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Abstract—Resource Public Key Infrastructure (RPKI) is vital
to the security of inter-domain routing. However, RPKI enables
Regional Internet Registries (RIRs) to unilaterally takedown IP
prefixes - indeed, such attacks have been launched by nation-
state adversaries. The threat of IP prefix takedowns is one of the
factors hindering RPKI adoption.

In this work, we propose the first distributed RPKI system,
based on threshold signatures, that requires the coordination of
a number of RIRs to make changes to RPKI objects; hence,
preventing unilateral prefix takedown. We perform extensive
evaluations using our implementation demonstrating the prac-
ticality of our solution. Furthermore, we show that our system
is scalable and remains efficient even when RPKI is widely
deployed.

I. INTRODUCTION

Resource Public Key Infrastructure (RPKI) [30] is a crypto-
graphic method to secure inter-domain routing against prefix
and sub-prefix hijacks. It is also a prerequisite for Border
Gateway Protocol Security (BGPsec) [31]. In RPKI, Regional
Internet Registries (RIRs) allocate IP prefixes and authorize
specific autonomous systems (ASes) to be the origin of routes.
This information is stored in route origin authorization (ROA).
Routers use the ROAs to distinguish legitimate routes from
leaked or hijacked routes. This is known as route origin
validation (ROV).

The insecurity of inter-domain routing and the ability of
RPKI to address the insecurity has not transpired into wide-
scale deployment of RPKI [18], [24]. One of the reasons is the
possibility of RIRs to unilaterally takedown IP prefixes, either
deliberately or accidentally, that will result in the prefix of the
affected ASes being unreachable when ROV is performed [11].
The hierarchical structure of RPKI gives RIRs the power to
revoke and invalidate any objects that it has issued.

As centralized authorities are easy targets for legal surveil-
lance and coercion, is it possible to prevent a state-sponsored
attacker from imposing its demands on RIRs without drasti-
cally changing the structure of RPKI? The RIRs are bound by
the law of the country they are based in. Their members who
are based in different countries do not have a recourse when
their prefix is taken down.

In the past, there have been situations where these problems
have taken practical relevance. In 2011, RIPE NCC took the
state of Netherlands to court when the Dutch police ordered
to it to lock registration of four IP address blocks [38], [42].
Nevertheless, it was forced to lock down the registrations.
More recently, RIPE NCC mistakenly deleted 2669 ROAs on 1
April 2020 and were reinstated on 2 April [39]. This meant that

the announcement for these resources were ‘unknown’. On the
day when these ROAs were missing, RosTelecom had a route
leak [35]. While the two events seem independent, according
to RIPE NCC, 12 prefixes whose ROAs were deleted were
affected by the route leak. Furthermore, RIPE NCC transferred
an IP prefix block from a member to another entity based on
a German court order transferred to them through a Dutch
court [40]. As a matter of procedure, they will do the same if
similar situations arises in the future. In the context of RPKI,
this means RIPE NCC will “revoke any certificates generated
by the RIPE NCC” [41].

In this work we address these issues that are prevalent in
the deployed RPKI system by constructing a distributed RPKI
system that relies on threshold signatures, a specific instance of
secure multiparty computation (MPC). Our solution, without
requiring significant changes to BGP and RPKI, restricts
the power of RIRs and only allows revocation of allocated
resources in legitimate cases with the cooperation of a number
of RIRs.

A. Significance of the threat model

BGP without RPKI operates in a default-accept mode where
any autonomous system (AS) can announce a BGP route for
any IP prefix and the other ASes will accept the route by
default. The default-accept mode has made BGP vulnerable to
prefix hijacks, where a malicious AS announces a route for IP
prefixes it does not own such that the traffic for those prefixes
are sent to it, and sub-prefix hijacks, where a malicious AS
announces a more specific IP prefix than the one that has been
allocated [2], [7], [13], [26].

RPKI entrusts hierarchical and centralized authorities to
be honest. Malfunctions or coercion by law enforcement
authorities is not incorporated into the threat model. Such a
weak threat model creates an imbalance of power between
the RIRs and its members. Moreover, the power imbalance
with RPKI is greater than with Web PKI. In RPKI, there is no
option to request certificates from different authorities. Hence,
the reliance on specific RIRs is greater.

Members are further weakened when the authority is based
in a different country than their own. The manipulations at
the level of BGP is more coarse-grained than domain name
seizures as BGP granularity is limited to /24, i.e., 256 IPv4
addresses [11]. The RIRs are bound by the law of the country
they are based in. If members are affected, they may need to
take the issue up in another country. The slow process may
result in a loss of business.
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B. Threshold signatures for RPKI

We propose a distributed RPKI system based on threshold
signatures. Threshold signatures is a cryptographic technique
where a threshold of t + 1 parties out of a set of n parties
are required to jointly compute a signature on a message.
Although the signing process is distributed, the verification
scheme remains unchanged. Threshold signatures are more
robust to adversarial attacks in settings where signatures are
to be generated in a system where individual parties cannot
be entirely trusted.

