
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 1

IvyCross: A Privacy-Preserving and Concurrency
Control Framework for Blockchain Interoperability

Ming Li, Jian Weng∗, Member, IEEE, Yi Li, Yongdong Wu, Jiasi Weng, Dingcheng Li, Guowen Xu, Robert
Deng, Fellow, IEEE

Abstract—Interoperability is a fundamental challenge for long-
envisioned blockchain applications. A mainstream approach is
to use Trusted Execution Environment (TEEs) to support in-
teroperable off-chain execution. However, this incurs multiple
TEEs configured with non-trivial storage capabilities running on
fragile concurrent processing environments, rendering current
strategies based on TEEs far from practical. The purpose of this
paper is to fill this gap and design a practical interoperability
mechanism with simplified TEEs as the underlying architecture.
Specifically, we present IvyCross, a TEE-based framework that
achieves low-cost, privacy-preserving, and race-free blockchain
interoperability. Specifically, IvyCross allows running arbitrary
smart contracts across heterogenous blockchains atop only two
distributed TEE-powered hosts. We design an incentive scheme
based on smart contracts to stimulate the honest behavior
of two hosts, bypassing the requirement of the number of
TEEs and large memory storage. We examine the conditions to
guarantee the uniqueness of the Nash Equilibrium via Sequential
Game Theory. Furthermore, a novel extended optimistic concur-
rency control protocol is designed to guarantee the correctness
of concurrent execution of off-chain contracts. We formally
prove the security of IvyCross in the Universal Composability
framework and implement a proof-of-concept prototype atop
Bitcoin, Ethereum, and FISCO BOCS. The experiments indicate
that (i) IvyCross is able to support privacy-preserving and
multiple-round smart contracts for cross-chain communication;
(ii) IvyCross successfully decreases the off-chain costs on storage
and communication of a TEE without using complex crypto-
graphic primitives; and (iii) the total on-chain transaction fees
in cross-chain communication are relatively low, within ranges
of 0.2 USD ∼ 1 USD.

Index Terms—Blockchain interoperability, privacy-preserving,
smart contracts, TEE.

I. INTRODUCTION

Over the last decade, blockchain technology has become
a revolutionary technology to be employed in many fields
such as the internet of thing [1], cloud computing [2], and
decentralized finance [3], since it was coined in 2008 [4]. It
is a new wave of innovations that numerous tech giants, such
as Google and IBM, are investing large funds in research and
applications. According to the recent statistics1, hundreds of
blockchain systems have been deployed, and the global market
value of blockchain size has reached 4.9 billion in 2021.

M. Li, R. Deng are with the School of Computing and Information Systems,
Singapore Management University, 178902, Singapore. Y. Li and G. Xu are
the School of Computer Science and Engineering, Nanyang Technological
University, Singapore. Y. Wu, J. Weng, and D. Li are with the College of
Cyber Security, Jinan University, Guangzhou 510632, China. Jian Weng is
the corresponding author. E-mail: cryptjweng@gmail.com.

1https://www.marketsandmarkets.com/Market-Reports/blockchain-
technology-market-90100890.html

With the wide adoption of blockchain technology, people
have recognized that blockchain is not a “coin to rule them
all” solution, where all applications can be put in a sin-
gle blockchain [5]. Interoperability2 has become an essential
requirement for blockchain-based decentralized applications.
Since different blockchain systems have their own underlying
constructions and security mechanisms, it is hard to design
a general and efficient interoperable protocol. Many efforts
have been made to achieve blockchain interoperability and
guarantee specific functionalities such as privacy preservation
[6], [7], [8], [9], [10], [11], [12], [13], [14], and smart contracts
[15], [16], [17].

Basically, blockchain interoperability protocols can
be divided into three categories: (i) Trusted Execution
Environment-based (TEEs-based) approach, (ii) cryptography-
based approach, and (iii) sidechain-based approach (see
Section VIII for more details). This paper we focus on
designing for TEEs-based approach, since its advantages on
flexible compatibility, real-time efficiency, and confidentiality-
preserving smart contracts compared with the other two
approaches [12], [11], [13], [14].

Despite the successful applications in cross-chain scenario,
the TEEs-based approach exists two issues with respect to
cost and concurrent execution that have not been studied
systematically yet, which limits its practical applications. On
the one hand, current proposals utilize a pool of TEEs (i.e.,
multiple TEE-empowered hosts), incurring high communica-
tion cost and monetary cost for users since each host charges a
substantial fee for providing the off-chain execution service. In
addition, they require a TEE to store a large number of block
headers (e.g., 8,064 block headers for each blockchain [12])
to verify the correctness of on-chain data. However, TEE is a
memory-limited environment that would exceed the maximum
storage capability when processing large-scale data in cross-
chain communication.

On the other hand, previous works on concurrent execution
of off-chain contracts use the serializable two-phase commit
protocol, allowing all chosen transactions to be included and
executed without blocking in the first phase, and then validat-
ing the results in the second phase [18], [19]. However, these
works also do not consider the limited memory of TEE, where
access on-chain data in concurrent contracts execution would
exceed the memory storage of the TEE. Furthermore, if an
off-chain contract uses on-chain states for contract execution,

2We will use the terms “interoperability” and “cross-chain” interchangeably
in this paper.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 2

potential concurrency conflicts such as dirty read may happen
when on-chain states are revoked by a blockchain fork (see
Section IV for more details).

In terms of the cost issue, the intuitive idea is to employ
only one TEE-empowered host. However, this idea introduces
collusion attacks between the host and participant, which
causes economic loss to other participants. Theft events (or
possible inside attacks3) in MtGox exchange have shown the
weaknesses of this idea [12]. In addition, minimizing the
memory requirement of the TEE while achieving concurrent
contracts execution is particularly challenging, since they
seems contradictory in reality. Specifically, concurrent con-
tracts execution requires the TEE to access and process many
data within the TEE. While removing the storing of numerous
block headers is a mitigation solution. However, it can cause
the TEE to use fake or outdated on-chain data for contract
execution. Therefore, this work is motivated by the following
question: Is it possible to design a low-cost interoperability
mechanism with simplified TEEs as the underlying architecture
while preserving concurrency and privacy?

This paper presents a positive answer to the above ques-
tion. We propose IvyCross, a novel framework that enables
privacy-preserving smart contracts and concurrency control
for blockchain interoperability using only two TEE-powered
hosts, i.e., an execution host and a verification host. Specifi-
cally, the privacy of inputs and execution outputs can be pre-
served by encrypting them under the key pair generated by two
TEEs. We employ a game theoretic mechanism for preventing
the collusion between the two hosts by using the Time-lock
Smart Contract (TSC). To avoid storing many block headers in
TEE while preventing it from receiving error data, we require a
cross-chain smart contract to run simultaneously on both hosts.
The verification host can challenge the execution host in case
of incorrect execution using the TSC. Furthermore, we design
a non-blocking optimistic concurrency control protocol which
uses the data-driven timestamp to address concurrency con-
flicts. As a result, IvyCross enjoys three desirable features that
previous proposals may not provide: (i) Low economic over-
head. A two-TEE based cross-chain protocol is implemented,
leading to lower communication and storage overhead. (ii)
Cross-chain privacy. The confidentiality of execution states
and user inputs, as well as the unlinkability of transactions
in cross-chain smart contracts can be fully preserved. (iii)
Concurrent Correctness. The concurrency correctness of TEE-
based smart contracts execution can be ensured.

Our Contributions. Specifically, the major contributions of
this work can be summarized as follows:
• A low-cost framework for enabling privacy-preserving

and concurrent cross-chain contracts execution. Based
on only two TEE-powered hosts, we design a novel
framework called IvyCross that can achieve multiple-
round cross-chain smart contracts for blockchain inter-
operability while preserving privacy. We design the cus-
tomized concurrency control protocol and utilize a smart
contract-supporting blockchain to model a sequential

3https://www.coindesk.com/markets/2015/01/01/missing-mt-gox-bitcoins-
likely-an-inside-job-say-japanese-police/.

TABLE I
The notations of explanation.

Notation Explanation
λ The security parameter.
k The security parameter of a blockchain.

m,n The amount of blockchain systems and participants.
[m] The set of natural numbers (0, 1, ...,m).
P The participants.
A The adversary.
R,V The execution host and verification host.
Bj , B̃ A blockchain system j (j ∈ [m]), and a smart

contract-supporting blockchain system.
(pk, sk) The public key and secret key pair of a participant.

(mpk,msk) The public key and secret key pair of an enclave.
datagram The data to be stored in the distributed data storage.
T0, T1 The enclave T0 and T1 run inR and V , respectively.
tx, bh A transaction and block hight in blockchain B̃.

L0, L1, L2, L3, L4 The time of deposits to be set in blockchains, where
L0 < L1 < L2 < L3 < L4.

ω,C The amount of blocks to be stored in a TEE, e.g.,
ω = 6 in Bitcoin and C = 8064 in [12].

cid A unique identifier of a cross-chain smart contract.
H(·) A cryptographic hash function.

getBK(Bj , w0, w1) The function to retrieve a succession of blocks starting
from a block containing a state w0 and ending with
a block containing a state w1 from Bj .

KA.(KGen,Retrieve) The key generation and retrieve algorithm in key
agreement.

AE.(KGen,Enc,Dec) The key generation, encryption, and decryption algo-
rithm in an asymmetric encryption scheme.∑

.(KGen, Sign,
V erify)

The key generation, signing, and verification algorithm
in digital signature.

game between two hosts, and thus IvyCross can guar-
antee the correctness of off-chain contract execution at
low costs. We emphasis that the game theory-based TEEs
computation has wider applications beyond blockchain
interoperability.

• Formal Security Analysis. We model the functionality
of IvyCross in the Universal Composability (UC) frame-
work, and formally prove the security of our construction
with respect to privacy preservation and correct contract
execution (see online version [20]).

• Implementation and Evaluation. We implement a pro-
totype of IvyCross over three blockchains, including
Bitcoin, Ethereum and FISCO BOCS, and evaluate the
performance with three real-world use cases. Extensive
experiment results on end-to-end performance and con-
currency control demonstrate the practicality and effi-
ciency of IvyCross.

II. PRELIMINARIES AND SOLUTION OVERVIEW

In this section, we present the background of blockchain and
cross-chain communication (CCC) and TEE. The notations
used throughout this paper are listed in Table I.

Cross-chain Communication. Blockchain is essentially a
transparent, immutable distributed ledger that is maintained
by many decentralized networks of peers (i.e., blockchain
nodes). One can not tamper with a transaction once it has
been recorded in the blockchain, and can check the histor-
ical details of a transaction, facilitating tracking the digital
assets in a trustworthy way. With the rapid deployment of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 3

blockchains, many cross-chain communication (CCC) proto-
cols have emerged to resolve the limitation of blockchain scal-
ability [5]. They allow two relatively dependent blockchains
(e.g., Bitcoin and Ethereum) to interact with each other, e.g.,
cryptocurrency exchange [21] and information transitions [15].

In particular, a CCC protocol is said to be correct if it
satisfies effectiveness, atomicity and timeliness [5]. Taking
cryptocurrency exchange as an example, Alice intends to
exchange ETH with Bob who has Ethereum using her Bitcoin.
This process takes four steps: 1) Setup, 2) (pre-)commit on
Bitcoin, 3) verify, and 4a) commit on Ethereum or 4b) abort
[5]. The first step is to set initial parameters between Alice and
Bob, including time constraints, and the amount of coin. In the
second step, Alice posts a commitment transaction that sends
Bitcoin to Bob. After confirming the correctness and validation
of the commitment transaction in the third step, Bob can post
a commitment transaction that transfers an equivalent of ETH
to Alice.

Trusted Execution Environment. Trusted Execution Envi-
ronment (TEE) is one of the key building blocks of IvyCross.
It builds an isolated environment that enables hardware-based
protections on user-level code and data to provide confidential-
ity and integrity. Currently, several hardware-based protection
technologies have been designed, such as Intel SGX [22],
[23], ARM TrustZone, and AMD Secure Processor [24]. Here,
we adopt the Intel SGX in the implementation of IvyCross.
Specifically, Intel SGX creates a sandbox environment called
enclave in which a program can be executed without inter-
ference. When an enclave interacts with other enclaves, Intel
SGX introduces attestation to allow users to trust each other.
It is essentially a proving process that enables a user to trust:
1) his program is running in an enclave, 2) the enclave is up
to date. There are two types of attestation, local attestation
and remote attestation. Intel SGX provides Intel Attestation
Service (IAS) to help users to validate a remote attestation.
We recommend readers to review [23] for more details.

A. Protocol Overview

IvyCross is essentially built as a general-purpose framework
that interacts with heterogeneous blockchains and achieves
secure and correct off-chain computation with receiving, gen-
erating, and verifying transactions using the TEE. Specifically,
Ethereum is adopted as the underlying blockchain B̃ for
supporting on-chain smart contract between execution host
R and verification host V . The TSC contract, called Cross-
ChainGame, is designed for R and V to play a challenge-
and-response game. The basic design of this game is to allow
host V (as a challenger) to retrieve the deposit of R (as a
responder) by providing valid proofs, if V finds the incorrect
execution of R, e.g., R accepting invalid deposit transactions
for contract execution. The CrossChainGame contract serves
as a Judge to execute the punishment.

To understand our protocol more easily, we use a simple
lottery contract to show the phases of IvyCross. Specifically,
the lottery contract interacts with three participants P :=
{p1, p2, p3} who lie in Bitcoin, Ethereum, and FISCO BOCS
(FB), respectively. The purpose of this contract is to choose a

winner, which is determined by calculating a number based on
each participant’s encrypted input. IvyCross protocol consists
of four basic phases: the initialization phase, the execution
phase, the challenge-and-response phase, and the finalization
phase.
• Initialization. In this phase, all of the involved parties

generate their key pairs and make deposits. After that,
one participant (e.g., p1) can deploy the lottery contract
into hosts’ enclaves by using the install operation of
Intel SGX. A key pair is generated for the contract in the
enclaves, and the public key is published. At this point,
all participants can make deposits to enclaves’ addresses
(pkbtc, pketh, pkfb) and send deposit transactions to R.

• Execution. Participants can send inputs to the contract
to trigger a state transition in this phase. The input
is encrypted using the public key of the contract, and
decrypted for calculation in the enclaves. If there is no
dispute, i.e., two hosts and participants behave honestly in
this phase, the contract goes to the finalization phase. Oth-
erwise, it enters the next challenge-and-response phase.

• Challenge-and-response. This phase happens is con-
ducted between V and R within a time of several blocks.
For example, if V detects that R accepts an invalid
deposit transaction for contract execution, it complains to
the CrossChainGame contract by sending a challenge
transaction and waits for a response. If the challenge
succeeds, i.e., V proves that the deposit is valid, the states
in cross-chain contract will rollback and the challenger
gets a reward from the CrossChainGame contract. If
R does not receive a response in due time, V can upload
the evidence to B̃ and terminate this contract execution
by complaining to the participants.

• Finalization. After the execution, the protocol returns a
final output and assigns the deposits according to the
predefined policy. For the lottery contract, R instructs
its enclave to generate two transactions that transfer
participants’ deposits to the winner’s address.

III. IVYCROSS MODELS

In this section, we present the proposed IvyCross frame-
work by illustrating the system model and security model.

A. System Model

The system model of IvyCross involves four parties (cf.
Figure 1): the participants, the execution host, the verification
host and the blockchain nodes.
• The participants, identified by P = {p1, ..., pn}, refer

to a set of parties who invoke cross-chain interaction to
achieve cryptocurrency exchange or state transition across
heterogeneous blockchains.

• The execution host, identified by R, also called a CCC
service provider, refers to the party who is equipped with
an attested secure processor (identified by T0) to run
general-purpose cross-chain smart contracts.

• The verification host, identified by V , refers to the party
who also has an attested processor (identified by T1)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 4
SMU Classification: Restricted

Blockchain ℬ1

Verification
Host 𝓥

Execution
Host 𝓡

smart contracts

Participants 𝓟

…

IvyCross Connector

Distributed

data storage
Blockchain ෩ℬ

…

Fig. 1. The system model of IvyCross.

and is responsible for monitoring the execution of R.
It verifies the correctness of R’s cross-chain execution
and punishes it when detecting any dishonest behavior.

