C(xi−1) + ki−1
and C(xi) =

1

B(xi+1)
+ ki, (8)

where 2 ≤ i ≤ r − 1. In order to skip intermediate variables xi, they define monic degree 4 affine
polynomials D and E of the form

D(x) = x4 + d2x
2 + d1x+ d0 and E(x) = x4 + e2x

2 + e1x+ e0

satisfying the equation
D(B) = E(C). (9)

It has been shown that Equation (9) can be solved by equalizing the coefficients of polynomials, see
[3]. After finding such suitable polynomials D and E, they apply these polynomials to B and C as
given in (8) which yields the following polynomial system

D

(
1

C(xi−1) + ki−1

)
= E

(
1

B(xi+1)
+ ki

)
for 2 ≤ i ≤ r − 1, (10)

D

(
1

p+ k0

)
= E

(
1

B(x2)
+ k1

)
, (11)

C(xr) + kr = c. (12)

The degrees of each equations are as follows:
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• For the intermediate round equations in (10), the left hand side is of degree 16, since D and C
are degree 4 polynomials, and the right hand side is of degree 20, after equalizing denominators
degree 36 polynomials obtained.

• The degree of Equation (11) is 24, degree 4 from left and degree 20 from the right hand side.

• Equation (12) is of degree 4.

Assuming the number of rounds r to be even, above polynomial system gives:

• r
2 − 1 equations of degree 36

• one equation of degree 24

• one equation of degree 4

In total, above system expressed in r
2 + 1 equations with variables x2, x4, . . . , xr and k0, . . . , kr. They

also reduce the number of key variables by connecting each round key to the master key k0

ki+1 =
αi · k0 + βi
γi · k0 + δi

, (13)

where αi, βi, γi and δi are constants and can be found explicitly by solving the recursive relation. This
final improvement results in:

• r
2 − 1 equations of degree 40

• one equation of degree 24

• one equation of degree 5

Overall, the improved attack strategy on JARVIS halves the number of equations and variables needed
to describe the cipher. Hence, it yields a polynomial system with r

2 + 1 equations in r
2 + 1 variables

x2, . . . , xr and k0.

Table 2: Experimental results of the improved attack on JARVIS using Sage [3]

r k dreg 2 log2
(k+dreg
dreg

)
d 2 log2

(
k+d
d

)
du Time

3 2 47 20 26 17 256 0.3s

4 3 67 31 40 27 1280 9.4s

5 3 86 34 40 27 6144 891.4s

6 4 106 45 41 34 28672 99989.0s

In Table 2, r denotes the number of rounds, k is the number of variables and dreg is the degree
of regularity calculated assuming the system behaves like regular (2). The estimated complexity in
bits is 2 log2

(k+dreg
dreg

)
, for ω = 2, d is the highest degree reached during the basis computation and

the expected security based on the experiment in [3] is 2 log2
(
k+d
d

)
. The degree of the univariate

polynomial obtained in the last step to solve the system is denoted by du.

5 Complexity estimates of Gröbner basis computation for the vari-
ants of JARVIS

The improved attack given in [3], as described in Section 4.2.2, motivated us to formulate the attack
for the block ciphers having affine polynomial like JARVIS. Since the affine layer of JARVIS is the
composition of two low degree polynomials B and C, we mentioned that one can find two low degree
polynomials D and E which makes cipher vulnerable to Gröbner basis attack. The question is what if
one replaces B and C with higher degree polynomials. In order to determine whether the higher degree
polynomials choice makes the cipher resistant against Gröbner basis attacks or not, in this section,
we try to generalize the complexity of the improved attack on JARVIS. We show that JARVIS with
degree 8 affine polynomials is still vulnerable to Gröbner basis attack.
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Proposition 5.1. Let B and C be arbitrary affine polynomials used in JARVIS. Let D and E be
the monic affine polynomials satisfying the equation D(B) = E(C). Let db, dc, dd, de be the degrees of
B,C,D,E respectively. Then the complexity of computing Gröbner basis with the improved attack on
r rounds JARVIS in bits is

ω log2

(
(( r

2 − 1)(dd(dc + 1) + de(db + 1)− 1) + (dd + de(db + 1) + dc)) + r
2 + 1

( r
2 − 1)(dd(dc + 1) + de(db + 1)− 1) + dd + de(db + 1) + dc

)
(14)

where ( r2 − 1)(dd(dc + 1) + de(db + 1)− 1) + (dd + de(db + 1) + dc) is the degree of regularity.

