
Non-Interactive Differentially Anonymous Router

Benedikt Bünz Yuncong Hu Shin’ichiro Matsuo Elaine Shi

September 18, 2021

Abstract

A recent work by Shi and Wu (Eurocrypt’21) suggested a new, non-interactive abstraction
for anonymous routing, coined Non-Interactive Anonymous Router (NIAR). They show how to
construct a NIAR scheme with succinct communication from bilinear groups. Unfortunately, the
router needs to perform quadratic computation (in the number of senders/receivers) to perform
each routing.

In this paper, we show that if one is willing to relax the security notion to (ε, δ)-differential
privacy, henceforth also called (ε, δ)-differential anonymity, then, a non-interactive construction
exists with subquadratic router computation, also assuming standard hardness assumptions in
bilinear groups. Morever, even when 1− 1/poly log n fraction of the senders are corrupt, we can
attain strong privacy parameters where ε = O(1/poly log n) and δ = negl(n).

1

Contents

1 Introduction 1
1.1 Our Results and Contributions . 1
1.2 Technical Overview . 3
1.3 Additional Related Work . 5

2 Definitions and Preliminaries 5
2.1 Syntax . 5
2.2 Computational Differential Anonymity . 6
2.3 Background on NIAR . 7

3 Two-Layer NIDAR Construction 8
3.1 A Two-Step Permutation Algorithm . 8
3.2 Two-Layer NIDAR . 10
3.3 Proofs . 13

3.3.1 Sequence of Hybrids . 14
3.3.2 Differential Privacy Lemma . 18

4 Multi-Layer NIDAR 23
4.1 Multi-Layer NIDAR Construction . 23
4.2 Recursive Subroutines . 25
4.3 Proofs . 28

4.3.1 Sequence of Hybrids . 28
4.3.2 Differential Privacy Lemma . 31

1

1 Introduction

Anonymous communication systems allow users to communicate in an insecure channel without
leaking information about their identities or message contents. Interest in anonymous commu-
nication systems has increased in recent years because they promise a foundation for building
anonymous data-sharing systems [BHKP16, HOWW19, HKP20] and anonymous cryptocurrency
systems [CFN90, Cha82, BCG+14, HAB+17, HMPS14, RMSK14, RMSK17, Dia21, LYK+19]. Vari-
ous abstractions and techniques for anonymous communication systems have been proposed [DD08,
EY09,SSA+18], including mix-nets [Cha81,Abe99,BG12], the Dining Cryptographers’ nets [Cha88,
CGF10,APY20], onion routing [DMS04,GRS99], multi-server PIR-write [CBM15,OS97,GIKM00],
as well as other variants [ZZZR05, vdHLZZ15, TGL+17]. Notably, almost all of these anonymous
routing schemes are interactive in nature, where multiple players or routers engage in some in-
teractive protocol to accomplish the routing. Further, security typically relies on threshold-type
assumptions, e.g., either majority or at least one of the routers must be honest for security to hold.

Interestingly, the very recent work by Shi and Wu [SW21] suggest a new, non-interactive ab-
straction called Non-Interactive Anonymous Router (NIAR), where routing is accomplished on a
single, untrusted router. In their scheme, there are n senders and n receivers, and each sender wants
to talk to a unique receiver. A trusted setup takes in the routing permutation π and generates
secret sender and receiver keys for everyone, as well as a token tk for the untrusted router that
secretly “encrypts” the routing permutation π. From this moment on, the n senders and n receivers
can engage in multiple rounds of communication. In each time step, each sender uses its sender key
to encrypt its message. When the router collects all n ciphertexts from the senders, it can apply the
token tk and transform the n incoming ciphertexts into n transformed and permuted ciphertexts. At
this moment, the receivers can each use their receiver key to decrypt its corresponding transformed
ciphertext. Importantly, the router is applying the permutation π encoded in the token tk in an
oblivious manner without learning what π is.

Shi and Wu show how to construct such a NIAR scheme assuming standard bilinear group
assumptions. Their scheme achieves succinct communication: the total communication in each
time step is only linear in n, i.e., each sender or receiver sends or receives only O(1) amount of
data. Unfortunately, although their NIAR scheme guarantees succinctness in communication, it is
not so succinct in terms of router computation. Specifically, the router needs to perform Θ(n2)
computation to perform the routing in each time step. In this paper, we raise the following natural
question:

Can we achieve privacy-preserving non-interactive routing with sub-quadratic router computation?

1.1 Our Results and Contributions

We show that if we are willing to relax the security notion to differential privacy [DMNS06],
then indeed, we can achieve sub-quadratic computation. We call our construction Non-Interactive
Differentially Anonymous Router (NIDAR). A NIDAR scheme has exactly the same syntax as the
NIAR scheme of Shi and Wu [SW21], except that we now define a more relaxed security notion called
(ε, δ)-computational differential anonymity (CDA), i.e., the analogy of (ε, δ)-differential privacy in
the context of anonymous routing.

To define differential anonymity, we first define a notion of neighboring for permutations. Two
permutations on the domain [n] are said to be neighboring, iff their only difference is that two honest
senders’ destinations are swapped. Informally speaking, a NIDAR scheme is said to be differentially
anonymous, iff no computationally bounded adversary can “effectively” distinguish two neighboring
routing permutations. The actual definition is a little more technical since we need to take into

1

account the fact that the adversary can corrupt a subset of the senders and receivers. Like in the
work of Shi and Wu [SW21], we assume that each sender knows their own destinations, so if the
adversary corrupts some senders, it will learn their destinations. Further, if the adversary corrupts
a subset of the receivers, it naturally learns the messages received by the corrupt receivers in each
time step, and this is inherent. Therefore, in our actual definition of (ε, δ)-CDA which is formalized
in Section 2.2, we effectively consider two worlds. The only difference between the two worlds
is that an honest pair of senders swap their destinations. Our security definition requires that
for a computationally bounded adversary controlling the router and a subset of corrupt senders
and receivers, these two worlds are (ε, δ)-indistinguishable (by the standard distance notion in
the differential privacy literature [DMNS06,DR14,Vad17]), as long as the following conditions are
respected: 1) each corrupt sender has the same receiver in both worlds, and 2) each corrupt receiver
always receives the same message in both worlds. Note that these conditions are necessary to make
sure that the adversary cannot trivially distinguish between the two worlds.

Specifically, we prove the following theorem — we will first give the version with the most
general parameters, and then we will help the reader interpret the parameters with some typical
choices.

Theorem 1.1. Let ρ ∈ (0, 1) be the fraction of corrupt senders. Fix any desired δ ∈ (0, 1)
and any constant L = O(1), fix any Z such that (1 − ρ)Z ≥ C · (log 1

δ + log n) where C is
a sufficiently large constant. Then, assuming the hardness of the Decisional Linear assump-
tion in suitable bilinear groups, there exists a NIDAR scheme that satisfy (ε, δ)-CDA for ε =

O(1) ·
√
Z·min((1−ρ),ρ)(log 1

δ
+logn)+(log 1

δ
+logn)

(1−ρ)Z , that satisfies the following asymptotical performance
bounds where κ is a security parameter related to the strength of the hardness assumption:

• the router’s computation per time step is O(κL · n1+1/L · Z1−1/L),

• the per-sender communication and encryption time is O(kL · len) where len is the length of the
plaintext message;

• each sender key is of length O(κ · n1/L · Z1−1/L); and

• each receiver key is of length O(κ).

Typical parameters choices. We now give a typical example to help the reader interpret the
parameters. Below, we use poly1 and poly2 to denote potentially different polynomial functions.

Suppose that up to 1− 1
poly1 logn

fraction of the senders are corrupt, then, there exists a NIDAR

scheme that is (ε, δ)-CDA for ε = 1
poly2 logn

and δ = negl(n), with the following asymptotical bounds

where L denotes an any arbitrary constant and Õ hides polylogarithmic factors:

• the router’s computation per time step is Õ(κL · n1+1/L),

• the per-sender ciphertext size and encryption time is O(kL · len) where len is the length of the
plaintext message;

• each sender key is of length Õ(κ · n1/L); and

• each receiver key is of length O(κ).

Intuitively, this means that even when a very large fraction of senders are corrupt, we can
still achieve (1

poly logn , negl(n))-CDA. Recall that in the standard differential privacy literature, we
typically want ε = O(1) and δ = negl(n). Here we achieve something even better because our
ε = o(1); and the smaller the ε, the more private it is.

2

1.2 Technical Overview

For simplicity, let us first consider a two-layer scheme that makes use of two onion layers of NIAR.
We will assume that up to 99% fraction of the senders are corrupt for the time being, although in
our technical sections later, we remove this assumption and give the most general parametrization.

Reducing routing to shuffling. Instead of constructing NIDAR directly, it is sufficient to con-
struct a primitive where the router outputs the transformed ciphertexts destined for the n receivers
in a random order, where the permutation is hidden in the (ε, δ)-CDA sense. Suppose that π is
the actual permutation we want to realize, and πmid is the secret random permutation applied
by the shuffler, then the complement permutation π′ is defined to be a permutation that satisfies
π′◦πmid = π. We can give the complement permutation π′ to the router in the clear, such that after
the router applies the shuffler to the incoming ciphertexts, and obtains the randomly permuted and
transformed ciphertexts, it can next apply π′ to the permuted and transformed ciphertexts. The
outcome will be in the order to be received by the n receivers, respectively.

Therefore, below we may focus on how to construct the differentially anonymous shuffler.

A two-step, matrix permutation algorithm. To overcome the quadratic router computation,
we would like to break up the task of permuting n elements to roughly O(

√
n) permutations each

of size only Õ(
√
n). To achieve this, our idea is to arrange the elements in a square matrix, where

each entry in the matrix is a bucket of polylogarithmic size. For technical reasons needed later,
we need to introduce filler elements. Specifically, assume that initially, each bucket has exactly
half real elements and half filler elements. Our goal is to output a random permutation of the real
elements.

We perform the permutation in the following two steps:

1. Row-wise permutations. We permute each row in the matrix as follows. First, throw each real
element into a random bucket (and if the bucket is full, simply abort throwing an overflow
exception). Next, for each bucket in the row, pad each empty slot with a random, unconsumed
filler element.

2. Column-wise permutations. For each column, output a random permutation of the real elements
in the column, and throw away all the filler elements in the output.

Now, if we concatenate the outputs of all column-wise permutations, we obtain a permutation
of the real elements in the input matrix. This permutation has negligible statistical distance from
a uniform random one. In particular, it is not hard to show that if the buckets are of infinite size,
then the output permutation would indeed be random. In our case, however, we can prove through
standard measure concentration arguments that none of the buckets overflow except with negligible
probability, as long as the buckets are polylogarithmic in size.

Two onion layers of NIAR. Our differentially anonymous shuffler scheme employs two onion
layers of NIAR to realize the permutation in the above two-step manner. We invoke a NIAR instance
for each row-wise and each column-wise permutation. Each sender will be encrypting two elements,
a real element that encodes the message it wants to send, and a filler element that encodes no
information but is necessary for security. For each of the real and filler element of the sender,
the sender obtains two encryption keys, one corresponding to the column-wise NIAR instance,
and one corresponding to the row-wise NIAR instance. When a sender encrypts its real or filler
element, the encryption is performed in the reverse order: the inner encryption uses the sender key

3

corresponding to the column-wise NIAR instance, and the inner ciphertext will be encrypted again
using the sender key corresponding to the row-wise NIAR instance. The router’s routing operation,
on the other hand, is done in the forward order: it applies the NIAR tokens corresponding to all
row-wise permutations first, and then applies the NIAR tokens corresponding to all column-wise
permutations.

Performance analysis. With the above scheme, the router only needs to perform the routing
operation for O(

√
n) many NIAR instances, each of size Õ(

√
n). Recall that the routing cost of each

NIAR instance is quadratic in the size of the instance. Thus, the total routing cost is Õ(n1.5). The
two onion layers of encryption, however, incurs an additional blowup: in each layer, the plaintext
message is encrypted bit by bit, and each bit encrypts to O(1) bilinear group elements. Therefore,
the ciphertext to plaintext ratio in each layer is some security parameter κ that is related to the
length of a bilinear group element. With two layers of encryption, we will incur κ2 blowup in the
ciphertext size as well as the router computation.

Understanding the leakage. The key technical challenge in our proof is how to bound the
leakage of the above two-layer onion construction. The issue is that the adversary can learn which
buckets the corrupt sender’s elements land in during the row-wise permutations, and as we explain
below, this leaks a little information about how many honest real elements choose each bucket
during the row-wise permutations.

Recall that in our random process, all the real elements choose their destinations first in the
row-wise permutations, and then random filler elements are used to pad each bucket to its full
capacity. If a bucket has fewer real elements, it will demand more fillers. Since fillers are randomly
drawn among the set of real and corrupt fillers belonging to this row, chances are more corrupt
fillers will choose that bucket. Since the adversary knows how many corrupt fillers land in each
bucket during the row-wise permutations, it has a little leakage on the total number of real elements
in that bucket. Since the adversary also knows how many corrupt real elements land in the bucket,
it gets a little information about how many honest real elements land in the bucket.

