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Abstract: This paper proposes an application of a new observer theory for non-linear systems
developed previously to solve the Cryptanalysis problem of a special class of pseudorandom
generators which are commonly used in Cryptography. The Cryptanalysis problem addressed
here is that of the recovery of internal state of the non-linear dynamic stream generator from the
output stream. The proposed methodology is termed as observability attack. It is also shown that
for a special class of generators, the computations are of complexity O(D4) in pre-computation

and of O(D) for online computation, where D =
∑d

i=0

(
n
i

)
for this class of stream generators

with n states and d the degree of the output function. The attack is technically applicable over
general finite fields as well as most dynamic systems arising from models of stream ciphers and
appropriate bounds on computation are estimated. From these complexity bounds, it follows
that this attack is feasible in realistic cases and gives important estimates of time and memory
resources required for Cryptanalysis of a class of stream ciphers.
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NOTATIONS AND PRELIMINARIES

Fn
q is the n-dimensional vector space over the finite field

Fq. The space V o is the vector space of functions (including
non-linear functions) from Fn

q → Fq. The function χi(x) ∈
V o is the ith-coordinate function defined as χi(x) = xi. A

monomial φ ∈ V o is a function of the form φ(x) =
∏

i x
di
i ,

where each 0 ≤ di < q.

1. NON-LINEAR STREAM GENERATORS

Filter generators and non-linear combiners are generic
constructions used in stream ciphers and pseudorandom
generators in Cryptography. Such generators can be mod-
eled as a dynamical system over a finite field (DSFF)
with state variables and outputs defined over Fn

q and Fq,
respectively. Such systems are designed to have one or
more Feedback Shift Registers (FSRs) driving the update
of internal states. In this paper, we call such pseudorandom
generators, which depend on Linear FSRs (LFSRs) for
internal state updates as stream generators. When the
number of state variables is n, the state x(k) of the system
at any time k belongs to Fn

q and a non-linear output map
g : Fn

q → Fq defines the output z(k) = g(x(k)). Typical
constructions of such stream generators are shown in the
Figures 1 and 2, with a single LFSR and multiple LFSRs,
respectively, and a non-linear function g generating the
output sequence. The internal state of the stream gen-
erator x(k) is the collection of states of all registers of
the LFSRs. Stream ciphers using such constructions are
discussed in Rueppel (1986).

xn x2 x1

Σi cixi

g(x1, x2, .., xn) Output

Fig. 1. Stream generator with with 1 LFSR

Fig. 2. Stream generator with 3 LFSRs

1.1 Cryptanalysis of stream generators

A major Cryptanalysis problem for such generators in-
volves that of computing the initial condition of the gen-
erator x(0) when an output stream z(k) is made available
over a limited length of time k, such as over an interval
[k0, k0 + m], k0 > 0,m > 0. This problem is also known
as key recovery problem of the stream generator, since the
values of state variable at initial loading x(0) consist of the
symmetric key K (which is secret) and randomly chosen
initializing values of states called IV (which is publicly
known). Such a problem is NP for non-linear generators
and is known to be computationally challenging as the
number of states increases. Search for efficient algorithms
for solving this Cryptanalysis problem of the generator



has continued ever since these have been found suitable
for use in Cryptography. In this paper, we develop a new
approach to the Cryptanalysis of non-linear stream gen-
erators called Observability attack based on the previous
work Anantharaman and Sule (2021).

1.2 Previous work on Cryptanalysis of the stream generator

In the past, stream generators were Cryptanalyzed using
correlation as well as algebraic attacks Klein (2013). In the
former, correlation of the output stream z(k) for k ≥ k0
with that of the internal states x(k) is estimated. While
correlation attack is statistical, the algebraic attack di-
rectly solves the non-linear polynomial system of equations
with state variables as unknowns related to the output
stream. Such a computation is NP and increases in com-
plexity with the number of variables. Both attacks have
not been known to scale up for realistic sizes of stream
generators and work only when the number of internal
states is small enough. The work in R∅njom and Helleseth
(2007b); R∅njom et al. (2007); R∅njom and Helleseth
(2007a) addressed the problem of internal state recovery of
stream generators. The basic idea reported in these works
is to construct a linear system model for the output stream
in terms of monomials in the variables arising in the non-
linear system of equations. A basis consisting of monomials
is used to describe this linear system. This approach is
broadly known as the extended linearization (XL) method
of solving multivariate algebraic equations. The proposed
method in our paper differs from the above by the method
of construction of the linear model. Our approach con-
structs a restriction of the Koopman operator of the dy-
namic system representing the stream generator to the
smallest invariant space containing the coordinate func-
tions. Because of this minimal dimension of the invariant
subspace, the dimension of the linear model constructed
through our method will always be less than or equal to
the dimension of the linear model constructed in R∅njom
et al. (2007). Also, the computation of the internal state
utilizes the well-known observer construction from systems
theory. Hence our paper is an instance of applying the
linear observer theory to non-linear dynamical systems
over finite fields.

