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Abstract. We study Multi-party computation (MPC) in the setting of subversion, where the adver-
sary tampers with the machines of honest parties. Our goal is to construct actively secure MPC pro-
tocols where parties are corrupted adaptively by an adversary (as in the standard adaptive security
setting), and in addition, honest parties’ machines are compromised.
The idea of reverse firewalls (RF) was introduced at EUROCRYPT’15 by Mironov and Stephens-
Davidowitz as an approach to protecting protocols against corruption of honest parties’ devices.
Intuitively, an RF for a party P is an external entity that sits between P and the outside world and
whose scope is to sanitize P’s incoming and outgoing messages in the face of subversion of their
computer. Mironov and Stephens-Davidowitz constructed a protocol for passively-secure two-party
computation. At CRYPTO’20, Chakraborty, Dziembowski and Nielsen constructed a protocol for
secure computation with firewalls that improved on this result, both by extending it to multi-party
computation protocol, and considering active security in the presence of static corruptions.
In this paper, we initiate the study of RF for MPC in the adaptive setting. We put forward a definition
for adaptively secure MPC in the reverse firewall setting, explore relationships among the security
notions, and then construct reverse firewalls for MPC in this stronger setting of adaptive security.
We also resolve the open question of Chakraborty, Dziembowski and Nielsen by removing the need
for a trusted setup in constructing RF for MPC.
Towards this end, we construct reverse firewalls for adaptively secure augmented coin tossing and
adaptively secure zero-knowledge protocols and obtain a constant round adaptively secure MPC
protocol in the reverse firewall setting without setup. Along the way, we propose a new multi-party
adaptively secure coin tossing protocol in the plain model, that is of independent interest.

?? Work partially done while at Indian Institute of Science, India.
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1 Introduction

The standard definitions of security in cryptographic protocols are under the assumption that
honest parties can completely trust the machines that implement their algorithms. However,
such an assumption may be unwarranted in the real world. The security guarantees of cryp-
tosystems depend on the adversarial model which, however, often makes idealized assump-
tions that are not always realized in actual implementations. Several practical attacks in the
real world exploit implementation details of an algorithm rather then treating it as a “black-
box”. In addition, users may be forced to use hardware built by companies with expertise,
and software that are mandated by standardization agencies. The capability of the adversary
to “tamper” with the implementation is not captured by security models in classical cryptog-
raphy. This model is not overkill, as we now know by Snowden revelations [BBG+13] that
one of potential mechanisms for large scale mass surveillance is compromise of security by
subversion of cryptographic standards, and tampering of hardware. The threat of an adver-
sary modifying the implementation so that the subverted algorithm remains indistinguishable
from the specification in black-box behavior, while leaking secrets was originally studied by
Young and Yung as kleptography [YY96], and in the setting of subliminal channels by Sim-
mons [Sim84]. Since Snowden revelations brought to light actual deployment of such attacks,
there is renewed attention, and has led cryptographers to model such tampering in the security
definition in order to closely capture real-world concerns.

Reverse Firewalls. The cryptographic reverse firewall (RF) framework was introduced by Mironov
and Stephens-Davidowitz [MS15] in the context of designing protocols secure against adver-
saries that can corrupt users’ machines in order to compromise their security. A reverse firewall
for a party P is an external intermediate machine that modifies the incoming and outgoing
messages sent by P’s machine. In essence, a reverse firewall sits between a party P and the ex-
ternal world, and “sanitizes” the messages that are sent and received by P . Note that the party
does not put any trust in the RF, meaning that it does not share any secrets with the firewall.
This rules out trivial solutions like a trusted RF that simply keeps P’s secrets and runs on P’s
behalf. Instead, the goal is for an uncorrupted5 RF to provide meaningful security guarantees
even in the case that an honest party’s machine has been tampered with. Consider an arbitrary
protocol that satisfies some notions of functionality and security. A reverse firewall for a pro-
tocol is said to functionality-maintaining if the resulting protocol (protocol with a firewall for
party P) achieves the same functionality as the original protocol. Roughly, the RF should not
ruin the functionality of the underlying protocol, in the sense that the protocol with an RF for
a party should still work as expected in case no subversion takes place. At the same time, the
RF is expected to preserve security. An RF is said to preserve security if the protocol with the
firewall is secure even when an honest party’s implementation is tampered with to behave in
an arbitrarily corrupt way. Finally, an RF should provide exfiltration-resistance, i.e., regardless of
how the user’s machine behaves, the presence of the RF will prevent the machine from leaking
any information to the outside world.

The work of [MS15] provides a construction of a two-party passively secure computation
protocol with a reverse firewall. The recent work of [CDN20] generalizes reverse firewalls for
secure computation by showing feasibility of reverse firewalls for Multi Party Computation
(MPC). They give a construction of reverse firewalls for secure computation in a stronger and
general setting that handles multiple parties, and consider protocols in the malicious security
model.

5 The RF being corrupt is not interesting in the active setting, since the corrupt RF and the other party together
can be thought of as the adversary.
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RFs in other settings have been constructed including key exchange and secure message
transmission [DMS16, CMY+16], oblivious transfer [DMS16, CMY+16], digital signatures [AMV15],
and zero-knowledge proofs (ZK) [GMV20]. Reverse firewalls has also been used in a practical
context in the design of True2F [DCM+19], a system that is based on a firewalled key generation
and ECDSA signature generation with potential applications in cryptocurrency wallets.

Besides the reverse firewall framework, other directions have been explored to address the
challenge of protecting cryptosystems against different forms of subversion. We review some
of them in Sec. 1.3.

1.1 Our Results

In this work, we take forward the study of reverse firewalls in the setting of MPC. We begin
by proposing definitions that capture the requirements of an RF for MPC in the presence of
adaptive corruptions. We then explore relationships among them the notions. Next, we turn
our attention to constructing RFs for maliciously secure protocols in the presence of adaptive
corruptions. Towards this end, we construct protocols with reverse firewalls for multi-party
augmented coin tossing, zero-knowledge, and coin tossing, all in the presence of adaptive
corruptions. We then use the above building blocks to construct a maliciously secure MPC in
the presence of adaptive corruptions together with a reverse firewall. We further elaborate on
the contributions in this work.

On the relationship between definitions. As our first contribution, we revisit the different
notions of subversion security for MPC protocols in the presence of RF. The work of [MS15]
defined the notions of security preservation (SP) and exfiltration resistance (ER) as the properties
required from an RF. SP asks that an RF preserve the security properties of the underlying
protocol for an honest party even when the honest party’s implementation is tampered with.
ER is concerned with a type of attack called exfiltration, where an honest party’s tampered
implementation attempts to leak secrets. A reverse firewall that is exfiltration resistant pre-
vents an adversary from learning secrets even when the honest party’s machine is tampered
with. Roughly, exfiltration resistance for a party Pi asks that the transcripts produced in the
following two ways are indistinguishable: (i) by running the protocol with the RF for Pi whose
implementation has been arbitrarily subverted and in the presence of other malicious parties,
(ii) by running the protocol with the RF for honest implementation of Pi in the presence of
other malicious parties. In [MS15], it was shown that for certain indistinguishability-based se-
curity notions like semantic security of an encryption scheme, an exfiltration resistant RF is also
security preserving. It was postulated in [MS15] that, in general, when security requirements
are simulation-based, ER does not imply SP. Surprisingly, we establish that exfiltration resis-
tance implies security preservation for a reverse firewall when the security of the underlying
protocol is simulation-based (computational) MPC security. For simulation-based security, this
implication was only known for special functionalities like zero-knowledge. Our definitional
implication shows that ER is the “right” notion for RF in the MPC setting; for new construc-
tions, we need only construct RFs that are exfiltration resistant for each of the parties, and
when all honest parties have an RF, security preservation for the protocol follows in the pres-
ence of malicious parties and arbitrary tampering of honest parties’ implementations. In the
other direction, [MS15] showed that a security preserving RF is not necessarily ER when the
underlying security does not promise privacy.

Reverse firewalls for adaptively secure MPC. The adaptive security notion for an MPC pro-
tocol models the realistic threat that an adversary can corrupt a party during the execution of
a protocol. Adaptive security is much harder to achieve than static security for MPC. In the
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reverse firewall setting, capturing a technical formulation of the adaptive security notion re-
quires some care. When a party gets adaptively corrupted, the adversary can learn all of that
party’s inputs and internal random coins. Consider an MPC protocol where an honest party
deploys a firewall; now adaptively corrupting this party amounts to the adversary learning
the composed state of the party with its reverse firewall. Typically, for reverse firewalls, secu-
rity preservation means that the underlying security properties hold even under subversion.
In the adaptive security case, we ask that adaptive security holds under subversion, where the
adaptive adversary can learn the composed state of an adaptively corrupt party. Defining exfil-
tration resistance in the adaptive case needs some care. Here, we ask that the adversary not be
able to distinguish between a tampered implementation of party P and an honest implemen-
tation, where the adversary can specify tampered implementations for initially honest parties
and corrupt parties adaptively in the execution. While exfiltration resistance is not meaningful
anymore once P gets corrupt in the middle of the protocol, our definition asks that up until the
point that P gets corrupted, exfiltration resistance hold. Intuitively, the definition says that if P
gets corrupted in the middle of execution, the adversary can see the composed state of P (the
state of P composed with the state of the RF). Even given this state, the adversary should not
be able to say if until corruption it was interacting with P composed with RF or P̃ composed
with RF, where P̃ is a tampered implementation for P .
We construct reverse firewalls for maliciously secure MPC protocols in the presence of adap-
tive corruptions in the plain model. Similar to [CDN20], we consider RFs for functionality-
maintaining tampering (see Sec. 4).

Theorem 1. (Informal) Assuming DDH and LWE assumptions, there exists an O(1) round actively
secure MPC protocol with reverse firewalls that is secure against adaptive corruptions in the urs model.

Later, we generate (Thm. 3) the urs using an adaptively secure coin tossing protocol in the
plain model based on the Discrete Logarithm (DLOG) and the Knowledge of Exponent (KEA)
assumption in a different group. We consider this to be a result of independent interest, and
further elaborate on the coin tossing protocol in the technical overview section.

Our approach is to construct an MPC protocol along the lines of GMW [GMW87], and
add reverse firewall to this protocol. That is, our construction is essentially an adaptive com-
piler: it takes a semi-honest adaptively secure MPC protocol and runs [GMW87]-like steps in
the reverse firewall setting to yield an adaptively secure MPC protocol with reverse firewalls.
Towards this, we design adaptively secure protocols for augmented coin tossing and zero-
knowledge, and construct reverse firewalls for each of the sub-protocols used in the compiler.
Finally, we show that the compiled MPC protocol is adaptively secure in the presence of tam-
pering of honest parties. We state each of the results below.

– Reverse firewall for ZK: Zero-knowledge in the presence of subversion have been studied in
the form of parameter subversion for NIZK [BFS16], and in the RF setting for a class of
interactive protocols called malleable sigma protocols [GMV20]. In this work, we consider
interactive ZK since we aim for protocols without setup. Our protocol is a variant of the
adaptively secure ZK protocol of [CSW20b] which is in the Uniform Random String (urs)
model. Finally, we show how to design an RF for this protocol.

Theorem 2. (Informal) Assuming LWE, there exists a three round actively secure ZK protocol with
reverse firewalls that is secure against adaptive corruption of parties in the urs model.

– Reverse firewall for augmented coin-tossing: We provide a construction of an adaptively-secure
multi-party augmented coin-tossing protocol. Similar to our ZK protocol, our augmented
coin-tossing protocol is also in the urs model. The main building block of our augmented
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coin tossing protocol is an adaptively-secure commitment scheme (in the urs model) which
is additively homomorphic over the message and randomness spaces. We then show how
to construct an RF for this protocol.

Since our adaptively-secure augmented coin-tossing and ZK protocols are in the urs model,
the compiled MPC protocol is also in the urs model. However, in the subversion setting we
consider, a trusted setup is not available since a setup is susceptible to subversion too. For
instance, the security guarantees of NIZKs completely break down in the face of subversion
of the CRS [BFS16]. To circumvent the need for a trusted setup, we show how to generate the
urs needed by our adaptively secure MPC protocol securely in the presence of subversion by
presenting a multi-party coin tossing protocol with a reverse firewall in the plain model.

Adaptively secure coin tossing in plain model. As a contribution of independent interest, we
construct an adaptively secure multi-party coin tossing protocol in the plain model under the
knowledge of exponent (KEA) assumption. Our use of non-black-box assumptions seems jus-
tified, in light of the result of [GS12] that shows that it is not possible to construct an adaptively
secure multi-party protocol with respect to black-box simulators without giving up on round
efficiency in the plain model6. We use our coin-tossing protocol to generate the urs of our MPC
protocol.

Theorem 3. (Informal) Assuming DLOG, KEA and LWE assumptions, there exists a O(1) actively
secure multi-party coin-tossing protocol that is secure against adaptive corruptions in the plain model.

We then show how to add reverse firewalls to our adaptively secure coin tossing protocol.
Finally, putting everything together, we obtain an adaptively secure MPC protocol with re-

verse firewall in the plain model. This resolves the open question posed in [CDN20] of remov-
ing the trusted setup assumption in constructing MPC protocols with reverse firewalls.

1.2 Technical Overview

We provide a high-level overview of our construction, which can be viewed as an adaptive
compiler for MPC protocols in the RF setting following the blueprint of [GMW87]. The main
idea of the [GMW87] compiler is as follows: Each party (i) runs an instance of an augmented
multi-party coin-tossing protocol to obtain a uniformly random string that it is committed to,
(ii) commits to its input and broadcasts the input commitment to every other party, (iii) runs
the underlying semi-honest adaptively secure MPC protocol, while proving in zero-knowledge
that the computations have been done correctly. Since our goal is adaptive security, we start
with an adaptively secure semi-honest protocol. Our compiler will use adaptively secure aug-
mented coin-tossing and adaptively secure ZK protocols in the plain model.

Adding reverse firewalls. The protocol outlined above requires randomness in the augmented
coin-tossing protocol and the ZK protocol. The rest of the MPC protocol is deterministic given
the coins and the randomness of the ZK protocol. We propose an adaptively secure multi-party
augmented coin-tossing protocol Πcoin and an adaptively secure (input-delayed) ZK protocol
Πzk. We then design reverse firewalls for these protocols and show that they provide exfiltra-
tion resistance for tampered parties. Then, by invoking our theorem that an exfiltration resis-
tant RF is security preserving, we get that the RFs preserve security of the above protocols. We
now explain them in more detail below.

6 If we had a coin tossing protocol with black-box simulation, we could use it to transform a two round adaptively
secure MPC protocol in the URS model [CSW20a] to a protocol in the plain model by generating the URS via the
coin toss protocol.
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– Πa-coin using reverse firewalls: Our augmented coin-tossing uses the “commit-then-open” paradigm.
At the end of this protocol, the initiating party (say, Pi) obtains a random string ri along with
the appropriate decommitment information, whereas all other parties {Pj}j∈[n]\i obtain the
(same) commitment to ri. We assume that the message and randomness spaces of the commit-
ment scheme form an additive group and the commitment scheme is additively homomorphic
over these spaces. In the first round, each party {Pj}j∈[n]\i sample their own randomness rj and
sj , commits to the random coin rj using sj and broadcasts the commitment cj = Com(rj ; sj).
In the second round, party Pi samples its own randomness (ri, si), and broadcasts the commit-
ment ci = Com(ri; si) to all other parties. Finally, in the third round all parties {Pj}j∈[n]\i broad-
cast their respective openings (rj , sj). Party Pi then obtains the final string as R =

∑
k∈[n] rk,

and locally computes the commitment ci as c = Com(R;S), where S =
∑

k∈[n] sk. All other
parties can compute the same commitment c using the commitment ci (broadcast by Pi) and
the decommitment information of all other parties (broadcast in the final round) exploiting the
homomorphic property of Com. We show that the above protocol is adaptively secure if the
underlying commitment scheme Com is adaptively secure.

Consider the case when the initiating party Pi is tampered. In this case, the other malicious
parties can launch an input trigger attack by sending a malformed commitment string which
may serve as a wake up message to Pi. Besides, in the second round, tampered Pi can sample
bad randomness and exfiltrate secrets via the commitment string ci. When the receiving par-
ties are corrupt, the commitment strings and their openings could also serve as a subliminal
channel. The main idea of the RF is to exploit the homomorphic properties of Com to sanitize
the incoming and outgoing messages. However, it must ensure that this mauling is consistent
with the views of all parties. In particular, RFi for Pi rerandomizes the commitment ci to a fresh
commitment ĉi by choosing fresh randomness (r′i, s

′
i), computing c′i = Com(r′i; s

′
i) and homo-

morphically adding them. In the final round, when all the parties send their openings (rj , sj),
RFi computes an additive secret sharing of r′i and s′i (sampled in the above step) and sanitizes
each of these openings using the appropriate shares. Thus, the views of all the parties are con-
sistent in this firewalled protocol and the final coin is also guaranteed to be random (since the
offsets r′i and s′i were sampled randomly). Note that, the final commitment C computed by all
the parties does not provide any channel to exfiltrate (since both R and S are random at the
end of the firewalled execution). The detailed protocol together with the RF is in Section 7.1.

– Πzk using reverse firewalls : Next, we need a ZK protocol to show conformance of each step
of the protocol specification. We construct a reverse firewall for (a variant of) the adaptively
secure ZK protocol of [CSW20b]. The protocol of [CSW20b] is based on the Sigma protocol
of [FLS99] where the prover sends a first message, the verifier sends a random bit string as
a challenge, and the prover sends a response in a third message. Towards constructing a re-
verse firewall, we observe that the prover’s messages can be re-randomized if the underlying
primitives are homomorphic. However, the challenge string cannot be re-randomized, with-
out also mauling the response provided by the prover. The ZK protocol of [CSW20b] does not
seem to have this malleable property. Therefore, we modify the protocol, where the verifier’s
challenge is generated as the result of a coin-tossing protocol. This ensures that the challenge
is indeed random, and after the firewall sanitizes, both the prover and the verifier have the
same challenge string. Therefore, the firewall can sanitize the protocol without the need to ex-
plicitly maul the response from the prover. The modified protocol remains adaptively secure.
Note that the protocol also retains the input-delayed property – only the last round of the ZK
protocol depends on the statement being proven and the corresponding witness. This allows
running the first two rounds of the protocol before the inputs in the MPC protocol are defined.
During the MPC protocol, the parties compute the input commitments and the protocol mes-
sages which define the statement and the witness. The last round of the ZK protocol is run after
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this is defined, thus helping to preserve the round complexity of the underlying semi-honest
adaptively-secure MPC protocol.

The idea behind a firewall for a tampered party in this modified ZK protocol, is to re-randomize
the prover’s first message in the coin tossing homomorphically, thus ensuring that the verifier’s
challenge in the sigma protocol is random. We show reverse firewalls for the prover and the
verifier, and prove exfiltration resistance.

We obtain the above protocols in the urs model by instantiating the semi-honest MPC pro-
tocol and the underlying primitives in the urs model based on DDH and LWE (see Sections
7.1,7.2, and 7.3). Next, we generate the urs using an adaptively-secure coin tossing protocol to
remove the setup assumption.

Adaptively secure coin tossing in the plain model. In order to remove the setup, we construct
a constant round multi-party coin tossing protocol Πcoin in the plain model that generates the
urs required by the MPC protocol. In addition to Discrete Log (DL) and Learning With Errors
(LWE) assumption, we rely on knowledge of exponent assumption (KEA) assumption in pair-
ing groups. Since it is impossible to construct a constant round adaptively secure coin-tossing
protocol in the plain model from black-box simulation techniques [GS12], our reliance on the
KEA assumption seems justified. The high-level idea behind our Πcoin protocol is as follows:
There is an initial coin-tossing phase that sets up a public key of a homomorphic, obliviously
sampleable encryption scheme. In subsequent steps, there is another coin-tossing phase where
parties exchange commitments to their coins together with encryption of the commitment ran-
domness under the public key generated in the previous coin-toss. In more detail, the protocol
uses the Pedersen commitment scheme – an equivocal, perfectly hiding commitment scheme,
and a public key encryption scheme with additional properties. Πcoin consists of four phases -
parameter generation phase, commitment generation phase, commitment opening phase and
output phase.

In the first phase, the parties generate pairwise Pedersen commitment parameters and pair-
wise encryption key. For the commitment parameter, one party is the committer and the other
party is the verifier; and the verifier additionally proves knowledge of the commitment trap-
door. The public key is of an encryption scheme that satisfies the following properties: obliv-
ious ciphertext sampling, oblivious public key sampling and additive homomorphism of ci-
phertexts and public keys. The parameter generation is repeated by reversing the roles. In
the commitment generation phase, each party generates its random coin and commits (as the
committer) to it pairwise using the pairwise commitment parameters generated in the previ-
ous phase. In addition to the commitment, each party also sends two encryptions e0 and e1:
if the committed coin is b ∈ {0, 1}, then eb is an encryption of the randomness used to com-
mit to the coin, and e1−b is sampled obliviously. Upon obtaining pairwise commitments to the
random coins, the parties open their commitments pairwise by sending the decommitment
randomness and encryption randomness for b to the pairwise verifiers. e1−b is claimed to be
obliviously sampled. Each party also broadcasts its random coin b. In the output phase, each
party verifies the pairwise commitment openings and that correct ciphertext is an encryption
of the commitment randomness. If all the openings are correct and they are consistent with the
broadcasted coins then the parties output the final coin by summing up all the broadcasted
coins.

