
Tight Quantum Indifferentiability
of a Rate-1/3 Compression Function

Jan Czajkowski∗

Weizmann Institute of Science

September 22, 2021

Abstract

We prove classical and quantum indifferentiability of a rate-1/3 compression
function introduced by Shrimpton and Stam (ICALP ’08). This construction was
one of the first constructions based on three random functions that achieved opti-
mal collision-resistance. We also prove that our result is tight, we define a classical
and a quantum attackers that match the indifferentiability security level. Our tight
indifferentiability results provide a negative result on the optimality of security of the
construction by Shrimpton and Stam, security level of the strong indifferentiability
notion is below that of collision-resistance.

To arrive at these results, we generalize the results of Czajkowski, Majenz,
Schaffner, and Zur (arXiv ’19). Our generalization allows to analyze quantum secu-
rity of constructions based on multiple independent random functions, something
not possible before.

∗jan.czajkowski@weizmann.ac.il

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Indifferentiability . 4
2.2 Game Playing Proofs for Indifferentiability 5

2.2.1 Compressed Oracles . 6
2.2.2 Punctured Oracles and Relations . 7
2.2.3 One-way To Hiding Lemma . 8

2.3 The Rate-1/3 Compression Function . 8

3 Classical Indifferentiability of Rate-1/3 9

4 Bound on P[Find] 12
4.1 Proof of Lem. 9 . 15

4.1.1 Overview . 15
4.1.2 Introduction . 15
4.1.3 The good state . 16
4.1.4 Final Bound . 17

4.2 Simplification of the Bound . 18
4.3 Concrete Bound for the Rate-1/3 Relation 20

5 Tight Indifferentiability of Rate-1/3 20
5.1 Quantum Indifferentiability Proof . 21
5.2 Indifferentiability Attacks . 23

5.2.1 Classical Attack . 23
5.2.2 Quantum Attack . 24

6 Conclusions 26

7 Acknowledgments 26

References 26

A Additional Details on the Proof of Lem. 9 29
A.1 |ΨGood

i−1 〉 after a query . 29
A.2 Bound on εstep(j) . 36
A.3 Bound on εFind(i) . 42

Symbol Index 44

2

1 Introduction

In recent years there is a great effort to build a new type of a computational machine:
a quantum computer. From the perspective of cryptography, what a quantum computer
brings with itself is, among other things, a new type of adversary. Such that can run
quantum algorithms like that of Shor’s factoring algorithm [Sho94], Grover’s search al-
gorithm [Gro96], or Simon’s algorithm [Sim97]. It has been shown that all of these al-
gorithms can be used to attack classical cryptosystems with more (Shor’s algorithm can
be used to break RSA, and Simon’s o break CBCMAC [Kap+16; SS16]) or less (Grover’s
algorithm gives a square root speedup in generic key-search attacks [LM17]) devastating
effects. Such attacks are the main motivation for this work and the field of post-quantum
cryptography.

In this work, we prove tight (quantum) security of a construction that offers optimal
collision-resistance. In the interesting line of work [MT07; SS08; RS08; MP12; ABR21]
the authors considered the problem of designing a 2n–n compression functions1 out of
several primitives that map n-bits to n-bits. The objective of their work was to maintain
collision-resistance of just a single primitive, that is to the level of O(2n/2) queries. In
this paper we focus on the construction from [SS08] and prove that it is (quantumly)
indifferentiable.

Indifferentiability is a strong security notion especially suitable to hash functions and
compression functions constructed out of “smaller” primitives [MRH04]. Unlike in the
Random Oracle Model [BR93] (where we assume the hash function to be random),
only assume the internal primitives2 to be uniformly random functions. In recent works
[Zha19; Cza+19] it has also been shown that it is possible to prove quantum indiffer-
entiability of classical constructions. We note that in this model the adversary makes
superposition queries to the primitives (and the construction). This Quantum-accessible
Random Oracle Model has been introduced in [Bon+11].

Our results. We prove that the construction from [SS08], that we denote by Rate-1/3,
is classically and quantumly indifferentiable. Moreover we show attacks with matching
(quantum) query complexity, proving that our results are tight. These results imply a
negative result on Rate-1/3: From the perspective of the strong notion of indifferentiabil-
ity (in particular stronger than collision-resistance) security level ofRate-1/3 is no longer
optimal, i.e. it is secure only up to O(2n/3) classical and O(2n/4) quantum queries.

Themain technical result of our paper is expanding the general technique of [Cza+19]
to capture situations when the adversary is interacting with multiple random functions
(like inRate-1/3). The key ingredients of our proof of quantum security are the One-way
To Hiding (O2H) lemma [Unr14; AHU19] and the compressed oracle technique [Zha19;
Cza+19]. To derive any concrete result using these techniques one needs a bound on
the probability that after any query the (quantum) database the adversary is interacting
with does not contain certain input-output pairs. Using the proof of Lemma 13 from
Appendix C from [Cza+19] as a blueprint, we generalize their bound on is probability to
include multiple databases. Inspecting the two proofs of Lemma 13 from[Cza+19], the
main proof and the one in Appendix C, we see that there are two ways of proving this
crucial bound. We decided to generalize the direct proof from the appendix as it is not
immediately obvious how to include a discussion of multiple databases in the technique
from [Chu+20a].

Organization. In Sec. 2, we introduce our notation and all the necessary details of
1That is compression functions that map 2n-bits to n-bits.
2Such as compression functions that are called by the cryptographic construction.

3

the key concepts we use in this paper. In Sec. 3 we prove classical indifferentiability of
Rate-1/3, this is our first result. The proof of classical indifferentiability also provides
motivation and intuition for our main technical result. In Sec. 4 we present the general
bound on the probability of Find. In Sec. 5 we use the new bound and the classical proof
to prove quantum indifferentiability of Rate-1/3. Moreover we present a classical and
a quantum distinguisher attacking indifferentiability of Rate-1/3. In Sec. 6 we discuss
some open problems.

2 Preliminaries

By x ← A we denote that x is an output of a randomized algorithm A. By x $← X we
denote that x is sampled uniformly at random from a finite set X . For bitstrings x, y ∈
{0, 1}n the bitwise XOR is denoted by x⊕ y. By AR and A[R] we denote that A has oracle
access to R.

We assume basic knowledge of quantum computing, if any concept that we do not
explain in detail needs to be clarified, we refer the reader to [NC10] or [Wol11]. Quantum
algorithms act on quantum states from finite Hilbert spaces. Quantum oracle algorithms
operate by intertwining arbitrary unitary operations with unitary oracle calls (which we
describe in detail in Sec. 2.2.1). By UF we denote applying the quantum operator U to
register F .

When referring to quantum registers, i.e., subsystems of the quantum state of the
whole system, we use two types of notation. Let us say we have a quantum register Q
holding elements of the Hilbert space H =

⊗
x∈S(HXx ⊗ HYx). Our Hilbert space is a

tensor product of |S| pairs ofHXx ⊗HYx , we assume that there is a natural order in S and
the tensor product is applied in this order. When we want to refer to the i-th register
from the left, we writeQi. When we want to access registers holding allX-parts ofQwe
write QX , with a superscript QXi we access just the X-part of Qi. Sometimes, however,
we want to access the register corresponding to a particular x ∈ S, then we write Q(x)
and similarly the superscript marks the part ofHXx ⊗HYx we want to specifically discuss.
We use the same notation with sets of pairs.

Let us define the Quantum Fourier Transform (QFT), a unitary change of basis that we
will make use of. ForN ∈ N>0 and x, ξ ∈ [N] = {0, 1, . . . , N−1} the transform is defined
as

QFTN |x〉 := 1√
N

∑
ξ∈[N]

ωξ·xN |ξ〉, (1)

where ωN := exp(2πi
N).

2.1 Indifferentiability

Many important cryptographic functions are constructed using other primitives. Promi-
nent examples include standardized hash functions SHA-2 [NIS15] and SHA-3 [NIS14].
In this paper we focus on constructions of compression functions. The general goal is to
use an easy-to-design primitive to construct a more complicated function. In the context
of compression functions, the internal primitives are fixed-length-input and fixed-length-
output functions.

A common assumption that we make to prove security of cryptographic construc-
tions, is that the internal functions are the idealized versions of the primitives. For exam-
ple, we assume that the internal function is a uniformly random function. Such assump-
tion abstracts the security flaws of the construction itself.

4

The question that we also need to answer, is the access privileges of the adversary. We
define two interfaces: the private interface provides access to the construction and the pub-
lic interface to the internal function used in the construction. The notion that captures the
most realistic access model (still in the idealized assumption model) is indifferentiability
[MRH04]. A construction is indifferentiable from a random oracle3 if no adversary can
distinguish them, even given access to the internal function. The following definition is
the rephrased version of definitions from [MRH04; Cor+05], as presented in [Cza+19].
By efficient we mean algorithms that run in (quantum) time polynomial in the security
parameter. Quantum queries are superpositions of classical queries, discussed in more
detail in the next section.

Definition 1 (Indifferentiability [MRH04]). A cryptographic (classical or quantum) system
C is (q, ε)-indifferentiable from R, if there is an efficient (classical or quantum) simulator S and
a negligible function ε such that for any efficient (classical or quantum) distinguisher D with
binary output (0 or 1) the advantage∣∣∣∣P [b = 1 : b← D[CprivCpub

k
k ,Cpub

k]
]
− P

[
b = 1 : b← D[Rpriv

k ,SRpub
k]
]∣∣∣∣ ≤ ε(k) , (2)

where k is the security parameter. The distinguisher makes at most q (classical or quantum)
queries to C.

It is important to note that if R is the random oracle (which is often the case), then
both interfaces are the same. The construction C in Eq. (2) represents the real world and
R the idealworld.

2.2 Game Playing Proofs for Indifferentiability

We work in the (quantum) game-playing framework. A game is an interactive algorithm
that the adversary interacts with (plays). It is often beneficial to cast security definitions
in terms of games. Especially so, becausewe can naturally argue about the distinguishing
advantage4 of adversaries when we present them with one of the two “similar” games.

More concretely, in the classical world Bellare and Rogaway [BR06] formalized the
game-playing framework by introducing the notion of identical-until-bad games and
showing the fundamental game-playing lemma, that provides a general bound on distin-
guishing advantage. Identical-until-bad games are algorithm that are syntactically iden-
tical until a flag Bad is set to “True”. The fundamental game-playing lemma is as follows:

Lemma 2 (Fundamental lemma of game-playing, Lemma 2 of [BR06]). Let G and H be
identical-until-bad games and let A be an adversary that outputs a bit b. Then∣∣∣P [b = 1 : b← AH

]
− P

[
b = 1 : b← AG

]∣∣∣ ≤ P
[
Bad = 1 : AG

]
. (3)

To argue about quantum security with the use of games, several techniques have been
developed. Games are modeled as quantum algorithms. A crucial element, common in
game-playing proofs, however, has been added only recently. We talk about (efficient)
lazy sampling, a technique introduced to quantum computing by Zhandry [Zha19]. This

3A random oracle is a random function with domain and range specified according to the discussed
construction, the only way to access it is via oracle queries.

4Distinguishing advantage is the absolute value of the difference of probabilities of the adversary out-
putting 1 whenever interacting with one or the other game.

5

technique, often called the compressed random oracle technique, has been already fur-
ther developed and used in multiple works [Chu+20a; Cza+19; HI19; JZM19; Chu+20b;
Ros21; CEV20].

The role of Bad events can be played by punctured oracles, i.e. compressed oracles
that are measured after every query. This concept has been introduced in [AHU19] and
further developed in [Cza+19]. Measuring the oracle allows us to argue about the con-
tents of the quantum database held by the game, similarly to the classical setup.

The fundamental quantum game-playing lemma is the One-way To Hiding (O2H)
lemma introduced by Unruh in [Unr14]. In the formulation from [AHU19; Cza+19], the
O2H lemma provides a bound on the distinguishing advantage for quantum adversaries
interacting with punctured oracles. Putting all the elements mentioned above gives us
the quantum game-playing framework. Below we provide definitions of all the parts in
more detail.

2.2.1 Compressed Oracles

In our result we use a general formulation of the oracle, we use ZN with additionmodulo
N . This formulation offers a slightly more general result and a more concise notation.
Nonetheless, everything applies to Zn2 , this is the group (with ⊕ being the bitwise XOR)
in which we formulate all concrete security results in Sections 3 and 5.