• The blockchain nodes, refer to parties who maintain the
underlying blockchains. They take the responsibility of
recording transactions and responding upon receiving a
request.

As shown in Figure 1, the construction of IvyCross is com-
posed of three components: an IvyCross connector and two
hosts equipped with an Intel SGX. The IvyCross connector
acts as a gateway to enable IvyCross to interact with different
blockchains and a distributed data storage (DDS) to store
intermediary data [25], where DDS can be a public bulletin
board, e.g., IPFS or S3. Two hosts R and V could be the
existing centralized cryptocurrency exchanges (e.g., LocalBit-
coins and Coinbase) that their roles can be interchangeable.
To defend against such a SPoF, we can build a decentralized
ecosystem, where many cryptocurrency exchanges can take
part in providing cross-chain services for profits (see Sect.
VI).

Specifically, running a cross-chain contract requires two
hosts to deposit in a smart contract-supporting blockchain
(identified by B̃) previously, e.g., Ethereum. After that, the
participants can register4 in IvyCross and one of them deploys
a smart contract using the SGX install instruction. All partici-
pants need to deposit in their blockchains and send the deposit
transaction to two enclaves. Afterward, it goes to the contract
execution phase where two hosts execute the cross-chain
contract simultaneously. The result is sent to participants with
a remote attestation which can validate the output. According
to the final results of the contract, these deposits are assigned
or withdrawn by the participants.

B. Security Model

Security Threats. We assume that a probability polynomial
time (ppt) adversary A who can corrupt a subset of parties,
which means the internal states and operations of the corrupted
parties are controlled by A. Here, we consider a static cor-
ruption where A controls parties before the contract execution
starts. Specifically, we consider the following security threats

4Here, we do not discuss participants’ identity management which has been
extensively studied by [2], [13].

when blockchain and TEEs technologies are used in a cross-
chain setting. First, the execution host R may behave dishon-
estly in an attempt to (i) collude with the verification host V
or certain participant to maximize its profits, e.g., accepting
an invalid deposit transaction, (ii) discard participants’ inputs,
and (iii) replay old stored or incorrect state to the TEE
(i.e., rollback attacks that the latest data is replaced with an
incorrect copy [26]). Host V may also behave dishonestly by
challenging R with an incorrect on-chain state. Both R and V
are curious about participants’ sensitive inputs. With respect
to participants, some of them might collude with R or V to
maximize their profits in a smart contract, and attempt to
obtain others’ private inputs. Besides, one of the two hosts
might connect to a corrupt blockchain node that has been
compromised by the eclipse attack [27], causing a host to
retrieve fake evidence.

Security Assumptions. The security of IvyCross depends
on the security of TEEs and blockchains, thus we make
the following assumptions with respect to the blockchain
and TEE technology. Without loss of generality, A can not
break the fundamental security of blockchain. Communication
between the participants, TEEs and blockchain nodes are
established through a secure channel (TLS) and information
is synchronous between honest parties.

In terms of TEEs, we assume that the confidentiality of
programs can be guaranteed in the TEE. An adversary A can
not access the attestation private key. We note that side-channel
attacks which could leak private information do exist and is a
real threat to TEEs, while we consider that it is an orthogonal
problem to mitigate such attacks, such as introducing key
committee as in [13], and thus outside of scope for our design.
Besides, T0 and T1 are deployed in different platforms but are
connected through a network. A single host creating multiple
enclave instances is not allowed and can be detected by our
design.

Meanwhile, the two hosts are not necessarily to be fully
honest, in light of the recent attacks on TEEs [28], [26]. We
assume that one of two hosts can be compromised by A, but
they can not be compromised simultaneously. All parties are
considered as rational and incentive-driven participants that
they will not participate in a cross-chain contract if their
profits are negative. In addition, to prevent denial-of-service
(DoS) attacks [29], e.g., a never-halting program is loaded into
the TEEs, we assume that the number of execution rounds
and execution time in each round are predefined in advance.
Besides, a cross-chain contract deliberately uses an old state
within a specific block as input is not considered here.

C. Design Goals

IvyCross aims to achieve the general-purpose smart con-
tracts for blockchain interoperability. Here, we summarize the
design goals of IvyCross as follows:
• Confidentiality: The privacy of intermediary states and

parties’ inputs are preserved during contract execution.
• Correctness: Given authenticated blockchain evidence,

the execution of cross-chain contracts can be guaranteed
with correctness and concurrency control.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 5

SMU Classification: Restricted

𝒯𝑏𝑐.write 𝑥

𝒯𝑐𝑠.read 𝑥

n n+1 …

𝒯𝑏𝑐 . commit

𝒯𝑐𝑠.write 𝑦

Conflict k-window period

𝑡0 𝑡1 𝑡3𝑡2

Fig. 2. The illustration of concurrency conflict in cross-chain transactions.
Tcs.read is sent by a party in IvyCross, while Tbc.write is sent by a user in
a source blockchain.

• Interoperability: IvyCross can be applied to cur-
rently existing blockchains seamlessly, e.g., Bitcoin and
Ethereum, achieving state transition and token exchange
across heterogenous blockchains.

• Security against several attacks: IvyCross is able to
defend against collusion attacks, and rollback attacks.

IV. DESIGN CHALLENGES

In this section, we discuss the technical challenges that arise
when introducing two TEE-powered hosts to enable privacy-
preserving smart contracts for cross-chain applications.

A. Collusion Attacks and Rollback Attacks

The biggest challenge of relying on only two TEE-based
hosts is the collusion attack. There is no restriction for
participants to detect such attacks if both hosts coordinate
and output incorrect results. Worse still, the hosts may collude
with a certain participant to gain profits from a smart contract
application, e.g., to let him win a cross-chain lottery game. For
instance, dishonest participants may collude with the host to
deceive the TEE into accepting an invalid deposit transaction,
causing honest participants to lose their coins. Our core insight
is that collusion always occurs when participants find it is more
profitable by colluding with others than behaving honestly.
Towards this end, economic incentives would be an effective
method to thwart collusion attacks. We employ the sequential
game theory based on a Turing-complete smart contract to
resolve this challenge (see Sect. 7).

On the other hand, cross-chain communication involves a
complex network structure where heterogeneous blockchain
networks exist. As a consequence, host V or R (and its con-
nected blockchain nodes) can be compromised by an adversary
A, making the TEE suffer from potential threats not only from
its running host but also from external blockchain nodes. More
concretely, a compromised host can launch rollback attacks by
replacing the latest data with an older (or incorrect) copy [26].
Current research works resort to using a cluster of hosts (or a
trusted authority) to tackle this challenge, e.g., ROTE [28],
while this method suffers from high communication and
computation costs. We aim to achieve the same security goal
with lower costs (and better security than a trusted authority).

B. Cross-chain Concurrency Issue

The second challenge lies in the concurrency issue in the
off-chain TEEs. Note that a typical contract is essentially

converted as several read and write operations. For a read
operation, it is read-only call that will not update states, while
a write operation, it is potentially a change-state procedure
that will change the value. The concurrency issue occurs
when a cross-chain contract reads data, while another on-chain
transaction writes that data concurrently.

More concretely, the concurrency issue is caused because
of the delayed confirmation of blockchain. Recall that a
transaction written on a blockchain might be revoked because
of forks. Here, we define a period named conflict k-window
period, during which the blockchain state cannot reach final
consistency, where k refers to the number of blocks that a
transaction has been confirmed. During this period, the dirty
read issue might exist if a server retrieves a state for its
contract execution, while this state is not confirmed finally
on the blockchain because of forks. Therefore, we call a
blockchain transaction “commit” after passing the conflict k-
window period.

To understand how concurrency conflicts occur, let us con-
sider an example as shown in Figure 2. It involves two types of
concurrent transactions: Tcs and Tbc, and two on-chain states
x and y, where Tcs refers to an off-chain transaction executed
in the TEE, and Tbc refers to an on-chain transaction executed
in a blockchain node. We consider that two transactions Tcs
and Tbc run as the following sequence of executions:

1) Tcs.read(x)
2) Tbc.write(x)
3) Tbc.commit
4) Tcs.write(y)
According to the serial order, Tcs can interleavedly run

with Tbc without violating the serializability. However, if Tcs
commits after Tbc, while x has been modified by Tbc, this
can cause the concurrency conflict. Different commit orders
of Tcs and Tbc would affect the correctness of cross-chain
contracts. The key challenge lies that Tcs is executed outside
of the blockchain and the commit operation of Tcs and Tbc are
controlled by different entities. Thus, it is necessary to design a
concurrent protocol to manage the serial execution of on-chain
and off-chain transactions for cross-chain communication.

C. Limited storage

The third challenge lies in the TEE itself. To keep syn-
chronous with blockchain and verify on-chain states, an off-
chain TEE needs to load a number of block headers (∼5MB
for 8,064 block headers) to its environment in current research
works [13], [29], [12]. However, there are several shortcom-
ings of this approach. First, a TEE is a memory-limited
environment. In particular, the reserved memory for Intel SGX
application is limited to a total of 128 MB, and only 93MB is
available in reality [30], [31]. Since thousands of blockchain
systems exist currently, using this approach would cause TEE
to exceed the memory capacity. One may suggest to leverage
external storage to mitigate this issue, but this approach might
suffer from rollback attacks as mentioned in IV-A. Second,
a TEE is required to update the stored data periodically,
thus incurring high computation and communication cost.
The adverse impact of the limited memory of TEE would

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 6

be amplified when it is used in multiple-chain applications.
Therefore, it remains challenging to guarantee the verifiability
of on-chain data owing to the limited memory of TEEs.

V. IVYCROSS PROTOCOL

In this section, we begin with modeling a cross-chain smart
contract, and then formally specify the concrete design and the
concurrency control protocol. Afterward, we elaborate a game
theory-based method for enhancing the security of IvyCross.

A. Modeling Cross-chain Smart Contracts

A privacy-preserving cross-chain execution is modeled as
multiple-round interactions among the following parties: a
set of participants P = {p1, ..., pn}, and several involved
blockchains {Bj}j∈[m] := {B1, ...,Bm}. Formally, an SGX
program is recognized as a finite state machine that is modeled
as a general-purpose smart contract:

Contractccc := (cid, st, ents, ops, dep, {Bj}j∈[m]), (1)

where cid is a unique identifier of the contract, st is the
states of the contract, ents refers to a set of entities including
account, contract and object involved in the contract. ops
refers to the operations over these entities, e.g., cryptocur-
rency exchange. dep refers to the dependence among oper-
ations, e.g., some operations should be executed before or
after another. The lifecycle of Contractccc can be denoted
as a state machine, where the states contain the following
states {Unknown, Init, Inited, Comp, Comped, Closed}. A
key pair (p̃kcid, s̃kcid) is generated for the contract using
KA.KGen(1λ). The TEE publishes p̃kcid and keeps s̃kcid
private.

In particular, an interaction (i.e., a cross-chain transaction
Tcs) between a participant pi and Contractccc is modeled as
the following 5-tuple:

Tcs := (cid, ct, w, ti, σpi), (2)

where ct = AE .Enc(p̃kcid, inps) is a ciphertext of the
participant’s inputs inps. w refers to a set of blockchain
evidences. ti is the timestamp of the transaction, σpi is a
signature of pi which is used to identify the identity. More
precisely, w contains some transactions and the corresponding
block information, i.e., w := (Bj , Tbc,mkR, diff, hd, bh),
where Tbc is the latest on-chain transaction which is related
with w, mkR is the Merkle path for authenticating Tbc, diff
is the difficulty level, hd is the block header and bh is the
corresponding block height.

In addition, an interaction between a participant and the
TEE can be modeled as the following state transition:

TEEContract(cid, stι; rι)
Tcs−→ (ouptsι, stι+1), (3)

where stι refers to the previous state which is securely stored
in the IPFS, rι refers to the randomness of the round ι. The
TEE triggers a state transition by taking Tcs as an input, and
outputs ouptsι and generates a new state stι+1. Specially, we
follow the output method of an attestation as in Ekiden [13]
where an output ouptsι of an SGX program contains a pair of

SMU Classification: Restricted

Participants

{𝑝1, … , 𝑝𝑛}

Blockchains

{ℬ0, …ℬ𝑚}

txdp𝑖
: = deposit(dp𝑖 , pkcoin, L2)

key agreement → { ෫pkcid, ෫skcid , pk𝑏𝑡𝑐 , 𝑠𝑘𝑏𝑡𝑐 , … }

txdℛ : = (d0, pketh, L0)

check txdℛ

check{txdℛ , txd𝒱}

T
h

e
 I
n

it
ia

li
z
a

ti
o

n
 P

h
a

s
e

send("install", Contractcc𝑐)

send("install", Contractcc𝑐)

(Contractcc𝑐 , cid, ෫pkcid, σ𝑚𝑝𝑘𝑇0
)

D
D
S

𝑳𝟐 𝐓𝐢𝐦𝐞𝐥𝐨𝐜𝐤

𝑳𝟏 𝐓𝐢𝐦𝐞𝐥𝐨𝐜𝐤txd𝒱 : = (d1, pketh, L1)

𝑳𝟎 𝐓𝐢𝐦𝐞𝐥𝐨𝐜𝐤1

2

6

3

4

5

7 tx0 ≔ (cid, ෫pkcid, H(datagram0))8

datagram0 ≔ (cid, ι, tx0, pkpi i∈ n
, ෫pkcid, 𝑠𝑐𝑡0)

Blockchain ෩ℬ
& DDS

Verification

Host 𝒱
Execution

Host ℛ

getBK(෩ℬ, txdℛ , txdℛ)

Fig. 3. The initialization phase of Protccc. Solid dark arrows indicate
interactions among TEEs and participants. Yellow dashed arrows denote
interactions among participants, TEEs and B̃, green dashed arrows denote
interactions between participants, TEEs and {Bj}j∈[m]. Blue bands indicate
the time interval of the deposits.

SMU Classification: Restricted

if (msg.sender==𝑎𝑑𝑑𝑟𝑅)
assert balanceOf(msg.sender)>𝑑ℛ;
balances[msg.sender]+=𝑑ℛ ;

else if (msg.sender==𝑎𝑑𝑑𝑟𝒱)
assert balanceOf(msg.sender)> 𝑑𝒱;
balances[msg.sender]+=𝑑𝒱;

return balances[msg.sender];

The deposit function (payable)

if (msg.sender==𝑎𝑑𝑑𝑟ℛ)
require(now ≥ 𝐿0);

if (msg.sender==𝑎𝑑𝑑𝑟𝒱)
if (penalty(𝑡𝑥𝑐ℎ𝑎. id, 𝑡𝑥𝑟𝑒𝑠 . id) == false)
require(now ≥ 𝐿1);

if (drawAmount ≤ balances[msg.sender])
balances[msg.sender]-=drawAmount;
msg.sender.transfer(drawAmount);

The withdraw function (payable)

mapping (address => uint) private balances;

uint public 𝐿0, 𝐿1;

\\ withdraw by

penalty function

Hosts 𝓡 and 𝓥

…… ……

……

Fig. 4. The illustration of the deposits of two hosts.

parts (ouptι1 , ouptι2). A hash of the second output H(ouptι2)
and an input hinps = H(ctι, wι) of the program are included
in ouptι1 . Only ouptι1 is signed by the TEE in an attestation,
i.e., σT :=

∑
.Sign(mskT , ouptι1).

B. Protocol Specification

1) The Initialization Phase: We now specify the formal
details of the IvyCross protocol. In this phase (cf. Figure
3), T0 and T1 initialize the key pairs (mpkT0 ,mskT0) and
(mpkT1

,mskT1
), respectively. They attest the public keys

(mpkT0
,mpkT1

) by Intel IAS and establish a secure com-
munication channel. For simplicity, we treat the blockchain B̃
and IPFS as a whole, where it stores encrypted data (identified
by datagram) in IPFS and a corresponding hash value (i.e.,
H(datagram)) in B̃.