This protocol is adaptively secure if the commitment is equivocal and perfectly hiding.
The simulator needs to bias the output coin to a simulated coin. It is performed as follows:
In the parameter generation phase, the verifier proves knowledge of trapdoor using a sub-
protocol. When the verifier is corrupt, a non-black-box assumption allows extraction of the
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trapdoor. When the committer is corrupt, the simulator receives the commitment and the pub-
lic key, samples a key pair, rewinds the committer and sets its own oblivious key such that
they homomorphically combine to the honestly sampled key. Now, the simulator knows the
corresponding secret key. The simulator extracts the committed coins of the malicious parties
in the commitment generation phase. In the opening phase the simulator equivocates (using
the extracted trapdoors) the pairwise commitments and the coins broadcasted on behalf of the
honest parties such that the final output coin is equal to the simulated output coin. Once the
committer opens its public key in the first coin-toss, the simulator can rewind and force the out-
put of this coin-toss phase to be a public key for which the simulator knows the secret key. In
the subsequent coin-tossing phase where parties exchange commitment to their coins together
with encryption of the commitment randomness, the simulator can extract the value commit-
ted. Crucially, the simulator can extract the committed coin of the corrupt committer before the
adversary can see the output of the coin toss allowing it to simulate. When the committer is
honest, the simulator can explain the ciphertexts as encrypting the correct values.
Adding reverse firewalls to the coin tossing protocol. We exploit the homomorphism property of
the underlying commitment and public-key encryption scheme to sanitize round messages. In
addition to this, the RF computes pairing equations in order to verify validity of messages.
On the setup assumption. The work of [CDN20] required a structured setup due its augmented
coin-tossing protocol. In their coin tossing protocol the receiving parties obtain commitments
to the sender’s coin, which is different from the commitment generated by the sender. As a
result, during the later part of the protocol the RF needs to maul the proofs using a controlled-
malleable NIZK (cm-NIZK) as the statement being proven by the sender is different from the
one being verified by the receiving parties. Unfortunately, cm-NIZKs are not known in the
adaptive setting. We modify the coin-tossing protocol such that every party obtains the same
commitment string, and hence the proof statement remains unchanged. Thus, we can use an
interactive ZK protocol without needing controlled malleability (re-randomizability suffices),
and this allows us to rely on urs instead of crs. Finally, we can use the coin-tossing protocol (in
the plain model) to remove the need for urs.

Finally, in all our protocols we rely on the existence of broadcast channels in the RF setting.
We implicitly use the protocol of [CDN20], who showed how to implement broadcast channels
in the RF setting.

1.3 Other Related Work

Besides the reverse firewall framework, other directions that address the challenge of protect-
ing cryptosystems against different forms of subversion are reviewed below.

Algorithm Substitution Attacks. Bellare, Patterson, and Rogaway [BPR14] initiated the study
of subversion of symmetric encryption schemes in the form of algorithm-substitution attacks
(ASAs). They show that such subversion of the encryption algorithm is possible in a way
that is undetectable. They also show that deterministic, stateful, ciphers are secure against
this type of ASAs. Subsequent works redefined and strengthened the notion in several as-
pects [DFP15, BJK15], and extended the ASA model to other contexts, like digital signatures
schemes [AMV15], public key encryption [CHY20].

Backdooring. Motivated by the backdooring of the DUAL EC DRBG [SF07], a formal study of
backdooring of PRGs was initiated in [DGG+15], where public parameters are surreptitiously
generated together with secret backdoors by a saboteur that allows to bypass security while
remaining secure to any adversary that does not know the backdoor. Parameter subversion
has been considered for several primitives, including pseudorandom generators [DGG+15,
DPSW16], non-interactive zero knowledge [BFS16], and public-key encryption [ABK18].
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Watchdogs and Self-guarding. Another approach taken in [RTYZ16, RTYZ17, BCJ21] is to con-
sider an external entity called a watchdog that is trusted to test whether a given cryptographic
implementation is compliant with its specification via black-box access. Self-guarding is an-
other approach to counter subversion [FM18]. The idea here is to not depend on external enti-
ties, instead assume a trusted initialization phase where the cryptosystem is unsubverted.

2 Preliminaries

Notation. We write PPT to denote a probabilistic polynomial time machine. We denote the
security parameter by λ. For an integer n ∈ N, we denote by [n] the set {1, 2, · · · , n} and for
any pair of integers 1 < i < j ≤ n, we denote by [i, j] the set {i, i+1, · · · , j}. For a distribution
or random variable X , we denote x← X the action of sampling an element x according to X .
For any integer m ∈ N, we write Um to denote the uniform distribution over all m-bit strings.
We denote by G the multiplicative group where DDH assumption holds. The corresponding
field is denoted by Zq. We denote a negligible function in λ as neg(λ).

2.1 Bilinear Groups and Knowledge of Exponent Assumption [AF07].

Our construction in the plain model is under Knowledge of Exponent Assumption. We present
the definitions below.
Let BGG denote a bilinear group generator. It takes in input the security parameter λ and
outputs (G,H, q, g, e) where G and H is a pair of groups of prime order q where g is a generator
of group G, and e is a non-degenerate bilinear map defined as e : G × G → H for which
e(ga, gb) = e(g, g)ab for a, b ∈ Zq and e(g, g) 6= 1H.

Definition 1. (Discrete Log Assumption) For every non-uniform poly-time algorithm A:

Pr[pub← BGG(1λ), h← G, w ← A(pub, h) : gw = h] ≤ neg(λ)

Definition 2. (Knowledge of Exponent Assumption). For every non uniform poly-time algorithm
A there exists a non-uniform poly-time algorithm XA, the extractor such that:

Pr[pub← BGG(1λ), x← Zq, (A, Â; a)← (A||XA)(pub, gx) :

Â = Ax ∧A 6= ga] ≤ neg(λ)

where (A, Â; a) ← (A||XA)(pub, gx) means that A and XA are executed on the same input
(pub, gx) and the same random tape, and A outputs (A, Â) whereas XA outputs a.

2.2 Public Key Encryption Schemes

A public key encryption scheme PKE = (Gen,Enc,Dec) satisfies oblivious ciphertext sampling
if there exists a polynomial time algorithm oEnc which obliviously samples a ciphertext s.t.
it looks indistinguishable from a real ciphertext. Additionally, we require the PKE to satisfy
additive homomorphism over message and randomness space, i.e. Enc(pk,m; r) ·Enc(pk,m′; r′) =
Enc(pk,m+m′; r + r′).

Definition 3. ([CSW20a] (Public Key Encryption with oblivious ciphertext sampling and obliv-
ious public keys sampling) A public key encryption scheme PKE = (Gen,Enc,Dec) over message
spaceM, ciphertext space C and randomness space R satisfies oblivious ciphertext sampling property
if there exists PPT algorithms oGen, oEnc s.t. the following holds:
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– Oblivious Ciphertext Sampling: For any message m ∈ M, the following two distributions are
computationally indistinguishable to a PPT adversary A:∣∣Pr[A(m, c) = 1|(pk, sk)← Gen(1λ),m← A(pk), c← Enc(pk,m)]

−Pr[A(m, c̃) = 1|(pk, sk)← Gen(1λ),m← A(pk), c̃← oEnc(pk)]
∣∣ ≤ neg(λ)

– Oblivious Public Key Sampling: The following two distributions are computationally indistinguish-
able to a PPT adversary A:∣∣Pr[A(pk) = 1|(pk, sk)← Gen(1λ)]− Pr[A(pk′) = 1|pk′ ← oGen(1λ)]

∣∣ ≤ neg(λ)

Definition 4. (Additively Homomorphic Encryption) A public key encryption scheme PKE =
(Gen,Enc,Dec) over message spaceMEnc and randomness space REnc is additively homomorphic
over message spaceMEnc and randomness space REnc, which are written additively, such that for all
m,m′ ∈MEnc, r, r′ ∈ REnc we have:

Enc(pk,m; r) · Enc(pk,m′; r′) = Enc(pk,m+m′; r + r′)

where (pk, sk)← Gen(1λ).

2.3 Commitment Schemes

We denote a commitment scheme as Com = (Gen,Com,Verify). It is equivocal if there exists
a polynomial time algorithm Equiv that equivocates a commitment to open to any message,
given the trapdoor of the commitment parameters. We also need an adaptively secure commit-
ment scheme and we use the definition of [CSW20a]. We also need the commitment scheme to
satisfy additively homomorphic property like the PKE scheme.

We present the ideal commitment functionality from [CSW20a] in Fig. 1. We define a non-
interactive perfectly equivocal commitment scheme Com = (Gen, Com, Verify, Equiv) as follows:

Fig. 1. The ideal functionality FCom for Commitment Scheme

FCom

FCom interacts with committer C and verifier V as follows:
– On receiving input ((Commit,V),C, sid,m) from C, if (sid,C,V,m′) has been recorded, ignore the input. Else

record the tuple (sid,C,V,m) and send (RECEIPT, sid,C,V) to V.

– On receiving input (Open,C, sid) from C, if there is a record of the form (sid,C,V,m′) return (Open, sid,C,V,m′)
to V. Otherwise, ignore the input.

Definition 5. (Correctness) Com is a correct commitment scheme if the following holds true

Pr
[
Verify(pp, c,m, r) = 1|(pp, td)← Gen(1λ), c← Com(pp,m; r)

]
= 1

Definition 6. (Computationally Binding) Com is computationally binding scheme if the following
holds true for all PPT adversary A

Pr
[
(m0, r0,m1, r1)← A(pp)|(pp, td)← Gen(1λ),

Com(pp,m0; r0) = Com(pp,m1; r1)
]
≤ neg(λ)
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Definition 7. (Perfect Binding) Com is perfectly binding scheme if the following holds true for all
unbounded adversary A

Pr
[
(m0, r0,m1, r1)← A(pp)|(pp, td)← Gen(1λ),

Com(pp,m0; r0) = Com(pp,m1; r1)
]
= 0

Definition 8. (Computationally Hiding) Com is a computationally hiding scheme if the following
holds true for all PPT adversary A = (A1,A2).

Pr
[
b = b′|(pp, td)← Gen(1λ), (m0,m1, st)← A1(pp), b← {0, 1},

c← Com(pp,mb; r), b
′ ← A2(c; st)

]
≤ 1

2
+ neg(λ)

Definition 9. (Perfectly Hiding) Com is perfectly hiding scheme if the following holds true for all
computationally unbounded adversary A = (A1,A2).

Pr
[
b = b′|(pp, td)← Gen(1λ), (m0,m1, st)← A1(pp), b← {0, 1},

c← Com(pp,mb; r), b
′ ← A2(c; st)

]
=

1

2

Definition 10. (Perfectly Equivocal) Com is equivocal if it has a PPT algorithm ≡ s.t. the following
holds true for all computationally unbounded adversary A and all message pairs (m,m′) for m 6= m′.∣∣∣Pr [A(c, r) = 1|(pp, td)← Gen(1λ), (m,m′)← A(pp), c = Com(pp,m; r)

]
−Pr

[
A(c, r) = 1|(pp, td)← Gen(1λ), (m,m′)← A(pp), c = Com(pp,m′; r′),

r = Equiv(pp, c,m,m′, r′, td)
]∣∣∣ = 0

Definition 11. (Additively Homomorphic Commitment) A commitment scheme Com = (Gen, Com,
Verify) is additively homomorphic over message spaceMCom and randomness space RCom, which
are written additively, such that for all m,m′ ∈MCom, r, r′ ∈ RCom we have:

Com(pp,m; r) · Com(pp,m′; r′) = Com(pp,m+m′; r + r′)

where (pp, td)← Gen(1λ).

Pedersen Commitment Scheme. Given a generator g, h ∈ G, the committer commits to a field
element m ← Zq by sampling randomness r ← Zq and sets c = gmhr. Decommitment to
message m is r. It is perfectly hiding and computationally binding due to the Discrete Log
assumption.

We present a version of Elgamal commitment scheme without setup as follows. Given a
generator g ∈ G, the committer commits to a field element m ← Zq by sampling randomness
x, r ← Zq and sets c = (c1, c2, c3) = (gx, gr, gmgrx) = (h, gr, gmhr). The tuple (x, r) serves as
the decommitment information. It is perfectly binding and computationally hiding due to the
DDH assumption.
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Fig. 2. Zero-Knowledge Functionality FZK (from [CSW20b]) for a single prover proving multiple statements

FZK is parametrized by an NP relation R.

– On input (prove, sid, x, w) from P and (verify, sid, x) from V : if there exists (sid, P ′) ∈ Q and P 6= P ′ orR(x,w) 6=
1 then ignore the input. Else record Q = (sid, P ) and output (verification, sid, x,R(x,w)) to V.

2.4 Zero Knowledge

The prover proves that a statement x ∈ L by interacting with a verifier V. The prover has the
knowledge of a secret witness w s.t. R(x,w) = 1 iff x ∈ L. An interactive ZK protocol consists
of Πzk = (Gen,P,V) where Gen generates the urs and P and V are interactive algorithms. We
present the ZK functionality from [CSW20b] in Fig. 2. It also allows the prover to prove multi-
ple statements to a verifier using the same setup string. If a protocol Πzk implements FZK then
there exists a simulator who can extract correct witnesses from the accepting proofs when the
prover is corrupt.

We also require the ZK protocols to be input-delayed, i.e. only the last message from the
prover to the verifier should depend on the statement. We denote by 〈P(w),V〉(x, urs) the dis-
tribution of V’s output after running Πzk with P on public input (x, urs) and witness w. Input
delayedness is defined as follows.

Definition 12. (Input-Delayed ZK protocols) Let Πzk = (Gen,P,V) is a 2r + 1-round interactive
protocol that implements FZK (Fig. 2) functionality where P sends the first and last round message. We
denote P = {Pi}i∈[r+1] where Pi denotes the prover algorithm for computing (2(i − 1) + 1)-th round
message of Πzk. Similarly, V = ({Vi}i∈[r],V

out) where Vi denotes the verifier algorithm for computing
2i-th round message ofΠzk and Vout either accepts or rejects the proof.Πzk is input-delayed ZK protocol
if the following holds:

• {Pi}i∈[r] takes as input the private state of Pi−1 and the public values - length of the statement, i.e.
|x|, urs and previous round messages.
• {Vi}i∈[r] takes as input the private state of Vi−1 and the public values - length of the statement, i.e.
|x|, urs and previous round messages.
• Pr+1 takes as input (x,w) and private state of Pr.
• Vout takes as input x and private state of Vr.

2.5 Coin-Tossing

Definition 13 ([GMW87] Multi-party Parallel Coin-Tossing into the Well). An n-party aug-
mented coin-tossing into the well protocol is an n-party protocol for securely computing the func-
tionality (1λ, · · · , 1λ)→

(
Ut, Ut, . . . , Ut

)
, where Ut denotes the uniform distribution over t-bit strings.

Definition 14 ([GMW87] Multi-party Augmented Parallel Coin-Tossing into the Well). An
n-party augmented coin-tossing into the well protocol is an n-party protocol for securely computing
the functionality (1λ, · · · , 1λ)→

(
(Ut, Ut·λ),

Com(Ut;Ut·λ), · · · ,Com(Ut;Ut·λ)
)

with respect to a fixed commitment scheme Com = (Gen,Com,Verify)
which requires λ random bits to commit to each bit, and Ut denotes the uniform distribution over t-bit
strings.

2.6 Adaptively Secure Multi-Party Computation

In this section we recall the formal definition of adaptively secure MPC protocols in the stand-
alone setting as in [GS12].
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Multi-party protocols. Let n denote the number of parties involved in the protocol. We as-
sume that n is fixed. A multi-party protocol problem is cast by specifying a n-ary function-
ality, denoted by f : ({0, 1}∗)n → ({0, 1}∗)n, where f = (f1, · · · , fn). For a input vector
~x = {x1, · · · , xn} the output is a tuple of random variables denoted by (f1(~x), · · · , fn(~x)). The
ith party Pi initially holds the input xi and obtains fi(~x). We also assume that all the parties
hold input of equal length, i.e., |xi| = |xj | for all i, j ∈ [n].

Adversarial behavior. For the analysis of our protocols we consider the setting of malicious
adversaries that can adaptively corrupt parties throughout the protocol execution depending
on its view during the execution. We consider the definition of security in terms of the real-
world and ideal-world simulation paradigm.

Real World. In the real world, the MPC protocol Π is executed by the interaction of n parties
{P1, · · ·Pn}. Each party Pi has input xi ∈ {0, 1}∗, random input ri ∈ {0, 1}∗, and the security
parameter λ. Let C ⊂ [n] and H = [n] \ C denote the indices of the malicious corrupted par-
ties and honest parties in Π . Consequently, let us denote by PC and PH the set of maliciously
corrupted and honest parties respectively. We assume that all communication is done via a
broadcast channel. We consider the synchronous, with rushing model of computation.

At the onset of the computation the adversary A receives some auxiliary input denoted
by z. The computation proceeds in rounds, with each round consisting of several mini-rounds.
Each mini-round starts by allowing A to adaptively corrupt parties one by one. Once a party
is corrupted the party’s input and random input become known to A. Next, A activates an
uncorrupted party Pi, which has not been activated so far in this round. Upon activation, Pi
receives the messages sent to it in the previous round, generates the message for this round,
and the next mini-round begins. A also gets to learn the messages sent by Pi. Once all the
uncorrupted parties are activated, A sends the messages on behalf of the corrupt parties that
were not yet activated in this round, and the next round begins. Finally, at the end of the
computation (after some pre-specified number of rounds) the parties locally generate their
outputs. Each uncorrupted/honest parties output what is specified as in the protocol. The
corrupt parties may output an arbitrary probabilistic polynomial-time function of the view of
A.

The overall output of the real-world experiment consists of the output of all parties at the
end of the protocol, and the real world adversary view is denoted by REALΠ,(C,A)(λ, ~x, ~r, z). Let
REALΠ,(C,A)(λ, ~x, z) be the distribution of REALΠ,(C,A)(λ, ~x,~r, z) when ~r is chosen uniformly at
random. Let REALΠ,(C,A) denote the distribution ensemble {REALΠ,(C,A)(λ, ~x, z)}λ∈N,~x∈({0,1}∗)n,z∈{0,1}∗ .

Ideal World. In the ideal world we assume the existence of an incorruptible trusted third party
(TTP), with whom all the parties interact. Each party Pi gets input xi ∈ {0, 1}∗ and wish to
evaluate f1(~x, rf ), · · · , fn(~x, rf ), where rf ← {0, 1}s, and s is a value determined by the se-
curity parameter, and Pi learns fi(~x, rf ). The ideal world computation in the presence of an
adaptive ideal world adversary Sim (with random input r) and the TTP TTP proceeds as in
Fig. 3.

The overall output of the ideal-world experiment consists of the output of all parties at the
end of the protocol, and the ideal world adversary view is denoted by IDEALf,(C,Sim)(λ, ~x,~r, z),
where ~r = (r, rf ). Let IDEALf,(C,Sim)(λ, ~x, z) be the denote the distribution of IDEALf,(C,Sim)(λ, ~x,~r, z)
where ~r is chosen uniformly at random. Also, let IDEALf,(C,Sim) denote the distribution ensem-
ble {IDEALf,(C,Sim)(λ, ~x, z)}λ∈N,~x∈({0,1}∗)n,z∈{0,1}∗ .

Now that the ideal and real world executions are defined, we put forward the notion of secu-
rity for an adaptively secure multi-party protocol Π . Informally, we require that executing a
protocol Π in the real world emulates the ideal process for evaluating f .
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Definition 15 (Adaptive Security). Let f be any adaptive well-formed n-ary function, Π be a be a
protocol for n parties. We say that Π adaptively securely evaluates f if for every real world adversary
A there exists an ideal world adversary Sim, such that REALΠ,(C,A) ≈c IDEALf,(C,Sim).

Fig. 3. The Ideal World Execution of an Adaptive MPC Protocol

– Input: Let ~x = {x1, · · · , xn} denote the initial inputs for the parties. As in the real-world, the adver-
sary/simulator Sim additionally has an auxiliary input denoted by z.

– First corruption stage: Sim proceeds in iterations, where in each iteration Sim may decide to corrupt some
party based on the random input of Sim. Once a party is corrupted its input becomes known to Sim.

– Send inputs to TTP: Each honest party Pi sends its input xi to TTP. The corrupted parties may either
abort (send special symbol ⊥), send correct input xi, or send some other input x′i (|xi| = |x′i|) to TTP. Let
~x′ = {x′1, · · · , x′n} denote the input vector received by TTP.

– Early abort option: If TTP receives the special symbol ⊥, it sends abort to the honest parties and the ideal
execution terminates. Otherwise,

– TTP sends output to adversary: TTP chooses rf uniformly at random, computes f(~x′, rf ) and sends it to
the Sim first.

– Adversary Sim instructs TTP to continue or halt: Sim either sends continue or abort to TTP. In case of
continue, TTP sends f(~x′, rf ) to the honest parties. Otherwise, if Sim sends abort, TTP sends abort to the
honest parties.

– Second corruption stage: Upon learning the corrupted parties’ outputs of the computation, Sim proceeds in
another sequence of iterations, where in each iteration Sim may decide to corrupt some additional parties,
based on the information gathered so far. Upon corruption, Sim learns the sees the corrupted party’s input
and output.

