
1

SeqL+: Secure Scan-Obfuscation with Theoretical
and Empirical Validation

Seetal Potluri, Member, IEEE, Shamik Kundu, Student Member, IEEE, Akash Kumar, Senior Member, IEEE,
Kanad Basu, Senior Member, IEEE, and Aydin Aysu, Senior Member, IEEE.

Abstract—Existing logic-locking attacks are known to success-
fully decrypt a functionally correct key of a locked combinational
circuit. Extensions of these attacks to real-world Intellectual
Properties (IPs, which are sequential circuits) have been demon-
strated through the scan-chain by selectively initializing the
combinational logic and analyzing the responses. In this paper,
we propose SeqL+ to mitigate a broad class of such attacks. The
key idea is to lock selective functional-input/scan-output pairs
of flip-flops without feedback to cause attackers to decrypt an
incorrect key, and to scramble flip-flops with feedback to increase
key-length without introducing further vulnerabilities.

We conduct a formal study of the scan-locking and scan-
scrambling problems and demonstrate automating our proposed
defense on any given IP. This study reveals the first formu-
lation and complexity analysis of Boolean Satisfiability (SAT)-
based attack on scan-scrambling. We formulate the attack as
a conjunctive normal form (CNF) using a worst-case O(n3)
reduction in terms of scramble-graph size n, making SAT-based
attack applicable and show that scramble equivalence classes are
equi-sized and of cardinality 1. In order to defeat SAT-attack,
we propose an iterative swapping-based scan-cell scrambling
algorithm that has O(n) implementation time-complexity and
O(2b

α.n+1
3

c) SAT-decryption time-complexity in terms of a user-
configurable cost constraint α (0 < α ≤ 1).

We empirically validate that SeqL+ hides functionally correct
keys from the attacker, thereby increasing the likelihood of
the decrypted key being functionally incorrect. When tested on
pipelined combinational benchmarks (ISCAS, MCNC), sequential
benchmarks (ITC), and a fully-fledged RISC-V CPU, SeqL+ gave
100% resilience to a broad range of state-of-the-art attacks
including SAT [1], Double-DIP [2], HackTest [3], SMT [4],
FALL [5], Shift-and-Leak [6], Multi-cycle [7], Scan-flushing [8],
and Removal [9] attacks.

Index Terms—IP Piracy, Logic-locking, Scan-chains, Scan-
scrambling.

I. INTRODUCTION

LOGIC-LOCKING is a solution that was touted to address
IP piracy threats in the semiconductor supply chain1

This technique adds key-gates with one input driven by a
secret key to obfuscate IP’s inner details. The transformation
is reversed only upon application of the programmed secret
key, thus preserving the IP’s original function. Unfortunately,
logic-locking has been a cat-and-mouse game where existing

S. Potluri and A. Aysu are with the Electrical and Computer Engineering
Department, North Carolina State University, Raleigh, NC, 27606.

S. Kundu and K. Basu are with the Department of Electrical and Computer
Engineering, University of Texas at Dallas, Richardson, TX, 75080.

A. Kumar is with the Department of Computer Science, Technical Univer-
sity of Dresden, 01062 Dresden, Germany

1Due to the dominance of the fabless model in the semiconductor industry
today, IP design incurs significant cost to the company, hence its piracy is
unacceptable.

Fig. 1. Scan-based IP access for logic-locking attacks.

locking proposals [10]–[16] fail to ever-advancing attacks [1]–
[5]. Although these attacks primarily target combinational
circuits, they can be extended to real-world sequential circuits
through scan-chains. But the fundamental attack assumption
is that inputs are controllable and outputs are observable.
Thus, if the scan-chains are secured, it would be possible to
provide a secure logic locking solution. If the scan-chains are
secured/locked, then the adversary is unable to control the
inputs and observe the outputs without knowing the key to
the scan-lock.

This paper proposes SeqL+, a new logic-locking technique
that secures scan-chains. SeqL+ advances the state-of-the-art
on design-for-security (DfS) [7], [17], [18], by conducting
a formal study of the problem and empirically validating
the security against a broad class of state-of-the-art attacks.
Although attacks on large-scale sequential designs through
functional execution are an open problem, attacks through the
scan-chains currently exist. Thus, SeqL+ serves as the proper
first line of defense.

Figure 1 outlines the system we consider. The primary
inputs (PIs) and primary outputs (POs) of the IP under
consideration are not accessible, while only the scan-chains are
accessible to the attacker. Input-register Ri thus can apply the
primary inputs to the IP and the output-register Ro can store
the primary outputs. The scan-chain connects all scan flip-flops
(SFFs) in Ri, subsequently to the SFFs internal to the IP, and
finally to the SFFs in Ro. SI and SO show the scan-input and
scan-output ports, respectively, from the external world. In this
case, the attacker can apply selective inputs to the IP using the
SI input-port and observe corresponding IP responses through
the SO output-port. For ease of explanation, we have shown
a single scan-chain in this figure, which contains only Ri, Ro
and SFFs internal to the IP under consideration. However, in
practice, there can be multiple chains and compression logic,

and the chain may contain SFFs from other IPs and glue-logic.

A. Contributions

Our previous work, SeqL, is available at the proceedings of
the 21st International Symposium on Quality Electronic De-
sign (ISQED 2020) Conference [19]. The main contributions
of SeqL were as follows:

1) We identified there is 100% correlation between SFF
input (FI) locking and functional output corruption.
Exploiting this property, we proposed SeqL, that: (a)
isolates functional path from the locked scan path;
(b) locks FIs for SFFs without feedback and causes
functional output corruption;

2) SeqL hides the majority of the scan-correct keys which
are functionally correct, thus maximizing the probability
of the decrypted key being functionally incorrect; and

3) The security of SeqL is empirically evaluated and ver-
ified against common attacks. The small area, timing,
and energy-per-toggle overheads of SeqL and its ease of
implementation make it attractive for industry practice.

This paper proposes SeqL+, which enhances SeqL with the
following extensions:

1) We verify resilience of SeqL to the scan-flushing attack
by flushing the content of the scan chains to reveal some
information about the key bits used to obfuscate the scan
path;

2) For the special case of circuits without an adequate
number of SFFs without feedback (Rwof), we propose
scan-scrambling to use SFFs with feedback, to improve
security;

3) We discuss the limitations of existing works on scan-
scrambling in the context of logic-locking and pro-
pose the first practical adaptation of scan-scrambling to
the logic-locking problem, and also validate that scan-
scrambling doesn’t introduce a vulnerability against
other attacks which are successfully defended by SeqL;

4) We show the first formulation of Boolean Satisfiability
(SAT)-based attack on scan-scrambling; and

5) We provide both formal analysis and empirical evalua-
tion to show the security against the SAT-based attack
and quantify the overheads of scrambling.

II. PRIOR WORK

The first wave of logic-locking techniques [10]–[12] has
been shown to be vulnerable to SAT-based attack [1]. In SAT-
based attack, distinguishable input patterns (DIPs) are obtained
from the locked circuit and incorrect keys are pruned-off based
on the oracle’s responses to the DIPs. Several defenses were
then proposed to mitigate SAT-based attack, such as Anti-
SAT [20], SARLock [14] and Cyclic Obfuscation [21], but
they have failed to address the vulnerability to AppSAT [22],
Double-DIP [2], CycSAT [23], HackTest [3], BeSAT [24],
TGA [25] and SAIL (machine-learning) [26] attacks. While
unreachable state encryption [27] proposes a new cyclic logic-
locking technique to defend CycSAT [23], TTLock [13] and
Stripped-Functionality Logic-Locking (SFLL) [16] were the

TABLE I
GLOSSARY OF IMPORTANT SYMBOLS

Symbol Definition
Ri Input Register
Ro Output Register
Rwof Number of SFFs without feedback
SI(.) Scan Input Bit
SO(.) Scan Output Bit
ESO(.) Encrypted Scan Output Bit
sqki key-bit for ith SQ key-gate
fiki functional isolation key-bit for ith SQ key-gate
Ks Set of all sqki and fiki key-bits
Ksq Set of all sqki key-bits
Kfi Set of all fiki key-bits
KAG Key Assignment Graph
invi Inversion parity for ith SQ key-gate
sckj key-bit for jth scrambled flip-flop
Hs Ordering of flip-flops in the scan-chain

SFFi(Hs) ith scan flip-flop in Hs
γ User defined cost constraint for scan-locking

G = (V,E) Scramble Digraph
B(G) Boolean CNF representing G
xij Variable in B(G) representing vi → vj , vi, vj ∈ V
π Hamiltonian path in G
δi Disturbance on vertex-i
κ Total number of Hamiltonian paths in G
∆ Disturbance vector
n Total number of SFFs
η User defined cost constraint for scan-scrambling

only schemes that were broadly resilient to attacks, yet they
recently failed against functional analysis of logic-locking
(FALL) [5] and SMT [4] attacks.

Additionally, to address the issue of defending against
SAT-based attack on sequential circuits, several DFS tech-
niques have been proposed: (1) FORTIS [17], (2) Robust
DFS (RDFS) [7] and (3) Encrypt Flip-Flop (EFF) [18].
FORTIS [17] is vulnerable to multi-cycle-test attacks [7];
RDFS [7] addresses these issues but necessitates routing of
a global test signal to all the key-based SFFs, adds significant
overheads, vulnerable to shift-and-leak [6] attack and increases
test generation effort. EFF [18] addresses these issues by
locking SFF outputs (FOs). But EFF is insecure against
ScanSAT [8], thus there is a need for a better defense that
is both secure and practical.

