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Abstract. Vector commitment (VC) schemes allow one to commit con-
cisely to an ordered sequence of values, so that the values at desired
positions can later be proved concisely. In addition, a VC can be state-
lessly updatable, meaning that commitments and proofs can be updated
to reflect changes to individual entries, using knowledge of just those
changes (and not the entire vector). VCs have found important appli-
cations in verifiable outsourced databases, cryptographic accumulators,
and cryptocurrencies. However, to date there have been relatively few
post-quantum constructions, i.e., ones that are plausibly secure against
quantum attacks.
More generally, functional commitment (FC) schemes allow one to con-
cisely and verifiably reveal various functions of committed data, such
as linear functions (i.e., inner products, including evaluations of a com-
mitted polynomial). Under falsifiable assumptions, all known functional
commitments schemes have been limited to “linearizable” functions, and
there are no known post-quantum FC schemes beyond ordinary VCs.
In this work we give post-quantum constructions of vector and functional
commitments based on the standard Short Integer Solution lattice problem
(appropriately parameterized):

– First, we present new statelessly updatable VCs with significantly
shorter proofs than (and efficiency otherwise similar to) the only prior
post-quantum, statelessly updatable construction (Papamanthou et
al., EUROCRYPT 13). Our constructions use private-key setup, in
which an authority generates public parameters and then goes offline.

– Second, we construct functional commitments for arbitrary (bounded)
Boolean circuits and branching programs. Under falsifiable assump-
tions, this is the first post-quantum FC scheme beyond ordinary
VCs, and the first FC scheme of any kind that goes beyond lineariz-
able functions. Our construction works in a new model involving an
authority that generates the public parameters and remains online
to provide public, reusable “opening keys” for desired functions of
committed messages.

1 Introduction

Commitment schemes are an essential cryptographic primitive. They provide
the cryptographic equivalent of a “locked box,” allowing one to publicly lock



some desired value away and to later reveal it. By analogy, two central desiderata
of such schemes are as follows. First, it should be binding : once a (possibly
adversarially generated) commitment is published, there should be no way to
open it to two different values. Second, it may also be hiding : no one should be
able to see inside the box. That is, the commitment reveals essentially nothing
about the underlying value.

First constructed and formalized in work by Libert and Yung [LY10] and
by Catalano and Fiore [CF13], vector commitment (VC) schemes generalize
commitments to ordered sequences of values. More specifically, one can commit
to a d-dimensional vector m and later open the commitment at any desired
indices, i.e., prove that the ith entry of m is mi. Here the notion of binding is
replaced with position binding : it should be infeasible to open a commitment at
a position i as two different message entries mi 6= m′i. For hiding, we may require
that the commitment and openings reveal nothing about the unopened message
entries. (However, many applications of VCs turn out not to need hiding.) In
order to rule out trivial implementations, commitments and proofs are required
to be concise, meaning that they should be smaller than the entire message
vector, i.e., sublinear in d (and the smaller the better).

Additionally, VCs often need to be updatable, meaning it is possible to update
commitments and proofs to reflect changes in the underlying vector entries, faster
than the trivial solution of just computing new commitments and proofs from
scratch. Updatability can even be stateless (also known as distributed) [CPSZ18],
meaning that updates require only the position at which the message vector
changed, and the old and new entries (or even just their difference).

Libert, Ramanna, and Yung [LRY16] generalized the concept of VCs to the
notion of functional commitments (FCs), with a focus on linear functions. For
some particular class of functions F , FCs allow one to commit to a vector m and
then, for any desired functions f ∈ F , open the function-value pairs (f, y = f(m)).
(Traditional VCs can be seen as FCs for the class F = {fi(m) = mi}i∈[d] of
“coordinate projection” functions.) A special case of linear FCs, defined earlier by
Kate, Zaverucha, and Goldberg [KZG10] considers committing to a polynomial
and then opening its evaluations at desired points.

Applications. Vector commitments have found numerous cryptographic applica-
tions. Catalano and Fiore [CF13] demonstrated their usefulness for publicly verifi-
able databases with efficient updates and, more broadly, verifiable outsourcing of
storage [BGV11], updatable zero-knowledge sets and databases [MRK03, Lis05],
cryptographic accumulators [BdM93], and pseudonymous credentials [KZG10].
More recently, Chepurnoy et al. [CPSZ18] used statelessly updatable VCs to con-
struct an architecture for cryptocurrencies with stateless transaction validation.

Beyond VCs, functional commitments for polynomials [KZG10] and, more gen-
erally, linear functions [LRY16] have additionally found applications in verifiable
secret sharing [CGMA85], content extraction signatures [SBZ01], proof-carrying
data systems, and zero-knowledge SNARKs [BFS20, BDFG20].
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Constructions. Merkle trees [Mer87] provide the first instantiation of VCs, with
O(1) commitment size and O(log d) proof size (both as functions solely of the
dimension d), but they are not statelessly updatable. Libert and Yung [LY10] gave
a construction that can serve as a statelessly updatable VC (and more), based on
a “q-type” pairing assumption where q is the vector dimension, with O(1)-sized
commitments and openings. Catalano and Fiore [CF13] gave two constructions
of statelessly updatable VCs, based respectively on the Computational Diffie-
Hellman (CDH) assumption over pairing-friendly groups and the RSA assumption,
where each commitment and opening is a single group element. Chepurnoy et
al. [CPSZ18] gave a construction based on the q-Strong Bilinear Diffie-Hellman
assumption, which has smaller public parameters than the aforementioned CDH-
based scheme (linear in d rather than quadratic) but slightly slower proof updates,
and improved time complexity for proof updates versus the aforementioned RSA-
based scheme (O(log d log log d) versus O(d)).

The work of [KZG10] gave a polynomial commitment scheme where commit-
ments and proofs are each a single group element, and which is secure under the
q-Strong Diffie-Hellman assumption. More generally, the work of [LRY16] gave an
FC scheme for linear functions fw(m) = 〈w,m〉, based on a subgroup decision
assumption on pairing-friendly composite-order groups, in which commitments
and proofs are each a single group element. Recently, the work of [LP20] gave a
functional commitment scheme for what the authors called the class of “semi-
sparse” polynomials. This class is an example of a linearizable function class, i.e.,
every function f in the class can be (efficiently) decomposed as f(m) = Lf (P (m))
for some polynomial-time “preprocessing” function P (which depends only on the
class, and not the specific function f) and a linear function Lf (which may depend
on f). For any linearizable class, an FC can be generically implemented via a
linear FC (though perhaps not as efficiently as with a specialized construction),
simply by having the committer commit to P (m).

For non-linearizable function classes, we are not aware of any FC construction,
apart from a straightforward generic construction mentioned in [LRY16]: it
combines any succinct commitment scheme with any succinct noninteractive
argument of knowledge for NP (such as PCP-based ones [Kil92, Mic94] or
more specialized ones like Bulletproofs [BBB+18]), for proving functions of
the committed data. However, the latter component cannot be based on a
falsifiable assumption via a black-box security reduction [GW11]; indeed, existing
constructions like the ones cited above tend to rely on strong heuristics like the
random oracle model. In summary, we do not have any FC for a non-linearizable
function class based on a falsifiable assumption.

There has also been quite limited work on post-quantum vector commitment
schemes, i.e., ones which are plausibly secure against quantum attacks. Merkle
trees instantiated with a post-quantum hash function may be used, though they
suffer from relatively inefficient and necessarily stateful updates. Papamanthou
et al. [PSTY13] gave a Merkle-tree-like construction based on the Short Integer
Solution (SIS) lattice problem, which straightforwardly yields a statelessly updat-
able VC scheme. At present, we are unaware of any post-quantum FC schemes
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beyond the aforementioned VC schemes and generic FC construction (requiring
non-falsifiable assumptions); in particular, even constructing a post-quantum
linear FC from a falsifiable assumption is an open problem.

1.1 Our Contributions

We present two main sets of results. First, in Section 3 we give new constructions
of vector commitments based on the (post-quantum) SIS lattice problem. The
first of these is a “base” VC construction that is statelessly updatable; it is
most appropriate for only moderately large d, due to the public parameters’
quadratic dependence on d. Then, for larger dimensions dh, we give a specialized
tree transformation of our SIS-based VC that preserves stateless updates (unlike
generic Merkle trees). This transformation uses a main idea from [PSTY13], but
our construction’s proofs are significantly more concise, by a d factor, because
the transformation is based on a VC rather than a hash function. For a detailed
comparison with the prior work on VCs see Figures 1 and 2 and the associated
discussion in Section 1.2, and for an overview of the constructions see Section 1.3.

Our second main contribution, given in Section 4, is a functional commitment
scheme for arbitrary (bounded) Boolean circuits and branching programs, also
based on SIS (appropriately parameterized). Under falsifiable assumptions, this is
the first functional commitment scheme that goes beyond linearizable functions,
and is also the first post-quantum construction of functional commitments beyond
vector commitments, e.g., for linear functions. Indeed, we specialize our general
construction to linear functions over large finite fields, resulting in a relatively
simple and potentially practical scheme.

Our functional commitment construction works in a model, which we introduce
in this work, involving a trusted authority that sets up the public parameters
and remains online to provide “opening keys” okf for any desired functions f of
committed messages. We stress that, unlike superficially similar models (e.g., for
identity- or attribute-based encryption), these opening keys are not tied to any
particular party and do not need to be transmitted via a secret channel; they
can be announced publicly and used by all committers any number of times. See
Section 1.3 for an overview of the construction.