Proof. Assume that the degrees of the monic affine polynomials B,C,D,E be db, dc, dd and de respec-
tively. The improved attack strategy yields the below equations

• r
2 − 1 equations of degree dd(dc + 1) + de(db + 1) (from (10)),

• one equation of degree dd + de(db + 1) (from (11)),

• one equation of degree dc + 1 (from (12)).

We know that the complexity of the Gröbner basis computation in bits is ω log2
(k+dreg
dreg

)
, see (1). Since

the number of equations and the number of variables are the same (m = k = r
2 + 1), assuming the

system behaves like a regular system, we can estimate the degree of regularity using the closed formula
(2). The result follows from putting the values we obtained from above system.

We estimate the complexity of computing Gröbner basis for the affine polynomials B and C of
degree 8 and corresponding polynomials D and E of degrees 2, 4 and 8 using (14), without regarding
if there is a solution for the system (D(B) = E(C)) or not. The results can be seen below in Table
3. In the table, the number of rounds, the number of variables, the expected security level and the
degree of regularity are denoted by r, k, CGB and dreg, respectively. The security levels are estimated
by setting ω = 2.8 and for ω = 2 in parenthesis.

Table 3: Complexity estimates for degree-8 polynomials B and C
D,E are degree-2 D,E are degree-4 D,E are degree-8

r k dreg CGB dreg CGB dreg CGB

6 4 98 62 (44) 190 72 (52) 316 80 (57)

8 5 133 80 (57) 261 93 (67) 430 103 (74)

10 6 168 98 (70) 332 114 (82) 544 126 (90)

12 7 203 116 (83) 403 135 (97) 658 149(107)

14 8 238 135 (96) 474 157 (112) 772 172 (123)

Remark 5.2. The complexity of the improved attack on JARVIS increases when the degrees of the
polynomials increase. For example, when the number of rounds r = 6 estimated complexity is ≈ 45
bits (see Table 2) for the polynomials B,C,D,E are all degree 4 (in original JARVIS), and complexity
is ≈ 57 bits (see Table 3) for degree-8 polynomials.

5.1 Comparison with the S-box of the AES and decomposing AES S-box

The non-linear part in JARVIS applies the same idea with the S-box of the AES, S-boxAES(z). In
this section, we try to decompose S-boxAES(z) for different degree affine polynomials. We provide
some lemmas to decide appropriate degrees of the decomposition polynomials of AES S-box.

We know that AES S-box is the composition of an affine function AAES(z) over F2 and the
multiplicative inverse of the input over F28 . In particular

S-boxAES(z) = AAES(z254).

12



The multiplicative inverse is defined by the function F over F28

F : F28 −→ F28

x −→ x254,

where zero is mapped to zero. The affine function in AES can be expressed as a degree 128 polynomial
over F28 :

AAES(z) = 0x8F · z128 + 0xB5 · z64 + 0x01 · z32 + 0xF4 · z16 + 0x25 · z8+
0xF9 · z4 + 0x09 · z2 + 0x05 · z + 0x63.

Then, the S-box of AES is represented as

S-boxAES(z) = 0x05 · z254 + 0x09 · z253 + 0xF9 · z251 + 0x25 · z247 + 0xF4 · z239+
0x01 · z223 + 0xB5 · z191 + 0x8F · z127 + 0x63.

Since JARVIS is also composition of the inverse multiplication and the affine function, S-box S(z) of
JARVIS can be written as

S(z) = A(z254),

and the affine function A(z) is
A(z) = (C ◦B−1)(z),

where B and C are both monic permutation polynomials of degree 4. In the original paper [3], it is
shown that the AAES(z) can not be viewed as a decomposition of the polynomials such that

AAES(z) = (Ĉ ◦ B̂−1)(z),

both B̂ and Ĉ have degree 4. The above equation implies

A−1AES(z) = (B̂ ◦ Ĉ−1)(z),
A−1AES(Ĉ(z)) = B̂(z),

where

A−1AES(z) = 0x6E · z128 + 0xDB · z64 + 0x59 · z32 + 0x78 · z16 + 0x5A · z8+
0x7F · z4 + 0xFE · z2 + 0x5 · z + 0x5

is the compositional inverse polynomial of AAES which satisfies A−1AES(AAES(z)) = z for every z ∈ F28 .

Lemma 5.1. There are no two affine polynomials B̂ and Ĉ of degree-4

B̂(z) := b̂4z
4 + b̂2z

2 + b̂1z + b̂0, Ĉ(z) := ĉ4z
4 + ĉ2z

2 + ĉ1z + ĉ0. (15)

such that A−1AES(Ĉ(z)) is equal to B̂(z).