Additionally, existing work on scan-scrambling [28] as-
sumes multiple inputs to the scramble-multiplexer coming
from different scan-chains. Since the adversary knows that
the correct input to the scramble-multiplexer comes from
the same scan-chain (which is unique), one can easily know
which input is the correct one and hence easily infer the
secret-scrambling-key, making that kind of scan-scrambling
is impractical/insecure. Thus, there is a need for a better
scrambling defense that is both secure and practical.

III. PRELIMINARIES

This section discusses the vulnerability of prior work on
scan-locking and highlights the threat model.

A. Threat model

We follow the standard assumption in logic-locking frame-
work that assumes a malicious foundry offering fabrication,

2

Fig. 2. (a) EFF-style locking (b) Scan-unrolled equivalent

assembly and testing services [3], [8], [17], [28]–[31]. Such
an adversary has access to gate-level netlist as well as scan-
chain access on an activated integrated circuit (IC). There is
a growing concern in such attacks given the move to offshore
fabs: even Intel is planning to outsource its 5nm designs to
TSMC [32]. Scan-chains provide finer access, making attacks
without scan-access a subset of attacks with scan-access. Our
threat model considers full access to scan-ports. Since we
can protect circuits with access to scan-chains, by definition,
it shall protect circuits without access to scan-chains [33].
Further, we do not compare against dynamically obfuscated
scan [34], because the context is not logic-locking.

The attacker is at the outsourced tester [30], where the at-
tacker can place the dies in the EDT-bypass mode, applies scan
patterns to the IP and observes corresponding scan responses
in the embedded deterministic test (EDT)-bypass mode. For
an IP located deep within an SoC, the primary inputs and
primary outputs of the IP are not accessible to the attacker. In
such cases, the attacker uses the bypass mode, where all the
scan-chains are daisy-chained into a single chain, and is able
to access the resulting chain only through SI and SO ports.
Thus, we assume that the IP is controllable/observable, only
through scan-chains.

B. Scan-Locking & State-of-the-Art Attacks

In EFF technique [18], SFFs on the non-critical timing paths
of a sequential circuit are selected, and XOR/XNOR-type
key gates are added to lock the Q-outputs, which drive
combinational logic as well as the SFFs in the scan-chain.
Figure 2(a) shows a sample sequential circuit with 2 out of 4
SFFs encrypted using EFF-style scan-locking. In Figure 2(a):
• G0 and G1 are the PIs. SI and SO are the circuit’s scan-

input port and scan-output port, respectively;

Fig. 3. (a) Proposed SeqL-style locking (b) Scan-unrolled equivalent

• SFFs 1 and 2 have feedback, while SFFs 3 and 4 do not
have feedback. G2, G4, G6 and G8 are corresponding
SFF inputs (FIs) respectively. G3, G5, G7 and G9 are
corresponding SFF outputs (FOs) respectively; and

• ck0 and ck1 are the combinational key bits, while fok0
and fok1 are key bits used to lock the FO G3 (XOR-type
key gate) and FO G5 (XNOR-type key gate) respectively.

ScanSAT [8] shows that it is possible to convert this
scan-locked instance to the scan-unrolled locked instance of
Figure 2(b), launch the SAT-based attack on this unrolled
instance and decrypt the functionally correct sequential key.
Here, in scan-mode of operation: SI(G3) (refer Table I) and
SI(G5) are the scan-input-bits corresponding to SFFs 1 and
2, respectively; and ESO(G2) and ESO(G4) are the locked-
scan-output bits corresponding to SFFs 1 and 2 respectively.
Hence, EFF technique is not secure. Similar to ScanSAT [8],
it is possible to extend some of the state-of-the-art attacks
like HackTest-attack [3], functional-analysis-attacks on logic-
locking (FALL) [5], and SMT-attack [4]. We thus evaluate
SeqL on all these attacks.

IV. SOLUTION INSIGHT

As discussed in the previous section, when SAT-based attack
is launched on the scan-unrolled EFF-style scan-locked circuit
shown in Figure 2(b), the SAT solver returns the functionally
correct key. Figure 3(a) shows the proposed SeqL-style scan-
locking idea by transforming the circuit in Figure 2(a), in the
following ways:
• There is a separate Q and SQ, and the key gate is added at
SQ (referred-to henceforth as SQ key-gate), thus leaving

3

Fig. 4. Key Assignment Graph (KAG) for circuit in Figure 3(a). KAG is a
binary tree, whose the leaves correspond to scan-correct keys.

the functional output Q unencrypted. This is referred to
as functional isolation;

• SFFs without feedback i.e., 3 and 4 are selected for
locking;

• sqk0 is the key bit used to lock the SQ output of SFF 3,
using an XOR-type key gate;

• sqk1 is the key bit used to lock the SQ output of SFF 4,
using an XNOR-type key gate; and

• Extra key gates (both of XOR type and without additional
obfuscation logic in this case, for ease of explanation) are
added at FIs of both these SFFs. fik0 and fik1 are the FI
locking key bits respectively. These key gates are referred
to as FI key gates in the rest of this paper.

Figure 3(b) shows the corresponding scan-unrolled equivalent
combinational circuit. The purple dashed line is the functional
boundary. This means that the key gates to the right of this
boundary (SQ key-gates) only affect scan-operation, and do
not affect the normal functional operation of the circuit. This
is because the attacker uses scan mode of operation, and hence
observes ESO(G2) and ESO(G4). Although conjunctive
normal form (CNF) extraction and subsequent SAT-based
attack are possible [34], the key returned by the SAT-solver
is guaranteed to ensure correct operation only in the scan-
mode and not in the functional-mode of operation, due to the
functional-isolation property. In the absence of scan-locking,
it is well-known that the scan-chain(s) do not impact the
functionality of the IPs/SoC. However, the functional isolation
property of SeqL implies that if the adversary tries to decrypt
the key in the scan-mode, the decrypted key does in-fact
impact the functional operation.

The reason behind this behavior is that the circuit’s nor-
mal functional operation is purely influenced by E(G2) and
E(G4), and hence the XOR/XNOR-chains (in red) cease
to exist. This renders the scan-correct decrypted key, being
functionally incorrect. Hence, by functional isolation and FI
locking, functional output corruption was achieved, thus mak-
ing the proposed SeqL-style scan-locking mechanism secure.

Figure 4 shows the corresponding key assignment graph
(KAG). When SAT-based attack is launched on this scan-
unrolled instance, the complete sequential key returned by
the solver is K = {sqk0, sqk1, ck0, ck1, fik0, fik1} =
{1, 1,1,0,1,0}, where the key bits in italics indicate those that
lock the combinational portion of the sequential circuit. The
corresponding portion of the key that locks only FIs and
SQs is Ks = {sqk0, sqk1, fik0, fik1} = {1, 1,1,0 }. This
corresponds to the second leaf from the left in the KAG shown

in Figure 4. Since this is a functionally incorrect key, the
technique is able to achieve functional output corruption. In
this example, the odd against the functionally correct key is
p = 3

4 = 0.75. The next section provides a more rigorous
mathematical analysis explaining this behavior.

A. Analysis

This section formally analyzes the security of logic-locking
and proves that if SeqL is used to lock m SFFs without
feedback, then the odds against the functionally-correct-key
among the scan-correct-keys equals 1 − 1

2m , assuming the
attack is launched in EDT-bypass mode.

Given an FI-SQ key-pair {fiki, sqki}, there are 4 possible
assignments {00, 01, 10, 11}. Let m be the number of locked
FI-SQ pairs. Let KAG = (V,E) be a vertex-labeled edge-
weighted directed graph, where the vertices correspond to FI-
SQ pairs and the edges correspond to inversion parity. The
direction of edges is opposite to the scan-out-path direction.
In KAG, the children of every vertex at depth i from the root
correspond to ith SFF from the end of the scan-out-path. All
node and edge assignments ensure scan-correctness. KAG is
a tree, whose root vertex is a dummy node, with exactly two
children 00 and 11.

The labels on the vertices in KAG are 00, 01, 10 or 11,
corresponding to {fiki, sqki}, {fiki, sqk

′

i}, {fik
′

i, sqki}
or {fik′

i, sqk
′

i} depending on whether {FI, SQ} key-gate
combination is {XOR, XOR}, {XOR, XNOR}, {XNOR,
XOR} or {XNOR, XNOR} respectively. 00 and 11 are even-
parity vertices, whereas 01 and 10 are odd-parity vertices.
The children of 00 and 01 are even-parity vertices, whereas
the children of 10 and 11 are odd-parity vertices. Hence,
every non-root vertex has exactly 2 children. The possible
weights on the edges in KAG are 0 or 1, which signifies
parity. The parity of an edge signifies the presence/absence
of signal-inversion at the child SFF, which is same as the
parity of the corresponding child vertex. invk equals 0 or 1,
depending on whether kth SFF along the scan-chain from SO
is locked with an XOR or XNOR key-gate respectively.

Theorem IV.1. Parities of left and right edges of a vertex are
identical.