Fortunately, despite this bit of leakage, we can prove that the scheme still satisfies a very strong
notion of (ε, δ)-differential anonymity. As we explained earlier, our parameters give strong privacy
guarantees particularly because we can achieve ε = 1/poly log n = o(1) even when 1− 1/poly log n
fraction of the senders may be corrupt, assuming a negligibly small δ.

Proof of differential anonymity. To show our scheme differentially anonymous, imprecisely
speaking, we need to prove the following statements:

1. the adversary’s view is simulatable, solely based on the leakage how many corrupt fillers go into
each bucket — henceforth, we call this leakage the “corrupt filler load vector”; and

2. the corrupt filler load vector is (ε, δ)-differentially private for appropriate choices of ε and δ.

For the former statement, we go through a sequence of hybrids and rely on the security of the
underlying NIAR scheme. Moreover, we need to rewrite the randomized experiment and change the
order in which the events are sampled, without changing the nature of the randomized process. The
actual proof is somewhat technical, so we defer the detailed explanation to subsequent technical
sections.

For proving the second statement, we draw an interesting connection to a database sampling
mechanism proposed by Chaudhuri and Mishra [CM06]. In their work, they consider a database
where each element has an attribute. A random fraction of the database elements are sampled,

4

and the frequency of each attribute is tallied and released. Chaudhuri and Mishra [CM06] show
that in this sampling mechanism, the released histogram (i.e., frequency of all attributes) satisfies
(ε, δ)-differential privacy for reasonable choices of ε and δ, as long as no individual attribute is too
rare by some technical definition of “rare”.

In our case, we can view the empty slots in each row (after throwing the real elements) as
the database elements. The attribute of each element is the bucket it belongs to. Imagine we are
sampling k elements where k corresponds to the number of corrupt fillers in this row. The adversary
is then able to see the attributes of these sampled k elements. In other words, the adversary can
see the number of corrupt fillers that go into each bucket in each row.

Unfortunately, we cannot directly use the analysis of Chaudhuri and Mishra [CM06]. They aim
to make their proof work for the most general parameters, and as a result, their parameters are too
loose for the special case we are interested in. Furthermore, their analysis makes some undesirable
assumptions, e.g., the sampling probability must be at most 1/2, and in our case, this roughly
translates to the requirement that the majority of senders must be honest. Finally, jumping ahead
a little, their analysis also does not exactly match the random process for the multi-layer scheme
to be described later.

Instead of using their analysis, we present a new differential privacy analysis that is particularly
optimized for the parameters we are interested in. In this way, we avoid the restrictions on the
corruption threshold, and our analysis gives tighter bounds on the final ε and δ parameters. Again,
we defer the detailed proof to the subsequent technical sections.

Extension: O(1) layers of onions. We can further extend our construction to multiple layers.
However, since each onion layer will incur a κ blowup in the ciphertext size, we can only support
a constant number of layers.

To formally describe the L-layer scheme where L = O(1), we use a recursive formulation.
When the recursion is fully expanded out, it corresponds to routing on an R-way butterfly network
R = O(n1/L), and each atomic unit in this butterfly network is again a bucket of polylogarithmic
size — see Figure 1 of Section 4 for a graphical illustration. Again, the senders perform encryption
in the reverse order of the network, whereas the router’s evaluation is performed in the forward
order. We defer the technical details to Section 4.

1.3 Additional Related Work

Besides our work, differentially anonymous routing was also considered in private messaging sys-
tems such as Vuvuzela [vdHLZZ15], Stadium [TGL+17], and Karaoke [LGZ18]. All of these prior
works, however, are in the interactive setting, whereas we propose a non-interactive abstraction.
In this sense, our security definitions are new. A few works on differential private information
retrieval [TDG16,AIVG20] are also remotely related to our work, but again their abstractions are
incomparable.

2 Definitions and Preliminaries

2.1 Syntax

A Non-Interactive Differentially Anonymous Router (NIDAR) has the same syntax as a Non-
Interactive Anonymous Router (NIAR) which was first proposed by Shi and Wu [SW21] — the main
difference from NIAR is in the security definition which we shall present in Section 2.2. Concretely,
NIDAR is a cryptographic scheme consisting of the following, possibly randomized algorithms:

5

• ({eku}u∈[n], {rku}u∈[n], tkπ) ← Setup(1λ, n, π, len): the trusted Setup algorithm takes the se-

curity parameter 1λ, the number of senders/receivers n, a permuation π ∈ Perm([n]) that
represents the mapping between the senders and the receivers, and the length of a plaintext
message len. The Setup algorithm outputs a sender key for each sender denoted {eku}u∈[n], a
receiver key for each receiver denoted {rku}u∈[n], and a token for the router denoted tkπ.

• CTu,t ← Enc(eku, xu,t, t): sender u uses its sender key eku to encrypt the message xu,t where
t ∈ N denotes the current time step. The Enc algorithm produces a ciphertext CTu,t.

• (CT′1,t,CT′2,t, . . . ,CT′n,t) ← Rte(tkπ,CT1,t,CT2,t, . . . ,CTn,t): the routing algorithm Rte takes
its token tkπ, and n ciphertexts received from the n senders denoted CT1,t,CT2,t, . . . ,CTn,t, and
produces transformed ciphertexts CT′1,t,CT′2,t, . . . ,CT′n,t where CT′u,t is destined for the receiver
u ∈ [n].

• x ← Dec(rku,CT′u,t): the decryption algorithm Dec takes a receiver key rku, a transformed
ciphertext CT′u,t, and outputs a decrypted message x.

In the above formulation, the permutation π is known a-priori at Setup time. Once Setup
has been run, the senders can communicate with the receivers over an unbounded number of time
steps t.

Correctness. Correctness requires that with probability 1 − negl(λ), the following holds for
any λ ∈ N, any len ∈ N, any (x1, x2, . . ., xn) ∈ ({0, 1}len)n, any t ∈ N, and any permutation
π ∈ Perm([n]): let ({eku}u∈[n], {rku}u∈[n], tkπ) ← Setup(1λ, n, π, len), let CTu,t ← Enc(eku, xu, t)
for u ∈ [n], let (CT′1,t, CT′2,t, . . ., CT′n,t) ← Rte(tkπ, CT1,t, CT2,t, . . ., CTn,t), and let x′u ←
Dec(rku,CT′u,t) for u ∈ [n]; it must be that

x′π(u) = xu for every u ∈ [n].

Communication compactness. We say that a NIDAR scheme satisfies communication com-
pactness, iff the total communication cost per time step is upper bounded by poly(λ) ·O(n) · len.

2.2 Computational Differential Anonymity

We now define computational differential anonymity (CDA). Consider the following experiment
NIDAR-Exptb,A parametrized by a bit b ∈ {0, 1}:

• n,KS ,KR, π(0), π(1), len← A(1λ)

• ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, n, π(b), len)

• For t = 1, 2, . . . :

– if t = 1 then {x(0)u,t}u∈HS , {x
(1)
u,t}u∈HS ← A(tk, {eku}u∈KS , {rku}u∈KR);

else {x(0)u,t}u∈HS , {x
(1)
u,t}u∈HS ← A({CTu,t−1}u∈HS);

– for u ∈ HS , CTu,t ← Enc(eku, x
(b)
u,t, t)

• The adversary A outputs b′ ∈ {0, 1}, and the experiment also outputs b′.

We say that A is admissible iff with probability 1, it guarantees that

1. there exist u ∈ HS and v ∈ HS such that

6

• u 6= v;

• π(0)(u) = π(1)(v) and π(0)(v) = π(1)(u);

• for any k ∈ [n], where k 6= u and k 6= v, π(0)(k) = π(1)(k);

2. for any u ∈ KR∩π(0)(HS) = KR∩π(1)(HS), x
(0)
v0,t

= x
(1)
v1,t

where for b ∈ {0, 1}, vb:=(π(b))−1(u).
In other words, here we require that in the two alternate worlds b = 0 or 1, every corrupt
receiver receiving from an honest sender must receive the same message.

Definition 1 (Computational differential anonymity). Let ε > 0 and δ ∈ (0, 1) be functions of
the security parameter λ. We say that a NIDAR scheme satisfies (ε, δ)-computational differential
anonymity (or (ε, δ)-CDA for short), iff for every nonuniform p.p.t. adversary A, for every λ ∈ N,
it holds that

Pr
[
NIDAR-Expt0,A(1λ) = 1

]
≤ eε(λ) × Pr

[
NIDAR-Expt1,A(1λ) = 1

]
+ δ(λ) .

2.3 Background on NIAR

In our NIDAR construction, we will use two or more onion layers of NIAR. A NIAR scheme has the
same syntax as NIDAR (see Section 2.1), but satisfies a stronger, simulation-based security notion
as defined below.

We consider static corruption where the set of corrupt players are chosen prior to the Setup
algorithm.

Real-world experiment RealA(1λ). The real-world experiment is described below where KS ⊆
[n] denotes the set of corrupt senders, and KR ⊆ [n] denotes the set of corrupt receivers. Let
HS = [n] \ KS be the set of honest senders and HR = [n] \ KR be the set of honest receivers. Let
A be a stateful adversary:

• n, π,KS ,KR, len← A(1λ)

• ({eku}u∈[n], {rku}u∈[n], tk)← Setup(1λ, n, π, len)

• For t = 1, 2, . . .:

– if t = 1 then {xu,t}u∈HS ← A(tk, {eku}u∈KS , {rku}u∈KR); else {xu,t}u∈HS ← A({CTu,t−1}u∈HS);

– for u ∈ HS , CTu,t ← Enc(eku, xu,t, t)

Ideal-world experiment IdealA,Sim(1λ). The ideal-world experiment involves not just A, but
also a p.p.t. (stateful) simulator denoted Sim, who is in charge of simulating A’s view knowing
essentially only what corrupt senders and receivers know. Further, the IdealA,Sim(1λ) experiment
is parametrized by a leakage function denoted Leak to be defined later. Henceforth for C ⊆ [n], we
use π(C) to denote the set {π(u) : u ∈ C}.

• n, π,KS ,KR, len← A(1λ)

• ({eku}u∈[n], {rku}u∈[n], tk)← Sim(1λ, n, len,KS ,KR, Leak(π,KS ,KR))

• For t = 1, 2, . . .:

– if t = 1 then {xu,t}u∈HS ← A(tk, {eku}u∈KS , {rku}u∈KR); else {xu,t}u∈HS ← A({CTu,t−1}u∈HS);

– {CTu,t}u∈HS ← Sim
(
{∀u ∈ KR ∩ π(HS) : (u, xv,t) for v = π−1(u)}

)
.

7

In the above the function Leak(π,KS ,KR) constains the destination of each corrupt sender, as
defined below:

LeakS(π,KS ,KR) := {∀u ∈ KS : (u, π(u))}

Definition 2 (NIAR simulation security). We say that a NIAR scheme satisfies simulation secu-
rity (with receiver insider protection), iff there exists a p.p.t. simulator Sim such that for any
non-uniform p.p.t. adversary A, A’s view in RealA(1λ) and IdealA,Sim(1λ) are computationally in-
distinguishable.

Note that the above simulation-secure definition is equivalent to (0, negl(λ))-CDA. In particular,
Shi and Wu [SW21] proved that the simulation-based security notion is equivalent to a natural
indistinguishability-based definition; and their indistinguishability-based notion is equivalent to
(0, negl(λ))-CDA due to a simple hybrid argument, since given any two permutations π(0) and π(1),
we can transform π(0) to π(1) in polynomially many steps, each time swapping the destinations of
two honest senders.

3 Two-Layer NIDAR Construction

3.1 A Two-Step Permutation Algorithm

We want to anonymously permute n elements. However, recall that a NIAR scheme on n elements
would incur at least n2 computational cost to route n messages in each time step. To reduce the
computational cost, our idea is to break up the big permutation on n elements into roughly

√
n

permutations each of size
√
n.

Strawman attempt. A strawman attempt is to write the n elements as a matrix — we first
permute each row, and then permute each column. Unfortunately, it turns out that this does not
result in a random permutation. More specifically, elements originally in the same row must all
go to distinct columns. Based on this, a polynomial time adversary could easily distinguish the
resulting permutation from a completely random one.

Our approach. Our approach is inspired by this strawman attempt. However, we make two
critical modifications. First, we introduce as many filler elements as there are real elements. Second,
we will work on a matrix of buckets, i.e., each entry in the matrix is now a bucket of size Z. We will
prove that if Z is at least polylogarithmic in size, then our algorithm produces a permutation that
has negligible statistical distance from a uniform random one. We will describe our MatrixPerm
algorithm for an input of 2n elements rather than n, since later, in our NIDAR scheme, we always
invoke MatrixPerm on 2n elements, where each of the n senders contributes one real element and
one filler element. For simplicity, the reader may first imagine that the matrix is a square one, i.e.,
R = C and R · C · Z = 2n, although in the case when 2n/Z is not a perfect square, R and C do
not need to be strictly equal.