Threshold signatures provide a method to distribute trust and
they are practical in settings where the number of participating
parties is small. One of the deployment method of RPKI is
hosted RPKI. There are five RIRs and threshold signature
protocols are practical when there are only five participating
parties. Hence, our system requires a threshold of them to
agree before making changes to RPKI objects. This prevents
any RIR from unilaterally making changes.

Our solution can be described as follows: threshold signa-
tures use shares of the private key, where each of the five
RIRs will have a share of the private key while none of
them have the entire private key. Using only the shares, the
RIRs can collaboratively sign ROAs and CRLs. However,
they cannot unilaterally perform any of these actions. Our
mechanism prevents them from acting maliciously unilaterally.
Most importantly, threshold signatures support a stronger
threat model where corrupted RPKI authorities are not entirely
trusted and yet play a significant role in making BGP secure.

Contributions. A summary of our contributions:
• We construct a distributed RPKI system based on thresh-

old signatures that addresses three issues: (1) preventing
unilateral IP prefix takedowns, (2) limiting the scope and
implications of attacks on RIRs, and (3) enabling validation
in case of missing trust anchor.
• We propose two deployment models of our solution and

discuss the trade-offs in these models.
• We show the performance of our distributed RPKI system

based on four threshold signature protocols, all of which have
a stronger threat model than the existing RPKI system.
• We perform extensive evaluation of our system and show

that our system is not only efficient for today’s requirements,
it can also meet future demands.

Outline. We provide preliminaries in Section II. We elab-
orate on the system and threat model and describe our dis-
tributed RPKI system in Section III. Then we discuss the
performance of our distributed RPKI system in Section IV.
In Section V, we analyse historical RPKI data to understand
the number of ROAs issued/revoked over time and show that
our system satisfies the requirements. Finally, we discuss the
related works in Section VI and we conclude in Section VII.

II. PRELIMINARIES

A. RPKI

RPKI architecture includes CA certificates, end-entity (EE)
certificates and trust anchor. A resource holder needs a CA

certificate to sub-allocate resources and to issue resource cer-
tificates. EE certificates verify signed objects (e.g., ROAs and
manifests). The private key corresponding to the public key
in an EE certificate cannot be used to sign other certificates.
There is a one-to-one mapping between EE certificate and
signed objects. If the EE certificate is revoked, then the
corresponding signed object is automatically revoked. CA
certificate is used to sign EE certificate. A trust anchor is
a self-signed X.509 CA certificate in RPKI that is at the
head of the chain and it is assumed to be trusted. In X. 509
architecture, the chain of trust is derived from this authoritative
certificate. The trust anchor contains a public key in the
subjectPublicKeyInfo field along with the associated
data that are used by the relying parties to validate a signature
on a certificate or signed objects, such as ROAs [27], [36]

ROAs are digitally signed objects, X.509 certificates [32],
[12], that provide a method to verify that an IP address block
holder (RIR) has authorized an AS to originate routes to
specific prefixes within that address block. Note that each
ROA includes exactly one ASN. However, multiple ASNs
may be authorized, but each one requires a separate ROA.
Moreover, issuance of subordinate certificates corresponds to
sub-allocation of IP-addresses. A Certificate Revocation List
(CRL) is a list of resource certificates that have been revoked,
and should not be relied upon by the relying parties. A CRL
is always issued by the same CA that issues the corresponding
certificates.

There are two RPKI models: delegated RPKI and hosted
RPKI. In the delegated RPKI model, AS runs a CA as a child
of RIR (or NIR or LIR), generates its own certificate, gets it
signed by the parent CA. This model allows the AS to operate
independent of the parent RIR. For large operators of a global
network, this model is suitable so that they do not need to
maintain ROAs through the different web interfaces of the
RIRs. However, this model is not suitable for all as it requires
running a CA and maintaining the ROAs.

In the hosted-RPKI model, RIRs host the CA, that is, the
same entity that allocates IP resources also runs the CA to
validate the ROAs. Thus, in this model, they are trust anchors.
In a way, this is meaningful as the RIRs already know the
owner of the address space. Existing RPKI systems are tied-
up with the login credentials of the ASes at the RIR. Signing
and key rollover is automatic. It is easy for the owners of
the address space to begin using hosted RPKI than delegated
RPKI as the CA functionality is taken care of by the RIR.
This model is convenient for most ASes. It is easier to use and
it is especially useful for members with a small network and
with limited resources. Even large providers such as Cloudflare
make use of hosted RPKI 1. Furthermore, the RIR assumes
responsibility to publish the signed objects. However, this
convenience comes at the cost of further centralization of
power as the RIRs also handle the private keys used to sign
ROAs.

1https://ripe77.ripe.net/presentations/156-RPKI-deployment-at-scale-
RIPE-1.pdf
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B. ECDSA

The scheme is parameterized by a curve point G of prime
order p, and we write Zp for the field of order p. We use H
to denote a function mapping arbitrary length messages unto
elements of Zp.
Key Generation. KGen(1λ)

1) Sample at random sk← Zp as the signing key.
2) Compute pk = sk ·G as the public verification key.
3) Output (sk, pk).