The first important idea behind the compressed oracles technique is purifying the
random oracle. One way of formulation a random oracle is just (classically) sampling
a random function and providing the adversary quantum access to it. The approach
proposed in [Zha19] is to purify the (originally mixed) adversary’s quantum state. The
initial state of the random oracle is

∑
f∈F

1√
|F|
|f〉, where F := {f : [N] → [N]} and |f〉

holds the whole truth table of f . In this view of the oracle, the standard oracle StO is the
following update procedure:

StO|x, y〉A
∑
f∈F

1√
|F|
|f〉F =

∑
f∈F

1√
|F|
|x, y + f(x)〉A|f〉F , (4)

where addition is done modulo N .
By performing the Quantum Fourier Transform on both the adversary’s AY and or-

acle’s F registers, the view of the oracle simplifies a lot, this is the brilliant observation
from [Zha19]:

FO|x, η〉A|0N 〉F = |x, η〉A|0N − (0, . . . , η, . . . , 0)〉F , (5)

where on the right hand side register F is updated with a vector of 0’s with η in the x’th
row. The Fourier oracle is defined as the update procedure FO := QFTFN ◦ StO ◦ QFT† FN .
By using the standard basis of the oracle and the Fourier basis of the adversary’s register,
we get another useful, the phase oracle:

PhO|x, η〉A
∑
f∈F

1√
|F|
|f〉F =

∑
f∈F

1√
|F|

ω
η·f(x)
N |x, η〉A|f〉F . (6)

By inspecting the oracle register in the Fourier basis, we see that every query adds just
one non-zero value to register F , hence after q queries there is at most q registers that are
non-zero. This observation opens the possibility of compressing register F to contain only
the non-zero entries. On an intuitive level, compressed oracles are a way to lazy sample
random functions that are accessed in superposition.

6

The compressed Fourier oracle, that we denote by CFOY (where the subscript denotes
the uniform distribution over the set of outputs Y). Is a procedure that maintains the
database register, denoted by D. The database register that is correctly maintained is
a superposition of the following states holding values in (([N]× {⊥})× [N])q (in the
formulation presented in [Cza+19]):

|
(
(x1, η1), (x2, η2), . . . , (xs, ηs), (⊥, 0) . . . , (⊥, 0)〉D, (7)

where s is the size, i.e., he number of non-empty entries, of the database, each of the first
s elements in DY are non-zero, moreover DX are sorted in the rising order. The symbol
⊥ is an additional symbol signifying empty entries. A more detailed description of the
compressed oracle technique can be found in [Zha19] and in the formulation we use in
[Cza+19].

Wemodel access tomultiple quantumoracles at once by specifying a special quantum
register I . This register holds information about the particular interface that is queried.
The register encoding the interface is I and holds a ∈ {1, . . . , k}. To update the oracle reg-
ister, we apply CFODa controlled on register I . Note that this setup allows the adversary
to make a superposition of queries to different oracles. If however one would want to
make the interface register classical, we can just perform a standard basis measurement
of I . In the context of compressed oracles themultiple interfaces hold different databases.
Of course if oracles are somehow related then so are the databases.

Changing the basis of the oracle register and the adversary, in a similar way to de-
scribed above but to register DY instead of F , gives us the compressed standard ora-
cle CStO and the compressed phase oracle CPhO. The compressed phase oracle is the
one we use in our general result on punctured oracles. For our concrete security re-
sults we denote the compressed oracle for a uniform distribution over functions from
{f : {0, 1}n → {0, 1}n} by CStOn.

2.2.2 Punctured Oracles and Relations

Punctured oracles are compressed oracles, that aremeasured after every query. Themea-
surement checks if the oracle register holds (in a superposition) a database that fulfills
some fixed relation.

A relation is a subset of the set of all databases.

Definition 3 (RelationR on (D1, . . . , Dk)). LetD = (D1, . . . , Dk) be k databases each of size
at most q: For each a ∈ {1, . . . , k} databaseDa is a set of (x, y) ∈ Xa×Ya, where Xa and Ya are
arbitrary finite sets. A relation R on D is a subset

R ⊆
k∏
a=1

Xa × ⋃
sa∈[q+1]

(Xa × Ya)sa

 . (8)

In this paperwe focus on relation that are non-trivial only on the
⋃
sa∈[q+1] (Xa × Ya)sa

part.
A compressed oracle H with the database register kept in the standard basis, holds a

superposition of databases of different sizes5. Still, any of the databases in superposition
can be in R or not. The oracle punctured on relation R (defined on all of the databases
maintained by H) is denoted by H \R and defined as:

5In principle, this register is entangled with the adversary’s register.

7

Definition 4 (Punctured compressed oracle H \ R, Def. 9 in [Cza+19]). Let H be a com-
pressed oracle and R a relation on its database. The punctured compressed oracle H \ R is equal
to H, except that R is measured after every query. By Find we denote the event that R outputs 1
at least once among all queries.

Wedescribe the algorithm thatmeasures the relationR ismore detail. We assume that
membership in R is efficiently decidable. We denote the single-bit membership decision
byD ∈ R, the bit is 1 if and only if databaseD is in R. To measure the relation we define
a unitary VDJR that XORs a bit D ∈ R to register J ; This unitary is controlled on register
D, holding the whole database (possibly consisting of many databases Da).

2.2.3 One-way To Hiding Lemma

In the quantum case, identical-until bad games are compressed oracles (or algorithms
using compressed oracles) that are punctured on different relations. The role of the fun-
damental game-playing lemma takes the One-Way to Hiding lemma [Unr14; AHU19].

Lemma 5 (Version of Theorem 10 in [Cza+19]). Let R1 and R2 be relations on the database
of a quantum oracle H. Let A be an oracle algorithm making q quantum queries, then∣∣∣P [b = 1 : b← AH\R1(.)

]
− P

[
b = 1 : b← AH\R1∪R2(.)

]∣∣∣
≤
√

(q + 1)P[Find2 : AH\R1∪R2(.)], (9)

where Find2 is the event that measuring R1 ∪R2 succeeds.

The theorem above is very general, yet the complicated part is not really proving it.
The more involved aspect is finding a good bound for P

[
Find

]
, exactly that is the main

subject of Sec. 4.
In the quantum case we also define a notion of almost identical oracles.

Definition 6 (Definition 11 in [Cza+19]). Let H and G be compressed oracles andRi, i = 1, 2
relations on their databases. We call the oracles H \ R1 and G \ R2 almost identical if they are
equal conditioned on the events ¬Find1 and ¬Find2 respectively, i.e. for any string z and any
quantum algorithm A

P[b = 1 : b← AH\R1(z) | ¬Find1] = P[b = 1 : b← AG\R2(z) | ¬Find2]. (10)

We can prove the following bound on the adversary’s advantage in distinguishing
almost identical punctured oracles.

Lemma 7 (Lemma 12 in [Cza+19]). If H \ R1 and G \ R2 are almost identical according to
Def.6 then for any b ∈ {0, 1}∣∣∣P[b = 1 : b← AH\R1(z)]− P[b = 1 : b← AG\R2(z)]

∣∣∣
≤ 2P[Find1 : AH\R1(z)] + 2P[Find2 : AG\R2(z)]. (11)

2.3 The Rate-1/3 Compression Function

This construction (that we denote Rate-1/3) of a compression function has been first de-
fined in [SS08]. The authors explore constructing a compression function out of three

8

random functions. They also prove that the constructed hash function is collision resis-
tant. The main advantage of this construction is that it achieves optimal collision resis-
tance of up to O(2n/2) queries. The construction is defined as follows:

Rate-1/3f1,f2,f3(x1, x2) := f3 (f1(x1)⊕ f2(x2))⊕ f1(x1), (12)

where f1, f2, f3 : {0, 1}n → {0, 1}n. In Figure 1 we present the scheme of the construction.

x1 f1 y1

x2 f2 f3y2 x3 y3⊕ ⊕ y

Figure 1: A schematic representation of the rate-1/3 compression function
Rate-1/3f1,f2,f3(x1, x2) = y.

3 Classical Indifferentiability of Rate-1/3

Classical indifferentiability ofRate-1/3 is the first result of our paper. We present it before
all the other results to provide a better understanding of the situation we include in the
general bound for the quantum distinguishing advantage.

The key central goal of [SS08] was to propose a construction that has optimal secu-
rity. The notion they focused on was collision-resistance. A natural strengthening (that
implies collision-resistance) of this notion is indifferentiability. We, however, show that
the security of the construction, with respect to the stronger notion, is no longer optimal.
Namely, the query lower bound is not Ω(2n/2) but rather Ω(2n/3).

To save space we present multiple algorithms in one. To do that we follow a conven-
tion where only the boxed algorithms perform the boxed operations. In case there are
actually more than two algorithms, the color of the box also matters. If a line is not sur-
rounded by a box, then all algorithms perform the command. We number the simulators
with the number of the game it is first used in.

Theorem 8. The compression function Rate-1/3f1,f2,f3 for uniformly random f1, f2, and f3 is
(q, ε)-classically indifferentiable for ε = 10 q

3

2n .

Proof. We carry out the proof by starting with the real world and gradually changing
the adversary’s interface to the ideal world. We define two simulators, the initial S2 that
just lazy samples the compression functions and S3 that is the actual simulator. In Algo-
rithm 1 only the boxed algorithm performs the boxed commands.

Game 1 The interface in the first game is (Rate-1/3, (f1, f2, f3)), where the public interface
holds uniformly random f1, f2, and f3. The definition of the game is

Game 1 := (b = 1 : b← A[Rate-1/3, (f1, f2, f3)]) . (13)

9

Algorithm 1 Classical simulators S2 , S3 for Rate-1/3f1,f2,f3
procedure f1(x1)

if x1 ∈ DX
1 return the corresponding y1

y1
$← {0, 1}n

if ∃y2 ∈ DY
2 , x3 ∈ DX

3 : y1 = y2 ⊕ x3 then . Preimage of f3
Set Bad1 = 1

Add (x1, y1) to D1 and return y1

procedure f2(x2)
if x2 ∈ DX

2 return the corresponding y2

y2
$← {0, 1}n

if ∃y1 ∈ DY
1 , x3 ∈ DX

3 : y2 = y1 ⊕ x3 then . Preimage of f3
Set Bad2 = 1

Add (x2, y2) to D2 and return y2

procedure f3(x3)
if x3 ∈ DX

3 return the corresponding y3
if ∃y1 ∈ DY

1 , y2 ∈ DY
2 : x3 = y1 ⊕ y2 then

y3
$← {0, 1}n, add (x3, y3) to D3

return y3

return R(x1, x2)⊕ y1
else

y3
$← {0, 1}n, add (x3, y3) to D3

return y3

10

Game 2 In the second game we lazy sample the compression functions, the interface is
(Rate-1/3, S2), the game is defined as

Game 2 := (b = 1 : b← A[Rate-1/3,S2]) . (14)

This change of the interface is indistinguishable for A:∣∣∣P [Game 2
]
− P

[
Game 1

]∣∣∣ = 0. (15)

Game 3 The interface in the third game is (Rate-1/3,S3), where we introduce the bad
events and random oracle R, note that f3 is distributed uniformly at random, so adding
R does not change the distribution of f3 at all. The new game is

Game 3 := (b = 1 : b← A[Rate-1/3,S3]) . (16)

The bad events we introduce happen when either f1 or f2 outputs a value that forms a
preimage of f3. The reason why these events are significant is because if we commit to an
output of f3 and after that a query to f1 or f2 finishes the chain of values in the construction,
then we introduce a discrepancy between the construction and the random oracle. The
only noticeable change for the adversary are the bad event. To calculate distinguishability
we use the fundamental game-playing lemma, Lem. 2:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ P
[
Bad1 ∨ Bad2

]
≤ 2 q

3

2n , (17)

where the right hand side follows from the fact that there are at most s2(i) · s3(i) pairs
(y2, x3) that y1 can collide with:

P
[
Bad1

]
≤

q∑
i=1

s2(i) · s3(i)
2n ≤

q∑
i=1

q2

2n = q3

2n , (18)

where in the first inequality we use the union bound. The second inequality follows from
a bound on the size ofD2 andD3, after the i-th query s2(i), s3(i) ≤ q. The final bound on
P
[
Bad1 ∨ Bad2

]
comes from the union bound and applying Eq. (18) to Bad1 and Bad2.

Game 4 In the last game the interface is (R,S3), we change the private interface, i.e. the
interface giving access to the construction or the random oracle. The definition of the
game is

Game 4 := (b = 1 : b← A[R,S3]) . (19)

The only source of distinguishing advantage for A are the possible bad events in queries
to the private interface. We know, however, that if there are no bad events then Game 3
and Game 4 are distributed in the same way:∣∣∣P [Game 4 | ¬Bad

]
− P

[
Game 3 | ¬Bad

]∣∣∣ = 0. (20)

Using the above identity we derive the final distinguishing advantage:

∣∣∣P [Game 4
]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Bad

]
≤ 8 q

3

2n , (21)

where we use Lem. 7. To get the first inequality above we consider classical algorithms
in place of the quantum ones in Lem. 7 and Bad events instead of Find. The event Bad

11

in Eq. (21) corresponds to Bad in Game 3, we bound the bound from the lemma by the
bigger of the two probabilities. Probability of Bad inGame 3 is greater because there are
in principle more calls to S3—the private interface also calls the simulator.