Algorithm MatrixPerm

Input. The input I is an array of 2n elements among which at least half are fillers, and the
remaining are real elements. View the input as an (R×C)-sized matrix (also denoted I) where
each entry in the matrix I[i, j] is a bucket consisting of Z elements, such that at least half of
the elements in each bucket are fillers. For simplicity, we assume that R · C · Z = 2n (we will

8

explain how to deal with the case when 2n is not divisible by R · Z later).

Algorithm.

1. Permute rows. For each row i ∈ [R], let I[i, :] = RowPerm(I[i, :]).

2. Permute columns. For each column j ∈ [C], let I[:, j] = ColPerm(I[:, j]).

3. Output. For each column j ∈ [C], output all the real elements in column j in lexicograph-
ical ordering of their offset β within the column (and ignore all the filler elements).

Subroutine RowPerm

Input. A list of C buckets each of size Z, and each bucket contains at least half filler elements.

Algorithm.

1. Initialize C output buckets each of capacity Z. Initially, all output buckets are empty.

2. For each real element in the input list, place it into a random output bucket.

3. If any bucket’s load exceeds Z, return overflow; else, for each empty slot in each bucket,
choose a random unconsumed filler element from the input array to fill the slot.

4. Randomly permute the elements within each bucket.

5. Return the list of output buckets.

Subroutine ColPerm

Input. A list of R buckets each of size Z.

Algorithm.

1. Let X be the list of all real elements contained in the input, and let Y be the list of all filler
elements in the input.

2. Return RandPerm(X)||RandPerm(Y) where RandPerm(·) outputs a random permutation of
the input array.

Lemma 3.1 (MatrixPerm ≈ uniform random permutation). The output of the MatrixPerm(I) al-
gorithm outputs a permutation of the real elements contained in the input I, and moreover, the
resulting permutation has statistical distance at most O(n) · exp(−Ω(Z)) from a uniform random
permutation.

Proof. First, pretend that in our algorithm, even if some bucket receives more than Z real elements
during the row-wise permutations, we do not abort throwing overflow, but instead continue with
the algorithm allowing the buckets to contain arbitrarily many elements. In this case, it is not hard
to see that the algorithm must output a uniform random permutation. Therefore, it suffices to
prove that the probability of overflow is upper bounded by O(n) · exp(−Ω(Z)). This follows from
a simple application of the Chernoff bound for each fixed bucket, and then taking a union bound
over all buckets.

9

More general parameters. So far, we have assumed that R · C · Z = 2n. However, in some
cases, 2n may not be divisible by R ·Z. In this case, we may distribute the input elements as evenly
as possible across all rows, and as evenly as possible across the buckets in the same row. Later in
our application of MatrixPerm, each of the n senders contributes a real and a filler element, and we
want that for the same sender, its real and filler elements be assigned to the same bucket in the
input. Therefore, when 2n is not divisible by R ·Z, we may assume each row has either Q or Q+ 2
elements for some Q, and each bucket has either Z elements or Z+2 elements. Like before, we still
require that each bucket has at least as many filler elements as there are real elements. Lemma 3.1
would still hold for this indivisible case as well.

3.2 Two-Layer NIDAR

In our construction, we will implement a permutation using the two-step MatrixPerm algorithm
described in Section 3.1. Moreover, each sender encrypts one real element and one filler element,
in a two-layer onion fashion as we explain in more detail below. The real element corresponds
to the message the sender actually wants to send, whereas the filler element does not encode any
useful content, and is only introduced for security. Recall that in MatrixPerm, we divide the input
elements, symbolically denoted (1R, 1F, 2R, 2F, . . ., nR, nF) into a matrix of R×C buckets, each
of size Z — here, for u ∈ [n], uR denotes sender u’s real element, and uF denotes sender u’s real
element. We first randomly permute each row; then, we randomly permute each column while
moving all the real elements within each column to the front. In our NIDAR construction, we will
invoke an NIAR instance for each of the R row-wise permutations, and similarly, invoke an NIAR
instane for each of the C column-wise permutations. The column instances of NIAR will be used
to encrypt the actual messages, whereas the row instances of NIAR will be used to encrypt the
ciphertexts produced by the column instances, thus creating a two-layer onion.

Notational conventions. We always use the variable i ∈ [R] to index into rows, and the variable
j ∈ [C] to index into columns. When we write (i, α) where i ∈ [R] and α ∈ [C · Z], we refer to the
α-th element (as opposed to bucket) of the i-th row, when the C buckets in row i is flattened out as
a one-dimensional array. Similarly, when we write (j, β) where j ∈ [C] and β ∈ [R · Z], we refer to
the β-th element (as opposed to bucket) of the j-th column. We often use the superscripts “−” and
“|” to differentiate between variables of the row instances and variables of the column instances.

Our two-layer NIDAR construction. We now describe our two-layer NIDAR construction below.

Two-Layer NIDAR Construction

Parameters: let Z be the bucket size such that (1 − ρ)Z ≥ Θ(log 1
δ) where ρ is the fraction

of corrupt senders, and Θ(·) hides an appropriately large constant. For simplicity, assume that
2n = R ·C ·Z and R = C. We will deal with the case when 2n/Z is not a perfect square or 2n
is not divisible by Z later.

Assume: after the adversary chooses which users to corrupt and before the Setup algorithm
is first invoked, all senders are randomly permuted, and we renumber the senders from 1 to
n after this initial permutation. Throughout the following algorithms, we refer to senders by
these randomly renumbered identities.

• Setup(1λ, n, π, len):

10

1. Simulate MatrixPerm. Simulate a random run of the MatrixPerm algorithm on the sym-
bolic array (1R, 1F, 2R, 2F, . . . , nR, nF), where uR and uF denote the real and filler
elements corresponding to sender u ∈ [n], respectively. Let π−i denote the permutation

applied to row i in RowPerm, and let π
|
j denote the permutation applied to column j in

ColPerm. Let πmid be the permutation output by MatrixPerm on the real elements in the
input. Let m1,m2, . . . ,mC denote the number of real elements in each column after the
row-wise permutations. Let len′ denote the ciphertext length of a NIAR scheme (with
R · Z senders) when the message length is len.

2. Set up row instances of NIAR. For each row i ∈ [R], let(
{ek−i,α}α∈[C·Z], {rk

−
i,α}α∈[C·Z], tk−i

)
← NIAR.Setup(1λ, C · Z, π−i , len′)

3. Set up column instances of NIAR. For each column j ∈ [C], let(
{ek
|
j,β}β∈[R·Z], {rk

|
j,β}β∈[R·Z], tk

|
j

)
← NIAR.Setup(1λ, R · Z, π|j , len)

4. Output sender keys.

– suppose that in the MatrixPerm algorithm earlier, the symbolic elements uR and uF
are initially in positions (i, α) and (i, α+1), respectivelya; moreover, after the row-wise
permutations, they are in positions (j, β) and (j̃, β̃), respectively.

– give user u the encryption key eku := (ek−i,α, ek
|
j,β, ek−i,α+1, ek

|
j̃,β̃

)).

5. Output receiver keys. Let (rk1, . . . , rkn) := π′
(
{rk|j,β}j∈[C],β∈[mj]

)
where {rk|j,β}j∈[C],β∈[mj]

is flattened to a 1-dimensional array based on lexicographical order of (j, β).

6. Output token. Let π′ be the “complement permutation” such that π′ ◦ πmid = π; output

tk := (π′, {mj}j∈[C], {tk−i }i∈[R], {tk
|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z])

• Enc(eku, xu,t, t):

1. parse eku := (ek−, ek|, fek−, fek|);

2. let ict← NIAR.Enc(ek|, xu,t, t); and let ct← NIAR.Enc(ek−, ict, t);

3. let ĩct← NIAR.Enc(fek|,0, t); and let c̃t← NIAR.Enc(fek−, ĩct, t); and

4. output CT := (ct, c̃t).

• Rte(tk,CT1,t, . . . ,CTn,t) :

1. for each u ∈ [n], parse CTu,t := (ctu,t, c̃tu,t); view {CTu,t}u∈[n] as an (R × C)-matrix
where each entry is a bucket of size Z. Henceforth, we use CT[i :] to denote the i-th row
of this ciphertext matrix.

2. parse tk := (π′, {mj}j∈[C], {tk−i }i∈[R], {tk
|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]);

3. for each row i ∈ [R], let icti,1, . . . , icti,C·Z ← NIAR.Rte(tk−i ,CT[i :]), and for each α ∈
[C · Z], let icti,α ← NIAR.Dec(rk−i,α, icti,α);

11

4. view {icti,α}i∈[R],α∈[C·Z] also as a (R× C)-matrix where each entry is a bucket of size Z
— we shall use ict[: j] to denote the j-th column of this matrix;

5. for each column j ∈ [C], let CT′j,1, . . . ,CT′j,R·Z ← NIAR.Rte
(

tk
|
j , ict[: j]

)
;

6. view {CT′j,β}j∈[C],β∈[mj] as an array, apply π′ to the array, and output the result.

• Dec(rku,CT′u): output NIAR.Dec(rku,CT′u).

aWe may assume that uR and uF must be in adjacent positions in the same row initially.

More general parameters. So far, we assumed that R · C · Z = 2n and R = C. In the more
general case, 2n may not be divisible by Z, or 2n/Z may not be a perfect square. In this case, we

can choose R =
⌈√

2n/Z
⌉
, and the above algorithm would still work, as long as when we assign

the elements 1R, 1F, . . ., nR, nF to the initial matrix of buckets, the following constraints are
respected:

1. For any u ∈ [n], uR and uF are always assigned to the same bucket;

2. All rows’ total capacities (of real and filler elements) differ by at most 2;

3. All buckets’ total capacities (of real and filler elements) differ by at most 2. In other words, not
all buckets are of equal capacity Z; the capacity could be either Z or Z + 2.

The latter two constraints basically says that the loads across all rows and the loads across all
buckets within the same row should be as even as possible, subject to the first constraint.

When we have fixed the capacities of all buckets in this R× C matrix as mentioned above, we
can adjust the size parameter of each row-wise and column-wise NIAR instance accordingly. Our
proof can easily be modified to make this case work as well.

Correctness. Fix any security parameter λ ∈ N, any message length len ∈ N, any plaintext
messages (x1, x2, . . ., xn) ∈ ({0, 1}len)n, any timestamp t ∈ N, and any permutation π ∈ Perm([n]).
Let ({eku}u∈[n], {rku}u∈[n], tkπ) be any key tuples output by the algorithm Setup(1λ, n, π, len), let
CTu be the ciphertext of xu output by the algorithm Enc(eku, xu) for u ∈ [n], let (CT′1, CT′2, . . .,
CT′n) be the shuffled ciphertext output by the algorithm Rte(tkπ, CT1, CT2, . . ., CTn), and let x′u
be the decryption result output by the algorithm Dec(rku,CT′u) for u ∈ [n].

We need to show that xu = x′π(u) for u ∈ [n]. According to the proof of Lemma 3.1, with
probability 1 − negl(λ), the algorithm Setup succeeds in simulating MatrixPerm algorithm and
produces corresponding key tuples. We first consider the correctness of the row-wise permutation.
For a user u ∈ [n], suppose the symbolic elements uR and uF in the MatrixPerm are initially in
positions (i, α) and (i, α+1) (i ∈ [R] and α ∈ [C ·Z]), and are in positions (j, β) and (j̃, β̃) (j, j̃ ∈ [C]
and β, β̃ ∈ [R · Z]), after the row-wise permutation. The user u receives the encryption key ek−i,α
and ek−i,α+1 for the outer encryption in the two-layer onion. Due to the correctness of the NIAR
instance for the row i, after running the algorithms NIAR.Rte and NIAR.Dec, with probability 1,
the inner ciphertext of the user u’s real and filler messages will be in positions (j, β) and (j̃, β̃),
respectively.

Now, we consider the correctness of the column-wise permutation. Similarly, the user u receives

the encryption key ek
|
j,β and ek

|
j̃,β̃

for the inner encryption in the two-layer onion. Suppose the

symbolic element uR is in the position (j′, β′) (j′ ∈ [C] and β′ ∈ [mj]) after the column-wise
permutation. Due to the correctness of the NIAR instance for the column j, after running the

12

algorithm NIAR.Rte, with probability 1, the intermediate result of the inner ciphertext will be in
the position (j′, β′).

Let {CT′j,β}j∈[C],β∈[mj] be the array of ciphertexts after the column permutation. Then the
πmid(u)-th element is the ciphertext of the user u’s real message and will be send to the receiver
π′ ◦ πmid(u). Due to the correctness of the NIAR instance for the column j, after running the
algorithm NIAR.Dec, with probability 1, the decryption result x′π′◦πmid(u)

equals to the message xu.

Because π′ ◦ πmid = π, we have x′π(u) = xu.

Efficiency. We now analyze the efficiency of our NIDAR scheme assuming that the underlying
NIAR is instantiated with the construction of Shi and Wu [SW21]. We first review the efficiency of
the NIAR scheme by Shi and Wu. We will use the notation Oλ(·) to hide poly(λ) factors. In the
underlying NIAR scheme by Shi and Wu [SW21], the per-sender ciphertext length and per-sender
computation in each time step are upper bounded by Oλ(len); each sender’s key is at most Oλ(n)
in size; each receiver’s key is Oλ(1) in size; the router’s token has length Oλ(n2); and finally, the
computational overhead for performing the Rte operation is Oλ(n2).