Proof. Assume the equality holds for the polynomials of both degree 4, then we must have zero
coefficients in resulting polynomial A−1AES(Ĉ(z)) for the degrees 8, 16, 32, 64, 128. That means, we need
to solve the following multivariate polynomial system with 5 equations in 3 variables ĉ4, ĉ2, ĉ1:

0xFE · ĉ24 + 0x7F · ĉ42 + 0x5A · ĉ81 = 0,

0x7F · ĉ44 + 0x5A · ĉ82 + 0x78 · ĉ161 = 0,

0x5A · ĉ84 + 0x78 · ĉ162 + 0x59 · ĉ321 = 0,

0x78 · ĉ164 + 0x59 · ĉ322 + 0xDB · ĉ641 = 0,

0x59 · ĉ324 + 0xDB · ĉ642 + 0x6E · ĉ1281 = 0.

In practice, we have obtained that the only solution satisfies the above system is the trivial solution,
ĉ4 = ĉ2 = ĉ1 = 0 as shown in [3]. Therefore, affine function of AES can not be decomposed by two
degree 4 polynomials.
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In the following Lemma 5.2, we will show that AAES(z) can be decomposed as AAES(z) = (Ĉ ◦
B̂−1)(z) if the degree of the product of the polynomials B̂ and Ĉ is at least 128.

Lemma 5.2. Let B̂ and Ĉ be two affine polynomials of degree 2b and 2c, respectively such that

B̂(z) = b̂2bz
2b + b̂2(b−1)z2

(b−1)
+ · · ·+ b̂2z

2 + b̂1z + b̂0

and

Ĉ(z) = ĉ2cz
2c + ĉ2(c−1)z2

(c−1)
+ · · ·+ ĉ2z

2 + ĉ1z + ĉ0, b, c ∈ {0, . . . , 7}.

Then, AAES(z) results in Ĉ(B̂−1(z)) provided that 6 < (b+ c) ≤ 14.

Proof. Assume that the degree of Ĉ is 2c and the polynomial A−1AES(Ĉ(z)) is equal to B̂ having degree
2b, which implies we need to have zero coefficients for the degrees 2(b+1), 2(b+2), . . . , 27. This results
in a polynomial system of (7− b) equations with (c+ 1) variables ĉ2c , . . . , ĉ4, ĉ2, ĉ1. In order to find a
non-zero solution for this system, we need to have more unknowns than the equations. Therefore, b
and c must satisfy, 6 < (b+ c) ≤ 14.

We have used the above lemma and decomposed the affine function of AES in practice for the
following pairs of the degrees of B̂ and Ĉ:

• degree of Ĉ = 4, B̂ = 32,

• degree of Ĉ = 8, B̂ = 16, 32,

• degree of Ĉ = 16, B̂ = 8, 16, 32,

• degree of Ĉ = 32, B̂ = 4, 8, 16, 32.

For a more detailed explanation to see how we solve such a system for the above degrees, one can
check [24].

5.2 Gröbner basis attack on JARVIS equipped with AES S-box

In the previous section, we show that how the S-boxes of AES and JARVIS have similar decomposition.
In this section, we will replace the non-linear operation in JARVIS with S-boxAES(z) and estimate
the complexity of improved attack strategy given in [3]. Assume we have

S-boxAES(z) = (C ◦B−1)(z254), z ∈ F28 (16)

for a known affine polynomials B and C

B(z) = b2bz
2b + b2(b−1)z2

(b−1)
+ · · ·+ b2z

2 + b1z + b0,

C(z) = c2cz
2c + c2(c−1)z2

(c−1)
+ · · ·+ c2z

2 + c1z + c0, b, c ∈ {0, . . . , 7},

where (b+ c) > 6 (see Lemma 5.2). The polynomial equations defining the JARVIS with AES S-box
can be viewed as a system of equations such that the equality

D(B) = E(C) (17)

is satisfied for the affine polynomials D and E of the form

D(z) = d2dz
2d + d2(d−1)z2

(d−1) · · ·+ d2z
2 + d1z + d0 and

E(z) = e2ez
2e + e2(e−1)z2

(e−1) · · ·+ e2z
2 + e1z + e0, d, e ∈ {0, . . . , 7}.

We will consider two cases to estimate the complexity of the improved attack on JARVIS with
S-boxAES(z):
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1. The key schedule is the same as in (2).

2. The key schedule in AES is used and all subkeys are captured by the attacker, but not the
master key.

Before moving on we first need to find suitable D and E such that the system (17) has a solution. We
give the following lemma to decide the degrees of the polynomials D and E.