Observability of evolution of permutation maps 1 over a
finite set X through a function f on X was discussed in the
paper Byerly et al. (2003). However, this approach could
not be utilized for the Cryptanalysis of stream ciphers
because it assumes the base field for the function f to be
the complex field. The state-space of the dynamics of the
permutation under a complex field turns out to be an inner
product space, and the permutation map action on func-
tions on X is a normal operator. No such nice conditions
hold when the field is finite. Hence the observability based
approach to cryptanalysis of stream generators needed a
fresh investigation after the paper Byerly et al. (2003).
Another recent work on the observability of dynamical sys-
tems and its relevance to Cryptanalysis of stream ciphers
is reported in Zhong and Lin (2016). This work utilizes
what is known as the semi tensor product representation

1 A permutation map is a bijection and most of the stream genera-
tors are designed to have an internal dynamics which is a bijection
over Fn

q

of Boolean functions and maps. While this paper is rele-
vant to the problem posed here, we point out significant
differences with our approach. First, the dimension of the
linear model in the former approach is always exponen-
tial in n, and secondly, the approach is specifically only
applicable to Boolean functions. The proposed approach
in our paper is useful for realistic Cryptanalysis mainly
because the dimension of the linear system obtained is not
too large for the class of stream generators (and is never
exponential). Moreover, our approach is applicable over
any finite field and computationally feasible for fields with
small characteristics.

1.3 Contributions in this paper

This paper proposes a novel method for Cryptanalysis by
developing an extension of the observer construction well
known in systems theory to non-linear dynamical systems
over finite fields. Termed as Observer attack to stream
ciphers, the attack will work for any stream cipher with a
linear or non-linear state update map, and with a linear
or non-linear output function. Almost all stream ciphers
fall into this category Rueppel (1986). The complexity
analysis for such an attack is done for a special class of
stream generators with a linear state update and non-
linear output map, and it is shown that this attack is
feasible in polynomial time for this special class. This
type of construction of a linear dynamic observer for
a non-linear dynamical system and its application to
Cryptanalysis has never been known in previous literature.
As an example, a stream generator of 80 bits with a non-
linear output function is taken up for cryptanalysis, and
its internal state is recomputed using the proposed attack
by constructing a linear observer.

1.4 Mathematical model of the stream generator

Mathematically, any non-linear stream generator with
linear state update and non-linear output map as in
Figures 1 and 2 can be represented as a dynamical system
in the following way

x(k + 1) = Ax(k)

z(k) = g(x(k))
(1)

where x(k) ∈ Fn
q is the internal state, A an n × n matrix

over Fq is the state-transition map, g ∈ V o is a non-linear
function (the output function). When the stream generator
is of the form 1, the A matrix is in companion form and the
output is a non-linear function of the internal states. In the
form 2, the A matrix is a block diagonal form representing
the matrices in companion form of feedback polynomials of
individual LFSRs and the output is a non-linear function
g of all the states.

1.5 Koopman Linear System for Dynamical Systems over
Finite Fields

Mathematically, any dynamical system over a finite field
can be expressed as

x(k + 1) = F (x(k))

z(k) = g(x(k))
(2)

where x(k) ∈ Fn
q , z(k) ∈ Fm

q are the internal state and
outputs while F : Fn

q → Fn
q , g : Fn

q → Fm
q are the state



transition and output map respectively. Let V o be the
vector space of Fq-valued functions over Fn

q . The Koopman
operator F ∗ for the system (2) is a map from V o to V o

defined as

F ∗h(x) = (h ◦ F )(x) = h(F (x)),

where h ∈ V o and x ∈ Fn
q . The Koopman operator is

linear over V o, and the Koopman Linear System (KLS)
corresponding to (2) is a linear dynamical system over V o

defined as

hk+1(x) = F ∗hk(x)