As an additional contribution, in the full version we give a formal definition
and analysis of a generic tree transformation on VCs, which converts a VC for
d-dimensional vectors into one for dh-dimensional vectors for any desired positive
integer h. The transformation is like a Merkle tree of height h and arity d, using
the underlying VC rather than a hash function to commit to each node’s children.
The key advantage is that to open an entry, one only needs to open each step
of the entry’s root-to-leaf path, but no “sibling” information is required. This
immediately saves about a factor of d in the proof size, thus allowing for the use of
a larger arity d and hence smaller height h, which reduces proof size even further.
This main idea has previously been used in other contexts like signatures [DN94]
and zero-knowledge databases [CRFM08], and even VCs [Kus18] (where it is
called a “Verkle tree”), though without a formal analysis or treatment of updates.
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1.2 Comparisons to Related Work

For the purposes of comparison, we divide existing VC schemes into “primitive”
and “tree-based” schemes. Primitive schemes operate directly on the input
vector and are typically based on some concrete cryptographic assumption (RSA,
CDH, SIS, etc.). A tree-based scheme transforms another (usually primitive) VC
scheme, and treats its input vector as a tuple of subvectors, somehow recursively
committing to each subvector and then committing to the tuple of results using
the underlying scheme. Tree-based VCs are most suitable for vectors of large
dimension, and generally sacrifice proof and/or commitment size for smaller
public parameters.

Primitive schemes. Here and in Figure 1 we briefly compare our base SIS vector
commitment scheme to other primitive VCs from the literature [CF13, CPSZ18].
The primary advantage of our scheme is that it is plausibly secure against
quantum attacks, whereas the others are broken by them. However, this comes at
the cost of commitment and proof sizes that are logarithmic, rather than constant,
in the vector dimension d. Our scheme, along with the others in question, has
stateless updates but requires private-coin setup, in contrast to the only other
known post-quantum VC schemes (discussed below).

Scheme |vp| |cp| |c| |π| Setup Stateless PQ

[CF13] (RSA) d d 1 1 Private 3 7

[CF13] (CDH) d d2 1 1 Private 3 7

[CPSZ18] d d 1 1 Private 3 7

Construction 1 d d2 log d log d Private 3 3

Fig. 1. A comparison of “primitive” VC schemes. Object sizes are expressed asymptoti-
cally as functions of the vector dimension d, with logarithmic factors elided from the
sizes of verifier parameters vp and committer parameters cp (but not commitments c or
proofs π). PQ indicates that the scheme is plausibly secure against quantum attacks.

Tree-based schemes. Here and in Figure 2 we compare tree-based schemes that
commit to vectors of (typically large) dimension D, using a tree of some chosen
arity d and height h = logdD. It is important to bear in mind that asymptotically
different values of d and h are optimal for different schemes, so the object sizes
as functions of these parameters cannot be compared directly across schemes.

Selecting optimal parameters for Merkle trees is straightforward: simply
minimize the asymptotic proof size dh = d logdD, yielding optimal values d =
O(1) and h = O(log d). For the remaining schemes, choosing larger d (and thereby
smaller h = logdD) reduces the commitment and proof sizes, at the cost of larger
public parameters. Therefore, one should maximize d subject to some reasonable
constraint on the sizes of the public parameters. For large dimensions D, a
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plausible choice is d = Dε for some small constant ε > 0, yielding h = 1/ε = O(1);
we use this setting for the following comparisons.

Like the scheme described in [PSTY13], our specialized tree transformation
(Construction 2) has stateless updates. However, ours has smaller proofs at
the cost of larger public parameters, both by a factor of d. This seems like an
advantageous tradeoff in most applications, since many proofs (about many
commitments) are given for a single set of public parameters.

In comparison with Merkle trees, the primary benefit of our specialized tree
transform is that it has stateless updates. However, its proof sizes are slightly
larger than those of Merkle trees (O(log2D) rather than O(logD)), and its
commitment sizes are logarithmic rather than constant.

The generic tree transformation for VCs (in the full version) instantiated with
our SIS-based scheme (Construction 1) has constant-factor improvements, by h
or h2, in commitment size and proof size compared to our specialized scheme
and that of [PSTY13], with an additional factor-of-d improvement in proof size
over [PSTY13]. Unlike those other works, however, it requires stateful updates.

Though not post-quantum, instantiating the generic tree transformation with
the CDH-based scheme of [CF13] (which has constant-sized commitments and
proofs) demonstrates more clearly the structural advantage it has over Merkle
trees. Since sibling information is not necessary, the proof size depends only on
h = O(1). However, this comes at the cost of private setup and larger public
parameters.

Scheme |vp| |cp| |c| |π| Setup Stateless PQ

Merkle tree 1 1 1 hd Public 7 3

[PSTY13] h2d h2d h log d h3d log2 d Public 3 3

Construction 2 h2d h2d2 h log d h3 log2 d Private 3 3

Generic tree with 1 (SIS) d d2 log d h log d Private 7 3

Generic tree with [CF13] (CDH) d d2 1 h Private 7 7

Fig. 2. A comparison of “tree-based” VC schemes. Object sizes are expressed as
functions of the tree arity d and height h (handling a vector dimension D = dh), with
logarithmic factors elided from the sizes of the verifier parameters vp and committer
parameters cp (but not the commitments c or proofs π). PQ indicates that the scheme
is plausibly secure against quantum attacks (for Merkle trees, when using a PQ hash
function).

Other related work. The work of [BGJS16] considered a variant of functional
commitment (potentially with a bounded number of function queries), which
does not require succinctness but also does not need any trusted setup, and
showed that it is implied by verifiable functional encryption (and thereby from
assumptions on pairing-friendly groups).

The work of [HW15] considers a primitive called “somewhat statistically
binding” (SSB) hash, which is a strengthening of vector commitments: the
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commitment and openings of individual entries are concise, and additionally,
the commitment is statistically binding at one (hidden) location. However, the
construction relies on Merkle trees plus (comparatively heavy) fully homomorphic
encryption, so it has no better efficiency than ordinary Merkle trees, nor is it
statelessly updatable.

1.3 Technical Overview

In this section we give a brief overview of the key ideas underlying our con-
structions; we assume some basic familiarity with the abstract functionality
of “trapdoors” for lattices [GPV08] and “third-generation” fully homomorphic
encryption/commitments [GSW13, GVW15].

SIS-Based Vector Commitments Our base VC scheme is conceptually in-
spired by the ones proposed in [CF13]. To convey the key ideas, we describe a
technically simpler, unoptimized version of our scheme for vectors whose entries
belong to M = {0, 1}` for some desired `. To generate the public parameters,
we first choose a uniformly random matrix U = [U0 | · · · | Ud−1] ∈ Zn×`dq ,

where each Ui ∈ Zn×`q . Then we generate d (statistically close to) uniformly
random matrices Ai ∈ Zn×mq along with respective trapdoors Ti. We use each

trapdoor Ti to sample a “short” (discrete Gaussian-distributed) Ri ∈ Zm×`(d−1)

such that AiRi = U−i, where U−i ∈ Zn×`(d−1)
q is U with its ith block Ui

removed. The public parameters are U and all the Ai and Ri matrices.
The commitment to a vector m ∈ {0, 1}`d is simply c = Um ∈ Znq .3 To open

the commitment at position i as mi ∈ {0, 1}`, output the proof pi = Rim−i ∈ Zm
(which is short), where m−i ∈ {0, 1}`(d−1) is m with its ith `-bit block removed.
The verifier simply checks that pi is sufficiently short and that c = Aipi + Uimi,
which holds since

Aipi + Uimi = AiRim−i + Uimi = U−im−i + Uimi = Um = c.

Breaking position binding of this scheme means producing a tuple (c∗, i,mi,m
′
i,p,p

′)
such that for commitment c∗ and position i, proofs p,p′ respectively verify for
distinct mi 6= m′i, i.e., p,p′ are sufficiently short and

c∗ = Aip + Uimi = Aip
′ + Uim

′
i.

From this, we have that x :=
[

pi−p′i
mi−m′i

]
6= 0 is an SIS solution to the (statistically

close to) uniformly random matrix [Ai | Ui]. Our security reduction shows how
to embed an external SIS instance as this matrix, and generate all the rest of
the public parameters to have the proper joint distribution (even though the
reduction does not have a trapdoor for Ai).

In our actual construction, we use the “trapdoor puncturing” technique
of [PW08, ABB10, MP12] to reduce the size of the public parameters, allowing

3 In this overview we aim only for position binding, and dispense with hiding.
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us to generate each Ai from a single uniformly random matrix A ∈ Zn×mq . The
(stateless) updatability of this scheme follows from the linearity of commitments
and openings.

Specialized tree transformation. In the full version, we construct a generic tree
transformation for VC schemes for vectors of high dimension dh, which uses
any VC for dimension d as a black box. (Its practical efficiency was analyzed
in [Kus18], but without a formal security analysis or treatment of updates.) The
main idea is very similar to that of Merkle trees [Mer87], but with the public
hash function replaced by a vector commitment scheme. In particular, it can be
instantiated with our SIS-based VC scheme, where commitments in Znq are treated
as messages by representing them as bit vectors. More formally, we can use the
nonlinear “bit decomposition” transformation G−1 : Znq → Zw, where w ≈ n log q
and we take ` = w in the above construction, to bring commitments back into the
message space (and this can be inverted by multiplying by the “gadget” matrix
G ∈ Zn×wq ). However, this nonlinearity makes the commitment function of the
transformed scheme non-linear, and thus breaks stateless updatability.

To preserve linearity and thereby stateless updatability, we give a specialized
tree transformation of our SIS-based VC scheme, which takes inspiration from the
Merkle-tree-like construction of [PSTY13]. For simplicity, we briefly outline this
transformation for small parameters d = h = 2 (though a significantly larger d
yields better efficiency).

The public parameters are identical to those of the base scheme (for d = 2),
and using them we additionally define a matrix

U(2) := U(I2 ⊗G−1(U)) = [U0G
−1(U) | U1G

−1(U)] ∈ Zn×`d
2

q .