Signing. Sig(sk,M)

1) Sample at random an instance key k ← Zp.
2) Compute R = (rx, ry) = k ·G. If rx ≡ 0 (mod p), go

back to step 1.
3) Compute s = k−1(H(M) + sk · rx) where H is a hash

function.
4) Output σ = (rx, s).

Verification. Vf(pk,M, σ)

1) Let (r′x, r
′
y) = s−1(H(M) ·G+ rx · pk).

2) Output r′x = rx.
Correctness. We have

s−1(H(M) ·G+ rx · pk) (1)

= k(H(M) + sk · rx)−1(H(M) ·G+ rx · pk) (2)

= k ·G · ((H(M) + sk · rx)−1(H(M) + sk · rx)) (3)
= k ·G = (rx, ry), (4)

which shows that valid signatures verify.

C. MPC and threshold signatures

In our work, we use threshold signature protocols that are
based on secret sharing. Specifically, we use additive sharing
and Shamir sharing schemes. We use the notation [a] to denote
a value a that is secret-shared, that is, no single party can
access it. For a ∈ Zp, the shares [a] are also elements
of Zp. We use the command Open to reconstruct from the
secret shared values such that a ← Open([a]) For malicious
security, we use message authentication code (MAC) scheme
of SPDZ [15], [16].

In SPDZ, a value a is represented as [a] =
((a1, . . . , aN ), (γ(a)i, . . . , γ(a)N )) where ai is a share of a
and γ(a)i is the MAC share authenticating a under a global
key α ∈ Zp such that a =

∑
i ai and α·a = γ(a) =

∑
i γ(a)i.

Each party i holds the pair (ai, γ(a)i). The execution of
Open in SPDZ involves the broadcast of the shares ai by
each party and computing

∑
i ai. Then the MAC is checked

to confirm that a is correct. For this check, each party
computes γi(a)−αia, broadcasts the commitment and checks
if
∑
i = γi(a)− αia.

Secure computing of ECDSA signatures does not only
require the secret key sk to remain secret from all the parties
but also the instance key k. The computation of k−1 should
also be performed securely so that information about k is not
revealed. This is also the the most computationally expensive
part of securely computing ECDSA signatures.

III. DISTRIBUTED RPKI

A. Threat Model

In our distributed RPKI system, we consider a stronger
threat model than the existing RPKI system. The existing
threat model of RPKI includes external adversaries, but not the
participating entities, such as RIRs, to be a possible attacker. In
this work, in addition to the threats considered in the existing
system, we do not consider the RIRs to be entirely trustworthy.

Our threat model accounts for mistakes by the RIR as the
hosted CA, the RIR under attack from an external adversary
including legal coercion to modify, revoke or to inject RPKI
data. All these scenarios require access to the signing key
for the attack to work. We can capture these scenarios in our
system by incorporating RIRs in the threat model. Note that
attacks on the publication point, such as deletion of RPKI data,
are beyond the scope of this work.

Standard MPC terminology provides us with a tool kit to
discuss threat models that not only includes external adver-
saries but also the participating parties. Thus, we introduce
standard MPC terminology to describe threat models in a
distributed setting. We consider adversary power, that is,
whether an adversary is passive or active. Then, we describe
the guarantees that can be achieved when the threshold of
honest parties varies. Finally, we describe which guarantees
our solution supports and how it translates to the threats
against RPKI.

a) Honest-but-curious vs. malicious security.: MPC pro-
tocols can be classified in terms of the power of the adversary.
An adversary can be honest-but-curious or malicious. An
honest-but-curious adversary follows the protocol while a
malicious adversary does not follow the protocol and might
actively disrupt the protocol. Security against honest-but-
curious adversary is sufficient in many real life scenarios.
If the RIRs trust each other not to act maliciously and
instead consider each other to be a necessary check on each
other’s operation, a protocol secure against honest-but-curious
adversary is sufficient. Such a protocol keeps the signing key
away from any internal adversaries and curious employees
at the RIRs. On the one hand, a malicious adversary has
full control over the RIRs and can disrupt the protocol. For
instance, it can send wrong values or delay the sending of
values. On the other hand, honest-but-curious adversaries are
assumed to provide the correct inputs during the protocol so
that no checks on the correctness of the inputs needs to be
performed. As might be obvious, a protocol against malicious
adversaries provides stronger security guarantees.

b) Honest vs. dishonest majority.: Let n be the number
of RIRs participating in the distributed RPKI system. During
the execution of a threshold signature protocol, a threshold
t number of RIRs need to be available for the protocol to
be successfully executed. When a majority of the RIRs are
honest, a threshold t ≤ b(n − 1)/2c of parties are needed
to sign, then it is called honest majority. When a minority
of the RIRs are honest, that is, t < n, the protocol is said
to be secure for a dishonest majority. In the case of honest
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Fig. 2. Distributed RPKI architecture

majority protocols, as long as three-out-of-five RIRs do not
collude, the key is not disclosed to anyone. As the RIRs
often do not converge on the same policies, this may not be
a strong assumption [33]. However, there are situations where
a dishonest majority protocol might be needed as it provides
stronger security such that the adversary needs to corrupt all
the parties to be able to access the signing key. A dishonest
majority protocol might also be required when the signature
should only be created when there is unanimity among the
RIRs.