for hk(x) ∈ V o. The paper by Anantharaman and Sule
(2021) develops the theory of the Koopman operator for
dynamical systems over finite fields and gives a linear al-
gebraic formulation for computation of solution structures
of a non-linear system using a reduction of the KLS. This
system, called the Reduced Order Koopman Linear Sys-
tem (RO-KLS), is constructed by restricting the operator
F ∗ to the smallest invariant subspace W1 ⊆ V o consisting
of the coordinate functions χi and the output functions
gi(x). Necessary and sufficient conditions for observability
of the original non-linear system are translated to the
observability of the RO-KLS (which is a linear dynamical
system). Also, a generic construction of dynamic observer
was developed using the RO-KLS, and a unique recon-
struction of the internal states of the non-linear system is
possible whenever the RO-KLS is detectable. The follow-
ing section describes the algorithm to compute the RO-
KLS for stream generators.

2. RO-KLS FOR STREAM GENERATORS

The construction of the F ∗-invariant subspace W1 plays an
integral part in constructing the RO-KLS. The dimension
of the linear system is equal to the dimension of the
smallest F ∗-invariant subspace of V o containing of the
coordinate functions χi, i = 1, . . . , n and the output
function g. The construction of this subspace is described
in Algorithm 1.

Once the invariant subspace W1 is computed, let its basis
be B = {ψ1(x), . . . , ψN (x)}. The RO-KLS (as evaluation
map) is the linear system of dimension dim(W1) and can
be expressed in terms of matrices with this specific basis
B. Let KT

1 be the restriction of Koopman operator on
this invariant subspace W1, C the matrix corresponding
to the map from the basis functions B to the vector of
coordinate functions [χ1(x), . . . , χn(x)]T , and Γ be the
matrix corresponding to representation of the function
g(x) in terms of the basis functions B. Define the RO-KLS
as follows

y(k + 1) = K1y(k)

w(k) = Cy(k)

yop(k) = Γy(k),

(3)

where y(k) ∈ FN
q , yop(k) ∈ Fq are the internal state

and output of the RO-KLS respectively. Given any initial
condition x(0) of the non-linear stream generator and
initiating the RO-KLS as

y(0) =

ψ1(x(0))
...

ψN (x(0))

 ,

Algorithm 1 Construction of W1 - the smallest F ∗-
invariant subspace spanned by χi and g

1: procedure F ∗-Invariant subspace(W1)
2: Outputs:

W1 - the smallest F ∗-invariant subspace contain-
ing the coordinate functions χi and the non-linear
function g.
B - the basis for the invariant subspace W1

3: Compute the cyclic Subspace
Z(χ1;F ∗) = 〈χ1, F

∗χ1, . . . , (F
∗)l1−1χ1〉

4: Set of basis functions
B = {χ1, F

∗χ1, . . . , (F
∗)l1−1χ1}

5: if χ2, χ3, . . . , χn ∈ Span(B) then
6: W1 ← Span(B)
7: go to 14
8: else
9: Find the smallest i such that χi /∈ span(B)

10: Compute the smallest li such that
(F ∗)liχi ∈ Span{B ∪ 〈χi, F

∗χi, . . . , (F
∗)li−1χi〉}

11: Vi = {χi, F
∗χi, . . . , (F

∗)li−1χi}
12: Append the set Vi to B
13: go to 5

14: if g ∈ Span(B) then
15: halt
16: else
17: Compute the smallest j such that

(F ∗)jg ∈ Span(B ∪ 〈g, F ∗g, . . . , (F ∗)j−1g〉)
18: Vg = {g, F ∗g, . . . , (F ∗)j−1g}
19: Append the set Vg to B
20: halt

it is proved that the output sequence yop(k) of the RO-
KLS is the same as the output sequence of the stream
generator (1) initiated with the same x(0).

2.1 Dimension of W1

Given the RO-KLS as in (3), the first question which needs
to be answered is “Is there any bound on the dimension of
W1?”. The stream generator as in (1) is one of few systems
for which this question can be answered convincingly in
the affirmative. Since the internal dynamics of the stream
generator is linear, the dimension of the RO-KLS solely
depends on the non-linear output function g.

Lemma 1. Given a dynamical system over a finite field
with linear internal dynamics as in (1) and a monomial φ,
then

degree (F ∗φ) ≤ degree (φ),

where F ∗ is the Koopman operator.