– Output stage: Each honest party output the output received from TTP, while the maliciously corrupted
parties PC output any probabilistic polynomial-time computable function of their input, the auxiliary input
z, and the output received from TTP.

– Post-execution corruption: Once the outputs are generated, Sim may at any point in the protocol may decide
to adaptively proceed in another sequence of iterations, where in each iteration Sim may decide to corrupt
some additional party, based on the information gathered so far.

In this section, we recall RF definitions in the static case [CDN20],[MS15].

3 Reverse Firewalls for Statically secure MPC

Definition 16. (Exfiltration-resistant RF in the presence of static corruptions). Let Π be a
multi-party protocol run between the parties P1, · · · , Pn satisfying functionality F and having re-
verse firewalls RFi for the set of honest parties {Pi}i∈H. Then ∀i ∈ H, we say that the firewall RFi is
exfiltration-resistant for party Pi against all other parties {Pj}j∈[n]\i, if for any PPT adversary AER,
the advantage AdvLEAKAER,RFi

(λ) of AER (defined below) in the game LEAK (see Fig. 4) is negligible in the
security parameter λ.
The advantage of any adversary AER in the game LEAK is defined as:
AdvLEAKAER,RFi

(λ) =
∣∣∣Pr[LEAK(Π, i, {P1, · · · , Pn},RFi, λ) = 1]− 1

2

∣∣∣.
Definition 17. (Security-preserving RF for Malicious Statically secure MPCs). Let Π be a
multi-party protocol run between the parties P1, · · · , Pn satisfying functionality requirement F and is
secure against adaptive malicious adversaries (see Def. 15) as above. We assume that each honest party
{Pi}i∈H is equipped with its corresponding reverse firewall {RFi}i∈H. Then, we say that the reverse
firewalls RFi for parties {Pi}i∈H strongly (resp. weakly) preserves security of the protocol Π , if there
exists a polynomial-time computable transformation of polynomial-size circuit families A = {Aλ}λ∈N
for the real world into polynomial-size circuit families Sim = {Simλ}λ∈N for the ideal model such that
for every λ ∈ N, every subset H ⊂ [n], every input sequence ~x = (x1, · · · , xn) ∈ ({0, 1}λ)n, ev-
ery auxiliary information z ∈ {0, 1}∗ and every arbitrary (resp. functionality-maintaining) tampered
implementation {Pi}i∈H we have that:
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Fig. 4. LEAK(Π, i, {P1, · · · , Pn},RFi, λ) is the exfiltration-resistance security game for reverse firewall RFi for party
Pi in the protocolΠ against other parties {Pj}j∈[n\i] with input I . Here, {stPj}j∈[n\i] denote the states of the parties
{Pj}j∈[n\i] after the run of the protocol, and T ∗ denote the transcript of the protocol ΠPi→P∗i ,{Pj→Pj}j∈[n\i](I).

LEAK(Π, i, {P1, · · · , Pn},RFi, λ)

(P1, · · · , Pn, I)← AER(1λ)

b
$←− {0, 1};

If b = 1, P ∗i ← RFi ◦ Pi
Else, P ∗i ← RFi ◦ Pi.

T ∗ ← Π{P∗i ,{Pj→Pj}j∈[n\i]}
(I).

b∗ ← AER(T ∗, {stPj }j∈[n\i]).
Output (b = b∗).

REALΠ{RFi◦Pi}i∈H,(C,A)
(λ, ~x, z) ≈c IDEALf,(C,Sim)(λ, ~x, z).

Definition 18. (Transparent RF in presence of static corruptions). Let Π be a multi-party proto-
col run between the parties P1, . . . , Pn satisfying functionality F and having reverse firewalls RFi for
the set of honest parties {Pi}i∈H. Then ∀i ∈ H, we say that the firewall RFi is transparent for party
Pi against all other parties {Pj}j∈[n]\i, if for any PPT adversary Atr, the advantage AdvTRANSAtr,RFi

(λ) of
Atr (defined below) in the game TRANS (see Fig. 5) is negligible in the security parameter λ.
The advantage of any adversary Atr in the game TRANS is defined as:
AdvTRANS

Atr,RFi
(λ) =

∣∣∣Pr[TRANS(Π, i, {P1, . . . , Pn},RFi, λ,C) = 1]− 1
2

∣∣∣.
Fig. 5. The transparency game for a reverse firewall RFi for a party Pi for adaptively secure MPCs. Here, C denote
the set of corrupt parties.

TRANS(Π, i, {P1, . . . , Pn},RFi, λ,C)
(I)← AER(1λ)

b
$←− {0, 1};

If b = 1, P ∗i ← RFi ◦ Pi
Else, P ∗i ← Pi.

T ∗ ← Π{P∗i ,Pj∈H}
(I).

b∗ ← AER(T ∗, {stPj }j∈C).
Output (b = b∗).

4 Reverse Firewalls for Adaptively secure MPCs

In this section, we present definitions of reverse firewalls for adaptively secure MPC protocols.
The existing definitions of security preservation and exfiltration-resistance for reverse firewalls
are for a static adversary [CDN20]. In the adaptive setting, while the security preservation is
defined as before, exfiltration resistance now has to incorporate the adaptive power of the
adversary. We also present a definition of transparency for reverse firewalls. We first introduce
some notation that will be used throughout the paper.

Notation. Let Π denote a `-round MPC protocol, for some arbitrary polynomial `(·) in the
security parameter λ. Let H and C denote the indices of the honest and maliciously corrupted
parties respectively in the protocol Π . For a party P and reverse firewall RF we define RF ◦ P
as the “composed” party in which the incoming and outgoing messages of A are “sanitized”
by RF. The firewall RF is a stateful algorithm that is only allowed to see the public parameters
of the system, and does not get to see the inputs and outputs of the party P . We denote the
tampered implementation of a party P by P .
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We denote the view of a party Pi by ViewPi , which consists of the input of Pi, its random
tape and the messages received so far. We also denote the view of a party Pi till some round
k(≤ `) as View≤kPi . We denote the reverse firewall for party Pi as RFi and the internal state of
RFi by stRFi . We write ViewRFi◦Pi to denote the composed view of a party Pi and its RF RFi.
Let Transform(·) be a polynomial time algorithm that takes as input the random tape ri of a
party Pi and the internal state (or randomness) stRFi of RFi and returns a sanitized random
tape Transform(ri, stRFi)

7. Note that, the composed view ViewRFi◦Pi of Pi can be efficiently
constructed from the view ViewPi of Pi and the state stRFi of RFi using the Transform function
as a subroutine. We write ΠRFi◦Pi (resp. ΠPi

) to represent the protocol Π in which the role of a
party Pi is replaced by the composed party RFi ◦ Pi (resp. the tampered implementation Pi).

Definition 19. (Functionality-maintaining RF). For any reverse firewall RF and a party P , let
RF1 ◦P = RF ◦P , and RFk ◦P = RF ◦ · · · ◦ RF︸ ︷︷ ︸

k times

◦P . For a protocol Π that satisfies some functionality

requirements F , we say that a reverse firewall RF maintains functionality F for a party P in protocol
Π if ΠRFk◦P also satisfies F , for any polynomially bounded k ≥ 1.

Definition 20. (Security-preserving RF for Malicious Adaptively secure MPCs). Let Π be a
multi-party protocol run between parties P1, . . . , Pn satisfying functionality requirement F and is se-
cure against adaptive malicious adversaries (see Def. 15). We assume that each honest party {Pi}i∈H is
equipped with its corresponding reverse firewall {RFi}i∈H. When the adversary (adaptively) corrupts a
party Pi, it receives ViewRFi◦Pi as the view of Pi. Then, we say that the reverse firewalls RFi for parties
{Pi}i∈H strongly (resp. weakly) preserves security of the protocol Π , if there exists a polynomial-time
computable transformation of polynomial-size circuit families A = {Aλ}λ∈N for the real world into
polynomial-size circuit families Sim = {Simλ}λ∈N for the ideal model such that for every λ ∈ N, every
subset H ⊂ [n], every input sequence ~x = (x1, . . . , xn) ∈ ({0, 1}λ)n, every auxiliary information
z ∈ {0, 1}∗ and every arbitrary (resp. functionality-maintaining) tampered implementation {Pi}i∈H
we have the following:

REALΠ{RFi◦Pi}i∈H ,(C,A)(λ, ~x, z) ≈c IDEALf,(C,Sim)(λ, ~x, z).

We now define exfiltration resistance in terms of the game LEAK that asks the adversary
to distinguish between a tampered implementation of party Pi and an honest implementation,
even given the composed state of Pi and its RF if Pi gets adaptively corrupt in the middle of
execution. 8

Definition 21. (Exfiltration-resistant RF in the presence of adaptive corruptions). Let Π be a
multi-party protocol run between the parties P1, . . . , Pn satisfying functionality F and having reverse
firewalls RFi for the set of honest parties {Pi}i∈H. When the adversary (adaptively) corrupts a party
Pi, it receives ViewRFi◦Pi as the view of Pi. Then ∀i ∈ H, we say that the firewall RFi is exfiltration-
resistant for party Pi against all other parties {Pj}j∈[n]\i, if for any PPT adversaryAER, the advantage
AdvLEAKAER,RFi

(λ) of AER (defined below) in the game LEAK (see Fig. 6) is negligible in the security
parameter λ.
The advantage of any adversary AER in the game LEAK is defined as:

AdvLEAKAER,RFi
(λ) =

∣∣∣Pr[LEAK(Π, i, {P1, . . . , Pn},RFi, λ) = 1]− 1

2

∣∣∣.
7 Looking ahead, in all our constructions the function Transform will typically be a very simple function like

addition or field multiplication.
8 Note that, if we were to give Pi’s internal state when it gets adaptively corrupt instead of the composed state,

the adversary can trivially distinguish since the party’s state does not explain the sanitized transcript.
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Fig. 6. Exfiltration-resistance game LEAK for a party Pi for adaptively secure MPCs

LEAK(Π, i, {P1, · · · , Pn},RFi, λ)

W.l.o.g, let PH = (P1, · · · , Ph) denote the set of honest parties at the onset of the protocol Π, where h = |H|. The
exfiltration-resistance game LEAK for a party Pi ∈ PH is modelled as an interactive game between a challenger
CER and an adversary AER described as follows:
1. The adversary AER provides the tampered implementations of all the honest parties along with their inputs
{(P1, · · · , Ph), IH} to the challenger CER.

2. The challenger CER samples a bit b $←− {0, 1} uniformly at random and does the following:
– If b = 1, define P ∗i ← RFi ◦ Pi.
– If b = 0, define P ∗i ← RFi ◦ Pi.

3. CER and AER then engage in an execution of the MPC protocol Π, where the challenger CER plays the role
of all the honest parties PH (with inputs IH) and the adversary can adaptively corrupt parties in the set PH.
The CER then returns the transcript T ∗ of Π to AER.

4. If AER adaptively corrupts the party Pi at some point during the execution of Π (say at round k) the chal-
lenger CER returns the composed view of Pi till round k, i.e., View≤kRFi◦Pi

to AER. Note that, View≤kRFi◦Pi
can be

efficiently constructed from View≤kPi and the state stRFi of RFi using the Transform function as a subroutine.
5. The challenger CER also returns the views of all the other uncorrupted parties {ViewPk}k∈[h\i] to AER.
6. The game ends when AER returns a bit b′ as a guess for the bit b. Output 1 if b′ = b.

As in prior works on RF, we consider the notion of functionality-maintaining tampering at-
tacks. Informally, such an attack excludes all conspicuous tamperings, which would otherwise
be detected by honest parties. We provide a formal definition below (Def. 22).

We define functionality-maintaining tampering below.

Definition 22. LetΠ be a multi-party protocol run between the parties P1, . . . , Pn implementing func-
tionalityF . We say that Pi is a functionality maintaining tampering if, for all inputs x = (x1, · · · , xn),
the output of execution ΠPi

(x) (where party Pi is replaced by tampering Pi and all other parties are
honest) is equal to F(x).

We also define transparency of reverse firewalls (Def.23) which was informally introduced in
[DMS16], which means that the behavior of RF ◦ P is identical to the behavior of P if P is the
honest implementation.

Definition 23. (Transparent RF in presence of adaptive corruptions). Let Π be a multi-party
protocol run between the parties P1, . . . , Pn satisfying functionality F and having reverse firewalls RFi
for the set of honest parties {Pi}i∈H. When the adversary (adaptively) corrupts a party Pi, it receives
ViewRFi◦Pi as the view of Pi. Then ∀i ∈ H, we say that the firewall RFi is transparent for party Pi
against all other parties {Pj}j∈[n]\i, if for any PPT adversaryAtr, the advantage AdvTRANSAtr,RFi

(λ) ofAtr

(defined below) in the game TRANS (see Fig. 7) is negligible in the security parameter λ.

The advantage of any adversary Atr in the game TRANS is defined as:
AdvTRANS

Atr,RFi
(λ) =

∣∣∣Pr[TRANS(Π, i, {P1, . . . , Pn},RFi, λ,C) = 1]− 1
2

∣∣∣.
We will also need the notion of valid transcripts and detectable failures of reverse firewalls, as

presented in [DMS16]. We recall them below.

Definition 24 (Valid Transcripts [DMS16]). A sequence of bits r and private input I generate tran-
script T in protocol Π if a run of the protocol Π with input I in which the parties’ coin flips are taken
from r results in the transcript T . A transcript T is a valid transcript for protocol Π if there is a
sequence r and private input I generating T such that no party outputs ⊥ at the end of the run. A
protocol has unambiguous transcripts if for any valid transcript T , there is no possible input I and
coins r generating T that results in a party outputting ⊥.
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Fig. 7. The Transparency game TRANS for a reverse firewall RFi for party Pi for adaptively secure MPCs

TRANS(Π, i, {P1, . . . , Pn},RFi, λ,C)

W.l.o.g, let PH = (P1, · · · , Ph) denote the set of honest parties at the onset of the protocol Π, where h = |H|. The
transparency game TRANS for a party Pi ∈ PH is modelled as an interactive game between a challenger Ctr and
an adversary Atr described as follows:
1. The adversary Atr provides the input IH of all the honest parties to the challenger Ctr.

2. The challenger Ctr samples a bit b $←− {0, 1} uniformly at random and does the following:
– If b = 1, define P ∗i ← RFi ◦ Pi.
– If b = 0, define P ∗i ← Pi.

3. Ctr and Atr then engage in an execution of the MPC protocol Π, where the challenger Ctr plays the role of all
the honest parties PH (with inputs IH) and the adversary can adaptively corrupt parties in the set PH. The
Ctr then returns the transcript T ∗ of Π to AER.

4. IfAtr adaptively corrupts the party Pi at some point during the execution ofΠ (say at round k) the challenger
Ctr returns the composed view of Pi till round k, i.e., View≤kRFi◦Pi

toAER. Note that, View≤kRFi◦Pi
can be efficiently

constructed from View≤kPi and the state stRFi of RFi using the Transform function as a subroutine.
.

5. The game ends when Atr returns a bit b′ as a guess for the bit b. Output 1 if b′ = b.

Definition 25 (Detectable failure). A reverse firewall RF detects failure for party P in protocol Π
if (a) ΠRF◦P has unambiguous transcripts; (b) the firewall outputs a special symbol ⊥ when run on any
transcript that is not valid for ΠRF◦P , and (c) there is a polynomial-time deterministic algorithm that
decides whether a transcript T is valid for ΠRF◦P .

Input Replacement Tampering: We consider a special form of tampering attack, which we
call the input replacement tampering attack, and observe that it is very difficult to construct any
reverse firewall that preserves security (see Def. 20) for such class of tampering attacks in the
context of protocols with simulation-based security requirements. Such tampering attacks work
by substituting the actual input of the honest parties with a different (possibly (un)related)
value. Let us illustrate this:

Let Π be a two party protocol run between parties P0 and P1 which securely computes
some functionality f . Let P1 be corrupt and the inputs of P0 and P1 be x and y respectively.
Now, when P0 is tampered to P0, its tampering observes x and replaces it with some x′ before
the execution of the protocol Π . Thus, after execution parties get f(x′, y) (instead of f(x, y)).
To prove security preservation (SP) in this scenario, for any RF we will need to construct a
simulator Sim that can generate the view of a corrupt P1 interacting with RF ◦ P0 in the real
world. In the ideal world P0 sends x as its input to the ideal functionality and hence, Sim
receives f(x, y). However, to generate the real world view Sim is required to generate the view
corresponding to the output f(x′, y), without any knowledge of the tampering P0 or the input
x. Note that, this example is not simply an artefact, but the problem arises since in the ideal
world the simulator does not get access to the tampered implementations.

To get around this, in this work, we disallow this class of input replacement tampering
attacks. However, we stress that this is not a limitation of our work as this assumption has
been made implicitly in all the prior works on reverse firewalls which demand simulation-
based security requirements [MS15, CDN20].

5 Relations between Security Preservation and Exfiltration Resistance (Static
case)

In this section, we explore the relation between the notions of security preservation (SP) and
exfiltration resistance (ER) for reverse firewalls in the MPC setting. Specifically, we show that
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ER implies SP for MPC protocols for both static and adaptive corruptions; whereas the relation
in the other direction is much less clear.

For all the implications we show in this section, we assume that security preservation be
defined by the existence of a black-box simulator. We also assume that the adversaries are not
computationally unbounded, and do not have access to additional oracles.

We first show the implication in the simpler case of static corruptions. Later, in Sec. 6 we
prove the implication for adaptive case.

5.1 Exfiltration-Resistance implies Security Preservation

In this section, we show that exfiltration resistance implies security preservation for MPC pro-
tocols in the static corruption setting. We prove the following theorem.

Theorem 4. Let f be an n-ary functionality and let Π be a an n-party protocol that securely computes
f with abort in presence of malicious adversaries. Let C ⊂ [n] denote the indices of the corrupt parties
in the protocol Π , and let H = [n] \ C denote the indices of the honest parties at the outset of Π . Let
(P i)i∈H denote the tampered implementations of the honest parties provided by the adversary. Also, let
RFi denote the RF corresponding to party Pi. Then for all i ∈ H, if RFi is functionality maintaining,
(strongly/weakly) exfiltration resistant for Pi against all other parties {Pj}[n]\i and transparent
(refer to Definitions 19, 16 and 18 respectively), then for all PPT adversariesA and all PPT tamperings
(Pi)i∈H provided by A, the firewalls RFi for parties {Pi}i∈H (strongly/weakly) preserve security of the
protocol Π according to Definition 17.

Proof. For the proof of Theorem 4 we need to show that security of the MPC protocol Π is
(strongly/weakly) preserved by the reverse firewalls RFi for parties {Pi}i∈H by relying on
(strong/weak) exfiltration-resistance of the firewalls RFi, transparency of RFi and the (static)
security of the underlying MPC protocol Π . More formally, we will need to show that there
exists a simulator/ ideal-world adversary Sim such that for any real-world adversaryA partic-
ipating in the protocol Π and maliciously corrupting a subset PC of parties (where C ⊂ [n] de-
notes the indices of the maliciously corrupted parties in Π), for all λ ∈ N, inputs ~x ∈ ({0, 1}λ)n
and auxiliary input z ∈ {0, 1}∗ the following two random variables are computationally indis-
tinguishable:

{REALΠ{RFi◦Pi}i∈H ,(C,A)(λ, ~x, z)} ≈c {IDEALf,(C,Sim)(λ, ~x, z)}, (1)

We prove the above theorem via a sequence of hybrids, as described below. Let us denote this
set of honest parties as PH = (Pj1 , · · · , Pjh), where h = |H|, and w.l.o.g., let us assume that the
parties in PH are ordered as above in some way, say in a lexicographic order.

– Hyb0 : This is the first hybrid which corresponds to the left hand side of Equation 1. In
particular, Hyb0 corresponds to the real world view of the adversaryA in the MPC protocol
Π , who corrupts the subset PC of parties. All the honest parties in H are replaced with their
corresponding tampered implementations composed with their firewalls, i.e., for all i ∈ H,
Pi is replaced with RFi ◦ Pi in the protocol Π . So, the adversary A obtains the following
view:

{REALΠ{RFi◦Pi}i∈H ,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n} (2)

– Hyb1 : Hyb1 is same as Hyb0, except that, in the protocol Π the implementation of the first
honest party Pj1 in the set PH is replaced by its honest implementation composed with its

18



firewall RFj1 . The rest of the honest parties remain tampered, that is, {Pji}ji∈H\{j1} are still
replaced by RFji ◦Pji , as in Hyb0. In particular, the adversaryA obtains the following view:

{REALΠ(RFj1
◦Pj1 ,{RFji◦Pji}ji∈H\{j1}

),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n

We now present the general description of the `-th hybrid for all 1 ≤ ` ≤ h as follows:
– Hyb` : In Hyb`, in the protocolΠ the implementations of the first ` honest parties {Pj1 , Pj2 , · · · , Pj`}

in the set PH are replaced by their corresponding honest implementations composed with
their firewalls. The rest of the honest parties {Pjk′}jk′∈H\{j1,··· ,j`} are still replaced by RFjk′ ◦
Pjk′ in the protocolΠ , as in Hyb0. In particular, the adversaryA obtains the following view:

{REALΠ({RFjk◦Pjk}jk∈H,k∈[`]
,{RFjk′

◦Pjk′
}jk′∈H,k

′∈[`+1,h]
,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n (3)

Note that, when ` = 0, we are in Hyb0, i.e., when the implementations of all the honest
parties in PH are replaced by their corresponding tampered implementations composed
with their firewalls in the protocol Π . On the other hand, when ` = h, we are in Hybh
where the implementations of all the honest parties in PH are replaced by their honest
implementations composed with their firewalls. For the sake of completeness, we present
the h-th hybrid as follows:

– Hybh : In Hybh, in the protocolΠ the implementations of all the parties {Pj1 , · · · , Pj`} in the
set PH are replaced by their corresponding honest implementations composed with their
firewalls. In particular, the adversary A obtains the following view:
{REALΠ({RFji◦Pji}ji∈H),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n

Now, we prove the indistinguishability of consecutive hybrids.