To commit to a vector m = (m00,m01,m10,m11) ∈ {0, 1}`dh = {0, 1}4`, we
compute c = G−1(U(2))m; observe that this is a linear function of m, which
ultimately allows for stateless updates. Also notice that

Gc = U(2)m = U(I2 ⊗G−1(U))m

is a commitment (under the base scheme) to m′ := (I2 ⊗ G−1(U))m ∈ Z`d,
which is relatively short. Additionally, m′ itself can be seen essentially as a pair
of commitments, as

m′ = (I2 ⊗G−1(U))m

=

G−1(U)

[
m00

m01

]
G−1(U)

[
m10

m11

]
 =:

[
c0

c1

]
,

because Gci ∈ Znq is a commitment (under the base scheme) to (mi0,mi1). So,
to prove a particular entry of the message m, say m01, we simply provide c0

and a proof that it is the 0th entry of m′ (viewing Gc as a commitment to m′),
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along with a proof that m01 is the 1st entry committed to by Gc0. Breaking
position binding of this scheme requires breaking position binding of the base
scheme somewhere along this path.

We stress that the above proof structure is more concise than for Merkle trees
and [PSTY13], because the proofs need not contain any “sibling” information.
Essentially, our construction opens a vector commitment at each level, just as
in the generic VC transformation, but in a manner that preserves linearity and
hence stateless updates. This also allows for the use of a larger tree arity d, which
reduces the tree height and thereby the number of elements in proofs. However,
preserving statelessness in this way does come at a cost: in the general version of
the transformation, the norm of m′ can grow linearly with its dimension `dh, so the
SIS parameters of the underlying VC scheme must be increased to accommodate
these larger messages. This introduces a poly-logarithmic dependence on dh in
the sizes of commitments and proofs. The SIS-based Merkle-like construction
of [PSTY13] (when used as a VC) has exactly the same dependence, so our
commitment sizes match, and our proof sizes are strictly better by a d factor.
(See Figure 2.)

Functional Commitments for Arbitrary Functions In Section 4 we give
an SIS-based construction of functional commitments for arbitrary Boolean
functions of bounded size S, via an online authority that provides opening keys
for desired functions. The construction relies heavily upon the fully homomorphic
commitment scheme that was implicit in the homomorphic encryption scheme
of Gentry, Sahai, and Waters [GSW13], and was made explicit by Gorbunov,
Vaikuntanathan, and Wichs [GVW15]. We remark that while the latter work
gives a commitment scheme in which one can commit to data and then later
open any bounded function of it, this falls short of a true functional commitment
scheme because the commitment is not succinct—its size is a substantial factor
larger than the data itself. In our construction, the sizes of both the commitments
and proofs depend only on the complexity of the supported functions, and not
directly on the message size. More specifically, they grow poly-logarithmically
in the size and polynomially in the depth of the functions; see Section 4.3 for
details.

In our construction, the commitment function is essentially identical to the
first stage (homomorphic evaluation) of the correlation-intractable hash functions
of [CCH+19, PS19]. However, in those works’ main application (noninteractive
zero knowledge proofs), the resulting output is never “opened.” In functional
commitments, the result needs to be opened in several different ways, once for
each function that is proved about the committed message.

We also mention that using just tagged-trapdoor techniques, which predate
the above-referenced fully homomorphic schemes but provide only linear homo-
morphism, we specialize our functional commitment scheme to arbitrary linear
functions over large finite fields. The resulting scheme is asymptotically quite
efficient, especially when adapted to use rings, and potentially practical. In this
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overview we just focus on the general scheme for arbitrary functions, and refer
to Section 4.3 for the linear specialization.

Public parameters and commitment. The public parameters in our scheme are
a uniformly random matrix C ∈ Zn×Swq (where again, w ≈ n log q is the width
of the gadget matrix G ∈ Zn×wq ) and a (statistically close to) uniform matrix
A ∈ Zn×mq , which is generated with a trapdoor T that serves as the authority’s
secret key. Using standard tagged-trapdoor techniques, for each size-S function f
we implicitly define a public matrix Af ∈ Zn×mq that is efficiently computable
from A and f ; the authority’s trapdoor T allows it to sample short preimages
with respect to any of these Af .

It is helpful to interpret the public parameter C as a homomorphic commit-
ment to some as-yet-unspecified function(s) f , with respect to some corresponding
public key. To commit to a message m, one simply computes Cm = Eval(Um,C),
i.e., the homomorphic evaluation of the universal function Um(f) := U(f,m) =
f(m) on the committed function f . Therefore, we can think of Cm as a homo-
morphic commitment to f(m)—but we again stress that f is still unspecified.4

We stress that it is vital that the homomorphic evaluation can indeed be done
using just C and m, and not the unspecified public key relative to which C is
viewed as a commitment.

Opening. In order to prove for a commitment Cm that f(m) = y for some
desired f , one first needs an appropriate opening key from the authority. Such a
key is simply some randomness that opens C as a homomorphic commitment to
the desired function f , with respect to public key Af . That is, the authority uses its
trapdoor T to sample a “short” integer matrix such that C = FHComAf

(f ; Rf ).
We point out that each opening key essentially equivocates C as committing to
a different value—but this does not violate security in any way, because these
openings are with respect to different Af . (Indeed, it is important that the
authority publishes at most one opening key for each function, which can be
ensured by standard techniques.)

With an opening key Rf in hand, one proves that f(m) = y by “tracing”
the evolution of the randomness through the homomorphic computation of Cm

from C. More specifically, a key feature of the homomorphic commitment scheme
is that, given the function Um and the “short” randomness Rf underlying the
commitment C = FHComAf

(f ; Rf ), one can efficiently compute “relatively short”
randomness Rf,m underlying Cm, i.e., for which

Cm := Eval(Um,C) = FHComAf
(y = f(m); Rf,m).

To prove that f(m) = y, one just computes and reveals this Rf,m. The verifier
checks that it is sufficiently short and that Cm = FHComAf

(y; Rf,m).
For security, we prove that under the SIS assumption (appropriately parame-

terized), it is infeasible for an adversary to break function binding, i.e., to output

4 As an optimization, for Boolean functions f the matrix Cm can be further compressed
to just a single vector cm ∈ Zn

q ; we omit the details in this overview.

10



a tuple (C∗, f∗, y, y′,R,R′) such that y 6= y′ and yet the verifier accepts on
both (C∗, f∗, y,R) and (C∗, f∗, y′,R′). We prove this for a selective function
attack, where the adversary must announce the targeted function f∗ before seeing
the public parameters, but may produce the rest of its output (C∗, y, y′,R,R′)
after getting arbitrary opening keys for functions f of its choice, even including
f = f∗. It is well known that security against such selective attacks can be
boosted to security against fully adaptive attacks using complexity leveraging,
i.e., the reduction is loose by a factor of the size of the function class. In addition,
there are lattice-trapdoor techniques for obtaining adaptive security in related
settings (e.g., [CHKP10, Yam16]), which seem compatible with our construction
techniques.

1.4 Open Problems and Future Work

Our work raises several interesting questions for further research. First, recall
that all of our constructions require private-coin setup (i.e., a trusted authority
that uses private randomness to generate the public parameters). An important
question is whether there are lattice-based or other post-quantum vector com-
mitments with public setup and having similar or better properties, including
for updates. (Recall that post-quantum Merkle trees can have public setup, but
require stateful updates.)

Recall that our functional commitment scheme requires an online authority
to generate opening keys for the desired functions, using some secret trapdoor.5

A very interesting question is whether functional commitments for some large
non-linear function class can be obtained using an offline authority, which only
generates and publishes some setup parameters, based on a falsifiable assumption.6

Even more ambitiously, can such a scheme be constructed with just public-coin
setup?

Finally, the literature contains several variants of vector commitments. For
example, subvector commitments [LM19, CFG+20] allow one to open a com-
mitted vector at any subset of positions, via a proof that is smaller than proofs
for all the positions individually. Subvector commitments can even be aggregat-
able [TAB+20], meaning that openings for two different subsets can be aggregated,
producing an opening for their union. So far, subvector commitments have been
constructed only from assumptions on pairing-friendly groups. It is a very inter-
esting question whether any kind of subvector commitments (with or without
aggregation) can be constructed from lattices or other post-quantum assumptions.
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5 However, if the class has only polynomially many functions, then the authority can
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2 Preliminaries

For any non-negative integer i, denote [i] = {0, . . . , i − 1} (where [0] = ∅).
For a real vector v, let ‖v‖ :=

(∑
i v

2
i

)1/2
denote its Euclidean norm and

‖v‖1 =
∑
i|vi| denote its `1 norm. For a real matrix V, let ‖V‖ := maxj‖vj‖

denote the maximum Euclidean norm of its column vectors vj , and let s1(V) :=
maxu6=0‖Vu‖/‖u‖ denote its maximum singular value (also known as its spectral
norm). Observe that for any matrix V and vector u, we have ‖Vu‖ ≤ ‖V‖ · ‖u‖1
by the triangle inequality.

2.1 Vector Commitments

Definition 1 (Vector commitment). A vector commitment scheme with
message space M, commitment space C, and proof space P (which may be func-
tions of the setup parameters) is a set of algorithms with the following interfaces:

– Setup(1λ, 1d) outputs (public) committer parameters cp and verifier parame-
ters vp.

– Commit(cp,m ∈ Md) outputs a commitment c ∈ C and some committer
state st.

– Open(cp, st, i ∈ [d]) outputs a proof pi for the ith entry of the committed
message associated to st.

– Verify(vp, c ∈ C, i ∈ [d],m ∈M, p ∈ P) either accepts or rejects.

These algorithms should satisfy the following correctness condition: for any
d = poly(λ), m ∈ Md, and i ∈ [d], and for (cp, vp) ← Setup(1λ, 1d), (c, st) ←
Commit(cp,m), and pi ← Open(cp, st, i), Verify(vp, c, i,mi, pi) accepts with prob-
ability 1− negl(λ) (over all the randomness of the experiment).

Additionally, the scheme is updatable if it has a set of algorithms with the
following interfaces:

– PrepareUpdates(cp, st, j ∈ [d],m′j ∈M) outputs a commitment update δc, a
proof update δp, and a state update δs for changing the jth entry of the
committed message vector to m′j.