Lemma 5.3. Let B and C be given decomposition polynomials of the AES S-box as in (16) having
degree db and dc respectively where (b + c) > 6 and dedc ≥ dddb. Then, one can find two non-zero
affine polynomials D and E of degrees dd and de respectively satisfying the system (17) provided that
d+ 2 ≥ c.
Proof. Write the polynomial system for D(B) = E(C) by comparing the coefficients of D(B) and
E(C) and assume that dedc ≥ dddb. This system results in e + c + 2 equations, since the number
of equations determined by the highest degree, with d + e + 4 variables d2d , d2(d−1) , . . . , d2, d1, d0 and
e2e , e2(e−1) , . . . , e2, e1, e0. In order to find non-zero solutions to recover the polynomials D and E, we
must have at least as many variables as the number of equations, which implies d+e+4 ≥ e+c+2.

We apply suitable polynomials D and E which satisfy the above Lemma 5.3 and estimate the
complexity of improved attack for both two cases, see in Tables 4 and 5, respectively.

Table 4: Complexity estimates of the improved attack on JARVIS with S-boxAES(z) and the same
key schedule described as in (13).

r k db dc dd de dreg Complexity in bits

6 4 16 8 4 8 490 62

8 5 16 8 4 8 661 80

10 6 16 8 4 8 832 97

12 7 16 8 4 8 1003 115

In the table, r denotes the number of rounds and k is the number of variables. The degrees of the
decomposition polynomials B and C of S-boxAES(z) and the degrees of the corresponding polynomials
D and C are denoted by db, dc, dd, de, respectively. The expected degree of regularity dreg and
complexity estimation in bits are computed, assuming the system behaves like regular sequences, via
the formula we give in Proposition 5.1 for ω = 2.

Table 5: Complexity estimates of the improved attack on JARVIS with S-boxAES(z) and AES key
schedule in the case of all subkeys are captured by the attacker, but not the master key.

r k db dc dd de dreg Complexity in bits 2 log2
(k+dreg
dreg

)
6 4 16 8 4 8 457 62

8 5 16 8 4 8 616 79

10 6 16 8 4 8 775 96

12 7 16 8 4 8 934 114

In Table 5, the attacker obtains all the key variables k1, . . . , kr, where r is the number of rounds.
The improved attack for the polynomials B,C,D,E having degree 16, 8, 4, 8 denoted as db, dc, dd, de
yields, r

2 − 1 equations of degrees 160 (from (10)), one equation having degree 132 (from (11)), one
equation having degree 8 (from (12)). Since the number of equations is same as the number of variables
we estimate dreg using (2), and the expected the bit security computed for ω = 2.

Remark 5.3. We note that while the estimated complexity for JARVIS is ≈ 45 bits, for the number
of rounds r = 6, this complexity becomes ≈ 62 bits, see Table 4, when JARVIS using the S-box of
AES, with an input 8 bits. If we use AES key schedule and S-box of AES in JARVIS and assume the
attacker captures all the subkeys, except the master key, the improved attack complexity is ≈ 96 bits
for 10 rounds, see Table 5.
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6 The block cipher MiMC

The block cipher MiMC ”Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative
Complexity” [2], with its variants, published in 2016 and designed to provide high performance for the
applications of secure multi-party computation (MPC), fully homomorphic encryption (FHE), zero
knowledge proofs (ZK) and the other popular proof systems like SNARKs and STARKs. It minimizes
multiplicative complexity to be efficient over larger fields. In this section, we will describe the block
cipher MiMC-n/n and present our experimental results from running the Gröbner basis attack on
reduced rounds of MiMC. We will discuss why the cipher is secure against the attack.

6.1 MiMC-n/n

MiMC is an arithmetic-oriented block cipher works over a finite field Fq, where q is either a prime
number or a power of 2. We will mainly consider MiMC over F2n , same description of the cipher is used
for prime fields. The round function of MiMC-n/n is described by a non-linear cubic function x 7−→ x3

where x ∈ F2n . At each round, the same key k and the randomly chosen round constants ci ∈ F2n are
added to the output of the function. The round function of MiMC can be found in Figure 4. Note

⊕ ⊕ ⊕· · · ⊕x

k k ⊕ c1 k ⊕ cr−1 k

yX3 X3 X3

Figure 4: r rounds of the MiMC-n/n block cipher

that the cube function is a permutation in F2n only if n is an odd number or if gcd(3, p − 1) = 1
when operate over prime field Fp. The decryption in MiMC is done using the round constants in
reverse order and inverting the non-linear function x3 (S−1(x) := xs where s = (2n+1 − 1)/3) for odd
n [2]. Because of the high degree of inverse cubing function, decryption part is more computationally
expensive than the encryption; however, the target applications of MiMC, like cryptographic hash
functions, not usually require to perform decryption. The designers give the security analysis for
various algebraic attacks and the number of rounds r for MiMC-n/n is decided by the interpolation

attack as r =
⌈

n
log23

⌉
. It is claimed in [2] that 82 rounds is enough for MiMC-129/129 to be secure

against GCD, interpolation and the other attacks.