B. System setup

We present the system architecture in this section. The
setup at each RIR is shown in Figure 1 and the distributed
RPKI architecture is shown in Figure 2. Each RIR has two
components: Trust anchor and Hosted RPKI. Each of them has
a CA, a threshold signature module and access to a local RPKI
database. All the certificates and the signed objects issued
by the two CAs are published in public access repositories,
through rsync or RRDP [6].

Our system incorporates all parts of the RPKI that requires
generating signatures, which includes the creation of signed
objects, ROAs, as well as signing of the resource certificates
of children and the issuance of CRLs. We distribute the task
of creating signed objects among multiple RIRs. As there are
five RIRs, we use n = 5 in our system.

We focus on the key generation and the signing operation
in a distributed RPKI system, such that no RIR has access to
the signing key. RIRs create their shares of the secret key and
have access only to these share and not to the secret key. For
communication between the RIRs, we assume the existence of

Key generation KGen(1λ)

1) Each RIR takes a security parameter 1λ as the
input and generates a signing key share for the jth

member by randomly sampling [skj ]← Zp.
2) Each RIR locally converts [skj ] to [skj ] ·G.
3) RIRs compute the public key

pkj = Open([skj ] ·G)) = skj ·G.
4) Output the secret key shares and the public key

([skj ], pkj).

Fig. 3. Key generation protocol

a synchronous communication network and that the protocols
are run on a point-to-point network [9], [28]. We also assume
that the RIRs use a secure and authenticated communication
channel, e.g. using TLS.

C. DRPKI protocol phases

In our system, each RIR has a share of a private key for
each member, uses this share to collaboratively issue signed
objects and does not have access to the entire private key. The
protocols we use in this paper are in the security-with-abort
model. In this model, the protocol aborts if the participants
are not available. We note that threshold signature protocols
that give guarantees on availability are possible.

The interactive protocols in our system are run between
the All phases instigated by a Hosted CA and the interaction
takes place between the Threshold Signature modules. Due
to the computation and communication overhead, we need an
efficient threshold signing protocol. This means, that when
the signature is to be generated, there needs to be as little
overhead as possible in comparison to traditional signatures.
This is possible with protocols that move most of the cryp-
tography to the preprocessing phase and requiring minimum
processing in the online phase, when the message to be signed
is available. Furthermore, we consider the efficiency in light
of the threat models we discussed in Section III-A. Based on
these requirements, we adapt the threshold signature protocol
of Dalskov et. al. [14] for our purpose (Figures 3–6).

1) Key generation: In the key generation phase, new keys
are generated such that each RIR generates a signing key share
[skj ] for each member and runs the key generation protocol. At
the end of this phase, each RIR has the public key pkj and their
share of the signing key [skj ]. The key generation protocol
needs to be run every time keys are to be generated. The keys
do not need to be stored in a HSM. The complete signing
key is not exposed unless a threshold number (depending on
the protocol being honest majority or dishonest majority) of
RIRs have been compromised. Figure 3 describes the protocol
details.

2) Signing: The threshold signing protocol we use has
two preprocessing phases and one online phase. The first
preprocessing phase is independent of the member for whom
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Member independent preprocessing

For each signature to be generated,

1) RIRs generate tuples of secret shared values of the
form ([a], [b], [c]) such that a, b, c ∈ Zp where c =
ab.

2) They open the share [c] by running
c← Open([c]).

3) Let [k−1] = [a].
4) Each RIR locally generates 〈k〉 = ([b] ·G) · c−1.
5) Output the initial preprocessing tuple (〈k〉, [k−1]).

Fig. 4. Member Independent preprocessing

Member dependent preprocessing
1) RIRs input the generated signing key shares [skj ]

and the initial preprocessing tuple (〈k〉, [k−1]).
2) They compute [sk′j ] = [skj/k] by generating an

additional tuple and Beaver’s rerandomization tech-
nique [3].

3) Output the final preprocessing tuple
(〈k〉, [k−1], [sk′j ]).

Fig. 5. Member Dependent preprocessing

the signature is to be generated. More specifically, this phase is
independent of the signing key to be used. This property allows
us to amortize this phase. This phase can be run between
the RIRs before the member’s request to generate a signature
arrives. Only an estimation of the number of signatures that
would be required in a certain amount of time is required to
run this phase. At the end of this phase, the desired number
of initial preprocessing tuples are generated and stored at each
RIR. Figure 4 describes the protocol details.

The second preprocessing phase is dependent on the mem-
ber for whom the signature is to be generated. The threshold
signature modules at the RIRs use the one unused initial
preprocessing tuple. It is security critical that the initial
preprocessing tuples are not reused as it is equivalent to the
reuse of the instance key k. At the end of this phase, the
desired number of final preprocessing tuples are generated and
stored at each RIR. Figure 5 describes the protocol details.