– UpdateC(vp, c ∈ C, δc) deterministically outputs an updated commitment c′.7

– UpdateP(vp, i ∈ [d], pi ∈ P, δp) deterministically outputs an updated proof p′i.
– UpdateS(cp, st, δs) deterministically outputs an updated committer state st′.

7 The determinism is without loss of generality, because PrepareUpdates can include
any needed random coins in δc; the same also applies for UpdateP, δp and UpdateS, δs.
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Additionally, the scheme is statelessly updatable if PrepareUpdates can be imple-
mented via:

– PrepareUpdatesno-st(cp, j ∈ [d],mj ∈M,m′j ∈M), which has the same out-
puts as PrepareUpdates, and differs only in its inputs: it does not get the
committer state st, and instead receives only the old and new jth entries
mj ,m

′
j of the message vector m. Then PrepareUpdates can be written gener-

ically in terms of PrepareUpdatesno-st (assuming that m is part of st, which
is without loss of generality).

Moreover, the scheme is differentially updatable if PrepareUpdatesno-st (and
hence PrepareUpdates) can be implemented via:

– PrepareUpdatesdiff(cp, j ∈ [d], δ), which has the same outputs as PrepareUpdatesno-st,
and differs only in its inputs: rather than receiving mj and m′j separately, it
receives only the “difference” δ = m′j−mj , where − denotes some abstract op-
eration on M (whose output may be more compact than its two inputs). Then
PrepareUpdatesno-st can be written generically in terms of PrepareUpdatesdiff.

These algorithms should satisfy the following correctness condition: for any d =
poly(λ), any (cp, vp) ← Setup(1λ, 1d), any m,m′ ∈ Md that differ in at most
the jth coordinate, and any i ∈ [d], the outputs of the following two experiments
are statistically indistinguishable; if they are identically distributed, we say that
the updatability is perfect:

1. Let (c, st)← Commit(cp,m), pi ← Open(cp, st, i), (δc, δp, δs)← PrepareUpdates(cp, st, j,m′j),
8

c′ ← UpdateC(vp, c, δc), p
′
i ← UpdateP(vp, i, pi, δp), st

′ ← UpdateS(cp, st, δs).
Output (st′, c′, p′i).

2. Let (c′, st′)← Commit(cp,m′), p′i ← Open(cp, st′, i). Output (st′, c′, p′i).

In words, the results of updating a commitment and proof to a new entry of the
message vector should be essentially the same as generating a “fresh” commitment
and proof on the updated message vector. (The state information is included in
the results for compositionality, so that the same goes for polynomially many
updates.)

Remark 1. We note that our vector commitment interface differs slightly from
the one introduced in [CF13]. First, we split our public parameters into separate
committer and verifier parameters, to highlight the different values needed by each
role. Second, we break out PrepareUpdates from the algorithms that do the actual
updating, to delineate what work can be performed by the committer rather
than the verifier. However, any VC implementing our interface can trivially be
converted to the interface from [CF13], simply by merging the public parameters,
and merging the code in PrepareUpdates that generates δc and δp into UpdateC
and UpdateP, respectively.

8 For statelessly updatable schemes, this step can be replaced by
PrepareUpdatesno-st(cp, j,mj ,m

′
j), and for differentially updatable ones, it can be

replaced by PrepareUpdatesdiff(cp, j, δ = m′j −mj).
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Position binding. We now recall the main security property of vector commit-
ments, known as position binding. Essentially, it should be infeasible to output
a (possibly malformed) commitment along with two valid openings for different
message entries at a particular position.

Definition 2. A vector commitment scheme VCS is position binding if, for
every d = d(λ) = poly(λ) and every probabilistic polynomial-time adversary A,

AdvpbaVCS(A) := Pr[m 6= m′ and Verify(vp, c∗, i,m, p) = Verify(vp, c∗, i,m′, p′) = accept] = negl(λ),

where the probability is over the choice of (cp, vp)← Setup(1λ, 1d), (c∗, i,m, p,m′, p′)←
A(1λ, 1d, cp, vp).

Position binding alone is a sufficient security property for many applications
of vector commitments, and can be obtained entirely with deterministic algo-
rithms, excepting Setup; indeed, our own constructions achieve this. Of course, a
deterministic Commit algorithm cannot hide the message vector, at least not in
the sense of indistinguishability.

2.2 Short Integer Solution and (Tagged) Trapdoors

We recall the Short Integer Solution (SIS), and its hardness based on worst-case
lattice problems.

Definition 3. The (homogeneous) SISn,q,m,β problem is: given a uniformly ran-
dom matrix A ∈ Zn×mq , find a non-zero integral vector z ∈ Zm such that
Az = 0 (mod q) and ‖z‖ ≤ β. The normal form of the problem is to find a
non-zero integral vector z = (x ∈ Zm, e ∈ Zn) such that Ax = e (mod q) and
‖z‖ ≤ β.

When q ≥ β · Õ(
√
n) and m is polynomial in n and log q, solving SISn,q,m,β

(in either its homogeneous or normal form) is at least as hard as approximating
certain worst-case lattice problems on n-dimensional lattices to within a β ·Õ(

√
n)

factor [MR04, GPV08].

Gadget and trapdoors. Our constructions use standard techniques for SIS-based
trapdoors and preimage sampling as developed in [GPV08, MP12]. These rely
on a publicly known “gadget” matrix G ∈ Zn×wq for some w. The prototypical

example is G = In ⊗ (1, 2, . . . , 2dlog2 qe−1) where w = ndlog2 qe, but any other
suitable G supporting an efficient preimage-sampling algorithm can work just as
well in our applications (possibly after adjusting parameters); see [MP12] for the
precise requirements.

The basic gadget-based inversion operation is a deterministic function denoted
G−1 : Znq → Zw, which for some small g = gG satisfies G · G−1(u) = u and
‖G−1(u)‖ ≤ g for all u ∈ Znq .9 (For example, gG = 1 for the prototypical

9 We stress that G−1 is a function, not a matrix, and it does not necessarily satisfy
G−1(G · z) = z for z ∈ Zw.
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gadget G defined above.) We extend the definition of G−1 to matrices simply by
applying it column-wise.

The more advanced inversion operation is the (randomized) preimage-sampling
algorithm, whose properties are described below in Theorem 1. For this purpose
the gadget matrix G comes with a small factor ω = ωG that appears in the
bounds associated with the sampling algorithm. (E.g., for the prototypical G
given above, we can take ω to be any ω(

√
log n) function.)

Preimage sampling works for “tagged” trapdoors, which rely on an efficiently
computable invertible-differences encoding from elements of some particular
set F to Zn×nq . In such an encoding, for any distinct f, f ′ ∈ F , the difference
Hf ′ −Hf between their respective encodings Hf ′ ,Hf is invertible. A standard
construction (see, e.g., [PW08, ABB10, MP12]) for prime q uses any (efficiently
computable) injective map from F into the finite field Fqn , which is viewed as an
n-dimensional vector space over Fq with some arbitrary basis. Then relative to
that basis, multiplication by any fixed (nonzero and hence invertible) field element
f ∈ Fqn basis corresponds, via an additive homomorphism, to multiplication
by an (invertible) matrix Hf ∈ Zn×nq ; this correspondence therefore yields an
invertible-differences encoding. (This can be extended to arbitrary non-prime q
in a natural way; see, e.g., [MP12].)

The following theorem summarizes the trapdoor functionality that our con-
structions will use; our presentation abstracts away the precise distributions
sampled by the various algorithms. Typically SampleD samples from a discrete
Gaussian distribution (as in [GPV08]), but the theorem holds equally well (but
with somewhat looser bounds) for other distributions over the integers, like
uniform over a sufficiently wide interval; see [LW15].

Theorem 1 ([GPV08, MP12]). There are probabilistic polynomial-time algo-
rithms TrapGen, SampleD, SamplePre and a “gadget” matrix G ∈ Zn×wq having
the following properties, where m = m̄+ w:

1. TrapGen(Ā ∈ Zn×m̄q ,H∗ ∈ Zn×nq ) outputs some (A ∈ Zn×mq ,T ∈ Zm̄×m)
such that s1(T) ≤ sT = O(

√
m) and

A = ĀT + [0 | H∗G] ∈ Zn×mq .

2. For any m̄ ≥ 2n log q and any H∗ ∈ Zn×nq , and for uniformly random

Ā← Zn×m̄q and (A,T)← TrapGen(Ā,H∗), the distribution of A ∈ Zn×mq is
within negl(n) statistical distance of uniform.

3. For any H∗,H ∈ Zn×nq such that H∗ − H is invertible, any (A,T) ←
TrapGen(Ā,H∗) for any Ā ∈ Zn×m̄q , any s ≥ sT · ω, any positive integer k,
and letting A′ = A− [0 | HG]:
(a) For R ← SampleD(1m×k, s) the distribution of U = A′R ∈ Zn×kq is

within k · negl(n) statistical distance of uniform.
(b) For any U ∈ Zn×kq , SamplePre(T,A′,U, s) outputs some R ∈ Zm×k such

that ‖R‖ ≤ s
√
m, s1(R) = O(s

√
m+ k), and the distribution of R is

within k · negl(n) statistical distance of DA′,U,s, the conditional distribu-
tion of R← SampleD(1m×k, s) conditioned on the event A′R = U.
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In particular, the output distributions of the following two experiments are
within k · negl(n) statistical distance:

– choose R← SampleD(1m×k, s) and output (R,U = A′R ∈ Zn×kq ).

– choose uniformly random U ← Zn×kq and R ← SamplePre(T,A′,U, s),
and output (R,U).

We stress that the distribution DA′,U,s from Item 3b does not involve T, so
SamplePre’s output essentially reveals nothing about its T argument. More pre-
cisely, in probability experiments we can replace calls to SamplePre(T,A′,U, s),
which use T, with (not necessarily efficient) samplings from DA′,U,s, which do
not use T.

3 Vector Commitments

In this section we construct a vector commitment scheme based on the SIS
problem (for suitable parameters). By convention, in this section we let n be the
security parameter.