In our NIDAR scheme, each sender needs to compute O(1) many NIAR ciphertexts in every time
step, which takes Oλ(len) amount of time, and moreover, the ciphertext size (per sender) is upper
bounded by the same expression. Note that the row instances of NIAR have message lengths that are
polynomially larger than the column instances, and this polynomial blowup is accounted for in the
Oλ(·) notation. It is also not hard to verify that each sender’s key is Oλ(R ·Z +C ·Z) = Oλ(

√
nZ)

in size, and each receiver’s key is Oλ(1) in size.
We now analyze the computational overhead of the Rte operation as well as the router’s token

size. To perform the Rte operation, the router needs to evaluate the underlying NIAR’s Rte
function for R row instances each with C · Z senders, and for C column instances each with R · Z
senders. Therefore, the router’s total work is upper bounded by Oλ(R · (C · Z)2 + C · (R · Z)2) =

Oλ(
√
n/Z · (

√
n/Z · Z)2) = Oλ(n

3
2 · Z

1
2). Again, the Oλ(·) notation accounts for the polynomial

blowup in the plaintext size for the row instances. The router’s token size is also upper bounded
by the same expression, that is, Oλ(n

3
2 · Z

1
2).

3.3 Proofs

Recall that in our NIDAR construction, we first randomly permute all the users at the beginning
of Setup, and reassign their identities after this random permutation. This random permutation
step is there only to make sure that corruption choices are random. Therefore, henceforth in the
proof, we may equivalently pretend that the corruption choices are randomly made, and we skip
this random permutation step in the algorithm.

Suppose we start out with the symbolic vector (1R, 1F, 2R, 2F, . . ., nR, nF) where each index
u ∈ [n] denotes a user, the letter “R” denotes a real message, and “F” denotes a filler message. A
random subset of these users are corrupt. We now view this vector as a matrix of R × C buckets
each of size Z, and we permute this vector using the MatrixPerm algorithm, where we first apply
a row-wise permutation to each row of buckets, and then we apply a column-wise permutation to
each column of buckets. Each position in this matrix can be denoted either as (i, α) where i ∈ [R]
and α ∈ [C · Z] meaning it is the α-th position of the i-th row; or as (j, β) where j ∈ [C] and
β ∈ [R · Z] meaning it is the β-th position of the j-th column.

We will use the following notations to denote the “senders” and “receivers” from the perspective
of each NIAR instance:

• Sources and destinations of the row-wise permutations. Let K−i,S (or H−i,S , resp.) denote

13

all coordinates (i, α) that correspond to a corrupt (or honest, resp.) element before applying
the row-wise permutation.

Note that all destinations in every row-wise permutation are considered corrupt, since the
adversary receives all of {rk−i,α}i∈[R],α∈[C·Z] as part of the token. Therefore, we let K−i,R =
{(i, α)}α∈[C·Z].

• Sources and destinations of the column-wise permutations. Let K|j,S (or H|j,S , resp.)
denote the all coordinates (j, β) that correspond to corrupt (or honest, resp.) elements sources
in j-th column-wise permutation.

Let K|j,R (or H|j,R, resp.) denote the all coordinates (j, β) such that β ≤ mj , and moreover (j, β)
corresponds to a corrupt (or honest, resp.) destination in the j-th column-wise permutation
— recall that after the column-wise permutation, only the first mj coordinates of column j
contain real elements, and the adversary receives only the receiver keys (of the column instances)
corresponding to the corrupt real destinations.

3.3.1 Sequence of Hybrids

Experiment NIDAR-Expt0. Same as the original NIDAR-Expt0 experiment as defined in Section 2.

Experiment Hyb0
1. Almost the same as NIDAR-Expt0 except that we replace each the column

instance of NIAR with a NIAR simulator. Recall that the NIAR’s simulator only needs to know
the destinations of all corrupt sources, as well as what message each corrupt destination receives

in each time step. We describe the modifications from NIDAR-Expt0 below, where we use Sim
|
j to

denote the (stateful) NIAR simulator corresponding to the j-th column instance:

1. During Setup(1λ, n, π(0), len), instead of calling
(
{ek
|
j,β}β∈[R·Z], {rk

|
j,β}β∈[R·Z], tk

|
j

)
← NIAR.Setup(1λ,

R · Z, π
|
j , len), we now call(

{ek
|
j,β}β∈[R·Z], {rk

|
j,β}β∈[R·Z], tk

|
j

)
← Sim

|
j(1

λ, R · Z, len,K|j,S ,K
|
j,R, Leak(π

|
j ,K

|
j,S ,K

|
j,R))

2. During Enc(eku, x
(0)
u,t , t) for u ∈ HS , instead of calling ictu,t ← NIAR.Enc(ek

|
u, xu,t, t) and ĩctu,t ←

NIAR.Enc(fek
|
u, 0, t) for u ∈ HS , we now call

{ictu,t, ĩctu,t}u∈HS ← Sim
|
j

({
∀(j, β) ∈ K|j,R ∩ π

|
j(H

|
j,S) : (β, yj,β,t)

})
where yj,β,t is the correct plaintext finally decrypted at the position β in the j-column in time

step t, assuming that {x(0)u,t}u∈HS is the challenge vector being encrypted.

Claim 3.2. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb0
1 and

NIDAR-Expt0 are computationally indistinguishable.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument. Specifically, we can swap the column instances of NIAR one by one with
an NIAR simulator.

14

Experiment Hyb0
2. Almost the same as Hyb0

1, except that that we now replace each row instance
of NIAR with a NIAR simulator as well, as described below — here we use Sim−i to denote the
(stateful) NIAR simulator corresponding to the i-th column instance:

1. During Setup(1λ, n, π(0), len), instead of calling
(
{ek−i,α}α∈[C·Z], {rk

−
i,α}α∈[C·Z], tk−i

)
← NIAR.Setup(1λ,

R · Z, π−i , len′), we now call(
{ek−i,α}α∈[C·Z], {rk

−
i,α}α∈[C·Z], tk−i

)
← Sim−i (1λ, C · Z, len′,K−i,S ,K

−
i,R, Leak(π−i ,K

−
i,S ,K

−
i,R))

where K−i,R := {(i, α)}α∈[C·Z].

2. During Enc(eku, x
(0)
u,t , t) for u ∈ HS , instead of calling ctu,t ← NIAR.Enc(ek−u , ictu,t, t) and

c̃tu,t ← NIAR.Enc(fek−u , ĩctu,t, t), we now call

{ctu,t, c̃tu,t}u∈HS ← Sim−i

({
∀(i, α) ∈ π−i (H−i,S) : (α, yi,α,t)

})
where yi,α,t is the simulated inner ciphertext to be routed to position α of row i during the
row-wise permutation in time step t.

Claim 3.3. Suppose that the NIAR scheme is SIM-secure. Then, the adversary’s views in Hyb0
1

and Hyb0
2 are computationally indistinguishable.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument. Specifically, we can swap the row instances of NIAR one by one with an
NIAR simulator.

Experiment Hyb0
3. Hyb0

3 is a rewrite of Hyb0
2 where we change how we sample the random coins.

In Hyb0
3, we introduce an initial sampling phase where a subset of the random coins and events

are sampled. Then, based on the outcomes of these partial random coins and events, we invoke a
simulator that completes the rest of the experiment including interactions with the adversary.

Below we first describe the initial sampling phase.

1. Sample m1,m2, . . . ,mC , by throwing n balls into C bins, and counting the bin loads.

2. Sample the complement permutation π′ at random, and compute πmid := (π′)−1 ◦ π(0), which is
the permutation to be realized by MatrixPerm. At this moment, the following random coins are
fully determined:

• which bucket each real element uR (either real or filler) should land in during the row-wise
permutations, and if any bucket’s load exceeds Z, return overflow just like before. More
specifically, suppose that sender u is mapped to π(0)(u) as its final destination. Now, let k
be the unique integer such that

∑k
j=1mj < πmid(u) ≤

∑k+1
j=1 mj , then the real element uR

should go into the k-th bucket in its corresponding row; and

• the destination of each real element uR during each of the column-wise permutations.

3. Sample the number of corrupt filler elements for all the buckets in all rows.

At this point, imagine we run the following simulator which continues to interact with the
adversary:

15

Input:

1. set of corrupt senders KS ⊆ [n] and set of corrupt receivers KR ⊆ [n];

2. for every u ∈ [n], if (π(0))−1(u) ∈ HS , what message the corrupt receiver u receives from

some honest sender in each time step, based on the {x(0)u,t}u,t values.

3. the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(0);

4. m1,m2, . . . ,mC ;

5. π′;

6. how many corrupt filler elements land in each bucket during the row-wise permutations;

Simulator algorithm. The simulator now performs the following:

• For each row i ∈ [R], based on how many corrupt filler elements are to be received in each
bucket during the i-th row-wise permutation, randomly assign the corrupt filler elements
belonging to this row to the buckets;

Recall that which bucket each corrupt real element should go during the row-wise permu-
tations was already determined during the initial sampling phase. Therefore, at this time,
the simulator knows which bucket each corrupt element (including real and filler) lands in
during the row-wise permutations.

• For each bucket, the simulator picks a random unconsumed position for each corrupt element
that is supposed to go into this bucket during the row-wise permutation. At this moment,
it is fully determined where all corrupt elements go during the row-wise permutation.

• For each j ∈ [C], for all the corrupt filler elements in column j after the row-wise permuta-
tion, pick a random (non-overlapping) position among the last R · Z −mj positions to be
its destination during the j-th column-wise permutation. At this moment, the routes of all
corrupt elements during the row-wise and column-wise permutations are fully determined.

• At this moment, it is not hard to see that the simulator can accomplish the interactions
with the adversary, since it knows all the inputs needed for calling the NIAR’s simulators

{Sim
|
j}j∈[C] and {Sim−i }i∈[R].

Claim 3.4. Hyb0
3 and Hyb0

2 are identically distributed.

Proof. It is not difficult to check that Hyb0
3 is simply a rewrite of Hyb0

2, where the random coins
are sampled in a different manner, by sampling a subset of the random coins and events first in an
initial sampling stage, and then having a simulator accomplish the remaining.

Experiment Hyb1
3. Hyb1

3 is almost the same as Hyb0
3, except the following modifications. Recall

that the adversary submits π(0) and π(1) that are almost identical except for swapping the destina-
tions of two honest senders. Moreover, recall that in Hyb0

3, we first have an initial sampling stage
where part of the random coins are sampled; then we invoke a simulator with some input, and the
rest of the simulation is completed by this simulator.

1. During the initial sampling stage: let πmid := (π′)−1 ◦ π(1).

2. Part of the inputs to the simulator is changed to the following:

16

• for every u ∈ [n], if (π(1))−1(u) ∈ HS , what message the corrupt receiver u receives from

some honest sender in each time step, based on the {x(1)u,t}u,t values;

• the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(1).

Lemma 3.5. Suppose that (1−ρ)Z ≥ Θ(log 1
δ) where Θ(·) hides some appropriately large constant,

where ρ is the fraction of corrupt senders. For any S,

Pr[viewA(Hyb0
3) ∈ S] ≤ eε · Pr[viewA(Hyb1

3) ∈ S] + δ′

where viewA(Hybb3) denotes the adversary’s view in experiment Hybb3 for b ∈ {0, 1}, and

ε = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z
, δ′ = O(nδ)

Proof. Observe that due to the admissibility rule on the adversary, for the above inputs to the

simulator, it does not matter whether we use {x(0)u,t}u,t, π(0) or {x(1)u,t}u,t, π(1) — the outcomes are

the same. In this sense, the only real difference in Hyb0
3 and Hyb1

3 is that πmid is now computed as
(π′)−1 ◦ π(1).

In both Hyb0
3 and Hyb1

3, the adversary’s view depends only on the simulator’s input (and the
internal random coins tossed by the simulator). Let the simulator’s input be Inpb in Hybb3 for
b ∈ {0, 1}. By the post-processing lemma of differential privacy [Vad17,DR14], it suffices to prove
that for any S,

Pr[Inp0 ∈ S] ≤ eε · Pr[Inp1 ∈ S] + δ′ (1)

Recall that the input to the simulator consists of the following:

1. set of corrupt senders KS ⊆ [n] and set of corrupt receivers KR ⊆ [n];

2. for every u ∈ [n], if (π(b))−1(u) ∈ HS , what message the corrupt receiver u receives from some

honest sender in each time step, based on the {x(b)u,t}u,t values.

3. the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(b);

4. m1,m2, . . . ,mC ;

5. π′;

6. how many corrupt filler elements land in each bucket during the row-wise permutations;

For 1-5, they are the same no matter whether we are in Hyb0
3 or Hyb1

3. Therefore, it suffices to prove
that the numbers of corrupt filler elements that land in all buckets satisfy the above Equation (1)
in the two experiments. This is the most technical step in our proof, we therefore present the full
proof of this statement in Lemma 3.10 of Section 3.3.2.