Afterwards, two hostsR and V individually generate several
addresses with the security parameter λ for making deposits in
B̃ and accepting rewards from different blockchains. Their de-
posits are locked in the time-lock contract CrossChainGame
that can only be redeemed after L0 and L1 blocks, respec-
tively (Steps ¶-·). During this timeframe, the enclaves can
spend the locked deposit by providing a proof. In case of
dishonest behaviors, a penalty function penalty(·) is designed
to allow V to withdraw a certain amount of coins from R’s
deposit, if V finds an evidence that can prove R is cheating
(cf. Figure 4). The inputs of penalty(·) mainly contain two
transactions (txcha, txres) that are generated in the challenge-
and-response phase, which will be described in detail in the
third phase.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 7

At this point, a set of participants P = {p1, ..., pn} can
execute a cross-chain smart contract. Each participant gen-
erates a key pair (pkpi , skpi) and registers the public key
in IvyCross for identity verification. A certain participant pi
(i ∈ [n]) can deploy a smart contract Contractccc with an
initial state st0, the public keys of participants to T0 and T1
by invoking the “install” instruction (Steps ¸-¹). Specially,
st0 contains several blocks {bkcp1 , ..., bkcpm0

} (including the
difficulty level) of the involved blockchains {Bj}j∈[m0] as the
checkpoints of the contract, each blockchain Bj loads only a
few of the latest blocks, which is to prevent malicious hosts
from using incorrect blockchain to deceive the enclave.

Two enclaves T0 and T1 run KA.KGen(1λ) to generate
a fresh key pair (p̃kcid, s̃kcid) for preserving the privacy of
contract interaction, and a set of key pairs for accepting par-
ticipants’ deposits, e.g., (pkbtc, skbtc) is generated for Bitcoin
(Step º). To prevent dishonest participants from participating
in different contracts using the same deposit, we require the
enclaves to generate the deposit addresses for each smart
contract. Participants need to make deposits in their corre-
sponding blockchains before entering the next phase (Step
»). These deposits are locked in the corresponding addresses
(pkbtc, pketh, ...) of Contractccc, and can only be spent by the
enclaves within L2 blocks. After the locked time, participants
can redeem the deposit if it is not spent by the enclave.

With the successful deployment of Contractccc, two hosts
respond with a contract identifier cid and initial parame-
ters (Step ¼). R sends (cid, {pkpi}i∈[n], p̃kcid, datagram0)

to B̃ and waits for the confirmation (Step ½), where
sct0 = AE .Enc(p̃kcid, st0) in datagram0 is an initial
encrypted state of the contract. Meanwhile, a response
{Contractccc, cid, p̃kcid, σmpkT0 } is sent to the participants,
where σmpkT0 is a signature of T0.

2) The Execution Phase: In this phase, the contract
Contractccc is triggered with a state transition upon receiving
an input from a participant (cf. Figure 5). Concretely, in round
ι (ι ∈ [`]), a participant pi gets the public key p̃kcid and
encrypts an input ctι = AE .Enc(p̃kcid, inpsι). Then, pi sends
an input (cid, ctι, wι) to T0 (and T1) by invoking the “resume”
instruction (resume, cid, (ctι, wι)) (Steps ¶-·). R reads a
previous state of the contract sctι from B̃ . The input is sent
with a signature of pi so that the enclave T0 can verify its
validation. wι is a blockchain evidence that both R and V
can check whether it is a correct on-chain state. Here, we
use roundExe(ctι, wι, sctι, bks) to represent the execution of
contract function (Steps ¸-¹), in which the fourth parameter
denotes a succession of blocks related with wι. If bks is not
empty, Contractccc will use it to check the correctness of wι.
Otherwise, i.e., bks = ∅, it only uses wι for contract execution.
By setting this parameter, it allows V to send a challenge by
providing a succession of correct blocks in case of incorrect
execution.

After the execution, the contract Contractccc outputs
ouptsι := (%, sctι+1, ouptι, valw) (Step º), where % :=
(hinps, hst, hstsf , houpt, σmpkT0) refers to a set of hash val-
ues on the input hinps = H(ctι, wι), a previous state
hst = H(stι), a state transition hstsf = H(stι||stι+1), an

SMU Classification: Restricted

Execution

Host ℛ
Blockchains

{ℬ0, …ℬ𝑚}
Verification

Host 𝒱
Blockchain ෩ℬ

& DDS

send(cid, "resume", (ctι, wι))

roundExe(ctι, wι, sctι, ∅)

send(cid, "resume", (ctι, wι))

Th
e

 E
xe

cu
ti

o
n

 P
h

as
e

Participants

𝒫 = {𝑝1, … , 𝑝𝑛}

1

3

5

6

7

4

txι ≔ (cid, ι, H ouptsι , valw𝜄
, H datagramι)

roundExe(ctι, wι, sctι, ∅)

𝑳𝟑 𝐓𝐢𝐦𝐞𝐥𝐨𝐜𝐤

opι ≔ (ouptsι, σT0)

getBK(ℬ𝑗 , wι, wι)

sctι ≔ read(cid, ι)

2

ouptsι ≔ (ϱ𝜄, ouptι, sctι+1, valw𝜄
)

𝐃
𝐃
𝐒

datagramι ≔ (cid, ι, txι, sctι+1, ouptsι)

Fig. 5. The execution phase of Protccc.

SMU Classification: Restricted

𝐃
𝐃
𝐒

Execution

Host ℛ
Blockchains

{ℬ0, …ℬ𝑚}
Verification

Host 𝒱

4

1

7

8

9

bks = getBK(ℬ𝑗 , bkcp𝑗 , bk෦wι
)

2

෧ouptsι ≔ (ϱ𝜄, ෧ouptι, ෧sctι+1, ෫valw𝜄
)

txres ≔ response(cid, ι, μ, ෫valw𝜄
, H(෫datagramι))

send(cid, "resume",
(rollback, sctι, sctι+1, txcha, wcha))

6 send(cid, "resume", ctι, ෦wι)

roundExe(ctι, ෦wι, sctι, bks)

txcha ≔ challenge(cid, ι, μ, H(datagramcha)) 𝑳𝟒 𝐓𝐢𝐦𝐞𝐥𝐨𝐜𝐤

(sctι, sctι+1) ≔ read(cid, ι, ι + 1)

true/false ← penalty(cid, txcha, txres)
Th

e
 C

h
al

le
n

ge
-a

n
d

-r
e

sp
o

n
se

 P
h

as
e

3

Blockchain ෩ℬ
& DDS

5 rollback sctι, sctι+1, txcha, wcha

10

෫datagramι ≔ (cid, ι, txres, ෧sctι+1, ෧ouptsι)

datagramcha ≔ (cid, ι, ctι, ෦wι, wι, txι)

Fig. 6. The challenge-and-response phase of Protccc.

output houpt = H(ouptι). sctι+1 = AE .Enc(p̃kcid, stι+1)
is a new contract state which can be used for the roll-
back of states in the third phase (if necessary). If it is
required by the contract, ouptι can be an encrypted output
of the function using pkpi . valw ∈ (0, 1) is a validation
result of w. T0 sends the output to T1 with an attesta-
tion attesι := (ouptsι, σmpkT0) (Step »). Meanwhile, a
digest of the output (cid, ι,H(ouptsι), H(datagramι), valw)
is sent to B̃ (Step ¼) using the Pedersen commitment
scheme [32]. To enforce the atomic delivery of attesι and
(cid, ι,H(ouptsι), H(datagramι), valw) between V and B̃,
we can adopt the protocol proof of publication as in [13].

In particular, we design a data-lock in the contract Cross-
ChainGame for an on-chain state sctι that it can only be
treated as stable and useful (identified by FINAL) after a
predefined L3 blocks. Before that, it is an unstable data
(identified by UNCONFIRM). Therefore, when an enclave
retrieves a previous state of the cross-chain contract in a new
round, it first validates the status in the previous round. By
doing so, it can guarantee the correctness of states reading
between two hosts and B̃, no matter whether there will be a
state rollback case.

Providing that all involved parties behave honestly, R runs
the next round for the contract Contractccc after L3 blocks,
and goes to the finalization phase after ` rounds.

3) The Challenge-and-response Phase: The above contract
execution is a normal case that two hosts and participants
are honest, so the interactions are minimal. While if any
party behaves dishonestly, the protocol Protccc enters into
the challenge-and-response phase (cf. Figure 6). Note that the
enclave T0 has attested the outputs in B̃ that V can check the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 8

correctness of the execution based on this information. If V
detects that the execution outputs from T1 is different from
T0, it might represent that R accepts an invalid input wι for
contract execution, e.g., accepting a fake deposit transaction.
At this point, V can launch a challenge-and-response game
which is modelled as an interaction between V and R to ask
for a response within a time of L4 blocks.

Specifically, V sends a challenge transaction txcha to B̃
and requires a response transaction txres from R. V first
reads a succession of blocks bks from Bj , where bks =
getBK(Bj , bkcpj , bkw̃ι) refers to the blocks from the check-
point bkcpj to a latest block bkw̃ι which contains a correct
w̃ι (Step ¶). If wι is not an on-chain data in the longest
blockchain, bks can read from the checkpoint to the latest
block. Then, V generates the transaction txcha which contains
the previous input ctι, a hash value H(bks), and a correct
blockchain evidence w̃ι which is the correct on-chain data
related with inps in Bj (Step ·). In particular, V transfers
a little number of coins µ to the balance of R in txcha and
requires R to return µ back to V’s balance. To conduct the
challenge, V reads two previous encrypted states sctι and
sctι+1 from B̃ (Step ¸) and makes a resume call with an
input (rollback, sctι, sctι+1, txcha, wcha) to trigger a rollback
operation from sctι+1 back to sctι in T0 (Step ¹), where wcha
refers to the blockchain evidence of txcha.

Upon receiving a rollback resume, R needs to respond to
a transaction txres within L4 blocks. Specifically, R first
checks the signature of this call, and then sends a resume
call to T0 with the inputs (cid, sctι, sctι+1) to trigger the state
rollback from sctι+1 back to sctι (Step º). T0 also checks
the signature of rollback instruction and then accomplishes the
rollback with outputting an attestation to claim the success of
this call. Note that only T1 can be authorized to resume a
rollback operation by providing txcha. After that, V makes
a resume call to T0 with an input (cid, ctι, w̃ι, stι, bks)
(Step »). R completes the execution upon receiving the
call and outputs an attestation to T1 (Step ¼-½). Based on
the output attestation, R generates the response transaction
txres := (cid, ι, µ, ṽalw̃ι , H(˜datagramι)) (Step ¾). Then,
the Judge contract CrossChainGame takes (txcha, txres) as
inputs to execute the comparison and determines the amount
of coins to be punished (Step ¿). Specifically, the process
of verification can be extended to support more complicated
comparison operations within T0 or T1, i.e., the comparison
after the decryption of ouptsι.

If V succeeds to use a correct w̃ι to trigger a different
state transition, it proves a wrong execution of R and γ0 of
R’s deposit is sent to R as a reward. Otherwise, V should
compensateR with γ1 of V’s deposit for the cost of transaction
fee, where 0 < γ0, γ1 ≤ 1. For example, if a malicious
participant provides a deposit transaction in wι which has been
consumed by another transaction (i.e., a consumed UTXO)
in Bitcoin, V can provide the evidences w̃ι that contain the
transaction consumed wι (i.e., a created UTXO), the difficulty
level, and a succession of blocks which start from the block
containing wι to the block containing w̃ι. These uploaded
blocks bks can be deleted from the storage of T0 after the

execution.
In particular, if R does not respond with txres in due

time, V can prove this dishonest behavior by providing the
blockchain evidence to CrossChainGame, and notice all
participants to abort the execution of this contract. Inspired by
[29], [13], the challenge-and-response game can also be used
to prevent malicious behaviors: (i) R refrains participants’
inputs, (ii) a participant does not send inputs to R on time
or (iii) sends an invalid on-chain data.

4) The Finalization Phase: After `−1 rounds of execution,
T0 outputs a final result ouptsfin, and assigns the deposits
to the address of the participants according to the outputs
of Contractccc. Specifically, it generates a set of transactions
{t̃xd1 , ..., t̃xdn} which send the deposits back to the corre-
sponding addresses using the secret keys (skbtc, sketh, ...). The
input of a transaction t̃xdi contains the deposit transaction txdi
generated by pi. If there exists any dishonest behavior of a par-
ticipant, the enclave will assign his deposit to other participants
as punishment. This punishment policy is predefined in the
contract by the participant. V is responsible for monitoring the
finalization of the contract to ensure that these transactions are
generated and sent to the blockchains successfully. Providing
there is no contract to be executed anymore, and the lock time
is up, R and V can redeem their deposits from B̃.

C. Concurrent Control and Validation

To guarantee concurrent correctness of cross-chain con-
tracts execution, we address the concurrency conflict issue
by introducing the Time Traveling Optimistic Concurrency
Control, called TicToc [33]. TicToc utilizes the data-driven
timestamp mechanism that assigns read and write timestamps
for each data item. By doing so, a valid commit timestamp of
a transaction can be obtained according to these timestamps.
Compared with previous scenarios that TicToc is adopted,
the main difference in cross-chain is that no central manager
can lock a write transaction from the blockchain. Hence, we
optimize the principle to determine whether a cross-chain
transaction should be aborted. In particular, we assume that
two hosts are aware of the write timestamp of involved on-
chain data through the IvyCross connector. They do not know
the privacy of these data since data can be encrypted before
being published to the blockchain.

Specifically, a cross-chain transaction Tcs can consist of
two or three phases: a read phase, a validation phase, and
a (possible) write phase. The hosts maintain two sets for each
Tcs: (i) a read set Tcs.RS and a write set Tcs.WS5. The read
(or write) set can be denoted as: {idx, υ, wts, rts}, where
idx is the pointer of this tuple in the storage of IvyCross,
υ is the value, wts refers to the timestamp that the latest
committed transaction wrote to υ, rts refers to the timestamp
that the latest transaction read υ. In terms of the write set
of Tcs, it involves two types of committed transactions: on-
chain transactions and cross-chain transactions, i.e., T .WS =
Tcs.WS ∪ Tbc.WS.

5Since the processing of Tbc is serialized on-chain, and thus we do not
consider its read or write set.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 9

Algorithm 1: Protcon(idx, Tcs.RS, T .WS, chainID, δ, addr)

1: Read Phase:
2: Inputs: Read Set Tcs.RS, tuple idx.
3: en = Tcs.RS.get new entry().
4: en.idx = idx.
5: {en.υ = s.υ, en.wts = s.wts, en.rts = s.rts}
6: Outputs: en
7: Validate Phase:
8: Inputs: Read Set Tcs.RS, Write Set T .WS.
9: for ws in T .WS:

10: . Only lock cross-chain write set in DDS of IvyCross.
11: if ws.idx ∈ Tcs.WS
12: lock(ws.idx)
13: . calculate the commit timestamp
14: for se in Tcs.RS

⋃
T .WS:

15: if se in T .WS then
16: comts = max(comts, se.idx.rts+ 1)
17: else
18: comts = max(comts, se.idx.wts)
19: end
20: end
21: for en in Tcs.RS do:

22: if en.rts < comts then:
23: . Read the maximum write timestamp from T .WS.
24: wts0 = get max wts(T .WS, en.idx))
25: .δ is a minimum block number that determines if a

transaction has concurrency conflict.
26: if en.wts 6= r.idx.wts or ((en.idx.rts ≤ comts) and
| en.rts− wts0) |≤ δ and isLocked(en.idx))

27: abort();
28: else
29: en.tuple.rts = max(comts, en.idx.rts);
30: end
31: end
32: end
33: Write Phase:
34: Inputs: Write Set Tcs.WS, commit timestamp comts,

blockchain ID chainID, address addr
35: for w in Tcs.WS do:
36: sendTransaction(w.idx.υ, chainID, addr)
37: w.wts = w.rts = comts

38: unlock(w.idx)
39: end

Specifically, when a cross-chain transaction Tcs reads a
data from the blockchain, a version of transaction Tcs can be
committed (i.e., enter the write phase) only when the following
conditions hold:

∃comts,

(∀η ∈ {versions read by Tcs}, η.wts ≤ comts ≤ η.rts)
∧ (∀η ∈ {versions written by Tcs}, η.rts ≤ comts),

(4)
where wts and rts refer to the previous write and read
timestamp, comts refers to the commit timestamp of Tcs.
Equation 4 illustrates that a version read by Tcs is valid, only
when its commit timestamp is between the values of wts and
rts. A version write by Tcsis valid, only when its commit
timestamp is greater than rts.