6.2 Gröbner basis attack on MiMC

Since the MiMC-n/n has a simple algebraic expression, several algebraic attacks performed in literature
[17, 3]. The authors of [3] state that the equations describing MiMC are already form a Gröbner basis,
therefore the first step of the attack (computing basis) is free but the recovered univariate polynomial
has degree ≈ 3r for r rounds. Because of the cost of the factorization algorithm, they conclude that
Gröbner basis attack has no threat on the security of MiMC.

The graphical representation of introducing new variables for MiMC-n/n is given in Figure 5.

⊕ ⊕ ⊕· · · ⊕x

k k ⊕ c1 k ⊕ cr−1 k

yX3 X3 X3

x0 x1 xr−1
xr

Figure 5: Introducing new intermediate variable xi for r rounds of MiMC-n/n

As stated in [3], we express the intermediate rounds of MiMC as follows:

x3i−1 + xi + ci + k0 = 0,

x3r−1 + xr + k0 = 0,
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for 1 ≤ i ≤ r, where k0 is the key variable. In order to make the polynomial system dependent on
plaintext p and ciphertext c, we write

p+ k0 + x0 = 0,

c+ xr = 0.

Since the above system already forms a Gröbner basis, we skip the first step of the attack and try to
recover the key for the reduced rounds of MiMC-129/129 in practice, see Table 6.

Table 6: The number of rounds and the degree of the univariate equation after applying r rounds
MiMC denoted as r and du respectively. FGLM and FACT times represents the time, in seconds,
needed to compute FGLM and factorization algorithms for the corresponding number of rounds.

r FGLM time FACT time du

3 0.4s 0.2s 27

4 8.8s 2.2s 81

5 266.0s 31.6s 243

6 11462.0s 248.0s 729

Although the equations for MiMC-n/n form a Gröbner basis, time needed to run FGLM and
factorization algorithms increases exponentially when the number of rounds increase. Therefore, we
conclude that Gröbner basis attack has no threat on MiMC with 82 rounds.

7 The block cipher GMiMC

The block cipher GMiMC ”Generalized Feistel MiMC”, proposed in 2019, with its variants is the more
efficient generalized version of MiMC and designed to benefit MPC, SNARK applications and PQ-
secure signature schemes [4]. In this section, we will briefly describe GMiMCerf, a variant of GMiMC
using expanding round function, and then give our Gröbner basis attack strategy. In the original
proposal [4], the security analysis of the cipher against Gröbner basis attack is based on the difficulty
of computing Gröbner basis. However, we discover a recursion in Gröbner basis of GMiMCerf with
four branches for the univariate case and that enables us to skip the first step of the attack, see Section
?? to remember the steps of the attack. We will show that cipher secure against Gröbner basis attack
not because of the complexity of computing Gröbner basis but for a different reason.

7.1 Description of GMiMCerf

GMiMC-with an expanding round function (erf) is an unbalanced Feistel cipher. One round of an
unbalanced Feistel Network with an expanding round function can be written as:

(Xt−1, Xt−2, . . . , X0)← (Xt−2 ⊕ F (Xt−1), . . . , X0 ⊕ F (Xt−1), Xt−1)

where Xj ∈ F2n is an input to the jth branch, 1 ≤ j ≤ t − 1, of the Feistel network, F is the round
function similar to MiMC defined as

F (x) := (x⊕ ki ⊕ Ci)3,

ki is the round key and Ci is the randomly chosen and fixed round constant for the i-th round,
1 ≤ i ≤ r. The graphical representation of the cipher can be found below in Figure 6.
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Figure 6: One round of an unbalanced Feistel Network GMiMC with an expanding round function

The description of the cipher over the prime finite field Fp with order p is obtained by replacing
XOR operation with the sum in modulo p. Throughout this paper, we consider the univariate case
κ = n (or equivalently for the Fp case, 2κ ' p) where the key size, denoted by κ, is equal to the branch
size n = dlog2|F|e in bits. Key schedule for the univarite case in GMiMCerf, also for the other variants,
is linear, ki = k for any i.

7.2 Gröbner basis attack on GMiMC

The authors of [4] give a detailed security analysis of GMiMC over Fp and discuss the minimum
number of rounds that guarantees the security of the cipher for several attacks. They state that most
of the attack techniques over Fp can be performed similarly in F2n . They claim that the minimum
required number of rounds to be resistant against Gröbner basis attacks is given as

r = d0.631 · log2(p) + 2log3(t)e+ 4t− 5.