Claim. ∀1 ≤ ` ≤ h, Hyb`−1 ≈c Hyb`

Proof. Note that, the two hybrids Hyb`−1 and Hyb` differ in the implementation of the party
Pj` ∈ PH. In particular, in Hyb`−1, the party Pj` is replaced with RFj` ◦ Pj` in Π ; whereas
in Hyb` the party Pj` is replaced with RFj` ◦ Pj` . Let D` be an adversary that distinguishes
between these two hybrids. Using D`, we construct an exfiltration resistant adversary AER
such that if the advantage of D` is non-negligible, then the advantage of AER in breaking
the exfiltration-resistance game (Definition 16) is also non-negligible. The reduction is as
follows:
• The adversary AER receives the tampered implementations {Pj` , Pj`+1

, · · · , Ph} corre-
sponding to the last (h− `+ 1) honest parties in the set PH from the distinguisher D`.
• AER then sets (1) Pjk = RFjk ◦Pjk for all jk ∈ H and k ∈ [`−1], and (2) randomly samples

inputs for the honest parties. He forwards the input set, and the set {Pj1 , · · · , Pj`−1
, Pj` ,

· · · , Pjh , {PC}} to the challenger CER of the exfiltration-resistance (ER) game (see the
LEAK game in Figure 4). In other words,AER sets the tampered implementations of the
first ` − 1 honest parties in the set PH to be simply their corresponding honest imple-
mentations and sets the implementations of the remaining (h− `+ 1) honest parties as
received from D`.
• Upon receiving the transcript T ∗ and the states {stPi} of all parties {Pj1 , · · · , Pj`−1

, Pj`+1
,

· · · , Pjh , {PC}} other than the party Pj` , AER constructs the view as in Equation 3 (note
that, AER can efficiently construct this view given the states of all parties other than
Pj`

9). It then forwards this view to the distinguisher D`.

9 Note that, it only needs to know the states corresponding to the corrupt parties to construct the view as in
Equation 3. Also, we know that the party Pj` is not corrupt, hence it is always possible to reconstruct this view.
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• If D` outputs a bit b′, the adversary AER outputs the same bit b′. Note that, if the chal-
lenger CER of the ER game sampled the bit b = 1, then we are in Hyb`−1; whereas if b = 0,
we are in Hyb`. Hence, if the advantage of D` in distinguishing between these hybrids
is non-negligible, the advantage of AER in breaking the ER game is also non-negligible.

ut
Note that, at the end of Hybh, all the honest parties {Pji}i∈H in the set PH are replaced by
RFji ◦ Pji .

– Hybh+1 : Hybh+1 is same as Hybh, except that, in the protocol Π all the honest parties H =
(Pj1 , . . . Pjh) have honest implementations and there is no RF for the honest parties. In par-
ticular, the adversaryA obtains the following view: {REALΠ({Pji}ji∈H),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n .

Claim. Hybh ≈c Hybh+1.

Proof: It is easy to see that the hybrids Hybh and Hybh+1 are identically distributed by
relying on the transparency game of the firewalls {RFji}i∈H (see the TRANS game in Figure
18). More formally, we can define a set of h hybrids and show that the consecutive hybrids
are indistinguishable by the transparency properties of each of the reverse firewalls. ut

– Hybh+2 : This is the final hybrid. This hybrid corresponds to the the ideal world adversary
view for the MPC protocol Π where the set of corrupted parties is {Pi}i∈C. All the honest
parties PH = (Pj1 , . . . Pjh) have honest implementations and there is no RF for the honest
parties. In particular, the adversary A obtains the following view:

{IDEALf,(C,Sim)(~x)}λ∈N,~x∈({0,1}λ)n (4)

Claim. Hybh+1 ≈c Hybh+2

Proof: Hybh+2 is indistinguishable from Hybh+1 due to the security of the protocol Π .
Hybh+1 corresponds to the real world adversary view of Π (without any RF) and Hybh+2

corresponds to the ideal world adversary view of Π (without any RF). ut

Thus, combining Equations 2–4, we obtain Equation 1. This completes the proof of Theo-
rem 4. ut

6 Relations between Security Preservation and Exfiltration Resistance (adaptive
case)

In this section, we show that ER implies SP for MPC protocols for adaptive corruptions. Here
too, we assume that security preservation be defined by the existence of a black-box simula-
tor, the adversaries are not computationally unbounded, and do not have access to additional
oracles. Looking ahead, all of our constructions will satisfy the above requirements.

6.1 Exfiltration-Resistance implies Security Preservation

In this section we show that exfiltration resistance implies security preservation for adaptively-
secure MPC protocols by proving the following theorem.

Theorem 5. Let f be an n-ary functionality and let Π be a an n-party protocol that securely computes
f with abort in presence of malicious adaptive adversaries. Let C ⊂ [n] denote the indices of adaptively
corrupt the corrupted parties in the protocolΠ , and let H = [n]\C denote the indices of the honest parties
at the outset of Π . Let (P i)i∈H denote the tampered implementations of the honest parties provided by
the adversary. Also, let RFi denote the RF corresponding to party Pi. Then for all i ∈ H, if RFi is
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functionality maintaining, (strongly/weakly) exfiltration resistant with adaptive security for
Pi against all other parties {Pj}[n]\i and transparent (refer to Def. 19, 21 and 23 respectively), then
for all PPT adversaries A and all PPT tamperings (Pi)i∈H provided by A, the firewalls RFi for parties
{Pi}i∈H (strongly/weakly) preserve security of the protocol Π according to Def. 20 in the presence of
adaptive corruptions.

Proof. We need to show that security of the MPC protocolΠ is (strongly/weakly) preserved by
the reverse firewalls RFi for parties {Pi}i∈H by relying on (strong/ weak) exfiltration-resistance
of the firewalls RFi, transparency of RFi and the adaptive security of the underlying MPC pro-
tocol Π . More formally, we will need to show that there exists a simulator/ideal-world adver-
sary Sim such that for any real-world adversary A participating in the protocol Π , adaptively
(maliciously) corrupting parties during the execution, for all λ ∈ N, inputs ~x ∈ ({0, 1}λ)n and
auxiliary input z ∈ {0, 1}∗ the following two random variables are computationally indistin-
guishable:

{REALΠ{RFi◦Pi}i∈H ,(C,A)(λ, ~x, z)} ≈c {IDEALf,(C,Sim)(λ, ~x, z)}, (5)

Note that, in the above C denotes the set of parties adaptively corrupted by the adversary. This
set is allowed to grow during the execution of the protocol. H denotes the indices of honest
parties at the outset of the protocol Π , i.e the initial set of honest parties.
We prove the above theorem via a sequence of hybrids, as described below.

– Hyb0 : This is the first hybrid which corresponds to the left hand side of Eq. 5. In particular,
Hyb0 corresponds to the real world view of the adversary A in the MPC protocol Π , who
adaptively corrupts the subset PC of parties. When the adversary A corrupts some party
Pi ∈ PH, return ViewRFi◦Pi = Transform(ViewPi , stRFi) to A, and move Pi to the corrupt set.
All the honest parties in H are replaced with their corresponding tampered implementa-
tions composed with their firewalls, i.e., for all i ∈ H, Pi is replaced with RFi ◦ Pi in the
protocol Π . So, the view of the real world adversary A consists of the following:

{REALΠ{RFi◦Pi}i∈H ,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n} (6)

– Hyb1 : Hyb1 is same as Hyb0, except that, in the protocol Π the implementation of the
first party P1 is replaced by its honest implementation composed with its firewall RF1. The
rest of the honest parties remain tampered, that is, {Pj}j∈H∧j∈{2,··· ,n} are still replaced by
RFj ◦Pj , and the corrupt parties remain as in Hyb0. In particular, the view of the real world
adversary is as follows:

{REALΠ(RF1◦P1,{RFj◦Pj}j∈H∧j∈{2,··· ,n})
,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n

We now present the general description of the `-th hybrid for all 1 ≤ ` ≤ n as follows:
– Hyb` : In Hyb`, in the protocol Π the implementations of the first ` parties {P1, P2, · · · , P`}

are replaced by their corresponding honest implementations composed with their fire-
walls. The other honest parties {Pj}j∈H∧j∈{`+1,··· ,n} are still replaced by RFj ◦ Pj in the
protocol Π , as in Hyb0. When the adversary A corrupts a currently honest party Pj , return
ViewRFj◦Pj = Transform(ViewPj , stRFj ) to A, and move Pj to the set of corrupt parties as
before. In particular, the adversary A obtains the following view:

{REALΠ({RFj◦Pj}j∈[`],{RFj◦Pj}j∈H∧j∈{`+1,··· ,n}
,(C,A)(~x)}λ∈N,~x∈({0,1}λ)n (7)

Note that, when ` = 0, we are in Hyb0, i.e., when the implementations of all the honest
parties in PH are replaced by their corresponding tampered implementations composed
with their firewalls in the protocolΠ . On the other hand, when ` = n, we are in Hybn where
the implementations of all the honest parties are replaced by their honest implementations
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composed with their firewalls. For the sake of completeness, we present the n-th hybrid as
follows:

– Hybn : In Hybn, in the protocol Π the implementations of all the honest parties {Pj}j∈H are
replaced by their corresponding honest implementations composed with their firewalls. In
particular, the adversary A obtains the following view:

{REALΠ({RFj◦Pj}j∈H),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n (8)

Note that, in each subsequent hybrid we replace each party (honest and corrupt) with the
fire-walled honest implementation. However this does not mean that the corrupt parties
are forced to behave with honest implementation. As will be clear in the indistinguisha-
bility proof below, this approach does not enforce any restriction on the way the corrupt
parties behave. We take this approach for readability and ease of proving indistinguisha-
bility.
Now, we prove the indistinguishability of consecutive hybrids.

Claim. ∀1 ≤ ` ≤ n, Hyb`−1 ≈c Hyb`

Proof. Note that, the two hybrids Hyb`−1 and Hyb` differ in the implementation of the
party P`. In particular, the only change from Hyb`−1 to Hyb` is that RF` ◦ P` in the former
is replaced by RF` ◦ P` in the latter. Let D` be an adversary that distinguishes between
these two hybrids. Since the adversary is allowed to corrupt parties adaptively, assume
that party P` is corrupted byD` in round k`. UsingD`, we construct an exfiltration resistant
adversary AER such that if the advantage of D` is non-negligible, then the advantage of
AER in breaking the exfiltration-resistance game (Def. 21) is also non-negligible. At a high
level,AER interacts withD` as the challenger for the indistinguishibility game forD` so that
ultimatelyD` either sees views from Hyb`−1 or Hybl. If party P` is already in the corrupt set
at the start of the protocol, then exfiltration-resistance is trivially satisfied for P`. Otherwise,
for the case when P` gets adaptively corrupt in round k`, by the exfiltration guarantee, D`
cannot distinguish views till round k`.
The reduction is as follows:

• The adversary AER receives the initial indices of honest parties (H), and the tampered
implementations {Pj}j∈H∧j∈{`,···n} corresponding to the last (|H| − `+ 1) honest parties
in the set PH from the distinguisher D`.
• AER then sets (1) Pj = RFj ◦ Pj for all j ∈ H ∧ j ∈ [` − 1], and (2) randomly samples

inputs for the parties in the honest set to define I and sends it to CER. It forwards the set
{Pj}j∈H (here H is set of honest parties at the outset of Π) to the challenger CER of the
exfiltration-resistance (ER) game (see the LEAK game in Fig. 6). In other words,AER sets
the tampered implementations of the first `− 1 honest parties in the set PH to be simply
their corresponding honest implementations with a wrapper of firewall on top of it and
sets the implementations of the remaining (|H| − `+ 1) honest parties as received from
D`.
• Now AER interacts with the challenger CER and the distinguisher D` to execute Π . CER

executes Π on the behalf of the currently honest parties, and D` executes on behalf of
the currently dishonest parties. AER passes round messages between CER and D`. If D`
adaptively corrupts an honest party, AER too corrupts the same party and receives a
transformed view from CER which it passes on to D`. On corruption of an honest party,
CER moves it from the set of honest to dishonest parties. Note that if party P` is statically
corrupt, the indistinguishability in the ER game trivially follows.
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• Upon receiving the final views of parties from CER as described in the LEAK game in
Fig. 6, AER constructs the view as in Eq. 7. If D` corrupts any party post execution, AER
forwards relevant view. Note that,AER only needs to know the views corresponding to
the corrupt parties to construct the view as in Eq. 7.

• If D` outputs a bit b′, the adversary AER outputs the same bit b′. Note that, if the chal-
lenger CER of the ER game sampled the bit b = 1, then we are in Hyb`−1; whereas if b = 0,
we are in Hyb`. Hence, if the advantage of D` in distinguishing between these hybrids
is non-negligible, the advantage of AER in breaking the ER game is also non-negligible.

ut
Note that, at the end of Hybn, all the honest parties {Pj}j∈H in the set PH are replaced by
RFj ◦ Pj .

– Hybn+1 : Hybn+1 is same as Hybn, except that, in the protocol Π all the honest parties in
H have honest implementations and there is no RF for the honest parties. In particular, the
adversary A obtains the following view:

{REALΠ({Pj}j∈H),(C,A)(~x)}λ∈N,~x∈({0,1}λ)n .

Claim. Hybn ≈c Hybn+1.

Proof: It is easy to see that the hybrids Hybn and Hybn+1 are identically distributed by
relying on the transparency of the firewalls {RFj}j∈H (see Def. 23 for the formal definition).
More formally, we can define a set of n hybrids (similar to the claim earlier in this section)
and show that the consecutive hybrids are indistinguishable by the transparency property
of each of the reverse firewalls. ut

– Hybn+2 : This is the final hybrid. This hybrid corresponds to the the ideal world adversary
view for the MPC protocol Π where the set of corrupted parties is {Pi}i∈C. All the hon-
est parties PH have honest implementations and there is no RF for the honest parties. In
particular, the adversary A obtains the following view:

{IDEALf,(C,Sim)(~x)}λ∈N,~x∈({0,1}λ)n (9)

Claim. Hybn+1 ≈c Hybn+2

Proof: Hybn+2 is indistinguishable from Hybn+1 due to the security of the protocol Π .
Hybn+1 corresponds to the real world adversary view of Π (without any RF) and Hybn+2

corresponds to the ideal world adversary view of Π (without any RF). ut

Thus, combining the above three claims, we obtain Eq. 5. This completes the proof of Thm.
5. ut

Limitation in proving SP implies ER. Can we hope to show equivalence of the two notions?
Considering the current definitions of ER and SP this seems infeasible. The reason is that the ER
adversary can choose the inputs of the tampered honest parties IH, whereas the SP adversary
only controls the corrupt party’s input set. It is difficult to construct an SP adversary given an
ER adversary because the SP adversary cannot simulate an ER challenge session corresponding
to honest input set IH (returned by ER adversary) given an SP challenge session. Moreover,
another issue is that the ER adversary expects to receive the views of all the parties, except the
challenged party Pi (unless Pi gets corrupt). The SP adversary, however, receives the views of
the corrupt parties, and the reduction will fail to simulate the views of the honest parties to the
ER adversary.
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7 Adaptively-Secure Compiler using Reverse Firewalls in the urs model

In this section, we show a compiler that transforms any semi-honest adaptively secure MPC
protocol to a maliciously-secure MPC protocol in the urs model, which withstands adaptive
corruptions and admits reverse firewalls. As a building block, we first present the adaptively-
secure multiparty augmented coin tossing protocol using reverse firewalls.

7.1 Adaptively-Secure Augmented Coin-Tossing using Reverse Firewalls in the urs model

The adaptively-secure augmented coin tossing protocol Πa-coin is used to generate random bits
(according to Def. 14) for all the parties participating in the adaptively-secure MPC protocol.
The initiating party receives a random tuple (S,R) and all other parties receive a commitment
Com(S;R) (under the urs of partyPi) of S using commitment randomnessR, where S ∈ {0, 1}λ,
Com is an adaptively secure homomorphic commitment and R ← RCom. The protocol Πa-coin
is presented in Fig. 8.

Fig. 8. Adaptively-Secure Multi-party Augmented Coin-Tossing Protocol Πa-coin for Pi

– Primitives: (Gen,Com,Verify) is an adaptively secure homomorphic commitment scheme where
Com(urs, a1; b1) · Com(urs, a2; b2) = Com(urs, a1 + a2; b1 + b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom re-
spectively. We denote Comi(m; r) = Com(ursi,m; r) under ursi ← Gen(1λ).

– Public Inputs: Each party gets as input ursa-coin = {ursi}i∈[n] where ursi ← Com.Gen(i, 1λ). Party Pi commits
using Comi in the protocol.

Round 1: For j ∈ [n] \ i, every party Pj samples sj ← {0, 1}λ and rj ← RCom respectively. It computes cj =

Comj(sj ; rj), and broadcasts cj .

Round 2: Party Pi chooses a random si ← {0, 1}λ. It then computes ci = Comi(si; ri) for a random ri ←RCom, and
broadcasts ci.

Round 3: For j ∈ [n] \ i, every party Pj broadcasts (sj , rj) as the opening of cj .

Local Computation:

– For j ∈ [n], Pj aborts if ∃k ∈ [n] \ i s.t. Verify(ursk, ck, sk, rk) = ⊥.
– Party Pi sets S = Σi∈[n]si and R = Σi∈[n]ri. Pi outputs C = Comi(S;R).
– For j ∈ [n] \ i, Party Pj sets Sj = Σk∈[n]\isk and Rj = Σk∈[n]\irk. Pj outputs C = ci · Comi(Sj ;Rj).

Theorem 6. Assuming Com is an adaptively secure homomorphic commitment in the urs model,Πa-coin
securely implements the augmented coin-tossing functionality (Def. 14) against adaptive corruption of
parties in the urs model.

Proof. We consider a set H of honest parties and a set C of statically corrupt parties. We have
two exhaustive cases of corruptions:

P ∗i is statically corrupt. In this case, Pi ∈ C is statically corrupt and there exists a set of honest
parties {P`}`∈H. The simulator Sim receives a random string S from the functionality and it
needs to construct a view s.t. it outputs S. Sim constructs simulated commitments {c`}`∈H on
behalf of the honest parties in the first round by invoking the simulator of the commitment
functionality. It receives the commitments {ck}k∈C of the adversarial parties at the end of first
and second rounds. It extracts the underlying {sk}k∈C values by invoking the simulator of
the commitment functionality. In the third round the simulator Sim equivocates the {c`}`∈H
commitments by invoking the Com simulator s.t. the homomorphic addition of all the commit-
ments equals S. When a party P` gets adaptively corrupted Sim opens the existing view of P`.
The formal simulator can be found in 9 and the hybrids follow:
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– Hyb0: This is the real world execution of the coin-tossing protocol.
– Hyb1: Same as Hyb0, except the simulator aborts if it fails to extract the messages from
{ck}k∈C.
Indistinguishability. The simulator aborts if the simulator of Comk fails to extract the adver-
sarially committed messages in Hyb1. Thus, indistinguishability follows between the two
hybrids due to the security of Comk against a statically corrupt committer.

– Hyb2: Same as Hyb1, except the simulator constructs simulated commitments {c`}`∈H by
invoking the Com` simulator and equivocates following the simulation algorithm. It aborts
if equivocation fails for any simulated commitment. Adaptive corruption is handled fol-
lowing the simulation algorithm. This is the ideal world view of the execution.
Indistinguishability. The simulator aborts if the simulator of Com` fails to equivocate the
simulated commitments or if an adaptive adversary can distinguish between a simulated
commitment (equivocated to a commitment on a random message) and an honestly gen-
erated commitment on a random message. Thus, indistinguishability follows between the
two hybrids due to adaptive security of Com`.

Fig. 9. Simulation against a statically corrupt P ∗i

Sim receives S as the output of the coin tossing-functionality and he is required to bias the output of the protocol
to output S.

Round 1: Sim simulates on behalf of the honest parties {P`}`∈H as follows.
– Invokes the simulator of Com` to obtain simulated commitments {c`}`∈H and their openings {s′`, r

′
`}`∈H.

– Broadcasts {c`}`∈H to other parties.

Round 2: Sim receives ci from P ∗i .

Round 3: Sim has received {ck}k∈C from the corrupt parties {Pk}k∈C. It performs the following:
– It extracts {s′k}k∈C from {ck}k∈C by invoking the simulator of Comk on {ck}k∈C. It aborts if extraction fails for

any ck.
– Sim sets S̄ = S −Σk∈Cs′k.
– Sim samples {s`}`∈H randomly s.t. S̄ = Σ`∈Hs`.
– Sim invokes the simulator of Com` on {c`}`∈H with input {s′`, r

′
`, s`}`∈H to obtain {r`}`∈H. Sim aborts if r` = ⊥

for any ` ∈ C.
– For ` ∈ H, Sim broadcasts (s`, r`) to other parties on behalf of P`.