For the discussion of quantum databases in the next section, we would like to high-
light the relation between the three databases D1, D2, and D3 holding queries (and out-
puts) to f1, f2, and f3 respectively. Note that there are no outputs of f1 or f2 that would
equal y2 ⊕ x3 or y1 ⊕ x3 for any x3 ∈ DX

3 and any output y2 or y1. This means that the
set of ”good” databases maintained by S3 consists of (D1, D2, D3) with no “preimages”
of the type we described above of f3. This is important to note because in our proof of in-
distinguishability of quantum games we consider superpositions of all ”good” databases.
The crucial observation is that by changing the contents ofD3 (by for example removing
an entry) we change the set of ”good” D1 and D2 databases.

4 Bound on P[Find]
In this section we prove a general bound on probability of Find, important in the O2H
lemma. We generalize the bound from [Cza+19] by including relations defined onmulti-
ple databases. We follow the same approach so herewe provide the definitions necessary
to parse the main general lemma and a high-level proof, additional details of the proof
can be found in Sec. A.

We state a lemma giving a bound on the probability of Find for the uniform distribu-
tion over the sets {f1 : X1 → Y1} and {f2 : X2 → Y2} and for a general relation, possibly
defined on multiple databases. We also allow for R to depend on an external random
oracle R. In this proof we explicitly analyze adversaries with two interfaces H1 and H2.
We allow them to make queries to different interfaces in superposition.

The register encoding the interface is I and holds a ∈ {1, 2}. In what follows we
assumeY1 = [N1] andY2 = [N2]. By āwe denote the index other that a, namely ā = 3−a.
Whenever we refer to awe mean by it the interface that is queried.

In the statement of Lem. 9 we focus on two databases (and hence two independent
functions) but all the results of this section almost trivially extend to any fixed number
of functions.

For a ∈ {1, 2} we write ~xa ∈ (Xa × {a})q to denote all the previous inputs asked by
the adversary to Ha, we always consider queries x to be pairs of the query value and the
interface. We mostly leave the interface part implicit. A vector with a fixed a has a fixed
interface a in all tuples. (x, η, a) is the last query. Whenever ~x denotes queries, the vector
is sorted in a rising fashion. We denote the outputs given to A by ~ya := (ya1 , . . . , yasa

),
where yai ∈ Ya × {a} are pairs of values with interface, similarly to inputs. Vector of
outputs is sorted according to the corresponding inputs. The set of all queries is ~x =
~x1∪~x2, similarly for ~y. Whenwe use set operations6 on vectorswemean a set consisting of
entries of ~x, note that if there are no repetitions in ~x, then there is no ambiguity. Databases
are denoted as Da =

(
(xa1, ya1), . . . , (xasa

, yasa
)
)
.

In this section our primary subject are databases and theirmembership in the relation.
To this end we define sets of good and bad outputs. For a relation R, the database D =

6Like the union ∪, intersection ∩, or subtraction \.

12

(D1, D2) that contains ~x1 and ~x2 of sizes s1 and s2 respectively, and x 6∈ DX
a we have

GR(~x1, ~x2) :=
{

(DY
1 (~x1), DY

2 (~x2)) ∈ Ys11 × Y
s2
2 : (D1, D2) 6∈ R

}
, (22)

GRā (~x1, ~x2 | Da) :=
{
DY
ā (~xā) ∈ Ysā

ā : (D1, D2) 6∈ R
}
, (23)

BRa (x | D) := {y ∈ Ya : (Da ∪ {(x, y)}, Dā) ∈ R} . (24)

The bad set defined above is the subset of the codomain of the sampled function corre-
sponding to the new value bringing D to be in R. By GRa (~x1, ~x2) we denote the part of
GR(~x1, ~x2) corresponding to DY

a (~xa).
Our assumptions on R are the following: The relation does not depend on the adver-

sary’s input. The size of GR(~x1, ~x2) depends only on s1 and s2. When addressing the size
of G we often write

∣∣∣GR(s1, s2)
∣∣∣. Moreover

∣∣∣BRa (x | D)
∣∣∣ is the same for all x 6∈ DX

a .
We also define a coefficient that gives the number of outputs that bring the database

to R, defined as:

bRa (s1, s2) :=
∣∣∣BRa (x | D)

∣∣∣ , (25)

where x 6∈ D,D 6∈ R, and |Da| = sa − 1, |Dā| = sā,

as one can see from the definition (the argument of bRa does not include particular val-
ues in ~x1 and ~x2) above we use the assumption that

∣∣∣BRa (x | D)
∣∣∣ is the same for all

x 6∈ DX
a . When making a query to database a we use the notation

∣∣∣GR(sa − 1, sā)
∣∣∣ for∣∣∣GR(s1 − 1, s2)

∣∣∣ if a = 1 and
∣∣∣GR(s1, s2 − 1)

∣∣∣ if a = 2. Similarly we use bRa (sa + 1, sā). An
important identity that we will use later in this section is:∣∣∣GR(s1, s2)

∣∣∣ =
∣∣∣GR(sa − 1, sā)

∣∣∣ (|Ya| − bRa (s1, s2)). (26)

To get some intuition for the above equality, let us consider a databaseD of size sa−1+sā
that is not in R. According to the definition from Eq. (24), there are bRa (s1, s2) outputs
y ∈ Ya, such that (Da ∪ {(x, y)}, Dā) for any x ∈ Xa that is not in DX

a , is in R. As this
holds for any value x, for every good database we have |Ya| − bRa (s1, s2) good database
with a single query added to Da.

In general as in the good and bad sets, as well as the coefficient b, we omit the su-
perscript R whenever the relation is clear from the context. As examples of b, consider
relations on a single database, if the relation is the zero-preimage7, then b(s) = 1, there
is just one value y = 0 that causes a fresh query to be in relation; For collisions8 we have
b(s) = s− 1, the new y can be any of the previously queried values to make D fulfill the
relation.

Two sets important in our treatment of multiple databases are
HADD
a (~x1, ~x2, ~ya) andHREM

a (~x1, ~x2, ~ya). To properly define them we generalize the defini-
tion of the good set conditioned on a database:

Gā(~xa, ~xā | ~ya) :=
{
DY
ā (~xā) ∈ Ysā

ā :

∃~y∗a ∈ Ysa−|~ya|
a , DY

a (~xa) := ~ya ∪ ~y∗a, (D1, D2) 6∈ R
}
. (27)

Intuitively speaking the above set is the set Gā(~xa, ~xā | Da) defined in Eq. (23) with the
difference that we do not specify all values in DY

a . Moreover the more entries are in ~xa
7Zero-preimage is a relation consists of databases that contain y = 0.
8A database has a collision if it contains two entries (x1, y1) and (x2, y2) such that y1 = y2.

13

the more “restrictions” are on good Dā, meaning the size of the good in principle gets
smaller with ~xa getting bigger. Then the two sets are defined as

HADD
a (~x1, ~x2, ~ya) := Gā(~x1, ~x2 | ~ya) \ Gā(~xa ∪ {x}, ~xā | ~ya), (28)∣∣∣HADD
a (s1, s2)

∣∣∣ :=
∣∣∣HADD

a (~x1, ~x2, ~ya)
∣∣∣ , (29)

and

HREM
a (~x1, ~x2, ~ya) := Gā(~xa \ {x}, ~xā | ~ya) \ Gā(~x1, ~x2 | ~ya), (30)∣∣∣HREM
a (s1, s2)

∣∣∣ :=
∣∣∣HREM

a (~x1, ~x2, ~ya)
∣∣∣ . (31)

The intuition one should have for HADD
a (~x1, ~x2, ~ya) and HREM

a (~x1, ~x2, ~ya) is that for the
relation we discuss in this paper, they are very small sets.

The assumption that is important for when R is defined on two databases is that if
good outputs of H1 depend on inputs to H2, we never make a query to H2 that automat-
ically brings D to be in R. An example of such relation is y1 = x2 (outputs of H1 equal
to any input to H2). For these relations it is trivial to fulfill them—by just querying one
of the outputs of H1 to H2—so the oracles have to be constructed in a way that avoids
this attack. By constructing we mean adding a quantum algorithm managing queries to
different interfaces. We say that such trivial attacks are of concernwhenDX

a interacts with
DY
ā .
Below we state a lemma bounding the probability of Find, which gives great utility

to the quantum game-playing framework. The result depends only on measurements
performed on the database. The basis of the database matters, as we define the relation
in a particular (standard) basis. Hence, this result works exactly the same for CStO.

Lemma 9. LetA be a quantum adversary interacting with a compressed punctured oracle H \R,
with H = S(H1,H2), where S is any quantum algorithm that ensures that the trivial attacks (im-
portant whenDX

a interacts withDY
ā) are avoided, H1 = CPhOY1 and H2 = CPhOY2 . Moreover

R is a relation following Def. 3, such that

1.
∣∣∣GR(~x1, ~x2)

∣∣∣ from Eq. (41) depends only on s1 and s2,

2.
∣∣∣BRa (x | D)

∣∣∣ from Eq. (24) is the same for all x 6∈ DX
a .

Then the probability of Find is bounded by:

P
[
Find : A[H \R]

]
≤

q∑
i=1

(
i−1∑
j=1

max
a∈{1,2},s1,s2≤j−1

(
2ba(s1, s2)

Na

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1

)

+ ba(sa + 1, sā)
Na

√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

))

+ max
a∈{1,2},s1,s2≤i−1

√Na − ba(sa + 1, sā)
Na

√
|HADD

a (s1, s2)|
|Gā(s1, s2)|

14

+
√
ba(sa + 1, sā)

Na
+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)√ |Gā(sa − 1, sā)|

|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√
|HREM

a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

2

, (32)

where a ∈ {1, 2}, q is the maximal number of queries made by A, and sgn is the sign function
equal 0 whenever the argument is 0.

4.1 Proof of Lem. 9

The proof thatwe present follows closely the proof fromAppendix C in [Cza+19], we use
the same structure and reuse a lot of their results with the important change of treating
relations that are defined on multiple databases.

Proof.

4.1.1 Overview

We first provide a high level overview of the proof.
To slightly simplify our main task, in Eq. (39), we start with splitting the probability

of the puncturing succeeding in any query into a sum of probabilities that it succeeds in
the i-th query. By succeeding we mean he puncturing measurement outputs 1.

To bound the probability that D ∈ R is measured in the i-th query, given that it was
not measured before, we introduce the good state |ΨGood

i 〉. The good state is a (more or
less) artificial state that approximates the state |Φi〉 of the adversaryA and the oracleH\R
that she interacts with conditioned on the measurement of R always outputting 0. We
introduce the good state, because it is easier to handle in explicit calculations. In Eq. (46)
we show how to include the good state in the overall proof.

With this approach, the key bound that we need to evaluate is on the norm of the
difference of H \R|ΨGood

i 〉 and |ΨGood
i+1 〉, as presented in Eq. (47). To calculate this bound

we inspect in detail the good state after a query H\R|ΨGood
i 〉 and pinpoint the differences

of this state from |ΨGood
i+1 〉. We call these differences errors, bounding their norm is the key

task here. This analysis is presented in Sec. A.1.
Additionally, we also calculate the probability that Find happens when the joint

adversary-oracle state is |ΨGood
i 〉. All the differences identified in the previous step and

the bound on Find for the good state are formalized in Lemmas 14 and 16, which are
proven in Sections A.2 and A.3 respectively.

All of the analysis outlined above works for a general relation defined for two
databases (which can be almost trivially generalized to any constant number).

4.1.2 Introduction

We start the proof with a few definitions concerning compressed oracles. The measure-
ment that we apply after every H in Def. 4 is a binary projective measurement with two
elements:

JR := 1⊗ |1〉J〈1| and (33)
JR := 1⊗ |0〉J〈0|, (34)

15

where register J holds the (superposition of) bit D ∈ R.
In the followingwe focus on the punctured oracle just prior tomeasurement {JR, JR}.

A unitary that omits the measurement of register J in H \ R acts on registers ADJ , we
define it as

H \ VR := Queries† ◦ VR ◦ Queries ◦ H, (35)

where the unitary Queries counts the number of x 6=⊥ inD (i.e. the number of non-empty
registers in the quantumdatabase) andVR checkswhether the queried values in registers
D fulfill the relation R and saves the single bit answer to register J .

We proceed by rephrasing the definition of P[Find : A[H \R]]:

P[Find : A[H \R]] = 1−

∥∥∥∥∥∥
 1∏
i=q

JRUiH \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

(36)

= 1−

∥∥∥∥∥∥
 1∏
i=q−1

UiJRH \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥UqJRH \ VR

 1∏
i=q−1

UiJRH \ VR

 |Ψ0〉|0〉J

∥∥∥∥∥∥
2

= · · · = (37)

=
q∑
i=1

∥∥∥∥∥∥∥∥∥∥∥∥
UiJRH \ VR

 1∏
j=i−1

UjJRH \ VR

 |Ψ0〉|0〉J︸ ︷︷ ︸
:=Ui−1|Φi−1〉

∥∥∥∥∥∥∥∥∥∥∥∥

2

(38)

=
q∑
i=1
‖UiJRH \ VRUi−1|Φi−1〉‖2 =

q∑
i=1
‖JRH \ VRUi−1|Φi−1〉‖2 , (39)

where |Ψ0〉 is the initial state of the adversary. The definition of the “true” state is

|Φi−1〉 := U†i−1

 1∏
j=i−1

UjJRH \ VR

 |Ψ0〉|0〉J (40)

Above, the second and third equations follow from the fact that ‖|v〉‖2 = ‖P|v〉‖2 + ‖(1−
P)|v〉‖2 for all |v〉 and projectors P, the last equality follows from ‖U|v〉‖ = ‖|v〉‖ for any
unitary U.

