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Abstract. In many occasions, the knowledge error κ of an interactive proof is not small enough, and
thus needs to be reduced. This can be done generically by repeating the interactive proof in parallel.
While there have been many works studying the effect of parallel repetition on the soundness error of
interactive proofs and arguments, the effect of parallel repetition on the knowledge error has largely
remained unstudied. Only recently it was shown that the t-fold parallel repetition of any interactive
protocol reduces the knowledge error from κ down to κt+ν for any non-negligible term ν. This generic
result is suboptimal in that it does not give the knowledge error κt that one would expect for typical
protocols, and, worse, the knowledge error remains non-negligible.
In this work we show that indeed the t-fold parallel repetition of any (k1, . . . , kµ)-special-sound multi-
round public-coin interactive proof optimally reduces the knowledge error from κ down to κt. At the
core of our results is an alternative, in some sense more fine-grained, measure of quality of a dishonest
prover than its success probability, for which we show that it characterizes when knowledge extraction
is possible. This new measure then turns out to be very convenient when it comes to analyzing the
parallel repetition of such interactive proofs.
While parallel repetition reduces the knowledge error, it is easily seen to increase the completeness error.
For this reason, we generalize our result to the case of s-out-of-t threshold parallel repetition, where
the verifier accepts a claim if s-out-of-t of the parallel instances are accepting. An appropriately chosen
threshold s allows both the knowledge error and completeness error to be reduced simultaneously.

Keywords: Proofs of Knowledge, Knowledge Soundness, Special-Soundness, Knowledge Extractor, Parallel
Repetition, Threshold Parallel Repetition.

1 Introduction

1.1 Background

Proofs of Knowledge. Proofs of Knowledge (PoKs) are essential building blocks in many cryptographic
primitives. They allow a prover P to convince a verifier V that it knows a (secret) string w ∈ {0, 1}∗, called
a witness, satisfying some public constraint. Typically a prover wishes to do this either in (honest-verifier)
zero-knowledge, i.e., without revealing any information about the witness w beyond the veracity of the claim,
or with communication costs smaller than the size of the witness w. Both these requirements prevent the
prover from simply revealing the witness w.

A key property of PoKs is knowledge soundness. Informally, a protocol is said to be knowledge sound if a
dishonest prover that does not know the secret witness can only succeed in convincing a verifier with some
small probability κ called the knowledge error. This is formalized by requiring the existence of an efficient
extractor so that for any dishonest prover that succeeds with probability ε > κ, the extractor outputs a
witness w with probability at least ε− κ, up to a multiplicative polynomial loss (in the security parameter),
when given black-box access to the prover [Gol01].
? thomas.attema@tno.nl
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Typical 3-round public-coin protocols satisfy the conceptually simpler notion called special-soundness.
A 3-round protocol is said to be special-sound if there exists an efficient algorithm that given two valid
prover-verifier conversations (transcripts) (a, c, z) and (a, c′, z′), with common first message a and distinct
second messages (challenges) c 6= c′, outputs a witness w. More generally, a 3-round protocol is called k-
special-sound if the algorithm requires k transcripts, instead of 2, to compute w. If k is polynomial in the size
of the input x, the property k-special-soundness tightly implies the standard notion of knowledge soundness
by a generic reduction, with κ = (k − 1)/N , where N is the number of challenges [HL10, ACK21].

In recent years, multi-round PoKs have gained a lot of attention [BCC+16, BBB+18, MBKM19, BFS20,
AC20, BLNS20, ACF21, ACK21, ACR21]. The notion of k-special-soundness, which is tailored to 3-round
protocols, extends quite naturally to (k1, . . . , kµ)-special-soundness for (2µ + 1)-round protocols (see Def-
inition 7 for the formal definition). Many of the considered multi-round protocols satisfy this multi-round
version of the special-soundness property. Surprisingly, only recently it was shown that also this generalization
tightly implies knowledge soundness [ACK21].

Parallel Repetition. In certain occasions, the knowledge error κ of a “basic” PoK (and thereby the
cheating probability of a dishonest prover) is not small enough, and thus needs to be reduced. This is par-
ticularly the case for lattice-based PoKs, where typically challenge sets are only of polynomial size resulting
in non-negligible knowledge errors [LS18, ACX21]. Reducing the knowledge error can be done generically
by repeating the PoK. Indeed, repeating a PoK t times sequentially, i.e., one after the other, is known to
reduce the knowledge error from κ down to κt [Gol01]. However, this approach also increases the number of
communication rounds by a factor t. This is often undesirable, and sometimes even insufficient, e.g., because
the security loss of the Fiat-Shamir transformation, transforming interactive into non-interactive protocols,
is oftentimes exponential in the number of rounds.

Therefore, it is much more attractive to try to reduce the knowledge error by parallel repetition. In the
case of special-sound protocols, i.e., k-special-sound protocols with k = 2, such a parallel repetition is easy
to analyze: the t-fold parallel repetition of a special-sound protocol with challenge space of cardinality N
is again special-sound protocol, but now with a challenge space of size N t, and so knowledge-soundness
with κ = 1/N t follows immediately from the generic reduction. Unfortunately, this reasoning does not
extend to k-special-sound protocols with k > 2: even though we still have that the t-fold parallel repetition
of a k-special-sound protocol is k′-special-sound, but now with k′ = (k − 1)t + 1, this large increase in
the special-soundness parameter renders the extractor, obtained via the generic reduction, inefficient. More
precisely, the run-time of a k′-special-sound protocol scales linearly in k′, and therefore exponentially in t
for k′ = (k − 1)t + 1, unless k = 2. In case of multi-round protocols, it is not even clear that the t-fold
parallel repetition of a (k1, . . . , kµ)-special-sound (2µ+ 1)-round protocol satisfies any meaningful notion of
special-soundness.

Somewhat surprisingly, so far the only way to analyze the parallel repetition of k-special-sound protocols
with k > 2, or of (k1, . . . , kµ)-special-sound multi-round protocols, is by means of suboptimal generic parallel-
repetition results—or by considering weaker notions of knowledge soundness (see the discussion below).
Concretely, based on a result from [CP15], it was recently shown that the t-fold parallel repetition of any
PoK reduces the knowledge error from κ down to κt+ν for any non-negligible term ν [ACK21]. This generic
result is suboptimal in that, when applied to a k-special-sound protocol for instance, it does not give the
knowledge error κt that one expects (and that one should get when k = 2), and, worse, the knowledge error
remains non-negligible.

Even though this generic parallel-repetition result was shown to be tight, in that there are protocols for
which parallel repetition does not allow the knowledge error to be reduced down to a negligible function, we
can well hope for a stronger result for certain classes of protocols. In particular, it is not too absurd to expect
strong parallel repetition for k-special-sound protocols, and possibly for (k1, . . . , kµ)-special-sound protocols
in the multi-round case. Here, as usual in the general context of parallel repetition, the term “strong” means
that the figure of merit κ, here the knowledge error, drops from κ to κt under a t-fold parallel repetition.
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Other Notions of a PoK. Due to the difficulty in proving the original definition in certain contexts, it has
become quite customary to consider modified and/or relaxed notions of a PoK that make it then feasible to
obtain positive or stronger results; it is then typically argued that the considered notion is still meaningful
and useful (in the considered context).

For example, many works on multi-round protocols consider the weaker notion of witness-extended em-
ulation rather than the standard notion of knowledge soundness [BCC+16, BBB+18]. In the context of
quantum security, the knowledge extractor is typically allowed to have success probability (ε − κ)c (up to
a multiplicative polynomial loss) for an arbitrary constant c, instead of ε − κ [Unr12]. Moreover, recently,
tighter security guarantees for discrete logarithm based Σ-protocols were obtained under a relaxed notion of
knowledge soundness in which the knowledge extractor is not only given black-box access to the (possibly
dishonest) prover P∗, but is also given the success probability ε of P∗ as input [RS21].

In our work here, we instead insist on the original standard definition of a PoK, and we aim for strong
parallel repetition results nevertheless.