Experiment Hyb1
2. Same as Hyb0

2 except that π(1) and {x(1)u,t}u,t are used in place of π(0) and

{x(0)u,t}u,t.

Claim 3.6. Hyb1
2 and Hyb1

3 are identically distributed.

Proof. The proof is the same as Claim 3.4, i.e., Hyb1
3 is a rewrite of Hyb1

2 where the sampling is
performed in a different way by sampling a subset of the random coins and events first, and then
invoking a simulator which samples the remaining randomness and completes the interactions with
the adversary.

17

Experiment Hyb1
1. Same as Hyb0

1 except that π(1) and {x(1)u,t}u,t are used in place of π(0) and

{x(0)u,t}u,t.

Claim 3.7. Suppose that the NIAR scheme is SIM-secure. Then, the adversary’s views in Hyb1
1

and Hyb1
2 are computationally indistinguishable.

Proof. The proof follows in the same way as that of Claim 3.3.

Experiment NIDAR-Expt1. Same as the original NIDAR-Expt1 experiment as defined in Section 2.

Claim 3.8. Suppose that the NIAR scheme is SIM-secure. Then, the adversary’s views in Hyb1
1

and NIDAR-Expt1 are computationally indistinguishable.

Proof. The proof follows in the same way as that of Claim 3.2.

Theorem 3.9 (2-layer NIDAR). Let A be an arbitrary non-uniform p.p.t. adversary that controls
ρ fraction of the senders, and recall that for b ∈ {0, 1}, the experiment NIDAR-Exptb outputs the
adversary A’s output. Suppose that (1− ρ)Z ≥ Θ(log 1

δ) where Θ(·) hides a suitably large constant;
further, suppose that the underlying NIAR scheme is SIM-secure. Then, there exists a negligble
function negl(·), for any S,

Pr[NIDAR-Expt0 ∈ S] ≤ eε · Pr[NIDAR-Expt1 ∈ S] + δ′

where

ε = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z
, δ′ = O(nδ) + negl(λ)

Proof. Due to the hybrid argument, the theorem follows from Claims 3.2, 3.3, 3.4, Lemma 3.5, as
well as Claims 3.6, 3.7, and 3.8.

3.3.2 Differential Privacy Lemma

Consider the following experiment DPExptb where b ∈ {0, 1}, in which the adversary’s view capa-
tures the simulator’s input in the earlier hybrid experiment Hybb3.

DPExptb

1. The adversary submits two neighboring permutations π(0) and π(1), i.e., the two permuta-
tions are otherwise identical except for swapping the destinations of two honest senders.

2. The challenger randomly chooses a set of corrupt senders KS and tells the adversary the set
KS .

3. The challenger samples m1, . . . ,mC at random as mentioned before and tells the adversary
these values.

4. The challenger samples a random π′. The challenger computes πmid = (π′)−1 ◦ π(b). Tell
the adversary π′.

5. Each row has C buckets, and each real element uR belongs to some row as mentioned earlier
where u ∈ [n]. For each row i ∈ [R], the challenger throws all real elements belonging to
row i into C buckets. Suppose that πmid(u) = v where

∑k
j=1mj < v ≤

∑k+1
j=1 mj , then the

18

element uR should go into the k-th bucket in its respective row. If any bucket exceeds Z
real elements, abort throwing overflow.

6. For each row i, let µi,1, . . . , µi,C denote the remaining empty slots inside the buckets belong-
ing to row i. For each empty slot, fill it with a random filler element belonging to this row.
Tell the adversary for each i ∈ [R] and j ∈ [C], exactly how many corrupt filler elements go
into the j-th bucket of row i.

7. Return the adversary’s view.

We want to prove the following lemma, which is the core technical lemma needed the proof of
Lemma 3.5.

Lemma 3.10. Assume that (1 − ρ)Z ≥ Θ(log 1
δ) where ρ denotes the fraction of corrupt senders

and Θ(·) hides a sufficiently large constant. For any S,

Pr[DPExpt0 ∈ S] ≤ eε · Pr[DPExpt1 ∈ S] + δ′

where

ε = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z
, δ′ = O(nδ)

Proof. The experiment DPExptb needs to flip various coins. We will use the following names to
refer to these coins:

• Corruption coins: the coins used to determine the corrupt set of senders KS ;

• Routing coins: includes the random choice of m1, . . . ,mC , and π′ — these coins determine
which bucket each real element will be thrown into;

• Filler coins: the coins used to decide which filler elements are used to fill the remaining empty
slots in each bucket, after the real elements are thrown into buckets.

Let M̃ b
i,j denote the total number of filler elements that the j-th bucket of the i-th row wants

to receive, assuming we are in DPExptb where b ∈ {0, 1}. Let u∗ and v∗ be the two honest senders
whose destinations got swapped in π(0) and π(1). If u∗ and v∗ belong to the same row initially, then,
fixing the same routing coins in DPExpt0 or DPExpt1 respectively, it must be that M̃0

i,j = M̃1
i,j for

all i, j. In this case, the adversary’s views are identical in DPExpt0 and DPExpt1.
Below we focus on the case when u∗ and v∗ do not belong to the same row initially — specifically,

suppose u∗ belongs to row i0 and v∗ belongs to row i1, respectively. Once the routing coins are
fixed in both DPExpt0 and DPExpt1, the following must hold:

M̃0
i,j = M̃1

i,j , for almost all i ∈ [R] and j ∈ [C], except for some i0, j0, and i1, j1, where

M̃0
i1,j0 = M̃1

i1,j0 − 1, M̃0
i1,j1 = M̃1

i1,j1 + 1

M̃0
i0,j0 = M̃1

i0,j0 + 1, M̃0
i0,j1 = M̃1

i0,j1 − 1

19

Focus on a single row r0. Henceforth we shall first focus on the row i0, since analyzing the other
row i1 is similar. Suppose we have fixed the routing coins. We use the vector {M1,M2, . . . ,Mjb +
1, . . . ,MC}j∈[C] to denote the total number of filler elements in each bucket of the i0-th row, when

we are in DPExptb.

filler elements each bucket in row i0 :

DPExpt0 :
(
M1,M2, . . . ,Mj0−1,Mj0 + 1,Mj0+1, . . . , . . . ,MC

)
DPExpt1 :

(
M1,M2, . . . , . . . ,Mj1−1,Mj1 + 1,Mj1+1, . . . ,MC

)
For j ∈ [C], we use µj ≤Mj to denote the number of corrupt filler elements in the j-th bucket of

the i0-th row. In the random process of DPExptb, we can imagine that first, the total number of filler
elements of each bucket {M1,M2, . . . ,Mjb + 1, . . . ,MC}j∈[C] is determined, and then, the random
variables {µj}j∈[C] can be determined in the following way. Suppose that the i0-th row has ρ′

fraction of corrupt senders. Suppose we have a database where exactly M1,M2, . . . ,Mjb+1, . . . ,MC

elements have the attributes 1, 2, . . . , C, respectively. We now sample ρ′ · nR elements at random
without replacement from this database, and µj is the number of elements with attribute j. Note
that n

R denotes the total number of filler elements (including honest and corrupt) belonging to any
specific row, and this is fixed regardless of whether we are in DPExpt0 or DPExpt1.

Claim 3.11. Suppose that (1− ρ)Z ≥ Θ′(log 1
δ) where Θ′(·) hides a sufficiently large constant. No

matter whether we are in DPExpt0 or DPExpt1, the following statements hold. For any fixed bucket,
with probability at least 1−δ over the choice of the routing coins, its load of real elements is between

[Z−O(
√
Z · log 1

δ), Z+O(
√
Z · log 1

δ)]. Further, for any fixed bucket, with probability at least 1− δ

over the choice of routing coins, its load of filler elements is between [Z − O(
√
Z · log 1

δ), Z +

O(
√
Z · log 1

δ)].

As a direct corollary, for any fixed j ∈ [C], with probability at least 1 − δ, Mj = Θ(Z) where
Θ(·) hides an appropriately large constant.

Proof. With the random process of DPExpt, essentially, every real element is assigned to a random
bucket within its row. The expected number of real elements each bucket receives is exactly Z.
Consider one fixed bucket. By the Chernoff bound, there are some appropriate constants c and c′

such that

Pr

[
a fixed bucket’s real load ∈

[
Z − c ·

√
Z · log

1

δ
, Z + c ·

√
Z · log

1

δ

]]

≥1− exp

(
−c′ · log

1

δ

)
= 1− δ

Claim 3.12. Suppose that (1− ρ)Z ≥ Θ′(log 1
δ) where Θ′(·) hides an appropriately large constant.

Then, with probability 1−δ over the choice of the corruption coins, it must be that 1−ρ′ = Θ(1−ρ)
and ρ′Z = O(ρZ + log 1

δ).

Proof. Follows in a straightforward fashion from the Chernoff bound.

20

Lemma 3.13. Let ρ′ be the fraction of corrupt senders in row i0. For any fixed j ∈ [C], the
following holds regardless of the choice of b, with probability at least 1 − δ over the choice of filler
coins (of row i0):

µj ∈

[
ρ′Mj −O

(√
min(ρ′, 1− ρ′)Mj log

1

δ
+ log

1

δ

)
, ρ′Mj +O

(√
min(ρ′, 1− ρ′)Mj log

1

δ
+ log

1

δ

)]

As a corollary, suppose that (1− ρ)Z ≥ Θ(log 1
δ) where Θ(·) hides a sufficiently large constant.

For any fixed j, it must be that conditioned on any specific choice of good routing coins and corrup-
tion coins that satisfy the good events of Claims 3.11 and 3.12, with probability at least 1− δ over
the choice of the filler coins (of row i0),

• Mj − µj ≥ Θ((1− ρ)Z);

• µj < Mj − 1.

Proof. By negative association and the Chernoff bound, with at least 1 − δ probability, the
total number of honest filler elements in bucket j of row i0 is within the range [(1 − ρ′)Mj −
O
(√

(1− ρ′)Mj log 1
δ + log 1

δ

)
, (1− ρ′)Mj +O

(√
(1− ρ′)Mj log 1

δ + log 1
δ

)
]. Observe that the to-

tal number of honest and corrupt filler elements of the j-th bucket of row i0 is exactly Mj . It

follows that with at least 1 − δ probability, µj ∈ [ρ′Mj − O
(√

(1− ρ′)Mj log 1
δ + log 1

δ

)
, ρ′Mj +

O
(√

(1− ρ′)Mj log 1
δ + log 1

δ

)
].

Similarly, by negative association and Chernoff bound, we get that with at least 1−δ probability,

µj ∈ [ρ′Mj − O
(√

ρ′Mj log 1
δ + log 1

δ

)
, ρ′Mj + O

(√
ρ′Mj log 1

δ + log 1
δ

)
]. The lemma follows by

combining the above.

For convenience, we shall use the notation rc to denote the union of the router coins and the
corruption coins. We use rc to denote the random variable and use rc to denote any specific choice
of these coins. For any good choice rc that satisfies the good events of Claims 3.11 and 3.12, —
note that these coins fix the M1, . . .MC values. Let µ1, . . . , µC be a set of good values that satisfy
the good events of Lemma 3.13, w.r.t. these M1, . . .MC values. We have the following where Prb
is taken over the choice of filler coins of row i0 in DPExptb.

21

Pr0[µ1, . . . , µC |rc = rc]

Pr1[µ1, . . . , µC |rc = rc]
≤

1− µj1
Mj1

+1

1− µj0
Mj0

+1

= 1 +

µj0
Mj0

+1 −
µj1

Mj1
+1

1− µj0
Mj0

+1

≤1 +
O(1) ·

√
Zmin(1−ρ′,ρ′) log 1

δ
+log 1

δ

Z

1− ρ

≤1 +O(1) ·

√
Z min(1− ρ′, ρ′) log 1

δ + log 1
δ

(1− ρ)Z

≤1 +O′(1) ·

√
min((1− ρ)Z, ρZ + log 1

δ) log 1
δ + log 1

δ

(1− ρ)Z

≤1 +O′′(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z

≤ exp

O′′

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z

 (♠)

In the above, the first step of the derivation is proven in Lemma 3.14 and the proof is deferred to
later.

Henceforth let ε := O′′

(√
Z·min((1−ρ),ρ) log 1

δ
+log 1

δ

(1−ρ)Z

)
.

Back to considering both rows i0 and i1. So far, we have focused only on the row i0. Below,
we shall complete the proof of Lemma 3.10, and we shall now consider both rows i0 and i1. Let
µ[i0] and µ[i1] denote the corrupt filler load vector for buckets in rows i0 and i1, respectively.

Now, consider an arbitrary set S := {(µ[i0],µ[i1])} containing choices of (µ[i0],µ[i1]) values.
We also use S to denote the event that the adversary sees corrupt filler load vectors of rows i0 and
i1 that lie within S.