Following [33], we demonstrate the concurrency control
as shown in Algorithm 1. The first read phase shows the
procedure for accessing a tuple. The value υ and the timestamp
wts and rts are read atomically to ensure the consistency of
value and timestamp. The second phase is to compute the
commit timestamp comts of a Tcs using the read and write
set. As for the validation of Tcs.RS, the commit timestamp
comts is calculated upon the principles of Equation 4. Note
that if a tuple entry’s rts is less than comts, then it is
possible that another transaction (e.g., T .write) has modified
the value between rts and comts. In this case, the cross-
chain transaction Tcs has to be aborted and re-executed in the
next round. Furthermore, if the local read timestamp rts is
different with the latest one (i.e., r.idx.rts), and a blockchain
transaction Tbc has modified r.idx.υ between rts and comts,
which means a certain Tbc might be executed concurrently
within this time. In our design, we follow a basic principle
that Tcs.read should be stagger with Tbc.write if the absolute
time difference between them is less than a setting value δ (see

Line 25), where δ is set according to the block confirmation
time of the blockchain. Otherwise, it can go to the final write
step. In this step, the entries in Tcs.WS will be written to the
blockchain, and updated in the DDS of IvyCross.

D. Incentive Mechanism using Sequential Game Theory

To prevent collusion attacks between R, V and participants,
we leverage economic means to incentivize them to behave
honestly. Owing to the sequential behaviors between R, V and
participants, we model their interactions as a sequential game
in which one player determines his action before the other
players choose theirs [34]. Specifically, we consider a time
horizon of ` rounds. In each round ι ∈ [`], a reward provided
by participants is shared by R and V . Assume that the total
payment provided by participants forR and V is M (excluding
the profits from collusion with certain participants), where
each participant pays for M/n. The payment sharing ratio
is α (where α < 1) determined by the negotiation between
two hosts. Then the average payment for each round denotes
as r(ι) = M/`, and the total amount of payments for R and
V is denoted as α ·M and (1− α) ·M , respectively.

For simplicity, the cost of a host in one round is considered
as a function c(ι), regardless of an honest or dishonest behav-
ior.6 Without loss of generality, the reward payment for one
round contract execution is larger than the costs of two hosts.
The cost of contract execution is more expensive than the
cost of verification, i.e., cR(ι) > cV (ι). The transaction fee is
considered as a function f(ι) = {f(1), . . . , f(`)}, where f(ι)
is determined by the number of transactions and the size of a
transaction in round ι. Besides, if a party behaves dishonestly,
this behavior can be detected and punished by a penalty

6It can be extended to take behavior-dependent (e.g., honest or dishonest)
into consideration.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 10

function P , which transfers the deposit of the dishonest party
(i.e., a host or a participant) to the address of the others.

Following the game theory methodology [34], we formalize
the essential concepts for modeling a sequential game, includ-
ing the strategy and utility function, and further utilize the back
reduction method to solve for a sequential Nash Equilibrium
(NE) in this game. Specifically, the strategy profile of a party
is assumed as a binary set s = {H,D}, where “H” stands
for a party behaving honestly: it follows the protocol without
collusion, data falsification (or accepting invalid inputs for
a host). On the contrary, “D” stands for a party behaving
dishonestly, i.e., not complying with the normal protocol.
Given a reward payment function r(·), a cost function c(·), a
transaction fee function f(·) and a penalty function p(·). The
total utility Uθ(S) of a host can be defined as follows:

Uθ(S) =
∑̀
ι=1

(rsθ (ι)− f(ι)− c(ι)) + Psθ , (5)

where sθ refers to the strategy of a host θ ∈ {R,V}, and P
sθ

refers to the reward payment.
The total utility of a participant pi is determined by the

design of the contract. We assume that the profit for participant
pi in a contract is denoted as Rpi . For instance, if pi wins
a cross-chain lottery game, he can get a contract reward,
otherwise, he just pays a transaction fee for the contract
execution. We use Rmax to denote the maximum profit of
pi, i.e., 0 ≤ Rpi ≤ Rmax. Assume that the collusion happens
between a malicious participant (identified by p∗i) and two
hosts, we can observe that only both hosts collude with p∗i ,
p∗i can successfully deceive other participants in IvyCross. In
this situation, we assume that the assignment of the collusion
profits for R and V are β1 ·Rmax, β2 ·Rmax, then the profit
obtained by p∗i is (1− β1 − β2) ·Rmax.

The utility of R, V and participant pi is shown in Figure
7. Each nonterminal node in the game tree is owned by a
host, and each terminal node assign a profit vector for a
participant and two hosts, i.e., u(s) = (upi(s), uR(s), uV (s)).
Specifically, to solve the optimal strategy of the sequential
game, we first describe the definition of sequential NE as
follows:

Definition 1 (Sequential Nash Equilibrium). A strategy profile
(s∗
pi
, s∗
R
, s∗
V
) is denoted as a sequential Nash Equilibrium (NE)

in the three parties sequential game, if no party θ̃ ∈ {R,V, pi}
can improve his profit by altering the strategy s∗

θ̃
with the other

party’s strategy S∗s
θ̃
:

upi
(s
∗
pi
, s
∗
R
, s
∗
V
) ≥ upi (spi , s

∗
R
, s
∗
V
), for each spi

∈ S∗, and

uR (s
∗
pi
, s
∗
R
, s
∗
V
) ≥ uR (s

∗
pi
, sR , s

∗
V
), for each sR ∈ S∗, and

uV (s
∗
pi
, s
∗
R
, s
∗
V
) ≥ uV (s

∗
pi
, s
∗
R
, sV), for each sV ∈ S∗.

(6)

In other words, a strategy profile (s∗pi , s
∗
R, s

∗
V) is a NE if

no party in the defined game can improve his expected utility
by altering the current strategy s∗ (and vice versa).

Next, we leverage back reduction to analyze and solve for a
NE in a sequential game. The back reduction method proceeds
from the end of a problem to decide a sequence of choices.
First, we consider the participant as an honest party (s

pi
=

SMU Classification: Restricted

1

𝒑𝒊

H

D

2

3

4

5

H

D

H

D

H

D

H

D

H

D

H

D

6

7

{𝑅𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐ℛ 𝜄), (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

𝑐𝑣(𝜄)}

{𝑅𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐ℛ 𝜄) + 𝑃𝒱 , (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

𝑐𝑣(𝜄) − 𝑃𝒱}

{𝑅𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(2𝑓 𝜄 + 𝑐ℛ 𝜄) − 𝑃ℛ , (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐𝑣 𝜄) + 𝑃ℛ}

{𝑅𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐ℛ 𝜄), (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

𝑐𝑣(𝜄)}

{−𝑑𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐ℛ 𝜄), (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

𝑐𝑣(𝜄)}

{−𝑑𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐ℛ 𝜄) + 𝑃𝒱 , (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

𝑐𝑣(𝜄) − 𝑃𝒱}

{−𝑑𝑝𝑖 −𝑀/𝑛, 𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(2𝑓 𝜄 + 𝑐ℛ 𝜄) − 𝑃ℛ , (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐𝑣 𝜄) + 𝑃ℛ}

{(1 − 𝛽1 − 𝛽2) ∙ 𝑅𝑚𝑎𝑥 −𝑀/𝑛,

𝛼 ∙ 𝑀 −
𝜄=1

ℓ

(𝑓 𝜄 + 𝑐ℛ 𝜄) + 𝛽1 ∙ 𝑅𝑚𝑎𝑥 , (1 − 𝛼) ∙ 𝑀 −
𝜄=1

ℓ

𝑐𝑣(𝜄) + 𝛽2∙ 𝑅𝑚𝑎𝑥}

𝓡

𝓥

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

Fig. 7. The sequential game tree for R, V and pi. Each vertex denotes a
choice for a party. The arrow of the vertex denotes a possible strategy {H,D}
for that party. The profits of three parties are specified at the terminal nodes,
e.g., v1 = {upi , uR , uV }.

spi1 = H) and analyze the utilities of the two hosts when R
and V behave honestly and dishonestly, respectively (cf. Figure
7). We found that sR = sR2

= sV = sV4
= H , which means

the contract execution is correct without the complaint of V .
This is because when s

pi
= H , the utility of R in {v1, v2}

where sR = H is greater or equal to {v3, v4} where sR = D,
regardless of the strategy of V . That is, if R accepts an invalid
wι for contract execution, the dishonest choice of R can be
detected by V that R would be punished with PR. Of course,
if V fails in a challenge, he needs to pay for the transaction
fees and the computation resources.

Similarly, if the participant is a dishonest party (spi =
s
pi1

= D), we can observe that the strategy ofR and V are de-
termined by the amount of collusion profits. More concretely,
if PV ≥ β1 ·Rmax, then the utility of R in {v5, v6} is greater
or equal to {v7, v8}, i.e., sR = sR3

= H . Consequently, V
will behave honestly because uV (D,H,H) > uV (D,H,D).
We know that the party who moves first has the first-mover
advantage. However, as long as the amount of V’s deposit
is larger than the collusion profits, both hosts will choose to
behave honestly, making the profit of p∗i negative.

Therefore, according to the back reduction, we obtain
(s
pi
, sR , sV) = (H,H,H) or (D,H,H). It can be found eas-

ily that (s
pi
, sR , sV) = (s

pi1
, sR2

, sV4
) = (H,H,H), because

u
pi
(H,H,H) = R

pi
−M/n > u

pi
(D,H,H) = −d

pi
−M/n.

Therefore, the NE of the sequential game in IvyCross is found
at (s∗

pi
, s∗
R
, s∗
V
) = (H,H,H), i.e., the path 1→ 2→ 4→ v1

in Fig. 7. Under this strategy, neither pi, R nor V can improve
their profit by altering the strategy. Regardless of the strategy
of pi and R, V will behave honestly to avoid penalty and
expand his profit. Therefore, the conclusion of the sequential
game is given in Theorem 1 as follows:

Theorem 1. In the sequential game between pi, R and V ,
there exists a strategy S∗ = (s∗pi , s

∗
R, s

∗
V) = (H,H,H) that

satisfies NE, where three parties choose the strategy of H if
they are rational.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 11

TABLE II
State-of-the-art works in cross-chain communication. φ(·) refers to the size of proof for proving an on-chain data. Below, m refers to the number of

blockchains, C and ω refer to the blocks number to be stored in a TEE, ω � C, for instance, ω = 8064 in Bitcoin and C = 6 in Tesseract [12].

Approach Attacks Defense Privacy
preservation

Minimal data
for φ(·) #Block

Concurrency Control Smart contacts for
blockchain Interoperability

Rollback attack Collusion attack

Ekiden [13] −− O(mω)

Fastkitten
[29]

−− O(mω)

Tesseract [12] O(mω)

HyperService [15] −− −−

A2L [9] −− −−

IvyCross O(mC)

−− refers to the approach does not involve for different system model; refers to the approach does not consider or solve; refers to the approach needs to be improved to
achieve the property; refers to the approach can solve.

VI. SECURITY ANALYSIS AND DISCUSSION

A. Security analysis

In this section, we begin by specifying the definition of the
UC Security. Due to space limits, the proof using the UC-
framework is detailed in the appendix of the online version
[20]. Then, we analyze the security of our proposed protocol
Protccc under the security model.

Definition 2 (UC Security of Protccc). Let λ be a security
parameter, assume that Gatt’s attestation scheme and digital
signature are unforgeable andH be second preimage resistant,
LB be a global functionality of blockchain, GB̃ccg be an
ideal contract functionality, and Protccc be a protocol in the
(Gatt,H,GB̃ccg,LB)-hybrid world. Then, Protccc is said to UC-
realize Fccc in the (Gatt,H,GB̃ccg,LB)-hybrid world if for any
ppt adversary A, there exists a PPT simulator S, such that
for all PPT environment E and inps ∈ {0, 1}∗, the following
formula holds:

∀E , REALG
B̃
ccg,Gatt,H,LB

Protccc,A,E (λ, inps) ≈

IDEALFccc,Gatt,H,LBS,E (λ, inps)
(7)

Theorem 2. There exists a privacy-preserving CCC protocol
Protccc, which UC-realize the ideal functionality Fccc in the
CrossChainGame contract (L,H,GB̃ccg,Gatt)-hybrid world.

Proof. In the appendix of the online version [20], we formally
prove Theorem 2 in the hybrid world, where we elaborate
the ideal functionalities and formal statements in the hybrid
world.

Confidentiality. It is straightforward that the confidentiality
property can be achieved using TEE in a cross-chain scenario.
The inputs of participants and the outputs of TEEs are en-
crypted using the public keys and an adversary A can not
break the basic security of public encryption. All public keys
are published in DDS which could be recognized as a secure
certificate authority (CA), and intermediary states are stored
with persistence and immutability in B̃. Furthermore, inspired
by [35], the unlinkability between participants is preserved
because the off-chain TEE can play the role of a mixer to
unlink their relationship.

Security against collusion attacks. The critical challenge of
IvyCross is the collusion attacks among participants and the
two hosts. To overcome these, we first require all parties to
deposit in the corresponding blockchains. Then, during the
execution phase, the execution host V monitors the behaviors
of R. If R behaves dishonestly, V can launch a challenge-
and-response request in the CrossChainGame contract. In
IvyCross, both hosts cannot forge a blockchain evidence to
deceive the enclave into accepting it. Based on this premise,
we analyzed that when the amount of V’s deposit is greater
than the collusion profit, there exists an optimal strategy S∗ =
(s∗
pi
, s∗
R
, s∗
V
) = (H,H,H) that satisfies NE in the sequential

game. Namely, collusion between certain participants and two
hosts is not a dominant strategy for neither of them. Regardless
of the strategy of others, each party will behave honestly to
avoid penalty and make profit.

Security against unreliable hosts. An unreliable host can
cause the incorrect contract execution in the enclave, includ-
ing rescheduling the order of the transactions arbitrarily and
replaying the old states to the enclave. To address this issue,
during the execution phase, we require participants to send
inputs (with a timestamp of ti) to both hosts simultaneously.
Thus, if R schedules the execution order of transactions
wrongly, it can be detected by V by checking the consistency
of state transitions with R’s execution attestation. V can
challenge R in the third phase and the deposits of R will
be sent to V . Similarly, if one host launches rollback attack to
trigger incorrect state transition, yet the state of each round
is recorded in DDS and B̃, allowing others to check the
consistency and correctness of the old state. As a matter of
fact, the design of CrossChainGame and the sequential game
theory-based incentive mechanism can be used to thwart this
attack. Furthermore, we believe that such incentive mechanism
could also impel two hosts (as cross-chain service providers)
to invest enough resources to secure their systems, such as
making more outgoing connections to prevent eclipse attacks
which may cause the network to exhaust the connection
bandwidth.

Protection against External Adversaries. R and V are
assumed not to be compromised by external adversaries si-
multaneously, which is a strong assumption. The two hosts
architecture may increasingly become the target of external
adversaries. To defend against such a SPoF, we can build a de-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 12

centralized ecosystem, where many cryptocurrency exchanges
can take part in providing cross-chain services for profits and
only two exchanges are required for each contract execution.
We can design hosts selection based on randomness measures
that could reduce the possibility of collusion with participants
and hosts7. Alternatively, we can mark these exchanges with
a reputation by using the off-the-shelf reputation mechanisms.
Participants can select a reliable host based on the reputa-
tion. In addition, we consider that the external front-running
attacks can also be restrained through the TEE-based smart
contracts in cryptocurrency exchange. Similar to Tesseract
[12], IvyCross can prevent the adversary A from front-running
others by inspecting the entire communication.