1.2 Contributions

In short, we show a strong parallel repetition theorem for the knowledge error of (k1, . . . , kµ)-special-sound
(2µ + 1)-round protocols, for k1, . . . , kµ such that their product K = k1 · · · kµ is polynomial in the size of
the input statement.4 This in particular implies strong parallel repetition for k-special-sound protocols for
arbitrary polynomial k.5 Strong parallel repetition means that if the original protocol has knowledge error κ
then the t-fold parallel repetition has soundness error κt, which is optimal, matching the success probability
of a dishonest prover that attacks each instance in the parallel repetition independently (and thus succeeds
with independent probability κ in each instance).

We also consider a threshold parallel repetition, where the verifier accepts as soon as s out of the t parallel
repetitions succeed, and we show also here that the knowledge error is what one would expect, matching
the attack where the dishonest prover cheats in each of the t instances independently and hopes that he is
successful in at least s instances.

The starting point of our (threshold) parallel repetition results is the following observation, considering
(a single execution of) a k-special-sound protocol. The default measure of quality of a dishonest prover P∗
is its success probability ε = ε(P∗). For instance, if ε is below the knowledge soundness κ then we cannot
expect the extraction of a witness w to work in general. However, the crucial observation is that for a given
dishonest prover P∗, its success probability ε does actually not characterize (very well) whether extraction
is possible or not. For instance, fixing P∗’s first message, if P∗ then answers correctly with probability ε
(and fails to do so with probability 1 − ε) independently for each possible choice of the challenge (where
the randomness is over P ∗’s randomness used for computing the response), then extraction is still possible
even when ε < κ (yet noticeable): simply try sufficiently many times for k distinct challenges, and after an
expected number of k/ε trials, we have k correct responses to distinct challenges, from which a witness can
then be computed.

At the core of our results is a novel knowledge extractor for k-special-sound protocols, whose success
probability can be expressed in terms of an alternative, in some sense more fine-grained, measure of quality
of P∗. This new measure δ = δ(P∗) then turns out to be very convenient to work with when it comes to more
complicated settings, like a parallel repetition, or a multi-round protocol, or, ultimately, a parallel repetition
of a multi-round protocol.

More precisely, we ultimately construct a knowledge extractor for the t-fold parallel repetition of a
(k1, . . . , kµ)-special-sound protocol. The extractor requires an expected number of at most t · 2µ ·K queries
to P∗ and succeeds with probability at least (ε− κt) /(2K), where K = k1 · · · kµ and κ is the knowledge
error of the basic protocol. Therefore, we prove that this t-fold parallel repetition has knowledge error κt.
4 The (k1, . . . , kµ)-special-soundness property states that there exists an efficient algorithm (i.e., polynomial in the
input size) that, on input a set of K = k1 · · · kµ accepting protocol transcripts (with certain properties), outputs
a secret witness. Therefore, this property is only useful when K is polynomial.

5 For didactical reasons, we actually first treat the case of k-sound protocols, and then consider the more general
case of multi-round protocols.
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1.3 Related Work

Reducing the Soundness Error. A related question problem is that of reducing the (ordinary) soundness
error of an interactive proof (or argument) by parallel repetition. It is well known that the t-fold parallel
repetition (Pt,Vt) of an interactive proof (i.e., not argument) (P,V) reduces the soundness error from σ
down to σt [Gol98]. Namely, it is relatively easy to reduce an arbitrary prover against the t-fold parallel
repetition, and which has success probability ε, into a computationally unbounded prover that successfully
attacks a single instantiation with probability at least ε1/t.

The situation is trickier for interactive arguments, where the prover is required to be efficient and thus
where this reduction no longer works. Various parallel repetition theorems for interactive arguments have
been established [BIN97, PV07, Hai09, HPWP10, CL10, CP15]. In these theorems, there is an unavoidable
trade-off between the success probability and the run-time of the prover P∗. For instance, the reduction
in [CL10] results in a prover P∗ with success probability ε1/t · (1 − ξ) and run-time polynomial in 1/ξ for
arbitrary ξ > 0,

Knowledge soundness is a strictly stronger notion than soundness, and thus the above results do not
imply corresponding parallel-repetition results for the knowledge soundness of PoKs. In this light, it is then
surprising that little is known about the parallel repetition of PoKs beyond the two extreme cases: the 2-
special-sound protocols, for which strong parallel repetition holds via a simple argument [HL10], and general
protocols, for which only very recently a weak parallel repetition was shown [ACK21], which reduces the
knowledge error from κ down to κt + ν for any non-negligible term ν.

The Case t = 1. The starting point of our parallel repetition result is a new knowledge extractor for a single
invocation of (k1, . . . , kµ)-special-sound protocols; we briefly compare this extractor with other knowledge
extractors proposed for such protocols.

For instance, considering a different notion of knowledge soundness, [AC20] proposed an extractor for
(k1, . . . , kµ)-special-sound protocols that has a strict polynomial run-time, yet a success probability that
degrades exponentially in K = k1 · · · kµ. Thus, this notion is meaningful only when K is constant in the
input size.

Full fledged and tight knowledge soundness for (k1, . . . , kµ)-special-sound protocols was only very recently
shown in [ACK21]. In that work, the proposed extractor runs in expected polynomial time and succeeds with
probability ε− κ. As shown in Table 1, our extractor behaves somewhat worse in the (expected) polynomial
run time, and also in the success probability when the newly introduced measure δ is bounded by ε − κ;
however, by exploiting the definition of δ, as we show in the technical part, we can obtain an extractor for
a parallel repetition of the considered protocol by running the extractor individually on each instance of
the parallel repetition. Thus, our extractor is well suited to show the claimed (threshold) parallel repetition
results. Nevertheless, it remains an interesting problem whether our extractor can be improved to match up
with the extractor from [ACK21] while still giving rise to our parallel-repetition results.

Extractor Number of P∗-queries Q Success probability P

[AC20] Q ≤ K P ≥ (ε− κ)K

[ACK21] E[Q] ≤ K P ≥ ε− κ

This work E[Q] ≤ 2µ ·K ≤ K2 P ≥ 1
K
δ ≥ 1

K
(ε− κ)

Table 1. Different knowledge extractors for (k1, . . . , kµ)-special-sound protocols. Here, ε = ε(P∗) denotes the success
probability of the prover P∗, Ni is size of the i-th challenge set, κ = 1 −

∏µ

i=1
Ni−ki+1

Ni
is the knowledge error, and

K = k1 · · · kµ. The refined quality measure δ = δ(P∗) will be defined in Section 3 and Section 4.
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1.4 Organization of the Paper

In Section 2, we introduce notation and recall standard definitions regarding interactive proofs. In Section 3,
we show the parallel repetition result for k-special-sound 3-round protocols: we first construct a new know-
ledge extractor for (the single execution of) a k-special-sound protocol, and then handle the parallel repetition
of these protocols in a second step. In Section 4, we generalize the aforementioned results to multi-round pro-
tocols. Finally, in Section 5, we treat the s-out-of-t threshold parallel repetition of (k1, . . . , kµ)-special-sound
protocols.

2 Preliminaries

2.1 Interactive Proofs

Following standard terminology, given a binary relation R ⊆ {0, 1}∗×{0, 1}∗, a string w ∈ {0, 1}∗ is called a
witness for the instance x ∈ {0, 1}∗ if (x;w) ∈ R. The set of valid witnesses for a statement x is denoted by
R(x), i.e., R(x) = {w : (x;w) ∈ R}. A statement that admits a witness is said to be a true or valid statement.
The set of true statements is denoted by LR, i.e., LR = {x : ∃w s.t. (x;w) ∈ R}. A binary relation is said
to be an NP relation if the validity of a witness w can be verified in time polynomial in the size |x| of the
statement x. From now on we assume all relations to be NP relations.

An interactive proof for a relation R aims for a prover P to convince a verifier V that a statement x
admits a witness, or even that the prover knows a witness w ∈ R(x). We recall the following definitions.

Definition 1 (Interactive Proof). An interactive proof (P,V) for relation R is an interactive protocol
between two probabilistic machines, a prover P and a polynomial time verifier V. Both P and V take as public
input a statement x and, additionally, P takes as private input a witness w ∈ R(x), which is denoted as
(P(w),V)(x). As the output of the protocol, V either accepts or rejects. Accordingly, we say the corresponding
transcript (i.e., the set of all messages exchanged in the protocol execution) is accepting or rejecting.