Pr0[S] =
∑

µ[i0],µ[i1]∈S

Pr0[µ[i0],µ[i1]] =
∑

µ[i0],µ[i1]∈S

∑
rc

Pr0[µ[i0],µ[i1], rc]

=
∑

µ[i0],µ[i1]∈S

∑
rc:good

Pr0[µ[i0],µ[i1], rc] +
∑

µ[i0],µ[i1]∈S

∑
rc:¬good

Pr0[µ[i0],µ[i1], rc]

=
∑

µ[i0],µ[i1]∈S

∑
rc:good

Pr0[µ[i0] |rc] · Pr0[µ[i1] |rc] · Pr0[rc] +O(C) · log
1

δ

≤
∑

µ[i0],µ[i1]∈S

∑
rc:good

eε · Pr1[µ[i0]|rc] · eε · Pr1[µ[i1]|rc] · Pr1[rc] +O(C) · log
1

δ

≤
∑

µ[i0],µ[i1]∈S

∑
rc

e2ε · Pr1[µ[i0]|rc] · Pr1[µ[i1]|rc] · Pr1[rc] +O(C) · log
1

δ

= e2ε · Pr1[S] +O(C) · log
1

δ

22

In the above, the subscript “rc: good” means that the M1,M2, . . . ,MC values resulting from the
choice of rc satisfy the good events of Claims 3.11, 3.12, and Lemma 3.13, w.r.t. the choice of
µ[i0] and µ[i1] which are already fixed in the outer summation. The notation Prb[evt] denotes the
probability of seeing the event evt in DPExptb, and if we write Pr[evt] without a subscript, it means
that the probability of the relevant event evt is the same in both DPExpt0 and DPExpt1. The O(C)
factor before the log 1

δ is due to taking a union bound over all choice of j ∈ [C].

Analysis of the sampling mechanism. Imagine that we have a database containing M items,
where each item is assigned some attribute from the domain [C], i.e., there are C total attributes.
Consider the following sampling mechanism Samp.

The sampling mechanism Samp
Sample s items at random (without replacement) from this database, and output a vector

(µ1, µ2, . . . , µC) reporting the total number of occurrences for each of the C attributes.

We now prove a useful lemma that will be needed in our differential anonymity proof. Consider
two neighboring databases DB and DB′. The only difference in DB and DB′ is that the i-th item’s
attribute is changed from k to k′. Suppose that in database DB, the total number of occurrences
for each of the C attributes is denoted (M1,M2, . . . ,Mk+1, . . . ,MC), and in DB′, the total number
occurrences for each of the C attributes is denoted (M1,M2, . . . ,Mk′ + 1, . . . ,MC). We use the
notations PrDB[µ1, . . . , µC] and PrDB′ [µ1, . . . , µC] to denote the probabilities of encountering the
sample (µ1, . . . , µC), when the database is DB and DB′, respectively.

Lemma 3.14. Given any (µ1, . . . , µC) vector where µj ≤Mj for j ∈ [C],

PrDB[µ1, . . . , µC]

PrDB′ [µ1, . . . , µC]
=

1− µk′
Mk′+1

1− µk
Mk+1

Proof. We have

Pr
DB

[µ1, . . . , µC] =

(
Mk+1
µk

)
·Πj∈[C],j 6=k

(
Mj
µj

)(
M
s

)
Pr
DB′

[µ1, . . . , µC] =

(
Mk′+1
µk′

)
·Πj∈[C],j 6=k′

(
Mj
µj

)(
M
s

)
where M :=

∑
j∈[C]Mj and s =

∑
j∈[C] µj . Therefore,

PrDB[µ1, . . . , µC]

PrDB′ [µ1, . . . , µC]
=

(
Mk+1
µk

)
·
(
Mk′
µk′

)(
Mk
µk

)
·
(
Mk′+1
µk′

) =
Mk + 1

Mk + 1− µk
· Mk′ + 1− µk′

Mk′ + 1
=

1− µk′
Mk′+1

1− µk
Mk+1

4 Multi-Layer NIDAR

4.1 Multi-Layer NIDAR Construction

Inspired by the two-layer construction, we now suggest a multi-layer variant. To formally describe
the scheme, we will use a recursive construction.

23

L-layer NIDAR where L ≥ 2

Assume: (same as before) after the adversary chooses which users to corrupt and before the
Setup algorithm is first invoked, all senders are randomly permuted, and we renumber the
senders from 1 to n after this initial permutation. Throughout the following algorithms, we
refer to senders by these randomly renumbered identities.

Parameters: let L ≥ 2 be the total number of layers. Let Z be an even number that denotes
the bucket size. For simplicity, we will first assume that R := (2n/Z)1/L is an integer, and R
is also the fanout in the butterfly network when the recursions are expanded all the way (see
Figure 1). We will deal with the indivisible case later in this section.

Main algorithms: we describe the main algorithms below, where each algorithm may in
turn call a recursive subroutine, denoted RecSetup, RecEnc, and RecRte, respectively. We will
define these recursive subroutines subsequently in Section 4.2.

• Setup(1λ, n, π, len):

– let (πmid, {ekv}v∈[2n], {rk
|
j,β}j∈[C],β∈[mj], tk′)← RecSetup(1λ, 2n,L, 1), where

tk′ :=
(
{mj}j∈[C], {tk−i }i∈[R], {tk

|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]

)
;

note that since each sender encrypts a real element and a filler element, we may pretend
that each sender acts as two virtual senders, and this is why we pass 2n to the recursive
call RecSetup;

– for each u ∈ [n], let eku := {ek2(u−1)+1, ek2u};
– compute the complement permutation π′ such that π′ ◦ πmid = π;

– let rk1, . . . , rkn := π′
(
{rk|j,β}j∈[C],β∈[mj]

)
where {rk|j,β}j∈[C],β∈[mj] is flattened as a 1-

dimensional array in the lexicographical ordering of (j, β);

– let the router’s token tk :=
(
π′, {mj}j∈[C], {tk−i }i∈[R], {tk

|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]

)
;

– output the sender and receiver keys {eku, rku}u∈[n], as well as the router token tk.

• Enc(eku, xu,t, t):

– parse eku = (ek, ek′);

– call ct← RecEnc(ek, x, t, L) and ct′ ← RecEnc(ek′,0, t, L); and

– output CT := (ct, ct′).

• Rte(tk,CT1,t, . . . ,CTn,t):

– let tk′ be the same as tk but without the π′ term;

– for each u ∈ [n], parse CTu,t := (ct2(u−1)+1, ct2u);

– call CT′1, . . . ,CT′n ← RecRte(tk′, ct1, . . . , ct2n, L, 1) and return π′(CT′1, . . . ,CT′n).

• Dec(rku,CT′u): output NIAR.Dec(rku,CT′u).

24

4.2 Recursive Subroutines

Subroutine RecSetup(1λ, n, len, nLayer, bFin): If nLayer = 1, then

1. view the symoblic input 1R, 1F, 2R, 2F, . . ., n
2R, n

2F as R buckets each of size Z such that
each bucket has half real and half filler elements, and simulate a run of the RowPerm algorithm
resulting in the permutation π — recall that the RowPerm algorithm may throw an overflow
exception if any bucket receives more real elements than its capacity.

2. let
(
{ekv, rkv}v∈[n], tk

)
← NIAR.Setup(1λ, n, π, len), and return

(
{ekv, rkv}v∈[n], tk

)
.

Else, continue with the following:

1. View the symbolic vector 1R, 1F, 2R, 2F, . . ., n
2R, n

2F as a matrix containing R × C buckets
each of size Z, where R is a global parameter defined earlier, and C = n/(R · Z).

• If bFin = 1, then for each column, simulate a run of the ColPerm algorithm which randomly
permutes the column and moves real elements to the front; and let m1,m2, . . . ,mC be the
number of real elements in each column after applying the row-wise permutations;

• Else if bFin = 0, then for each column, simulate a run of the RowPerm algorithm which assigns
each real element to a random bucket, and uses the remaining filler elements at random to
pad all buckets to its maximum capacity; furthermore, a random permutation is applied to
within each bucket.

Let π
|
1, . . . , π

|
C denote the resulting column-wise permutations.

2. For each j ∈ [C], call(
{ek
|
j,β}β∈[R·Z], {rk

|
j,β}β∈[R·Z], tk

|
j

)
← NIAR.Setup(1λ, R · Z, π|j , len)

3. For each i ∈ [R], recursively call(
π−i , {ek−i,α}α∈[C·Z], {rk

−
i,α}α∈[C·Z], tk−i

)
← RecSetup(1λ, C · Z, κ · len, nLayer − 1, 0)

where 1/κ denotes the rate of NIAR.Enc (i.e., κ is the ciphertext size divided by the plaintext
size).

4. Let πmid be the effective permutation after applying the row-wise permutation π−i to each row

i ∈ [R], and applying the column-wise permutation π
|
j to each column j ∈ [C]. In particular, if

bFin = 1 then πmid denotes the permutation on only the real elements; else, πmid denotes the
permutation on all elements (including real and filler).

5. For v ∈ [n], suppose that the element v corresponds to the initial position (i, α), and is routed

to position (j, β) after the row-wise permutations1, then, let ekv := (ek−i,α, ek
|
j,β).

6. If bFin = 1, then let tk :=
(
{mj}j∈[C], {tk−i }i∈[R], {tk

|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]

)
and return(

πmid, {ekv}v∈[n], {rk
|
j,β}j∈[C],β∈[mj], tk

)
.

Else, let tk :=
(
{tk−i }i∈[R], {tk

|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]

)
and return

(
πmid, {ekv}v∈[n], {rk

|
j,β}j∈[C],β∈[R·Z],

tk
)
.

1As before, position (i, α) refers to the α-th position of the i-th row, and position (j, β) refers to the β-th position
of the j-th column.

25

RRRRFF RRRFFF RRFFFF RRRRRF RRRFFF RRRRFF RRFFFF RRRRRF RRFFFF

Level 3

Level 2

Level 1

Order of
NIAR.EncOrder of

NIAR.Rte

Figure 1: An R-way butterfly network when the recursion is fully expanded. In this example,
nLayer = 3, 2n/Z = 27, and R = (2n/Z)1/nLayer = 3. The elements are being routed from level 1 to
level L, and the onion layers of encryption are performed in the reverse order where level 1 is the

outer-most layer. Each small box � denotes a bucket, and each dashed big box is either a
RowPerm or a ColPerm instance. The last level is special and employs ColPerm instances which

route the real elements to the front in a random order.

Subroutine RecEnc(ek, x, t, nLayer): If nLayer = 1, then let CT := NIAR.Enc(ek, x, t) and return
CT. Else,

1. parse ek := (ek−, ek|);

2. let ict← NIAR.Enc(ek|, x, t) and let CT← RecEnc(ek−, ict, t, nLayer − 1);

3. return CT.

Subroutine RecRte(tk,CT1, . . . ,CTn, nLayer, bFin):

• If bFin = 1, then parse tk :=
(
{mj}j∈[C], {tk−i }i∈[R], {tk

|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]

)
; else parse

tk :=
(
{tk−i }i∈[R], {tk

|
j}j∈[C], {rk−i,α}i∈[R],α∈[C·Z]

)
.

• Let R := (n/Z)1/nLayer, C := n/(R · Z), and view CT1, . . . ,CTn as an (R × C) matrix where
entries are buckets of size Z. We shall use CT[i :] to denote the i-th row of the CT matrix.

For each row i ∈ [R], let icti,1, . . . , icti,C·Z ← RecRte(tk−i ,CT[i :], nLayer − 1, 0), and for each
α ∈ [C · Z], let icti,α ← NIAR.Dec(rk−i,α, icti,α);

• View {icti,α}i∈[R],α∈[C·Z] also as a (R × C)-matrix where each entry is a bucket of size Z — we
shall use ict[: j] to denote the j-th column of this matrix.

For each column j ∈ [C], let CT′j,1, . . . ,CT′j,R·Z ← NIAR.Rte
(

tk
|
j , ict[: j]

)
;

• If bFin = 1, then view {CT′j,β}j∈[C],β∈[mj] as a 1-dimensional array, and return the result.

Else, then view {CT′j,β}j∈[C],β∈[R·Z] as a 1-dimensional array, and return the result.

26

More general parameters. So far, we have assumed that
(
2n
Z

)1/L
is an integer. If not, we can

let R := d{e
(
2n
Z

)1/L}, and this determines the structure of the routing network when the recursions
are expanded all the way (see Figure 1). Moreover, in this indivisible case, each bucket will not
all be of uniform capacity. It is not hard to ensure the invariant that every bucket’s capacity is
either Z or Z + 2, and morever, all buckets’ capacities are even. With the slightly modified bucket
size, we need to modify the instance size for each NIAR instance accordingly. With this resulting
algorithm, all of our analyses would still hold.

Efficiency. For our efficiency analysis, suppose that the underlying NIAR is instantiated with the
construction of Shi and Wu [SW21]. We reviewed the asymptotic efficiency of the underlying NIAR
scheme in Section 3.2. Recall that earlier, we used the notation Oλ(·) to hide poly(λ) parameters
— in fact, this notation hides a multiplicative factor related to the length of each bilinear group
element in the underlying NIAR. If we use κ = poly(λ) to denote the bit-length of a single bilinear
group element in the underlying NIAR, then, Oλ(·) can be equivalently expressed as O(·) · κ. Note
also that underlying NIAR’s coding rate is Θ(1

κ). i.e., the ratio of the ciphertext size and the
plaintext size is Θ(κ).