As we already mentioned in the beginning of the proof, the quantity that we analyze
now is ‖JRH \ VRUi−1|Φi−1〉‖2. To this end, we introduce |ΨGood

i−1,R〉|0〉J for which bound-

ing
∥∥∥JRH \ VRUi−1|ΨGood

i−1,R〉|0〉J
∥∥∥2

is easier. The good state is essentially the state after the
adversaryA interacts with H but with the oracle register holding a superposition of only
databases that are not in relation. Laterwe prove that the good state is close to the original
|Φi−1〉.

4.1.3 The good state

The state |ΨGood
i,R 〉AD corresponds to the adversary’s state just after the i-th query and

before the application of Ui. The size of the database sa depends on whether the new
queryxwas added to, updated, or removed from the database, it equals |~xa ∪ {x}|, |~xa|, or

16

|~xa \ {x}| respectively. After i queries sa can range from 0 to i and the joint state ofA and
the oracle can be a superposition over different database sizes. By D(⊥) we denote the
part of the database containing empty entries. The adversary’s work register is denoted
by AW and its contents by ψ(x, η, ~x, ~η, w), where w can be any value of finite size. We
denote the inner product by ~ηa · ~ya =

∑sa
i=1 η

a
i · yai mod N . In the sum below ~y = ~y1 ∪ ~y2.

We define the good state as:

|ΨGood
i,R 〉AD :=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~y∈GR(~x1,~x2)

1√
|GR(s1, s2)|

ω~η1·~y1
N |(x1

1, y
1
1), . . . , (x1

s1 , y
1
s1)〉D1(~x1)

∑
ys1+1,...,yq∈[N]

1√
N q−s1

|(⊥, ys1+1), . . . , (⊥, yq)〉D1(⊥)

ω~η2·~y2
N |(x2

1, y
2
1), . . . , (x2

s2 , y
2
s2)〉D2(~x2)∑

ys2+1,...,yq∈[N]

1√
N q−s2

|(⊥, ys2+1), . . . , (⊥, yq)〉D2(⊥). (41)

In case we have added x to Da, the full database D above contains (x, yaj). In the rest of
the proof we omit the subscript R, however note that |ΨGood

i 〉 does indeed depend on R.
As we already mentioned, another way to define the good state is to consider the

joint state of the adversary and the non-punctured oracle H just after the i-th query. The
good state is then this state after a projection of register D with JR. Normalization of
the projected state comes from multiplying each branch corresponding to a given size

of the database by an appropriate
√

N
s1
1 N

s2
2

|GR(s1,s2)| factor. The reason why the good state is
normalized is that for a fixed set of queries we can think of defining it as A interacting
with the normalized database register using PhO instead of CPhO. This intuition works
for every branch of the superposition (introduced by the adversary, not the superposition
over different databases) separately. Now combining all branches together also gives a
normalized state, because they origin from a valid interaction of a unitary adversarywith
CPhO.

4.1.4 Final Bound

Eq. (39) gives us

P[Find] ≤
q∑
i=1
‖JRH \ VRUi−1|Φi−1〉‖2 . (42)

We use the good state to bound the elements of the sum above as follows:

‖JRH \ VRUi−1|Φi−1〉‖ ≤
∥∥∥|Φi−1〉 − |ΨGood

i−1 〉
∥∥∥+

∥∥∥JRH \ VRUi−1|ΨGood
i−1 〉

∥∥∥ . (43)

Next we bound the two norms in Eq. (43). First the distance of the good state from
the original state interacting with the punctured oracle. We simplify the norm to be a

17

sum of small steps:∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥
=
∥∥∥|ΨGood

i 〉AD|0〉J − JRH \ VRUi−1|Φi−1〉ADJ
∥∥∥ (44)

≤
∥∥∥|ΨGood

i 〉AD|0〉J − JRH \ VRUi−1|ΨGood
i−1 〉AD|0〉J

∥∥∥
+
∥∥∥JRH \ VRUi−1|ΨGood

i−1 〉AD|0〉J − JRH \ VRUi−1|Φi−1〉ADJ
∥∥∥ (45)

≤ εstep(i) +
∥∥∥|ΨGood

i−1 〉AD|0〉J − |Φi−1〉ADJ
∥∥∥ ≤ i∑

j=1
εstep(j), (46)

where we use the triangle inequality and recursively get rid of all queries made by A.
The definition of a single step is the following Euclidean norm

εstep(j) :=
∥∥∥|ΨGood

j 〉AD|0〉J − JRH \ VRUj−1|ΨGood
j−1 〉AD|0〉J

∥∥∥
2
. (47)

To calculate the bound on εstep(j) we first calculate how a query affects the good state.
The full calculations are presented in Sec. A.1. Using these findingswe prove Lem. 14 that
states a bound on the norm of the difference of the good and original states.

We define the second part in Eq. (43) as

εFind(i) :=
∥∥∥JRH \ VRUi−1|ΨGood

i−1 〉
∥∥∥ . (48)

Using the techniques developed to bound εstep(j), we bound εFind(i) in Sec. A.3 and state
the bounds in Lem. 16.

The final bound is

P
[
Find : A[H \R]

]
≤

q∑
i=1

i−1∑
j=1

εstep(j) + εFind(i)

2

, (49)

with Lem. 14 and Lem. 16 we get the final bound.

4.2 Simplification of the Bound

Whenever the outputs of two databases relate to one another the new entry in the good
set is sampled in a way thatD is not inR. If outputs of one oracle depend on the inputs of
the other, adding a new entry gives a trivial attack, thatwe exclude. The only scenario that
adding a new entry causes errors in the other database is when the other outputs depend
on some random function of the new input (that is not accessible for the adversary). This
is not the case for the relation that we discuss here, hence we can omit all errors to the
other database in the ADD case. Namely

∣∣HADD
a (s1, s2)

∣∣ = 0.

Next, we simplify the additive terms −
(

1−
√
|Gā(sa−1,sā)|
|Gā(s1,s2)|

)
. We can bound it by 0:

the fewer the restrictions fromDa the more good yā there are. Another term that we can
simplify is sgn

(∣∣HREM
a (s1, s2)

∣∣) = 1.

To achieve a constant bound on the multiplicative term
√
|Gā(sa−1,sā)|
|Gā(s1,s2)| we proceed as

18

follows:

|Gā(sa − 1, sā)|
|Gā(s1, s2)| =

sā∏
k=1

(
Nā − bā(sa − 1, k)
Nā − bā(sa, k)

)
(50)

=
sā∏
k=1

(
1 + bā(sa, k)− bā(sa − 1, k)

Nā − bā(sa, k)

)
(51)

= exp
(

sā∑
k=1

log
(

1 + bā(sa, k)− bā(sa − 1, k)
Nā − bā(sa, k)

))
(52)

≤ exp
(

sā∑
k=1

bā(sa, k)− bā(sa − 1, k)
Nā − bā(sa, k)

)
≤ exp

(
sā

bā,max
Nā − bā,max

)
≤ exp(2) ≤ 32, (53)

where we use the bound log(1 + x) ≤ x and sā
bā,max

Nā−bā,max
≤ 2, with bā,max :=

maxsa,k≤q bā(sa, k).
For bounding the part with

∣∣HREM
a (s1, s2)

∣∣we use the following derivation:√
Na − ba(s1, s2)

Na

√
|HREM

a (s1, s2)|
|Gā(s1, s2)|

=
√
Na − ba(s1, s2)

Na

√√√√ sā∏
k=1

(
Nā − bā(sa − 1, k)
Nā − bā(sa, k)

)
− 1 (54)

=
√
Na − ba(s1, s2)

Na

√√√√ sā∏
k=1

(
1 + bā(sa, k)− bā(sa − 1, k)

Nā − bā(sa, k)

)
− 1 (55)

≤

√
Na − ba(s1, s2)

Na

√√√√√√√√√√√√
sā∏
k=1

1 + maxk≤sā{bā(sa, k)− bā(sa − 1, k)}

Nā − bā(sa, sā)︸ ︷︷ ︸
≤exp

(
maxk≤sā

{bā(sa,k)−bā(sa−1,k)}
Nā−bā(sa,sā)

)

− 1 (56)

≤

√
22qmaxk≤sā (bā(sa, k)− bā(sa − 1, k))

Na
, (57)

where the last inequality comes from bounding ex − 1 ≤ 2x (valid for 0 ≤ x ≤ 1) and
assuming that Na−ba(s1,s2)

Nā−bā(s1,s2) ≤ 2.
In the final expression we make the following assumptions:

∣∣HADD
a (s1, s2)

∣∣ = 0,
sābā,max
Nā−bā,max

≤ 2, maxk≤sā
{bā(sa,k)−bā(sa−1,k)}
Nā−bā(sa,sā) ≤ 1, Na−ba(s1,s2)

Nā−bā(s1,s2) ≤ 2, and that ba is a
monotonously increasing function: ba(s1, s2) ≤ ba(sa + 1, sā) and ba(s1, s2) ≤ ba(q, q).
Given these assumptions and some straight forward simplifications we arrive at

P
[
Find : A[H \R]

]
≤

q∑
i=1

(
i−1∑
j=1

max
a∈{1,2},s1,s2≤j−1

(
9 ba(sa + 1, sā)√

Na(Na − ba(q, q))

)

+ max
a∈{1,2},s1,s2≤i−1

2
√
ba(sa + 1, sā)

Na
+ 3 ba(s1, s2)√

Na(Na − ba(q, q))

19

+ ba(s1, s2)3/2

Na

√
Na − ba(q, q)

+
√

22q ·maxk≤sā (bā(sa, k)− bā(sa − 1, k))
Na

)2

. (58)

4.3 Concrete Bound for the Rate-1/3 Relation

In the indifferentiability proof of the Rate-1/3 construction defined in Sec. 2.3 we lazy
sample three functions. The generalization of Lem. 9 to H = (H1,H2,H3) can be done in a
straight forward way, note that we do not make use of the fact that a ∈ {1, 2} in any place
of the proof. We define the relation

RRate-1/3 := {(D1, D2, D3) ∈ D3 : ∃y1 ∈ DY
1 , y2 ∈ DY

2 , x3 ∈ DX
3 , y1 = y2 ⊕ x3}, (59)

where9 D3 :=
(⋃

s∈[q+1] ({0, 1}n × {0, 1}n)s
)3

and ⊕ is the bitwise XOR. We state a
lemma giving a bound on the probability of Find for the triple of compressed oracles
(CStOn,CStOn,CStOn). The coefficients are b1(s1, s2, s3) ≤ s2 · s3, b2(s1, s2, s3) ≤ s1 · s3,
and b3(s1, s2, s3) = 0. The b1 function is such, because for each output of f1, there are at
most s2 · s3 sums y2 ⊕ x3 of outputs of f2 and inputs of f3 that can bring D to be in R.
Similarly for b2. Outputs of f3 do not cause D to be in relation.

We prove the corollary by using the bound from Lem. 9 simplified as in Eq. (58) with
function b defined above.

Corollary 10. For any quantum adversary A interacting with a punctured oracle
(CStOn,CStOn,CStOn) \ RRate-1/3, where RRate-1/3 is defined in Eq. (59), the probability of
Find is bounded by:

P
[
Find : A[(CStOn,CStOn,CStOn) \RRate-1/3]

]
≤ 36 q

3

2n + 84 q5

2n
√

2n − q2 + 70 q7

2n(2n − q2) , (60)

where q is the maximal number of queries made by A.

For q ∈ O
(
2n/4

)
the bound above is just O

(
q3/2n

)
.

The above bound is essentially the classical bound on finding input-output pairs of
f1, f2, and f3 such that y1 ⊕ y2 = x3. The quantum bound on finding such a triple can
be found by applying the above bound on P

[
Find

]
and Thm. 5. Both the classical and

quantum bounds are tight, we prove it in Sec. 5.2.

5 Tight Indifferentiability of Rate-1/3

This section contains our main results, we prove quantum indifferentiability of Rate-1/3.
Additionally we prove that our classical and quantum indifferentiability results are tight.
On the one hand we show positive results, establishing that Rate-1/3 is secure with re-
spect to a very strong notion. On the other handwe bound the indifferentiability security
guarantees away from the optimal—in terms of collision resistance—level of the lower
bound of Ω(2n/2). This means that Rate-1/3 is not as good of a compression function as
we might have thought. From a more technical perspective, our work paves the way for

9The result also holds for D3 :=
⋃

s∈[q+1] (X1 × Y)s ×
⋃

s∈[q+1] (X2 × Y)s ×
⋃

s∈[q+1] (Y × Y)s with
arbitrary finite Abelian group Y .