B. Comparison with State-of-the-arts

As shown in the Table II, we compare IvyCross with the
state-of-the-art works [15], [12], [13], [29], [9]. Enforcing
blockchain interoperability by designing privacy-preserving,
attacks-defending smart contracts, is still an open challenge.
The off-chain approaches, such as Ekiden [13], Fastkitten [29],
and Tesseract [12] using TEE can achieve privacy-preserving
smart contracts. However, these approaches do not focus on
solving the high costs of communication and computation of
TEEs. More concretely, they all require each TEE to store
several blocks. The minimal data for proving an on-chain data
using these approaches is φ(mω) which is much larger than
φ(mC) in IvyCross. In addition, most of these approaches
[11], [12], [13] resort to a number of TEEs for achieving
interoperability and correctness, which introduces high com-
munication costs between TEEs. Besides, HyperService [15],
and A2L [9] are cryptographic primitives-based approaches
to achieve blockchain interoperability, while these approaches
are not so efficient compared with IvyCross. Nonetheless, we
recognize that the advantages of existing approaches, e.g., the
front-running attacks and race condition defense as in [12], can
be combined into our design for achieving privacy-preserving
cross-chain smart contracts in a more secure and resource-
saving way.

In particular, we have to point out that IvyCross does not
have high robustness compared with [13], [12], the limitation
here is that two hosts might become the target of the adversary,
causing the single point of failure. Besides, our concurrency
control protocol is a mitigation solution for executing off-chain
contracts in TEEs. It is essential to design a more general
protocol to solve the concurrency issue when facing a large
number of concurrent transactions.

VII. IMPLEMENTATION AND EVALUATION

The proof-of-concept implementation of IvyCross is imple-
mented using the Solidity, Java, and C++. We implemented
three use cases to demonstrate its effectiveness and practicality.

7We leave the defense against external adversaries and the choice of reliable
hosts as future works.

SMU Classification: Restricted

IvyCross Connector

Verification Host 𝓥Execution Host 𝓡

Key

generation

Input & Block

& transaction

verification

Transaction

generation

Smart contract

program

Enclave

creation

Enclave-to-

enclave

communication

Block &

transaction

forwardingd
a
ta

 e
n
c
ry

p
ti
o
n

 &
 d

e
c
ry

p
ti
o
n Enclave

creation

Enclave-to-

enclave

communication

Block &

transaction

forwarding

Key

generation

Input & Block

& transaction

verification

Transaction

generation

Smart contract

program

d
a
ta

 e
n
c
ry

p
ti
o
n

 &
 d

e
c
ry

p
ti
o
n

Bitcoinj Web3j FISCO BCOS SDK
…

Fig. 8. The implementation of IvyCross.

A. Implementation Design

In the implementation of IvyCross (see Figure 8), each host
consists of two parts: (i) one part is executed in memory-
isolated SGX enclave, which is responsible for the private
computation including key generation, data (e.g., inputs, trans-
actions) encryption and decryption, and transaction generation.
(ii) The other part is run outside of the SGX enclave. It is in
charge of creating an enclave instance, communicating with
another host and forwarding data to the internal enclave.

To avoid the complex development of Intel SGX based on
SGX SDK, we leverage a light-weight library OS, named
Occlum [36], to build the Intel SGX environment. Occlum
allows user applications to run on an attested SGX enclave
with little or no modifications to the programs, and supports
different programming languages for deploying a TEE-based
program, such as Go, C and Java. Here, we build two Occlum
OS in different servers (Ubuntu18.04.4LTS, “Intel Xeon(R)
CPU E5-2683 V3” @ 2.00GHz, Gtx 1080TI GPU, 256GB of
DRAM) to simulate the two hosts R and V .

Further, to validate the practicality of IvyCross, we deploy
three testnets on local servers (Ubuntu 16.04 xenial, “x86 64
Linux 4.15.0-142-generic” @ GeForce GTX 1080 Ti GPU,
2534MiB/31977MiB of RAM) for Bitcoin, Ethereum and FB.
We design a virtual coin in FB and construct three use cases
across three blockchain systems. Note that almost all of the
blockchains have implemented a client library to allow inter-
acting with them. Specifically, to ensure the randomness of the
key generation and reduce the possibility that an adversary
learns about the secret keys, we let two hosts R and V to
generate a key pair by combining the internal hardware-based
randomness sgx read rand(), extra OS’s randomness, and a
set of latest blocks hash from different blockchains. Besides,
we leverage the OpenSSL toolkit for encryption and digital
signature.

B. Applications

We highlight three concrete use cases to show the practi-
cality and efficiency of IvyCross.

Lottery. As mentioned earlier (see Sect. II-A), the cross-
chain lottery contract determines one winner based on a
collaboratively generated number. We only require participants
to send a number to the enclave without using an inefficient
commit-and-reveal scheme.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 13

Auction. A second-price sealed-bid auction contract is im-
plemented where participants submit bids without knowing
others’. The contract determines the winner by checking
who bids the highest price, and requires the winner to pay
for the second-highest price. The seller generates a set of
public addresses in all different blockchains for accepting the
payment of the winner, and other participants can redeem
their deposits back. Note that the privacy of the bidding price
can be preserved, which provides a fairer way for achieving
decentralized auction across blockchains.

Housing Loan. Housing loan requires a participant to provide
documents to show that he has the capability to pay for
the loan. These documents can be obtained from different
domains. We implement a cross-chain contract HousingLoan
that fetches values from different blockchains. In our imple-
mentation, we assume the inputs of participants, e.g., salary
and deposits, are privately stored in Ethereum and FISCO
BOCS. The amount of the money that a participant could loan
is calculated based on the private data. This case illustrates
that IvyCross can be adopted in permissioned blockchains for
preserving the privacy of on-chain data.

C. Evaluation Results
To evaluate the performance of IvyCross, we conducted the

experiments for 10 times with 1200 clients for the above three
use cases, where each case has identical clients on Bitcoin,
Ethereum, FB testnets, respectively.

Scalability. We recognize that the overhead caused by remote
attestation and state persistency on B̃ affects the scalability of
IvyCross significantly. Inspired by Ekiden [13], we use the
off-chain transactions batching and multithreading contracts
execution to improve the scalability of IvyCross. More con-
cretely, during the contract execution, we compress multiple
off-chain transitions into a single on-chain transaction, instead
of sending each state checkpoint to B̃ separately. In fact,
the off-chain transactions batching does not compromise the
security of our protocol, as long as the outputs of contracts
are kept secret in the enclave. Similarly, the enclave T0 is
able to cache the states in the enclave, and send the last
state transition to IAS for attestation. Once the execution
of a contract is completed, R sends the last state with the
authenticated attestation to the V . This can significantly reduce
the communication latency caused by remote attestation.

Specifically, each client sent 6 transactions (in the initial-
ization and execution phase) to the hosts in total. We start the
timer when the participant sends a request and end when a con-
tract outputs the final result. We disregard the first and last 10%
of transactions and evaluate the stable performance. Multiple
threads are created in the enclave to process the participants’
requests. As shown in Figure 9 (a), IvyCross achieves high
performance that the peak throughput of the lottery, auction,
and housing loan contract can up to 5960txn/sec, 5942txn/sec,
5883txn/sec, respectively. The throughput of three contracts
changes with the increasing amount of participants, where the
consensus time is set as 15s (cf. Figure 9 (b)).

End-to-end Execution Latency. In each experiment, we first
evaluate the end-to-end latency of a normal situation that all

SMU Classification: Restricted

P
e
a
k
 T

h
ro

u
g
h
p
u
t
(t

x
n

/s
)

1

10

100

1000

10000

Lottery Auction Hosing Loan

(a) (b)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1024

Th
ro

u
gh

p
u

t
(t

xn
/s

)

The number of participants

Housing Loan Auction Lottery

IvyCross

Ethereum

Fig. 9. (a) The peak throughput of three cross-chain contracts. Three
contracts are similar because the differences between the contract logic are
unobvious. (b) The throughput of three contracts with the increasing amount
of participants.

parties behave honestly, and then evaluate the case that R
behaves dishonestly (cf. Table III). Specifically, the latency
comes from three aspects: (i) The remote attestation using the
IAS between two hosts R and V . For each execution round,
an output from R needs to be attested before being sent to
V , which takes 2.923s on average. (ii) The latency caused
by the challenge-and-response phase in which an execution
result needs to wait for L3 blocks to allow V to send a
challenge in case of dispute. (iii) The latency of on-chain
transaction confirmation. The on-chain transactions takes on
average 14.254s for a state persistency on B̃.

More concretely, in the initialization phase, we analyze
the latency on key generation, contract deployment, and the
deposit of two hosts and participants in blockchain. The
average time of contract deployment in the TEE takes about
2.013s which has a relatively high proportion in Occlum, while
it executes only once for each contract. The performance of
deposit, including the transaction generation and confirmation,
takes 0.519s, 15.111s, 1.083s in local Bitcoin, Ethereum and
FB testnets on average, which depends on the difficulty level
setting. A low difficulty level is set in our configurations for
saving resources. In the execution phase, the time consumption
mainly refers to the computation which includes the process of
signature verification, data decryption, and result computation
in the enclave. Note that these three applications are one-
round interaction contracts. It takes about 0.499ms, 0.532ms,
0.604ms on average in this enclave. If we add the time cost
of one time attestation (about 2.923s), this phase is still
comparably efficient for secure computation. The finalization
phase mainly contains the process of payment transaction
generation in enclave and confirmation in blockchain. The
time consumption depends on the types of transaction and the
consensus time. In the housing loan case, all outputs generate
an Ethereum transaction and take the longest time of 15.796s
on average. Note that the time consumption in challenge-and-
response takes 32.290s on average, which is a bit high, but
this phase only happens when there exist malicious parties.

Transaction fees. We implement the contract Cross-
ChainGame using solidity in local Ethereum network and
analyze the transaction fees in the lottery case. The transaction
fee of deposit for each participant takes 0.05 ∼ 0.82 USD
in Bitcoin (cf. Table IV). As for an Ethereum transaction,
the cost is calculated according to the gas consumed in a
specific function. The gas prices are denoted in Gwei, where

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 14

SMU Classification: Restricted

0.502

0.514

0.571

0.537

0.569

0.460

0.480

0.500

0.520

0.540

0.560

0.580

4 8 12 16 20

Th
o

u
gh

p
u

t
(T

en
 t

h
o

u
sa

n
d

 t
xn

/s
)

Thread Count

0.00%

16.40%

24.80%

27.80%
30.10%

32.40%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0 4 8 12 16 20

A
b

o
rt

 R
at

e

Thread Count

(a) (b)

Fig. 10. The scalability and abort rate of our concurrency control algorithm
with 10 data items.

1 Gwei = 1× 10−9 ETH . The price of 1 ETH is equal to
$1, 864 at the time of writing (August 2021). Each participant
needs to pay 0.05 USD for a deposit in Ethereum on average.
The costs of the transaction fee in each execution round ranges
from 26,801 Gwei to 65,341 Gwei, i.e., $0.0499 ∼ $0.1217.
To reduce the transaction fee, in the execution phase, we
can compress many state update transactions into a single
transaction. The total costs can be controlled in two rounds,
i.e., 0.0499∗n+0.1207, where n refers to the number of par-
ticipants. The challenge-and-response transactions txcha and
txres require 27,361 Gwei to 27,896 Gwei, i.e., 0.051 ∼ 0.052
USD in transaction fees.

Concurrency Control. To evaluate the designed cross-chain
concurrency control algorithm, we utilize the transaction statis-
tics including transaction throughput and abort rate, where
abort rate refer to the total number of aborts divided by the
total number of transactions. We use the HousingLoan cross-
chain contract that retrieves data from the blockchain and
other blockchain transactions can update the on-chain data.
We prepare 1000 transactions which include 500 cross-chain
transactions and 500 source blockchain transactions.

Each cross-chain transaction contains several read and write
operations, while a blockchain transaction only contains write
operation. We execute these transactions on 10 data items and
design different threads to run them. As shown in Fig.VII-C,
we can see that with the increasing of the thread count, the
abort rate increases obviously, which is due to that reason
that the write transactions execute concurrently with the read
transactions. These concurrent transactions should be abort if
their time difference is less than or equal to δ. We further
set different δ and find that the abort rate decreases with
the increasing of δ, which is reasonable due to the lower
probability of transactions concurrency.

Existing well-known cross-chain platforms, such as Hy-
perService [15] and Polkadot [17], inherently publish the
data on chain, and thus can not accomplish the above use
cases in a privacy-preserving way. To summarize, IvyCross
can implement them with privacy-preserving, and is highly
efficient by moving the computation to the off-chain. The cost
of transaction fee is comparatively low due to the reduced size
of transactions.

VIII. RELATED WORK

In this section, we review the state-of-the-art schemes which
are related with blockchain interoperability.

TABLE III
The performance of IvyCross execution in different phases. All time are in

seconds. We present the statistics including the mean (average), and the
proportion (%) taken by different phases.

CCC Phases
Lottery Auction Housing Loan

Mean % Mean % Mean %

Initialization 22.097 33.43 21.451 34.27 22.743 30.36

Execution 2.831 4.28 2.916 4.66 2.97 3.96

Challenge-and-response 32.265 48.81 31.193 49.84 33.413 44.60

Finalization 8.913 13.48 7.029 11.23 15.796 21.08

Total 66.106 62.589 74.922

TABLE IV
The number of off-chain and on-chain transactions (# txs), and estimated
transaction fees by IvyCross. It calculates the fees (USD) using the data

from BINANCE retrieved on June. 18, 2021

Lottery Contract across Bitcoin, Ethereum, and FISCO BOCS.
Off-chain On-chain

Size (bytes)CCC Phases # txs Size
(bytes) # txs ETH BTC FB

Fees
(USD)

Initialization 22
2,643∼
18,551 13 720∼

721
166∼
2,486

908∼
1,012 0.05∼

0.82

Execution 20
1,077∼
1,090 10 311∼

318
0 0

0.051∼
0.051

Challenge-
and-response

2
1,098∼
23,315 2 310∼

326
0 0

0.051∼
0.052

Finalization 0 0 11
1,023∼
1,031 309∼

310

916∼
1,108 0.05∼

0.1

A. Blockchain Interoperability

Blockchain interoperability attracts extensive attention both
in academic and industrial communities is a hot topic with the
rapid adoption of blockchain. In general, the blockchain inter-
operability technologies can be mainly classified into three
categories: (i)cryptography-based approach, (ii) sidechains-
based approach, and (iii) TEEs-based approach.

Cryptography-based approach. The cryptography-based ap-
proach mainly refers to off-chain payment/state channels
which utilize cryptographic primitives to achieve interoperabil-
ity [6], [7], [8], [10]. The atomic swap, proposed by Herlihy
[21], is a prior approach that can achieve atomic coin exchange
based on hash-lock time contracts in public blockchain, e.g.,
Bitcoin and Ethereum. It enables the ability that users can ex-
change their coin with others across heterogenous blockchains.
Deshpande [37] proposed a privacy-preserving cross-chain
atomic swap. It formally defined the notions of privacy in
atomic swap and introduced the primitive Atomic Release of
Secrets (ARS) to achieve privacy-preserving. Carsten et al
proposed P2EDX to realize privacy-preserving cryptocurrency
exchange using multi-Party computation [6]. Thyagarajan et
al use scriptless scripts to implement interoperability without
relying on Hash Time Lock Contracts (HTLC) [8]. Their
scheme is compatible with different blockchain systems by
introducing the notion of Lockable Signatures. Tairi et al
proposed an elegant scheme named A2L, an Anonymous
Atomic Locks to realize unlinkablity and interoperability in
payment channel hubs by leveraging adapter signatures and
randomizable puzzles [7].

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 15

Most of cryptography-based approaches focus on atomic
decentralized cryptocurrencies exchange between different
blockchain systems in an all-or-nothing manner, e.g., ex-
changing Bitcoin to Ethereum. As we know, cryptocurrencies
exchange is only one of the functionality of blockchain in-
teroperability. When faced with complex computation across
blockchains, e.g., supporting cross-chain smart contracts, cur-
rent cryptography-based approaches might come with an ex-
pensive computation due to the need for heavy cryptographic
techniques, e.g., secure multi-party computation.