Proof. Assume vertex vi in KAG at depth i. In order to ensure
scan-correctness,

(fiki ⊕ sqki ⊕ invi)⊕
i−1⊕
k=1

(sqkk ⊕ invk)

should equal 0. If
i−1⊕
k=1

(sqkk ⊕ invk)

equals 0, (fiki ⊕ sqki ⊕ invi) becomes 0: possible children
of vi are 00 and 11, in both cases parity of edge are 0.
On the other hand, if

i−1⊕
k=1

(sqkk ⊕ invk)

4

equals 1, (fiki ⊕ sqki ⊕ invi) becomes 1: possible children
of vi are 01 and 10, in both cases parity of edge is 1. Thus,
parity of left and right edges of a vertex are identical, hence
the proof. QED

Lemma IV.2. KAG is a binary tree.
Proof. The root vertex has exactly two children. Additionally,
every non-root vertex has exactly two children. Since every
vertex has exactly two children, KAG is a binary tree, hence
the proof. QED

Theorem IV.3. The odd against the functionally-correct-key
among the scan-correct-keys is p = 1− 1

2m

Proof. The path from the root to a functionally correct leaf
should have all 00 nodes. Applying theorem IV.1 recursively,
we can show there is exactly one such leaf in KAG. Sub-
sequently, from lemma IV.2 we know KAG is a binary tree,
hence the total number of leaves in KAG = 2m. This makes
the odds against the functionally-correct-key p = 2m−1

2m =
1− 1

2m , hence the proof. QED

The details of automating SeqL have been discussed in detail
in the conference version and skipped here for brevity. The
objective is to iteratively lock selective SFFs (FI-SQ pairs)
without feedback such that functional output corruption is
achieved, while area-overhead is minimized.

B. Limitation for designs with small Rwof
The key bits on flip-flops with feedback can be recovered

using a multi-cycle attack [19]. Thus, SeqL uses SFFs without
feedback to improve security. For circuits which have few
SFFs without feedback (Rwof < 50) but with many SFFs
with feedback, it will be useful to have some other technique
that can utilize the ones with feedback, so as to increase
the key-length sufficient enough to defend brute-force attack.
Since scan-scrambling is able to achieve this, we use SeqL to
utilize SFFs without feedback, and scan-scrambling to utilize
SFFs with feedback respectively, to improve security. The
next section discusses in detail, our methodology to deploy
scrambling for designs with small Rwof , to address this
limitation.

V. SEQL+: SCRAMBLING TO ENHANCE SECURITY OF
DESIGNS WITH SMALL Rwof

In [35], Hely et al., identify for the first time the trade-off
between testability and security, and hence the vulnerabilities
in cryptographic implementations that use industry-standard
scan methodology. The same paper also proposes scan-
scrambling as a countermeasure, wherein they perform scan-
chain segmentation and insert scramble-multiplexers (MUXes)
at inputs of all the segments. The scramble-MUXes have
one of the inputs which is correct (from the correct input
scan-segment) and remaining inputs are incorrect (from the
incorrect input scan-segments), and the select lines form the
secret-scrambling-key.

Since the secret key is known only to the designers, the
attacker is unable to extract the secrets from the cryptographic
implementations, without knowing the secret-scrambling-key.

We augment and apply the scan-scrambling technique to
improve the security of circuits, which lack adequate SFFs
without feedback, against brute-force attacks. We conduct a
formal analysis of SAT resilience of scan-chain scrambling
along with an empirical validation.

A. Benefit of scan-scrambling in the context of logic-locking
attacks

The key-benefit of scan-scrambling is that to launch the
SAT-based attack [1] on sequential circuits, the adversary
needs to know the ordering of SFFs in the scan-chain in order
to initialize the SFFs to known-values, and observe the cor-
responding next-state responses. Since scan-scrambling locks
the ordering of SFFs in the scan-chain, the attacker is unable
to achieve this, thus preventing direct applicability of SAT-
based attack. This reasoning is also applicable to ScanSAT [8],
where the attacker scan-unrolls the XOR/XNOR-chains. Since
scan-unrolling of XOR/XNOR-chains is not possible without
knowing the ordering of SFFs, scan-scrambling also naturally
defends ScanSAT [8].

B. Limitations of existing work on scan-scrambling in the
context of logic-locking attacks

In ScanSAT [28], the authors consider scan-scrambling in
the context of logic-locking, where they assume that the
various inputs to the scramble-MUX come from different scan-
chains. Since the attacker knows that the correct input to the
scramble-MUX comes from the same scan-chain (which is
unique), that kind of scan-scrambling is impractical/insecure.
Hence, in SeqL+ we consider that all the inputs to the
scramble-MUX come from the same scan-chain and proceed
with the security analysis.

The main ideas of scan-scrambling [35] are: (i) partitioning
of a scan-chain into multiple segments; and (ii) addition
of a 2 : 1 MUX at the input of each segment, for the
purpose of scrambling. The select signal to the scramble-MUX
corresponds to a secret key-bit. The vector of all the select
signals to these MUXes constitutes the secret-scrambling-key.
Choice of larger MUX exists [35] but may not be cost-effective
in practice. Since fine-grained scramble-MUX insertion results
in exponential increase in security-level with linear increase
in area-overhead, we scramble only one scan-chain (security
scan-chain) and insert a scramble-MUX for each SFF in this
security scan-chain.

C. Formal Security Analysis of Scan-Scrambling Against SAT-
attack

The key research question is: “Would scan-scrambling
form equivalence classes (ECs) like conventional,
combinational logic-locking, causing a vulnerability
against SAT-based attacks?”. This subsection conducts
a formal complexity analysis and formulation of scan-
scrambling against such attacks, and proves crucial properties
of ECs.

Graph-based Formulation: Every scan-scrambled instance
can be formulated as a digraph G = (V,E) where:

5

Fig. 5. Sample circuit consisting of four gates and four flip-flops.

Fig. 6. (a) Sample scrambled scan-chain corresponding to Figure 5 and (b)
Corresponding scramble-digraph

1) Scan-input (SI), all SFFs and scan-output (SO) are
represented as vertices (V) in G; and

2) The connections between SI , SFFs and SO in the
circuit are represented as directed edges (E) between
corresponding vertices in G, where the direction signi-
fies the signal flow.

Definition V.1. A Hamiltonian path in a digraph is a path
that visits each vertex exactly once.

Figure 5 shows a sample circuit with four 2-input nand
gates and four flip-flops (prior to scan-insertion). Figure 6(a)
shows an example of scrambled scan-chain corresponding
to this circuit, and Figure 6(b) shows the corresponding
scramble-digraph. Thus, every pair of permuted SFFs de-
mands addition of 3 extra-edges if the vertices are adjacent
in the original scan-chain, otherwise it demands 4 extra-
edges. There are two possible Hamiltonian Paths (HPs)
in Figure 6(b), 1 → 2 → 3 → 4 corresponding to
{sck0, sck1, sck2} = (011)2 and 1 → 3 → 2 → 4
corresponding to {sck0, sck1, sck2} = (100)2 (equivalent to
the SFF-orderings in the scrambled scan-chain in Figure 6(a)).

The scramble-key-combinations corresponding to the HPs
in G ensure that all the SFFs are connected together along
with SI and SO to form the scan-chain. The remaining
scramble-key-combinations disassociate some of the SFFs
from the scan-chain. Hence, we focus only on HPs in G
and corresponding scramble-key-combinations. It is clear that
each valid scramble-key-combination corresponds to exactly
one HP in G (because application of scramble-key configures
the connections, thereby creating a unique path). Next, we
provide a formal proof of the converse, i.e. each HP in the
scramble-digraph corresponds to a unique scramble-key-
combination.

Fig. 7. All possible scramble-key-assignments: ones that lead to Hamiltonian
Paths (HPs) i.e., {sck0, sck1, sck2} = {0, 1, 1} and {sck0, sck1, sck2} =
{1, 0, 0} are valid.

Lemma V.1. All HPs in G correspond to valid scrambles.

Figure 7 shows the resultant connections between SFFs
1, 2, 3 and 4, for all possible scramble-key-assignments to
sck0, sck1, sck2. As we can see, only key-assignments that
lead to HPs i.e., Figures 7(d) and 7(e) correspond to valid
scrambles and remaining key-assignments disassociate one or
more SFFs.

Theorem V.2. Every HP in G has injective mapping to exactly
one valid scramble-key-combination.

Proof. Let Hs be a selected HP in G. Now, Hs cor-
responds to a particular ordering of vertices in G,
say {v1(Hs), v2(Hs) . . . vN (Hs)}. Since each vertex in
G has injective mapping to a unique SFF in the cir-
cuit, Hs corresponds to a unique ordering of SFFs, say
{SFF1(Hs), SFF2(Hs) . . . SFFN (Hs)}.

Let SFFi(Hs) be the ith scan flip-flop and let ki(Hs) be
scramble-key-bit corresponding to the scramble-MUX at the
input of scan flip-flop SFFi(Hs):

• Basis step: SFF1(Hs) is the first scan flip-flop in the
scan-chain, which means SI drives SFF1(Hs). In order
to achieve this, there must be a unique assignment to
k1(Hs). Hence, scramble-key-bit uniqueness is true for
i=1.

• Induction step: Assume scramble-key-bit uniqueness is
true for i=l. SFFl+1(Hs) is the (l + 1)th scan flip-
flop, which means output of SFFl(Hs) should drive
input of SFFl+1(Hs). In order to achieve this, there is a
unique assignment to kl+1(Hs). Thus, scramble-key-bit

6

Fig. 8. Formulation of SAT-attack on Scan-Scrambling.

uniqueness is true for i=l+1.
Hence, by finite induction we can infer that all scrambling-

key-bits are unique for HP Hs. This indicates each HP in
G corresponds to exactly one scramble-key-combination, and
since the converse is also true, the mapping is injective, thus
the proof. QED

Corollary V.2.1. Theorem V.2 implies every valid scrambling-
key is unique, or in other words, scramble ECs are equi-sized
and of cardinality 1.