An interactive proof (P,V) is complete if the verifier V accepts honest executions with a public-private
input pair (x;w) ∈ R with large probability. It is sound if the verifier rejects false statements x /∈ LR with
large probability. Originally interactive proofs were defined to be complete and sound [GMR85]. By contrast,
we do not require interactive protocols to satisfy these properties by definition, but consider them as desirable
additional security properties.

Definition 2 (Completeness). An interactive proof (P,V) for relation R is complete with completeness
error ρ : {0, 1}∗ → [0, 1] if for every (x;w) ∈ R,

Pr((P(w),V)(x) = reject) ≤ ρ(x) .

If ρ(x) = 0 for all x, (P,V) is said to be perfectly complete.

Definition 3 (Soundness). An interactive proof (P,V) for relation R is sound with soundness error
σ : {0, 1}∗ → [0, 1], if for every x /∈ LR and every prover P∗,

Pr((P∗,V)(x) = accept) ≤ σ(x) .

If an interactive proof is complete and sound, it “merely” allows a prover to convince a verifier that
a statement x is true, i.e., x ∈ LR. It does not necessarily convince a verifier that the prover “knows” a
witness w ∈ R(x). This stronger property is captured by the notion knowledge soundness. Informally, an
interactive proof (P,V) is knowledge sound if any prover P∗ with Pr((P∗,V)(x) = accept) large enough is
able to compute a witness w ∈ R(x).
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Definition 4 (Knowledge Soundness). An interactive proof (P,V) for relation R is knowledge sound
with knowledge error κ : {0, 1}∗ → [0, 1] if there exists a positive polynomial q and an algorithm E, called
a knowledge extractor, with the following properties: The extractor E, given input x and rewindable oracle
access to a (potentially dishonest) prover P∗, runs in an expected number of steps that is polynomial in |x|
and outputs a witness w ∈ R(x) with probability Pr

(
(x; EP∗(x)) ∈ R

)
≥ (ε(x,P∗) − κ(x))/q(|x|), where

ε(x,P∗) := Pr((P∗,V)(x) = accept).

Remark 1. It is straightforward to verify that in order to satisfy Definition 4 it is sufficient to show that
the required property holds for deterministic provers P∗. Let P∗ be an arbitrary randomized dishonest
prover, and let P∗[r] be the deterministic prover obtained by fixing P∗’s randomness to r. Then ε(x,P∗) =
E[ε(x,P∗[r])], where E denotes the expectation over the random choice of r. Furthermore, if EP∗ is declared
to run EP∗[r] for a random choice of r then the same holds for the success probability of the extractor:
Pr
(
(x; EP∗(x)) ∈ R

)
= E

[
Pr
(
(x; EP∗[r](x)) ∈ R

)]
. It follows that in order to satisfy Definition 4 it is sufficient

to show that the required property holds for deterministic provers P∗. For this reason, we may assume provers
to be deterministic, in particular, we will consider the prover’s first message to be deterministic. This will
significantly simplify our analysis.

If ε(x,P∗) = Pr((P∗,V)(x) = accept) > κ(x), then the success probability of the knowledge extractor
of Definition 4 is positive. Hence, ε(x,P∗) > κ(x) implies that x admits a witness, i.e., x ∈ LR. It therefore
follows that knowledge soundness implies soundness.

Remark 2. Sometimes a slightly weaker definition for knowledge soundness is used [BG93, Gol01, HL10].
This weaker definition decouples knowledge soundness from soundness by only requiring the extractor to run
in expected polynomial time on inputs x ∈ LR, i.e., it does not require the protocol to be sound. It can be
shown that a sound protocol satisfying this weaker version of knowledge soundness is also knowledge sound
in the stronger sense of Definition 4.

Definition 5 (Proof of Knowledge). An interactive proof that is both complete with completeness error
ρ(·) and knowledge sound with knowledge error κ(·) is a Proof of Knowledge (PoK) if there exists a polynomial
q such that 1− ρ(x) ≥ κ(x) + 1/q(|x|) for all x.

Let us consider some additional (desirable) properties of proofs of knowledge. We assume that the prover
P sends the first and the last message in any interactive proof (P,V). If this is not the case, the interactive
proof can be appended with an empty message. Hence, the number of communication rounds 2µ+1 is always
odd. We also say (P,V) is a (2µ + 1)-round protocol. We will refer to multi-round protocols as a way of
emphasizing that we are not restricting to 3-round protocols.

Definition 6 (Public-Coin). An interactive proof (P,V) is public-coin if all of V’s random choices are
made public.

If a protocol is public-coin, the verifier only needs to send its random choices to the prover. In this case,
V’s message are also referred to as challenges and the set from which V samples its messages uniformly at
random is called the challenge set.

We recall the notion of (general) special-soundness. It is typically easier to prove that an interactive proof
is special-sound than to prove that it is knowledge sound. Note that we require special-sound protocols to
be public-coin.

Definition 7 (k-out-of-N Special-Soundness). Let k,N ∈ N. A 3-round public-coin protocol (P,V) for
relation R, with challenge set of cardinality N ≥ k, is k-out-of-N special-sound if there exists a polynomial
time algorithm that, on input a statement x and k accepting transcripts (a, c1, z1), . . . (a, ck, zk) with common
first message a and pairwise distinct challenges c1, . . . , ck, outputs a witness w ∈ R(x). We also say (P,V)
is k-special-sound and, if k = 2, it is simply said to be special-sound.

We refer to a 3-round public-coin interactive proof as a Σ-protocol. Note that often a Σ-protocol is
required to be (perfectly) complete, special-sound and special honest-verifier zero-knowledge (SHVZK) by
definition. However, we do not require a Σ-protocol to have these additional properties.
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Fig. 1. (k1, . . . , kµ)-tree of transcripts of a (2µ+ 1)-round public-coin protocol [ACK21].

Definition 8 (Σ-Protocol). A Σ-protocol is a 3-round public-coin interactive proof.

In order to generalize k-special-soundness to multi-round protocols we introduce the notion of a tree of
transcripts. We follow the definition of [ACK21].

Definition 9 (Tree of Transcripts). Let k1, . . . , kµ ∈ N. A (k1, . . . , kµ)-tree of transcripts for a (2µ+ 1)-
round public-coin protocol (P,V) is a set of K =

∏µ
i=1 ki transcripts arranged in the following tree structure.

The nodes in this tree correspond to the prover’s messages and the edges to the verifier’s challenges. Every
node at depth i has precisely ki children corresponding to ki pairwise distinct challenges. Every transcript
corresponds to exactly one path from the root node to a leaf node. For a graphical representation we refer to
Figure 1. We refer to the corresponding tree of challenges as a (k1, . . . , kµ)-tree of challenges. The set of all
(k1, . . . , kµ)-trees of challenges is denoted by Tree(k1, . . . , kµ).

We will also write k = (k1, . . . , kµ) ∈ Nµ and refer to a k-tree of transcripts.

Definition 10 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ) Special-Soundness). Let k1, . . . , kµ, N1, . . . , Nµ ∈ N. A
(2µ + 1)-round public-coin protocol (P,V) for relation R, where V samples the i-th challenge from a set of
cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound if there exists a polynomial
time algorithm that, on input a statement x and a (k1, . . . , kµ)-tree of accepting transcripts outputs a witness
w ∈ R(x). We also say (P,V) is (k1, . . . , kµ)-special-sound.

It is well known that, for 3-round protocols, k-special-soundness implies knowledge soundness, but only
recently it was shown that more generally, for public-coin (2µ + 1)-round protocols, (k1, . . . , kµ)-special-
soundness tightly implies knowledge soundness [ACK21].

2.2 Geometric Distribution

A random variable X with support {0, 1} is geometrically distributed with parameter p ∈ [0, 1] if Pr(X =
1) = p. In this case we write X ∼ Geo(p).

Lemma 1. Let X ∼ Geo(p) and Y ∼ Geo(q) be independently distributed. Then,

Pr(X ≤ Y ) = p

p+ q − pq
≥ p

p+ q
.
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Proof. It holds that

Pr(X ≤ Y ) =
∞∑
x=1

Pr(X = x) Pr(Y ≥ x) =
∞∑
x=1

(1− p)x−1p · (1− q)x−1

= p

1− (1− p)(1− q)

∞∑
x=1

((1− p)(1− q))x−1 (1− (1− p)(1− q))

= p

1− (1− p)(1− q)

∞∑
x=1

Pr(Z = x)

= p

1− (1− p)(1− q) = p

p+ q − pq
≥ p

p+ q
,

where Z ∼ Geo(p+ q − pq). This completes the proof of the lemma.