Proof. Assume that the system (1) evolves over Fn
q , where

q = pm. Let the monomial be

φ(x1, . . . , xn) =

n∏
j=1

x
dj

j ,

where 0 ≤ dj < q− 1 and the degree of the monomial φ is∑
j dj . The action F ∗φ(x1, . . . , xn) is defined as

F ∗φ(x1, .., xn) = φ(f1(x1, .., xn), .., fn(x1, .., xn)),

where f1, . . . , fn are functions corresponding to the state
transition for each xi. Since the internal dynamics of the
stream generator is linear, each function fi can be written
as



fi(x1, . . . , xn) =
∑

aijxj ,

and these aij are entries of the matrix A in (1). In
particular,

F ∗φ = F ∗(
∏
j

x
dj

j ) =
∏
j

(

n∑
k=1

ajkxk)dj .

This means

degree (F ∗φ) = degree

(∏
j

(

n∑
k=1

ajkxk)dj

)
.

Also,

degree
(
(

n∑
k=1

ajkxk)dj
)
≤ dj .

The less-than sign is because there can be a case where all
ajk can be zero. So, each term in the product

degree

(∏
j

(

n∑
k=1

ajkxk)dj

)
has a degree ≤ dj , and hence

degree (F ∗φ) = degree

(∏
j

(

n∑
k=1

ajkxk)dj

)
≤
∑
j

dj = degree (φ). 2

Remark 2.1. Given any non-linear function g, it can be
written as a sum of monomials and the function g has a
degree dg, the largest degree of the constituent monomials.
Since Koopman operator is linear over V o and using the
above lemma, it can be seen that the action of F ∗ on g does
not increase the degree of g. Hence, for a stream generator
(1)

degree(F ∗g) ≤ degree(g) ∀ g ∈ V o.

The following theorem gives the upper bound on the
dimension of W1

Theorem 2. Given a non-linear stream generator as in (1)
over Fn

q with the output g having a degree d, the dimension
of the F ∗-invariant subspace W1 is bounded by

(1− nd+1)

1− n
≈ O(nd).

Proof. Since the degree of g is d, and from lemma (1),
the invariant subspace W1 can have functions only upto
degree d. A counting of all the independent monomials
over n-variables from Fn

q → Fq gives an upper bound on
the dimension of the invariant subspace W1.

For example, with degree r, the total number of indepen-
dent monomials is upper bounded by nr since the degree
is r and there are n variables to choose from it and the
variables can get repeated too (which means that in the
specific monomial, that variable has a power > 1). Hence,
the conservative estimate on the number of independent
monomials of degree r over n variables is nr.

So, a function g having degree d can have other terms
of degree d or less. So, counting all the independent
monomials of degree d or less gives an upper bound on
the dimension of W1. This gives

dim (W1) ≤ 1 + n+ n2 + · · ·+ nd,

Fig. 3. Ratio of nd/dim(W1) vs the degree d for an 80-bit
stream generator

where 1 is for the constant function, n is for linear
functions and so on. The expression is the partial sum

of the geometric series and simplifies to 1−nd+1

1−n . 2

Remark 2.2. Note that the estimate in Theorem 2 does
not take the field equation 2 into account. For d ≥ q, the
powers xri , (r > q) in the monomial gets reduced to a
power xrdi where rd = r mod q and one can have better
estimates to the dimension of W1 for specific fields. Also,
the estimate in Theorem 2 is the best upper bound on the
dimension of W1 whenever d < q.

When the stream generator is over F2, any variable xi sat-
isfies the equation x2i = xi (as functions) which drastically
reduces the dimension of W1 and leads to the following
corollary.

Corollary 2.1. Given a stream generator as in (1) with
x(k) over Fn

2 , with the non-linear function having degree
d, the dimension of W1 is upper bounded by

dim (W1) ≤
d∑

i=0

(
n

i

)
.

This can be proved by a simple counting argument of the
number of distinct monomials of degree less than or equal
to d over n variables. It is pertinent to see that when the
degree d is small, the dimension of the subspace W1 is
much smaller when compared with the dimension of the
space V o (which is of exponential size 2n, for an n-state
stream generator).

Table 1 compares the upper bounds for any 80-bit stream
generator over F2 for small degrees (d) of the non-linear
function g. The maximum dimension of the subspace W1

are computed for each d using Corollary 2.1. Although
Theorem 2 and Corollary 2.1 give a polynomial upper
bound on the dimension of W1, it can be seen from Table
1 that Corollary 2.1 provides a refined bound for the
dimension of W1. Further, as a comparison, the ratio of
the upper bound on the dimension W1 to the dimension
of the space V0 is also given.