The next subsection explains the first formulation of SAT-
based attack on scan-scrambling. Subsequently, we exploit the
property proven above in Corollary V.2.1 to exponentially
increase the number of scramble ECs, so as to defeat SAT-
based attack on scan-scrambling in subsection V-E.

D. Attacking scan-scrambling using SAT formulation

Figure 8 shows the SAT-formulation of the HP search corre-
sponding to the correct scramble. The formulation comprises
four different types of constraints:

1) Hamiltonian Path (HP) Constraints: From Cook-Levin
Theorem [36], we know that the NP-complete SAT problem is
polynomial-time reducible to the HP problem and vice-versa.
Exploiting this principle, we show for the first time that
scan-scrambling can be reduced to CNF, hence making it
possible to launch SAT-based attack. So far we have seen
how to break scrambling using HP search, next we shall see
how to break using SAT-based attack.

Formulation: Given a scramble digraph G, we construct a
Boolean CNF B(G) such that such that B(G) is satisfiable iff
G has a HP. B(G) has n2 Boolean variables {xij}, 1 ≤ i, j ≤
n. A satisfying truth assignment to B(G) does provide us with
a HP for G. Here, xij means the ith position in the HP is
occupied by node-j. An HP can be expressed as a permutation
π of {1, 2, . . . n}, where:
• π(i) = j ⇒ ith position is occupied by node-j.
• (π(i), π(i+ 1)) ∈ G for i = 1, 2, . . . (n− 1)

Considering the example motivated thus far, n = 4, hence
B(G) has 42 = 16 variables {xij}, 1 ≤ i, j ≤ 4. The
Hamiltonicity Clausebase shown in Figure 8 is produced using
HP constraints, which are multiple-fold:

1) Each node j must appear in the path, 1 ≤ j ≤ n = 4

• x1j ∨ x2j ∨ x3j ∨ x4j
Thus, total # constraints in this category is n.

2) No node j appears twice in the path, 1 ≤ j ≤ n = 4

• ¬x1j ∨ ¬x2j , ¬x1j ∨ ¬x3j , ¬x1j ∨ ¬x4j
• ¬x2j ∨ ¬x3j , ¬x2j ∨ ¬x4j , ¬x3j ∨ ¬x4j

Thus, total # constraints in this category is
(
n
2

)
× n.

3) Every position i on the path must be occupied, 1 ≤ i ≤
n = 4

• xi1 ∨ xi2 ∨ xi3 ∨ xi4
Thus, total # constraints in this category is n.

4) No two nodes j and k occupy the same position i in the
path, 1 ≤ i, j, k ≤ n = 4, j 6= k

• ¬xi1 ∨ ¬xi2, ¬xi1 ∨ ¬xi3, ¬xi1 ∨ ¬xi4
• ¬xi2 ∨ ¬xi3, ¬xi2 ∨ ¬xi4, ¬xi3 ∨ ¬xi4

Thus, total # constraints in this category is
(
n
2

)
× n.

5) Non-adjacent nodes i and j cannot be adjacent in the
path, 1 ≤ i, j ≤ n = 4

• ¬x1i ∨ ¬x2j , ¬x2i ∨ ¬x3j , ¬x3i ∨ ¬x4j
Since the number of non-adjacent node-pairs depends on
the scrambling algorithm, the total # constraints in this
category depend on the scrambling algorithm as well.

Let’s denote the set of clauses in this category as CHP .
2) Constraints connecting SI bits to the SFF outputs: The

Input Clausebase shown in Figure 8 is produced using input
connection constraints. Considering the example motivated
thus far, since n = 4, let I1, I2, I3, I4 be the input bits
applied serially through SI and a, b, c, d be the outputs of SFFs
1, 2, 3, 4 (or in other words, the inputs to the combinational
circuit) respectively. The constraints connecting SI bits to the
SFF outputs can be formulated as follows:
• a = x11.I1 + x12.I2 + x13.I3 + x14.I4
• b = x21.I1 + x22.I2 + x23.I3 + x24.I4
• c = x31.I1 + x32.I2 + x33.I3 + x34.I4
• d = x41.I1 + x42.I2 + x43.I3 + x44.I4

The above constraints have Boolean + and . operators on the
right-hand side, which need to be converted to clauses [37],
before adding to the CNF. Detailed equations are skipped for
brevity and without loss of generality. Let’s denote the set of
clauses in this category as CI . Each constraint corresponds
to one SFF and there are n SFFs. Further, each constraint is
a function of n 2-input and gates and (n − 1) 2-input or
gates. Since a 2-input and gate as well as a 2-input or gate
translates to 3 clauses each in the CNF, there are altogether
3× (n+ (n− 1)) = 3× (2n− 1) clauses, or in other words,
|CI | = 3× (2n− 1).

3) Combinational Circuit Constraints: The Combinational
Logic Clausebase shown in Figure 8 is produced by converting
combinational logic gates to clauses, similar to the original
SAT-based attack [1]. Figure 5 shows four 2-input nand gates
G1, G2, G3 and G4 in the combinational portion of the scan-
scrambled circuit. Converting these gates to clauses [37] gives:
• G1 → (a+ e), (b+ e), (a+ b+ e)
• G2 → (c+ h), (d+ h), (c+ d+ h)
• G3 → (a+ f), (e+ f), (a+ e+ f)
• G4 → (f + g), (h+ g), (f + h+ g)

Let’s denote the set of clauses in this category as CCombo.

7

Fig. 9. One of the inputs of each scramble-MUX is known. The second input is unknown and has to be decided in such a way, so as to maximize the number
of HPs in the resultant scramble-graph. The correct EC is {(k0 = 1, k1 = 0, k2 = 0, k3 = 1, k4 = 0, k5 = 0)}, and the objective is decide ”?” connections,
such that the number of incorrect ECs is maximized.

4) Constraints connecting SFF inputs to SO bits: The
Output Connection Clausebase shown in Figure 8 is produced
using output connection constraints. Considering the example
motivated thus far, since n = 4, let O1, O2, O3, O4 be the
output bits serially scanned out through SO, and e, f, g, h be
the inputs of SFFs 1, 2, 3, 4 (or in other words, the outputs
of the combinational circuit) respectively. The constraints
connecting SFF inputs to SO bits can be formulated as follows:
• O1 = x11.e+ x12.f + x13.g + x14.h
• O2 = x21.e+ x22.f + x23.g + x24.h
• O3 = x31.e+ x32.f + x33.g + x34.h
• O4 = x41.e+ x42.f + x43.g + x44.h

Similar to the input constraints, the above output constraints
need to be converted to clauses [37], before adding to the
CNF. Let’s denote the set of clauses in this category as CO.
Each constraint corresponds to one SFF and there are n SFFs.
Further, each constraint is a function of n 2-input and gates
and (n − 1) 2-input or gates. Since a 2-input and gate as
well as a 2-input or gate translates to 3 clauses each in the
CNF, there are altogether 3 × (n + (n − 1)) = 3 × (2n − 1)
clauses or in other words |CO| = 3× (2n− 1).

5) Running SAT-based attack on Scan-Scrambling: Using
the reverse-engineered netlist, the adversary computes the
clausebases corresponding to HP constraints CHP , connec-
tion constraints CI , CO, and combinational circuit constraints
CCombo as shown in Figure 8. The adversary subsequently
merges these clausebases to produce the original scramble
CNF B(G) (shown earlier in Figure 8) needed to attack scan-
scrambling:

B(G) = CHP ∪ CI ∪ CO ∪ CCombo (1)

The adversary uses this original scramble CNF B(G), sends
serial scan inputs to the oracle, observes the serial scan
responses and produces the final CNF B

′
(G). The adversary

runs the SAT-solver on B
′
(G) to solve for ~X shown in

Figure 8.
Considering the example motivated thus far, the above

formulation when provided as input to the SAT-solver, returns
x11 = x23 = x32 = x44 = 1 and xij = 0 otherwise. This
corresponds to π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 4, or in
other words the HP (1→ 2→ 3→ 4). We have seen how to
calculate ~X using the above formulation. This ~X vector space
can be mapped to the scrambling key space ~K and hence
decrypt the key by looking at the reverse-engineered netlist
as shown in Figure 8. Although so far, we have explained
the attack on using a sample circuit consisting of four gates
and four SFFs, the concept is generic and hence can be
extended to any arbitrary scan-scrambled sequential circuit.

Fig. 10. Scramble Graphs

The next section discusses how to defend SAT-based attack
on scrambling.

E. Defending SAT-based attack on Scan-Scrambling

It is well-known that SAT-based attack is a brute-force
search on the ECs [1]. The goal of our defense is to increase
the number of scramble ECs, so as to make the attack
computationally infeasible. Based on Corollary V.2.1, this
translates to increasing the number of HPs in G. Thus, we
arrive at the following:

Objective: Connect the second input to the scramble-MUXes
so as to produce a scramble-digraph G with maximum number
of HPs.

1) Search Space Exploration: We assume only security
scan-chain is scrambled, whose length is n. We assume a
scramble-MUX at the input of each SFF as well as the scan-
out port, thus there is a total of (n + 1) scramble-MUXes,
as shown in Figure 9. Since the first input to each scramble-
MUX is fixed corresponding to the correct scramble, and the
second input available for exploration, the designer needs to
evaluate the search space and decide the best choice. Avoiding
self-loops and repetition, the second input of each scramble-
MUX can be connected in (n − 1) ways. Thus, size of the
scrambling search space is (n− 1)(n+1).