Sidechains-based approach. Sidechains-based approach real-
izes blockchain interoperability by introducing an intermediary
blockchain which is essentially a “blockchain of blockchains”
[15], [38], [16], [17]. One of the typical research works is
HyperService [15]. The core design is the Network Status
Blockchain (NSB) which supports programmability by in-
troducing customized smart contracts across heterogeneous
blockchains. However, this approach lacks privacy and is
vulnerable to front-running attacks for exposing data in the
intermediary blockchain [12]. Sidechains have their consensus
protocol and rely on a set of parties to maintain the security
of the underlying sidechain. While these proposals have inher-
ently scalability issues, and some of them lack privacy pro-
tection for exposing data in the intermediary blockchain [15].
Polkadot [17] and Cosmos [16] are two typical sidechains-
based approaches that aim to provide interoperability frame-
work for blockchain. Currently, there are still in the process
of development and testing.

TEEs-based approach. Recent many efforts to realize
blockchain interoperability focus on using trusted hardware,
e.g., Intel SGX, to improve the functionality and security of
cross-chain. More concretely, Bentov et al proposed a TEEs-
based solution to realize real-time cross-chain cryptocurrency
exchange named Tesseract [12]. Tesseract is able to address the
front-running issue. Cheng designed a platform called Ekiden
which is for privacy-preserving smart contracts [13]. In addi-
tion, Teechain [14] constructed a layer-two payment network
that can execute off-chain transactions across blockchains.
These proposals have laid foundations for the TEEs-based
cross-chain paradigm. Compared with these, IvyCross consid-
ers a more practical solution to reduce the communication and
computation overhead. Adaption of cryptography-based prim-
itives, e.g., zero-knowledge proof and homomorphic encryp-
tion, to IvyCross for secure multi-computation is a direction
for our future work.

B. Concurrency control in Blockchain Interoperability

Concurrency control is the management of contention for
controlling serializable schedules in Database Management
Systems (DBMS) [39], [40]. Current concurrency control
protocols usually use timestamp, i.e., timestamp ordering, to
address conflicting operations. They can be divided into three
categories: (i) Two-phase Locking (2PL) [39], (ii) Determin-
istic Concurrency Control (DCC) [40], and (iii) Optimistic
Concurrency Control (OCC) [33]. 2PL utilizes locks to guar-
antee serializability. In the DCC protocol, transactions are
first ordered by a (centralized or distributed) sequencing layer

with a simple and deterministic locking protocol. The OCC
protocol allows transactions to be executed without locking at
first, and then a manager will examine if conflicts have taken
place. It has a better performance than the other two protocols
when concurrency does not emerge frequently. Wang [41] ex-
tended the two-phase commit protocol to accomplish arbitrary
transactions without a central component. Zhao [42] discussed
the ACID properties and proposed two distributed commit
protocols for distributed cross-chain transactions. However, a
coordinator is required exists to schedule transactions across
blockchains. This paper adopts the Time Traveling OCC (Tic-
Toc) protocol which supports data-driven timestamp manage-
ment [33]. Compared with TicToc, we extend it to enable non-
blocking validation in the computation of commit timestamp.

IX. CONCLUSION

In this work, we presented IvyCross, a privacy-preserving
blockchain interoperability framework that supports smart con-
tracts across multiple blockchains. IvyCross achieves interop-
erability by employing two TEE-powered hosts while without
requiring several TEEs to store a large number of blocks
as in the existing approaches in the literature. The overhead
of communication and on-chain costs can be significantly
reduced. The interaction of the two TEE-powered hosts is
modelled as a game based on sequential game theory, making
collusion a less favorable choice for the rational hosts. We
believe that this game theory based interaction model can find
applications beyond blockchain interoperability. We formally
analyzed the security of IvyCross in the UC framework, and
demonstrated its feasibility and efficiency via three real-world
use cases.

REFERENCES

[1] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A
survey,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8076–8094,
2019.

[2] K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud computing:
a survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 2009–2030, 2020.

[3] P. Tolmach, Y. Li, S.-W. Lin, and Y. Liu, “Formal analysis of composable
DeFi protocols,” in Proceedings of the 1st Workshop on Decentralized
Finance (DeFi), Mar. 2021.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-

Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok: communication across
distributed ledgers.” 2019.

[6] C. Baum, B. David, and T. K. Frederiksen, “P2dex: privacy-preserving
decentralized cryptocurrency exchange,” in International Conference on
Applied Cryptography and Network Security. Springer, 2021, pp. 163–
194.

[7] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A 2 l: Anonymous atomic
locks for scalability in payment channel hubs,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 1834–1851.

[8] S. A. K. Thyagarajan and G. Malavolta, “Lockable signatures for
blockchains: Scriptless scripts for all signatures,” in 2021 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2021, pp. 937–954.

[9] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “A2l: Anonymous atomic
locks for scalability in payment channel hubs,” Cryptology ePrint
Archive, Report 2019/589, Tech. Rep., 2019.

[10] S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sánchez, “Universal
atomic swaps: Secure exchange of coins across all blockchains,” Cryp-
tology ePrint Archive, 2021.

[11] Y. Yan, C. Wei, X. Guo, X. Lu, X. Zheng, Q. Liu, C. Zhou, X. Song,
B. Zhao, H. Zhang et al., “Confidentiality support over financial grade
consortium blockchain,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 2227–2240.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 16

[12] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1521–1538.

[13] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2019,
pp. 185–200.

[14] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 63–79.

[15] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and
Y.-C. Hu, “Hyperservice: Interoperability and programmability across
heterogeneous blockchains,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 549–
566.

[16] J. Kwon and E. Buchman, “Cosmos whitepaper,” 2019.
[17] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-

work,” White Paper, 2016.
[18] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding

concurrency to smart contracts,” Distributed Computing, vol. 33, no. 3,
pp. 209–225, 2020.

[19] P. S. Anjana, S. Kumari, S. Peri, S. Rathor, and A. Somani, “An efficient
framework for optimistic concurrent execution of smart contracts,” in
2019 27th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, 2019, pp. 83–92.

[20] Y. L. Y. W. J. W. D. L. R. D. Ming Li, Jian Weng, “Ivycross: A trustwor-
thy and privacy-preserving framework for blockchain interoperability,”
2021, https://ia.cr/2021/1244.

[21] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM symposium on principles of distributed computing, 2018, pp. 245–
254.

[22] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

[23] R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested
execution secure processors,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2017, pp. 260–289.

[24] F. Zhang and H. Zhang, “Sok: A study of using hardware-assisted
isolated execution environments for security,” in Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016,
2016, pp. 1–8.

[25] J. Benet, “Ipfs-content addressed, versioned, p2p file system (draft 3),”
arXiv preprint arXiv:1407.3561, 2014.

[26] G. Kaptchuk, M. Green, and I. Miers, “Giving state to the stateless:
Augmenting trustworthy computation with ledgers.” in NDSS, 2019.

[27] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in 2016
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 305–320.

[28] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “{ROTE}: Rollback protection for trusted
execution,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 1289–1306.

[29] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts on
bitcoin,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 801–818.

[30] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber,
and D. Hagimont, “Everything you should know about intel sgx perfor-
mance on virtualized systems,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 3, no. 1, pp. 1–21, 2019.

[31] M. Fang, Z. Zhang, C. Jin, and A. Zhou, “High-performance smart
contracts concurrent execution for permissioned blockchain using sgx,”
in 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 2021, pp. 1907–1912.

[32] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Annual international cryptology conference.
Springer, 1991, pp. 129–140.

[33] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas, “Tictoc: Time traveling
optimistic concurrency control,” in Proceedings of the 2016 Interna-
tional Conference on Management of Data, 2016, pp. 1629–1642.

[34] J. R. Kale and T. H. Noe, “Risky debt maturity choice in a sequential
game equilibrium,” Journal of Financial Research, vol. 13, no. 2, pp.
155–166, 1990.

[35] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena, “Obscuro: A
bitcoin mixer using trusted execution environments,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
692–701.

[36] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 955–970.

[37] A. Deshpande and M. Herlihy, “Privacy-preserving cross-chain atomic
swaps,” in International Conference on Financial Cryptography and
Data Security. Springer, 2020, pp. 540–549.

[38] P. Robinson, R. Ramesh, and S. Johnson, “Atomic crosschain trans-
actions for ethereum private sidechains,” Blockchain: Research and
Applications, p. 100030, 2021.

[39] A. Thomasian, “Two-phase locking performance and its thrashing be-
havior,” ACM Transactions on Database Systems (TODS), vol. 18, no. 4,
pp. 579–625, 1993.

[40] A. Thomson and D. J. Abadi, “The case for determinism in database
systems,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
70–80, 2010.

[41] X. Wang, O. T. Tawose, F. Yan, and D. Zhao, “Distributed nonblocking
commit protocols for many-party cross-blockchain transactions,” arXiv
preprint arXiv:2001.01174, 2020.

[42] D. Zhao, “Cross-blockchain transactions,” in Conference on Innovative
Data Systems Research (CIDR), 2020.

[43] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[44] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 967–
984.

APPENDIX

A. Supplementary Formalism

To analyze the security of the IvyCross protocol Protccc, we
leverage the Universal Composability (UC) framework which
can simplify the process of protocol analysis[43]. Specifically,
we first present the high level description of the UC frame-
work, and then model the ideal functionalities of blockchain
L and TEE Gatt that capture their core operations under the
UC model, and then illustrate the formal protocol Protccc of
IvyCross and the security analysis in the hybrid world. After

that, we present the ideal functionality of FL,H,G
B̃
ccg,Gatt

ccc of
IvyCross. To formalize the security of Protccc, we illustrate
definition 2 and specify the ideal functionalities, and then give
the construction of Simulator S.

B. Brief Description of the UC Model

The UC framework is one of the most widely used methods
that are adopted to analyze the security of cryptographic
protocols. It allows people to analyze their designed protocol
isolatedly by using the universal composition operation. Such
an operation enables us to construct a protocol based on cryp-
tographic building blocks while still proving its security. The
UC framework is essentially a simulation-based method that
compares the execution of the designed protocol π under the
read world with an idealized protocol under the ideal world.
Specifically, in the real world, the execution of the designed
protocol π is modeled as tuples {E ,A, p1, ..., pn}, where E
refers to the environment, p1, ..., pn refer to the participants
of π. Each participant may execute different modules of π. The
real world is related with the execution of the real protocol

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 17

which here can be represented as REALProtccc,A,E(λ, x). λ is
the security parameter and x is the inputs of E . On the other
hand, the ideal world which is related with the execution of
the ideal protocol can be presented as IDEALFcce,S,E(λ, x),
where S refers to the simulator S (called as “ideal adversary”)
that simulates the behaviors of the adversary in the real world.
Specifically, if for any adversary A, there exists a simulator
in the ideal world that E can not distinguish whether it is
interacting with the read world π and A or the ideal world
Fπ and S, then a designed protocol π is said to UC-realize
an ideal functionality Fπ .

C. UC Model for the Blockchains and TEEs
Due to space limits, we put a thorough security proof in

a public anonymous website https://sites.google.com/view/
ivycross/. It presents the global functionalities of blockchain
LB , TEE Gatt, and the construction and the validation of the
simulator S.

The random oracle ideal functionality H. The security
properties are provided in the common random oracle model
which assumes that a hash function exists that no one can
predict output random values. We utilize a random oracle ideal
functionality H that responds to uniformly random numbers
r. A global set R is used to store the query q and the return
r, i.e., (q, r) ∈ R.

The global functionality of blockchain. In the cross-chain
scenario, people have the requirements to exchange coins with
others who lie in different (heterogeneous) blockchains. To
support the security analysis, we utilize the existing model of
[44] to model the basic properties of a global functionality
LB for a blockchain. The initial state of B is public that
participant {pi}i∈(1,...,n) have a balance {ci}i∈(1,...,n) ∈ N.
A partial function F is defined that maps an identifier
sid to an amount of coins locked in blockchain, e.g., use
OP CHECKSEQUENCEVERIFY in Bitcoin to restrict an
execution of a script. The balance of participant pi can
be updated via the instruction update, freeze and unfreeze
from the environment E . In addition, each blockchain has a
persistent storage Storage where a state (e.g., OP RETURN
in Bitcoin) and transactions can be stored. Storage is public
that any party can read and write states on it, including the
adversary A.

The global functionality of TEE Gatt. We adopt the ideal
functionality Gatt introduced in [23]. A TEE is modelled as a
basic attestation abstraction (cf Figure 12). The basic model
of SGX execution can be depicted as two phases: 1) the
initialization phase and 2) the enclave operations phase. In
the first phase, Gatt is initialized with a security parameter
λ and parameterized with a registry regN which refers two
secure hosts equipped with an attested secure processor (e.g.,
an Intel SGX). In our design, we consider a static registry
that contains an execution TEE T0 and a verification TEE T1.
The second phase refers to the enclave operations on a host
N ∈ (R,V) registered in regN . N first creates an enclave
instance and installs a program pram which is to be executed
into the secure environment, and then triggers it to execute
with valid inputs in the attested execution processor.

The ideal functionality GB̃ccg for the CrossChainGame
contract. The CrossChainGame contract is modelled as an
ideal functionality GB̃ccg (cf. Figure 11). GB̃ccg maintains a global
state machine sccg := INIED, ACTIVE, EXECG, FINAL
which refers to the initialized, active, executing and finalized
state. Specifically, the CrossChainGame contract proceeds
in three phases. In the first phase, it receives input from a
registered host N ∈ (R,V). Both two hosts are required to
make a deposit on B̃ in this phase.

In the execution phase, the contract stores an output which
is sent by a global Gatt, Gatt0 into LB̃ upon receiving a write
input, and responds an on-chain data upon receiving a read
input. Specially, upon receiving a challenge input from the
verification host V , it runs a comparison inside the penalty
function and responds to the output of this challenge to V .
According to the pre-defined penalty setting, GB̃ccg will update
the balance of two hosts. If the challenge succeeds, V gets a
challenge reward from R. Otherwise, R is compensated by V
for the cost of the transaction fee. In the finalization phase,
two hosts can send an input (finalize, sid) to finalize the
protocol. Specially, it requires that R is able to redeem own
deposit after V does.

Formal protocol of Protccc. Given the global functionalities
{LB1

, ...,LBm}, G
LB̃
ccg , Gatt0 and Gatt1, the formal protocol of

Protccc in the hybrid world can be shown in Figure 14. The
main description of Protccc has been given in Section V (cf.
Figure 3, 5, and 6).

D. The ideal Functionality for cross-chain execution

As shown in Fig.13, the ideal functionality FL,H,G
B̃
ccg,Gatt

ccc

describes an interaction between a set of participants {pi}i∈[n]
and the attested execution processors Gatt0 and Gatt1, a set

of global functionalities of blockchains LB[m]
. FL,H,G

B̃
ccg,Gatt

ccc

interacts with a set of global functionalities to manage the
balances of participants and two hosts in different blockchains.
If there exists any dispute, V can challenge R through a
predicate function penalty(·) in GB̃ccg . Specially, a global
contract storage Set is used to store the deployed cross-chain
contract. We assume that Set can preserve all of the old states
of a contract, thus we conduct a rollback operation in case of
a request.

Specifically, the lifecycle of a cross-chain smart con-
tract (within the TEE) can be depicted as a state ma-
chine which contains six states s := {UNKN, INIT, DEPD,
EXEC, EXED, FINA}, where s = UNKN refers to an ini-
tializing state that two hosts are under negotiation, s = INIT
refers that two hosts have made deposits that can accept cross-
chain contract deployment. Then s = DEPD denotes that
a certain participant has deployed a contract into the secure
attested processors. s = {EXEC, EXED, FINA} refer that a
cross-chain contract lies in the state of executing, executed and
finalized. Note that s = FINA denotes the participants have
been assigned coins according to the output of execution.

The ideal functionality FL,H,G
B̃
ccg,Gatt

ccc consists of three
phases: the initialization phase, round execution phase, and the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 18

The ideal functionality GB̃ccg interacts as with the global functionality of LB̃, two hosts (R,V) who have the balance (ck0 , ck1) ∈ N,
and two attested secure processors Gatt0, Gatt1. It stores the address of two hosts pkR and pkV , and a global storage Storage := ∅.
Two penalty ratio γ0 and γ1 are set for hosts in case of dishonestly behavior.