Remark 2.3. Figure 3 shows the ratio of nd to dim(W1)
for different degrees d of the output function for an 80-bit
stream generator over F2. It can be seen that the graph
(dark blue line) grows approximately linear in the log scale.
Hence it can be concluded that the dimension of W1 for
the stream generator over F2 is much smaller than nd.
The light blue line in the figure shows the best exponential
approximation of the data points.

2 For Fq , the field equation is xq − x = 0



Table 1: Upper bounds on dimension of W1 for different degrees of output function for a 80 variable stream generator over F2

degree (d) maximum dim of W1 nd nd/max dim W1 max dim(W1)/dim(V o)

1 81 80 1 6.7 × 10−23

2 3241 6400 1.97 2.7 × 10−21

3 8.54 ×104 5.12 ×105 6 7 × 10−20

4 1.67 ×106 4.1 ×107 24.57 1.4 × 10−18

5 2.57 ×107 3.28 ×109 127.47 2.1 × 10−17

6 3.26 ×108 2.62 ×1011 803.6 2.7 × 10−16

The following section focuses on the construction of the
observer using the RO-KLS for the stream generator.

3. COMPUTATION OF INTERNAL STATE FOR A
STREAM GENERATOR OVER FN

2

Given the linear system (3) starting from an internal state
y(k0), the output yop(k) at each k ≥ k0 is given by

yop(k0 + k) = Γy(k0 + k) = Γ Kk
1 y(k0).

Given the output z(k), k = k0, k0 + 1, . . . , generated
by the non-linear stream generator (1) starting from an
initial condition x(k0), it is proved in Anantharaman and
Sule (2021) that when the RO-KLS (3) is initiated with
y(k0) as

y(k0) =


ψ1(x(k0))
ψ2(x(k0))

...
ψN (x(k0))

 ,
where ψi(x), i = 1, . . . , N form the basis of B, then the
output sequence yop(k), k ≥ k0, . . . generated by (3)
is the same as z(k), the output of the non-linear stream
generator (1). Since RO-KLS is a linear system, it follows
that

yop(k0)
yop(k0 + 1)

...
yop(k0 +N)

 =


Γ
K1Γ

...
KN−1

1 Γ

 y(k0) =: O y(k0), (4)

where O is the Observability matrix corresponding to
the linear system (3) with state matrix K1 and output
matrix Γ. To retrieve x(k0) given the sequence of outputs
z(k), k ≥ k0 of the stream generator, the linear system of
equations (4) needs to be solved for y(k0) with yop(k) =
z(k) and then compute x(k0) as x(k0) = Cy(k0) using
C defined in (3). A unique solution for (4) exists if the
observability matrix O is of full rank or equivalently if the
system (3) is Observable. When the matrix O is not of
full rank, then multiple solutions y(k0) exist for the given
stream of outputs. This leads to multiple x(k0) through
the map C.

3.1 Dynamic Observer

In the previous part, the RO-KLS is constructed for the
stream generator, and the internal states x(k0) corre-
sponding to the sequence of outputs z(k), k ≥ k0 could be
computed using linear algebraic computations. Further-
more, in this section, we construct a dynamic observer,
which takes the output of the non-linear stream generator
z(k) as an input and compute the internal state x(k) of the
non-linear stream generator. Mathematically the dynamic
observer is a dynamical system defined as

ŷ(k + 1) = K1ŷ(k) + L(z(k)− yop(k))

x̂(k) = Cŷ(k),
(5)

where ŷ(k) ∈ Fn
q is the observer state, z(k) is the output of

the stream generator, x̂(k) is the computed internal state
of the stream generator, K1 and C are as defined as in (3).
The matrix L, known as observer gain is chosen such that
K1 − LΓ is nilpotent.

Remark 3.1. Choosing L such that K1 − LΓ is nilpotent
will make the observer error go to zero in finite time
instants. Also, when the linear system is observable, arbi-
trary assignment of the characteristic polynomial of K1 −
LΓ is possible, and hence all the characteristic polynomial
is chosen to be xN , which makes K1 − LΓ nilpotent.