Suppose the number of layers L = O(1), and we now analyze the asymptotical performance
bounds for our multi-layer NIDAR. Clearly, the receiver key is still O(κ) in size like before. The

sender key size is O(κ ·R ·Z ·L) = O
(
κ ·
(
n
Z

)1/L · Z). Each of the L layers incur a multiplicative κ

factor blowup in the ciphertext size. Therefore, the per-sender ciphertext size as well as encryption

runtime are O(κL · len). The Rte cost is O(κL · n
R·Z · (R · Z)2) = O

(
κL ·

(
n
Z

)1/L · n · Z).

Expanding the recursion. Recall that part of the goal of the recursive RecSetup algorithm is to
sample the permutation πmid, and this permutation is realized over multiple layers of routing. For
ease of understanding as well as in our proofs, it is often be helpful to think about what actually
happens when we fully expand the recursion out. The network structure looks like Figure 1 when
we fully expand the recursion out. In this example, we assume that 2n/Z = 27, and R = 3 in each
level of the recursion. Each little box � represents a bucket. Each big dashed box represents a
RowPerm or ColPerm instance.

The elements are routed from level 1 to level 3. Except for the last level which is a little special
and uses ColPerm, for all other levels, each dashed box denotes a RowPerm instance. Inside each
RowPerm instance, all real elements are thrown into random buckets, and if any bucket’s load
exceeds Z, simply throw an overflow exception. Next, for each remaining empty slot inside each
bucket, we fill them with a random unconsumed filler element belonging to this instance. In the
last level, each dashed box represents a ColPerm instance, which randomly permutes all elements
moving all real elements to the front.

Our multi-layer NIDAR scheme is routing real elements as follows. In each RowPerm instance
in levels 1 through L − 1, the real elements are throw at random into buckets, and an overflow
exception is thrown if any bucket receives more real elements than its capacity Z. In the last level,
all the real elements are routed to the front arranged in a random order in each ColPerm instance.

The following lemma is a counterpart of Lemma 3.1 for the multi-layer case.

Lemma 4.1. The output of the the above random process outputs a permutation of the real elements,
and moreover, the resulting permutation has statistical distance at most O(nL) · exp(−Ω(Z)) from
a uniform random permutation.

Proof. The proof is essentially identical to that of Lemma 3.1.

27

4.3 Proofs

Theorem 4.2 (L-layer NIDAR). Let L ≥ 2 = O(1) be the number of layers, and let A be an arbitrary
non-uniform p.p.t. adversary that controls ρ fraction of the senders. Suppose that (1 − ρ)Z ≥
Θ(log 1

δ) where Θ(·) hides a suitably large constant; further, suppose that the underlying NIAR
scheme is SIM-secure. Then, there exists a negligble function negl(·), for any S,

Pr[NIDAR-Expt0 ∈ S] ≤ eε · Pr[NIDAR-Expt1 ∈ S] + δ′

where

ε =

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z
, δ′ = O(n · δ) + negl(λ)

The remainder of this section will be dedicated to the proof of Theorem 4.2. The proof of the
multi-layer scheme is an extension of the two-layer proof. Recall that our multi-layer construction
is recursive. If a NIAR instance is instantiated in a recursive call when the variable nLayer = `, we
say that this is a level-` NIAR instance. Suppose that R := (n/Z)1/L is an integer. If one fully
expands the recursion out, then there are R number of level-L instances, R2 number of level-(L−1)
instances, and so on, and finally, there are RL number of level-1 instances.

4.3.1 Sequence of Hybrids

We first define a sequence of hybrids.

Experiment NIDAR-Expt0. Same as the original NIDAR-Expt0 experiment as defined in Section 2.
Henceforth, we may assume that during the experiment NIDAR-Expt0 that interacts with A, the
experiment samples all the randomness needed in all instances of RowPerm and ColPerm upfront
for the entire recursion. In this way, it will be determined at the beginning of the experiment where
all elements will be routed to in each instance of RowPerm or ColPerm when the recursion is fully
expanded.

Experiment Hyb0
L. Almost the same as NIDAR-Expt0 except that each level-L NIAR instance

is replaced now with with a NIAR simulator. Recall that the NIAR’s simulated Setup algorithm
needs to know the destinations of all corrupt sources, and the NIAR’s simulated Enc algorithm
needs to know what message each corrupt destination receives in each time step. As mentioned
earlier, since we assume that the experiment chooses all random coins needed by all RowPerm and
ColPerm instances upfront, therefore, it is possible to pass to the NIAR simulator which are the
corrupt sources in each level-L NIAR instances, and which are their destinations.

Claim 4.3. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in HybL1 and
NIDAR-Expt0 are computationally indistinguishable.

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument.

Experiment Hyb0
L−k for k ∈ [L− 1]. Hyb0

L−k is almost identical to Hyb0
L−k+1, except that in all

level-(L− k) instances, we replace each NIAR instance with a NIAR simulator.

Claim 4.4. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb0
L−k and

Hyb0
L−k−1 are computationally indistinguishable for k ∈ {0, 1, . . . , L− 2}.

28

Proof. Follows in a straightforward fashion due to the SIM-security of the underlying NIAR scheme
and the hybrid argument.

Experiment Hyb0
?. Hyb0

? is a rewrite of Hyb0
1, where we change how we sample the random coins.

In Hyb0
?, we introduce an initial sampling phase where a subset of the random coins and events

are sampled. Then, based on the outcomes of these partial random coins and events, we invoke a
simulator that completes the rest of the experiment including interactions with the adversary.

Henceforth, it is often helpful to think of the recursive algorithm that chooses the permutation
πmid as fully expanded out. Earlier in Section 4, we described what things look like when the
recursion is fully expanded out, and how the permutation πmid is chosen over multiple layers of
routing.

Below we first describe the initial sampling phase.

1. Sample m1,m2, . . . ,mC , by throwing n balls into 2n/(R · Z) bins, and counting the bin loads.

2. Sample the complement permutation π′ at random, and compute πmid := (π′)−1 ◦ π(0), which is
the permutation chosen by RecSetup (specifically, the simulated version where all NIAR instances
are replaced with NIAR simulators). At this moment, the following random coins are fully
determined:

• which bucket each real element uR (either real or filler) should land in during each RowPerm
instance in the expanded recursion, and if any bucket’s load exceeds Z, return overflow just
like before; and

• the destination of each real element uR during each ColPerm instance.

3. Sample the number of corrupt filler elements for all the buckets in all RowPerm instances in
the expanded recursion. To sample these random variables, we can go from level 1 to level
L − 1 in the expanded recursion, and in each level, for each RowPerm instance, recall that the
destinations of the real elements have already been fixed when we sampled π′. We can now
sample the destinations for all the filler elements. After this, we calculate the number of corrupt
filler elements that land in each bucket during each RowPerm instance, and throw away the rest
of the information we have sampled since they will be resampled again freshly by the simulator,
in the next stage.

At this point, imagine we run the following simulator which continues to interact with the
adversary:

Input:

1. set of corrupt senders KS ⊆ [n] and set of corrupt receivers KR ⊆ [n];

2. for every u ∈ [n], if (π(0))−1(u) ∈ HS , what message the corrupt receiver u receives from

some honest sender in each time step, based on the {x(0)u,t}u,t values.

3. the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(0);

4. m1,m2, . . . ,mC ;

5. π′;

6. how many corrupt filler elements land in each bucket during each RowPerm instance in the
expanded recursion.

29

Simulator algorithm. The simulator now performs the following:

• Consider the expanded recursion. Starting from level-1 to L−1, for every RowPerm instance,
based on how many corrupt filler elements are to be received in each bucket during the
RowPerm instance, randomly assign the corrupt filler elements belonging this RowPerm
instance to the buckets;

Recall that which bucket each corrupt real element should go during each RowPerm instance
was already determined during the initial sampling phase. Therefore, at this time, the
simulator knows which bucket each corrupt element (including real and filler) lands in
during each RowPerm instance.

• For each bucket in each RowPerm instance, the simulator picks a random unconsumed
position for each corrupt element that is supposed to go into this bucket during this RowPerm
instance. At this moment, it is fully determined where all corrupt elements go during all
RowPerm instances.

• For each j ∈ [C], consider the ColPerm instance of column j in the last level of the recursion:
for all the corrupt filler elements in column j belonging to this ColPerm instance, pick a
random (non-overlapping) position among the last R ·Z−mj positions to be its destination.
At this moment, the routes of all corrupt elements during all RowPerm and ColPerm instances
are fully determined.

• At this moment, it is not hard to see that the simulator can accomplish the interactions
with the adversary, since it knows all the inputs needed for calling the NIAR’s simulators.

Claim 4.5. The adversary’s views in Hyb0
1 and Hyb0

? are identically distributed.

Proof. It is not difficult to check that Hyb0
? is simply a rewrite of Hyb0

1, where the random coins
are sampled in a different manner, by sampling a subset of the random coins and events first in an
initial sampling stage, and then having a simulator accomplish the remaining.

Experiment Hyb1
?. Hyb1

? is almost identical to Hyb0
? except the following changes.

1. During the initial sampling stage: let πmid := (π′)−1 ◦ π(1).

2. Part of the inputs to the simulator is changed to the following:

• for every u ∈ [n], if (π(1))−1(u) ∈ HS , what message the corrupt receiver u receives from

some honest sender in each time step, based on the {x(1)u,t}u,t values;

• the destination of every corrupt sender u ∈ KS ⊆ [n] based on π(1).

Due to the admissibility rule on the adversary, for the above inputs to the simulator, it does

not matter whether we use {x(0)u,t}u,t, π(0) or {x(1)u,t}u,t, π(1) — the outcomes are the same. In this

sense, the only real difference in Hyb0
? and Hyb1

? is that πmid is now computed as (π′)−1 ◦ π(1).

Lemma 4.6. Suppose that (1−ρ)Z ≥ Θ(log 1
δ) where Θ(·) hides some appropriately large constant,

where ρ is the fraction of corrupt senders. For any S,

Pr[viewA(Hyb0
?) ∈ S] ≤ eε · Pr[viewA(Hyb1

?) ∈ S] + δ′

where viewA(Hybb3) denotes the adversary’s view in experiment Hybb? for b ∈ {0, 1}, and

ε = O(1) ·

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z
, δ′ = O(nδ)

30

Proof. The full proof of this lemma is deferred to Section 4.3.2.

Experiment Hyb1
L−k for k ∈ [L − 1] ∪ {0}. Same as Hyb0

L−k except that π(1) and {x(1)u,t}u,t are

used in place of π(0) and {x(0)u,t}u,t.

Claim 4.7. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb1
L−k and

Hyb1
L−k−1 are computationally indistinguishable for k ∈ {0, 1, . . . , L− 2}.

Proof. Symmetric to the proof of Claim 4.4.

Experiment NIDAR-Expt1. Same as the original NIDAR-Expt1 experiment as defined in Section 2.

Claim 4.8. Suppose that the NIAR scheme is SIM-secure. The adversary’s views in Hyb1
L and

NIDAR-Expt1 are computationally indistinguishable.

Proof. Symmetric to the proof of Claim 4.3.

Proof of Theorem 4.2. The proof of Theorem 4.2 due to the standard hybrid lemma and
Claims 4.3, 4.4, 4.5, 4.7, and 4.8, and Lemma 3.5.

4.3.2 Differential Privacy Lemma

Let R = (2n/Z)1/nLayer, and consider an R-way butterfly network like the one depicted earlier
in Figure 1. Now, consider the following experiment DPExptb where b ∈ {0, 1}, in which the
adversary’s view capatures the simulator’s input in the earlier hybrid experiment Hybb?.

DPExptb

1. The adversary submits two neighboring permutations π(0) and π(1), i.e., the two permuta-
tions are otherwise identical except for swapping the destinations of two honest senders.

2. The challenger randomly chooses a set of corrupt senders KS and tells the adversary the set
KS .

3. The challenger samples m1, . . . ,mC at random as mentioned before and tells the adversary
these values.

4. The challenger samples a complement random π′. The challenger computes πmid = (π′)−1 ◦
π(b). Tell the adversary the complement permutation π′.

5. At this moment, it is fully determined that in the each RowPerm instance in R-way butterfly
network, which bucket each real element will land. If any bucket exceeds Z real elements,
abort throwing overflow.

6. For all RowPerm instances, simulate how many corrupt filler elements land in each bucket
during this instance. Tell the adversary the number of corrupt filler elements that land in
each bucket for all RowPerm instances.

7. Return the adversary’s view.

Lemma 4.9. Suppose that the total number of levels L = O(1). Lemma 3.10 still holds for the new
definition of DPExpt0 and DPExpt1.

31

Proof. Like in the proof of Lemma 3.10, we define three types of coins, corruption coins, routing
coins, and filler coins. Their definitions are the same as before.