In the final signing phase, the member gives consent to the
changes that can be made through a standalone application.
This consent is sent to all the RIRs. When a signature is
to be generated, the message to be signed is sent by the
RIR that initiates the signing protocol to the other RIRs.
The message is checked, similar to the checks each RIR
performs in the existing RPKI system, where they check the
message locally for the message before they individually sign.
However, in our case, the check is performed by all the RIRs
for all the messages that need to be signed. Furthermore, the
consent of the member is checked. The RIRs check whether

Final signing phase
1) The member uses a standalone application to give

consent, e.g., to transfer IP-space to another AS.
The consent is sent to all the RIRs.

2) Input the message to be signed M and the final
preprocessed tuple (〈k〉, [k−1], [sk′j ]).

3) The RIR initiating the protocol sends the message
M to the other RIRs.

4) The RIRs check the contents of M and the consent
by the member before proceeding. If the check fails,
they abort ⊥. Else, they continue.

5) Then the RIRs compute
R← Open(〈k〉) = (bc−1) ·G = a−1 ·G = k ·G.

6) Let (rx, ry)← R.
7) Locally compute the share of the signature

[s] = H(M) · [k−1] + rx · [sk′j ].
8) Finally compute the signature s ← Open([s]) and

output σ = (rx, s) or σ = ⊥.

Fig. 6. Final signing phase

the consent has been given for the specific change, e.g., the
transfer of IP space to another AS. Note that a transfer of
IP-space requires consent for a CRL for the existing EE
certificate associated with the ROA and to create a new signed
ROA. These checks prevent RIRs to unilaterally take decisions
to revoke certificates. If a threshold number (depending on
the protocol being honest majority or dishonest majority) of
RIRs agree, then the RIRs locally compute their share of the
signature before jointly computing the final signature. Figure 6
describes the protocol details. With regards to the format of the
messages, we do not make any change to the form and fields
compared to the existing RPKI system. The certificates take
the form of X. 509 certificates [25] while the signed objects
conform to RFC 6788 [29]. The RIRs check the contents of
the message out-of-band.

3) Automation: Our system is fully automated and does not
need manual intervention in its regular operation. Step 4 in
Figure 6 checks the message before it is signed. This check,
performed by all RIRs, verifies whether a consent has been
received from the INR holder in Step 1. If a threshold number
of RIRs have not received the consent, then the check fails
and the automated signing protocol aborts.

4) Legitimate revocation without consent?: So far, we have
assumed that revocation of allocated IP resources requires the
consent of the INR holder. What about cases where there
is a legitimate reason to revoke allocation? Let us take a
case where ARIN was fraudulently induced to issue IPv4
addresses [1]. After the fraud was detected and ARIN won
a legal case, ARIN was able to take back the addresses. Using
our automated system with enforced consent, revocation of
the IP address space in such a scenario will not be possible.
However, we are able to accommodate legitimate revocation
with a minor change to the system.
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Our automated system aborts the protocol if the check for
consent fails at Step 4 in Figure 6. Instead of aborting the
protocol, we can flag it with the requirement for manual
intervention if the protocol is to be completed. Note that such a
manual intervention will not require a large human effort as, in
practice, most organizations obtain IP address space from their
RIRs in good faith and there are only a few bad apples [43].
We will require the RIRs to communicate off band before
the protocol is completed. This mechanism also allows for
legitimate law enforcement requests to be processed by the
RIRs, only when a threshold of other RIRs also agree. Note
that although technically possible, processing law enforcement
mechanisms in this manner is akin to private regulation, which
will require legal and policy changes for it to be realistic.

D. Deployment scenarios

We propose two different deployment models. We begin
with a naı̈ve deployment model and explain the reasons for its
failure to solve the problem. Then, we present two solutions
with their associated trade-offs among the stake holders. We
emphasise that the trade-offs are not with respect to the
security, but with respect to the responsibilities of the different
stake holders.

Naı̈ve solution: In a naı̈ve solution, our threshold signing
module can be used for Hosted CAs. This solution allows for
the existence of the delegated CAs, which are beneficial to
ISPs who sub-allocate resources. This solution allows for IP-
space owners to run their own CAs as well, that is, delegated
CA system can continue to function in parallel with hosted CA
system, as it does in the current system. So the ISPs which
have their own CA can delegate IP-space and sign the ROAs.
However, only change is that the signing keys in the hosted CA
setup are not in the possession of the individual RIRs. The trust
anchor from the existing RPKI exists and the RIR CA which is
higher in the hierarchy can still revoke certificates unilaterally
as it is not distributed. And, the threat model remains weak
and unchanged.