3 Parallel Repetition of k-Special-Sound Σ-Protocols

To simplify the exposition, we start with the simpler case of Σ-protocols; the general case of multi-round
protocols will then be treated in the subsequent section. Thus, for the remainder of this section, we consider
a k-special-sound public-coin interactive proof (P,V) with challenge set C of cardinality N ≥ k. It is well
known that such an interactive proof is a proof of knowledge with knowledge error κ = (k − 1)/N . We
write (Pt,Vt) for the t-fold parallel repetition of (P,V), which runs t instances of (P,V) in parallel and the
verifier Vt accepts if all the parallel instances are accepted. In this section, we prove that (Pt,Vt) is then
again a proof of knowledge, but now with knowledge error κt, which is optimal. Thus, we show what is
sometimes referred to as strong parallel repetition, meaning that the figure of merit decreases with power t
under parallel repetition. This is well known to hold for special-sound Σ-protocols, i.e., for k = 2, but was
open for general k.

The standard way to reason about parallel repetition for the special case k = 2 uses the fact that (Pt,Vt)
is `-special-sound with ` = (k − 1)t + 1. However, this reasoning does not apply in general, because ` grows
exponentially in t for k > 2. Instead, our result crucially depends on the fact that (Pt,Vt) is the t-fold
parallel repetition of a k-special-sound protocol (P,V). In Section 3.1, we first construct a novel extraction
algorithm for k-special-sound protocols (P,V) thereby reproving that k-special-soundness implies knowledge
soundness [ACK21]. In Section 3.2, we show how this extraction algorithm can be used to deduce a strong
parallel repetition result for (Pt,Vt). In Section 4, we then extend our results to multi-round protocols.

On a high level, the crucial ingredient in our analyses is to introduce and work with a more “fine-grained”
notion of success probability of a dishonest prover, as we introduce it below.

3.1 Knowledge Soundness of a Single Invocation

Consider a dishonest prover P∗ against the considered k-special-sound interactive proof (P,V). The goal of
the extractor is to run P∗ and rewind it sufficiently many times so as to obtain a first message a together
with k correct answers z1, . . . , zk for k pairwise distinct challenges c1, . . . , ck ∈ C. The crucial question is how
often P∗ needs to be rewinded, and thus what is the (expected) running time of the extractor. Alternatively,
towards satisfying Definition 4, we would like to have an extractor that runs in a fixed (expected) polynomial
time, but may fail with some probability. It is quite clear that in both cases the figure of merit (i.e., the
running time in the former and the success probability in the latter) depends on the success probability ε
of P∗; for instance, if ε is below the knowledge soundness κ then we cannot expect extraction to work in
general. However, a crucial observation is that for a given dishonest prover P∗, its success probability ε does
actually not characterize (very well) whether extraction is possible or not: if in a special-sound Σ-protocol P∗
provides the correct response with probability ε (and fails to do so with probability 1− ε) for every possible
choice of the challenge, then extraction is still possible even when ε < κ (but not negligible), simply by trying
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sufficiently many times for two distinct challenges. Below, we will identify an alternative, in some sense more
fine-grained, “quality measure” of P∗, and we show that this measure does characterize when extraction
is possible. This will be helpful when it comes to more complicated settings, like a parallel repetition, or a
multi-round protocol, or, ultimately, a parallel repetition of a multi-round protocol.

For multiple reasons, we will state and prove our core technical results in a more abstract language.
One reason is that this allows us to focus on the important aspects; another reason is that we will actually
exploit the considered abstraction, and thus generalization, of the considered problem. In our abstraction,
we consider an arbitrary function V : C × {0, 1}∗ → {0, 1}, (c, y) 7→ V (c, y), and we consider an arbitrary
(possibly probabilistic) algorithm A that takes as input an element c ∈ C and outputs a string y ← A(c).
The success probability of A is then naturally defined as

εV (A) := Pr
(
V (C,A(C)) = 1

)
,

where, here and below, the probability space is defined by means of the randomness of A and the random
variable C being uniformly random in C. If V is clear from context, we simply write ε(A).

The obvious instantiation of A is given by a deterministic6 dishonest prover P∗ attacking the considered
k-special-sound interactive proof (P,V) on input x. More precisely, on input c, A runs P∗(x) sending c as
the challenge, and outputs P∗(x)’s (fixed) first message a and its response z, and the function V is defined
as the verification check that V performs. We point out that this instantiation gives rise to a deterministic
A; however, later on it will be crucial that in our abstract treatment, A may be an arbitrary randomized
algorithm that decides on its output y in a randomized manner given the input c, and that V is arbitrary.

Motivated by the k-special-soundness of the considered protocol, given x and (oracle access to) A the
goal will be to find correct responses y1, . . . , yk for k pairwise distinct challenges c1, . . . , ck ∈ C, i.e., such
that V (ci, yi) = 1 for all i. As we show below, the measure that captures how well this can be done is

δVk (A) := min
S⊂C:|S|<k

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

More precisely, we argue existence of an extraction algorithm EA with oracle access to A, that runs in
expected polynomial time and succeeds with probability at least δVk (A)/k. As before, if V is clear from
context, we write δk(A).

Lemma 2 (Extraction Algorithm). Let k ∈ N, C a finite set with cardinality N ≥ k and let V : C ×
{0, 1}∗ → {0, 1}.

Then there exists an algorithm EA with the following properties: The algorithm EA, given oracle access to
a (probabilistic) algorithm A : C → {0, 1}∗, requires an expected number of at most 2k queries to A and, with
probability at least δVk (A)/k, it outputs k pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ C × {0, 1}∗ with V (ci, yi) = 1
for all i and ci 6= cj for all i 6= j.

Proof. The extraction algorithm is defined recursively over k. For this reason, we add a subscript k and
write EAk for the extraction algorithm that aims to output k pairs (ci, yi). In this proof, we also make the
set D ⊂ C, from which the extractor samples the challenges ci, explicit by writing EAk (D). This allows the
extractor to be deployed on subsets D of the full challenge set C, i.e., extractor EAk (D) aims to output k
pairs (ci, yi) with pairwise distinct challenges ci ∈ D and V (ci, yi) = 1 for all i. When writing EAk (D) we will
always implicitly assume that |D| ≥ k. Accordingly, we also write

εV (A,D) := Pr
(
V (C,A(C)) = 1

)
,

δVk (A,D) := min
S⊂D:|S|<k

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
.

where the probability space is defined by means of the randomness of A and the random variable C being
uniformly random in D ⊂ C. Note that for all k ≥ 1, δVk+1(A,D) ≤ δVk (A,D) ≤ εV (A,D).
6 Recall that, in order to prove knowledge soundness, it is sufficient to consider deterministic provers (Remark 1).

9



Let us now define the extraction algorithm. Its pseudocode is presented in Algorithm 1. Let D ⊂ C be an
arbitrary subset with cardinality at least k. For k = 1, the extractor EA1 (D) simply samples a challenge c1 ∈ D
uniformly at random and computes y1 ← A(c1). If V (c1, y1) = 0, it outputs ⊥ and aborts. Otherwise, if
V (c1, y1) = 1, it successfully outputs (c1, y1). This extractor queries A once and it succeeds with probability
εV (A,D) = δV1 (A,D).

For k > 1, the extractor EAk (D) first runs the extractor EA1 (D). If EA1 (D) fails, EAk (D) outputs ⊥ and
aborts. Otherwise, if EA1 (D) succeeds to output a pair (c1, y1), EAk (D) proceeds as follows. It defines the
set D′ = D \ {c1} and runs EAk−1(D′). If EAk−1(D′) succeeds to output k − 1 pairs (c2, y2), . . . (ck, yk), EAk (D)
successfully outputs k pairs (c1, y1), . . . , (ck, yk). If EAk−1(D′) fails, EAk (D) tosses a coin that returns heads with
probability εV (A,D). This coin can be implemented by running EA1 (D), i.e., sampling a random challenge
c← D and evaluating V

(
c,A(c)

)
. If the coin returns heads, EAk (D) outputs ⊥ and aborts. If the coin returns

tails, EAk (D) runs EAk−1(D′) once more and performs the same steps as before. The algorithm proceeds in this
manner until either it has successfully found a k pairs (ci, yi) or until the coin returns heads.