Initialization
R Deposit: Upon receiving input (init, sid,R, ck0) from R with ck0 ∈ N, send (freeze, sid,R, ck0) to LB̃. If LB̃ responds with

(frozen, sid,R, ck0), then set sccg = INITED and output (accept, sid,R).
V Deposit: Upon receiving input (active, sid,V, ck1) from V with ck1 ∈ N when sccg = INITED, check if pkR has frozen in

LB̃. If yes, send (freeze, sid,V, ck1) to LB̃ and LB̃ responds with (frozen, sid,V, ck1). Set sccg = ACTIV E and output
(accept, sid,V).

Execution
Write States: Upon receiving input (write, sid, cid, inps) from a host N ∈ (R,V) when sccg = ACTIV E. If Storage[sid]

not found, set Storage[sid] =⊥. Send (write, sid, (cid, inps)) to LB̃. If LB̃ responds with (receipt, sid) then set sccg =
EXECG and output (recorded, sid).

Read States: Upon receiving input (read, sid, cid) from a host N ∈ (R,V) when sccg = EXECG. Send (read, sid) to LB̃.
Output (receipt,Storage[sid][cid]), or ⊥ if not found.

Challenge Outputs: Upon receiving input (challenge, sid, cid, txcha, txres) from V when sccg = EXECG.
• If penanlty(txcha, txres) = true, send (challenge, sid, cid, true) to Gatt0 and Gatt1, and send (update,V, ck1 +γ0 ·ck0)

and (update,R, (1− γ0) · ck0) to LB̃. Output (challenge, sid, cid, true).
• Otherwise, send (challenge, sid, cid, false) to Gatt0 and Gatt1, and send (update,V, (1−γ1) ·ck1) and (update,R, ck0 +
γ1 · ck1) to LB̃. Output (challenge, sid, cid, false). Then proceed to the next round.

Finalization
V Finalize: Upon receiving input (finalize, sid,V) from V , check if all states of the global storage Storage[sid] are FINA. If

yes, send message (unfreeze, sid, ck1 ,V) to LB̃. Then output (finalized, sid,V) to V and terminate.
R Finalize: Upon receiving input (finalize, sid,V) from R, check if all states in the global storage Storage[sid] are FINA,

and V has received (finalized, sid). If yes, send message (unfreeze, sid, ck0 ,R) to LB̃. Then output (finalized, sid,R)
to R.

Fig. 11. The ideal functionality GB̃ccg for the CrossChainGame contract.

The global functionality Gatt is initialized with a security
parameter λ, and running with a host H, and a set of registry
regH that are equipped with a TEE. It executes upon receiving
the following queries:

Initialization
(mpk,msk) = TEE.GenKey(1λ), T = ∅.
Read Public Key: Upon receive(getPK,) from H ∈ regH ,
send mpk to H.

Enclave Operations
Install Enclave: Upon receive(install, sid, pram) from an host
H ∈ regH . If H is honest, assert idx = sid and generate a
randomness eid ∈ {0, 1}λ, store T [eid,H] := (idx, pram, 0),
and then send eid to H.
Resume Enclave: Upon receive(resume, eid, inps) from an
host H ∈ regH . Let (idx, pram,mem) := T [ssid,H],
abort if not found. Let (oupts,mem) := pram(inps,mem),
update T [ssid,H] := [idx, pram,mem]. Let σ :=
TEE.DS(Sign, idx, eid, pram, oupt,msk), and then send
(oupt, σ) to H.

Fig. 12. The global functionality Gatt modeling an TEE.

finalization phase. During the initialization phase, the func-

tionality FL,H,G
B̃
ccg,Gatt

ccc requires inputs from two hosts who
need to send the deposit transactions into Gatt0 and Gatt1 in
order for proceeding to the next round. After that, a participant
pi could deploy a cross-chain contract Contractccc to the
two secure environments. If the deployment succeeds, the

functionality FL,H,G
B̃
ccg,Gatt

ccc can accept participants’ deposit
inputs. It goes to the execution phase if receiving n deposits.

In the execution phase, the functionality FL,H,G
B̃
ccg,Gatt

ccc

accepts inputs from participants to trigger states transition of
the Contractccc. The correctness of states is guaranteed by
the global LB̃ which stores the states on blockchain B̃ and
maintains the state-lock mechanism in smart contracts. Lastly,

the functionality FL,H,G
B̃
ccg,Gatt

ccc goes to the finalization phase
and sends the deposits back to the corresponding participants
based on the results of the smart contract, e.g., the lottery
smart contract.

In order to prove that Protccc UC-realizes FL,H,G
B̃
ccg,Gatt

ccc in
the hybrid world, we need to construct an ideal adversary S
with dummy parities (i.e., participants P , two TEE-powered
hosts R and V) to show that the ideal world is indistin-
guishable from the hybrid world. In our setting, Protccc can
interact with two global functionalities Gatt0 and Gatt1, and
a set of global blockchains {LBj}j∈[m], and a special global
blockchain LB̃, a Judge smart contract GB̃ccg . Each cross-chain
contract has a persist public space for storing all of the states.
The contract Contractccc is considered as running in a black-
box that an encrypted input is sent into it with responding an
encrypted output.

In the ideal world, all parties can be considered as dummy
parties that they only relay the input and output of E to

FL,H,G
B̃
ccg,Gatt

ccc . Specifically, FL,H,G
B̃
ccg,Gatt

ccc allows an ideal
adversary S to know a leakage information using a function
len(·) which can obtain the length of the encryption. In
addition, we follow the public delayed output terminology that
a message is first sent to the adversary A before be sent to
a party. Protccc follows the standard corruption model in UC

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 19

The ideal functionality FL,H,G
B̃
ccg,Gatt

ccc interacts with the ideal adversary S, a set of global blockchain functionalities {LBj}j∈[m],
a global blockchain functionality LB̃, an execution host R with an ideal functionality Gatt0, a verification host V with an ideal
functionality Gatt1, and a set of participants {pi}i∈[n] who have the balances {ci}i∈[n] ∈ N. Set(·) is a contract storage.

Initialization Phase
(Host Deposit): Upon receiving input (init, sid,N , ck) with ck ∈ N from N ∈ (R,V), leak (init, sid,N , ck) to the simulator S

and send (accept, sid,N) to N . Set s = INIT and initialize Set := ∅. Then go to the next round.
(Deploy Contract): Upon receiving input (deploy, sid,Contractccc)) from pi (i ∈ [n]) when s = INIT, generate a contract

identifier cid← {0, 1}λ, leak (deploy, sid, cid, pi,Contractccc) to S and store Set[cid] = Contractccc. Send (write, sid, cid)
to the LB̃. If LB̃ responds with (receipt, sid) set s = DEPD.

(Participant Deposit): Upon receiving input (deposit, sid, cid, ci) with ci ∈ N from pi (i ∈ [n]) when s = DEPD, leak
(deposit, sid, cid, pi, ci) to S and send (freeze, cid, pi, ci) to the blockchain LBj a. If successful, LBj responds with
(frozen, cid, pi, ci). If received with n responses, set s = EXEC and then go to the execution phase.

Execution Phase
(Contract Request): Upon receiving input (execute, sid, cid, inpsι) from pi for i ∈ [n] when s = EXEC, Contractccc =

Set[cid], abort if not found. Read wι from LBj and stι from LB̃. Leak (execute, sid, pi, len(inps), wι) to S.
Compute ctι = AE .Enc(inpsι, p̃kcid), Then, send (resume, sid, (cid, (ctι, stι, wι))) to Gatt0 and respond with
(sid, (cid, ouptsι), σmpkT0), leak (cid, len(ouptsι), stι, valwι) to S, and update Set[cid] with the latest state. Then, send
(write, sid, (cid, ι,H(ouptsι), stι+1, valwι)) to LB̃.

(Contract Execute): Upon receiving input (execute, sid, cid, ctι, wι, sctι), send (resume, sid, (cid, ctι, wι, sctι))
to Gatt0 and Gatt1, and receives the responses (sid, ouptsι, σmpkT0) and (sid, oupts′ι, σmpkT1). Send
(write, sid, (cid, ι,H(ouptsι), H(datagramι), valwι)) to LB̃ and receives a response (receipt, sid). If ι = ` − 1,
then set s = EXED and go to the finalization phase.

(Contract Challenge): Upon receiving input (challenge, sid, (cid, ctι, w̃ι, sctι, sctι+1)) from V , and update Set[cid] to the
last state. Send (resume, sid, (cid, (ctι, sctι, w̃ι))) to Gatt0 and receives a response (sid, (cid, õuptsι), σ̃mpkT0). Leak
(cid, len(õuptsι), sct

′
ι, val

′
wι) to S, and update Set[cid] with the latest state.

• If penanlty(txcha, txres) = true, send (update,V, ck1 + γ0 · ck0) and (update,R, (1 − γ0) · ck0) to LB̃ and output
(challenge, sid, cid, true).

• Otherwise, send (update,V, (1− γ1) · ck1) and (update,R, ck0 + γ1 · ck1) to LB̃ and output (challenge, sid, cid, false).
Finalization Phase

(Participant Finalize): Upon receiving input(finalize, sid, cid, pi) from pi when s = EXED, send (unfreeze, sid, pi, ci) to the
blockchain LBj and receive a response (frozen, sid, pi, ci). If receive with n responses, then set set = FINA.

(Host Finalize): Upon receiving input(finalize, sid,N) where N ∈ (R,V) when s = EXED, send (finalize, sid,N) to GB̃ccg
and receive a response (finalized, sid,N).

aAssume that pi is a user in the blockchain Bj .

Fig. 13. Ideal functionality F
L,H,GB̃ccg,Gatt
ccc for modeling cross-chain contract execution.

framework. Based on our security assumption, E can corrupt
any of the participants or TEE hosts, while it can not corrupt
both two hosts and all participants simultaneously. Once a
party is corrupted, the secret input of the party is known by
E .

E. Construction of Simulator S

Specifically, the simulator S proceeds as an ideal adversary

that interacts with FL,H,G
B̃
ccg,Gatt

ccc and E in the ideal world. If
an input is sent from an honest party, then S emulates as a real
world “network traffic” to relay information which obtained

from FL,H,G
B̃
ccg,Gatt

ccc to E . On the other hand, if an input is
sent from a dishonest party (also called as a corrupted party),
then S interacts with these dishonest parties and extracts the

inputs by communicating with FL,H,G
B̃
ccg,Gatt

ccc . In particular,
we consider four construction of S under four hybrid world
H1, H2, H3, H4: 1) all involving participants and two
hosts are honest, 2) a certain participant behaves dishonestly

(identified by p∗i), 3) R behaves dishonestly (identified by R∗)
and 4) V behaves dishonestly (identified by V∗).

SMU Classification: Restricted

Environment 𝓔

𝓐

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛……

𝒢𝑎𝑡𝑡0 𝒢𝑎𝑡𝑡1

ℋℒℬ𝟏

ℒℬ𝒎

……

𝒢𝑐𝑐𝑔
෩ℬ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

Environment 𝓔

𝓢

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛……

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡

𝑖𝑛𝑝𝑠
𝑜𝑢𝑝𝑡𝑠

𝑖𝑛𝑝𝑠

𝑜𝑢𝑝𝑡𝑠

(𝒢𝑎𝑡𝑡,ℋ, {ℒℬ} , 𝒢𝑐𝑐𝑔
෪ℒℬ)-hybrid world execution of 𝑃𝑟𝑜𝑡𝑐𝑐𝑐

with ℛ, 𝒱, 𝒫, and 𝒜

Execution ofℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡 with dummy parties ෨ℛ, ෨𝒱, ෨𝒫,

and 𝒮(a) (b)

Fig. 15. Setup of a simulation with honest parties.

1) Simulation without corrupted parties: The setup of the
simulation with honest parties is shown in Figure 15. In
this case, all the involved parties, including the participants

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 20

The formal protocol Protccc describes the behavior of a set of honest participants P = {p1, ..., pn} who have the balance of
{ci}i∈[n] ∈ N, two honest TEE-powered hosts R, V who have the balance of (ck0 , ck1) ∈ N, and the corresponding global
functionalities Gatt0 and Gatt1, and a set of global blockchain functionalities {LBj}j∈[m].

Initialization Phase
R : Upon receiving input (init, sid,R, ck0) in the deposit round, R sends (init, sid,R, ck0) to GB̃ccg and (init,) to Gatt0, and

LB̃ responds with (accept, sid,R).

V : Upon receiving input (init, sid,V, ck1), V checks if R deposits in GB̃ccg and sends (read, sid) to VB̃ and receives a response
(receipt,Storage(sid)). If it is found in VB̃, V sends (init, sid,V, ck1) to GB̃ccg and (init,) to Gatt1. GB̃ccg responds with
(accept, sid,V). Then, V instructs Gatt1 to establish a secure communication channel with Gatt0 through a remote attestation.

P : Upon receiving input (deploy, sid,Contractccc) from environment E , pi checks if two hosts R and V have deposited in GB̃ccg .
If yes, pi sends (install, sid,Contractccc) to the secure processors Gatt0 and Gatt1, and receives a response (installed, cid).
Then, Gatt0 sends (write, sid, (cid,DEPLOD)) to LB̃, and receives a response (receipt, cid).

P : Upon receiving input (deposit, sid, cid, ci), pi checks if the state of Contractccc by sending (read, cid) to LB̃, and receives a
response (receipt,Storage[cid]). If the initial state of Storage[cid] is confirmed, pi sends (freeze, sid, pi, ci) to LBj . LBj
responds with a response (frozen, sid, pi, ci). pi sends the response both to Gatt0 and Gatt1. If both Gatt0 and Gatt1 have
received n distinct deposit responses from participants, then Gatt0 sends (write, sid, (cid,DEPOSID)) to LB̃ and goes to
the execution phase.

Execution Phase
P : Upon receiving input (execute, sid, cid, inpsι) from environment E , pi computes ctι = AE .Enc(p̃kcid, inpsι), and reads wι

from LBj and stι from LB̃, respectively. Then, pi sends (resume, sid, (cid, pi, ctι, wι, stι)) both to R and V , and receives
a response (sid, (cid, ouptsι), σmpkT0) from R. pi verifies

∑
.V erify(mpkT0 , ouptsι, σmpkT0), and proceeds to the next

round if succeeds.

R : Upon receiving input (execute, sid, cid, ctι, wι, sctι) from pi where i ∈ [n], R instructs Gatt0 to send (verify, sid, wι) to
LBj and responds with (sid, v). If v is false, aborts. Otherwise, R sends (resume, sid, (cid, ctι, wι, sctι)) to the Gatt0 and
receives a response (sid, ouptsι, σmpkT0). After that, Gatt0 sends (write, sid, (cid, ι,H(ouptsι), H(datagramι), valwι)) to
LB̃, and LB̃ responds with (receipt, sid). Meanwhile, R sends (sid, (cid, ouptsι), σmpkT0) to pi and (cid, ι, ouptsι) to V .
If ι = `, R instructs Gatt0 to send (write, sid, (cid, FINA)) and goes to the finalization phase.

V : Upon receiving input (execute, cid, sid, ctι, wι, sctι) from pi where i ∈ [n], V sends (verify, cid, wι) to LBj and receives a re-
sponse (cid, v0). If v0 is true, V sends (resume, sid, (cid, ctι, wι, sctι)) to the Gatt1 and responds with (sid, oupts′ι, σmpkT1).
V compares the response with R’s output. If there is difference between them, V sends (challenge, sid, cid, txcha, txres) to
GB̃ccg , and (challenge, cid, (ctι, w̃ι, sctι, sctι+1)) to R, respectively. V waits for a response within L4 blocks.