Our solutions: As the naı̈ve deployment scenario does not
solve the problem, we propose two deployment solutions. Our
first solution prevents unilateral takedown by the RIRs while
our second solution also prevents LIRs from unilaterally taking
down prefixes. Both our solutions distribute the trust anchor.
Before discussing our solutions, we give an intuition behind
our choice to distribute RPKI trust anchor. The notion of a
trust anchor requires all child nodes to unconditionally trust
an entity. In RPKI, there are five trust anchors, one at each
RIR, which the relying parties use to verify RPKI signatures.
The concentration of power at trust anchors in the internet
infrastructure extends beyond RPKI and is also observable in
DNS(SEC) and Web PKI. Although many of the problems and
vulnerabilities are similar [4], [5], [45], [46], unlike DNS and
Web PKI, there are already five trust anchors in RPKI that
allows for a smooth transition to a distributed trust anchor.
Furthermore, the existing system of five trust anchors has had
its issues. As the policies of each RIR with regards to trust
anchor is different, some relying parties do not use the trust

anchor of ARIN and ROAs issued under ARIN’s trust anchor
locator fall to the status of ‘Not Found’ [47]. This means
that even when RPKI is implemented, a significant portion
of the networks do not validate routes originating from North
America due to policy decisions and legal barriers [48]. Thus,
in practise large parts of the world are prevented from having
better routing security. These issues can be prevented if the
trust anchor is not located at individual RIRs with their own
policies and is instead distributed across them.

Hierarchical deployment: In our first solution, we propose
a two-layered tree deployment that maintains the hierarchical
structure of RPKI. In both layers, the RIRs use our threshold
signature module. The upper layer generates a distributed
trust anchor to the five RIRs, while the lower layer uses
the threshold signing module for the Hosted CAs. In the
upper layer, a distributed trust anchor is established using
our key generation protocol in Figure 3. Each RIR generates
their signing key share and participates in the key generation
protocol to obtain the public key. Once the public key is
obtained, each RIR adds the public key to their TAL as the
subjectPublicKeyInfo [12]. Each RIR has a TA that
has the same public key in the TAL. As no RIR has the private
key associated with this certificate, the RIR CAs do not need to
be kept offline. Thus, the RIRs do not need a subordinate CA
to issue child certificates. Furthermore, as each RIR has the
same public key as part of the trust anchor and they have the
same subjectPublicKeyInfo in their TAL, access to the
TAL from one RIR is sufficient for relying parties to validate
routes originating from any part of the world that has deployed
RPKI. Note that to generate the child certificates, RIRs run the
signature generation protocol described in Section III-C2.

In the lower layer, our threshold signing module is used
by the Hosted CAs to generate signed objects such as ROAs.
We are able to support delegated CAs as the distributed trust
anchor at the RIR CAs is used to generate child certificates.
Furthermore, this solution allows for incremental deployment
as the LIRs who have already deployed their own CAs can
continue to use them to serve their child nodes while those
who have not deployed their own CAs can start using hosted
CA. Note that the concerns regarding some LIRs being coerced
by their country of registration remains.

Flat deployment: In our second solution, instead of having
the RIRs run two CAs, RIR CA and the Hosted CA, we
combine the two so that the RIRs only need to run one CA.
Furthermore, we do not need a trust anchor as we replace
the top-down architecture with a flat deployment architecture.
Not only do we eliminate the hierarchical structure of ex-
isting RPKI, we also distribute trust. Moreover, this solution
accounts for a stronger threat model where none of the CAs
need to be completely trusted. However, we do not support
delegated CAs in this solution. The CAs only generate end-
entity certificates and signed objects; they do not generate any
CA certificate that will allow child nodes to generate their
own signed objects. This also means that child nodes will
need the RIRs to generate signed objects for their child nodes.
Nevertheless, we prevent any single entity to be all powerful
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hhhhhhhhhhhMajority
Adversary power Honest-but-curious Malicious

Honest Shamir Mal. Shamir
Dishonest Semi. OT MASCOT

TABLE I
FOUR MPC PROTOCOLS

and require the participation of a threshold number of RIRs
for a signed object to be generated and ejected.

IV. IMPLEMENTATION AND EVALUATION

We have implemented our system in C++ and have used
MP-SPDZ [17] for the threshold ECDSA MPC protocols. MP-
SPDZ includes threshold ECDSA protocol implementations
for all the security models that we are concerned with: honest-
but-curious and malicious as well as honest and dishonest
majority protocols. In particular, we use four protocols—
Shamir, Mal. Shamir, Semi OT and MASCOT—that are shown
in Table I. The former two are based on Shamir secret sharing
while the latter two are based on additive secret sharing. We
use all four protocols to implement the system described in
Section III-C.

A. Deployment Setups
For performance evaluation, two deployments were set up.

For each node, we used an Amazon AWS c5.2xlarge instance
with a 64-bit Intel Xeon CPU with 3 GHz and 16 GB
RAM. We run all the evaluations on a single thread. To make
our evaluations as realistic as possible, we chose to run the
experiments based on the location of the RIRs. The five RIRs
are in different continents of the world. So, in the first setting,
we run experiments on five Amazon AWS instances that are
placed around the world such that they are representative of
the location of the RIRs. Specifically, we use the instances at
Frankfurt, N.Virginia, Sydney, Sao Paolo and Mumbai while
the RIRs are based in Amsterdam, Virginia, Brisbane, Sao
Paolo, Mauritius, respectively. The latency and the bandwidth
between the instances is shown in Figure 7. Furthermore,
we also consider the setting where the RIRs could, in the
future, have virtual servers located close to other RIRs. For
this purpose, we also run our experiments on the LAN in
Frankfurt.