Let us now analyze the success probability and the expected number of A-queries of this algorithm.
Success Probability. The analysis goes by induction. The induction hypothesis is that, for all k < K,

the success probability ∆k(D) of the extractor EAk (D) satisfies

∆k(D) ≥ δVk (A,D)/k.

Since ∆1(D) = εV (A,D) = δV1 (A,D)/1, the induction hypothesis is satisfied for the case k = 1.
Let us now consider the case k = K. Then if, in its first step, EAK(D) successfully runs extractor EA1 (D)

(outputting a pair (c1, y1) with V (c1, y1) = 1), it starts running two geometric experiments until one of them
finishes. In the first geometric experiment the extractor aims to find an additional set of K − 1 pairs (ci, yi)
by running EAK−1(D′), where D′ = D \ {c1}. By the induction hypothesis, the parameter p of this geometric
distribution satisfies

p = ∆K−1(D′) ≥ δVK−1(A,D′)/(K − 1) ≥ δVK(A,D)/(K − 1) .

In the second geometric experiment the extractor tosses a coin that returns heads with probability

q := εV (A,D) ≥ δVK(A,D) .

The second step of the extractor succeeds if the second geometric experiment does not finish before the
first, i.e., it succeeds with probability

Pr
(
Geo(p) ≤ Geo(q)

)
≥ ∆K−1(D′)
∆K−1(D′) + εV (A,D) ≥

δVK(A,D)/(K − 1)
δVK(A,D)/(K − 1) + εV (A,D)

≥ δVK(A,D)/(K − 1)
εV (A,D)/(K − 1) + εV (A,D) = δVK(A,D)

K · εV (A,D) ,

where the first inequality follows from Lemma 1 and the second from the monotonicity of the function
x 7→ x

x+q . Since the first step of the extractor succeeds with probability εV (A,D), it follows that EAK(D)
succeeds with probability at least δVK(A,D)/K.

Therefore, by induction it follows that for all k, the extractor EAk (D) succeeds with probability at least
δVk (A,D)/k. In particular, the extractor EAk (C) succeeds with probability at least δVk (A)/k, which proves
that this extractor has the desired success probability.

Expected Number of A-Queries. Let Qk(D) be the expected number of A-queries made by EAk (D)
and let Qk = maxD⊂C Qk(D). We will prove that Qk ≤ 2k for all k ∈ N. The proof of this claim goes by
induction. First note that, since Q1(D) = 1 for all D ⊂ C, this claim is clearly satisfied for k = 1. Let us
assume the claim is satisfied for all k < K.

Then, EAK(D) first runs EA1 (D) which requires exactly Q1(D) = 1 query. Then with probability εV (A,D)
it continues to the second step. In each iteration of the second step EAK(D) runs EAK−1(D′), for some D′ ⊂ C,
and it tosses a coin by running EA1 (D). Therefore, each iterations requires an expected number of at most
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QK−1(D′) + 1 ≤ QK−1 + 1 ≤ 2K− 1 queries. Moreover, the expected number of tosses until the coin returns
heads is 1/εV (A,D). Hence, the expected number of iterations in the second step of this extraction algorithm
is at most 1/εV (A,D). It follows that, for all D ⊂ C,

QK(D) ≤ 1 + εV (A,D) 1
εV (A,D) (2K − 1) = 2K ,

which proves the claimed upper bound on the expected number of A-queries and completes the proof of the
lemma.

In the context of a deterministic dishonest prover P∗ attacking a k-special-sound protocol, we make the
following observation. First, by basic probability theory,

Pr
(
V (C,A(C)) = 1 | C /∈ S

)
=

Pr
(
V (C,A(C)) = 1 ∧ C /∈ S

)
Pr
(
C /∈ S

)
≥

Pr
(
V (C,A(C)) = 1)− Pr

(
C ∈ S

)
Pr
(
C /∈ S

) .

(1)

Thus, extractor EA succeeds with positive probability as soon as ε(A) > Pr
(
C ∈ S

)
for every S ⊂ C with

|S| < k. More precisely,

Pr
(
EA succeeds

)
≥ δk(A)/k ≥ ε(A)− κ

k(1− κ) ,

where κ = (k − 1)/N .
This observations confirms that k-special-soundness implies knowledge soundness with knowledge error

κ (see also [ACK21] for an alternative proof). This result is summarized in Theorem 1.

Theorem 1. Let (P,V) be a k-out-of-N special-sound Σ-protocol for relation R. Then (P,V) is knowledge
sound with knowledge error κ = (k − 1)/N .

Note that this is the best we can hope for, since it may be—and for typical schemes this is the case— that
for any S ⊂ C with |S| < k, P∗ can prepare a first message a for which he can correctly answer any challenge
c ∈ S. Thus, κ = (k − 1)/N is the trivial cheating probability, confirming the tightness of the theorem.

3.2 Knowledge-Soundness of the Parallel Repetition

When moving to the t-fold parallel repetition (Pt,Vt) of the k-special-sound public-coin protocol (P,V), we
consider an algorithm A that takes as input a row (c1, . . . , ct) ∈ Ct of challenges7 and outputs a string y,
and the success probability of A is then defined as

εV (A) = Pr
(
V (C1, . . . , Ct,A(C1, . . . , Ct)) = 1

)
,

for some given V : Ct×{0, 1}∗ → {0, 1} and where the Ci are understood to be independently and uniformly
distributed over C.

The obvious instantiation of A is given by a deterministic prover P ∗ attacking the considered t-fold
parallel repetition (Pt,Vt) of (P,V). More precisely, on input (c1, . . . , ct), A runs P∗(x) sending (c1, . . . , ct)
as the challenges for the t repetitions of (P,V), and outputs P∗(x)’s (fixed) first messages (a1, . . . , at) and
its responses (z1, . . . , zt), and the function V is defined as the verification procedure of Vt, which checks each
repetition independently and accepts only if all are correct.
7 There is no rigorous meaning in the list of challenges forming a row; it is merely that later we will also consider a
column of challenges, which will then play a different contextual role.
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Such an A naturally induces t algorithms A1, . . . ,At as considered above in the context of a single
execution of a k-special-sound protocol, taking one challenge as input: on input ci, the algorithm Ai runs
y ← A(c1, . . . , ct) with cj chosen uniformly at random from C for j 6= i, and outputs y along with the cj ’s for
j 6= i. We can thus run the extractor from above on all of the Ai’s individually, with the goal being that at
least one of them succeeds. We know that for each Ai individually, the extraction succeeds with probability

δVk (Ai) = min
Si⊂C:|Si|<k

Pr
(
V (Ci,Ai(Ci)) = 1 | Ci /∈ Si

)
, (2)

where V is understood to appropriately reorder its inputs. The following lemma allows us to bound the
probability that at least one of the extractors EAi succeeds to produce either k challenge-response pairs
((c1, . . . , ct), y) that all verify V and for which the k choices of ci are all distinct for the considered i.

Lemma 3. Let x ∈ {0, 1}∗, k, t ∈ N, C a finite set with cardinality N ≥ k, V : Ct × {0, 1}∗ → {0, 1}, and
A a (probabilistic) algorithm that takes as input a vector (c1, . . . , ct) ∈ Ct and outputs a string y ∈ {0, 1}∗.
Then

t∑
i=1

δVk (Ai) ≥
εV (A)− κt

1− κ ,

where κ = (k − 1)/N .

Proof. Let Λ denote the event V (C1, . . . , Ct,A(C1, . . . , Ct)) = 1 and, for 1 ≤ i ≤ t, let Si be such that it
minimizes Equation 2. Moreover, let Γi denote the event Ci /∈ Si.

Without loss of generality, we may assume that |Si| = k − 1 for all i. Then, for all i,

Pr(Γi) = Pr(ci /∈ Si) = 1− κ.