20

similar results (i.e., proving quantum security) for other constructions that have already
been proven classically indifferentiable to an optimal level [ABR21].

The proof of quantum indifferentiability is set in the quantum-game playing frame-
work. It is structured in an almost identical way as the classical proof but uses different
ingredients for the main statements. We also use quantum analogues for some of the
objects the adversary interacts with.

The key object in our proof are punctured oracles, introduced in this context in
[Cza+19] and of which we give a recap in Sec. 2.2. They are subroutines of the games,
played by the adversary, that capture lazy-sampling and checks for Bad events. Simi-
larly to the classical framework from [BR06], whenever Bad is set to 1, the adversary can
identify the game she is playing.

Including punctured oracles especiallymakes sense due to Thm. 5, which is the quan-
tum counterpart of the fundamental game-playing lemma (Lem. 2). The second distin-
guishability bound that we use is shown in Lem. 7. This is a relatively simple statement,
that is true for games that are almost identical (Def. 6).

We note thatwhen discussingmore than two oracles that are puncturedwith relations
that depend on all of them, we use the punctured oracle notation only on those that are
directly influenced by the puncturing. The distinguishability bound, however, can only
be calculated by considering all of the oracles.

5.1 Quantum Indifferentiability Proof

Quantum indifferentiability can proved in a very similar manner to the classical case,
presented in Sec. 3.

Theorem 11. The compression function Rate-1/3f1,f2,f3 for uniformly random f1, f2, and f3 and

for q ∈ O
(
2n/4

)
is (q, ε)-quantumly indifferentiable for ε =

√
190(q + 1) q3

2n + 760 q
3

2n .

Proof. The proof of quantum indifferentiability mirrors the classical proof. Again we
define two simulators, the initial S2 that just lazy samples the compression functions and
S3 that is the actual simulator.

Algorithm 2 Quantum simulators S2 , S3 for Rate-1/3f1,f2,f3
procedure f1(x1)

Apply CStOn , CStOn \RRate-1/3 . RRate-1/3 defined in (59)

procedure f2(x2)
Apply CStOn , CStOn \RRate-1/3

procedure f3(x3)
if ∃y1 ∈ DY

1 , y2 ∈ DY
2 : x3 = y1 ⊕ y2 then

Apply CStOn

return R(x1, x2)⊕ y1
else

Apply CStOn

Game 1 The interface in the first game is (Rate-1/3, (f1, f2, f3)), where f1, f2, and f3 are

21

uniformly random functions. The definition of the game is

Game 1 := (b = 1 : b← A[Rate-1/3, (f1, f2, f3)]) . (61)

Game 2 In the second step we lazy sample the compression functions, the interface is
(Rate-1/3, S2). The new game is

Game 2 := (b = 1 : b← A[Rate-1/3,S2]) . (62)

By the fact that the compressed oracles are indistinguishable from random oracles (see
e.g. Theorem 7 in [Cza+19]), this change of the interface is indistinguishable for A:∣∣∣P [Game 2

]
− P

[
Game 1

]∣∣∣ = 0. (63)

Game 3 The interface in the third game is (Rate-1/3,S3), where we introduce the punc-
tured oracle and R, introducing the random oracle does not change the distribution of the
outputs of f3 so this change does not add to the distinguishability advantage. The new
game is defined as

Game 3 := (b = 1 : b← A[Rate-1/3,S3]) . (64)

We puncture on the same events as in the classical proof, relation RRate-1/3is defined in
Eq. (59). The only noticeable change for the adversary is the punctured oracle. The
distinguishing advantage can be bounded by the O2H lemma, Thm. 5:

∣∣∣P [Game 3
]
− P

[
Game 2

]∣∣∣ ≤ √(q + 1)P
[
Find

]
≤

√
190(q + 1) q

3

2n , (65)

where the bound on P
[
Find

]
comes from Corollary 10.

Game 4 In the last step of this proof the interface is (R, S3), we change the private inter-
face, the definition of the game is

Game 3 := (b = 1 : b← A[R,S3]) . (66)

Similar to the classical case we have:∣∣∣P [Game 4 | ¬Find
]
− P

[
Game 3 | ¬Find

]∣∣∣ = 0. (67)

Using the above identity we derive the final distinguishing advantage:

∣∣∣P [Game 4
]
− P

[
Game 3

]∣∣∣ ≤ 4P
[
Find

]
≤ 760 q

3

2n , (68)

where we use Lem. 7, Find is the event of finding the relation in Game 3, we bound the
bound from the lemma by the bigger of the two probabilities.

The last game includes the random oracle in the private interface, which concludes
the proof.

22

5.2 Indifferentiability Attacks

In the last paragraphs of this section we present the attacks on the indifferentiability of
Rate-1/3. Their complexity matches the security bounds from the previous paragraphs,
proving their tightness. Comparing themwith the results of [SS08], the attacks show that
the construction does not maintain its efficiency when moving from collision resistance
to indifferentiability In the recent [ABR21], the authors discuss an optimally collision-
resistant construction that (with a small modification) also is indifferentiable from a ran-
dom oracle with the same distinguishing advantage. Interestingly, they also present an
attack that proves tightness of their result. Inspired by their approach we present similar
proofs for tightness of our indifferentiability bounds.

For an exponential distinguisher we assume the simulator makes at most polynomi-
ally many queries to R per distinguisher query.

5.2.1 Classical Attack

We describe a classical distinguisher Dc that wins the indifferentiability game with con-
stant probability after making 3 · 2n/3 + 1 queries. We say that there is a collision in a
list of input-output pairs if there are two distinct pairs with the second entries equal each
other. The classical distinguisher works as follows:

1. Query f3 with 2n/3 uniformly random distinct values and save all the input-output
pairs in list L3.

2. Query f1, f2 with 2n/3 uniformly random distinct values each and save all the input-
output pairs in lists L1,L2 respectively.

3. If there is any collision in L1 or L2, then output 1.

4. If there is no triple (y1, y2, x3) ∈ LY1 ×LY2 ×LX3 such that y1 ⊕ y2 = x3, then output
1.

5. Say that ((x1, y1), (x2, y2), (x3, y3)) ∈ L1 × L2 × L3 is such that y1 ⊕ y2 = x3. If
R(x1, x2) 6= y1 ⊕ y3 (where R is the random oracle in the ideal world and the con-
struction in the real world), then output 1.

6. If at any point there were any inconsistencies in f1, f2, or f3, then output 1, otherwise
output 0.

Theorem 12. The distinguisher Dc described above achieves constant distinguishing advantage
in the classical indifferentiability game ofRate-1/3f1,f2,f3 for any simulator aftermaking 3·2n/3+1
classical queries.

Proof. If f1, f2 are uniformly random, then with high probability all y1 and y2 are distinct.
So in the real world Dc does not output 1 in Point 3 with high probability. This can be
seen using the standard collision-finding bound (Appendix A.4 in [KL14]):

P
[
At least 1 collision in q samples from {0, 1}n

]
≤ q2

2n+1 , (69)

where the probability is over the q uniformly random samples. Note that for q = 2n/3 the
probability of seeing any collisions is negligible.

23

In what follows we assume that there are no collisions in L1 and L2. We write Bad to
denote the event that there is a triple (y1, y2, x3) ∈ LY1 ×LY2 ×LX3 such that y1 ⊕ y2 = x3.
The probability that there is at least one x3 = y1 ⊕ y2 can be calculated by going through
LX3 one by one and checking if the equation holds for any y1 and y2. To calculate the
probability of Bad given no collisions in L1 and L2—i.e. the probability that in the real
world Dc does not output 1 in Point 4—we use the proof of Lemma 4 from [ABR21] for
k = 1 and a fixed a. Formally we have:

P
[
Bad | No collisions in L1,L2

]
=

∑
x3∈LX

3

P
[
y1 ⊕ y2 = x3 : y1 ∈ L1, y2 ∈ L2 | No collisions in L1,L2

]
(70)

=
∑

x3∈LX
3

(q!)2(2n − 1)!
((q − 1)!)22n! = q3

2n = 1. (71)

The equality above works under the assumption that there are no collisions inLY1 and
LY2 , the final bound on P

[
Bad

]
reads:

P
[
Bad

]
= P

[
Bad ∧No collisions in L1,L2

]
+ P

[
Bad ∧At least 1 collision in L1 or L2

]
(72)

≥ P
[
No collisions in L1,L2

]
≥
(

1− q2

2n+1

)2

. (73)

Given the bound above, in Point 5 in the real world the distinguisher sees a triple of
input-output pairs such that y1 ⊕ y2 = x3 with overwhelming probability10. In the real
world equality R(x1, x2) = Rate-1/3f1,f2,f3(x1, x2) = y1⊕y3 holds andDc does not output
anything at that point.

On the other hand, the probability that in the ideal world Dc does not output 1 in
Point 5 is negligible. The simulator has already committed to the values of y3 and the
queries to f1 and f2 are uniformly random (and hence unpredictable, guessing them has
negligible chance of success). Moreover, the simulator makes p(n)2n/3 queries, where p
is some polynomial. The probability that any of the (x1, x2) pairs yields y3 ⊕ y1, for any
y3 and any y1 corresponding to x1, when queried to R is upper-bounded by p(n)2n/3 2n/3

2n ,
which is negligible. This concludes our proof, any simulator that provides consistent
answers will fail the check in Point 5 and any inconsistent answers are caught by the last
point of Dc.

5.2.2 Quantum Attack

We describe a quantum distinguisherDq that wins the indifferentiability game with con-
stant probability after making 3 · 2n/4 + 1 quantum queries:

1. Make 2n/4 uniformly random distinct classical queries to f2 and f3 and save all the
input-output pairs in list L2,L3 respectively.

2. If there is any collision in L2, then output 1.
10By overwhelming we mean 1− negligible.

24

3. Run amplitude amplification algorithm [BH97] (this is a generalization of Grover’s
algorithm [Gro96]), making 2n/4 quantumqueries to f1, to find a preimage of y2⊕x3
under f1 for any (y2, x3) ∈ LY2 ×LX3 . If the preimage search does not succeed, then
output 1.

4. Say that the preimage search output (x1, y1) and ((x2, y2), (x3, y3)) ∈ L1 × L2 × L3
are such that y2 ⊕ x3 = y1. Then if R(x1, x2) 6= y1 ⊕ y3 (where and R is the random
oracle in the ideal world and the construction in the real world), then output 1.

5. If at any point there were any inconsistencies in f1, f2, or f3, then output 1, otherwise
output 0.

Theorem 13. The distinguisher Dq described above achieves constant distinguishing advantage
in the quantum indifferentiability game ofRate-1/3f1,f2,f3 for any simulator after making 2·2n/4+
1 classical queries and 2n/4 quantum queries.

Proof. The above algorithm is a successful distinguisher because in the real world the
preimage search succeeds with high probability. If it does succeed in the ideal world
though, we still check if the committed value matches the random oracle.

Let us start by evaluating the probability of outputting 1 in Point 2 ifDq is interacting
with the real world. Using the bound from Eq. (69) with q = 2n/4 we get the following
bound on the probability that all y2 are distinct:

P
[
No collisions in L2

]
≥ 1− (2n/4 − 1)2n/4

2n+1 . (74)

To analyze the probability of outputting 1 in Point 3 ofDq, we calculate the number of
targets for the preimage search. We have 2n/4 values of y2 and 2n/4 values x3. Given the
assumption of distinctness of all values in LY2 we can use the bound on the probability of
collisions in the set {y2 ⊕ x3 : y2 ∈ LY2 , x3 ∈ LX3 } that we denote as LY2 ⊕ LX3 :

P
[
There is a collision in LY2 ⊕ LX3 | No collisions in L2

]
≤ (q!)22n(2n − 2)!

(q − 2)! · 2! · 2n! = (q − 1)q
2(2n − 1) , (75)

the above bound is the statement of Lemma 3 for k = 2 in [SS08]. Taking the above two
bounds into account, the probability that Dq outputs 1 in the real world is negligible.