Frankfurt

SydneySao Paolo

MumbaiN. Virginia

114.9|10985.6|142

228.3|49
196.7|57

119.9|99
301.0|36

180.6|64

203.7|56 283.2|39

308.7|35

Fig. 7. Latency|Bandwidth between regions, where latency is in milliseconds
and bandwidth is in Mbits/s

B. Experimental evaluations

Key generation. We benchmark the 5-party key generation
protocol in both the settings. The total key generation time is
composed of the timings for generating secret key and public
key. Secret key generation involves generating a field element
[sk]] while public key generation involves a local conversion
of the field element into an elliptic curve point of order before
being opened. The timings shown in Table II are the mean and
standard deviation over 10 executions of the protocols where
the value taken for each execution is the time noted when the
last party completes the protocol. While the honest majority
protocols (Shamir and Mal. Shamir) only require one round of
communication for secret key generation, dishonest majority
protocols (Semi OT and MASCOT) are costlier, especially in
WAN setting.

Signing. We benchmark the preprocessing time (member
dependent and independent) to generates tuples and the online
signing time per signature in Table III. For preprocessing, we
present the time taken to generate one tuple when 1000 tuples
are generated in an amortized manner. As the preprocessing
does not depend on the message to be signed, thousands of
preprocessed tuples can be generated and stored. They can be
used when a new message is to be signed. Note that the online
phase does not involve any elliptic curve operation and, hence,
is computationally cheap.

Although dishonest majority protocols are generally costlier
than honest majority protocols, Semi OT has the highest
preprocessing throughput in LAN setting (Table IV). Semi
OT protocol uses additive sharing which is cheaper than
elliptic curve operations, which is the predominant cost during
preprocessing. In the WAN setting communication becomes
more predominant than local operations. We also observe that
the cost of malicious security in the case of honest majority
protocol is very small. This is especially true in the WAN
setting as the extra checks for Mal. Shamir are local operations
while communication becomes the predominant cost.

In Table V, we show the communication per party for the
four protocols. We note that the communication is asymmetric
for Mal. Shamir and Shamir. Hence, we present the mean of
the communication over all the parties. We notice that the pre-
processing communication per tuple as well as online signing
is significantly higher for dishonest majority protocols than
honest majority protocols. In comparison, the communication
overhead per party is marginal for malicious security over
honest-but-curious protocols.

V. ANALYSIS

For the deployment of our distributed RPKI system, it needs
to be efficient enough. In the previous section we discussed
the efficiency in terms of the runtime of our protocols. In this
section, we discuss whether they are efficient enough in terms
of the number of signatures required by the RIRs. As our
system involves all the five RIRs, we take into account the
cumulative of the requirements of all of them.

a) RPKI data: We accessed the publicly available his-
torical RPKI data maintained by RIPE NCC that includes the
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LAN WAN

Secret Public KGen Secret Public KGen

MASCOT 6.99± 0.04 2.48± 0.02 9.47± 0.03 4490± 1.74 1147± 0.27 5637± 1.25
Semi OT 0.88± 0.04 0.91± 0.02 1.79± 0.03 851± 2.53 486± 0.93 1337± 1.91
Mal. Shamir 0.24± 0.00 1.59± 0.03 1.83± 0.02 198± 0.23 487± 0.61 685± 0.46
Shamir 0.25± 0.04 1.13± 0.08 1.38± 0.06 284± 1.38 382± 3.48 666± 2.64

TABLE II
BREAKDOWN OF KEY GENERATION TIMINGS IN MILLISECONDS FOR [sk] SHARING, AND pk.

LAN WAN

Preprocessing Online Sig Preprocessing Online Sig

MASCOT 4.78± 0.01 1.89± 0.02 6.67± 0.02 50.56± 1.86 1055± 37.23 1106± 26.36
Semi OT 0.96± 0.01 1.51± 0.01 2.47± 0.01 9.00± 0.90 487± 0.40 496± 0.70
Mal. Shamir 1.43± 0.00 1.40± 0.02 2.83± 0.01 10.94± 0.68 283± 0.06 294± 0.48
Shamir 0.98± 0.00 1.30± 0.02 2.28± 0.01 3.77± 0.00 282± 0.18 286± 0.13

TABLE III
BREAKDOWN OF SIGNING TIMINGS IN MILLISECONDS FOR PREPROCESSING AND ONLINE PHASES PER SIGNATURE. PREPROCESSING TIMES ARE BASED

ON AMORTIZED GENERATION OF 1000 TUPLES.

LAN WAN

Preprocessing Online Preprocessing Online

MASCOT 209 529 20 0.95
Semi OT 1042 662 111 2.05
Mal. Shamir 699 714 91 3.53
Shamir 1020 769 265 3.54

TABLE IV
BREAKDOWN OF THROUGHPUT FOR PREPROCESSING (TUPLES/SEC) AND

ONLINE PHASES (SIGNATURES/SEC).