From the linear systems theory, it is known that whenever
the system (3) is observable, such an L always exists. Also,
the notion of detectability of a linear dynamical system
over finite fields is defined in Anantharaman and Sule
(2021), which is reproduced here. Whenever L exists such
that (K1−LΓ) is nilpotent, the system (3) is defined to be
detectable. The set of observable linear systems is a subset
of detectable linear systems.

Given the stream generator (1) and its RO-KLS as con-
structed in (3), the dynamic observer construction is
graphically illustrated in Figure 4. This uniqueness of
the construction is that the observer has linear internal
dynamics and reconstructs the internal state of a non-
linear dynamical system.

For an available output sequence starting from time k0, the
observer states can be initialized to any arbitrary initial
condition ŷ(k0) and whenever the RO-KLS is detectable,
the computed internal state of the stream generator x̂(k)
converges to the true internal state of the stream generator
in maximum N0 time instants, where N0 is the index of
nilpotence of (K1 − LΓ).

4. SOLUTION OF THE KEY RECOVERY PROBLEM
FROM AN ARBITRARY INTERNAL STATE X(K) -

THE OBSERVABILITY ATTACK

In this section, we describe the complete algorithm for
recovery of initial condition x(0), also known as the key
recovery problem, as the secret key used in the encryption
is either the entire x(0) or a part of it using the RO-KLS for
the stream generator. Given a sequence of outputs of the
stream generator z(k) starting from k0, it can be seen from
the previous section that whenever the corresponding RO-
KLS of the stream generator is observable (theO being full
rank), the internal state x(k0) can be computed uniquely.
Under the assumption that the system is detectable, the
internal state of the stream generator can be uniquely
computed at a time instant k0 +N0, where N0 is the index
of nilpotence of K1 − LΓ.

Once this internal state is uniquely computed at some
x(k), the initial condition x(0) is computed by revers-



Stream Generator

x(k + 1) = Ax(k)

z(k) = g(x(k))

Output

z(k)

L

Observer

ŷ(k + 1) = K1ŷ(k) + Lz(k)− Lyop(k)

yop(k) = Γŷ(k)

Stream Generator

Cx̂(k)

RO-KLS based ObserverComputed internal state

Fig. 4. Dynamic Observer for Stream generator using RO-KLS

ing the dynamics of the stream generator. However, to
uniquely reverse the dynamics, the internal dynamics of
the stream generator should be reversible, or equivalently
the matrix A needs to be non-singular. Whenever the
internal dynamics of a system is an 1 − 1 map over Fn

q ,
the dynamical system is said to be non-singular. It is easy
to see that whenever the system is non-singular and RO-
KLS being detectable, unique retrieval of x(0) is possible
from the output sequences starting from any time instant
k0.

If the internal dynamics of the stream generator is not
a 1 − 1 map over Fn

q , but the RO-KLS is detectable,
then instead of a unique x(0), there would be a family of
initial conditions corresponding to the unique x(k0 +N0)
reconstructed from the dynamic observer as solutions of
the following equation

Ak0+N0x(0) = x(k0 +N0)

When the RO-KLS is neither detectable nor observable,
then there are multiple initial conditions y(k0) for the
output sequence z(k) which can be computed through
equation (4). Corresponding to these y(k0) solutions, there
exists multiple points x(k0) in the state space of the
stream generator. These correspond to possibly multiple
symmetric keys in the initial state x(0). In practice,
however, superfluous multiple keys corresponding to the
same output stream rarely exist as these denote redundant
keys. Stream ciphers are almost never designed to have
such redundancies. Hence stream generators are rarely
likely to be unobservable.

Algorithm 2 summarizes the discussion about the retrieval
of initial condition x(0) from the sequence of outputs
z(k0), z(k0 + 1), . . . , using the RO-KLS.

5. EXAMPLE: AN 80-BIT STREAM GENERATOR

Consider the 80-bit stream generator made up of a single
LFSR of 80 bit with the characteristic polynomial p(x) as

p(x) =x80 + x53 + x47 + x35 + x33 + x10 + 1.

The characteristic polynomial determines the feedback
coefficients of the LFSR. The internal dynamics is given by
a matrix in companion form with its characteristic poly-
nomial p(x). The non-linear output function is considered
to be a majority function of three internal states chosen
as below.

g(x1, . . . , x80) = Majority(x1, x26, x52)

= x1x26 + x1x52 + x26x52.