Moreover, using elementary probability theory,

t∑
i=1

δVk (Ai) =
t∑
i=1

Pr
(
V (Ci,Ai(Ci)) = 1 | Ci /∈ Si

)
=

t∑
i=1

Pr
(
Λ | Γi

)
=

t∑
i=1

Pr
(
Λ ∧ Γi

)
Pr
(
Γi
)

=
t∑
i=1

Pr
(
Λ ∧ Γi

)
1− κ ≥

Pr
(
Λ ∧ ∃ i : Γi

)
1− κ ≥

Pr
(
Λ
)
− Pr

(
¬Γi ∀i

)
1− κ = εV (A)− κt

1− κ ,

which completes the proof.

Now let ∆ = min
(
1,
∑t
i=1 δ

V
k (Ai)/k

)
. Then the probability that at least one extractor EAi succeeds

equals

1−
t∏
i=1

(1− δVk (Ai)/k) ≥ 1−
(

1− ∆

t

)t
≥ 1− e−∆ ≥ (1− e−1)∆ ≥ 1

2∆ , (3)

where the first inequality follows from the inequality of arithmetic and geometric means and the third
inequality follows since 0 ≤ ∆ ≤ 1. Hence, by Lemma 3, the probability of at least one of the extractors EAi
being successful is at least

∆

2 ≥
εV (A)− κt

2k(1− κ) .

From this it follows that the t-fold parallel repetition (Pt,Vt) of a k-special-sound protocol (P,V) is
knowledge sound with knowledge error κt, where κ = (k− 1)/N is the knowledge error of a single execution
of (P,V). This parallel repetition result for k-special-sound Σ-protocols is formalized in Theorem 2.

Theorem 2 (Parallel Repetition of k-Special-Sound Σ-Protocols). Let (P,V) be a k-out-of-N
special-sound Σ-protocol. Let (Pt,Vt) be the t-fold parallel repetition of protocol (P,V). Then (Pt,Vt) is
knowledge sound with knowledge error κt for κ = (k − 1)/N .

12



Also here we have that the knowledge error κt matches the trivial cheating probability, which succeeds
if in each instance of the parallel repetition the challenge falls into a given set of size k − 1.

Remark 3. The above parallel repetition result (and also the generalization of Section 4), directly generalize
to the parallel composition of t different protocols or to the parallel composition of t different instances of
the same protocol. In this case, the knowledge error will be the product of the individual knowledge errors.

4 Parallel Repetition of Multi-Round Protocols

We now consider the general case of multi-round protocols. The line of reasoning is quite similar to that of
3-round protocols, but with an appropriately adjusted definition of δ. So, for the remainder of this section, we
consider a (k1, . . . , kµ)-special-sound (2µ + 1)-round public-coin interactive proof (P,V), where the verifier
samples its i-th challenge uniformly at random from a finite set C[j] for 1 ≤ j ≤ µ. We denote the superscript
j with square brackets to distinguish the set C[j] from the j-fold Cartesian product Cj . Eventually, we want
to analyze its t-fold parallel repetition (Pt,Vt), but again we first consider a single invocation.

4.1 Knowledge Soundness of a Single Invocation

Here, we consider a (possibly randomized) algorithm A that takes as input a column (c1, . . . , cµ) ∈ C[1] ×
· · · × C[µ] of challenges and outputs a string y, and we consider a function

V : C[1] × · · · × C[µ] × {0, 1}∗ → {0, 1} .

The obvious instantiation is a deterministic prover P∗ attacking the considered protocol. Formally, on
input (c1, . . . , cµ), A runs P∗(x), sending c1 in the first challenge round, c2 in the second, etc., and eventually
A outputs all of P∗(x)’s messages. Then V : C[1] × · · · × C[µ] × {0, 1}∗ → {0, 1} captures the verification
procedure of V, i.e., V (c1, . . . , cµ, y) = 1 if and only if the corresponding transcript is accepting. This
instantiation results in a deterministic algorithm A. However, again, it is crucial that in general A may be
probabilistic, i.e., its output y is not necessarily uniquely determined by its input (c1, . . . , cµ).

Syntactically identical to the previous section, the success probability of A is defined as

εV (A) := Pr
(
V (C,A(C)) = 1

)
,

where C = (C1, . . . , Cµ) is uniformly random in C[1] × · · · × C[µ]. However, here the goal of the extractor is
different: the goal is to find correct responses for a k-tree of challenges, where k = (k1, . . . , kµ). Generalizing
the case of ordinary 3-round protocols, the figure of merit here is

δVk (A) := min
S[1],S[2](·),...,S[µ](·)

Pr
(
V (C,A(C)) = 1

∣∣∣∣∣C1 /∈ S[1] ∧ C2 /∈ S[2](C1) ∧ · · ·
· · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1)

)
, (4)

where the minimum is over all sets S[1] ∈ C[1]|<k1 , and over all functions S[2] : C[1] → C[2]|<k2 , S[3] : C[1] ×
C[2] → C[3]|<k3 , etc. Here for any set C and k ∈ N, C|<k denotes the set of subsets of C with cardinality
smaller than k.

Indeed, the following lemma shows that there exists an expected polynomial time extractor EA with
oracle access to A that, with probability δVk (A)/

∏µ
i=1 ki, succeeds to extract correct responses for a k-tree

of challenges. Exploiting the abstract notation of Lemma 2, the proof of this lemma follows by induction
over the number of challenges µ send by the verifier.

Lemma 4 (Multi-Round Extraction Algorithm). Let k = (k1, . . . , kµ) ∈ Nµ, K =
∏µ
i=1 ki, C[1], . . . , C[µ]

finite sets C[j] with cardinality Nj ≥ kj and let V : C[1] × · · · × C[µ] × {0, 1}∗ → {0, 1}.
Then there exists an algorithm EA with the following properties: The algorithm EA, given oracle access to a

(probabilistic) algorithm A : C[1]×· · ·×C[µ] → {0, 1}∗, requires an expected number of at most 2µ ·K queries to
A and, with probability at least δVk (A)/K, outputs K pairs (c1, y1), . . . , (cK , yK) ∈ C[1] × · · · × C[µ] × {0, 1}∗
with V (ci, yi) = 1 for all i and such that the vectors ci ∈ C[1] × · · · × C[µ] form a k-tree.
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Proof. The proof goes by induction on µ. For µ = 1, the lemma directly follow from Lemma 2. So let us
assume the lemma holds for all µ ≤M and let us consider the case µ = M + 1.

For any c ∈ C[1], let Ac be the algorithm that takes as input a vector (c2, . . . , cµ) ∈ C[2] × · · · × C[µ] and
runs A(c, c2, . . . , cµ). The function Vc is defined accordingly, i.e.,

Vc : C[2] × · · · × C[µ] × {0, 1}∗ → {0, 1}, (c, y) 7→ V (c, c, y) .

Moreover, let k′ = (k2, . . . , kµ) ∈ Nµ−1 and K ′ =
∏µ
i=2 ki.

By the induction hypothesis there exists an algorithm EAc that outputs a set Y = {(c2
i , . . . , c

µ
i , yi)}1≤i≤K′

with
V (c, c2

i , . . . , c
µ
i , yi) = 1∀i and {(c2

i , . . . , c
µ
i )}i ∈ Tree(k2, . . . , kµ) .

Moreover, EAc requires an expected number of at most 2µ−1 ·K ′ queries to A and succeeds with probability
at least δVck′ (Ac)/K ′. We define W : C[1] × {0, 1}∗ → {0, 1}, by setting W (c,Y) = 1 if and only if Y is a set
satisfying the above properties.

Now let B : C[1] → {0, 1}∗ be the algorithm that takes as input an element c ∈ C[1] and runs EAc .
By Lemma 2, there exists an expected polynomial time algorithm EB that aims to output k1 pairs
(c1,Y1), . . . , (ck1 ,Yk1) ∈ C[1]×{0, 1}∗ with W (ci,Yi) = 1 for all i and ci 6= cj for all i 6= j. The extractor EA
simply runs EB.

Let us now analyze the success probability and the expected number of A-queries of the algorithm EB
and therefore of EA.