KGen Preprocessing (per tuple) Online Signing

MASCOT 0.482 624 0.400
Semi OT 0.113 99.0 0.128
Mal. Shamir 0.271 1.345 0.0768
Shamir 0.206 0.437 0.0512

TABLE V
COMMUNICATION PER PARTY (KBYTE)

daily archive of the repositories of all the five RIRs from 2011
onwards 2. We use the historical data from 11 March 2015 till
10 August 2020.

b) ROA analysis: We use the RPKI data to analyse the
number of ROAs that have been added and removed per day
in a certain time period. We estimate the number of signatures
required based on this information. Figure 8 shows the change
on average day (mean taken over a month) in ROAs for the
five RIRs. On average, we need about 8000 signatures per day.
However, there are days when the load is greater. This occurs
on days when many ROAs are re-issued. Figure 9 shows the
maximum number of changes per month. Note the scale on
y-axis: There is a twenty times difference from Figure 8.

We observe from Table IV that for our slowest protocol
MASCOT, we are able to produce 0.95 signatures/sec or
82080 signatures/day in the WAN setting. For our fastest

2https://ftp.ripe.net/rpki/

protocol, we are able to produce 3.54 signatures/sec or 305856
signatures/day in the WAN setting. Even our slowest protocol
can produce 10x more signatures than is required on an
average day. All our other protocols are fast enough even
on days with peaks in Figure 9. In the LAN setting, all our
protocols are fast and have the capacity to produce three orders
of magnitude more signatures. The efficiency of our system
makes it possible to scale it as the adoption of RPKI increases.

VI. RELATED WORK

Threshold Signatures for Internet Infrastructure.
Threshold signatures for DNSSEC have been considered in
the past. Cachin and Sanar [8] proposed a distributed DNS
to avoid single point of failure, while Cifuentes et. al [10]
use threshold signatures to emulate a HSM at an authoritative
name server. Dalskov et. al [14] use threshold signatures
to secure DNSSEC signing keys when the zone and key
management is outsourced to DNS operators. Integration of
new algorithms into DNSSEC can be done with ciphersuite
negotiation mechanisms and similar ideas can be applied for
RPKI [23], [21], [22]. Finally, Shrishak and Shulman [44]
initiated the research direction of using threshold signatures for
RPKI. We extend that work further by developing and setting
up a complete system in the Internet along with extensive
performance evaluations.

Limiting the power of RIRs. There have been two ap-
proaches in the prior works to limit the power of RIRs in
RPKI. One approach has been to add transparency logs and
.dead objects to RPKI to note the consent of the Internet
Number Resource (INR) owner for revocation [20]. Heilman
et. al [20] detect when a ROA has downgraded from valid to
invalid or valid to unknown state and check whether a .dead
object is present. This approach requires relying parties to
perform ROVs, if it is to be effective. ROV deployment
monitor 3, a monitoring platform [37] shows that only a few

3https://rov.rpki.net
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Fig. 8. Number of ROAs added and removed on average per day from March 2015 to August 2020

2015
2016

2017
2018

2019
2020

Dates

0

10000

20000

30000

40000

50000

60000

70000

80000

RO
As

 a
dd

ed

AFRINIC
APNIC

ARIN
LACNIC

RIPENCC

2015
2016

2017
2018

2019
2020

Dates

0

10000

20000

30000

40000

50000

60000

70000

80000

RO
As

 re
m

ov
ed

AFRINIC
APNIC

ARIN
LACNIC

RIPENCC

Fig. 9. Maximum per month of ROAs added and removed from March 2015 to August 2020

relying parties, 124 ASes, perform ROV, while there are 67599
ASes as of 10 August 2020 4. Furthermore, this approach fails
in the hosted RPKI setting as the .dead objects that are used
to signify consent from the child can be signed by the parent
node allowing the parent to impersonate the child.

The second approach replaces the existing RPKI system
with blockchain [19]. In this approach, the role of RIRs is
limited to providing new resources and they cannot revoke
already allocated resources. In addition to the large-scale
changes that this approach requires, blockchain has other
deployment issues such as consensus algorithm and the lack
of incentive for the nodes to run the blockchain. While [34]
suggested to use proof-of-stake as the consensus algorithm, it
has the possibility to create another form of power imbalance
where the nodes with a larger stake such as large ISPs will
become powerful players.

VII. CONCLUSION

RPKI offers security benefits to BP and yet, it is not widely
deployed. One reason is that it opens up the possibility for
unilateral IP-prefix takedown. In this work, we make a small
change to RPKI and propose a distributed RPKI that relies on
prevention rather than detection of takedowns. As our solution
requires communication between the RIRs, we hope that it
will re-instigate discussions between the RIRs on the need

4https://www.caida.org/data/as-relationships/

for further collaboration. We propose two deployment models,
the second of which eliminates the hierarchical structure of
the existing RPKI and flattens the power relations. Both our
deployment models distribute the trust anchor and prevent the
scenario where validation fails due to the unavailability of a
trust anchor. We perform extensive evaluation to assess the
efficiency of our solution based on four threshold signature
protocols and show that our solution scales when the deploy-
ment of RPKI increases.
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