R : Upon receiving input (challenge, sid, (cid, ctι, w̃ι, sctι, sctι+1)) from V ,R sends (resume, sid, (rollback, cid, sctι, sctι+1))
to Gatt0 and receives a response (sid, (cid, rollback, succeed), σmpkT0). Then, R sends (resume, sid, (cid, ctι, w̃ι, sctι))

to Gatt0 and receives a response with (sid, (cid, õuptsι), σ̃mpkT0). R sends (challenge, sid, cid, txcha, txres) to GB̃ccg , and

GB̃ccg responds with (challenge, sid, cid, v1). R proceeds to the next round after L4 blocks.
Finalization Phase

P : A participant pi checks if the contract Contractccc is FINA and the timeframe of the deposit exceeds L3 blocks. If yes, pi
sends (resume, sid, (cid, finalize, pi)) to Gatt0, and receives a response (sid, ouptsfin, σmpkT0). Then pi sends a redeem
transaction (included in ouptsfin) to Bj and gets the deposit back.

V : The verification host V checks if all states of contract in LB̃ is FINA. If yes, then sends (finalize, sid,V) to GB̃ccg . GB̃ccg
responds with (accept, sid,V).

R : The execution host R checks if V has sent finalize instruction to GB̃ccg and all states of contract in LB̃ is FINA. If yes, R
can send (finalize, sid,R) to GB̃ccg . GB̃ccg responds with (accept, sid,R).

Fig. 14. Formal protocol Protccc description for honest participants and two hosts in the hybrid world.

P = {p1, ..., pn} and two hosts R and V , behave honestly
to accomplish a cross-chain smart contract, which is a special
case that the simulation in this case is straight forward. The
simulator S only generates and forwards the messages to E
which are generated under the execution of Protccc.
Claim 1. There exists a simulator Shonest with no
corrupted parties, that the execution of Protccc in the
(Gatt,H,LB,GB̃ccg)-hybrid world, for any PPT adversary A,
is computationally indistinguishable from the execution of

FL,H,G
B̃
ccg,Gatt

ccc with the simulator S in the ideal world.
Proof. The proceeding of the simulation is defined as follows:

Firstly, two hosts R and V are honest that they follow the

ideal protocol FL,H,G
B̃
ccg,Gatt

ccc to conduct their behaviors. The

simulator S can obtain (init, sid,N , ck) from FL,H,G
B̃
ccg,Gatt

ccc

where N ∈ (R,V), and emulate an execution of “init” call of
Protccc in the initialization phase. Then, a honest participant
pi who is in charge of deploying contract is honest, S
can obtain (deploy, sid, pi,Contractccc)) from FL,H,G

B̃
ccg,Gatt

ccc

and emulate the “deploy” call of Protccc. Afterwards, sim-
ilar with the host deposit, S can emulate the participant
deposit on behalf of an honest participant. Secondly, dur-
ing the execution of the contract, if a honest participant
pi who is given an input (sid, cid, pi, inpsι) to trigger the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 21

state transition of Contractccc. S can extract len(inpsι)

from FL,H,G
B̃
ccg,Gatt

ccc , and compute ct′ι = AE .Enc(p̃kcid,~0).
Then S sends the “read” queries to FL,H,G

B̃
ccg,Gatt

ccc to ob-
tain the dummy state and blockchain evidence (sctι, wι).
Then, on behalf of pi, S emulates a “resume” instruc-
tion (resume, sid, (cid, ct′ι, sctι, wι)) to Gatt0 and Gatt1, re-
spectively. Upon receiving (sid, (cid, ouptsι), σT0

), S from

FL,H,G
B̃
ccg,Gatt

ccc , S computes a ciphertext oupt′ι where
oupt′ι = AE .Enc(mpkT0

, 0len(ouptι)), and emulates a mes-
sage (sid, (cid, oupts′ι), σT0

) from Gatt1 to pi. In the fi-
nalization phase, S can emulate honest parties to inter-

act with FL,H,G
B̃
ccg,Gatt

ccc , and output (finalized, sid,N),
(frozen, sid, pi, ci).

It can be seen that running the simulator S with honest par-

ties in the FL,H,G
B̃
ccg,Gatt

ccc ideal world is indistinguishable from
the (Gatt,LB,H,G

LB̃
ccg)-hybrid world, unless the environment

E can decrypt oupt′ι to check that oupt′ι 6= ouptι. However,
this can only happen if E can break the security of Gatt0 or
Gatt1 to obtain s̃kcid, which is impossible as depicted in our
security assumption. SMU Classification: Restricted

Environment 𝓔

𝓐

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛
……

𝒢𝑎𝑡𝑡0 𝒢𝑎𝑡𝑡1

ℋℒℬ𝟏

ℒℬ𝒎

……

𝒢𝑐𝑐𝑔
෩ℬ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

Environment 𝓔

𝓢

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 ……

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡

𝑖𝑛𝑝𝑠
𝑜𝑢𝑝𝑡𝑠

𝑖𝑛𝑝𝑠

𝑜𝑢𝑝𝑡𝑠

𝑝𝑛

(𝒢𝑎𝑡𝑡,ℋ, {ℒℬ} , 𝒢𝑐𝑐𝑔
෪ℒℬ)-hybrid world execution of 𝑃𝑟𝑜𝑡𝑐𝑐𝑐

with ℛ, 𝒱, 𝒫∗, and 𝒜

Execution of ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡 with dummy parties ෨ℛ, ෨𝒱, 𝒫∗,

and 𝒮(a) (b)

Fig. 16. Setup of a simulation with a corrupted participant p∗n and honest
R, V .

2) Simulation with a corrupted participant: The setup of
the simulation with a corrupt participant p∗n is shown in
Figure 16. In this case, two hosts R and V still behave
honestly to accomplish a cross-chain smart contract, while the
private input inpsι of the corrupted p∗n can be learned by the
environment E and the simulator S. In this case, S can emulate

the message between p∗n and FL,H,G
B̃
ccg,Gatt

ccc with guaranteeing
the correctness of the contract states.
Claim 2. There exists a simulator SP with a corrupted partic-
ipant, that the execution of Protccc in the (Gatt,H,LB,GB̃ccg)-
hybrid world, for any PPT adversary A, is computationally

indistinguishable from the execution of FL,H,G
B̃
ccg,Gatt

ccc with the
simulator S in the ideal world.
Proof. The proceeding of the simulation with a corrupted
participant is defined as follows:

Firstly, two honest hosts R and V follow the ideal protocol

FL,H,G
B̃
ccg,Gatt

ccc to accomplish the deposits as the above de-
scription. In the contract deployment, if p∗n is responsible for
deploying the contract Contractccc, S can extract the input
Contractccc from E and sends (deploy, sid, pi,Contractccc))

on behalf of p∗n. Meanwhile, S instructs FL,H,G
B̃
ccg,Gatt

ccc to
emulate the output (deployed, sid, cid) from Gatt to other
participants P−p∗n . Here, the behaviors of other participants
P−p∗n are considered as honest to follow the protocol Protccc.
Afterwards, S can emulate the participant deposit on behalf
of an honest participant upon receiving input from E .

During the execution of the contract, if the dishonest
participant p∗n who is given an input (sid, cid, p∗n, inps

∗
ι). S

can extract len(inpsι) from FL,H,G
B̃
ccg,Gatt

ccc , and compute
ct′ι = AE .Enc(p̃kcid,~0). Then S sends the “read” queries to

FL,H,G
B̃
ccg,Gatt

ccc to obtain the dummy state and blockchain evi-
dence (sctι, wι). Then, on behalf of pi, S emulates a “resume”
instruction (resume, sid, (cid, ct′ι, sctι, wι)) to Gatt0 and
Gatt1, respectively. Upon receiving (sid, (cid, ouptsι), σT0

),

S from FL,H,G
B̃
ccg,Gatt

ccc , S computes a ciphertext oupt′ι
where oupt′ι = AE .Enc(mpkT0 , 0

len(ouptι)), and emulates
a message (sid, (cid, oupts′ι), σT0

) from Gatt1 to pi. In the
finalization phase, S can emulate honest parties to inter-

act with FL,H,G
B̃
ccg,Gatt

ccc , and output (finalized, sid,N),
(frozen, sid, pi, ci).

It can be seen that running the simulator S with honest par-

ties in the FL,H,G
B̃
ccg,Gatt

ccc ideal world is indistinguishable from
the (Gatt,LB,H,G

LB̃
ccg)-hybrid world, unless the environment

E can decrypt oupt′ι to check that oupt′ι 6= ouptι. However,
this can only happen if E can break the security of Gatt0 or
Gatt1 to obtain s̃kcid, which is impossible as depicted in our
security assumption. In addition, the states stored in DDS are
also encrypted under the public key of p̃kcid, and thus are also
computationally indistinguishable.

SMU Classification: Restricted

ℛ

Environment 𝓔

𝓐

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛……

𝒢𝑎𝑡𝑡0 𝒢𝑎𝑡𝑡1

ℋℒℬ𝟏

ℒℬ𝒎

……

𝒢𝑐𝑐𝑔
෩ℬ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

Environment 𝓔

𝓢

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛……

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡

𝑖𝑛𝑝𝑠
𝑜𝑢𝑝𝑡𝑠

𝑖𝑛𝑝𝑠

𝑜𝑢𝑝𝑡𝑠

(𝒢𝑎𝑡𝑡,ℋ, {ℒℬ} , 𝒢𝑐𝑐𝑔
෪ℒℬ)-hybrid world execution of 𝑃𝑟𝑜𝑡𝑐𝑐𝑐

with ℛ∗, 𝒱, 𝒫, and 𝒜

Execution of ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡 with dummy parties ℛ∗, ෨𝒱, ෨𝒫,

and 𝒮(a) (b)

Fig. 17. Setup of a simulation with a corrupted execution host R and honest
P , V .

3) Simulation with a corrupted execution hostR: The setup
of the simulation with a corrupt execution host R∗ is shown in
Figure 17. In this case, the participants P and the verification
host V are honest. The simulator SR needs to simulate the
instructions of Protccc and all outputs of the corrupted hostR∗

towards FL,H,G
B̃
ccg,Gatt

ccc and E . In particular, the corrupted host
R∗ can disrupt or terminate the execution of T0 at any point.
SR only utilizes these inputs or instructions which are sent
from E to simulate the execution of Protccc by interacting with

FL,H,G
B̃
ccg,Gatt

ccc on behalf of R∗. If E instructs to terminate the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XXX 2015 22

emulated simulation, SR also needs to instruct FL,H,G
B̃
ccg,Gatt

ccc

to abort.
Claim 3. There exists a simulator SR with a corrupted
execution host R∗, that the execution of Protccc in the
(Gatt,H,LB,GB̃ccg)-hybrid world, for any PPT adversary A,
is computationally indistinguishable from the execution of

FL,H,G
B̃
ccg,Gatt

ccc with the simulator SR in the ideal world.
Proof. The proceeding of the simulation with a corrupted
execution host is defined as follows:

Firstly, in the initialization phase, upon receiving an input
(init, sid,R, ck0) from R∗, SR simulates the executions of
the global functionality GB̃ccgby sending (frozen, sid,R∗, ck0)
to the R∗. If R∗ does not send (init) message, SR aborts the
simulation. Then, honest verification host V and the participant

P follow the ideal protocol FL,H,G
B̃
ccg,Gatt

ccc to accomplish the
deposits as the above description.

In the execution phase, when SR receives

(execute, sid, cid, ctι, wι, sctι) from FL,H,G
B̃
ccg,Gatt

ccc , it means
that the participants have deployed a contract Contractccc in
Gatt0 and Gatt1. To simulate that the contract execution was
performed by Gatt0 (with a valid attestation of T0), SR sends
the input to Gatt0. As analyzed in the sequential game, SR
also verifies if the input wι is correct. If not, SR aborts the

simulation. Otherwise, SR interacts with FL,H,G
B̃
ccg,Gatt

ccc and
emulates R∗ to output (sid, (cid, ouptsι), σmpkT0).

It can be seen that running the simulator SR with a

corrupted execution host R∗ in the FL,H,G
B̃
ccg,Gatt

ccc ideal world
is indistinguishable from the (Gatt,LB,H,G

LB̃
ccg)-hybrid world.

The output of Protccc is computationally indistinguishable
under the public encryption. Therefore, R∗ does not know
the inputs or the outputs of the execution. SR only needs to
follow the instructions of E to run the simulation.SMU Classification: Restricted

Environment 𝓔

𝓐

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛……

𝒢𝑎𝑡𝑡0 𝒢𝑎𝑡𝑡1

ℋℒℬ𝟏

ℒℬ𝒎

……

𝒢𝑐𝑐𝑔
෩ℬ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

Environment 𝓔

𝓢

𝑙𝑒
𝑎
𝑘
𝑎
𝑔
𝑒

𝑖𝑛
𝑓
𝑙𝑢
𝑒𝑛
𝑐𝑒

𝑝1 𝑝𝑛……

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

𝒱ℛ

𝑖𝑛𝑝𝑠𝑜𝑢𝑝𝑡𝑠

ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡

𝑖𝑛𝑝𝑠
𝑜𝑢𝑝𝑡𝑠

𝑖𝑛𝑝𝑠

𝑜𝑢𝑝𝑡𝑠

(𝒢𝑎𝑡𝑡,ℋ, {ℒℬ} , 𝒢𝑐𝑐𝑔
෪ℒℬ)-hybrid world execution of 𝑃𝑟𝑜𝑡𝑐𝑐𝑐

with ℛ, 𝒱∗, 𝒫, and 𝒜

Execution of ℱ𝑐𝑐𝑐
ℒ,ℋ,𝒢𝑎𝑡𝑡 with dummy parties ෨ℛ, 𝒱∗, ෨𝒫,

and 𝒮(a) (b)

Fig. 18. Setup of a simulation with a corrupted verification host V and honest
P , R.

4) Simulation with a corrupted verification host V: The
setup of the simulation with a corrupt verification host V∗ is
shown in Figure 18. In this case, the participants P and the
execution host R are honest. The corrupted V∗ can run the
challenge instruction even though there is not wrong execution
of R. The simulator SV in this case needs to simulate the
instructions of Protccc and all outputs of the corrupted host

V∗ towards FL,H,G
B̃
ccg,Gatt

ccc and E .

Claim 4. There exists a simulator SP with a corrupted
verification host V , that the execution of Protccc in the
(Gatt,H,LB,GB̃ccg)-hybrid world, for any PPT adversary A,
is computationally indistinguishable from the execution of

FL,H,G
B̃
ccg,Gatt

ccc with the simulator S in the ideal world.
Proof. The proceeding of the simulation with a corrupted
verifcaition host is defined as follows:

Firstly, in the initialization phase, the execution host R
first makes a deposit in GB̃ccg . Then, upon receiving an input
(init, sid,V, ck1) from V∗, SV simulates the executions of the
global functionality GB̃ccgby sending (frozen, sid,V∗, ck1) to
the V∗. If V∗ does not send (init) message, SV aborts the
simulation. Afterwards, the participant P follow the ideal pro-

tocol FL,H,G
B̃
ccg,Gatt

ccc to accomplish the deposits and contract
deployment as the above description.

In the execution phase, when SV receives

(execute, sid, cid, ctι, wι, sctι) from FL,H,G
B̃
ccg,Gatt

ccc , it
sends the input to Gatt1 and receives a response with
(sid, (cid, ouptsι), σmpkT0). No matter the verification
result of the result, E can instruct V∗ to send a challenge
instruction to R. Specifically, upon receiving an input
(challenge, cid, (ctι, w̃ι, sctι, sctι+1)) from E , SV sends
it to R and waits for a response. If R does not respond
in due time, SV notices the participants to abort on
behalf of V∗. Meanwhile, it emulates Gatt1 to respond
with (challenge, sid, cid, txcha, txres), and instructs

FL,H,G
B̃
ccg,Gatt

ccc to send it to GB̃ccg .
It can be seen that running the simulator SV with a

corrupted execution host V∗ in the FL,H,G
B̃
ccg,Gatt

ccc ideal world
is indistinguishable from the (Gatt,LB,H,G

LB̃
ccg)-hybrid world.

The output of Protccc is computationally indistinguishable
under the public encryption, and V∗ does not know the inputs
or the outputs of the execution. SV only emulates V∗ to send
a challenge instruction with a public blockchain evidence w̃ι
by following the instructions of E .