They obtain this value by first observing the degrees of the polynomial equations describing cipher
after r rounds, and then estimating the complexity of computing Gröbner basis for this degree. It is
claimed that introducing new intermediate variables does not decrease the complexity of the attack
since it causes to increase in number of variables.

7.2.1 Our attack strategy

In contrast to the block cipher MiMC-n/n, the polynomial equations describing GMiMCerf do not
form a Gröbner basis. Therefore, to perform the attack, one first needs to compute the Gröbner basis
which is the most expensive step of the attack. Our idea was to find -if any- a recursion or a path in
basis in order to skip basis computation. We discovered the recursion in degrevlex ordered Gröbner
basis of GMiMCerf with four branches for the univariate case (2κ ' p) over arbitrary prime fields Fp
and so able to write a general recursive formula of the basis for r rounds of the cipher.

We describe the primitive by setting four intermediate variables x4(i−1), x4(i−1)+1, x4(i−1)+2,
x4(i−1)+3 for each round from leftmost to the rightmost branch where 1 ≤ i ≤ r as depicted be-
low in Figure 7.
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Figure 7: Introducing new intermediate variables x4(i−1), x4(i−1)+1, x4(i−1)+2, x4(i−1)+3 for r rounds
of GMiMCerf where 1 ≤ i ≤ r with branch number t = 4.

Two consecutive rounds of GMiMCerf with 4 branches can be related as follows

x4i − x4(i−1)+1 = 0,

x4i+1 − x4(i−1)+2 − F (x4(i−1)+1, k0, Ci) = 0,

x4i+2 − x4(i−1)+3 − F (x4(i−1)+1, k0, Ci) = 0,

x4i+3 − x4(i−1) − F (x4(i−1)+1, k0, Ci) = 0,

for 1 ≤ i ≤ r − 1, where k0 and Ci’s are key and constant variables, respectively. To make the
system dependent on the plaintext p and the ciphertext c ∈ (Fp)t, where p = (p0, p1, p2, p3) and
c = (c0, c1, c2, c3), we add 4 plaintext equations

x0 − p0 = 0,

x1 − F (p0, k0, C0)− p1 = 0,

x2 − F (p0, k0, C0)− p2 = 0,

x3 − F (p0, k0, C0)− p3 = 0,

and the 4 ciphertext equations

x4(r−1) − c3 = 0,

x4(r−1)+1 − c0 = 0,

x4(r−1)+2 − c1 = 0,

x4(r−1)+3 − c2 = 0.

Notice that the above system has six polynomial equations of degree 3 and two equations of degree 1
for the intermediate and the plaintext equations, and has four linear ciphertext equations. In practice,
we observe that this system does not form a Gröbner basis for the primitive unlike to MiMC-n/n.

In order to discover a recursion or a structure in Gröbner basis for the above polynomial equations
describing the cipher, we compute the basis for reduced rounds of GMiMCerf over prime fields Fp
having different prime orders p > 11 and see that the basis is independent from the choice of order.
We were able to compute the Gröbner basis in degrevlex order until 13 rounds using SageMath, which
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was enough to discover the pattern in the basis. Gröbner basis G for GMiMCerf with 4 branches over
arbitrary prime field Fp with respect to the degrevlex order has the following forms:

If r = 5 + 3k, k ∈ N, then
G = {(x4(r−1) + k0 + C0)

3 − x4(r−1)+1 + x4(r−1) − x4(r−3) + 2x4(r−4) − x4(r−5) − x4(r−6) + 2x4(r−7) −
x4(r−8) − x4(r−9) + · · ·+ 2x4 + p2 − p1 − p0,
(x4(r−2) + k0 +C0)

3− x4(r−1) + x4(r−2)− x4(r−4) + 2x4(r−5)− x4(r−6)− x4(r−7) + · · ·+ 2x12− x8− x4−
p3 + p1 + p0,
(x4(r−3) +k0 +C0)

3−x4(r−2) +x4(r−3)−x4(r−5) +2x4(r−6)−x4(r−7)−x4(r−8) + · · ·+2x8−x4 +p3−p2,
(x4(r−4) +k0 +C0)

3−x4(r−3) +x4(r−4)−x4(r−6) +2x4(r−7)−x4(r−8)−x4(r−9) + · · ·+2x4 +p2−p1−p0,
...
(x12 + k0 + C0)

3 − x16 + x12 − x4 − p3 + p1 + p0,
(x8 + k0 + C0)