Under the assumption that there are no collisions in LY2 and in LY2 ⊕ LX3 , the num-
ber of possible values we want to find a preimage of is 2n/4 · 2n/4 = 2n/2. In the real
world, every y1 is distributed uniformly at random, so the probability of any output of
f1 being a preimage of LY2 ⊕ LX3 is 2n/2

2n . The number of queries required to achieve con-
stant probability of finding a preimage is the square root of the inverse of the probability
that a given function output is marked (so in our case equals y2 ⊕ x3). In our setting Dq
has to do 1√

2n/2/2n
= 2n/4 queries to f1. For more details on the amplitude amplification

algorithm we also direct to [Wol11].
Up to Point 4, in the realworldDq does not output 1with constant probability (coming

from the success probability of amplitude amplification algorithm).
In the ideal world and after all the queries to f2 and f3, the distinguisher outputs 1

with overwhelming probability. The simulator commits to values y3 and y2. Moreover,
by inspecting the amplitude amplification algorithm more carefully, we see that Dq gets

25

a uniformly random solution to the search problem, hence the simulator can predict x1
in the earlier stages with only negligible probability. The probability that the quantum
simulator finds x1 that yields R(x1, x2) = y2⊕x3⊕y3, where we set y1 = y2⊕x3, for some
fixed (x2, y2) ∈ L2 and any (x3, y3) ∈ L3 is upper-bounded by (p(n)2n/4)2 2n/4

2n . We arrive
at this bound by using Theorem 1 in [HRS16] and setting λ = 2n/4

2n , the probability that
R outputs y2 ⊕ x3 ⊕ y3 for some (x3, y3) ∈ L3, and the number of queries the simulator
can make is q = p(n)2n/4, where p is a polynomial. Hence, no matter in what way the
simulator modifies the distribution of f1, she has a negligible probability of providing an
answer to Point 4 that fulfills the R(x1, x2) 6= y1 ⊕ y3 check.

6 Conclusions

We expand the quantum game-playing technique from [Cza+19] to include multiple
functions. This is an important development as many constructions do not just reuse
a single internal function. Our bound on P

[
Find

]
is general enough to allow a simple

evaluation of the distinguishing advantage for a plethora of constructions.
Following the work of [ABR21] we show a distinguisher that tightens the security

bounds, proving that the construction of Shrimpton and Stam does not yield an opti-
mally secure compression function in terms of the notion of indifferentiability. For future
work we leave the interesting question of proving optimal quantum collision-resistance of
the construction. Another open problem is bringing the results of [ABR21] to the post-
quantum world, namely proving quantum indifferentiability (and collision-resistance)
of their ABR+ construction.

The open questions that we leave, especially these concerning indifferentiability, will
be considerably easier to answer now, that we have a versatile tool to prove quantum
security of construction involving many independent functions.

7 Acknowledgments

Majority of this workwas donewhen the author was a PhD candidate at the University of
Amsterdam, where he was supported by an NWO VIDI grant (Project No. 639.022.519).
The author thanks Christian Schaffner for constructive feedback on important parts of
the manuscript.

References

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quantum
Security Proofs Using Semi-classical Oracles”. In: CRYPTO 2019. 2019,
pp. 269–295. doi: 10.1007/978-3-030-26951-7_10. url: https://eprint.
iacr.org/2018/904 (cit. on pp. 3, 6, 8).

[ABR21] Elena Andreeva, Rishiraj Bhattacharyya, and Arnab Roy. “Compactness of
Hashing Modes and Efficiency Beyond Merkle Tree”. In: Advances in Cryp-
tology – EUROCRYPT 2021. Springer International Publishing, 2021, pp. 92–
123. doi: 10.1007/978-3-030-77886-6_4 (cit. on pp. 3, 21, 23, 24, 26).

26

https://doi.org/10.1007/978-3-030-26951-7_10
https://eprint.iacr.org/2018/904
https://eprint.iacr.org/2018/904
https://doi.org/10.1007/978-3-030-77886-6_4

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: A
paradigm for designing efficient protocols”. In: Proceedings of the 1st ACM
conference on Computer and communications security. ACM. 1993, pp. 62–73.
doi: 10.1145/168588.168596 (cit. on p. 3).

[BR06] Mihir Bellare andPhillip Rogaway. “The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs”. In: EUROCRYPT 2006.
https://eprint.iacr.org/2004/331. Springer Berlin Heidelberg, 2006,
pp. 409–426. doi: 10.1007/11761679_25 (cit. on pp. 5, 21).

[Bon+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. “Random Oracles in a Quantum World”.
In: Advances in Cryptology – ASIACRYPT 2011. LNCS 7073. 2011, pp. 41–69.
doi: 10.1007/978-3-642-25385-0_3 (cit. on p. 3).

[BH97] G. Brassard and P. Hoyer. “An exact quantum polynomial-time algorithm
for Simon’s problem”. In: Proceedings of the Fifth Israeli Symposium on The-
ory of Computing and Systems. 1997, pp. 12–23. doi: 10.1109/ISTCS.1997.
595153 (cit. on p. 25).

[CEV20] Céline Chevalier, Ehsan Ebrahimi, and Quoc Huy Vu. “On the Security No-
tions for Encryption in a Quantum World”. In: IACR Cryptol. ePrint Arch.
2020 (2020), p. 237. url: https://eprint.iacr.org/2020/237 (cit. on
p. 6).

[Chu+20a] Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. “On the
Compressed-Oracle Technique, and Post-QuantumSecurity of Proofs of Se-
quential Work”. In: arXiv preprint arXiv:2010.11658 (2020) (cit. on pp. 3, 6).

[Chu+20b] Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. “Tight Quan-
tum Time-Space Tradeoffs for Function Inversion”. In: Electron. Colloquium
Comput. Complex. 27 (2020), p. 90. url: https://arxiv.org/pdf/2006.
05650.pdf (cit. on p. 6).

[Cor+05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. “Merkle-Damgård Revisited: How to Construct a Hash Function”.
In: Advances in Cryptology – CRYPTO 2005. Springer Berlin Heidelberg,
2005, pp. 430–448. doi: 10.1007/11535218_26 (cit. on p. 5).

[Cza+19] Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur.
“Quantum Lazy Sampling and Game-Playing Proofs for Quantum Indif-
ferentiability”. In: CoRR abs/1904.11477 (2019). arXiv: 1904 . 11477. url:
http://arxiv.org/abs/1904.11477 (cit. on pp. 3, 5, 6, 7, 8, 12, 15, 21, 22,
26, 37).

[Gro96] Lov KGrover. “A fast quantummechanical algorithm for database search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting. ACM. 1996, pp. 212–219 (cit. on pp. 3, 25).

[HI19] Akinori Hosoyamada and Tetsu Iwata. “4-Round Luby-Rackoff Construc-
tion is a qPRP”. In:ASIACRYPT 2019. 2019, pp. 145–174. doi: 10.1007/978-
3-030-34578-5_6. url: https://doi.org/10.1007/978-3-030-34578-
5%5C_6 (cit. on p. 6).

27

https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1109/ISTCS.1997.595153
https://doi.org/10.1109/ISTCS.1997.595153
https://eprint.iacr.org/2020/237
https://arxiv.org/pdf/2006.05650.pdf
https://arxiv.org/pdf/2006.05650.pdf
https://doi.org/10.1007/11535218_26
https://arxiv.org/abs/1904.11477
http://arxiv.org/abs/1904.11477
https://doi.org/10.1007/978-3-030-34578-5_6
https://doi.org/10.1007/978-3-030-34578-5_6
https://doi.org/10.1007/978-3-030-34578-5%5C_6
https://doi.org/10.1007/978-3-030-34578-5%5C_6

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. “MitigatingMulti-Target
Attacks in Hash-based Signatures”. In: Public Key Cryptography – PKC 2016.
Vol. 9614. Springer-Verlag Berlin Heidelberg, 2016, pp. 387–416. doi: 10.
1007/978-3-662-49384-7_15. url: https://eprint.iacr.org/2015/
1256 (cit. on p. 26).

[JZM19] Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. “Tighter security proofs
for generic key encapsulation mechanism in the quantum random oracle
model”. Cryptology ePrint Archive, Report 2019/134. https://eprint.
iacr.org/2019/134. 2019 (cit. on p. 6).

[Kap+16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Marıéa Naya-
Plasencia. “Breaking symmetric cryptosystems using quantumperiod find-
ing”. In: Annual Cryptology Conference. Springer. 2016, pp. 207–237 (cit. on
p. 3).

[KL14] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC Cryptography and Network Security Series. Taylor
& Francis, 2014 (cit. on p. 23).

[LM17] Gregor Leander and Alexander May. “Grover Meets Simon – Quantumly
Attacking the FX-construction”. In: ASIACRYPT 2017. Springer Interna-
tional Publishing, 2017, pp. 161–178. doi: 10.1007/978-3-319-70697-9_6
(cit. on p. 3).

[MT07] UeliM.Maurer and Stefano Tessaro. “Domain Extension of Public Random
Functions: Beyond the Birthday Barrier”. In: CRYPTO 2007. Springer, 2007,
pp. 187–204. doi: 10.1007/978-3-540-74143-5_11 (cit. on p. 3).

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. “Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Or-
acle Methodology”. In: Theory of Cryptography. Springer Berlin Heidelberg,
2004, pp. 21–39. doi: 10.1007/978-3-540-24638-1_2 (cit. on pp. 3, 5).

[MP12] Bart Mennink and Bart Preneel. “Hash Functions Based on Three Permuta-
tions: A Generic Security Analysis”. In: Advances in Cryptology – CRYPTO
2012. Springer Berlin Heidelberg, 2012, pp. 330–347. isbn: 978-3-642-32009-
5. doi: 10.1007/978-3-642-32009-5_20 (cit. on p. 3).

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information. 10th anniversary. Cambridge: CambridgeUniversity Press,
2010. isbn: 978-1107002173 (cit. on p. 4).

[NIS14] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Func-
tions. Draft FIPS 202. 2014. url: http://csrc.nist.gov/publications/
drafts/fips-202/fips_202_draft.pdf (cit. on p. 4).

[NIS15] NIST. Secure Hash Standard (SHS). Draft FIPS 180-4. 2015. doi: 10.6028/
NIST.FIPS.180-4 (cit. on p. 4).

[RS08] Phillip Rogaway and John Steinberger. “Constructing Cryptographic Hash
Functions from Fixed-Key Blockciphers”. In: Advances in Cryptology –
CRYPTO 2008. Springer Berlin Heidelberg, 2008, pp. 433–450. isbn: 978-3-
540-85174-5. doi: 10.1007/978-3-540-85174-5_24 (cit. on p. 3).

[Ros21] Ansis Rosmanis. “Tight bounds for inverting permutations via compressed
oracle arguments”. In: arXiv preprint arXiv:2103.08975 (2021). url: https:
//arxiv.org/abs/2103.08975 (cit. on p. 6).

28

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2015/1256
https://eprint.iacr.org/2015/1256
https://eprint.iacr.org/2019/134
https://eprint.iacr.org/2019/134
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-540-74143-5_11
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-32009-5_20
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/978-3-540-85174-5_24
https://arxiv.org/abs/2103.08975
https://arxiv.org/abs/2103.08975

[SS16] Thomas Santoli and Christian Schaffner. “Using Simon’s algorithm
to attack symmetric-key cryptographic primitives”. In: arXiv preprint
arXiv:1603.07856 (2016) (cit. on p. 3).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring”. In: 35th Annual Symposium on Foundations of Com-
puter Science, Santa Fe, NewMexico, USA, 20-22November 1994. 1994, pp. 124–
134. doi: 10.1109/SFCS.1994.365700. url: https://doi.org/10.1109/
SFCS.1994.365700 (cit. on p. 3).

[SS08] Thomas Shrimpton andMartijn Stam. “Building aCollision-Resistant Com-
pression Function from Non-compressing Primitives”. In: Automata, Lan-
guages and Programming. 2008, pp. 643–654. doi: 10 . 1007 / 978 - 3 - 540 -
70583-3_52. url: https://eprint.iacr.org/2007/409 (cit. on pp. 3, 8, 9,
23, 25).

[Sim97] Daniel R Simon. “On the power of quantum computation”. In: SIAM journal
on computing 26.5 (1997), pp. 1474–1483. doi: 10.1137/S0097539796298637
(cit. on p. 3).

[Unr14] Dominique Unruh. “Revocable Quantum Timed-Release Encryption”. In:
EUROCRYPT 2014. Springer Berlin Heidelberg, 2014, pp. 129–146. doi: 10.
1007/978-3-642-55220-5_8 (cit. on pp. 3, 6, 8).

[Wol11] Ronald deWolf. “Quantumcomputing: Lecture notes”. In:University of Am-
sterdam (2011). url: https://arxiv.org/abs/1907.09415 (cit. on pp. 4,
25).

[Zha19] Mark Zhandry. “How to Record Quantum Queries, and Applications to
Quantum Indifferentiability”. In: CRYPTO 2019. Springer International
Publishing, 2019, pp. 239–268. isbn: 978-3-030-26951-7. doi: 10.1007/978-
3-030-26951-7_9 (cit. on pp. 3, 5, 6, 7).

A Additional Details on the Proof of Lem. 9

In the following paragraphs we provide all the necessary details to prove Lem. 9.

A.1 |ΨGood
i−1 〉 after a query

To prove the main technical lemmas of this section we analyze how a single query to the
oracle affects the good state. We provide a detailed expression of the state after the query.