8

Fig. 11. |∆| distribution with normal fit for η = 3, 4, 5, 6.

Figure 10 shows the scramble digraphs exploring different
possibilities of scan-scrambling the circuit in Figure 9 and
the possible HPs in each case. Figure 10(a) has only 1 HP
(least secure), Figures 10(b) and (c) have 2 HPs each and
Figure 10(d) has 4 HPs (most secure). Thus, the way we
connect the second input of the scramble-MUXes determines
the # HPs, or in other words, the number of scramble ECs,
hence the security level of the scrambled circuit.

2) Disturbance analysis: Prior to adding the second input
to all the scramble-MUXes, there are n edges in the initial
version of the scramble-graph, let’s call this initial version as
G0. After adding the second input to all the scramble-MUXes,
we know it is denoted as G. Let’s define G1 = G−G0, which
is essentially the collection of the newly added edges. Since
the scan-chain in the final design has to be connected, G0

has only 1 path and by definition Hamiltonian. Coming to
G1, since there are only n edges, it contains no more than
1 HP. This translates to at most 2 HPs which contain edges
either purely from G0 or purely from G1. If G contains κ
Hamiltonian Paths, by definition, the additional HPs in G i.e.
at least κ− 2, will contain edges from both G0 and G1.

Definition V.2. Let δi = |c1i − c2i | be the defined as the
disturbance produced on vertex-i, where c1i and c2i be the
indices of the vertices whose outputs are connected to the
first and second inputs the corresponding scramble-MUX.

Since the majority of HPs (≥ (κ − 2)) reuse edges from
both G0 and G1, the more the disturbance produced by δi on
vertex-i, the more the number of edges from G1 that provide
the recovery to simultaneously satisfy δi as well complete the
HP. On the contrary, the lesser the disturbance δi, the more
localized its effect, and the fewer the number of edges from
G1 that provide the recovery to simultaneously satisfy δi as
well complete the HP. For ease of explanation, let’s define the
disturbance vector ∆ = {δ1, δ2, . . . , δn}, resulting in

|∆| =
√∑

i

δ2i

Figure 11 shows the distribution of |∆| for η = 3, 4, 5, 6

Algorithm 1: Iterative Swapping-based Scrambling
Input: C, η

1 Create a scramble-digraph G = (V,E) with SFFs as
vertices, and directed edges corresponding to signal
flow in C;

2 C
′

= C, ns → 0;

3 G
′

= G;

4 while ns ≤ η do
5 Mark {vns , vns+1, vns+2} as visited ;
6 Scramble SFFs {vns , vns+1} and add directed

edges to G
′

corresponding to the additional signal
flow in C

′
;

7 ns → ns + 3;

Result: C
′

when running a brute-force search. We have observed that
in all the cases, the lowest value of |∆| is 6, 10, 11 and
12 for η = 3, 4, 5, 6 respectively. We have verified that this
corresponds to the adjacent-scrambling (AS) case as shown
in Figure 11 and also observed a general reduction in # HP
with increase in |∆|. We have observed similar pattern for
higher values of η, thus demonstrating the power of adjacent-
scrambling. Since it is not possible to perform brute-force
search for higher values of η, we exploit this observation and
propose adjacent-scrambling algorithm explained in the next
section and its security guarantees will be provided later in
Section VI.

F. Adjacent-scrambling algorithm

Algorithm 1 shows the proposed iterative swapping-based
scan-scrambling algorithm (or adjacent-scrambling in short),
where C is the circuit and η is the user-defined cost/area
constraint (0 < η ≤ n). As discussed earlier, due to cost
constraints we restrict ourselves to 2 : 1 scramble-MUXes.
Thus, every pair of permuted SFFs demands addition of 3
extra-edges if the vertices are adjacent in the corresponding
scramble digraph of the original scan-chain while it demands
4 extra-edges if otherwise. From pareto-optimality perspective,
we chose adjacent-scrambling. Thus, SFFs are allowed to be
permuted only once, and it is also not allowed to permute
their fanout SFFs as well, once permuted. Algorithm 1 thus
picks one adjacent SFF pair at a time, and performs iterative
swapping. This eliminates 3 SFFs from the exploration-space
for future iterations, depending on whether the chosen SFF
pair is adjacent or otherwise, respectively. Since it is a single
loop iterating over the SFFs until the cost constraint η is met,
the algorithm time-complexity is O(η).

VI. EXPERIMENTAL EVALUATION

We validate the security of SeqL+ against a multitude of
state-of-the-art attacks and quantify its reduced overheads
compared to prior work. This analysis confirms our claims
on genericness, robustness, and scalability of SeqL+. In all
the experiments, we have used the open-source .bench designs

9

TABLE II
RESILIENCE OF SeqL FOR PIPELINED COMBINATIONAL BENCHMARKS

FOR 5% LOGIC-LOCKING. ’4’ is secure and ’6’ is insecure.

Bench. RND DAC’12 ToC’13/xor ToC’13/mux
EFF SeqL EFF SeqL EFF SeqL EFF SeqL

apex2 6 4 6 4 4 4 6 4
apex4 6 4 6 4 4 4 4 4
i4 4 4 6 4 4 4 6 4
i7 4 4 6 4 4 4 6 4
i8 4 4 6 4 4 4 6 4
i9 4 4 6 4 6 4 6 4
seq 4 4 6 4 4 4 6 4
k2 4 4 6 4 4 4 6 4

ex1010 4 4 6 4 4 4 6 4
dalu 4 4 6 4 4 4 6 4
des 4 4 6 4 4 4 6 4
c432 6 4 6 4 6 4 6 4
c499 6 4 6 4 6 4 6 4
c880 4 4 4 4 6 4 6 4
c1355 4 4 6 4 4 4 6 4
c1908 4 4 6 4 6 4 6 4
c3540 4 4 6 4 6 4 6 4
c5315 4 4 4 4 6 4 6 4
c7552 4 4 6 4 6 4 6 4

TABLE III
RESILIENCE OF SeqL AGAINST STATE-OF-THE-ART ATTACKS ON

PIPELINED COMBINATIONAL BENCHMARKS. ALL EXPERIMENTS ARE RUN
ON IBM BladeCenter® Cluster WITH ABORT-LIMIT OF 1 WEEK. ’4’ is

secure and ’6’ is insecure. ’-’ indicates decryption time exceeds
abort-limit, while ’NK’ indicates No-Key.

Oracle-guided Oracle-less
Bench. DDIP [2] SS [8] SMT [4] HT [3] FALL [5]
apex2 4 4 4 4 4
apex4 4 4 4 4 NK
i4 4 4 4 4 4
i7 4 4 4 4 4
i8 4 4 4 4 4
i9 4 4 4 4 4
seq 4 − 4 − 4
k2 − 4 − 4 4

ex1010 4 4 4 4 NK
dalu 4 4 4 4 4
des − 4 NK 4 4
c432 4 4 4 4 4
c499 4 4 4 4 4
c880 4 4 4 4 4
c1355 4 4 4 4 4
c1908 4 4 4 4 4
c3540 4 4 4 4 4
c5315 − 4 4 4 4
c7552 NK 4 NK 4 4

for sequential benchmarks (ITC’99 [38]), logic-locked combi-
national benchmarks (ISCAS’85, MCNC [1]) and a synthe-
sized RISC-V CPU, along with sld solver and lcmp formal-
equivalence checker provided by [1]. Since the combinational
portion of the IP also needs to be accessed through scan-
chains, which are secured with SeqL+, we did not consider
combinational locking in order to minimize the overheads.
Since the locking algorithm execution times across all the
benchmarks were in the order of few seconds, they were
not reported. Further details on scan-locking experimental
evaluation are available in the conference version [19].

A. Resilience of SeqL vs. EFF [18] against SAT-Attacks on
pipelined combinational benchmarks

Table II shows the results of applying SeqL on 4 different
encryption schemes validated in [1], and compared against
EFF [18]. This table shows that SeqL secured all sequential
circuits against SAT-based attack in 100% of the cases. We
define the sequential key to be K = {Kc,Kfi,Ksq}, where

Kc, Kfi and Ksq are portions of the key that lock the
combinational logic (excluding the FIs), the FIs and the SQs
respectively. In our experiments, across all benchmarks, (1) Kc

was successfully decrypted, while (2) Kfi was incorrect, hence
causing functional output corruption, thus achieving resilience.
Results on IOLTS′14 encryption scheme [1], [12] gave 0%
resilience in the EFF case and 100% resilience in the SeqL
case, across all benchmarks, hence not reported in Table II for
shortage of space.

B. Resilience of scan-unrolled versions of SeqL-locked design
to state-of-the-art attacks on logic-locking

Table III shows the resilience of SeqL-locked design
to state-of-the-art attacks on logic-locking like Double-DIP
(DDIP) [2], ScanSAT (SS) [8], HackTest (HT)-attack [3],
functional-analysis-attacks on logic-locking (FALL) [5], and
SMT-attack [4]. The codes for the FALL- and SMT-attacks
are obtained from [39] and [40] repositories respectively. All
experiments were run on IBM BladeCenter® Cluster, with an
abort-limit of 1 week. Those entries in the table which are
empty, correspond to all those cases which have crossed this
abort-limit while performing key decryption. Similarly, for
some cases the solver returns No-key (indicated as NK in
the table). The resilience verification flow for oracle-guided
attacks is similar to the flow in SeqL automation [19]. For the
oracle-less attacks, the resilience verification flow is slightly
different because of the absence of oracle, however, lcmp
verifier is still used for formal-equivalence-checking.