Local Computation:

– Sim aborts if ∃k ∈ [n] s.t. sk 6= s′k.
– Else, it outputs C = ci.Comi(Σj∈[n\i]sj ;Σj∈[n\i]rj) following the honest protocol.

Adaptive Corruption:
If a party P` ∈ C gets corrupted adaptively before c` is opened (in Round 3), Sim samples s` ← {0, 1}λ and
invokes the simulator of Com` on {c`}`∈H with input {s′`, r

′
`, s`}`∈H to obtain {r`}`∈H. Sim aborts if r` = ⊥. Else,

Sim provides {s`, r`} as the internal state of P`.

Pi gets corrupted post-execution. In this case, Sim simulates the honest parties {P`}`∈H\i honestly.
It constructs a simulated commitment ci for Pi by invoking the Comi simulator. Later, when Pi
gets corrupted post-execution and Sim is required to open the transcript to S, Sim observes the
{sj}j∈[n]−i values and Sim equivocates ci accordingly. The formal simulator has been provided
in 10 and the hybrids follow:

– Hyb0: This is the real world execution of the coin-tossing protocol.
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– Hyb1: Same as Hyb0, except the simulator constructs a simulated commitment only for
Pi and later when post-execution corruption of Pi occurs, Sim equivocates the simulated
commitment by invoking the simulator of Comi. Sim aborts if equivocation fails. This is the
ideal world execution.

Indistinguishability. The simulator aborts if the simulator of Comi fails to equivocate a sim-
ulated commitment in the presence of an adaptive adversary. Thus, indistinguishability
follows between the two hybrids due to adaptive security of Comi.

Fig. 10. Simulation against post-execution corruption of Pi

If a party P` ∈ H− i gets corrupted adaptively Sim opens the existing view of P` to the adversary.

Round 1: Sim simulates the honest parties {P`}`∈H−i honestly.

Round 2: Sim constructs a simulated commitment ci and receives its openings (s′i, r
′
i) by invoking the Comi simu-

lator.

Round 3: Sim simulates {P`}`∈H−i honestly.

Local Computation: Sim outputs C following the honest protocol.

Post-Execution Corruption of Pi: Sim obtains S from the functionality. Sim computes si = S −Σj∈[n]−isi and invokes
the Comi simulator with input (c, s′i, r

′
i, si) to obtain opening ri s.t. c = Comi(si; ri). Sim aborts if ri = ⊥. Sim

forwards (si, ri) as the view of Pi to the adversary.

Adaptive Corruption of {P`}`∈H∧ 6̀=i: Sim opens honestly constructed view of P`.

ut
Next, we consider security of the protocol when honest parties are tampered. Our firewall

RFi for a tampered initiating party Pi and firewall {RFk}k∈[n]\i for a tampered receiving party
{Pk}k∈[n]\i is presented in Fig. 11 and Fig. 12 respectively. We prove that the firewalls provide
weak exfiltration resistance and preserve security.

Theorem 7. If the commitment scheme Com is adaptively secure in the urs model and is additively ho-
momorphic, the firewall RFi, (resp. RFk) is transparent, functionality-maintaining, and provides weak
exfiltration resistance for initiating Pi (resp. receiving party Pk) against other parties in Πa-coin with
valid transcripts, and detects failure for Pi (resp. Pk).

Proof. When the implementation of the initiating party Pi is honest he receives a random
commitmentC of a random message S under randomnessR and the corresponding (S,R). The
other parties obtain C. If there is a RF attached to Pi then Pi receives a random commitment Ĉ
of a random message Ŝ under randomness R̂ and the corresponding (Ŝ, R̂). The other parties
obtain Ĉ. When an initiating party Pi gets corrupted, the Transform algorithm takes Pi’s state
(si, ri) and the state of the firewall RFi as (S′i, r

′
i) and returns (ŝi, r̂i) = (si + s′i, ri + r′i) as the

state of the composed party. When a receiving party Pj gets corrupted, the Transform algorithm
takes Pj ’s state (sj , rj) and the state of the firewall RFj as (s′j , r

′
j) and returns (ŝj , r̂j) = (sj +

s′j , rj + r′j) as the state of the composed party. This proves functionality maintaining property
and the firewall is transparent too.

Weak exfiltration resistance can be argued based on the distribution of the views - RFi ◦ Pi
(resp. RFj◦Pj) and RFi◦P ′i (resp. RFj◦P ′j) using the hiding property of the commitment scheme.
Given a Commitment C = Com(S;R) to a tampered message S under tampered randomness
R, the composition of RFs (of honest parties) rerandomize C to obtain Ĉ = C.Com(S̃; R̃) where
S̃ and R̃ are guaranteed to be random due to the homomorphic property of the commitment
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Fig. 11. Reverse firewall RFi for initiating party Pi involved in Πa-coin (from Fig. 8).
(Gen,Com,Verify) is an additively homomorphic commitment scheme where Com(urs, a1; b1)·Com(urs, a2; b2) = Com(urs, a1+
a2; b1 + b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom respectively. We denote Comi(m; r) = Com(ursi,m; r) under ursi ← Gen(1λ).

Party Pi Firewall RFi Parties {Pj}j∈[n]\i
Round 1:

Broadcasts {cj}j∈[n]\i←−−−−−−−−−−−−−−−−
1. Sample s′i ← {0, 1}λ and r′i ∈ RCom

2. Secret share (s′i, r
′
i) as {sj ′, rj ′}j∈[n]\i

s.t. s′i = Σn
j 6=is

′
j and r′i = Σn

j 6=ir
′
j .

3. ∀j ∈ [n] \ i, compute c′j = Comj(s
′
j ; r
′
j)

4. ∀j ∈ [n] \ i, compute ĉj = cj · c′j
{ĉ1,··· ,ĉi−1,ĉi+1,··· ,ĉn}←−−−−−−−−−−−−−−−−

Round 2:
Broadcasts ci

Broadcasts ci−−−−−−−−−−−−−−−−→
5. Compute c′i = Comi(s

′
i; r
′
i)

6. Compute ĉi = ci · c′i
ĉi−−−−−−−−−−−−−−−−→

Round 3:
Broadcasts {(sj ,rj)}j∈[n]\i←−−−−−−−−−−−−−−−−

7. ∀j ∈ [n] \ i, compute ŝj = sj + s′j
8. ∀j ∈ [n] \ i, compute r̂j = rj + r′j

{ŝj ,r̂j}j∈[n]\i←−−−−−−−−−−−−−−−−

scheme. Thus, Ĉ is indistinguishable from an honestly generated random commitment to a
random message. Our hybrid argument is summarized as follows.

RFi ◦ Pi = (S,R,Comi(S;R)) ≡ (Uλ, URCom
,Com(Uλ;URCom

))

≈ (Ŝ, R̂,Comi(Ŝ; R̂)) = RFi ◦ P ′i
Finally, we discuss security preservation for Πa-coin in the RF setting. We have shown in

Thm. 6 that Πa-coin is adaptively secure and we know that it is weakly-exfiltration resistant. By
applying the result of Thm. 5, it is proven that the RF preserves adaptive security of underlying
Πa-coin protocol. ut

Now, consider ΠRF
a-coin, a firewalled version of the protocol where all honest parties Pi have

their respective firewalls RFi attached to them. Now, from Thm. 7, and our implication from
Thm. 5, we conclude weak security preservation; we have that ΠRF

a-coin securely implements
augmented coin tossing in the presence of adaptive corruptions.

Theorem 8. ΠRF
a-coin securely implements the augmented coin-tossing functionality (Def. 14) in the urs

model against adaptive corruption of parties, and in the presence of functionality-maintaining tamper-
ing of honest parties.

Instantiation. We instantiate the adaptively secure homomorphic commitment in the urs model
using the recent construction of [CSW20a]. It is additively homomorphic in the message and
randomness space and can be instantiated based on DDH assumption in the urs model.

7.2 Adaptively-Secure ZK in the urszk model

We construct our adaptively secure ZK protocol Πzk in the common random string model
based on the recent ZK protocol of [CSW20b] by incorporating a coin tossing protocol to gen-
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Fig. 12. Reverse firewall RFk for receiving party Pk involved in Πa-coin (from Fig. 8).
(Gen,Com,Verify) is an adaptively secure homomorphic commitment scheme where Com(urs, a1; b1) · Com(urs, a2; b2) =
Com(urs, a1 + a2; b1 + b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom respectively. We denote Comi(m; r) = Com(ursi,m; r) under
ursi ← Gen(1λ).

Parties Pi ∪ {Pj}j∈[n]\{i,k} Firewall RFk Party Pk
Round 1:

Broadcasts {cj}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→
1. Sample s′k ← {0, 1}λ and r′k ∈ RCom

2. Secret share (s′k, r
′
k) as {s′`, r′`}`∈[n]\k

s.t. s′k = Σn
` 6=ks

′
` and r′k = Σn

6̀=kr
′
`.

3. ∀j ∈ [n] \ {i, k}, compute c′j = Comj(s
′
j ; r
′
j)

4. ∀j ∈ [n] \ {i, k}, compute ĉj = cj · c′j
{ĉj}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→

Broadcast ck←−−−−−−−−−−−−−−−−
5. Compute ĉk = ck · Comk(s

′
k; r
′
k)

ĉk←−−−−−−−−−−−−−−−−

Round 2:
Broadcasts ci−−−−−−−−−−−−−−−−→

6. Compute c′i = Comi(s
′
i; r
′
i)

7. Compute ĉi = ci · c′i
ĉi−−−−−−−−−−−−−−−−→

Round 3:
Broadcasts {sj ,rj}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→

8. ∀j ∈ [n] \ {i, k}, compute ŝj = sj + s′j
9. ∀j ∈ [n] \ {i, k}, compute r̂j = rj + r′j

{(ŝj ,r̂j)}j∈[n]\{i,k}−−−−−−−−−−−−−−−−→
Broadcasts (sk,rk)←−−−−−−−−−−−−−−−−

10. Compute ŝk = sk + s′k and r̂k = rk + r′k
ŝk,r̂k←−−−−−−−−−−−−−−−−

erate the verifier’s challenge. We first recall protocol of [CSW20b] below and then present our
construction.

ZK Protocol of [CSW20b] The work of [CSW20b] construct an adaptively secure ZK proto-
col from equivocal commitments and PKE with oblivious ciphertext sampleability in the urs
model. We briefly recall their protocol and then propose our modifications.

The Protocol. Let LHam be the set of Hamiltonian graphs. The prover P possesses an n-node
graph G. He interacts with the verifier V to prove that the graph is hamiltonian, i.e. G ∈ LHam,
given a Hamiltonian cycle ω as a witness. We describe one run of the protocol and it is repeated
O(λ) times in parallel. The urs contains urscom, the setup string of an equivocal commitment,
and pk, public key of a PKE scheme. P samples a random n-node cycle H . He commits to
the adjacency matrix of H by setting the commitments corresponding to edges as Com(1; r)
and others as Com(0; r). The prover also encrypts the randomness for each commitment. For
each commitment cj = Com(bj ; rj) (j ∈ [n2]) the prover encrypts the randomness as Ej,bj =
Enc(pk, rj ; sj) and samples Ej,bj obliviously. P sends these commitments and encryptions as
the first message a. V samples a random challenge bit e and sends it to the prover. Based on e,
the prover performs the following:

• If e = 0 : The prover decommits to the cycleH by opening the commitments corresponding
to the edges in H and the encryption of the randomness corresponding to those commit-
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ments. For each edge j ∈ H , prover sends (1, rj , sj) and claims that Ej,0 was obliviously
sampled.
• If e = 1 : The prover samples a random permutation γ of the witness cycle to H and opens

to the non-edges in γ(G) by opening the corresponding commitments and the encryptions
(of commitment randomness). For each non-edge j ∈ γ(G), prover sends (0, rj , sj) and
claims that Ej,1 was obliviously sampled. The prover also sends the permutation γ.

Upon obtaining z = {bj , rj , sj}j∈H or z = {bj , rj , sj}j∈γ(G)
values, V does the following:

• If e = 0 : For all j ∈ H , verify that the prover has decommited to the edges of a valid cycle
by checking cj = Com(1; rj) and Ej,1 = Enc(pk, rj ; sj) and H is a valid n-node cycle.

• If e = 1 : For all j ∈ γ(G), verify that the prover has decommited to the non-edges of the
permuted graph by verifying cj = Com(0; rj) and Ej,0 = Enc(pk, rj ; sj). V also verifies that
decommitted edges correspond to non-edges in γ(G).

Soundness of the protocol follows since the verifier challenge bits aare random and the
commitment scheme is computationally binding. The simulator can extract a valid witness
from an accepting proof by decrypting the decommitments from the (Ej,0, Ej,1). Adaptive
security follows from the equivocal property of Com and the oblivious sampleability of the
encryption scheme. We refer to [CSW20b] for full details.

Our construction The ZK protocol of [CSW20b] is not secure when the implementation of the
prover or the verifier is tampered. It admits a firewall which can rerandomize the prover’s
messages. But it cannot rerandomize the verifier’s challenge bit, since the firewall will have to
maul the response provided by the prover if the challenge bit is modified. The firewall cannot
perform this task, since it does not know the witness. This problem arises since the original
challenge bit is different from the challenge bit (rerandomized by the firewall) obtained by the
prover. We modify the protocol, where the verifier’s message is generated as the result of a
coin-tossing protocol. The prover encrypts a random coin in the first message, verifier sends
his random coin in the second message and prover opens to his encrypted coin in the third
message. The final challenge coin is the xor of the two coins. The firewall rerandomizes the
protocol steps of the coin-tossing s.t. the challenge is indeed random and the parties obtain
the same rerandomized challenge. This allows the firewall to rerandomize the verifier’s share
of the challenge bit without mauling the prover’s response. The above described protocol is
repeated O(λ) times to obtain our final ZK protocol under reverse firewalls. The complete
protocol can be found in Fig. 13, 14.

The security of our protocol is summarized below.

Theorem 9. If Com is a non-interactive equivocal commitment scheme in the urs model and PKE is an
IND-CPA public key encryption scheme (where the public key is statistically close to a random string)
with oblivious ciphertext sampleability, then Πzk realizes FZK for all NP relations against adaptive
corruptions in the urs model.

Proof Sketch. Our protocol is similar to the protocol of [CSW20b] except that we add a coin-
tossing protocol to generate e. A corrupt prover cannot bias the coin e since the verifier’s share
of the coin is sampled randomly by the verifier after obtaining the prover’s encrypted share
of the coin. The prover cannot open its share to a different value since the encryption is per-
fectly binding. This guarantees security against a statically corrupt prover. When the verifier
is corrupt, the simulator of [CSW20b] can be be invoked to simulate the proof. The [CSW20b]
ZK simulator relies on the equivocal property of Com and oblivious ciphertext sampleability of
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Fig. 13. Adaptively Secure Rerandomizable ZK Protocol

Πzk

– Primitives: Com = (Gen,Com,Verify) is an additively homomorphic equivocal commitment scheme where
Com(urs, a1; b1) · Com(urs, a2; b2) = Com(urs, a1 + a2; b1 + b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom respec-
tively. PKE = (Gen,Enc,Dec) is an additively homomorphic IND-CPA encryption with oblivious cipher-
text sampleability where Enc(pk,m1; r1) · Enc(pk,m2; r2) = Enc(pk,m1 + m2; r1 + r2) for m1,m2 ∈ MEnc and
RCom ≡MEnc.

– Public Inputs: urszk = (urscom, pk) where (urscom, td)← Com.Gen(1λ) and (pk, sk)← PKE.Gen(1λ). Let ` = 8λ.

– Private Inputs: V has input statement x for language L. He runs an NP reduction to reduce it to an n-node
input graph G for language LHam. P has x and witness w for language L. He runs the same NP reduction to
obtain the n-node input graph G and a valid Hamiltonian Cycle ω.

– Notations: We denote prover algorithm as P = (P1,P2) and verifier algorithm as V = (V1,V2). For a graph G

we denote the complement graph as G.

Commit : P1(1λ, 1n)

Repeat the following protocol for i ∈ [`]:
– Sample a random n-node cycle graph Hi.
– Commit to the adjacency matrix of Hi as follows:

• For each edge j commit to 0, as cij = Com(0; rij) with randomness rij .
• For each non-edge j commit to 1, as cij = Com(1; rij) with randomness rij .
• For j ∈ [n2], the prover also encrypts the commitment randomness based on the bit committed as

follows.
- If cij = Com(0; rij), then set Eij,0 = Enc(pk, rij ; s

i
j) with randomness sij and sample Eij,1 ← oEnc(1λ).

- If cij = Com(1; rij), then set Eij,1 = Enc(pk, rij ; s
i
j) with randomness sij and sample Eij,0 ← oEnc(1λ).

Samples an `-bit random string eP ← {0, 1}λ. Computes Te = Enc(pk, eP; de).

Construct the first message a = (Te, {cij , Eij,0, Eij,1}j∈[n2],i∈[`]). Send a to V. Set internal state stP =

(eP, de, {bij , rij , sij}j∈[n2],i∈[`]).

Challenge : V1(1λ)

V samples eV ← {0, 1}λ and sends eV to P. Sets stV = eV.

Response : P2((G,ω), eV, stP)

Computes e = eP ⊕ eV and repeats the following protocol for i ∈ [`]:
– Upon obtaining the statement graph G and Hamiltonian cycle ω as witness compute a permutation γi s.t.

Hi = γi(ω).

– If ei = 0, decommit to edges in Hi. P also opens to the commitment and encryption randomness, i.e. zi =

{j, bij , rij , sij}j∈H .
– If ei = 1, reveal γi and decommit to non-edges in γi(G). P also opens to the commitment and encryption

randomness, i.e. zi = (γi, {j, bij , rij , sij}j∈γi(G)
).

P sends the proof Γ = (a, e, z) = ({a1, . . . , a`}, e, {z1, . . . , z`}) and opening of Te as (eP, de).

Fig. 14. Adaptively Secure Rerandomizable ZK Protocol (cont.)

Verify : V2(G,Γ, stV)

V aborts if Te 6= Enc(pk, eP; de). Else, he sets e = eP ⊕ eV and repeats the following protocol for i ∈ [`]:
– If ei = 0, V outputs accept if for all j ∈ Hi, the following holds - bij = 1, Hi is a cycle and cij = Com(1; rij) where

Eij,1 = Enc(pk, rij ; s
i
j).

– If ei = 1, V outputs accept if for all j ∈ γi(G) the following holds - bij = 0, cij = Com(0; rij) and eij,0 =

Enc(pk, rij ; s
i
j).

– Else, V outputs reject.

30



Enc to simulate a proof. Our adaptive security proof also follows from the adaptive security of
[CSW20b] by relying on the equivocal property of Com and oblivious ciphertext sampleability
of Enc. ut
Next, we design a firewall for a tampered prover against a corrupt verifier. The code of the fire-
wall is same for a tampered verifier against a corrupt prover. We denote the firewall as RFzk.
RFzk rerandomizes the commitments and encryptions sent by the prover by relying on the
additive homomorphic property of Com and Enc. The firewall also samples a random permu-
tation γ′ over the committed adjacency matrix and permutes the adjacency matrix according
to it. He outputs the rerandomized commitments and encryptions in a permuted way such
that it corresponds to γ′(H). When P opens to H (for e = 0), the RF permutes the order of
the openings according to γ′ s.t. that they are consistent openings of γ′(H). When P opens to
the non-edges (for e = 1) corresponding to γ(G), the RF permutes the order of the openings
according to γ′ s.t. that they are correspond to non-edges in γ′(γ(G)). P sends the permutation
γ and RFzk rerandomizes it as γ′(γ). The firewall rerandomizes the encryption Te of prover’s
coin eP and modifies the coin by an additive value e′. The sanitized encryption sent by the
firewall (on behalf of prover) to the verifier is T̂e = Te · Enc(pk, e′; d′e). When verifier sends his
share eV of the random coin, the firewall modifies the coin by an additive factor of e′. Thus, the
final coin is ê = eP + eV + e′ and it is ensured to be random since e′ is random. We provide our
firewall RFzk for a tampered prover in Fig. 15. The same firewall works for a tampered verifier.

Theorem 10. Let RFzk (Fig. 15) be a reverse firewall for a tampered prover (resp. verifier) against
a corrupt verifier (resp. prover) in Πzk (Fig. 13, 14) and Πzk implements FZK functionality against
adaptive corruption of parties. Let Com be a non-interactive equivocal commitment scheme in the urs
model and PKE be an IND-CPA public key encryption scheme (where the public key is statistically close
to a random string) with oblivious ciphertext sampleability. If Com and PKE are homomorphic with
respect to the (addition) operation defined over the underlying spaces (i.e, the message space, randomness
space) and the message space of PKE is same as randomness space of Com then the firewall RFzk is
transparent, functionality-maintaining and provides weak exfiltration resistance for a tampered prover
(resp. verifier) against a corrupt verifier (resp. prover). The firewall also detects failures for all the parties.

Proof Sketch. It can be observed that the firewall maintains functionality and it is transparent.
When the verifier get adaptively corrupted, the Transform algorithm takes eV as the state of
V and e′V as the state of RFzk corresponding to verifier and returns eV ⊕ e′V as the state of the
verifier composed with the firewall. When the prover get adaptively corrupted the Transform
algorithm takes the openings of the committed adjacency matrix and the openings of the en-
cryptions as the prover’s state. It receives the randomness for the commitments and the en-
cryptions, and the permutation from the firewall. It adds the state of the firewall to the state
of the prover and permutes the adjacency matrix by the permutation provided by the firewall.
This new state is returned as the state of the prover composed with the firewall.