3.1 Construction

We let messages be vectors over M = I` for some desired ` and interval I ⊂ Z of
contiguous integers of maximum magnitude MI = maxi∈I |i|, e.g., I = {0, 1} and
MI = 1.

The construction uses a suitable gadget matrix G ∈ Zn×wq and an injective,
efficiently computable invertible-differences encoding that maps any i ∈ [d+ 1] to
a matrix Hi ∈ Zn×nq , so that Hi′ −Hi is invertible for any distinct i, i′ ∈ [d+ 1];
see Section 2.2 for instantiations. (In fact, because we will later need to take
q � d, if q is prime then we can simply take Hi = iI to be a scaled identity
matrix.)

Construction 1 (SIS-based vector commitment). For suitable parameters
m̄, s, γ (which are functions of the security parameter n), define the following
differentially updatable vector commitment scheme.

– Setup(1n, 1d): choose uniformly random Ā ← Zn×m̄q and let (A,T) ←
TrapGen(Ā,Hd). In all that follows, let m = m̄ + w and for any i ∈ [d]
let

Ai = A− [0 | HiG] ∈ Zn×mq . (1)

Choose uniformly random U = [U0 | · · · | Ud−1] ← Zn×`dq , where each

Uj ∈ Zn×`q .

For each i ∈ [d] let Ri,i = 0 ∈ Zm×`, and for each j ∈ [d] \ {i}, let Ri,j ←
SamplePre(T,Ai,Uj , s). Observe that i 6= d and hence Hd −Hi ∈ Zn×nq is
invertible, as needed by SamplePre (see Item 3 of Theorem 1). In particular,

Ri,j ∈ Zm×` is “short” and AiRi,j = Uj . (2)

Output the committer parameters cp = (U,R = (Ri,j)i,j∈[d] ∈ Zmd×`d) and
the verifier parameters vp = (A,U).
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– Commit(cp,m ∈Md = I`d): output commitment c = Um =
∑
j∈[d] Ujmj ∈

Znq and state st = m.
– Open(cp, st = m, i ∈ [d]): output pi = Ri,?m =

∑
j∈[d] Ri,jmj ∈ Zm.

– Verify(vp, c ∈ Znq , i ∈ [d],mi ∈ M,pi ∈ Zm): accept if ‖pi‖ ≤ γ and c =
Aipi + Uimi; otherwise, reject.

In addition, define the following update algorithms.

– PrepareUpdatesdiff(cp, j ∈ [d], δ ∈ Z`): output commitment update10 δc =
c̃ = Ujδ ∈ Znq , proof update11 δp = (ri)i∈[d] where ri = Ri,jδ ∈ Zm, and
state update δs = (j, δ).

– UpdateC(vp, c ∈ Znq , δc = c̃ ∈ Znq ): output c′ = c + c̃ ∈ Znq .
– UpdateP(vp, i,pi ∈ Zm, δp = (ri)i∈[d]): output p′i = pi + ri ∈ Zm.
– UpdateS(cp, st = m, δs = (j, δ)): output st′ = m′, which is m with its jth
M-entry mj replaced by m′j = mj + δ.

Parameters and sizes. An appropriate choice of the parameters m̄, s, γ is as
follows:

– let m̄ = d2n log qe so that Item 2 of Theorem 1 applies;
– let s = sT · ω where ω and sT = O(

√
m) are as in Section 2.2, so that

s1(T) ≤ sT and SamplePre can sample with parameter s, by Items 1 and 3
(respectively) of Theorem 1;

– let γ = O(sMI

√
(m+ `d)`d) = O(sMI(m + `d)) be sufficiently large so

that the norm of a proof pi = Ri,?m is bounded by γ. (This is because

s1(Ri,?) = O(s
√
m+ `d) by Item 3b of Theorem 1, and ‖m‖ ≤ MI

√
`d

because m ∈ I`d.)12

Letting the modulus q be sufficiently large relative to β (Equation (3)), as
needed for the hardness of the relevant SIS problem, we obtain the following
asymptotic object sizes.

– Commitments are in Znq and hence have size O(n log q) bits.
– Proofs are vectors in Zm of Euclidean norm bounded by γ < q, and hence

can have size O(n log q) bits.
– Committer parameters are dominated by the d2 − d short matrices Ri,j ∈

Zm×`, and hence have size Õ(n`d2) bits. This can be reduced by a factor
of n using a ring-based construction and Ring-SIS.

10 Alternatively, depending on how much space it requires to represent δ compared
to an element of Zn

q , it may be preferable to output δc = (j, δ) as the commitment
update, and have UpdateC compute Ujδ.

11 Alternatively, if UpdateP has access to all the Ri,j (via the committer parameters),
then we can output a smaller proof update δp = δ, and UpdateP can compute
ri = Ri,jδ itself.

12 A smaller γ can be used if we have a tighter bound on ‖m‖, e.g., if we know from
the surrounding application that m is sparse.
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– Verifier parameters are dominated by the d matrices Uj ∈ Zn×mq , and hence
have size O(n2d log q) bits. This also can be reduced by a factor of n using
rings. Separately, the verifier parameters can be reduced to just the size of
A ∈ Zn×mq , which is O(n2 log2 q) bits (or O(n log2 q) bits using rings), by
including the appropriate authenticated Ui in each proof.

Combinable commitments and proofs. The scheme also has the following com-
binability properties.13 Suppose we have several commitments cj = Umj to
respective message vectors mj ∈ Z`d for j = 1, . . . , t. Gathering these into the
columns of matrices C ∈ Zn×tq and M ∈ Z`d×t (respectively), we have C = UM.
Then for any integer vector e ∈ Zt representing a linear combination of the
message vectors, c := Ce = U(Me) ∈ Znq is the commitment to the combined

message m := Me ∈ Z`d.
Proofs are similarly combinable, for any fixed position. Let pji ∈ Zm denote

the opening of cj at position i, and collect these into the columns of a matrix
Pi ∈ Zm×t. Then Pi = Ri,?M, and hence pi := Pie = Ri,?m is the proof for
position i of the combined message m = Me. Note that the entries of m may
be larger than those of the mj—their magnitudes depend on the norm of e—so
the norm bound γ used in Verify and related parameters need to be adjusted
accordingly.

In the full version we discuss variants of this scheme, including a more efficient
one based on Ring-SIS.

3.2 Correctness

Lemma 1. For the parameters given above, Construction 1 is a correct, perfectly
updatable vector commitment scheme (according to Definition 1).

Proof. We first show that openings are accepted by the verifier. Let (cp, vp)←
Setup(1n, 1d) and let m ∈Md, c = Commit(cp,m) = Um and pi = Open(cp,m, i) =
Ri,?m for some i ∈ [d]. Then

Aipi = Ai

∑
j∈[d]

Ri,jmj =
∑
j∈[d]

(AiRi,j)mj =
∑

j∈[d]\{i}

Ujmj ,

since by definition of Setup we have that AiRi,j = Uj for i 6= j (Equation (2))
and Ri,i = 0. Finally, we have∑

j∈[d]\{i}

Ujmj = Um−Uimi = c−Uimi,

as required. Moreover, by our choice of γ above we have that ‖pi‖ = ‖Ri,∗m‖ ≤ γ.
Therefore, Verify(vp, c, i,mi,pi) accepts.

Due to space limitations, we defer the proof of perfect differential updatability
to the full version.
13 We use the term combinability rather than aggregatability because the latter is often

used for the ability to combine proofs for several different locations, which we do not
see how to do for our construction.
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3.3 Security

Theorem 2. Construction 1 is position binding if SISn,q,m̄+`,β is hard for

β := 2
√
γ2s2

T +M2
I · ` = O(γ · sT ) = O(MI ·m(m+ `d)) · ω. (3)

More specifically, for any adversary A against the position binding of the scheme,
there is an SISn,q,m̄+`,β adversary B for which

AdvSIS(B) ≥ 1

d
Advpba(A)− negl(n),

and whose running time is essentially that of A, plus a small polynomial in n.

Proof. Let A be any adversary that attacks the position binding (Definition 2)
of Construction 1. That is, for some d = poly(n), and letting (cp, vp) ←
Setup(1n, 1d), A(1n, 1d, cp, vp) attempts to output some (c, i,m,m′,p,p′) with
distinct m,m′ ∈ I`d and where Verify(vp, c, i,m,p), Verify(vp, c, i,m′,p′) both
accept.

We use A to construct an SIS adversary B which, on input [Ā | Ū] ∈ Zn×(m̄+`)
q ,

seeks to output a nonzero vector x ∈ Zm̄+` such that [Ā | Ū]x = 0 and ‖x‖ ≤ β.
It operates as follows:

1. Choose uniformly random i∗ ∈ [d] as a guess of the position where A will
attempt to break binding.

2. Let (A,T)← TrapGen(Ā,Hi∗) and note that s1(T) ≤ sT and Ai∗ = A− [0 |
Hi∗G] = ĀT ∈ Zn×mq , by Item 1 of Theorem 1.

3. Define Ui∗ = Ū.

4. For each j 6= i∗ let Ri∗,j ← SampleD(1m×`, s) and set Uj = Ai∗Ri∗,j ∈ Zn×`q .

5. For each i 6= i∗ and j 6= i, let Ri,j ← SamplePre(T,Ai,Uj , s).

6. For each i ∈ [d] let Ri,i = 0.

7. Let cp = (U = (Uj)j∈[d] ∈ Zn×`dq ,R = (Ri,j)i,j∈[d] ∈ Zmd×`d) and vp =
(A,U).

8. Let (c, i,m,m′,p,p′)← A(1n, 1d, cp, vp).

9. If i 6= i∗, abort. Otherwise, output x =

[
T(p− p′)
m−m′

]
∈ Zm̄+`.

By inspection, it is clear that B runs in the same time as A, plus a small
polynomial.