C. Resilience of SeqL vs. EFF against SAT-Attacks on sequen-
tial benchmarks

Table IV shows the results of applying SeqL automation
on ITC’99 open-source sequential gate-level benchmarks [38]
and flattened RISC-V CPU netlist. The RISC-V CPU RTL
is obtained from [41], and gate-level synthesis is performed at
Nangate 45nm node [42] using Synopsys Design Compiler®.
Scan chains and EDT-compression are inserted into the gate-
level netlist using Mentor Graphics TestKompress® (decom-
pressor and compactor will not be used because the attack is
launched in EDT-bypass mode).

The columns #SFFs, #SCs, Res. and Ov. indicate number
of SFFs, number of scan-chains, resilience and overhead,
respectively. The resilience rate of EFF was 0%, while that of
SeqL was 100%, thus indicating the superiority of SeqL over
EFF. An abort limit of 1 week was used for key decryption,
the maximum allowed time for each job on the cluster.

D. Resilience to Removal attack [9]

From Table IV, we note that the number of locked flip-flops,
n = |Kfi| = |Ksq| in all cases is <= 10. So, the total number
of possible sequential key bits is |Kfi|+ |Ksq| <= 20, hence
it is possible to find the functionally correct key using brute-
force-search. A solution to address this issue is to increase the
user-configurable parameter γ in Algorithm IBLA [19], which
results in exponential increase in sequential key search space,
with linear increase in area overhead.

10

Fig. 12. Time-unrolled locked netlist used for multi-cycle-attack. Primary inputs are same for all time-frames, because input-register Ri (shown earlier in
Figure 1) is scanned-in only once before first capture cycle. Primary outputs of intermediate stages are not observable because output-register Ro is scanned-out
only once after the last (Nth) capture cycle.

TABLE IV
RESILIENCE OF SeqL FOR ITC’99 SEQUENTIAL BENCHMARK CIRCUITS AND RISC-V. N DENOTES THE NUMBER OF CAPTURE CYCLES IN THE

MULTI-CYCLE SCAN-BASED TEST. THE SCAN FLIP-FLOPS WITHOUT FEEDBACK Rwof ARE STITCHED BY DESIGNER AS A SEPARATE SCAN-CHAIN FOR
SECURITY CONSIDERATIONS. ALL EXPERIMENTS ARE RUN ON IBM BladeCenter® Cluster WITH ABORT LIMIT OF 1 WEEK. ’4’ is secure and ’6’ is

insecure.

Bench. #Gates #SFFs #SCs |Rwof | EFF [18] SeqL
Resilience Decryption Time

Res. Ov. n p Ov. N=1 N=2 N=5 N=1 N=2 N=5
b01 45 5 1 2 6 9% 4 0.93 14 % 4 4 4 22 ms 26 ms 72 ms
b02 26 4 1 1 6 12% 3 0.88 18 % 4 4 4 15 ms 13 ms 27 ms
b03 152 30 1 4 6 14% 5 0.97 5 % 4 4 4 4.2 s 0.14 s 0.23 s
b04 718 66 1 8 6 8% 4 0.93 1.3 % 4 4 4 50.9 s 1.9 s 0.4 s
b05 961 34 1 36 6 3% 3 0.88 1 % 4 4 4 15.3 s 1.2 s 0.42 s
b06 48 9 1 6 6 14% 2 0.75 9 % 4 4 4 0.1 s 24 ms 17 ms
b07 432 49 1 8 6 9% 3 0.88 1.3 % 4 4 4 34 s 1.2 s 1.5 s
b08 170 21 1 4 6 10% 3 0.88 4.3 % 4 4 4 1.8 s 78 ms 0.1 s
b09 168 28 1 1 6 13% 2 0.75 2 % 4 4 4 1.1 s 0.2 s 0.1 s
b10 189 17 1 6 6 8% 3 0.88 1.5 % 4 4 4 0.6 s 0.2 s 0.1 s
b11 757 31 1 6 6 4% 2 0.75 0.3 % 4 4 4 10.4 s 0.8 s 0.4 s
b12 1,065 121 2 6 6 10% 2 0.75 0.35 % 4 4 4 173 s 150 s 180 s
b13 342 53 1 10 6 12% 4 0.93 1.9 % 4 4 4 43 s 0.9 s 1.2 s
b14 10,012 245 3 54 6 3.3% 8 0.99 0.24 % 4 4 4 19 min 2 min 2 min
b15 12,992 449 5 70 6 4.3 % 9 0.99 0.2 % 4 4 4 47 min 11 min 164 min
b17 32,192 1,415 15 97 6 5.2 % 6 0.99 0.05 % 4 4 4 10 min 17 hrs. 47 hrs.
b18 114561 3,320 34 23 6 3.8 % 10 0.99 0.03 % 4 − − 53 hrs. > abort-limit > abort-limit
b19 231,266 6,642 67 30 6 3.7 % 10 0.99 0.01 % 4 − − 91 hrs. > abort-limit > abort-limit
b20 20,172 490 5 22 6 3.3 % 10 0.99 0.15 % 4 4 4 7 min. 15 min. 37 min.
b21 20,517 490 5 22 6 3.2 % 10 0.99 0.15 % 4 4 4 6 min. 34 min. 36 min.
b22 29,897 735 8 22 6 3.3 % 10 0.99 0.1 % 4 4 4 11 min. 37 min. 67 min
RISC-V 25,096 2,031 20 226 6 7.9 % 10 0.99 0.09 % 4 4 4 2 min. 13 min. 6 hrs.

E. Resilience to Multi-cycle attacks [31]

So far, we have discussed the attack in the context of a
single-cycle test (one capture cycle). It is possible that the
attacker uses the scan-chain to initialize the circuit, runs the
circuit for more than one capture cycle (multi-cycle test),
before observing the response through the scan-chain. In a
multi-cycle scan test, there is only one scan-in cycle and one
scan-out cycle per test vector, but multiple capture cycles (say
N). This attack can be modeled by time-unrolling the reverse-
engineered netlist as well as the oracle in Figure 3, as shown
in Figure 12.

Coming to test-time, since scan-in and scan-out phases span
hundreds of clock cycles and N is in general relatively very
small, running at slow-speed (considering challenges with
at-speed test) will not significantly affect the attack time.
Empirical results are shown in Table IV, where N denotes the
number of capture-cycles in the multi-cycle scan based test.
Similar to single-cycle attack (N = 1), SeqL was resilient
to multi-cycle attack (N = 2, 5) across all benchmarks. For
EFF , since key is successfully recovered for N = 1 itself,

resilience results for N > 1 were not shown.

F. Resilience to Shift-and-Leak attack (SaLa) [6]
In RDFS [7], [31], special secure cells (SCs) are inserted

into scan-chains to drive the key-gates. Unlike RDFS, in SeqL
the key-gates are directly driven by the tamper-proof memory,
without SCs in between. The first goal of SaLa is to find leaky
cells and shift the content of SCs into leaky cells. Due to the
absence of SCs in SeqL, this first goal is never achieved. The
second goal of SaLa is to find the leak condition and satisfy it.
Since the scan-chain is itself locked in SeqL, it is mandatory
to know the scan-key up front to run the automatic test pattern
generation (ATPG) tool to be able to find the leak condition.
Since the goal is itself key-decryption, it is not possible to find
the leak condition, let alone satisfy it. Thus, SeqL is inherently
resilient to SaLa.

G. Resilience to Scan-flushing attack [8]
Scan-flushing attack [8] corresponds to placing the design

in scan-shift mode and flushing-in/out 1’s and 0’s with the

11

TABLE V
CNF AND SAT-BASED ATTACK STATISTICS FOR SeqL+ OBFUSCATED CIRCUITS WITH #SFFs > 50 BUT Rwof < 50. FOR SUCH DESIGNS, WE ASSUME

ONLY SCRAMBLING IS USED, AND SCAN-LOCKING IS NOT USED. ALGORITHM 1 WAS USED FOR SCRAMBLING THE SCAN-CHAINS. PLEASE THAT HERE,
η = n IS USED I.E. ALL THE SCAN FLIP-FLOPS WERE USED FOR SCRAMBLING. THUS, THE OVERHEADS WILL BE FURTHER LESS FOR SMALLER VALUES

OF η.

Bench. # Gates #SFFs n Rwof Ite. Dec. time # Literals # Clauses #Iters. Est. Tot. Dec. Ov.
(g) (τ0) (# eq. cls.) time (τ)

(2n2 + 8n+ g) HP Cons. Conn. Cons. Ckt. Cons.