If a corrupt prover provides an invalid response in the third round or opens its share of
coin incorrectly then the firewall detects failure and sends a ⊥ to the verifier. Next, we briefly
discuss that RFzk provides weak exfiltration resistance for the weakly tampered parties.

• Verifier is tampered : The firewall rerandomizes a tampered verifier’s challenge string by an
additive offset e′. The rerandomized challenge is identically distributed to the rerandom-
ization of an honestly generated challenge string. A weak ER adversary cannot distinguish
between the two cases.
• Prover is tampered : A tampered prover can send a a which is constructed using bad random-

ness. The firewall RFzk rerandomizes it as â. Due to the additive homomorphic property of
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Fig. 15. Reverse firewall RFzk for a tampered prover in Πzk. The same firewall works for a tampered verifier
Com = (Gen,Com,Verify) is an additively homomorphic equivocal commitment scheme where Com(urs, a1; b1) ·
Com(urs, a2; b2) = Com(urs, a1+a2; b1+b2) for a1, a2 ∈ {0, 1}λ and b1, b2 ∈ RCom respectively. PKE = (Gen,Enc,Dec) is an ad-
ditively homomorphic IND-CPA encryption with oblivious ciphertext sampleability where Enc(pk,m1; r1) · Enc(pk,m2; r2) =
Enc(pk,m1 +m2; r1 + r2) for m1,m2 ∈MEnc andRCom ≡MEnc.REnc is the randomness space of Enc algorithm.

Prover P Firewall RFzk Verifier V

Commit:
Send a=(Te,{cij ,E

i
j,0,E

i
j,1}j∈[n2],i∈[`])−−−−−−−−−−−−−−−−−−−−−−−−→

1. Sample e′ ← {0, 1}` and set êP = eP ⊕ e′

Set T̂e = Te · Enc(pk, e′, d′e) where d′e ← REnc

2. ∀i ∈ [`], j ∈ [n2], perform the following:

Sample rij
′ ←RCom and set cij

′
= Com(0; rij

′
)

Sample sij,0
′ ←REnc and set Eij,0

′
= Enc(pk, rij

′
, sij,0

′
)

Sample sij,1
′ ←REnc and set Eij,1

′
= Enc(pk, rij

′
, sij,1

′
)

Sample permutation γi′ on n-node graph

For α = γi
′
(j), perform the following:

Set ĉiα = cij · cij
′

Set (Êiα,0, Êiα,0) = (Eij,0 · Eij,0
′
, Eij,1 · Eij,1

′
)

3. Set â = (T̂e, {ĉij , Êij,0, Êij,1}j∈[n2],i∈[`])

Send â−−−−−−−−−−−−−−−−→

Challenge:
Send eV←−−−−−−−−−−−−−−−−

4. Compute êV = eV ⊕ e′

Send êV←−−−−−−−−−−−−−−−−−−−−−−−−

Verify:
Send (eP,de)−−−−−−−−−−−−−−−−−−−−−−−−−→

5. êP = eP ⊕ e′ and d̂e = de + d′e
send (êP,d̂e)−−−−−−−−−−−−−−−−→

If ei = 0 :

Send zi=
(
{j,1,rij ,s

i
j}j∈Hi

)
−−−−−−−−−−−−−−−−−−−−−−−−−→

6. If ei = 0, for j ∈ Hi and α = γi
′
(j) :

Set ẑi = ẑi ∪ {α, 1, rij + rij
′
, sij,1 + sij,1

′}
send ẑi−−−−−−−−−−−−−−−−→

If ei = 1 :

Send zi=
(
γi,{j,bij ,r

i
j ,s

i
j}j∈γi(G)

)
−−−−−−−−−−−−−−−−−−−−−−−−−→

7. If ei = 1, for j ∈ γi(G) and α = γi
′
(j) :

Set ẑi = ẑi ∪ {α, 0, rij + rij
′
, sij,0 + sij,0

′}
send ẑi∪γ′(γ)−−−−−−−−−−−−−−−−→
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Com and PKE the distribution of â is indistinguishable from an a which is generated us-
ing an honest implementation. If an ER adversary can distinguish the rerandomized mes-
sages of a tampered prover from the rerandomized mesages of an honestly implementated
prover then he can be used to break the hiding property of Com or the IND-CPA property
of Enc.

We have proven that RFzk provides weak exfiltration resistance and Thm. 9 proves that
Πzk implements FZK functionality against adaptive corruption of parties. Combining the two
results with Thm. 5 we prove that the firewall weakly preserves security against adaptive
corruption of parties. The same argument holds true for multiple proofs where each proof is
adaptively secure and possesses its own firewall providing weak exfiltration resistance for the
parties. ut

From Thm. 10, and our implication from Thm. 5, we conclude weak security preservation;
we have that ΠRFzk

zk securely implements FZK in the presence of adaptive corruptions as sum-
marized in Thm. 11 below.

Theorem 11. ΠRFzk
zk securely implements the FZK functionality (Def. 12) in the urs model against

adaptive corruption of parties, and in the presence of functionality-maintaining tampering of honest
parties.

Instantiation from LWE. We define lattice parameters - (n,m, q,N, χ) according to [GSW13]
s.t LWE assumption holds. We consider the homomorphic trapdoor function of [GVW15] from
LWE as our equivocal commitment scheme. The commitment scheme is fully homomorphic
over the message space MCom ∈ {0, 1} and it is additively homomorphic over the random-
ness spaceRCom ∈ Zm×mq . We consider the fully homomorphic encryption of GSW ([GSW13]),
based on LWE assumption, as our PKE scheme. The encryption scheme is fully homomorphic
over the message space MEnc ∈ Zq and it is additively homomorphic over the randomness
space REnc ∈ {0, 1}N×m. Recall that, in Πzk we need to encrypt the randomness of the com-
mitment using our PKE. For each commitment c = Com(m; r) to message m with randomness
r ← Zm×mq using the [GVW15] protocol, we encrypt r using m2 GSW encryptions. The setup
string urscom consists of a random matrix ACom ∈ Zn×mq . The public key pk consists of a random

matrix AEnc ∈ Zm×(n+1)
q during the protocol execution. This yields Πzk in the uniform random

string model based on LWE assumption.

7.3 Adaptively-Secure MPC in the ursmpc model

We present our actively-secure protocol Πmpc which withstands adaptive corruption of par-
ties in Fig. 16, 17. Adaptive security is achieved by the adaptive security of the underlying
primitives and subprotocols – ZK, augmented coin-tossing, semi-honest MPC protocol and
commitments.

Theorem 12. Assuming Com is an adaptively secure commitment in the urscom model, Πa-coin se-
curely implements the augmented coin-tossing functionality against adaptive corruption of parties in
the ursa-coin model, Πzk securely implements the FZK functionality against adaptive corruption of par-
ties in the urszk model and Πsh-mpc is an adaptively-secure semi-honest MPC protocol in the urssh-mpc

model, Πmpc is an actively secure MPC protocol that withstands adaptive corruption of parties in the
ursmpc = (urscom, urszk, ursa-coin, urssh-mpc) model.

Proof. We prove our security by providing an adaptive simulator Simmpc in Fig. 18, 19, 20 for
Πmpc. The semi-honest mpc protocol has a simulator Simsh-mpc which simulates the protocol
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Fig. 16. Adaptively secure Multi-party Protocol Πmpc in the urs model

– Primitives: (Gen,Com,Verify) is an adaptively secure non-interactive commitment scheme and Πzk =

(Gen,P1,V1,P2,V2) is an adaptively secure rerandomizable input-delayed protocol implementing FZK in
the urszk model.

– Subprotocols: Adaptively secure augmented coin-tossing protocol Πa-coin in the ursa-coin model and adaptively
secure semi-honest k-round MPC protocol Πsh-mpc in the urssh-mpc model. Each invocation of Πa-coin generates
λ for initiating party.

– Inputs: Each party gets ursmpc = (urscom, urszk, ursa-coin, urssh-mpc) and security parameter 1λ. Party Pi has private
input xi for i ∈ [n].

– Output: Parties compute the ideal functionality Fmpc and output y = Fmpc(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).

– Notations: Let T <T =
⋃
t∈[T−1]{T ti }i∈[n] denote the entire transcript of Πsh-mpc until the end of round T − 1

for 0 < T ≤ k. We assume T 0 = ⊥. NMF is the next message function of Πsh-mpc for Pi computing
NMF(T <t, xi, ri) = T ti . Let Nλ = no. of random bits required by Pi to commit |xi| bits + no. of random
bits required by Pi to compute Πsh-mpc. γ`inp,i,j denotes the `-th (` ∈ [3]) round message in the ZK proof for
Rinp where Pi is the prover and Pj is the verifier. Similarly, γ`t,i,j (where t ∈ [k]) denotes the `-th (` ∈ [3])
round message in the ZK proof for Rmpc where Pi is the prover and Pj is the verifier.

– Relations: Let Rinp((c, cinp), (x, r, s)) = 1 iff (c = Com(x; r) ∧ cinp = Com(r; s)). Let
Rmpc((T , T ′, c, cinp, c′), (x, r, s, r′, s′)) = 1 iff (c = Com(x; r) ∧ cinp = Com(r; s) ∧ c = Com(r′; s′) ∧ NMF(T ′, x, r′) =

T ).

Offline Phase:
The parties run the following protocols in parallel:
– For i ∈ [n], Party Pi invokes Πa-coin N times in parallel as the initiating party to obtain randomness for

input commitment - (rinpi , sinpi ) s.t. cinpi = Com(rinpi ; sinpi ), and randomness for MPC protocol (r
mpc
i , s

mpc
i ) s.t.

c
mpc
i = Com(r

mpc
i ; s

mpc
i ) = {rmpc

i [t], c
mpc
i [t]}t∈[k]. Every party obtains cinpi and c

mpc
i .

– For i ∈ [n], j ∈ [n] \ i, Party Pi runs Πzk.P1(1λ, 1|Rinp|) as prover with Pj as verifier to obtain γ1inp,i,j . Upon
obtaining γ1inp,i,j , Pj runs V2 = Πzk(1λ) on γ1inp,i,j to obtain γ2inp,i,j . Pi and Pj obtain (γ1inp,i,j , γ

2
inp,i,j). Pi aborts

if γ2inp,i,j is invalid.
– For i ∈ [n], j ∈ [n] \ j, t ∈ [k], Party Pi runs Πzk.P1(1λ, 1|Rmpc|) as prover with Pj as verifier to obtain γ1t,i,j .

Upon obtaining γ1t,i,j , Pj runs V2 = Πzk(1λ) on γ1t,i,j to obtain γ2t,i,j . Pi and Pj obtain (γ1t,i,j , γ
2
t,i,j). Pi aborts

if γ2t,i,j is invalid.

Online Phase:
Each party Pi (for i ∈ [n]) performs the following :

Input Commitment Phase:

– Each party Pi commits to his input xi as ci = Com(xi; r
inp
i ) and broadcasts ci.

– For each j ∈ [n] \ i, party Pi proves honest computation of ci using the committed randomness. Pi computes
proof γ3inp,i,j = Πzk.P2 forRinp((ci, c

inp
i ), (xi, r

inp
i , sinpi )) on (γ1inp,i,j , γ

2
inp,i,j). Pi sends Γinp = (γ1inp,i,j , γ

2
inp,i,j , γ

3
inp,i,j)

to Pj .
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Fig. 17. Adaptively-Secure Multi-party Protocol in the urs model(cont.)

Local Computation at the end of Input Commitment Phase:
After receiving the n commitments party Pi aborts if ∃j ∈ [n] s.t. Πzk.V2(Γinp,j,i) = 0.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Round 1 ≤ t ≤ k:

– If any party aborts at the end of round t− 1 then abort.

– Pi computes the t-th round message of the MPC protocol as T t = NMF(T <t, xi, rmpc
i [t]). Pi broadcasts T ti .

– For each j ∈ [n] \ i, party Pi proves honest computation of T ti to Pj using the com-
mitted input xi and committed randomness r

mpc
i [t]. Pi computes proof γ3t,i,j = Πzk.P2 for

Rmpc((T ti , T <t, ci, c
inp
i , c

mpc
i [t]), (xi, r

inp
i , sinpi , r

mpc
i [t], s

mpc
i [t])) on (γ1t,i,j , γ

2
t,i,j). Pi sends Γt,i,j = (γ1t,i,j , γ

2
t,i,j , γ

3
t,i,j)

to Pj .

Local Computation at the end of Round t:

– Party Pi aborts if ∃j ∈ [n] \ i s.t. Πzk.V2(Γt,j,i) = reject.

– For i ∈ [n], Pi sets T <t+1 = T <t
⋃
{T tj }j∈[n] and continues to next round.

Output Computation for Party {Pi}i∈[n] :

– If any party aborts at the end of round k then abort.

– Pi sets T ≤k = T <k
⋃
{T kj }j∈[n] and outputs y = NMF(T ≤k, xi, rmpc

i [k]).

steps of Πsh-mpc given the output and the input of the corrupt parties. The augmented coin-
tossing protocol Πa-coin has an adaptive simulator Sima-coin which extracts the secret random
coins from a corrupt initiating party. Sima-coin also allows a simulated initiating party to equiv-
ocate his committed coins. Simzk computes simulated proofs on behalf of an honest prover and
provides consistent randomness corresponding to a witness when the prover gets corrupted.
Simzk also extracts a valid witness from an accepting proof which is constructed by a malicious
prover.

On a high level, Simmpc invokes Sima-coin to obtain simulated randomness and simulated
commitments of randomness on behalf of initiating parties who are honest. These randomness
are used for the input commitments and the MPC protocol. Simmpc invokes Simzk to obtain
simulated messages for the first two rounds of each ZK protocol where the prover is an honest
party participating in the MPC protocol. These are performed in the offline phase. In the online
phase, Simmpc invokes SimCom to obtain simulated commitments on behalf of the honest par-
ties and he invokes Simzk on the simulated commitments for relation Rinp to obtain simulated
proof for input commitments. These commitments and proofs are broadcasted as part of the
input commitment phase. Simmpc obtains the input commitments and proofs constructed by
malicious parties. Simmpc invokes SimCom to extract the corresponding inputs. It also invokes
Sima-coin to extract the committed randomness of the dishonest parties. The same inputs and
randomness should have been used by the corrupt parties to construct ZK proofs. So, Simmpc
also extracts the witness from the ZK proofs and verifies their consistency with the previously
extracted values. If all the checks pass, then the extracted inputs are correct and Simmpc in-
vokes the ideal functionality with the extracted inputs of the corrupt parties to obtain output
y. Now, Simmpc invokes Simsh-mpc with the extracted inputs and output to obtain simulated
MPC messages. If a party Pi gets adaptively corrupted then Simmpc obtains the party’s input
xi. It invokes Simsh-mpc with xi to obtain randomness rmpc

i . Simmpc invokes SimCom with xi to
obtain the randomness rinpi . Simmpc invokes Sima-coin on rinpi and rmpc

i to obtain the random-
ness values sinpi and smpc

i . Simmpc invokes Simzk with input witnesses (xi, r
inp
i , sinpi , rmpc

i , smpc
i )

and (xi, r
inp
i , sinpi ) for proofs constructed by Pi (as prover) to obtain simulated prover states

which are consistent with the witness. Simmpc returns (xi, r
inp
i , sinpi , rmpc

i , smpc
i ) and the simu-

lated prover states as the view of Pi. This view consists of the adversary’s view corresponding
to corrupt party Pi. The final view of the adversary consists of all the corrupt parties’ views.
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Our formal simulator is provided in Fig. 18, 19, 20 for completeness and we prove that the
real world adversary view is indistinguishable from the ideal world adversary view as follows:

– Hyb0 : This is the real world execution of the protocol.

– Hyb1 : Same as Hyb1 except the ZK proofs are simulated by invoking Simzk. Simzk is also
used to extract (xj , r

inp
j , sinpj , rmpc

j [t], smpc
j [t]) and (xj , r

inp
j , sinpj ) from maliciously constructed

proofs Γt,j,i and Γinp,j,i for j ∈ C and i ∈ H. If an honest party Pi gets adaptively cor-
rupted then his simulated proof randomness is obtained by invoking Simzk on the sim-
ulated proof. Simmpc aborts if Simzk fails to produce simulated proofs for honest parties
or open those simulated proofs to witnesses when the prover gets adaptively corrupted.
Simmpc also aborts if Simzk fails to extract from maliciously constructed proof.

Indistinguishability follows due to adaptive security of Πzk.

– Hyb2 : Same as Hyb1 except the augmented coin-tossing protocol for an honest initiating
party is simulated by invoking Sima-coin. For a corrupt initiating party the committed coins
are extracted by invoking Sima-coin. If the honest party gets adaptively corrupted then his
simulated coins are opened consistent to the required coins by invoking Sima-coin. Simmpc
aborts if Sima-coin fails to produce simulated committed coins for honest initiating parties
or open those committed coins to required coins when the initiating party gets adaptively
corrupted. Simmpc also aborts if Sima-coin fails to extract from committed coins where the
initiating party is corrupt.

Indistinguishability follows due to adaptive security of Πa-coin.

– Hyb3 : Same as Hyb2 except the input commitment for an honest party is simulated by in-
voking SimCom. For a corrupt party the committed inputs are extracted by invoking SimCom.
If the honest party gets adaptively corrupted then his simulated commitments consistently
to his input by invoking SimCom. Simmpc aborts if SimCom fails to produce simulated com-
mitments for honest parties or open those commitments to the party’s input when the party
gets adaptively corrupted. Simmpc also aborts if SimCom fails to extract from input commit-
ments constructed by malicious parties.

Indistinguishability follows due to adaptive security of Com.

– Hyb4 : Same as Hyb3 except Simmpc invokes the ideal functionality with the extracted in-
puts of corrupt parties to obtain the output y. Simmpc invokes Simsh-mpc with the input and
output of the corrupt parties to obtain simulated protocol messages on behalf of the honest
parties. If an honest party gets adaptively corrupted and Simmpc obtains the party’s input
then Simmpc invokes Simsh-mpc with the party’s input to obtain the party’s view. Simmpc
aborts if Simsh-mpc fails to produce a consistent view.

Indistinguishability follows due to adaptive security of Simsh-mpc.

ut
Next, we consider a reverse firewall RFimpc = (RFizk,RF

i
a-coin) to be the firewall for Pi in

Πmpc. RFimpc is obtained by first applying RFizk to the messages of Πzk phase of Πmpc, followed
by application of RFia-coin to the messages in the Πa-coin phase, if RFizk did not output ⊥. We
show that RFimpc provides weak exfiltration resistance for party Pi in Πmpc.

Theorem 13. Let Com be an adaptively secure commitment in the urscom model, Πa-coin securely im-
plement the augmented coin tossing functionality against adaptive corruption of parties in the ursa-coin
model, Πzk securely implement the FZK functionality against adaptive corruption of parties in the urszk
model, and Πsh-mpc be an adaptively-secure semi-honest MPC protocol in the urssh-mpc model. Let RFizk
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Fig. 18. Adaptive Simulator Simmpc for Πmpc

Simmpc

– Public Inputs: Each party receives ursmpc = (urscom, urszk, ursa-coin, urssh-mpc) as setup string and security param-
eter 1λ.

– Trapdoors: Trapdoor for ursmpc = (urscom, urszk, ursa-coin, urssh-mpc) is denoted as tdmpc =

(tdcom, tdzk, tda-coin, tdsh-mpc).

– Simulators: Adaptive simulator SimCom for Com, adaptive simulator Simzk for Πzk and adaptive simula-
tor Sima-coin for Πa-coin and adaptive simulator Simsh-mpc for Πsh-mpc respectively. SimCom, Simzk,Sima-coin and
Simsh-mpc knows the trapdoors tdcom, tdzk, tda-coin and tdsh-mpc respectively.

– Ideal Functionality: Ideal functionality Fmpc computes the function f(x1, x2, . . . , xn) = y over the inputs of the
parties.

– Notations: C denotes the current set of corrupt parties and H denotes the current set of honest parties. [a, b]

denotes the set (a, a + 1, . . . , b) where a < b. γ`inp,i,j denotes the `-th (` ∈ [3]) round message in the ZK proof
for Rinp where Pi is the prover and Pj is the verifier. Similarly, γ`t,i,j (where t ∈ [k]) denotes the `-th (` ∈ [3])
round message in the ZK proof for Rmpc where Pi is the prover and Pj is the verifier.

– Relations: Let Rinp((c, cinp), (x, r, s)) = 1 iff (c = Com(x; r) ∧ cinp = Com(r; s)). Let
Rmpc((T , T ′, c, cinp, c′), (x, r, s, r′, s′)) = 1 iff (c = Com(x; r) ∧ cinp = Com(r; s) ∧ c = Com(r′; s′) ∧ NMF(T ′, x, r′) =

T ).

Offline Phase:
The simulator Simmpc simulates on behalf of the honest parties as follows:
– The simulator algorithm runs Sima-coin on behalf of honest parties Pi for i ∈ H for N times to obtain simu-

lated commitment and randomness pairs - (cinpi , rinpi
′
) and (c

mpc
i , r

mpc
i
′
), and simulated states sinpi

′
and s

mpc
i
′

respectively. Every party obtains cinpj and c
mpc
j for j ∈ [n].