First, we show that if A successfully breaks binding at position i = i∗, then
B outputs an SIS solution for [Ā | Ū]. In this case, we have m 6= m′ and both
Verify(vp, c, i∗,m,p) and Verify(vp, c, i∗,m′,p′) accept, so c = Ai∗p + Ui∗m =
Ai∗p

′ + Ui∗m
′ and ‖p‖, ‖p′‖ ≤ γ. Recalling from above that Ai∗ = ĀT, we
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therefore have

[Ā | Ū]x = [Ā | Ū]

[
T(p− p′)
m−m′

]
= ĀT(p− p′) + Ū(m−m′)

= Ai∗(p− p′) + Ui∗(m−m′)

= (Ai∗p + Ui∗m)− (Ai∗p
′ + Ui∗m

′)

= c− c = 0.

Moreover, x 6= 0 because m 6= m′, and by the triangle inequality and the above
bound s1(T) ≤ sT we have

‖x‖ =
√
‖T(p− p′)‖2 + ‖m−m′‖2 ≤

√
(2γ · sT )2 + (2MI · `)2 = β.

Therefore, x is an SIS solution for [Ā | Ū].
It remains to analyze the probability that A breaks position binding at

position i = i∗ in the above experiment run by B. To do this we consider the
following hybrid experiments.

– H0 corresponds exactly to the “real” attack experiment with Setup, with
some convenient presentational changes to aid comparison with the other
experiments.

1. Sample i∗ ← [d] uniformly at random.
2. Sample Ā ∈ Zn×m̄q uniformly at random and (A,T)← TrapGen(Ā,Hd).

3. Sample Ui∗ ∈ Zn×`q uniformly at random.

4. For each j 6= i∗, choose uniform Uj ← Zn×`q and let Ri∗,j ← SamplePre(T,Ai∗ ,Uj , s).
5. For each i 6= i∗ and j 6= i, let Ri,j ← SamplePre(T,Ai,Uj , s).
6. Set Ri,i = 0 for all i ∈ [d].
7. Set cp = (U,R = (Ri,j)i,j∈[d]) and vp = (A,U = (Uj)j∈[d]).

8. Let (c, i,m,m′,p,p′)← A(1n, 1d, cp, vp).

Note that H0 is identical to the position-binding attack experiment against
the scheme, as the choice of i∗ only affects the order in which the Ri,j and Uj

are selected. This does not affect the distribution of (cp, vp), and indeed, i∗

is independent of the input to A. Hence, the probability of the event GOOD
that A breaks position binding at index i = i∗ is d−1 ·Advpba(A).

– H1 is identical to H0 except that we replace Step 4 with the following:

4. For each j 6= i∗, sample Ri∗,j ← SampleD(1m×`, s) and let Uj =
Ai∗Ri∗,j ∈ Zn×`q .

By Item 3 of Theorem 1, each independent (Ri∗,j ,Uj) pair generated in H0

is within ` · negl(n) statistical distance of the corresponding pair generated
in H1. Because ` = poly(n), the probability of the event GOOD in H1 is
within negl(n) of its probability in H0.

– H2 is identical to H1 except we replace Step 5 with the following:

5. For i 6= i∗ and j 6= i, (inefficiently) sample Ri,j ← DAi,Uj ,s.
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Note that T is unused in H2, because the experiment instead samples ineffi-
ciently (e.g., using brute force); this is acceptable because we will only make
statistical comparisons between H2 and its adjacent experiments. For each i,
we have i 6= d and hence Hd −Hi ∈ Zn×nq is invertible. So by Item 3b of
Theorem 1, each of the independent Ri,j (for i 6= i∗ and j 6= i) sampled from
SamplePre(T,Ai,Uj , s) in H1 is within ` · negl(n) statistical distance of the
corresponding Ri,j sampled from DAi,Uj ,s in H2. Hence, the probability of
the event GOOD in H2 is within negl(n) of its probability in H1.

– H3 is identical to H2 except that we replace Step 2 with the following:
2. Sample Ā ∈ Zn×m̄q uniformly at random and let (A,T)← TrapGen(Ā,Hi∗).

By Item 2 of Theorem 1, for uniformly random Ā we have that the A obtained
from TrapGen(Ā,H) is within negl(n) statistical distance from uniform, for
any tag H. Hence, the A generated in H2 is within negl(n) statistical distance
from the A generated in H3. Note that this is not necessarily true for the
Ts generated in each experiment, however T is entirely unused (following its
creation) in both experiments. Hence, the probability of the event GOOD
in H3 is within negl(n) of its probability in H2.

– H4 is identical to H3 except that we replace Step 5 with the following:
5. For each i 6= i∗ and j 6= i, sample Ri,j ← SamplePre(T,Ai,Uj , s).

For all i 6= i∗ we have that Hi∗ −Hi ∈ Zn×nq is invertible. So by Item 3b of
Theorem 1, each (independently chosen) Ri that is generated in this way is
within negl(n) statistical distance of the corresponding one in H3. By the
same reasoning given above for H2 versus H1, the probability of the event
GOOD in H4 is within negl(n) of its probability in H3.
Finally, notice that H4 is identical to the experiment that B simulates to A,
because the Ā and Ui∗ = Ū from the SIS instance are uniformly random
and independent.

Combining all of the above completes the proof of the theorem.

3.4 Specialized Tree Transformation

In the vector commitment scheme from Construction 1, the sizes of the committer
and verifier parameters are respectively quadratic and linear in the message
dimension d, which makes the construction unsuitable as-is for large dimensions.
In the full version, we give a formal treatment of a generic d-ary tree construction
that transforms a VC scheme for dimension d into one for dimension dh for any
desired positive integer h, with no increase in the sizes of the parameters or
commitments. Only the proof and proof-update sizes increase, growing linearly
in h but independently of d. However, this transformation fails to preserve the
combinability of commitments and proofs, as well as the stateless updatability
property of the base scheme, which is important for distributed VCs [CPSZ18].

Here we give a specialized tree-like transformation of our SIS-based VC
scheme. In contrast with the generic transform, ours preserves combinability and
(differential) stateless updates, essentially because commitments are linear in the
committed messages, but at the price of somewhat larger objects and a stronger
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SIS assumption. The transformation is based on the main idea from [PSTY13],
which was used in the context of an SIS-based Merkle-tree-like construction
(which can be used as a VC). In that context, a proof must include all of the
“sibling” information for each step in a root-to-leaf path, so the proof size ends up
being proportional to hd log2(dh). (The log2(dh) factor comes from the length
of the proofs along the path as well as the sizes of the integers within them.)
Here we show that the main idea from [PSTY13] also applies to our SIS-based
VC scheme, but with the advantage that proofs need not contain any sibling
information, so the proof size grows only as h log2(dh) = h3 log2 d.

In summary, our construction is quantitatively a strict improvement over
the VC obtained from [PSTY13], for any choice of arity d and tree height h
(but at the price of private setup). Its efficiency profile also recommends using a
moderately large d and correspondingly smaller h, which can ultimately yield
the same asymptotic proof size as for the generic tree transformation for VCs,
while preserving combinability and (differential) stateless updates (but at the
price of private setup and a stronger SIS assumption).

Construction 2 (SIS-based tree vector commitment). Let G ∈ Zn×wq

be a suitable gadget matrix with associated magnitude bound gG for the G−1

operation; see Section 2.2 for details. (This gadget need not be the same as the
one used in Construction 1.)

Let message vectors be overM = I
w

for some desired range I = {−MI , . . . ,MI} ⊂
Z. Let h be any positive integer, and adopt the algorithms defined in Construc-
tion 1 for dimension-d vectors over M = Iw, where I = {−MI , . . . ,MI} for
MI = MI · gG · w · dh.14 Define the following algorithms:

– Setuph(1n, 1d
h

): output (cp = (U = [U0 | · · · | Ud−1], ), vp)← Setup(1n, 1d).
In all that follows, let S(1) = Iwd ∈ Zwd×wd and U(1) = U ∈ Zn×wdq , and for
1 < k ≤ h let

S(k) = Id ⊗G−1(U(k−1)) ∈ Zwd×wd
k

U(k) = US(k) ∈ Zn×wd
k

q .

Note that U(k) = [U
(k)
0 | · · · | U(k)

dk−1
] can be viewed as a block matrix where

each U
(k)
 ∈ Zn×wq and  ∈ [dk]. Moreover, each such block can be computed

independently given just U and , without needing to compute the entire
matrix.15

– For 1 ≤ k ≤ h, Commitk(cp,m ∈Mdk

= I
wdk

) does:

14 The factor MI · w · d
h in MI may be replaced by an upper bound on ‖m‖1 for only

those message vectors m that may be used in an application, e.g., sparse vectors.
15 Specifically, U

(k)
 = UjG

−1(U
(k−1)

′ ) where  = jdk−1 + ′ for

 ∈ [dk], j ∈ [d], and ′ ∈ [dk−1]. Unrolling this fully, U
(k)
 =

Ujk−1G
−1(Uji−2G

−1(· · ·G−1(Uj1G
−1(Uj0)) · · · )) where jk−1 · · · j1j0 is the

base-d representation of .
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• let c = G−1(U(k))m ∈ Iw =M,16

• output (c, st = m).

– Open1 = Open. For 1 < k ≤ h, Openk(cp, st = m ∈Mdk

, ı ∈ [dk]) does:

• write ı = idk−1 + ı′ where i ∈ [d] and ı′ ∈ [dk−1],

• parse m = (m0, . . . ,md−1) where each mi ∈M
dk−1

,
• let pi ← Open(cp,S(k)m ∈ Iwd =Md, i),
• let (ci, )← Commitk−1(cp,mi),

17

• let p′ı′ ← Openk−1(cp,mi, ı
′),

• output pı = (pi, ci, p
′
ı′).

– Verify1(vp, c ∈ Iw =M, ı ∈ [d],mı ∈M, pı) = Verify(vp,Gc, ı,mı, pı).
For 1 < k ≤ h, Verifyk(vp, c ∈ Iw =M, ı ∈ [dk],mı ∈M, pı) does:

• define i, ı′ in terms of ı as in Openk and parse pı = (pi, ci, p
′
ı′),

• if Verify(vp,Gc, i, ci,pi) rejects, then reject,
• if Verifyk−1(vp, ci, ı

′,mı, p
′
ı′) rejects, then reject; else, accept.