To prove Lem. 14 we analyze how far apart the state |ΨGood
i−1 〉 is after a query from

|ΨGood
i 〉. To achieve this goal we inspect the state H \ VRUi−1|ΨGood

i−1 〉AD|0〉J . We dis-
tinguish different modes of operation: ADD when the queried x is added to D, UPD
when x was already in D and is not removed from the database, REM when we re-
move x from D, and NOT where there is no change in the database because register
AY is in state |0〉. These modes correspond to different branches of superposition in
H \ VRUi−1|ΨGood

i−1 〉AD|0〉J . We write

Ui−1|ΨGood
i−1 〉AD = |ξi−1(ADD)〉+ |ξi−1(UPD)〉+ |ξi−1(REM)〉+ |ξi−1(NOT)〉 (76)

and analyze the action of H \ VR on the above states separately.
For |ξi−1(NOT)〉 there is no change to the state. For |ξi−1(UPD)〉 and |ξi−1(REM)〉, we

treat the updated x as the last one in Da, this does not have to be true but it simplifies

29

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-540-70583-3_52
https://doi.org/10.1007/978-3-540-70583-3_52
https://eprint.iacr.org/2007/409
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-642-55220-5_8
https://arxiv.org/abs/1907.09415
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

notation. Note that we want the corresponding ysa to depend on previous queries to Ha.
This assumption is without loss of generality as there is no fixed order for

∑
~ya

in Eq. (41).
The empty register is moved to the back of D, we do not write it out for simplicity but
still consider it done.

After querying |ΨGood
i−1 〉|0〉J we encounter states multiplied by |0〉J that do not appear

in the definition of the good state and those multiplied by |1〉J . We call these vectors
errors. We mark the former errors by a superscript Bad and the latter with Find, note that
indeed all branches of superposition that have |1〉J increase P

[
Find

]
.

In general, a query to Ha can cause errors inDa andDā. The former results from, e.g.,
adding a new entry to Da; We sample a uniform entry and some values bring Da to be
in relation. The latter errors occur when the set of good outputs in Dā changes after we,
e.g., add a new entry to Da. The rule we follow is that yasa

is the last value sampled. The
second rule is that all values can be sampled one by one, query by query. These rules
imply that we can sample ~ya first, then ~yā, then yasa

. This reasoning, however does not
apply to relations that depend on inputs, so whenever contents of DX (a or ā) changes
we need to make up for it by changing the set we sample ~yā from.

Adding a new entry to a database results in setting the register corresponding to (x, a)
to
∑
ya

sa+1∈[Na]
1√
Na
ω
ηya

sa+1
Na

|x, yasa+1〉, just as expected from a phase oracle for the uniform
distribution. As wementioned earlier, there are errors in two databases,Da andDā. First
we go over the errors in Da and leave Dā unchanged. In the equality that follows we
single out all the branches of superposition that are not parts of |ξi(ADD)〉:

H|ξi−1(ADD)〉 =
∑

x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~x1,~x2)

1√
|Ga(s1, s2)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa

, yasa
)〉Da(~xa)

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

 1√
Na

∑
ya

sa+1 6∈Ba(x|D(~x))
ω
ηya

sa+1
Na

|x, yasa+1〉Da(x)

+ 1√
Na

∑
ya

sa+1∈Ba(x|D(~x))
ω
ηya

sa+1
Na

|x, yasa+1〉Da(x)

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+2,...,y

a
q∈[Na]

1√
N q−sa−1
a

|(⊥, yasa+2), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥). (77)

Errors that are left to be analyzed come from Dā, let us present the split in the sum over
~ya that we will use in the ADD case:∑

~ya∈Ga(~x1,~x2)

∑
~yā∈Gā(~x1,~x2|~ya)

∑
ya

sa+1 6∈Ba(x|D(~x))

=
∑

~ya∈Ga(~x1,~x2)

∑
~yā∈Gā(~xa∪{x},~xā|~ya)

∑
ya

sa+1 6∈Ba(x|D(~x))

+
∑

~ya∈Ga(~x1,~x2)

∑
~yā∈Gā(~x1,~x2|~ya)\Gā(~xa∪{x},~xā|~ya)

∑
ya

sa+1 6∈Ba(x|D(~x))
. (78)

30

Next we include the full impact of VR. Two things happen in the expression below.
First we split the sum over ~yā in the first element in the parentheses, secondly we rewrite
the normalization factors to simplify the analysis later on. We underline parts of the
state that are important later on. With red color we denote the errors. After applying
Queries† ◦ VR ◦ Queries the state is:

ADD : H \ VR|ξi−1(ADD)〉|0〉J
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~x1,~x2)

1√
|Ga(s1, s2)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa

, yasa
)〉Da(~xa)√Na − ba(sa + 1, sā)

Na

√
|Gā(sa + 1, sā)|
|Gā(s1, s2)|∑

~yā∈Gā(~xa∪{x},~xā|~ya)

1√
|Gā(sa + 1, sā)|︸ ︷︷ ︸

(i) |ΨGood
i (ADD,a,s1,s2)〉∑

ya
sa+1 6∈Ba(x|D(~x))

1√
Na − ba(sa + 1, sā)

ω
ηya

sa+1
Na

|x, yasa+1〉Da(x)

︸ ︷︷ ︸
(ii) |ΨGood

i (ADD,a,s1,s2)〉

|0〉J

+
√
Na − ba(sa + 1, sā)

Na

√
|HADD

a (s1, s2)|
|Gā(s1, s2)|

∑
~yā∈HADD

a (~x1,~x2,~ya)

1√
|HADD

a (s1, s2)|︸ ︷︷ ︸
(i) |ΨFind

i,1 (ADD,a,s1,s2)〉∑
ya

sa+1 6∈Ba(x|D(~x))

1√
Na − ba(sa + 1, sā)

ω
ηya

sa+1
Na

|x, yasa+1〉Da(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,1 (ADD,a,s1,s2)〉

|1〉J

+
√
ba(sa + 1, sā)

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|︸ ︷︷ ︸

(i) |ΨFind
i,2 (ADD,a,s1,s2)〉

∑
ya

sa+1∈Ba(x|D(~x))

1√
ba(sa + 1, sā)

ω
ηya

sa+1
Na

|x, yasa+1〉Da(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,2 (ADD,a,s1,s2)〉

|1〉J

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+2,...,y

a
q∈[Na]

1√
N q−sa−1
a

|(⊥, yasa+2), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥), (79)

where the appropriate position of register J is after D. The size of the domain of ~yā is

31

denoted by

|Gā(sa + 1, sā)| := |Gā(~xa ∪ {x}, ~xā | ~ya)| , (80)

which uses our assumption that the size of the good set does not depend on the actual
values stored in D, just their number. By |ΨGood

i (ADD; a, s1, s2)〉, |ΨFind
i,1 (ADD; a, s1, s2)〉,

and |ΨFind
i,2 (ADD; a, s1, s2)〉 we mean states equal to the above state but with just the un-

derlined part in the parentheses. We used color in Eq. (79) to indicate the parts that we
consider errors. By adding arguments to states we mean that these values are fixed. We
add a as the argument to specify the queried interface and s1 and s2 to specify the sizes of
the databases. The formal definition of states with a, s1, or s2 specified is the underlined
branch of the superposition projected to register AI containing a and databases with s1
and s2 inputs not equal ⊥. Above we use

∣∣HADD
a (s1, s2)

∣∣ defined in Eq. (28). In Eq. (28)
we use the fact that the cardinality of G depends only on s1 and s2, conditioning on ~ya
does not influence the cardinality either, so we omit it in the arguments of

∣∣HADD
a (s1, s2)

∣∣.
For the state |ΨFind

i,2 (ADD; a, s1, s2)〉weomit entirely the analysis of the other database.
That is because the register D(x) is the one responsible for D being in relation and there
is no need to analyze Dā.

When we update or remove from the database we start by presenting the non-
punctured oracle to make clear the source of errors when discussing the punctured ora-
cle. The counting procedure Queries acts by just analyzingDX . The only point where we
operate in the Fourier basis is when we update the number of non-empty entries in the
database. Namely, we apply the Quantum Fourier Transform to registerDY (x), where x
in the queried value, decrease the number of non-empty if the register holds 0, apply the
transform again. Below we are a bit sloppy with notation of ~η, and ~ηa does not contain
ηasa

:

H (|ξi−1(UPD)〉+ |ξi−1(REM)〉)
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)| ∑

ya
sa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

ω
(ηa

sa
+η)ya

sa
Na

|x, yasa
〉Da(x)

− 1√
Na(Na − ba(s1, s2))

∑
ya

sa
6∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

∑
ya′

sa
∈[Na]

1√
Na
|x, ya′sa

〉D(x)

+ 1√
Na(Na − ba(s1, s2))

∑
ya

sa 6∈Ba(x|D(~x\{x}))
ω

(ηa
sa

+η)ya
sa

Na

∑
ya′

sa
∈[Na]

1√
Na
|⊥, ya′sa

〉D(x)

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+1,...,y

a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥), (81)

32

The states that we add to the first element in the parentheses come from performing the
Fourier transform on a state that is not of the form QFTNa |η〉. Note that this discrepancy
is the result of considering the good state. Whether we are in the branch UPD or REM
depends on whether η = −ηs or not.

Similarly to the case of ADD, we first present the state with the error parts of Da

exposed.

H|ξi−1(UPD)〉 =
∑

x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)| ∑

ya
sa
6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

ω
(ηa

sa+η)ya
sa

N |x, yasa
〉Da(x)

+ 1
Na

√
Na − ba(s1, s2)

∑
ya

sa
∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

∑
ya′

sa
6∈Ba(x|D(~x\{x}))

|x, ya′s 〉D(x)

+ 1
Na

√
Na − ba(s1, s2)

∑
ya

sa∈Ba(x|D(~x\{x}))
ω

(ηa
sa

+η)ya
sa

Na

∑
ya′

sa∈Ba(x|D(~x\{x}))
|x, ya′sa

〉D(x)

− 1
Na

√
Na − ba(s1, s2)

∑
ya

sa
∈Ba(x|D(~x\{x}))

ω
(ηa

sa+η)ya
sa

Na

∑
ya′

sa
∈[Na]
|⊥, ya′sa

〉Da(x)

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+1,...,y

a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥), (82)

where we have used the fact that ηasa
+ η 6= 0 which implies

∑
ya

sa
6∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

= −
∑
ya

sa∈Ba(x|D(~x\{x})) ω
(ηa

sa
+η)ya

sa
Na

.
Splitting the sums in the case of removing an entry works as follows:∑

~ya∈Ga(~x\{x})

∑
~yā∈Gā(~x|~ya)

=
∑

~ya∈Ga(~x\{x})

∑
~yā∈Gā(~x\{x}|~ya)

−
∑

~ya∈Ga(~x\{x})

∑
~yā∈Gā(~x\{x}|~ya)\Gā(~x|~ya)

. (83)

Let us present in detail the effect of Queries† ◦ VR ◦ Queries on the branch of updated
databases:

UPD : H \ VR|ξi−1(UPD)〉|0〉J
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

33

(
|ΨGood

i (UPD; a, s1, s2)〉|0〉J
+ |ΨBad

i,1 (UPD; a, s1, s2)〉|0〉J
+ |ΨFind

i,1 (UPD; a, s1, s2)〉|1〉J
− |ΨBad

i,2 (UPD; a, s1, s2)〉|0〉J + |ΨFind
i,2 (UPD; a, s1, s2)〉|1〉J

)
ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+1,...,y

a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥), (84)

where the states with superscripts Good, Bad, and Find denote the states that are defined
as the state from Eq. (84) with expressions from Equations (85), (86), (87), (88), or (89)
below put in the correct spot, without any other element from the parentheses. Note
that the states in the equation above come from splitting the sum over ~yā into the parts
of Eq. (82) from the corresponding lines. Below we define in detail all the states from
Eq. (84).

The good state gives the following expression in the parentheses in Eq. (84):

|ΨGood
i (UPD; a, s1, s2)〉 :

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|∑

ya
sa
6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

ω
(ηa

sa+η)ya
sa

N |x, yasa
〉Da(x). (85)

Bad states are those with |0〉J that are not good:

|ΨBad
i,1 (UPD; a, s1, s2)〉 : 1

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

∑
ya

sa
∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

∑
ya′

sa
6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

|x, ya′sa
〉D(x), (86)

|ΨBad
i,2 (UPD; a, s1, s2)〉 : 1√

Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|∑

~yā∈Gā(~xa\{x},~xā|~ya)

1√
|Gā(sa − 1, sā)|∑

ya
sa
∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

∑
ya′

sa
∈[Na]

1√
Na
|⊥, ya′sa

〉Da(x). (87)

The states with the superscript Find are states for which D ∈ R:

|ΨFind
i,1 (UPD; a, s1, s2)〉 :

√
ba(s1, s2)

N2
a (Na − ba(s1, s2))

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|∑

ya
sa
∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

∑
ya′

sa
∈Ba(x|D(~x\{x}))

1√
ba(s1, s2)

|x, ya′sa
〉D(x), (88)

34

|ΨFind
i,2 (UPD; a, s1, s2)〉 : 1√

Na(Na − ba(s1, s2))

√
|HREM

a (s1, s2)|
|Gā(s1, s2)|

∑
~yā∈HREM

1 (~x1,~x2,~ya)

1√
|HREM

a (s1, s2)|

∑
ya

sa
∈Ba(x|D(~x\{x}))

ω
(ηa

sa
+η)ya

sa
Na

∑
ya′

sa
∈[Na]

1√
Na
|⊥, ya′sa

〉Da(x), (89)

where
∣∣HREM

a (s1, s2)
∣∣ is defined in Eq. (30).