The dimension of the subspace W1 is computed to be 3240.
The RO-KLS is a linear system of dimension 3240 with the
matrices K1 ∈ F3240×3240

2 , Γ ∈ F1×3240
2 and C ∈ F80×3240

2
and

y(k + 1) = K1y(k)

yop(k) = Γy(k)

x(k) = Cy(k).

The RO-KLS is verified to be observable and hence there
exists a matrix L ∈ F3240×1

2 such that K1 − LΓ is a
nilpotent matrix. The internal state of the observer is ŷ(k)
and its dynamics

ŷ(k + 1) = K1ŷ(k) + Lz(k).

The reconstructed internal state of the stream generator
is x̂(k), and computed as

x̂(k) = Cŷ(k).

The observer is initiated with random ŷ(0) and it can
be seen that the computed state x̂(k) converges to the
internal state x(k) of the stream generator within a 3240
time instances, which is the dimension of the RO-KLS.

To verify the correctness of the observer, let the difference
in estimation at each time instant be e(k) = x(k) −
x̂(k). For convenience, the Hamming distance 3 of e(k)
is chosen as a metric. It is seen from Figure 5 that the
Hamming distance of the error is continuously zero after
3240 time instances, indicating that the internal state is
reconstructed exactly.

3 The Hamming distance for a vector over F2 is the number of non-
zero entries in that vector.



Algorithm 2 Retrieval of initial condition x(0) using observerability attack

1: procedure Observability attack
2: Outputs:
• Reconstruction of internal state x(k0 + l) from the output sequence z(k) starting from k0
• Retrieval of initial condition x(0) of the stream generator.

3: Compute the invariant subspace W1 using the Algorithm 1 and then construct the RO-KLS of the stream
generator.

4: if RO-KLS detectable then
5: Construct the dynamic observer as in Figure 4 and reconstruct the internal state uniquely at x(k0 + l), l is

the index of nilpotence of K1 + LΓ
6: if Internal dynamics of stream generator reversible then
7: Compute the initial condition x(0) uniquely from the unique x(k0 + l)
8: else
9: Compute the all possible initial condition x(0) satisfying A(k0+l)x(0) = x(k0 + l)

10: else
11: Solve for all the solutions y(k0) of the linear equation (4) for the given output sequence.
12: The internal states x(k0) = Cy(k0) are the set of possible states which could generate the output sequence.
13: Compute the solution(s) of Ak0x(0) = x(k0)

14: halt

Fig. 5. Hamming distance of the error between the internal
state of the stream generator and the reproduced state
through dynamic observer

6. COMPUTATIONAL COMPLEXITY OF
COMPUTING INTERNAL STATES

The final part of this paper is focused on the analysis of
computational complexity of the proposed observability
attack. The complexity of computing the internal states
of the filter generator is primarily dependent on the
dimension of the RO-KLS. Once the RO-KLS is computed,
further complexities are polynomial in the dimension of
the RO-KLS. The overall computations for recovery of the
internal state of a stream generator can be divided into
two parts. The first part deals with the construction of the
RO-KLS, which is offline (and need to be done once for a
given stream generator), and the second (the online part)
is the recovery of the internal state of the filter generator
from the given output stream z(k) using the RO-KLS.

6.1 Preliminary offline computations

The offline computation concerns with the construction of
the RO-KLS from a given non-linear filter generator. From
Theorem 2, the dimension of the RO-KLS depends on the
degree of the output function g(x). Let D be the maximum
possible dimension of this subspace (which is equal to
the number of independent functions in n-variables with
degree less than or equal to d and D is given as in Theorem
2 or Corollary 2.1 depending on the field.). Let S be a

space of functions over Fn
q of degree less than or equal to

d. So any function of degree less than or equal to d can be
written as a linear combination of a chosen basis of S and
hence represented as a vector in FD

q . For example, in a 4
bit filter generator over F2 with the output restricted to
degree 2, one ordered-basis for S is given below

BS = {1, x1, x2,x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4}
where 1 is the constant function. Such a basis is referred
to as the monomial basis. For example, the function

h(x1, x2, x3, x4) = x1 + x1x3 + x2x4,

can be represented as the vector [0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0]T

with the monomial basis BS . Computation of a basis
for W1, the invariant subspace spanning the coordinate
and output functions is the main part of the RO-KLS
construction. Let the output function g be represented as
vector vg ∈ FD

q with a chosen basis of S. Let gi = (F ∗)ig
denote the action of Koopman operator F ∗ i-times on the
function g. From Theorem 2, it is known that deg F ∗g ≤ d,
(d = degree of g) and hence every iterate (F ∗)i on g is of
degree ≤ d and hence in the span of S. Each of these
iterates (F ∗)i g can be represented as a vector vgi over
FD
q . Similarly, all the coordinate functions χi are in the

span of S and hence have an unique representation as a
vector vxi

. Starting with vg, one needs to find the smallest
l such that the vector vgl is linearly dependent on

vx1 , . . . , vxn , vg, vg1 , . . . , vgl−1
. (6)