(|CHP |) (|CI ∪ CO|) (|CCombo|) τ0 ∗ 2b
n+1
3

c

(2n3 − 5n2 + 7n− 2) (12n− 6) (O(g)) (2b
n+1
3

c)
b04 718 66 66 8 51 s 104.0 105.7 102.9 103.3 106.62 6.7 years 27.3 %
b12 1, 065 121 121 6 173 s 104.5 106.5 103.2 103.5 1012.04 106.8 years 17.5 %
b13 342 53 53 10 43 s 103.8 105.5 102.8 103.0 105.42 131 days 37 %
b18 114, 561 3, 320 1, 000 23 53 hrs. 106.3 109.3 104.1 105.5 10100.2 1097.9 years 0.3 %
b19 231, 266 6, 642 1, 000 30 91 hrs. 106.4 109.3 104.1 105.8 10100.2 1098.2 years 0.1 %
b20 20, 172 490 490 22 7 min. 105.7 108.4 103.8 104.8 1049.1 1044.2 years 1.5%
b21 20, 517 490 490 22 6 min. 105.7 108.4 103.8 104.8 1049.1 1044.1 years 1.5 %
b22 29, 897 735 735 22 11 min. 106.1 108.9 104.0 105.0 1073.8 1069.1 years 1.0 %

expectation to reveal the Ksq portion of the secret key used
to lock the scan-chain. Let’s assume the locked scan-chain
has n key-bits. If we shift-in 0-bit, after traversing through all
the flip-flops in the scan-chain, the corresponding transformed
shift-out bit is

k=n⊕
k=1

sqkk

On the other hand, if we shift-in 1-bit, after traversing through
all the SFFs in the scan-chain, the corresponding transformed
shift-out bit is

(

k=n⊕
k=1

sqkk)′

In both these cases, the attacker is only able to derive the
inversion parity of the locked scan-chain and not the exact
key-bits. Hence, SeqL is resilient to scan-flushing attack.

H. Resilience of adjacent scrambling to SAT-Attack

Theorem VI.1. The number of scramble ECs produced using
the adjacent scrambling algorithm is 2b

η+1
3 c.

Proof. From Steinhaus-Johnson–Trotter algorithm [43], we
know that different vertices of a permutohedron can be visited
through iterative swapping of the entries within the permuta-
tions. Inspired by this approach, Algorithm 1 swaps/scrambles
two vertices per iteration in the graph G consisting of (n+ 1)
vertices in G (including the scan-out vertex).
• If these two vertices are adjacent, number of vertices that

need to be eliminated is 3;
• If these two vertices are not adjacent, number of vertices

that need to be eliminated is 4;
For every scramble-pair, multiple vertices get eliminated but
only two possible valid paths exist. To estimate the upper
bound, we need to consider the best-case scenario, which is
the case when all scramble-pairs are adjacent because only
3 vertices get eliminated from each iteration. In this case,
each iteration eliminates 3 vertices and creates 2 valid paths
(u→ v and v → u in Algorithm 1). Thus, the number of times
Algorithm 1 iterates is bη+1

3 c, defined by a cost constraint η.

Since each iteration decides 3 successive positions in the
permutation, and the positions-under-scrutiny are mutually
exclusive across iterations, the number of HPs multiply ge-
ometrically. For e.g. iteration-(1) scrambles vertices 1 and 2,
iteration-(2) scrambles vertices 4 and 5, then:
• after iteration-(1), the scramble permutations are
{1,2, 3, ...} and {2,1, 3, ...}.

• after iteration-(2), the scramble permutations
are {1,2, 3,4,5, 6, ...}, {1,2, 3,5,4, 6, ...},
{2,1, 3,4,5, 6, ...} and {2,1, 3,5,4, 6, ...}.

• ...
This translates to the number of HPs produced after iteration-
(1) being 2, after iteration-(2) being 4, after iteration-(3) being
8, and so on. In general, number of HPs produced after
iteration-(i) is 2i. Since the number of times Algorithm 1
iterates, prior to termination, is bη+1

3 c, the number of HPs
in the scramble graph produced through adjacent scrambling
is 2#iterations = 2b

η+1
3 c, thus the proof. QED

I. Complexity Analysis

The SAT-based attack algorithm iteratively eliminates in-
valid scramble ECs using oracle input/response pairs, until
it finds the correct scrambling key. As discussed in Corol-
lary V.2.1, each scramble EC is of cardinality 1, hence the
number of iterations the while loop in SAT-based attack [1]
executes is equal to the number of scramble ECs= 2b

η+1
3 c,

thus ensuring O(2b
η+1
3 c) SAT-decryption time-complexity. In

industry practice, for large processors, typically maximum
scan-chain-length (n) is typically around 500 − 1000, thus
the SAT-attack complexity can be made arbitrarily large
as shown in Table V, making it practically impossible to
decrypt the scrambling-key. Hence adjacent scrambling is
computationally-secure against SAT-based attack.

We have discussed earlier in section V-D1 that the # of non-
adjacent node constraints depend on the scrambling algorithm.
Since by definition, adjacent scrambling algorithm swaps
adjacent nodes, there are altogether (n−1)+(η−1) = n+η−2
adjacent node-pairs in the scramble-graph. All the remaining
node-pairs in the complete digraph are non-adjacent, which
equals 2 ×

(
n
2

)
− (n + η − 2) = n2 − 2n − η + 2. For each

12

0.2 0.4 0.6 0.8 1
0

1,000

2,000

(1 year)
α = 0.88

α

τ
(in

da
ys

)

Fig. 13. Estimated decryption time (τ = τ0 ∗ 2b
α.n+1

3
c) for b04 (the

smallest circuit under consideration for scrambling), as a function of area-
cost constraint α = η

n
(0 < α ≤ 1). Please note the Y-axis range.

non-adjacent node-pair, there are (n − 1) possible ways to
be placed adjacent to the path, so altogether the number of
non-adjacent node constraints are:

(n2−2n−η+2)×(n−1) = n3−2n2−η.n+2n−n2+2n+η−2

= n3 − 3n2 + 4n− η.n+ η − 2 (2)

Substituting this in the results from section V-D1, we get

|CHP | = 2n×

(
1+

(
n

2

))
+(n3−3n2 +4n−η.n−η−2)

= 2n+ n2 × (n− 1) + (n3 − 3n2 + 4n− η.n+ η − 2)

= 2n3 − n2(4 + α) + n(6 + α)− 2, 0 < α =
η

n
≤ 1 (3)

This suggests the worst-case HP constraint complexity is
O(n3) (because α ≤ 1). We have seen earlier that the connec-
tion constraint complexity is O(n) and combinational circuit
constraint complexity is O(g) = O(n) (because the ratio
of flip-flops to gates lies in a restricted range [44]. Table V
also reflects this observation.) Thus, the worst-case total CNF
reduction complexity is O(n3) +O(n) +O(n) = O(n3).

The last-but-one column in Table V shows the practical
impossibility to launch the SAT-based attack on the scrambled
instances, hence we report the decryption time per iteration
in the sixth column of this table. For b19 processor [38]
when scrambled with η = n results in only 0.1% overhead,
but we notice 91 hrs. decryption time per iteration and a
total of 10100.2 iterations needed to decrypt the scrambling
key. This causes the estimated decryption time to be 1098.2

years, thus demonstrating the power of the proposed technique.
Further, Figure 13 shows exponential increase in the estimated
decryption time as a function of α = η

n (0 < α ≤ 1), providing
an opportunity to trade-off area with decryption time.

J. Testing

The testing of key-gates in combinational logic (fik) is
straightforward, as the faults in the output of these key-gates
are appended to the fault list before ATPG is invoked. Coming
to key-gates along scan-chain (sqk), there is no need for
additional patterns because we consider only XOR/XNOR
type gates and chain-test will automatically test faults on sqk-
type gates (fault-equivalence).

K. Cost Evaluation

The cost evaluation of scan-locking is provided in the con-
ference version [19]. Coming to scrambling, there are K 2 : 1
MUXes, each costing two 2-input and gates and one 2-input
or gate. So, the total transistor cost is O(K). Further, each
2 : 1 MUX demands two additional inputs (one scrambling
input signal and one select signal), and there are K such
MUXes. So, the total routing cost is also O(K). Since with
linear increase in cost (transistors + routing), an exponential
increase in security level is achieved, scan-scrambling looks
attractive. Moreover, it is sufficient to scramble only one scan-
chain, making it cost-effective. The last column in Table V
shows the overheads of scrambling. The overhead decreases
with an increase in circuit complexity, demonstrating the
scalability of the proposed technique. Please that here, α = 1
is used i.e. all the SFFs were used for scrambling, yet the area
overhead is acceptable for large designs. Thus, the overheads
will be further less for smaller values of α.

VII. CONCLUSIONS

We have proposed SeqL+, which performs functional isola-
tion, FI-SQ locking, and scan-scrambling. SeqL+ hides a ma-
jor fraction of the functionally correct keys, thus maximizing
functional output corruption, and also embeds exponentially
many number of Hamiltonian Paths into the scramble digraph
thereby thwarting brute-force attacks. We have shown both
the theoretical and empirical improvements in the security
of SeqL+ compared to the state-of-the-art. The results have
shown 100% resilience to state-of-the-art oracle-guided as well
as oracle-less attacks. Furthermore, since the combinational
key (excluding FIs) is completely recovered, it is sufficient
to lock FI-SQ pairs and scramble only a single scan-chain
containing an adequate number of flip-flops, making SeqL+
efficient in terms of overheads. Moreover, we have demon-
strated implementation on large-scale designs such as RISC-V
CPU and b19, demonstrating its applicability in mainstream
industry practice.

REFERENCES

[1] P. Subramanyan et al, “Evaluating the security of logic encryption
algorithms,” in IEEE HOST, 2015, pp. 137–143.

[2] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic
encryption algorithms,” in IEEE GLSVLSI, 2017, pp. 179–184.

[3] M. Yasin et al, “Testing the trustworthiness of IC testing: An oracle-less
attack on IC camouflaging,” IEEE TIFS, vol. 12, no. 11, pp. 2668–2682,
2017.

[4] K. Z. Azar et al, “SMT attack: Next generation attack on obfuscated
circuits with capabilities and performance beyond the SAT attacks,” in
CHES, 2019.

[5] D. Sirone et al, “Functional analysis attacks on logic locking,” in
IEEE/ACM DATE, 2019, pp. 936–939.