Success Probability. Again by Lemma 2, it follows that EB succeeds with probability at least

δWk1
(B)/k1 = min

S[1]⊂C[1],|S[1]|<k1

Pr
(
W (C,B(C)) = 1 | C /∈ S[1])

k1

= min
S[1]⊂C[1],|S[1]|<k1

Pr
(
W (C,B(C)) = 1 ∧ C /∈ S[1])

k1 · Pr(C /∈ S[1])

≥ min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · Pr

(
W (c,B(c)) = 1

)
k1 · Pr(C /∈ S[1])

≥ min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · δVck′ (Ac)
k1 ·K ′ · Pr(C /∈ S[1])

= min
S[1]⊂C[1],|S[1]|<k1

∑
c/∈S[1] Pr(C = c) · δVck′ (Ac)

K · Pr(C /∈ S[1])
(5)

Now note that,

δVck′ (Ac) = min
S[2](·),...,S[µ](·)

Pr
(
Λ

∣∣∣∣∣C1 = c ∧ C2 /∈ S[2](C1) ∧ · · ·
· · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1)

)
,

where Λ denotes the event V (C,A(C)) = 1. Hence,∑
c/∈S[1]

Pr(C = c) · δVck′ (Ac) =

min
S[2](·),...,S[µ](·)

Pr
(
Λ ∧ C1 /∈ S[1]

∣∣∣∣∣C2 /∈ S[2](C1) ∧ · · ·
· · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1)

)
,

Plugging this equality in Equation 5, shows that

δWk1
(B)/k1 ≥

δVk (A)
K

,
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which shows that EB has the desired success probability.
Expected Number of A-Queries. By Lemma 2, it follows that EB requires an expected number of

at most 2k1 queries to B. By the induction hypothesis it follows that B requires an expected number of at
most 2µ−1 ·K ′ queries to A. Hence, EB requires an expected number of at most 2µ ·K queries to A, which
completes the proof of the lemma.

Let S[1], S[2](·), . . . , S[µ](·) be the arguments minimizing Equation 4. Further, let Λ denote the event
V (C,A(C)) = 1 and let Γ denote the event

Γ = C1 /∈ S[1] ∧ C2 /∈ S[2](C1) ∧ · · · ∧ Cµ /∈ S[µ](C1, . . . , Cµ−1) .

Then, using the same kind of reasoning as in Equation 1, we have

δVk (A) = Pr(Λ | Γ ) = Pr(Λ ∧ Γ )
Pr(Γ ) ≥ Pr(Λ)− Pr(¬Γ )

Pr(Γ ) = εV (A)− κ
1− κ ,

where

κ = Pr(¬Γ ) = 1−
µ∏
j=1

Nj − kj + 1
Nj

.

This confirms that a (k1, . . . , kµ)-special-sound protocol is knowledge sound with knowledge error κ. See
[ACK21] for an alternative and the original proof of this statement. This result is formalized in Theorem 3.
Theorem 3. Let (P,V) be a (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound protocol. Then (P,V) is know-
ledge sound with knowledge error

κ = 1−
µ∏
j=1

Nj − kj + 1
Nj

.

Once more, κ matches the trivial cheating probability.

4.2 Knowledge-Soundness of the Parallel Repetition
We finally move towards stating and proving our main general parallel repetition result for multi-round
protocols. Thus, consider the t-fold parallel repetition (Pt,Vt) of the given (k1, . . . , kµ)-special-sound (2µ+1)-
round public-coin interactive proof (P,V).

We consider an algorithm A that takes as input a row (c1, . . . , ct) of columns ci = (c1
i , . . . , c

µ
i ) ∈ C[1] ×

· · · × C[µ] of challenges and outputs a string y. Furthermore, we consider a verification function V , which
then defines the success probability of A as

εV (A) = Pr
(
V (C,A(C)) = 1

)
,

where C = (C1, . . . , Ct) with Ci distributed uniformly over C[1] × · · · C[µ] for all 1 ≤ i ≤ t.
Again, the obvious instantiation for A is a deterministic dishonest prover P∗ attacking (Pt,Vt). More

precisely, on input a row (c1, . . . , ct) of columns, A runs P∗(x) sending (c1, . . . , ct) as the challenges, and
outputs all of P∗(x)’s messages, and the function V is defined as the verification check that Vt performs.

Such an A naturally induces t algorithms A1, . . . ,At as considered above in the context of a single
execution of a multi-round protocol, taking one challenge-column as input and outputting one string: on
input ci, the algorithm Ai runs y ← A(c1, . . . , c`) with cj chosen uniformly at random from C[1] × · · · × C[µ]

for j 6= i, and outputs y along with the cj ’s for j 6= i. Thus, we can run the extractor from Lemma 4 on all
of the Ai’s individually, with the goal being that at least one of them succeeds. For each Ai individually, the
extraction succeeds with probability at least

δVk (Ai)/K = min
S

[1]
i
,S

[2]
i

(·),...,S[µ]
i

(·)
Pr
(
V (Ci,Ai(Ci)) = 1

∣∣∣∣∣C1
i /∈ S

[1]
i ∧ C2

i /∈ S
[2]
i (C1

i ) ∧ · · ·
· · · ∧ Cµi /∈ S[µ]

i (C1
i , . . . , C

µ−1
i )

)
/K , (6)

where V is understood to appropriately reorder its inputs and K =
∏µ
i=1 ki. The following lemma allows us

to bound the probability that at least one of the extractors EAi succeeds.
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Lemma 5. Let x ∈ {0, 1}∗, k ∈ Nµ, t ∈ N, C[1], . . . , C[µ] finite sets C[j] with cardinality Nj ≥ kj, V :
(
C[1] ×

· · · × C[µ])t × {0, 1}∗ → {0, 1}, and A a (probabilistic) algorithm that takes as input a row (c1, . . . , ct) of
columns ci = (c1

i , . . . , c
µ
i ) ∈ C[1] × · · · × C[µ] and outputs a string y ∈ {0, 1}∗.

Then
t∑
i=1

δVk (Ai) ≥
εV (A)− κt

1− κ ,

where

κ = 1−
µ∏
j=1

Nj − kj + 1
Nj

.

Proof. Let Λ denote the event V (C,A(C)) = 1 and, for 1 ≤ i ≤ t, let S[1]
i , S

[2]
i (·) . . . , S[µ]

i (·) be such that
they minimize Equation 6. Moreover, let Γi denote the event

C1
i /∈ S

[1]
i ∧ C

2
i /∈ S

[2]
i (C1

i ) ∧ · · · ∧ Cµi /∈ S[µ]
i (C1

i , . . . , C
µ−1
i ) .

Without loss of generality, we may assume that |S[1]
i | = k1 − 1 and S[j]

i : C[1] × · · · C[j−1] → {S ⊂ C[j] : |S| =
kj − 1} for all 2 ≤ j ≤ µ and 1 ≤ i ≤ t. Then, for all 1 ≤ i ≤ t,

Pr(Γi) =
µ∏
j=1

N − kj + 1
N

= 1− κ .

Moreover, using elementary probability theory,

t∑
i=1

δVk (Ai) =
t∑
i=1

Pr
(
Λ | Γi

)
=

t∑
i=1

Pr
(
Λ ∧ Γi

)
Pr
(
Γi
) =

t∑
i=1

Pr
(
Λ ∧ Γi

)
1− κ

≥
Pr
(
Λ ∧ ∃ i : Γi

)
1− κ ≥

Pr
(
Λ
)
− Pr

(
¬Γi ∀i

)
1− κ = εV (A)− κt

1− κ ,

which completes the proof.

As for the parallel repetition of a 3-round protocol, it follows that the probability of at least one of the
extractors EAi being successful is at least

∆

2 ≥
εV (A)− κt

2K(1− κ) ,

where ∆ = min
(
1,
∑t
i=1 δ

V
k (Ai)/K

)
and K =

∏µ
i=1 ki. This gives us the following strong parallel repetition

result for (k1, . . . , kµ)-special-sound protocols.

Theorem 4 (Parallel Repetition Theorem for Multi-Round Protocols). Let (P,V) be a
(k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound protocol. Let (Pt,Vt) be the t-fold parallel repetition of protocol
(P,V). Then (Pt,Vt) is knowledge sound with knowledge error κt, where

κ = 1−
µ∏
j=1

Nj − kj + 1
Nj

,

is the knowledge error of (P,V).