This is a linear algebraic computation over the vectors FD
q ,

and is of order D3. In the worst case, the dimension of W1

is going to be D, and hence D such linear dependencies
are to be checked. Thus the total offline computations will
be of the order D4.

6.2 Online computations

Once the linear model of the filter generator is computed,
the dynamic observer does only forward computations of
the evolution of the RO-KLS. Let N be the dimension of
W1. At each stage, the observer (5) updates the internal
state as

ŷ(k + 1) = K1ŷ(k) + L(z(k)− yop(k))



The second part of the update L(z(k)−yop(k)) is a vector-
scalar multiplication as both z(k) and yop(k) are scalars
and L is a vector of length N and is of complexity O(N).
The first part K1ŷ(k) is matrix-vector multiplication. In
general, it is of order O(N2), but we look to exploit the
structure of K1. Choosing the basis of W1 as in equation
(6), it can be seen that the matrix representation of K1 is
a block triangular matrix.

K1 =

[
K11 0
K21 K22

]
where K11 is the system matrix A as in equation (1). K21

and K22 are defined as

K21 =


0 . . . 0
...

. . .
...

0 . . . 0
α1 . . . αn

 K22 =


0 1 . . . 0

0 0
. . . 0

0 0 . . . 1
β0 β1 . . . βl−1


where αi and βi are from the linear dependency relation

(f∗)l(x) =

n∑
i=1

αiχi(x) +

l−1∑
i=1

βi(f
∗)i(x)

Using this specific choice of B and the above decomposition
of the matrix K1, the computations become simpler. Let
ŷ(k) = [ŷ1(k) ŷ2(k)]T where the dimension of ŷ1 is n and
ŷ2 is l where, l = N − n. So the computation of K1ŷ(k) is
equal to computing K11ŷ1(k) and K21ŷ1(k) and K22ŷ2(k).
The computation efforts required for these are explained
below.

• K11ŷ1(k) is a matrix-vector multiplication of dimen-
sion n. Assuming no structure of A, the total number
of operations is n2.
• K21ŷ1(k) is a matrix-vector multiplication. The di-

mension of K21 is l × n. But the first l − 1 rows of
K21 are 0 and hence it is only a vector-vector product
with total n operations.
• K22 is in companion form. The first l − 1 rows

of the product requires only the computation of
K22[i, i+ 1]ŷ2[i+ 1] each of which is O(1) and hence,
a cumulative of l − 1 operations. The lth-row is a
vector-vector product of dimension l and a total of l
operations. Hence the total number of operations is
2l − 1.

Cumulatively, there is a total of n2 +n+2l−1 operations.
We know that l = D − n and l >> n. Hence the total
complexity of online computations is O(N). Also, the
computation x̂(k) = Cŷ(k) is needed to compute the
internal state of the filter generator. There are totally
n2l operations. And with l >> n the computations are
of order O(N). Hence, the effective online computations
are of order O(N).

Also, the reconstructed internal state through the observer
converges to the internal state of the filter in M time
instants where M is the index of nilpotence of K1 − LΓ.
The total online computations to reconstruct the internal
state are order O(NM).

Remark 6.1. It is to be noted that the dimension N of the
subspace W1 has an upper bound D. So, in essence, the
online computations are of order O(D).

7. CONCLUSION

This paper proposes a new methodology for Cryptanalysis
of stream ciphers. An observer for a non-linear dynamical
system over a finite field is designed using the Koopman
operator to reconstruct the internal state of the non-
linear dynamical system. This construction uses only linear
algebraic computations. Termed as Observability attack,
this approach is shown to reconstruct the internal state of
a special class of stream generators in polynomial time on
the dimension of the internal state of the stream generator.
Though this paper focuses on a special class, this approach
for reconstructing the internal state is generic and can be
applied to any generic pseudorandom generator with linear
or non-linear state update and output function.
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