3 − x12 + x8 + p3 − p2,
(x4 + k0 + C0)

3 − x8 + x4 + p2 − p1,
(p0 + k0 + C0)

3 − x4 + p1,
x4(r−1)+3−x4(r−1)+1 +x4(r−1)−x4(r−2)−x4(r−3) + 2x4(r−4)−x4(r−5)−x4(r−6) + 2x4(r−7)−· · ·+ 2x4 +
p2 − p1 − p0,
x4(r−1)+2 − x4(r−1)+1 + x4(r−2) − 2x4(r−3) + x4(r−4) + x4(r−5) − 2x4(r−6) + · · ·+ x4 − p3 + p2},

If r = 6 + 3k, k ∈ N, then
G = {(x4(r−1) + k0 + C0)

3 − x4(r−1)+1 + x4(r−1) − x4(r−3) + 2x4(r−4) − x4(r−5) − x4(r−6) + 2x4(r−7) −
x4(r−8) − x4(r−9) + · · · − x4 + p3 − p2,
(x4(r−2) +k0 +C0)

3−x4(r−1) +x4(r−2)−x4(r−4) +2x4(r−5)−x4(r−6)−x4(r−7) + · · ·+2x4 +p2−p1−p0,
(x4(r−3) +k0 +C0)

3−x4(r−2) +x4(r−3)−x4(r−5) + 2x4(r−6)−x4(r−7)−x4(r−8) + · · ·−x4− p3 + p1 + p0,
(x4(r−4) + k0 + C0)

3 − x4(r−3) + x4(r−4) − x4(r−6) + 2x4(r−7) − x4(r−8) − x4(r−9) + · · · − x4 + p3 − p2,
...
(x12 + k0 + C0)

3 − x16 + x12 − x4 − p3 + p1 + p0,
(x8 + k0 + C0)

3 − x12 + x8 + p3 − p2,
(x4 + k0 + C0)

3 − x8 + x4 + p2 − p1,
(p0 + k0 + C0)

3 − x4 + p1,
x4(r−1)+3−x4(r−1)+1 +x4(r−1)−x4(r−2)−x4(r−3) + 2x4(r−4)−x4(r−5)−x4(r−6) + 2x4(r−7)−· · ·+ 2x8−
x4 + p3 − p2,
x4(r−1)+2 − x4(r−1)+1 + x4(r−2) − 2x4(r−3) + x4(r−4) + x4(r−5) − 2x4(r−6) + · · ·+ x4 + p3 − p1 − p0},

If r = 7 + 3k, k ∈ N, then
G = {(x4(r−1) + k0 + C0)

3 − x4(r−1)+1 + x4(r−1) − x4(r−3) + 2x4(r−4) − x4(r−5) − x4(r−6) + 2x4(r−7) −
x4(r−8) − x4(r−9) + · · · − x8 − x4 − p3 + p1 + p0,
(x4(r−2) +k0 +C0)

3−x4(r−1) +x4(r−2)−x4(r−4) +2x4(r−5)−x4(r−6)−x4(r−7) + · · ·+2x8−x4 +p3−p2,
(x4(r−3) +k0 +C0)

3−x4(r−2) +x4(r−3)−x4(r−5) +2x4(r−6)−x4(r−7)−x4(r−8) + · · ·+2x4 +p2−p1−p0,
(x4(r−4) +k0 +C0)

3−x4(r−3) +x4(r−4)−x4(r−6) + 2x4(r−7)−x4(r−8)−x4(r−9) + · · ·−x4− p3 + p1 + p0,
...
(x12 + k0 + C0)

3 − x16 + x12 − x4 − p3 + p1 + p0,
(x8 + k0 + C0)

3 − x12 + x8 + p3 − p2,
(x4 + k0 + C0)

3 − x8 + x4 + p2 − p1,
(p0 + k0 + C0)

3 − x4 + p1,
x4(r−1)+3− x4(r−1)+1 + x4(r−1)− x4(r−2)− x4(r−3) + 2x4(r−4)− x4(r−5)− x4(r−6) + 2x4(r−7)− · · · − x4−
p3 + p1 + p0,
x4(r−1)+2 − x4(r−1)+1 + x4(r−2) − 2x4(r−3) + x4(r−4) + x4(r−5) − 2x4(r−6) + · · · − 2x4 − p2 + p1 + p0},
where p = (p0, p1, p2, p3) is the plaintext and C0 is the round constant variable.