Update algorithms follow rather straightforwardly from the linearity of the
commitment, and are given in the full version.

Object sizes. Instantiating the underlying scheme with parameters discussed
above and choosing sufficiently large q relative to β (where β is as in Equation (3)),
so that log q = O(h log d+ log n) = O(h log d) under the (very mild) assumption
that the vector dimension dh = nΩ(1) is at least polynomial in n, we obtain the
following asymptotic object sizes.

– A commitment is a vector in M = Iw, with each entry bounded by MI =
MI · gG · w · dh. Since w = O(n log q) = O(nh log d), a commitment requires

O(wh log d) = O(nh2 log2 d) bits to represent.
– A proof consists of h − 1 vectors in M and h proofs from the underlying

scheme; the latter are vectors in Zm of Euclidean norm bounded by γ. Since
m = O(n log q) = O(nh log d) and log γ = O(h log d), a full proof requires
O(nh3 log2 d) bits to represent.

– The committer parameters cp are dominated by the d2 − d short matrices
Ri,j ∈ Zm×w from the underlying scheme, and hence have size Õ(n2h2d2).
This can be reduced by a factor of n using a ring-based construction

– The verifier parameters vp are dominated by the d matrices Uj ∈ Zn×wq , and

hence have size O(n2h2d log2 d) bits. This also can be reduced by a factor
of n using a ring-based construction.

In the full version, we prove that for any positive integer h, Construction 2 is
correct, perfectly updatable, and position binding.

16 Note that Gc = US(k)m ∈ Zn
q is the commitment output of Commit(cp,S(k)m), but

we cannot necessarily compute c from that output.
17 Alternatively, the computation of all the dh−1 intermediate commitments ci could

be done at commitment time, and stored in st.
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4 Functional Commitments (with Authority)

In this section we define functional commitments with authority, which enable
concise commitments and proofs of arbitrary functions (from a particular family)
of committed messages. We introduce a new model in which a trusted authority
both performs the system setup, and remains online to give out opening keys okf
that enable committers to open desired functions f of committed messages.
We stress that, unlike with identity/attribute-based encryption, where each key
extracted by the authority must be transmitted confidentially to its intended
recipient and kept secret, with functional commitments all opening keys can
be made public and used by any party. For example, any party can query the
authority for any supported function f , and the authority can post the opening
key okf on a public bulletin board for all to see and use.

Of course, if the supported function family has only polynomially many
functions, then the authority can immediately post all the associated opening
keys and then go offline forever. However, many families of interest have super-
polynomially (or even exponentially) many functions, so in these cases the
authority needs to remain online to answer new queries. It is a very interesting
question whether our construction can be modified to remove the need for an
online authority.

4.1 Definitions

Here we formally define functional commitments with authority, and the security
notions we consider for them.

Definition 4. A functional commitment scheme with authority for a function
class F , and having message space M, commitment space C, and proof space P
(all of which may depend on the security parameter), is a tuple of algorithms with
the following interfaces:

– Setup(1λ) outputs committer parameters cp, verifier parameters vp, and an
extraction key ek.

– Extract(ek, f ∈ F) outputs an opening key okf for the function f .
– Commit(cp,m ∈ M) outputs a commitment c ∈ C and some auxiliary

data aux.
– Open(cp, aux, okf ) outputs a proof pf,m ∈ P for the value of f(m), where m

is the committed message associated to aux.
– Verify(vp, c ∈ C, f ∈ F , y, pf,m) either accepts or rejects.

The scheme should satisfy the following correctness property: for any m ∈ M
and f ∈ F , and for (cp, vp, ek) ← Setup(1λ), okf ← Extract(ek, f), (c, aux) ←
Commit(cp,m), and pf,m ← Open(cp, aux, okf ), Verify(vp, c, f, y = f(m), pf,m)
should accept with 1− negl(λ) probability (over all the randomness of the experi-
ment).

Definition 5. For a functional commitment scheme with authority FCS, the
selective-function attack game with an adversary is defined as follows:
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1. The adversary is given the security parameter 1λ and outputs a function
f∗ ∈ F to the challenger.

2. The challenger lets (cp, vp, ek)← Setup(1λ) and gives cp, vp to the adversary.
3. The adversary is given adaptive oracle (query) access to Extract(ek, ·).18

4. Finally, the adversary outputs a commitment c∗ and two value-proof pairs
(y, p) and (y′, p′). It wins the game if y 6= y′ and both Verify(vp, c∗, f∗, y, p)
and Verify(vp, c∗, f∗, y′, p′) accept.

The advantage of an adversary A in the above game, denoted Advsfa
FCS(A), is the

probability that it wins the game (as a function of the security parameter).

We say that FCS has the selective function binding property if Advsfa
FCS(A) =

negl(λ) for every probabilistic polynomial-time adversary A.

Remark 2. One can strengthen Definition 5 by changing the attack game so
that the adversary does not specify the target function f∗ until Item 4 (rather
than in Item 1, before seeing the public parameters and the queried opening
keys); we call the resulting security notion adaptive, or full, functional binding.
Generically, any scheme with selective security also has adaptive security, up to a
loose reduction whose advantage is smaller by a factor of the size of the function
family. (This follows by the standard technique of complexity leveraging—i.e.,
initially “guessing” the function f∗ that the adversary will eventually choose,
and succeeding when this guess turns out to be correct.)

4.2 Homomorphic Commitments

A main tool used in our functional commitment scheme is a homomorphic commit-
ment implicit in the FHE scheme of Gentry, Sahai, and Waters (GSW) [GSW13],
and made explicit in the works of Gorbunov, Vaikuntanathan, and Wichs
(GVW) [GVW15] and Peikert and Shiehian [PS19], which we recall in this
section. For better parameters and efficiency when working with certain function
families (e.g., linear functions), we generalize the scheme somewhat using stan-
dard “tagged trapdoor” and homomorphic techniques developed in works such
as [PW08, AFV11, MP12, Xag13]. The following theorem abstracts what we
need from these works and others like [BV14, AP14]; see the cited works and the
full version for further details on the implementations of the claimed algorithms.

Theorem 3 (Homomorphic commitment). Let U denote one of the follow-
ing families Ulinear, Ucircuit, UBP of “size-T” functions from XS to XL, for a
certain domain X, input size S, and output length L:

– for X = Zn×nq , T = S, and L = 1, the family Ulinear of functions U ~M

with ~M = (M1, . . . ,MS) ∈ XS, defined as U ~M(~F) :=
∑S
i=1 FiMi for ~F =

(F1, . . . ,FS) ∈ XS;

18 Note that we allow the adversary to query the oracle on any f ∈ F , even f = f∗.
This is because having an opening key for f∗ does not inherently allow for breaking
function binding for f∗—as opposed to, say, identity-based encryption, where a
decryption key for the target identity trivially allows decryption of the challenge
ciphertext.
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– for X = {0, 1}, the set Ucircuit of size-T , depth-D Boolean circuits U : {0, 1}S →
{0, 1}L;

– for X = {0, 1}, the set UBP of size-T (for a given width) branching programs
U : {0, 1}S → {0, 1}L.

There exist deterministic polynomial-time algorithms Encode, Eval having the
following properties. Each input in square brackets is optional, and when provided,
the additional output (also in square brackets) is also produced. The algorithm’s
main output is the same whether or not the optional input is provided.

1. Eval(U ∈ U ,C ∈ Zn×Swq [,Rx ∈ Zm×Sw]) outputs a commitment matrix CU ∈
Zn×Lwq [and an integral matrix RU,x ∈ Zm×Lw].

If C = ARx + Encode(x) for some A ∈ Zn×mq and x ∈ XS, then CU =
ARU,x + Encode(U(x)), and:
(a) for U = Ulinear, ‖RU,x‖ ≤ ‖Rx‖ · Sw;
(b) for U = Ucircuit, ‖RU,x‖ ≤ ‖Rx‖ · (w + 1)D;
(c) for U = UBP, ‖RU,x‖ ≤ ‖Rx‖ · wO(1) · T .

2. There is an efficient deterministic polynomial-time algorithm that, given any
invertible Y ∈ Zn×nq and any u ∈ Znq , outputs a binary e = G−1(Y−1u) ∈
{0, 1}w such that Encode(Y) · e = Y(Ge) = u.

3. There is an efficient deterministic polynomial-time algorithm that, given any
M ∈ Zn×Lq , outputs a binary e ∈ {0, 1}Lw such that Encode(y)·e = My ∈ Znq
for every y ∈ {0, 1}L.

4.3 Functional Commitment Construction

Here we give a functional commitment (with authority) for various families F of
functions from a given message space M to XL, for some domain X and output
length L (typically, X = Zn×nq or X = {0, 1}).

Let F ′ = F ∪ {d} where d 6∈ F is some distinguished “dummy” function, and
define the family of functions

U := {Um : F ′ → XL}m∈M
Um(f) := f(m);

we emphasize that this switches the roles of the message m and function f , letting
the message define a function Um that takes f as input data.

The construction requires homomorphic evaluation of any Um ∈ U (for known
m ∈M) on a commitment to a function f under the GSW/GVW scheme; let S
denote the size of f under a suitable representation for this purpose. Naturally,
the choice of function family F influences the scheme’s efficiency and parameters
(norm bound γ, modulus q, etc.); we describe some example instantiations of
interest following the construction.