Once we fix the routing coins and corruption coins, the number filler elements in all buckets
are fixed. Henceforth let M̃b

`,r denote the filler loads in all buckets of the r-th RowPerm instance

in level `, after this RowPerm instance finishes its routing in DPExptb. For each level ` ∈ [L− 1], it

must be that there are at most four r’s where M̃0
`,r 6= M̃1

`,r. Henceforth, for each RowPerm instance

indexed by (`, r) such that M̃0
`,r 6= M̃1

`,r, we call such an instance a distinguishing instance. For
each distinguishing instance (`, r), there are the following possible scenarios:

1. there exists j0 and j1 such that the filler load vector becomes {M1,M2, . . . ,Mjb+1, . . . ,MR}j∈[R]

in this RowPerm instance in DPExptb for b ∈ {0, 1};

2. there exists j0 the filler load vector becomes {M1,M2, . . . ,Mj0 +1, . . . ,MR}j∈[R] in this RowPerm

instance in DPExpt0, and becomes {M1,M2, . . . ,Mj0 , . . . ,MR}j∈[R] in this RowPerm instance in

DPExpt1;

3. there exists j1 the filler load vector becomes {M1,M2, . . . ,Mj1 +1, . . . ,MR}j∈[R] in this RowPerm

instance in DPExpt1, and becomes {M1,M2, . . . ,Mj1 , . . . ,MR}j∈[R] in this RowPerm instance in

DPExpt0.

Henceforth, we may assume that for every (`, r), M̃b
`,r = M`,r + ∆b

`,r for some M`,r and ∆b
`,r

such that

1. for every RowPerm instance (`, r) that is not distinguishing, ∆0
`,r = ∆1

`,r = 0;

2. for a distinguishing RowPerm instance (`, r), it must be one of the following cases:

(a) for b ∈ {0, 1}, there is a jb such that ∆b
`,r,jb

= 1; all other coordinates in ∆b
`,r are 0;

(b) ∆1
`,r = 0; moreover, there is a j0 such that ∆0

`,r,j0
= 1, and all other coordinates in ∆0

`,r are
0;

(c) ∆0
`,r = 0; moreover, there is a j1 such that ∆1

`,r,j1
= 1, and all other coordinates in ∆1

`,r are
0.

Below is the new counterpart of Claim 3.11. Henceforth we will often index a bucket by a tuple
(`, r, j) meaning that it is the j-th bucket in the RowPerm instance indexed by (`, r).

Claim 4.10. Suppose (1− ρ)Z ≥ Θ′(log 1
δ) where Θ′(·) hides a sufficiently large constant. It must

be that for any fixed bucket indexed by (`, r, j), with probability at least 1− δ, M`,r,j = Θ(Z) where
Θ(·) hides an appropriately large constant.

Proof. Due to a straightforward application of the Chernoff bound.

The following claim will be used as a counterpart of Claim 3.12 and Lemma 3.13 in the multi-
layer case.

Claim 4.11. Suppose that (1−ρ)Z ≥ Θ1(log 1
δ) where Θ1(·) hides a sufficiently large constant and

L = O(1). For every fixed bucket in level 1, the fraction of filler elements that are honest among
fillers is at least Θ2(1− ρ), except with 1

δ probability over the choice of the corruption coins.
Further, suppose that in some RowPerm instance denoted (`, r), the fraction of filler elements

that are honest is Θ3(1− ρ), and suppose that every coordinate in M`,r satisfies the good event of
Claim 4.10. Then, for any fixed bucket within this RowPerm instance denoted (`, r, j), with 1 − 1

δ
probability over the choice of the filler coins of this RowPerm instance,

32

• M`,r,j − µ`,r,j ≥ Θ4((1− ρ)Z) where µ`,r,j is the number of corrupt filler elements that land in
the bucket indexed by `,r,j during the RowPerm instance indexed by (`, r);

• among the filler elements that land in the bucket indexed by `,r,j during the RowPerm instance
indexed by (`, r), the fraction of honest elements is at least Θ5(1− ρ);

• µ`,r,j < M`,r,j − 1.

Proof. The statement about the first level follows due to a straightforward application of the Cher-
noff bound. The rest of the claim can be proven in a similar fashion as that of Lemma 3.13 due to
negative association and the Chernoff bound, and observing that since the constants are blown up
over only O(1) levels, they remain constants.

Henceforth, we use rc to denote some specific choice of the routing and corruption coins. We
use µ1:` to denote some specific choice of the corrupt filler load vectors of all levels from 1 to `.

Lemma 4.12. Fix some good choice of rc that satisfies the good events of Claims 4.10 for all
buckets. Further, consider an arbitrary ` ∈ [L− 1] and fix some good choice of µ1:` such that given
rc and µ1:`, the good events of Claim 4.11 hold for all buckets in levels 1 to `. Now, consider
some distinguishing RowPerm instance indexed by (`, r), taking probability over the filler coins of
the instance (`, r), we have that

Pr0[µ`,r|rc,µ1:`−1]

Pr1[µ`,r|rc,µ1:`−1]
≤ eε where ε := O′′

√
Z ·min((1− ρ), ρ) log 1

δ + log 1
δ

(1− ρ)Z

Proof. Recall that there are three cases for a distinguishing instance.
For case (a), the lemma follows due to the same analysis as Lemma 3.14 and the proof of

Lemma 3.10. For cases (b) and (c), we will instead use Lemma 4.13 (to be proven later) in place
of Lemma 3.10. For case (b), we have

Pr0[µ`,r|rc,µ1:`−1]

Pr1[µ`,r|rc,µ1:`−1]
≤

1−
∑
j µ`,r,j∑

jM`,r,j+1

1− µ`,r,j0
M`,r,j0

+1

For case (c), we have

Pr0[µ`,r|rc,µ1:`−1]

Pr1[µ`,r|rc,µ1:`−1]
≤

1− µ`,r,j1
M`,r,j1

+1

1−
∑
j µ`,r,j∑

jM`,r,j+1

In both cases (b) and (c), plugging in Claims 4.10 and 4.11, it is not hard to see that the same
calculation steps in the proof of Lemma 3.10 — specifically, Equation (♠) — still hold here. Thus
we arrive at the statement claimed.

Now, consider an arbitrary set S = {µ} of choices of µ’s, where µ denotes the vector of corrupt
filler loads of all buckets. Let rc be some choice of routing and corruption coins. We use G(rc,µ)
to denote the event that given rc the resulting M`,r’s and µ satisfy the good events of Claims 4.10
and 4.11.

33

We have

Pr
0

[S] =
∑
µ∈S

∑
rc

Pr
0

[µ, rc]

=
∑
µ∈S

∑
rc:G(rc,µ)

Pr
0

[µ, rc] +
∑
µ∈S

∑
rc:¬G(rc,µ)

Pr
0

[µ, rc]

=
∑
µ∈S

∑
rc:G(rc,µ)

Pr[rc] · Pr
0

[µ1|rc] · Pr
0

[µ2|rc,µ1:1] · Pr
0

[µ3|rc,µ1:2] . . . · Pr
0

[µL−1|rc,µ1:L−2] +O(n) · log
1

δ

≤
∑
µ∈S

∑
rc:G(rc,µ)

e2(L−1)·ε · Pr[rc] · Pr
1

[µ1|rc] · Pr
1

[µ2|rc,µ1:1] . . . · Pr
1

[µL−1|rc,µ1:L−2] +O(n) · log
1

δ

≤e4(L−1)·ε · Pr
1

[S] +O(n) · log
1

δ

Note that in the last but second inequality, the e4(L−1)·ε term comes from the fact that there are
L−1 levels, and moreover, for each level, there are at most 4 distinguishing instances. Furthermore,
the O(n) factor in the O(n) · log 1

δ term comes from taking a union bound over all buckets.

Analysis of the sampling mechanism (variant). We consider the same sampling mechanism
as before, except that 1) the attributes are chosen from [R] rather than [C]; and 2) the two
neighboring database are now DB := (M1,M2, . . . ,Mk, . . . ,MR) and DB′ := (M1,M2, . . . ,Mk +
1, . . . ,MR).

Lemma 4.13. Given any (µ1, . . . , µR) vector where µj ≤Mj for j ∈ [R],

PrDB[µ1, . . . , µR]

PrDB′ [µ1, . . . , µR]
=

1− µk
Mk+1

1− s
M+1

Proof. We have

Pr
DB

[µ1, . . . , µR] =

(
Mk
µk

)
·Πj∈[R],j 6=k

(
Mj
µj

)(
M
s

)
Pr
DB′

[µ1, . . . , µR] =

(
Mk+1
µk

)
·Πj∈[R],j 6=k

(
Mj
µj

)(
M+1
s

)
where M :=

∑
j∈[R]Mj and s =

∑
j∈[R] µj .

Therefore,

PrDB[µ1, . . . , µR]

PrDB′ [µ1, . . . , µR]
=

(
Mk
µk

)
·
(
M+1
s

)(
Mk+1
µk

)
·
(
M
s

) =
M + 1

M + 1− s
· Mk + 1− µk

Mk + 1
=

1− µk
Mk+1

1− s
M+1

Acknowledgments

We would like to thank Bruce Maggs for helpful discussions about permutation networks and
oblivious routing. We also thank Aron Laszka for helpful discussions.

34

References

[Abe99] Masayuki Abe. Mix-networks on permutation networks. In ASIACRYPT, 1999.

[AIVG20] Kinan Dak Albab, Rawane Issa, Mayank Varia, and Kalman Graffi. Batched differ-
entially private information retrieval. Cryptology ePrint Archive, Report 2020/1596,
2020. https://ia.cr/2020/1596.

[APY20] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder: Mpc based scalable and
robust anonymous committed broadcast. In ACM CCS, 2020.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In IEEE S & P, 2014.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In Eurocrypt, volume 7237, pages 263–280, 2012.

[BHKP16] Michael Backes, Amir Herzberg, Aniket Kate, and Ivan Pryvalov. Anonymous ram.
In ESORICS, 2016.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous
messaging system handling millions of users. In S & P, 2015.

[CFN90] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO, 1990.

[CGF10] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable anonymous group mes-
saging. In CCS, page 340–350, 2010.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, February 1981.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO, 1982.

[Cha88] David L. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1):65–75, March 1988.

[CM06] Kamalika Chaudhuri and Nina Mishra. When random sampling preserves privacy. In
CRYPTO, 2006.

[DD08] George Danezis and Claudia Diaz. A survey of anonymous communication channels.
Technical Report MSR-TR-2008-35, Microsoft Research, 2008.

[Dia21] Benjamin E Diamond. Many-out-of-many proofs and applications to anonymous
zether. In IEEE S & P, 2021.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In TCC, 2006.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In USENIX Security Symposium, 2004.

35

https://ia.cr/2020/1596

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[EY09] Matthew Edman and Bülent Yener. On anonymity in an electronic society: A survey
of anonymous communication systems. ACM Comput. Surv., 42(1), December 2009.

[GIKM00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy
in private information retrieval schemes. J. Comput. Syst. Sci., 60(3), 2000.

[GRS99] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing for anonymous
and private internet connections. Communications of the ACM, 42:39–41, 1999.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon
Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub. In
NDSS, 2017.

[HKP20] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. Ghostor: Toward a secure data-
sharing system from decentralized trust. In NSDI, 2020.

[HMPS14] Susan Hohenberger, Steven A. Myers, Rafael Pass, and Abhi Shelat. ANONIZE: A
large-scale anonymous survey system. In IEEE S & P, 2014.

[HOWW19] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous
data access. In Eurocrypt, 2019.

[LGZ18] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed private mes-
saging immune to passive traffic analysis. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’18, page 711–725,
USA, 2018. USENIX Association.

[LYK+19] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew Miller. Honeybadgermpc and asynchromix: Practical asynchronous mpc
and its application to anonymous communication. In CCS, 2019.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In STOC, pages 294–303, 1997.

[RMSK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Practical decen-
tralized coin mixing for bitcoin. In ESORICS, 2014.

[RMSK17] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. P2p mixing and unlinkable
bitcoin transactions. In NDSS, 2017.

[SSA+18] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael Backes,
and Claudia Diaz. A survey on routing in anonymous communication protocols. 2018.

[SW21] Elaine Shi and Ke Wu. Non-interactive anonymous router. In Eurocrypt, 2021.

[TDG16] Raphael R. Toledo, George Danezis, and Ian Goldberg. Lower-cost epsilon-private
information retrieval. Proc. Priv. Enhancing Technol., 2016(4):184–201, 2016.

[TGL+17] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich. Sta-
dium: A distributed metadata-private messaging system. In SOSP, 2017.

36

[Vad17] Salil Vadhan. The complexity of differential privacy. 2017.

[vdHLZZ15] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In SOSP, 2015.

[ZZZR05] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron. Cashmere: Resilient
anonymous routing. In NSDI, 2005.

37

	Introduction
	Our Results and Contributions
	Technical Overview
	Additional Related Work

	Definitions and Preliminaries
	Syntax
	Computational Differential Anonymity
	Background on NIAR

	Two-Layer NIDAR Construction
	A Two-Step Permutation Algorithm
	Two-Layer NIDAR
	Proofs
	Sequence of Hybrids
	Differential Privacy Lemma

	Multi-Layer NIDAR
	Multi-Layer NIDAR Construction
	Recursive Subroutines
	Proofs
	Sequence of Hybrids
	Differential Privacy Lemma