We note that we only consider the case where same key and round constant are used in each round
and the number of branches is 4. We conclude that the Gröbner basis of GMiMCerf has the above
structure which makes the first step of the Gröbner basis attack for free. That means that one can
always compute the Gröbner basis for any number of rounds and therefore there is no complexity
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of computing Gröbner basis for GMiMCerf. In order to recover the key, we used the above Gröbner
basis elements as our polynomial equations with a single known p/c pair, and tried to change the
term ordering in basis from degrevlex order to lex order via the FGLM algorithm (second step of
the attack). The ideal generated by those equations is not zero-dimensional, so we used the Gröbner
Walk algorithm and recovered the key until 13 rounds by solving the last univariate basis equation.
However, the Gröbner Walk algorithm was slower than the FGLM algorithm and hence, our attack
strategy did not speed up the Gröbner basis attack on GMiMCerf. The natural question is to ask what
happens if one makes the ideal zero-dimensional.

8 Conclusion

In this paper we focus on the Gröbner basis attack on three different symmetric-key primitives JARVIS-
like ciphers, MiMC and GMiMCerf which are designed to offer efficient solution for the applications
of advanced cryptographic protocols.

We study the successful Gröbner basis attack against JARVIS by Albrecht et al. [3]. Then we
extend this result for presenting our general formula to estimate the complexity of the attack on
variants of JARVIS. We use this formula to analyze the security of JARVIS-like ciphers with higher
degree polynomials. We choose the affine polynomials in JARVIS-128 as degree 8 polynomials rather
than 4 and observe that although the expected bit security increases (≈ 90 bits for 10 rounds), the
cipher still does not provide the claimed security level in the original proposal [7]. Since the block
cipher JARVIS is very similar to the AES S-box, we write the S-box of AES as a decomposition of
two affine polynomials.

Next, we replace the JARVIS round function with the AES S-box which operates on inputs of
8-bits. We estimate the complexity of the improved attack in two cases, the first one is that we use
the key schedule of JARVIS, and the other is that we regard the AES key schedule but the attacker
obtained all subkeys. For both cases, we see that the improved attack complexity is around ≈ 97 bits
when number of rounds is 10.

Also, we apply a Gröbner basis attack to MiMC block cipher. The first step of the attack is
free because of the equations describing MiMC already forms a Gröbner basis as emphasized in [3].
We recovered the secret key until 6 rounds using SageMath. Our equations for MiMC result in a
univariate polynomial of degree ≈ 3r. We conclude that our Gröbner basis attack strategy has no
threat on MiMC due to the complexities of FGLM and factorization algorithms.

The polynomial equations we construct for the block cipher GMiMCerf do not form a Gröbner basis
unlike to MiMC. We consider the cipher with 4 branches and compute degrevlex ordered Gröbner basis
until 13 rounds. However, the specified number of rounds for GMiMC is much higher. Therefore, our
attack strategy is to make the first step of the attack free. In order to avoid basis computation, we
try to find a structure in basis which leads us to obtain the Gröbner basis for any number of rounds.
We find Gröbner bases in degrevlex. However, we couldn’t change order of the terms to lexicographic
order via FGLM algorithm since the dimension of the ideal was not zero. We use Gröbner Walk
algorithm to recover univariate equation with single plaintext/ciphertext pair and solve for the key
until 13 rounds but attack is still not applicable to the full round of GMiMC due to the performance
reasons of Gröbner Walk algorithm.

8.1 Discussion and future work

The symmetric-key primitives become more algebraically simple to provide efficient solution in the
applications of advanced cryptographic protocols in recent years. Security of these designs usually
assured by the number of rounds to avoid corresponding algebraic attacks. Gröbner basis attack
is one of those attacks which should be regarded especially due to the recent success of the attack
on primitives JARVIS and FRIDAY. However, there is no generic systematic security argument for
deciding resistance towards Gröbner basis attacks without experimentally running the flavor of the
attack we give in Section 3. A systematic way to describe complexity of the attack should be a future
work.
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The paper [6] provides a novel framework to determine the security of the cipher against Gröbner
basis attack. For most of the new designs, it becomes a standard that the cipher’s resistance against
the Gröbner basis attack should based on infeasible complexity of computing Gröbner basis in degrevlex
order. Note that the first step of the attack is free for the MiMC case. But, it turns out that the
cipher is secure against the attack because of the complexity of order conversion and factorization
algorithms.

We provide a complexity estimation for the JARVIS-like ciphers according to the attack strategy
called bridging equations over two rounds in the original paper [3]. We apply this attack to AES S-box
but that is not a comprehensive work due to the lack of time. Bridging more than two equations to
reduce number of variables or generalization of the improved attack strategy on JARVIS and apply
to AES or new arithmetization-oriented ciphers such as GMiMC, Starkad/Poseidon is a subject for
the future wok.
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