The construction also uses an injective, efficiently computable invertible-
differences encoding that maps any f ∈ F ′ to a matrix Hf ∈ Zn×nq , so that Hf −
Hf ′ is invertible for any distinct f, f ′ ∈ F ′. (See Section 2.2 for instantiations.)
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For simplicity we assume that the family F ′ is small enough to support such
an encoding. Alternatively, we can map each f to a tuple (Hf,1, . . . ,Hf,t) for
sufficiently large t so that Hf,i −Hf ′,i is invertible for some i (and modify the
construction below in the natural way), or we can first apply a collision-resistant
(or even just universal one-way) hash function to f and use an invertible-differences
encoding on the hash values.19

Construction 3 (SIS-based functional commitment). Let function fam-
ilies F ,F ′ = F ∪ {d} (which may depend on the security parameter n) and
U = {Um(·)} be as described above. For suitable parameters m̄, s, γ, we define
the following functional commitment scheme (with authority) for the family F .

– Setup(1n): choose uniform Ā ← Zn×m̄q and let (A ∈ Zn×mq ,T ∈ Zm̄×m) ←
TrapGen(Ā,Hd), where d ∈ F ′ is the special “dummy” function. In all that
follows, for any f ∈ F let

Af = A− [0 | HfG] ∈ Zn×mq . (4)

Choose uniformly random C← Zn×Swq . Output the committer parameters
cp = C, the verifier parameters vp = A, and the extraction key ek =
(C,A,T).

– Extract(ek = (C,A,T), f ∈ F): output Rf ← SamplePre(T,Af ,C−Encode(f), s)
as the opening key. Observe that f 6= d and hence Hd −Hf ∈ Zn×nq is in-
vertible, as needed by SamplePre (see Item 3 of Theorem 1). In particular,
Rf ∈ Zm×Sw is “short” and

C = AfRf + Encode(f), (5)

i.e., Rf is randomness that opens C as a commitment to f with respect
to Af .
Note: for security, it is essential that repeated calls to Extract on the same
input (ek, f) produce the same output Rf . This can be ensured by the
standard techniques of memoization (e.g., using a public bulletin board of
all prior queries and answers), or by applying a pseudorandom function to
(ek, f) to generate randomness for the call to SamplePre, so that Rf is a
deterministic function of the input.

– Commit(cp = C,m ∈ M): output Cm = Eval(Um,C) ∈ Zn×Lwq and aux =
m.
[For Boolean functions the commitment can be compressed significantly; see
Section 4.3 below.]

– Open(cp = C, aux = m ∈M, okf = Rf ): compute (Cm,Rm,f ) = Eval(Um,C,Rf )
and output Rm,f ∈ Zm×Lw.
[For Boolean functions the proof can be compressed significantly; see Sec-
tion 4.3 below.]

– Verify(vp = A,C∗, f ∈ F ,y ∈ XL,R∗): accept if ‖R∗‖ ≤ γ and C∗ =
AfR

∗ + Encode(y), i.e., if R∗ is sufficiently short randomness that opens C∗

as a commitment to y with respect to Af . Otherwise, reject.
19 No homomorphic properties (only invertible differences) are needed for this encoding

of the functions, so hashing is acceptable.
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Combinability. Similarly to our SIS-based vector commitments from Section 3,
the functional commitment scheme has the following combinability property:
given commitments Cm,Cm′ and respective proofs Rm,f ,Rm′,f that f(m) =
y, f(m′) = y′ for some function f , we can take the same arbitrary small linear
combination of each pair to get a combined commitment and a proof (under a
suitably relaxed norm bound) that f(m) + f(m′) = y + y′. For linear functions f
this is equivalent to f(m+m′) = y + y′, but we caution that in general it may
not correspond to the application of f on any legal message.

Parameters. Here we give a convenient choice of parameters that works for all of
our instantiations:

– let m̄ = d2n log qe so that the output A of TrapGen is statistically close to
uniform;

– let s = sT · ω where ω and sT = O(
√
m) are as in Section 2.2, so that

s1(T) ≤ sT and SamplePre can sample with parameter s, by Items 1 and 3
(respectively) of Theorem 1;

– let γ be defined based on the particular function family F , as in the following
instantiations.

Instantiation: Linear Functions Over Finite Fields Let F = Fpn for some
prime p that divides q, letM = FS for some S = S(λ), and let F ′ be the family of
all F-linear functions from FS to F. We can represent any such function as a vector
~f = (f1, . . . , fS) ∈ FS of field elements, and can define U~m(~f) :=

∑S
i=1 fimi ∈ F

for each ~m ∈ FS . By simulating F using the matrix ring R = Zn×nq (simply by
reducing modulo p), Theorem 3 with family Ulinear yields a suitable homomorphic
commitment. For this instantiation, following Item 1a of Theorem 3 we set

γ = γlinear := s
√
m · Sw.

Let the “dummy” function d ∈ F ′ be the trivial function that always outputs
zero, leaving the family F = F ′ \ {d} of all nontrivial linear functions as the one
supported by the scheme (note that the trivial function is not needed, since its
output is fixed).

Remark 3. The restriction to linear functions over finite fields, rather than more
general matrix rings Zn×np where p divides q, is mostly for convenience of presenta-
tion in the SIS-based security proof (see the full version). Using more sophisticated
techniques and exploiting the fact that every column of the trapdoor T is well
hidden information theoretically (conditioned on the adversary’s view), it is
plausible that the proof could be adapted to work for the full matrix ring Zn×np

(though we do not do so here, to keep the proof simpler).

Instantiation: Boolean Functions of Bounded Complexity Let F ′ be the
family of all functions from some set M to {0, 1}L that are computable by
Boolean circuits of some depth D′ = D′(λ) and size S = S(λ) = poly(λ), under
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a suitable representation as binary strings. There is a (uniformly generated)
universal Boolean circuit U of size T = T (S) = poly(S) and depth D = O(D′)
for which U(f,m) = f(m) for all f ∈ F ′,m ∈M. Defining the size-T , depth-D
circuits Um(·) = U(·,m), Theorem 3 with the family Ucircuit = {Um(·)} yields a
suitable homomorphic commitment. For this instantiation, following Item 1b of
Theorem 3 we set

γ = γcircuit := s
√
m · (w + 1)D.

We proceed analogously for the family F ′ of functions from M to {0, 1}L
computable by size-S branching programs of some fixed width, using a (uniformly
generated) universal branching program U(f,m) of some size T = T (S) =
poly(S), and invoking Theorem 3 with the family UBP = {Um(·) = U(·,m)}
yields a suitable homomorphic commitment. For this instantiation, following
Item 1c of Theorem 3 we set

γ = γBP := s
√
m · wO(1) · T .

In both instantiations we let the “dummy” function d ∈ F ′ be the trivial
function that always outputs zero, leaving the family F = F ′\{d} of all nontrivial
size-S circuits (or branching programs) as the one supported by the scheme.
(There is no need to suport the trivial function, since its output is fixed.)

Compressing commitments and proofs. Finally, for functions with outputs in
{0, 1}L for some L ≤ n, we can reduce the sizes of the commitments and proofs by
a factor of Lw.20 Define M ∈ Zn×Lq to be the identity matrix I ∈ ZL×Lq padded

with n − L all-zero rows, and let e ∈ {0, 1}Lw be as in Item 3 of Theorem 3.
Then any commitment Cm ∈ Zn×Lwq can be replaced by the single column

vector cm = Cm · e ∈ Znq , and any proof Rm,f ∈ Zm×Lw can be replaced

by rm,f = Rm,f · e ∈ Zm. We then redefine Verify(A, c∗, f,y ∈ {0, 1}L, r∗) to
accept if ‖r∗‖ ≤ γ′ := γ‖e‖1 ≤ γLw and c∗ = Afr

∗ + ( y
0 ). This works because

‖rm,f‖ ≤ ‖Rm,f‖ · ‖e‖1, and Encode(y) · e = My = ( y
0 ). We note that the

above-described combinability property is also preserved.

Lemma 2. For the instantiations and parameters given above, Construction 3
is a correct functional commitment scheme with authority.

Proof. Let m ∈M and f ∈ F be arbitrary, and let:

– (cp = C, vp = A, ek = (C,A,T))← Setup(1n),
– okf = Rf ← Extract(ek, f) = SamplePre(T,Af ,C− Encode(f), s)

(note that f 6= d and s is large enough, so SamplePre works on these argu-
ments), and

– (Cm,Rm,f ) = Open(C,m,Rf ) = Eval(Um,C,Rf )
(note that Cm = Commit(C,m) = Eval(Um,C) by definition of Eval).

20 For L > n, we can simply treat the function as the concatenation of multiples
functions, and extract keys and generate proofs for each of them individually.
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We show that Verify(A,Cm, f, y = f(m),Rm,f ) accepts. By definition of
Extract and Item 3 of Theorem 1, we have ‖Rf‖ ≤ s

√
m and

C = AfRf + Encode(f),

so by the correctness of Um(·) = U(·,m) and of Eval(Um,C,Rf ) (Theorem 3) we
have

Cm = AfRm,f + Encode(Um(f)) = AfRm,f + Encode(y),

as required. In addition, ‖Rm,f‖ ≤ γ because ‖Rm,f‖/‖Rf‖ is bounded as given
in Item 1 of Theorem 3, so Verify accepts.

Finally, for the compressed variant with commitment cm := Cme and proof
rm,f := Rm,f · e, we have

cm = Afrm,f + Encode(y) · e = Afrm,f +

(
y
0

)
and has norm ‖r‖ ≤ ‖Rm,f‖ · ‖e‖1 ≤ γ‖e‖1 = γ′, so Verify accepts.

Theorem 4. For the instantiations and parameters given above, Construction 3
satisfies selective function binding (Definition 5) if normal-form SISn,q,m̄,β is hard
for sufficiently large β = O(γw

√
m) [or for the compressed variant, β = O(γ′

√
m)

where γ′ = γ‖e‖1 for the special short vector e used for compression].
More specifically, for any adversary A against the selective function binding

of the scheme that makes at most Q = Q(n) queries to its Extract oracle, there is
a normal-form SISn,q,m̄,β adversary B for which

AdvSIS(B) ≥ Advsfa(A)− (Q+ 1) · negl(n),

and whose running time is that of A plus a small polynomial in n.

Due to space constraints, the proof of Theorem 4 is deferred to the full version.
(It has many similarities with the proof of Theorem 2.)
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