Also here, the knowledge error κt coincides with the trivial cheating probability
∏
i Pr(¬Γi), which is

potentially achievable for any (k1, . . . , kµ)-out-of-(N1, . . . , Nµ) special-sound protocol.
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5 Threshold Parallel Repetition

The knowledge error κt of the t-fold parallel repetition (Pt,Vt) of a k-special-sound protocol (P,V) decreases
exponentially with t. However, the completeness error of (Pt,Vt) equals ρ′ = 1 − (1 − ρ)t, where ρ is the
completeness error of (P,V). Hence, if ρ /∈ {0, 1}, the completeness error of (Pt,Vt) increases quickly with t.
In order to decrease both the knowledge and the completeness error simultaneously, we consider a threshold
parallel repetition. The s-out-of-t threshold parallel repetition of an interactive protocol (P,V), denoted by
(Ps,t,Vs,t), runs t instances of (P,V) in parallel and Vs,t accepts if at least s-out-of-t instances are accepted.
In particular, it holds that (Pt,t,Vt,t) = (Pt,Vt). In this section, we show that if (P,V) is k-special-sound
then (Ps,t,Vs,t) is knowledge sound. We will immediately consider the general case of multi-round protocols.

As in Section 4.2, we consider an algorithm A that takes as input a row c = (c1, . . . , ct) of columns
ci = (c1

i , . . . , c
µ
i ) ∈ C[1] × · · · × C[µ] of challenges and outputs a string y. However, this time we consider t

different verification functions

Vi :
(
C[1] × · · · × C[µ])t × {0, 1}∗ → {0, 1} ,

together with one additional threshold verification function defined as follows:

V (c, y) =

1 if
t∑
i=1

Vi(c, y) ≥ s,

0 otherwise .

The obvious instantiation for A is a deterministic dishonest prover P∗ attacking (Ps,t,Vs,t). This instan-
tiation defines Vi as the verification that the i-th instance of (Ps,t,Vs,t) performs. The verification function
V then captures the verification that Vs,t performs.

As before, such A induces t algorithms A1, . . . ,At as considered in the context of a single execution of
(P,V), taking one challenge-column as input and outputting one string: on input ci, the algorithm Ai runs
y ← A(c1, . . . , c`) with cj chosen uniformly at random from C[1] × · · · × C[µ] for j 6= i, and outputs y along
with the cj ’s for j 6= i. For each Ai, we can run the extractor from Lemma 4, which succeeds with probability
at least

δVik (Ai)∏µ
i=1 ki

= min
S

[1]
i
,S

[2]
i

(·),...,S[µ]
i

(·)

Pr
(
Vi(Ci,Ai(Ci)) = 1

∣∣∣∣∣C1
i /∈ S

[1]
i ∧ C2

i /∈ S
[2]
i (C1

i )∧
· · · ∧ Cµi /∈ S[µ]

i (C1
i , . . . , C

µ−1
i )

)
∏µ
i=1 ki

, (7)

where Vi is understood to appropriately reorder its inputs. The following lemma is a generalization
of Lemma 5 and it allows us to bound the probability that at least one of the extractors EAi succeeds.

Lemma 6. Let x ∈ {0, 1}∗, k ∈ Nµ, t ∈ N, C[1], . . . , C[µ] finite sets C[j] with cardinality Nj ≥ kj and A a
(probabilistic) algorithm that takes as input a row (c1, . . . , ct) of columns ci = (c1

i , . . . , c
µ
i ) ∈ C[1] × · · · × C[µ]

and outputs a string y ∈ {0, 1}∗.
Then

t∑
i=1

δVik (Ai) ≥
εV (A)− κs,t

1− κ ,

where

κs,t =
t∑
`=s

(
t

`

)
κ`(1− κ)t−` and κ = 1−

µ∏
j=1

Nj − kj + 1
Nj

.

Note that κs,t is the probability of being successful at least s times when given t trials, when each trial
is successful with independent probability κ.
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Proof. For 1 ≤ i ≤ t, let Λi denote the event Vi(C,A(C)) = 1 and let S[1]
i , S

[2]
i (·) . . . , S[µ]

i (·) such that they
minimize Equation 7. Moreover, let Γi denote the event

C1
i /∈ S

[1]
i ∧ C

2
i /∈ S

[2]
i (C1

i ) ∧ · · · ∧ Cµi /∈ S[µ]
i (C1

i , . . . , C
µ−1
i ) .

Without loss of generality, we may assume that |S[1]
i | = k1 − 1 and S[j]

i : C[1] × · · · C[j−1] → {S ⊂ C[j] :
|S| = kj − 1} for all 2 ≤ j ≤ µ and 1 ≤ i ≤ t. Then, for all 1 ≤ i ≤ t,

Pr(Γi) =
µ∏
j=1

N − kj + 1
N

= 1− κ .

Moreover, using elementary probability theory,
t∑
i=1

δVik (Ai) =
t∑
i=1

Pr
(
Λi | Γi

)
=

t∑
i=1

Pr
(
Λi ∧ Γi

)
Pr
(
Γi
) =

t∑
i=1

Pr
(
Λi ∧ Γi

)
1− κ

≥
Pr
(
∃ i : Λi ∧ Γi

)
1− κ ≥

Pr
(
|{i : Λi}| ≥ s ∧ |{i : Γi}| ≥ t− s+ 1

)
1− κ

≥
Pr
(
|{i : Λi}| ≥ s

)
− Pr

(
|{i : Γi}| ≤ t− s

)
1− κ ≥ εV (A)− κs,t

1− κ .

which completes the proof.

As before (see Equation 3), it follows that the probability of at least one of the extractors EAi being
successful is at least

∆

2 ≥
εV (A)− κs,t

2K(1− κ) ,

where ∆ = min
(
1,
∑t
i=1 δ

Vi
k (Ai)/K

)
and K =

∏µ
i=1 ki. This gives us the following threshold parallel repeti-

tion result for (k1, . . . , kµ)-special-sound protocols.

Theorem 5 (Threshold Parallel Repetition Theorem). Let (P,V) be a (k1, . . . , kµ)-out-of-
(N1, . . . , Nµ) special-sound protocol. Let (Ps,t,Vs,t) be the s-out-of-t threshold parallel repetition of protocol
(P,V). Then (Ps,t,Vs,t) is knowledge sound with knowledge error

κs,t =
t∑
`=s

(
t

`

)
κ`(1− κ)t−` ,

where

κ = 1−
µ∏
j=1

Nj − kj + 1
Nj

,

is the knowledge error of (P,V).

As before, the knowledge error κs,t coincides with the trivial cheating probability for (Ps,t,Vs,t), con-
firming the tightness of Theorem 5.

Note that the completeness error of (Ps,t,Vs,t) equals

ρs,t =
s−1∑
`=0

(
t

`

)
ρt−`(1− ρ)` .

Hence, the completeness error ρs,t increases and the knowledge error decreases κs,t in s. Moreover, it is easily
seen that for t large enough and κ · t < s < (1−ρ)t the threshold parallel repetition (Ps,t,Vs,t) has a smaller
knowledge and a smaller completeness error than (P,V), i.e., κs,t < κ and ρs,t < ρ. In contrast to standard
parallel repetition, threshold parallel repetition therefore allows both these errors to reduced.
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Appendix

A Extraction Algorithm for k-Special-Sound Protocols

Algorithm 1: Extraction Algorithm Ek(D) for k-Special-Sound Protocols
1 Input: k ∈ N and a set D of cardinality at least k.
2 Output: ⊥ or a set output = {(c1, y1), . . . , (ck, yk)} with (ci, yi) ∈ D× {0, 1}∗ and V (ci, yi) = 1 and

ci 6= cj for all i, j.
3 c1 ←R D
4 y1 ← A(c)
5 if V (c1, y1) = 0 then
6 output = ⊥
7 else if k = 1 then
8 output = {(c1, y1)}
9 else

10 outk−1 = ⊥
11 Coin = 0
12 while ¬Coin ∧ outk−1 = ⊥ do
13 outk−1 ← Ek−1(D \ {c})
14 Coin←R Ber

(
εV (A,D)

)
15 end
16 if outk−1 = ⊥ then
17 output = ⊥
18 else
19 output = {(c1, y1)} ∪ outk−1
20 end
21 end
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