– The simulator algorithm runs Simzk on (1λ, 1|Rinp|) as honest prover on behalf of honest parties Pi for i ∈
H, j ∈ [n]\ for k times to obtain simulated proofs (γ1inp,i,j , γ

2
inp,i,j) and simulated states st′inp,i,j where t ∈ [k].

Every pair of Pi and Pj obtain (γ1inp,i,j , γ
2
inp,i,j). Simmpc aborts if Simzk aborts.

– The simulator algorithm runs Simzk on (1λ, 1|Rmpc|) as honest prover on behalf of honest parties Pi for i ∈
H, j ∈ [n]\ for k times to obtain simulated proofs (γ1t,i,j , γ

2
t,i,j) and simulated states st′t,i,j where t ∈ [k]. Every

pair of Pi and Pj obtain (γ1t,i,j , γ
2
t,i,j) for t ∈ [k]. Simmpc aborts if Simzk aborts.

Adaptive Corruption of Party Pi:
Simmpc obtains xi as input of Pi. Simmpc samples random strings for rinpi and r

mpc
i . It obtains sinpi and s

mpc
i as

the commitment randomness corresponding to rinpi and r
mpc
i by invoking Sima-coin on (cinpi , rinpi , rinpi

′
, sinpi

′
) and

(c
mpc
i , r

mpc
i , r

mpc
i
′
, s

mpc
i
′
) respectively. Simmpc invokes Simzk on ((γ1t,i,j , γ

2
t,i,j),⊥, st′t,i,j) to obtain stt,i,j for j ∈ [n] \

i, t ∈ [k]. Simmpc invokes Simzk on ((γ1inp,i,j , γ
2
inp,i,j),⊥, st′inp,i,j) to obtain stinp,i,j for j ∈ [n] \ i, t ∈ [k]. Simmpc returns

(xi, r
inp
i , sinpi , r

mpc
i , s

mpc
i , {stt,i,j}j∈[n]\i,t∈[k], {stinp,i,j}j∈[n]\i) as Pi’s view.
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Fig. 19. Adaptive Simulator for Πmpc(cont.)

Input Commitment Phase:

– Simmpc obtains simulated commitments and simulated openings as (ci, x
′
i, r

inp
i

′′
) by invoking SimCom. Simmpc

broadcasts ci on behalf of Pi.

– For each j ∈ [n] \ i, Simmpc invokes Simzk on statement (ci, c
inp
i ) and (γ1inp,i,j , γ

2
inp,i,j) for relation Rinp to obtain

simulated proofs Γinp,i,j = (γ1inp,i,j , γ
2
inp,i,j , γ

3
inp,i,j) and simulated prover state st′inp,i,j . Simmpc sends Γinp,i,j to

Pj on behalf of Pi.

Local Computation by Simmpc at the end of Input Commitment Phase:

– For j ∈ C, Simmpc extracts xj by invoking SimCom on cj and aborts if xj = ⊥.

– For j ∈ C, Simmpc extracts (rinpj , sinpj ) by invoking Sima-coin on cinpj and c
mpc
j and aborts if rinpj = ⊥ or sinpj = ⊥.

– For j ∈ C, Simmpc extracts Pj ’s proof witness - (x′j , r
inp
j

′
, sinpj

′
) by invoking Simzk on Γinp,j,i for every i ∈ H.

Simmpc aborts if xj 6= x′j , r
inp
j 6= rinpj

′
or sinpj 6= sinpj

′
.

– Simmpc sets T <2 = T 1 = {T 1
j }j∈[n] for every {Pi}i∈H.

– Simmpc invokes ideal functionality Fmpc with inputs {xj}j∈C to obtain output y.
Adaptive Corruption of Party Pi:

Simmpc obtains xi as input of Pi. Simmpc invokes SimCom with (ci, xi, xi
′, rinpi

′′
) to obtain randomness rinpi . Simmpc

invokes Sima-coin with inputs (cinpi , rinpi , rinpi
′
, sinpi

′
) to obtain sinpi . Simmpc invokes Simzk on (Γinp,i,j to obtain stinp,i,j .

Simmpc invokes Simzk on ((γ1t,i,j , γ
2
t,i,j),⊥, st′t,i,j) to obtain stt,i,j for j ∈ [n] \ i, t ∈ [k]. Simmpc samples random

string for rmpc
i and obtains smpc

i as the commitment randomness corresponding to rmpc
i by invoking Sima-coin on

(c
mpc
i , r

mpc
i , r

mpc
i
′
, s

mpc
i
′
). Simmpc returns (xi, r

inp
i , sinpi , r

mpc
i , s

mpc
i , {stt,i,j}j∈[n]\i,t∈[k]) as Pi’s view.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Round 1 ≤ t ≤ k:

– Simmpc invokes Simsh-mpc on ({xj}j∈C, y, T <t, {rmpc
i
′′

[1, t − 1]}i∈H) to obtain simulated t-th round message for
{Pi}i∈H as {T ti }i∈H and simulated randomness {rmpc

i
′′

[t]}i∈H. For i ∈ H, Simmpc broadcasts T ti on behalf of Pi.

– Simmpc simulates proofs for every honest party Pi (where i ∈ H) as follows: For j ∈ [n] \ i Simmpc invokes Simzk

on statement (T ti , T <t, ci, c
inp
i , c

mpc
i [t]) for relation Rmpc to obtain simulated proofs Γt,i,j = (γ1t,i,j , γ

2
t,i,j , γ

3
t,i,j)

and simulated prover state st′t,i,j . Simmpc sends Γt,i,j to Pj on behalf of Pi.
Local Computation by Simmpc at the end of Round t:

– For j ∈ C, Simmpc extracts (r
mpc
j [t], s

mpc
j [t]) by invoking Sima-coin on cmpc

j [t] and aborts if rmpc
j [t] = ⊥ or smpc

j [t] = ⊥.

– For j ∈ C, Simmpc extracts Pj ’s proof witness - (x′j , r
inp
j

′
, sinpj

′
, r

mpc
j [t]

′
, s

mpc
j [t]

′
) by invoking Simzk on Γt,j,i for

every i ∈ H. Simmpc aborts if xj 6= x′j , r
inp
j 6= rinpj

′
, sinpj 6= sinpj

′
, rmpc
j [t] 6= r

mpc
j [t]

′ or smpc
j [t] 6= s

mpc
j [t]

′.

– Else, Simmpc sets T <t+1 = T <t
⋃
{T tj }j∈[n] for every {Pi}i∈H and continues to next round.
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Fig. 20. Adaptive Simulator for Πmpc(cont.)

Adaptive Corruption of Party Pi:
Simmpc obtains xi as input of Pi. Simmpc invokes Simsh-mpc with input ({xj}j∈C, y, T ≤t, xi, rmpc

i
′′

[1, t])

to obtain randomness r
mpc
i [1, t] for the MPC protocol. Simmpc sets r

mpc
i [t + 1, k] randomly. Simmpc in-

vokes Sima-coin with input (c
mpc
i , r

mpc
i , r

mpc
i
′
, s

mpc
i
′
) to obtain randomness s

mpc
i . Simmpc invokes Simzk on

(Γu,i,j , (xi, r
inp
i , sinpi , r

mpc
i [u], s

mpc
i [u]), st′u,i,j) to obtain stu,i,j for j ∈ [n] \ i, u ∈ [1, t]. Simmpc invokes

Simzk on ((γ1u,i,j , γ
2
u,i,j),⊥, st′u,i,j) to obtain stu,i,j for j ∈ [n] \ i, u ∈ [t + 1, k]. Simmpc returns

(xi, r
inp
i , sinpi , r

mpc
i , s

mpc
i , {stu,i,j}j∈[n]\i,u∈[k]) as Pi’s view.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Computation for Party {Pi}i∈H :

– If any party aborts at the end of round k then abort.

– Else, Simmpc sets T ≤k = T <k
⋃
{T tj }j∈[n] and outputs y.

Adaptive Corruption of Party Pi:

Simmpc obtains xi as input of Pi. Simmpc invokes Simsh-mpc with input ({xj}j∈C, y, T ≤k, xi, rmpc
i
′′

) to obtain random-
ness rmpc

i for the MPC protocol. Simmpc invokes Sima-coin with input (c
mpc
i , r

mpc
i , r

mpc
i
′
, s

mpc
i
′
) to obtain randomness

s
mpc
i . Simmpc invokes Simzk on (Γu,i,j , (xi, r

inp
i , sinpi , r

mpc
i [u], s

mpc
i [u]), st′u,i,j) to obtain stu,i,j for j ∈ [n] \ i, u ∈ [1, k].

Simmpc returns (xi, r
inp
i , sinpi , r

mpc
i , s

mpc
i , {stu,i,j}j∈[n]\i,u∈[k]) as Pi’s view.

and RFia-coin be transparent, functionality-maintaining, and weakly exfiltration resistant for Pi in Πzk
and Πa-coin respectively. Then, RFimpc is a transparent, functionality-maintaining, weakly exfiltration
resistant firewall for Pi in Πmpc .

Proof. The firewall RFmpc is functionality maintaining since the individual firewalls RFzk and
RFa-coin are functionality maintaining. The transparency property of the firewall follows from
the transparency of RFzk and RFa-coin. If RFzk or RFa-coin detects failure then RFmpc also detects
a failure.

Next, we argue weak exfiltration resistance provided by RFmpc. In Πmpc the protocol mes-
sages ofΠsh-mpc are deterministic given the input and randomness of each party. We know that
the parties are weakly tampered, i.e. the tampering maintains functionality and does not abort.
The randomness is generated from Πa-coin and the protocol enforces the party to use the same
randomness fromΠa-coin to compute the input commitments and theΠsh-mpc protocol steps by
giving ZK proofs. Thus, a tampered party can leak only in Πa-coin or through the ZK proofs.
This leakage is prevented by the firewalls of Πa-coin and Πzk. We prove this claim through a
sequence of hybrids. Let H and C denote the set of honest and corrupt parties respectively.

– Hyb0 : This is the execution of Πmpc between the set of tampered honest parties {Pi}i∈H
and corrupt parties {Pj}j∈C.

– Hyb1 : This is the execution of Πmpc between the set of tampered honest parties {Pi}i∈H
and corrupt parties {Pj}j∈C where the tampered parties run the honest implementation of
Πzk using true randomness and rest of the computation is performed according to Hyb0.

The two hybrids are indistinguishable due to weak exfiltration resistance property pro-
vided by RFzk.

– Hyb2 : This is the execution of Πmpc between the set of tampered honest parties {Pi}i∈H
and corrupt parties {Pj}j∈C where every party Pi runs their honest implementation.

The two hybrids are indistinguishable due to weak exfiltration resistance property pro-
vided by RFa-coin.

ut
We have shown in Thm. 12 thatΠmpc is adaptively secure. Now, considerΠRF

mpc, a firewalled
version of the protocol Πmpc where all honest parties Pi have their respective firewalls RFi
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attached to them. From Thm. 13, and our implication from Thm. 5, we conclude weak security
preservation.

Theorem 14. ΠRF
mpc is an actively secure MPC protocol against adaptively corruption of parties, and

in the presence of functionality maintaining tampering of honest parties.

Instantiation. We obtainΠzk andΠa-coin based on LWE and DDH assumptions respectively. We
assume thatΠzk setup consists of n setup strings –{ursizk}i∈[n], where ursizk is used by party Pi to
prove statements. Similarly, Πa-coin consists of n setup strings – {ursia-coin}i∈[n], where ursia-coin
is used in a session where party Pi is the initiating party. The commitment scheme can be
instantiated from the adaptively secure commitment of [CSW20a] based on DDH in the urscom
model. We assume that Com consists of n setup strings – {ursicom}i∈[n], where ursicom is used
by party Pi to commit. We obtain an adaptively secure semi-honest MPC protocol in the urs
model as follows. The work of [BLPV18] obtain a two-round semi-honest adaptively secure
MPC protocol based on adaptively secure two-round OT protocol and augmented NCE. The
work of [CSW20a] construct an adaptively secure two-round OT protocol from DDH in urs
model and instantiate [CDMW09] the augmented NCE from DDH; thus yielding a two-round
adaptively secure MPC protocol in the urs model from DDH. We instantiate Πsh-mpc using the
DDH-based MPC protocol of [CSW20a].

Round complexity. InΠmpc the subprotocolsΠa-coin and the first two rounds ofΠzk can be run in
parallel during the offline phase. Thus, the offline phase requires 3 rounds in total. The input
commitment phase requires 1 round and Πsh-mpc requires 2 rounds when instantiated using
the protocol of [CSW20a]. We get a 6 round MPC protocol from DDH and LWE. Our result is
outlined in Thm. 15.

Theorem 15. Assuming DDH and LWE assumption holds, then Πmpc is an actively secure MPC
protocol computing functionality Fmpc under reverse firewalls against adaptive corruption of parties
and runs within 6 rounds in ursmpc model.

8 Adaptively-Secure Multi-party Coin-Tossing Protocol with Reverse Firewalls in
the Plain Model

In this section we give a protocol in the plain model with reverse firewalls to generate the
setup string ursmpc required forΠmpc. A high level overview of our construction can be found in
Sec. 1.2 and our protocol is presented in Fig. 21. Our protocol satisfies security against adaptive
corruptions in the plain model and its security is summarized in Thm. 16.

Theorem 16. Let Discrete Log and Knowledge of Exponent Assumptions hold in a bilinear group G(see
Sec. 2.1) and PKE is a public key encryption with oblivious ciphertext sampling, oblivious public key
sampling, satisfying additive homomorphism over key space, message space, randomness space and ci-
phertext space with public key space being Zq. Πcoin(Fig. 21) securely implements coin-tossing func-
tionality(Def. 13) against adaptive corruptions in the plain model.

Proof. We prove that Πcoin is adaptively secure by providing an adaptive simulator Simcoin in
Fig. 23, 24. We prove indistinguishability between the real and ideal world adversary view
through a sequence of hybrids:

– Hyb0 : This is the real world execution of the protocol.
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Fig. 21. Adaptively-Secure Multi-party Coin-Tossing Protocol Πcoin using Reverse Firewalls without Setup

– Public Inputs: Each party gets as input the group G where DLP assumption holds. Every element g′ ∈ G \ 1 is
a generator. Every party also receives a generator g as input and a bilinear map e : G × G → H. Let PKE =

(Gen,Enc,Dec, oGen, oEnc) is a public key encryption with oblivious ciphertext sampling and oblivious public
keys sampling satisfying additive homomorphism over key space, message space, randomness space and
ciphertext space. Let the public key space of PKE be Zq .

Parameter Generation Phase:
The following protocol steps are repeated by every party Pi for i ∈ [n] with every party Pj for j ∈ [n] \ i to
generate the pair-wise commitment parameter hij where Pi is the committer and Pj is the verifier. We denote it
as h and the pairwise communication without any subscript ij to avoid notation overloading.

1. Pj samples an R← G. Pj sends R to Pi.
2. Pi aborts if R ∈ {1, g}. Pi samples a1, u← Zq and computes A1 = ga1 and commits to a1 using randomness u

as v = A1Ru. Pi also samples pk1 ← oGen(1λ) and commits to it as vp = gpk1Rup for up ← Zq . Pi sends (v, vp)

to Pj .
3. Pj samples A2 ← G, pk2 ← oGen(1λ), and sends (A2, pk2) to Pi.
4. Pi opens commitment vp by sending (up, pk1). Pi also sends u to Pj . Pi computes pk = pk1 + pk2.
5. Pj aborts if (up, pk1) is not a valid opening of vp. Else, Pj computes pk = pk1 + pk2. Pj computes A1 = v

Ru

and sets A = A1 · A2. Pj samples commitment trapdoor t ← Zq and sets commitment parameter as h = gt.
Pj sends (h,At) to Pi.

6. Pi computes A = A1 · A2 and aborts if e(h,A) 6= e(g, Z) where Pi received (h, Z) from Pj . Else, Pi proves
knowledge of discrete log of A1 by sending a1 to Pj . If v 6= ga1Ru then Pj aborts. Else, set (g, h) as the
pair-wise commitment parameter and pk as the pairwise encryption parameter.

Commitment Generation Phase:
Every party Pi chooses a random coin si ← {0, 1}, and commits to it pairwise. For i ∈ [n], every party Pi and
constructs cij = gsih

dij
ij where hij is the pairwise commitment parameter. Pi also encrypts the commitment

randomness as eij,si = Enc(pkij , dij ; yij) using randomness yij and samples eij,si ← oEnc(pkij), where pkij is the
pair-wise encryption parameter. Pi sends (cij , eij,0, eij,1) to Pj .
Commitment Opening Phase:
For all i ∈ [n], party Pi broadcasts si. Pi opens cij pairwise (for all j ∈ [n] \ i) by sending (dij , yij) and claims that
eij,si was obliviously sampled.

Output Phase:

For all i ∈ [n], party Pi verifies the commitments cji
?
= gsjh

dji
ji and eji,sj = Enc(pkji, dji; yji). If all verification

checks pass then Pi sets S = (Σk∈[n]sk) mod 2 and outputs S as the final random coin.
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Fig. 22. Reverse Firewall RFi for Party Pi in Πcoin

Parameter Generation Phase:
The following protocol steps are repeated for every party Pj for j ∈ [n] \ i where Pi is the committer and Pj is
the verifier:

1. When Pj sends R, RFi samples an r ← Zq and sends R̂ = Rr to Pi.
2. When Pi sends v = A1R̂u, RFi forwards v̂ = Â1Rû to Pj where Â1 = A1 · Ã, v̂ = v · Ã · Rũ and û = ru+ ũ for

random values ã, ũ← Zq and Ã = gã. When Pi sends vp = gpk1 R̂up , RFi forwards v̂p = g
ˆpk1Rûp to Pj where

ˆpk1 = pk1 + p̃k, v̂ = v · gp̃k ·Rũp and û = rup + ũp for random values ũp ← Zq and p̃k = oGen(1λ).
3. When Pj sends (A2, pk2), RFi forwards Â2 = A2 · Ã and ˆpk2 = pk2 + p̃k to Pi. Pi computes p̂k = pk1 + ˆpk2 =

pk1 + pk2 + p̃k.
4. When Pi sends commitment randomness (u, up, pk1), RFi drops the message if vp 6= gup R̂pk1 . Else, RFi

forwards (û, ûp, ˆpk1) to Pj .
5. Pj computes p̂k = ˆpk1 + pk2 = pk1 + pk2 + p̃k. Pj computes Â = A1 · A2 · Ã. When Pj sends (h, Z) = (h, Ât)

drop the message if e(h, Â) 6= e(g, Z). Else, sample a t̃← Zq and compute ĥ = ht̃. Send (ĥ, Ẑ) = (ĥ, Z t̃) to Pi.
Pj sets h as the parameter and Pi sets ĥ = ht̃ as the parameter. Pi and Pj sets p̂k as the pairwise public key
parameter.

6. When Pi sends a1, RFi drops the message if v 6= ga1 R̂u. Else, RFi forwards â1 = a1 + ã to Pj .

The above steps are also repeated when Pi is the verifier and Pj is the committer.
Commitment Generation Phase:
RFi chooses a random coin s̃i and computes {s̃ji}j∈[n]\i randomly such that Σj∈[n]\is̃ji = s̃i. RFi performs the
following :

- Pi is the committer: When Pi sends a commitment (cij , eij,0, eij,1) compute ĉij = gŝih
ˆdij
ij = cij · gs̃i · h

˜dij
ij

where ŝi = si + s̃i and d̂ij = dij · t̃ + d̃ij for d̃ij ← Zq . Set ˆeij,0 = t̃ · eij,0 + Enc(p̂k, d̃ij ; ˜yij,0) and ˆeij,1 =

t̃ · eij,1 + Enc(p̂k, d̃ij ; ˜yij,1). The firewall forwards (ĉij , ˆeij,0, ˆeij,1) to Pj . Here t̃, hij and p̂k correspond to the
run where Pj is verifier and Pi is committer.

- Pj is the committer: When Pj sends a commitment (cji, eji,0, eji,1) compute ĉji = gŝjh
ˆdji
ji = cji · g ˜sji · h

˜dji
ji

where ŝj = sj + s̃ji and d̂ji = dji · t̃ + d̃ji for d̃ji ← Zq . Set ˆeji,0 = t̃ · eji,0 + Enc(p̂k, d̃ji; ˜yji,0) and ˆeji,1 =

t̃ · eji,1 + Enc(p̂k, d̃ji; ˜yji,1). The firewall forwards (ĉji, ˆeji,0, ˆeji,1) to Pi. Here t̃, hji and p̂k correspond to the
run where Pi is verifier and Pj is committer.

Commitment Opening Phase:

- When party Pi broadcasts si, RFi broadcasts ŝi. When Pi opens commitments by sending (dij , yij), RFi drops
the message if cij 6= gsi ĥ

dij
ij or eij,si 6= Enc(p̂k, dij ; yij). Else, RFi sends (d̂ij , ŷij) = (t̃ · dij + d̃ij , t̃ · yij + ỹij) and

claims that eij,1−ŝi was obliviously sampled.