[6] N. Limaye et al, “Is robust design-for-security robust enough? attack
on locked circuits with restricted scan chain access,” in IEEE ICCAD,
2019.

[7] U. Guin et al, “Robust design-for-security architecture for enabling trust
in IC manufacturing and test,” IEEE TVLSI, vol. 26, no. 5, pp. 818–830,
2018.

[8] L. Alrahis et al, “ScanSAT: Unlocking obfuscated scan chains,” in IEEE
ASP-DAC, 2019, pp. 352–357.

[9] M. Yasin et al, “Removal attacks on logic locking and camouflaging
techniques,” in IEEE TETC, 2017.

13

[10] J. Roy et al, “EPIC: Ending Piracy of Integrated Circuits,” in IEEE/ACM
DATE, 2008, pp. 1069–1074.

[11] J. Rajendran et al, “Fault analysis-based logic encryption,” IEEE Trans-
actions on Computers, vol. 21, no. 5, pp. 410–424, 2015.

[12] S. Dupuis et al, “A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware trojans,” in IEEE IOLTS,
2014, pp. 49–54.

[13] M. Yasin et al, “TTLock: Tenacious and traceless logic locking,” in
IEEE HOST, May 2017, pp. 166–166.

[14] M. Yasin et al, “SARLock: SAT attack resistant logic locking,” in IEEE
HOST, May 2016, pp. 236–241.

[15] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE TCAD, vol. 38, no. 2, pp. 199–207, 2018.

[16] M. Yasin et al, “Provably-secure logic locking: From theory to practice,”
in ACM CCS, 2017, pp. 1601–1618.

[17] U. Guin et al, “FORTIS: A comprehensive solution for establishing
forward trust for protecting IPs and ICs,” ACM TODAES, vol. 21, no. 4,
pp. 63:1–63:20, 2016.

[18] R. Karmakar et al, “A scan obfuscation guided design-for-security
approach for sequential circuits,” IEEE TCAS II: Express Briefs, pp.
1–1, 2019.

[19] S. Potluri et al, “SeqL: Secure Scan-Locking for IP Protection,” in
ISQED, 2020, pp. 7–13.

[20] Y. Xie et al, “Mitigating SAT attack on logic locking,” in CHES, 2016,
pp. 127–146.

[21] K. Shamsi et al, “Cyclic obfuscation for creating SAT-unresolvable
circuits,” in IEEE GLSVLSI, 2017, pp. 173–178.

[22] K. Shamsi et al, “AppSAT: Approximately deobfuscating integrated
circuits,” in IEEE HOST, 2017, pp. 95–100.

[23] H. Zhou et al, “CycSAT: SAT-based attack on cyclic logic encryptions,”
in IEEE/ACM ICCAD, 2017, pp. 49–56.

[24] Y. Shen et al, “BeSAT: Behavioral SAT-based attack on cyclic logic
encryption,” in IEEE ASP-DAC, 2019, pp. 657–662.

[25] Y. Zhang et al, “TGA: An Oracle-Less and Topology-Guided Attack on
Logic Locking,” in ASHES, 2019, p. 75–83.

[26] P. Chakraborty et al, “SAIL: Machine learning guided structural analysis
attack on hardware obfuscation,” in IEEE AsianHOST, 2018, pp. 56–61.

[27] A. Rezaei et al, “CycSAT-unresolvable cyclic logic encryption using
unreachable states,” in IEEE ASP-DAC, 2019, pp. 358–363.

[28] L. Alrahis, M. Yasin, N. Limaye, H. Saleh, B. Mohammad, M. Alqutayri,
and O. Sinanoglu, “Scansat: Unlocking static and dynamic scan obfus-
cation,” IEEE TETC, pp. 1–1, 2019.

[29] “ASE Technology Holding Revenue 2006-2020,” 2020. [On-
line]. Available: https://www.macrotrends.net/stocks/charts/ASX/ase-
technology-holding/revenue/

[30] “ASE Group Test Service,” 2021. [Online]. Available: https://ase.
aseglobal.com/en/products/test

[31] U. Guin et al, “A novel design-for-security architecture to prevent
unauthorized IC overproduction,” in IEEE VTS, 2017, pp. 1–6.

[32] “Intel Set to Outsource Select CPU Production to TSMC’s 5nm Process,”
2021. [Online]. Available: https://www.allaboutcircuits.com/news/intel-
set-to-outsource-select-cpu-production-tsmcs-5nm-process/

[33] M. E. Massad et al, “Reverse engineering camouflaged sequential
circuits without scan access,” in ICCAD, 2017, pp. 33–40.

[34] X. Wang et al, “Secure scan and test using obfuscation throughout supply
chain,” IEEE TCAD, vol. 37, no. 9, pp. 1867–1880, 2018.

[35] D. Hely et al, “Scan design and secure chip,” in IEEE IOLTS, 2004, pp.
219–224.

[36] S. A. Cook, “The complexity of theorem-proving procedures,” in IN
STOC. ACM, 1971, pp. 151–158.

[37] T. Qinhan et al, “Efficacy of sat-based attacks in the presence of circuit
reverse-engineering errors,” in IEEE ISCAS, 2020, pp. 1–5.

[38] “ITC’99 benchmarks.” [Online]. Available: https://www.cerc.utexas.
edu/itc99-benchmarks/bench.html

[39] D. Sirone et al. Functional analysis attacks on logic locking
benchmark circuits, benchmark circuits and codes. [Online]. Available:
https://bitbucket.org/spramod/fall-attacks/src/master/

[40] K. Z. Azar et al. SMT decryption tool binaries, benchmarks, and codes.
[Online]. Available: https://github.com/gate-lab/SMTAttack

[41] A. Magyar. V-scale, an implementation of an RV32IM core in Verilog.
[Online]. Available: https://riscv.org/2015/09/risc-v-in-verilog/

[42] The Silvaco 45nm Open Cell Library. [Online]. Available: https:
//www.silvaco.com/products/nangate/FreePDK45 Open Cell Library/

[43] L. M. Surhone et al, Steinhaus-Johnson-Trotter Algorithm. Beau Bassin,
MUS: Betascript Publishing, 2010.

[44] S. Bhunia et al, “Low-power scan design using first-level supply gating,”
IEEE TVLSI, vol. 13, no. 3, pp. 384–395, 2005.

Seetal Potluri received his Ph.D.from the De-
partment of Electrical Engineering, Indian Institute
of Technology Madras, on ”Power : Its Manifes-
tations in Digital Systems Testing” in 2015. He
has worked at Xilinx between 2016-2018, and his
work on ”Delta-IDDq” is currently in production
on ”Automotive-grade” Zynq ICs. Currently, he is
pursuing a Post-Doc at North Carolina State Univer-
sity, USA. He has served on the Technical Program
Committees of IEEE Asia South Pacific Design
Automation Conference (2018, 2019, 2020), IEEE

European Test Symposium (2016, 2017, 2018), IEEE Asian Test Symposium
(2017), and IEEE International Test Conference Asia (2017 and 2020). He
has published 22 research papers, an approved WIPO patent, and is an IEEE
member.

Shamik Kundu is a doctoral student in the De-
partment of Electrical and Computer Engineering
at the University of Texas, Dallas. He received his
B.Tech degree in Electronics and Communications
Engineering from Heritage Institute of Technology
in 2018. His research interests include hardware and
system security, fault detection, and modeling in
hardware architectures.

Akash Kumar (SM’13) received the joint Ph.D.
degree in electrical engineering and embedded sys-
tems from the Eindhoven University of Technology,
Eindhoven, The Netherlands, and the National Uni-
versity of Singapore (NUS), Singapore, in 2009.
From 2009 to 2015, he was with NUS. He is
currently a Professor with Technische Universität
Dresden, Dresden, Germany, where he is directing
the Chair for Processor Design. His current research
interests include the design, analysis, and resource
management of low-power and fault-tolerant embed-

ded multiprocessor systems.

Kanad Basu received his Ph.D. from the Depart-
ment of Computer and Information Science and
Engineering, University of Florida. His thesis was
focused on improving signal observability for post-
silicon validation. Post-Ph.D., Kanad worked in var-
ious semiconductor companies like IBM and Synop-
sys. During his Ph.D. days, Kanad interned at Intel.
Currently, Kanad is an Assistant Professor at the
Department of Electrical and Computer Engineering
of the University of Texas at Dallas. Prior to this,
Kanad was an Assistant Research Professor at the

Electrical and Computer Engineering Department of NYU. He has authored 2
US patents, 2 book chapters, and several peer-reviewed journal and conference
articles. Kanad was awarded the ”Best Paper Award” at the International
Conference on VLSI Design 2011. Kanad’s current research interests are
hardware and systems security.

Aydin Aysu (SM’19) received his Ph.D. degree
in Computer Engineering from Virginia Tech in
2016. He was a post-doctoral research fellow at the
University of Texas at Austin from 2016 to 2018. He
is currently an assistant professor and Bennet faculty
fellow in the Electrical and Computer Engineer-
ing Department of North Carolina State University.
Dr. Aysu’s research focuses on the development of
secure systems that prevent cyberattacks targeting
hardware vulnerabilities. His research interests lie
at the intersection of applied cryptography, digital

hardware design, and computer architectures. He received the 2020 NSF
CAREER award, 2020 DATE best paper award, 2019 GLSI-VLSI best paper
award, 2019 NC State FRPD award, 2018 NSF CRII award, and is an IEEE
senior member.

14