- When party Pj broadcasts sj , RFi sends ŝj to Pi. When Pj opens commitments by sending (dji, yji), RFi
drops the message if cji 6= gsj ĥ

dji
ji or eji,sj 6= Enc(p̂k, dji; yji). Else, RFi sends (d̂ji, ŷji) == (t̃ ·dji+ d̃ji, t̃ · yji+

ỹji) and claims that eji,1−ŝj was obliviously sampled.
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– Hyb1 : Same as Hyb0, except Simcoin aborts if P ∗j is corrupt and XA fails to extract a valid
trapdoor t in the parameter generation phase.
When P ∗j is corrupt in parameter generation phase and Pi is honest, A is randomly gener-
ated since A1 is random and v perfectly hides A1. Indistinguishability follows due to the
existence of a knowledge extractor XA for adversary A.

– Hyb2 : Same as Hyb1, except Simcoin rewinds to step 3 (after running parameter generation
phase till step 6) whenP ∗i is corrupt andPj is honest and Simcoin aborts ifP ∗i sends (a′1, u

′) 6=
(a, u) or (u′p, pk

′
1) 6= (up, pk1).

Indistinguishability follows due to the binding property of the Pedersen Commitment
scheme based on Discrete Log assumption. If both (a1, u) and (a′1, u

′) are valid openings
of v then the discrete log of R can be computed, breaking DL assumption. The reduction
obtains a random challenge R from the DL challenger and forwards it to P ∗j in step 1. After
obtaining two different valid openings (a1, u) and (a′1, u

′), the reduction outputs the dis-
crete log of R as a′1−a1

u1−u′1
. The same argument holds if both (u′p, pk

′
1) and (up, pk1) are valid

openings.
– Hyb3 : Same as Hyb2, except Simcoin samples (pk, sk) ← Gen(1λ) and sets pk′2 = pk − pk1

after rewinding.
In Hyb2, the public key pk is a random public key and in Hyb3 the public key pk is sam-
pled using Gen algorithm. An adversary who can distinguish between the two can dis-
tinguish a random public key from an honest public key breaking oblivious public key
sampling property. When we instantiate our encryption scheme using the [GSW13] this in-
distinguishability follows from the LWE assumption since the honest public key is an LWE
sample. The reduction can plug in the challenge public key pk′ by setting pk′2 = pk′ − pk1.

– Hyb4 : Same as Hyb3, except Simcoin computes (cij , eij,0, eij,1) in the equivocal mode (using
pairwise commitment trapdoor t) for an honest Pi such that cij opens to both 0 and 1.
The commitment cij perfectly hides the committed bit si. In Hyb3, eij,si is obliviously sam-
pled whereas in Hyb4 it is a valid encryption. Indistinguishability follows from the oblivi-
ous ciphertext sampleability.

– Hyb5 : Same as Hyb4, except Simcoin extracts dji,0 = Dec(sk, eji,0) and dji,1 = Dec(sk, eji,0)
and aborts in the parameter generation phase if cji = hdji,0 = ghdji,1 for a corrupt P ∗j .
Indistinguishability follows from the Discrete Log assumption. If P ∗i finds two valid open-
ings (0, dij,0) and (1, dij,1) then P ∗i finds discrete log of hij as 1

dij,0−dij,1 . Consider the param-
eter generation phase where P ∗i is the corrupt committer and Pj is the simulated verifier.
The reduction obtains A1 and after the first rewinding it samples an A′ = ga

′
and sets

A′2 = A′

A1
. The simulated Pj sets hij = X as the commitment parameter, where X is the dis-

crete log challenge. If P ∗i breaks binding of cij then it finds discrete log of X as explained
above.

– Hyb6 : Same as Hyb5, except Simcoin invokes the coin tossing functionality to obtain the
simulated coin s. Simcoin considers an honest party Pk and changes its random coin to sk
(by following the simulation algorithm) and opens ckj as (dkj,sk , ykj,sk) such that the output
coin equals to the simulated coin. Simcoin also claims that ekj,sk was obliviously sampled.
Simcoin also equivocates the commitments cij to si. This is the ideal world execution of the
protocol.
Indistinguishability follows due to the equivocal property of the Pedersen commitment
scheme and the oblivious ciphertext sampleability of the PKE. Simcoin has successfully ex-
tracted the trapdoors tkj for all parties Pj . Using these trapdoors it can equivocate the
commitments ckj correctly.
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Non-malleability. Non-malleability among different parameter generation subprotocols is en-
sured as follows:

– Pi is honest and P ∗j is corrupt A corrupt P ∗j can try to forward h from a simulated session
(where the committer is corrupt and verifier is honest) in this session. However, Pi is honest
and generates a random A1 and as a result A is random. If a corrupt P ∗j forwards h from
a different simulated subsession without knowing the trapdoor then P ∗j fails in the check

e(h,A)
?
= e(g,At).

– P ∗i is corrupt and Pj is honest In this case the parameter h is going to be randomly gener-
ated by an honest Pj . A corrupt P ∗i cannot forward a simulated commitment (where the
committer is honest and verifier is corrupt) under an h′ 6= h (where h′ was maliciously
generated) since P ∗i needs to compute discrete log of h to produce a valid opening of the
commitment under h given a valid opening under h′.

This completes our proof. The probability of abort in the real and ideal world is identical
since in both worlds the adversary sees only the final output coin in the commitment opening
phase. This final coin is either the real world coin or the simulated coin.

ut
Next, we turn to constructing a reverse firewall for Πcoin. We provide a reverse firewall RFi

for the tampered honest party Pi in Fig. 22. Weak ER for Pi is summarized in Thm. 17.

Theorem 17. Let RFi be the reverse firewall for party Pi in Πcoin. If Discrete Log assumption and
Knowledge of Exponent assumption holds in a bilinear group G and PKE is a public key encryption with
oblivious ciphertext sampling and oblivious public keys sampling satisfying additive homomorphism
over key space, message space, randomness space and ciphertext space and public key space of PKE be
Zq. Then RFi is transparent, functionality maintaining and provides weak exfiltration resistance for
party Pi against every other party {Pj}j∈[n]\i with valid transcripts, and detects failure for Pi.

Proof.
Next, we show that RFi (Fig. 22) in Πcoin provides weak ER for Pi by proving Thm. 17. It

can be verified that RFi is functionality maintaining and transparent. We assume that every
element in G is a generator. This holds when G = QRp where p = 2q+1 such that p, q are both
primes. A tampered/malicious verifier can generate a leaky pairwise commitment parameter
h. The firewall re-randomizes this h to ĥ = ht where t ← Zq and sends ĥ to the committer
as the commitment parameter. Upon receiving a commitment c = gsĥr from the committer to
coin s under ĥ the firewall rerandomizes it to a commitment ĉ under h to coin ŝ = s + s̃. It is
performed as ĉ = gŝhr̂ = (c) · gs̃ · hr̃ where r̂ = rt + r̃ and ŝ = s + s̃. By rerandomizing the
commitments the firewall also rerandomizes each party’s coin and thus the final output coin is
guaranteed to be random. A malicious verifier can also construct h in such a way that it doesn’t
pass the check for proof of trapdoor. The firewall can verify the check by computing the pairing
equation. In case the check doesn’t pass the firewall drops the message else it rerandomizes
h to ĥ and rerandomizes the check accordingly. Without pairing this would not have been
possible. The keys and the ciphertext for the encryption scheme can be rerandomized due to
the homomorphic property.

We argue indistinguishability between the transcripts for RFi ◦ Pi and RFi ◦ Pi for every
step as follows:

– Parameter Generation Phase: Here Pj can send maliciously generated messages. RFi verifies
if they are from the correct distribution and follow the protocol steps. If they fail to do so,
the firewall drops those messages and detects failures. Else, it sanitizes them and sends
them to Pi.
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Fig. 23. Adaptive Simulator for Πcoin

Simcoin
Parameter Generation Phase:
Simcoin simulates based on the corruption cases:

– Pi and Pj are honest : Interaction between honest parties are simulated honestly such that Simcoin knows the
trapdoor t for the pairwise commitment parameter h = gt and the sk for the pairwise encryption key pk.

– Pi is honest and P ∗j is corrupt : The following simulation steps are repeated for simulated honest party Pi for
i ∈ [n] with every corrupt party Pj for j ∈ [n] \ i:

1. P ∗j samples an R← G. P ∗j sends R to Simcoin.
2. Simcoin samples a1, u← Zq and computes A1 = ga1 and commits to a1 using randomness u as v = A1Ru.

Simcoin also samples pk1 ← oGen(1λ) and commits to it as vp = gpk1Rup for up ← Zq . Simcoin sends (v, vp)

to Pj .
3. P ∗j sends (A2, pk2) to Pi.
4. Simcoin sends (u, up, pk1) to P ∗j . Simcoin computes pk = pk1 + pk2.
5. P ∗j sends (h, Z) to Simcoin.
6. Simcoin computes A = A1 ·A2. It aborts if e(h,A) 6= e(g, Z). Else, it extracts t (such that h = gt) by invoking
XA on adversarial algorithm A for P ∗j and inputs (A, h, Z). Simcoin sends a1.

– P ∗i is corrupt and Pj is honest : The following simulation steps are repeated for corrupt party P ∗i for i ∈ [n] with
every simulated honest party Pj for j ∈ [n] \ i:

1. Simcoin samples an R← G and sends it to P ∗i .
2. P ∗i sends (v, vp) to Simcoin.
3. Simcoin samples a random A2 ← G and pk2 ← oGen(1λ) sends (A2, pk2) to P ∗i .
4. P ∗i sends (u, up, pk1) to Simcoin.
5. Simcoin computes A1 = v

Ru
and sets A = A1 · A2. Simcoin samples commitment trapdoor t ← Zq and sets

commitment parameter as h = gt. Simcoin sends (h,At) to Pi.
6. P ∗i sends a1 to Simcoin. If v 6= ga1Ru then Simcoin aborts. Else, Simcoin rewinds to step 3.
3. Simcoin samples another random A′2 6= A2 ← G. Simcoin samples (pk, sk)← Gen(1λ) and sets pk′2 = pk−pk1.

Simcoin sends (A′2, pk
′
2) to P ∗i .

4. P ∗i sends commitment randomness (u′, u′p, pk
′
1) to Pj . If (u′p, pk

′
1) 6= (up, pk1) then Simcoin aborts.

5. Simcoin computes A1 = v

Ru
′ and sets A′ = A1 · A′2. Simcoin samples commitment trapdoor t′ ← Zq and

sets commitment parameter as h′ = gt
′ . Simcoin sends (h′, A′t

′
) to Pi.

6. P ∗i sends a′1 to Simcoin. If (a1, u) 6= (a′1, u
′) then Simcoin sends 0 to P ∗i and aborts.

Commitment Generation Phase: Simcoin runs this phase honestly among honest parties and performs the following
for every honest party Pi:

– Pi is the committer : For every j ∈ [n] \ i, Simcoin constructs an equivocal commitment cij = hdij,0 = ghdij,1

using the pairwise commitment trapdoor t = tij . It encrypts the decommitments for both 0 and 1 as eb =

Enc(pk, dij,b; yij,b) for b ∈ {0, 1} and random yij,b values using the pairwise public key pk. Simcoin sends
(cij , eij,0, eij,1) to Pj .
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Fig. 24. Adaptive Simulator for Πcoin(Cont.)

Simcoin

– Pi is the verifier : For every j ∈ [n] \ i, Simcoin receives (cji, eji,0, eji,1). Simcoin decrypts dji,b = Dec(sk, eji,b)

using pairwise secret key sk = skji for b ∈ {0, 1}. Simcoin aborts if cji = hdji,0 = ghdji,1 , i.e. Pj has broken the
binding property of the commitment. Else, the simulator extracts the bit by setting sj = 0 if cji = hdji,0 or
sj = 1 if cji = ghdji,1 . Otherwise, Simcoin sets sj = ⊥.

Commitment Opening Phase : For honest parties Pi (i 6= k), Simcoin samples si ← {0, 1} and broadcasts si. Simcoin

opens cij to si by sending (dij,si , yij,si ) to Pj and claims that eij,si was obliviously sampled. Simcoin chooses
an honest party Pk. Simcoin invokes the coin tossing functionality to obtain output coin s and computes s′ =

(Σ`∈[n]\ks`) mod 2. Simcoin sets sk = s− s′. Simcoin broadcasts sk and opens ckj to sk by sending (dkj,sk , ykj,sk ) to
Pj and claims that ekj.sk was obliviously sampled.

Output Phase:
Simcoin verifies all the decommitments sent by the corrupt parties and aborts if any decommitment is invalid.
Else, Simcoin outputs s as the final random coin.

Simulating Adaptive Corruption of Parties:
When an honest party Pi gets corrupted the simulator can forward the view of the party to the adversary
corresponding to the honest view. The knowledge of the pairwise commitment trapdoors and the pairwise
secret keys are not provided to the adversary.

1. Here R̂ = Rr is random since r is randomly sampled.
2. When Pi sends v, RFi forwards v̂. A1 is rerandomized to Â1 = A1 · Ã and v̂ is a reran-

domized commitment under h where the randomness is û. It is indistinguishable from
an honestly generated commitment due to the randomness of Ã and ũ. When Pi sends
vu, RFi forwards v̂u. pk1 is rerandomized to ˆpk1 = pk1 + p̃k and v̂u is a rerandomized
commitment to ˆpk1 under fresh randomness ûp. ˆpk1 is indistinguishable from a random
public key due to the oblivious public key sampleability property.

3. When Pj sends (A2, pk2), RFi forwards Â2 = A2 · Ã1 and ˆpk2 = pk2 + p̃k to Pi. Â2 looks
random to Pi due to Ã. ˆpk2 is indistinguishable from a random public key due to the
oblivious public key sampleability property.

4. When Pi sends commitment randomness (u, up, pk1), RFi drops the message if vu does
not decommit correctly with (up, pk1). Else, it forwards (û, ûp, ˆpk1) to Pj . It is indistin-
guishable from an honestly generated one due to the randomness of ũ, ũp, and p̃k.

5. Here the firewall drops the message and detects failure if the check does not pass. Else,
it samples a random b̃ ← Zq and computes (ĥ, Ẑ) = (ĥ, Z b̃) and sends it to Pi. ĥ is
randomly distributed due to b̃.

6. When Pi sends a1, RFi drops the message if v 6= ga1R̂u. Else, RFi forwards â1 = a1 + ã
to Pj . This step is indistinguishable due to ã1.

– Commitment Generation Phase: RFi chooses the random coin s̃i such that the final coin out-
putted by the parties will be ŝ = s̃i+Σk∈[n]sk which is random due to s̃i. RFi also computes
s̃ji such that Σj∈[n]\is̃ji = s̃i.

- When Pi sends a commitment to si as (cij , eij,0, eij,1) the firewall rerandomizes it to
(ĉij , ˆeij,0, ˆeij,1) such that ĉij is a rerandomized commitment to ŝi = si + s̃i under fresh
randomness d̂ij . The encryptions are rerandomized and the corresponding decommit-
ments are encrypted. This can be performed since the encryption scheme and the com-
mitment scheme is additively homomorphic over the message and randomness space.

- When Pj sends a commitment to sj as (cji, eji,0, eji,1) the firewall rerandomizes it to
(ĉji, ˆeji,0, ˆeji,1) such that ĉji is a rerandomized commitment to ŝj = sj + s̃ji under fresh
randomness d̂ji. The encryptions are rerandomized and the corresponding decommit-

46



ments are encrypted. This can be performed since the encryption scheme and the com-
mitment scheme is additively homomorphic over the message and randomness space.

– Commitment Opening Phase: RFi provides consistent openings using its internal state from
previous step. The final coin outputted by the parties is ŝ = s̃i+Σksk which is random due
to s̃i.

We can also construct a Transform function for RFi and Pi which returns a composed state
for RFi ◦ Pi when Pi adaptively corrupted.

– In the parameter generation phase, when Pi is the committer the Transform function takes
in input (u, up, pk1, a1, R̂, A1, A2, A, v, vu, Ẑ, ĥ, ˆpk2) from Pi and (ũ, ũp, ˜pk1, ã1, Ã) from RFi
and returns (û, ûp, ˆpk1, â1, R, Â1, A2, Â, v̂, v̂u, h, Z, pk2).

– In the parameter generation phase, when Pi is the verifier the Transform function takes in
(t, R, Â1, A2, Â, v̂, Z, h, v̂p, ûp, pk1) from Pi and (r̃, t̃) from RFi and returns (t̂, R̂, A1, Â2, Â, v,

Ẑ, ĥ, vp, up, ˆpk1) where t̂ = t · t̃.
– In the commitment generation phase, when Pi is the committer the Transform function

takes in input (si, cij , dij , eij,0, eij,1, yij) from Pi and (s̃i, d̃ij , ˜yij,0, ˜yij,1, p̂k, t̃) from RFi, and
returns (ŝi, ĉij , d̂ij , ˆeij,0, ˆeij,1, ŷij).

– In the commitment generation phase, when Pi is the verifier the Transform function takes in
input (cji, eji,0, eji,1) fromPi and (s̃ji, d̃ji, ˜yji,0, ˜yji,1, p̂k, t̃) from RFi, and returns (ĉji, ˆeji,0, ˆeji,1).

– In the commitment opening phase, when Pi is the committer RFi takes in input (si, dij , yij)
from Pi and (s̃i, d̃ij , ˜yij,0, ˜yij,1) from RFi and returns (ŝi, d̂ij , ŷij).

We have shown the final coin when there is only a firewall RFi for one honest party Pi. The
final protocol in the firewall setting will consist of firewall RFj for every honest party {Pj}j∈H.
In such a case, the final coin will be s+Σj∈Hs̃j .

ut
In the final protocol every honest party {Pj}j∈H will have a firewall {RFj}j∈H and the fire-

walls will be composed together. By applying the result of Thm. 5 we obtain the following
result.

Theorem 18. If Discrete Log and Knowledge of Exponent assumptions hold in a bilinear group G
and PKE is a public key encryption with oblivious ciphertext sampling and oblivious public keys sam-
pling satisfying additive homomorphism over key space, message space, randomness space, ciphertext
space and public key space of PKE be Zq. Then Πcoin (Fig. 21) securely implements the coin-tossing
functionality (Def. 13) against adaptive corruption of parties in the plain model and in the presence of
functionality maintaining tampering of honest parties.

We observe that the fully homomorphic encryption scheme of [GSW13] based on LWE
assumption satisfies all the properties required from the PKE. We consider q = max(qLWE, qDL)
where LWE holds for q ≥ qLWE and DL holds for q ≥ qDL. Thus we get the following result:

Theorem 19. If Discrete Log and Knowledge of Exponent assumption holds in a bilinear group G
and LWE assumption holds. Then Πcoin (Fig. 21) securely implements the coin-tossing functionality
(Def. 13) against adaptive corruption of parties in the plain model and in the presence of functionality
maintaining tampering of honest parties.

47



9 The Final Compiler

In this section, we show our final result, i.e., an adaptively secure MPC protocol in the plain
model that admits reverse firewalls. In particular, the reverse firewall for our final MPC proto-
col is obtained by combining the reverse firewall for our adaptively secure MPC protocolΠmpc
in the uniform random string (ursmpc) model (see Section 7.3) along with the reverse firewall
for our adaptively secure multi-party coin-tossing protocol Πcoin in the plain model (see Sec-
tion 8). Let us denote the final MPC protocol (in the plain model) to be Π which is obtained by
first running Πcoin to obtain ursmpc and then running Πmpc using ursmpc.

Let us consider a reverse firewall RFi = (RFicoin,RF
i
mpc) to be the firewall for a party Pi in

the protocol Π . RFi is obtained by first applying RFicoin to the messages of Πcoin, followed by
application of RFicoin to the messages of Πmpc, if RFicoin did not output ⊥. We show that RFi
provides weak ER for party Pi in Π .

Theorem 20 (Composition Theorem for Π). Let Πmpc be an adaptively secure MPC protocol in
the uniform random string (ursmpc) model,Πcoin securely implement the coin-tossing functionality (see
Def. 13) against adaptive corruption of parties in the plain model. Let RFimpc and RFicoin be transparent,
functionality-maintaining, and weakly exfiltration-resistant reverse firewalls for some party Pi inΠmpc
and Πcoin respectively. Then RFi is transparent, functionality-maintaining, and weakly exfiltration-
resistant reverse firewall for party Pi in the protocol Π .

Proof. The proof of this theorem is similar to the proof of Thm. 13 (see Sec. 7.3). In particular,
Πcoin generates the URS ursmpc and the protocol Πmpc enforces all parties to use ursmpc (since
the parties are weakly tampered). Thus, a tampered party can leak only in Πcoin or through
Πmpc. However, this leakage is prevented by the firewalls RFicoin and RFimpc. We prove this
claim through a sequence of hybrids. Let H and C denote the set of honest and corrupt parties
respectively.

– Hyb0 : This is the execution of Π between the set of tampered honest parties {Pi}i∈H and
corrupt parties {Pj}j∈C.

– Hyb1 : This is the execution of Π between the set of tampered honest parties {Pi}i∈H and
corrupt parties {Pj}j∈C where the tampered parties run the honest implementation ofΠcoin
using true randomness and rest of the computation is performed according to Hyb0. Since
Πcoin implements an ideal coin-tossing functionality (see Def. 13) all the parties receive a
random string ursmpc at the end of the protocol execution. The two hybrids are indistin-
guishable due to weak exfiltration resistance property provided by RFcoin.

– Hyb2 : This is the execution of Π between the set of tampered honest parties {Pi}i∈H and
corrupt parties {Pj}j∈C where every partyPi runs their honest implementation using ursmpc

as the urs obtained from Πcoin. The two hybrids are indistinguishable due to weak ER prop-
erty provided by RFmpc.

ut
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