The branch of superposition corresponding to removing x fromDwith just the errors
in Da exposed is

REM : H|ξi−1(REM)〉
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

√Na − ba(s1, s2)
Na

∑
ya

sa∈[Na]

1√
Na
|⊥, yasa

〉D(x)

+ ba(s1, s2)
Na

∑
ya

sa 6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

|x, yasa
〉Da(x)

+
√
ba(s1, s2)(Na − ba(s1, s2))

Na

∑
ya

sa
∈Ba(x|D(~x\{x}))

1√
ba(s1, s2)

|x, yasa
〉Da(x)

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+1,...,y

a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥), (90)

where we simplified the formula from Eq. (81) using the fact η = −ηasa
. Splitting the

sums in the case of removing an entry works as shown in Eq. (83).
Now we present the full state, after checking for D ∈ R:

REM : H \ VR|ξi−1(REM)〉|0〉J
=

∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})√Na − ba(s1, s2)

Na

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|∑

~yā∈Gā(~xa\{x},~xā|~ya)

1√
|Gā(sa − 1, sā)|

∑
ya

sa∈[Na]

1√
Na
|⊥, yasa

〉D(x)

︸ ︷︷ ︸
|ΨGood

i (REM,a,s1,s2)〉

|0〉J

35

−

√
Na − ba(s1, s2)

Na

√
|HREM

a (s1, s2)|
|Gā(s1, s2)|

∑
~yā∈HREM

a (~x1,~x2,~ya)

1√
|HREM

a (s1, s2)|︸ ︷︷ ︸
(i) |ΨFind

i,1 (REM,a,s1,s2)〉∑
ya

sa
∈[Na]

1√
Na
|⊥, yasa

〉D(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,1 (REM,a,s1,s2)〉

|1〉J

+ ba(s1, s2)
Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|︸ ︷︷ ︸

(i) |ΨBad
i (REM;a,s1,s2)〉∑

ya
sa
6∈Ba(x|D(~x\{x}))

1√
Na − ba(s1, s2)

|x, yasa
〉Da(x)

︸ ︷︷ ︸
(ii) |ΨBad

i (REM;a,s1,s2)〉

|0〉J

+
√
ba(s1, s2)(Na − ba(s1, s2))

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|︸ ︷︷ ︸

(i) |ΨFind
i,2 (REM,a,s1,s2)〉

∑
ya

sa
∈Ba(x|D(~x\{x}))

1√
ba(s1, s2)

|x, yasa
〉Da(x)

︸ ︷︷ ︸
(ii) |ΨFind

i,2 (REM,a,s1,s2)〉

|1〉J

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)∑

ya
sa+1,...,y

a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq)〉Da(⊥)

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥), (91)

whereHREM
a (~x1, ~x2, ~ya) = Gā(~xa \ {x}, ~xā | ~ya) \ Gā(~x1, ~x2 | ~ya).

A.2 Bound on εstep(j)

Lemma 14. For states defined in the preceding sections we have∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥ ≤ i∑
j=1

εstep(j)

≤
i∑

j=1
max

a∈{1,2},s1,s2≤j−1

(
2ba(s1, s2)

Na
+ ba(s1, s2)√

Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1

)

+ ba(sa + 1, sā)
Na

√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

))
. (92)

36

Proof. We prove the statement by recursion, the derivation is shown in Eq. (46). The step
function εstep(j) defined in Eq. (47). For i = 0 the statement is true, as |ΨGood

0 〉|0〉J =
|Φ0〉 = |Ψ0〉|0〉J .

Eqs. (79), (84), and (91) give us exact expressions for |ΨGood
j−1 〉 after a query. Following

[Cza+19], we distinguish two types of errors compared to |ΨGood
j 〉|0〉J : an additive error

of adding a small-weight state to the original one and a multiplicative error where one
branch of the superposition is multiplied by some factor.

The additive error includes all states of small-weight states multiplied by |0〉J with
the superscript Bad. The multiplicative error, on the other hand, includes the branches
of the superposition where we add or remove an entry from the database.

In the following, we first deal with the additive errors and after that with multiplica-
tive. We define |ψ×j 〉ADJ as the state JRH\VRUj−1|ΨGood

j−1 〉|0〉J with all branches classified
as the additive error excluded. By “classified as the additive error” we mean states with
superscript Bad and highlighted in red in Equations (79, 84, 91). The state is defined as

|ψ×j 〉ADJ :=
(∑
a,s1,s2

|ΨGood
j (NOT; a, s1, s2)〉

+
√
Na − ba(sa + 1, sā)

Na

√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| |Ψ

Good
j (ADD; a, s1, s2)〉

+ |ΨGood
j (UPD; a, s1, s2)〉

+
√
Na − ba(s1, s2)

Na

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| |Ψ

Good
j (REM; a, s1, s2)〉

 |0〉J , (93)

where the states above correspond to branches of superposition where we do nothing
(NOT, for η = 0), add an entry, update the database, and remove an entry from D.
Bounding the difference of the states is done as follows∥∥∥|ΨGood

j 〉|0〉J − JRH \ VRUj−1|ΨGood
j−1 〉|0〉J

∥∥∥
≤
∥∥∥|ΨGood

j 〉|0〉J − |ψ×j 〉ADJ
∥∥∥+

∥∥∥|ψ×j 〉ADJ − JRH \ VRUj−1|ΨGood
j−1 〉|0〉J

∥∥∥ . (94)

The second term above is the norm of all states amplifying the additive error—we call
them the bad states.

The additive error ‖|ψ×j 〉ADJ − JRH \ VRUj−1|ΨGood
j−1 〉|0〉J‖ is bound by first splitting

the three cases underlined above:∥∥∥|ΨBad
j 〉

∥∥∥ ≤ ∥∥∥|ΨBad
j,1 (UPD)〉

∥∥∥+
∥∥∥|ΨBad

j,2 (UPD)〉
∥∥∥+

∥∥∥|ΨBad
j (REM)〉

∥∥∥ , (95)

where |ΨBad
j 〉 is the sum of all three bad states, the bound follows from the triangle in-

equality.
Calculating all of the three norms above is done by first focusing on a particular in-

terface that is queried and by focusing on particular sizes of databases:

∥∥∥|ΨBad
j 〉

∥∥∥ =

√√√√√∑
a

j∑
s1,s2=0

|β(a, s1, s2)|2
∥∥∥|ΨBad

j (a, s1, s2)〉
∥∥∥2
, (96)

where β(a, s1, s2) is the amplitude of the good state projected to states with the spec-
ified parameters: For a projector Pa,s1,s2 to adversaries that query interface a and
databases of sizes s1 and s2 we have β(a, s1, s2) := Pa,s1,s2 |ΨGood

j 〉 and |ΨBad
j (a, s1, s2)〉 :=

Pa,s1,s2 |ΨBad
j 〉.

37

1 Additive errors The states classified as additive errors are marked by the Bad su-
perscript. We start with the case UPD of updating the database from Eq. (84). The hard
part here is analyzing the factor

∑
ya

sa
∈B(x|D(~x\{x})) ω

(ηa
sa

+η)ya
sa

N ; This is a a complex num-
ber that depends on ηasa

, so it enters the norm in a non-trivial way. To ease notation, we
change the value we sum over to yasa

∈ [ba(s1, s2)] and change yasa
in the expression to

Ba(x | D(~x\{x}))(yasa
), by which we denote the yasa

-th element of Ba(x | D(~x\{x})). The
order in the bad set is just the rising order, note that Ya = [Na].

Given the change of variables we use the triangle inequality to focus on the norm of
a state with a single phase factor ω(ηa

sa+η)Ba(x|D(~x\{x}))(ya
sa)

N , instead of the whole sum:∥∥∥|ΨBad
j (UPD; a, s1, s2)〉

∥∥∥
≤

∑
ya

sa
∈[ba(s1,s2)]

∥∥∥|ΨBad
j (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa

))〉
∥∥∥ , (97)

where we omit the index of the UPD errors because the techniques here work in al-
most the same way for both states. The input D(~x \ {x}) should not be treated as
an actual argument of the state, we still consider the superposition over different in-
puts, we just mean that in the state |ΨBad

j (UPD; a, s1, s2)〉 we change the variable yasa
.

In what follows we denote the state on the right hand side of the above equation by
|ΨBad

j (UPD; a, s1, s2,B′(yasa
))〉.

Now we focus on the state with a fixed B′(yasa
), we bound the norm of this state.

Claim 15. For all yasa
∈ [ba(s1, s2)]∥∥∥|ΨBad

j,1 (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa
))〉
∥∥∥ ≤ 1

Na
and (98)∥∥∥|ΨBad

j,2 (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa
))〉
∥∥∥

≤
√

1
Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| . (99)

Proof. First we show that taking the good state in the UPD branch and modifying
the sum (and its normalization factor) over yasa

, to
∑
ya

sa
∈Ba(x|D(~x\{x})) or

∑
ya

sa
∈[Na]

yields states with norm bounded by 1. Given that we can show that the norm of
|ΨBad

j (UPD; a, s1, s2,Ba(x | D(~x \ {x}))(yasa
))〉 multiplied by the corresponding right

hand side of Eq. (98) and (99) equals to the norm of the state with the sum modified
to
∑
ya

sa
∈[Na].

The two states are:∑
x,η,a,~x,~η,w

αx,η,a,~x,~η,w|x, η, a〉AXY I |ψ(x, η, a, ~x, ~η, w)〉AW

∑
~ya∈Ga(~xa\{x},~xā)

1√
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na
|(xa1, ya1), . . . , (xasa−1, y

a
sa−1)〉Da(~xa\{x})

∑
~yā∈Gā(~x1,~x2|~ya)

1√
|Gā(s1, s2)|

ω~ηā·~yā

Nā
|(xā1, yā1), . . . , (xāsā

, yāsā
)〉Dā(~xā)

∑
ya

sa+1,...,y
a
q∈[Na]

1√
N q−sa
a

|(⊥, yasa+1), . . . , (⊥, yaq)〉Da(⊥)

38

∑
yā

sā+1,...,y
ā
q∈[Nā]

1√
N q−sā
ā

|(⊥, yāsā+1), . . . , (⊥, yāq)〉Dā(⊥)

⊗

∑
ya

sa
∈Ba(x|D(~x\{x}))

1√
ba(s1,s2)

ω
(ηa

sa
+η)ya

sa
N |x, yasa

〉Da(x) =: |ΨGood
j (UPD; a, s1, s2)〉,∑

ya
sa
∈[Na]

1√
Na
ω

(ηa
sa+η)ya

sa
Na

|x, yasa
〉Da(x) =: |Ψ̃Good

j (UPD; a, s1, s2)〉.
(100)

The first one, |ΨGood
j (UPD; a, s1, s2)〉 is the one that we use in the last step of the proof, as

described in the previous paragraph. The second one will be used to show that the norm
of |ΨGood

j (UPD; a, s1, s2)〉 is bounded by 1.
Also note that

∥∥∥|Ψ̃Good
j (UPD; a, s1, s2)〉

∥∥∥ =
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥. There are two

arguments that prove it: The weight associated with the fact that the two states corre-
spond to the (UPD; a, s1, s2) branch of the superposition is the same. They both can be
generated by first considering an adversary-oracle state interactingwith a non-punctured
oracle and then performing some projection to D. The second argument is that the
database register is normalized. Hence the overall weight is the same.

Having in mind that
∑
ya

sa
∈Ba(x|D(~x\{x})) =

∑
ya

sa
∈[Na]−

∑
ya

sa
6∈Ba(x|D(~x\{x})) we see that

ba(s1, s2)
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥2

= Na

∥∥∥|Ψ̃Good
j (UPD; a, s1, s2)〉

∥∥∥2

− (Na − ba(s1, s2))
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥2
≤ ba(s1, s2), (101)

hence
∥∥∥|ΨGood

j (UPD; a, s1, s2)〉
∥∥∥2
≤ 1.

Now that we know that |ΨGood
j (UPD; a, s1, s2)〉 is sub-normalized we show that∥∥∥|ΨGood

j (UPD; a, s1, s2,B′(yasa
))〉
∥∥∥ ≤ 1√

ba(s1, s2)
. (102)

To prove this bound, consider measuring register Da(x) of |ΨGood
j (UPD; a, s1, s2)〉 in the

computational basis. The probability of getting any outcome yasa
is necessarily 1

ba(s1,s2) ,
as the outputs of the oracle are uniformly random. The post-measurement state, for an
outcome yasa

, is
√
ba(s1, s2)·

|ΨGood
j (UPD; a, s1, s2,B′(yasa

))〉. Naturally, norm of this post-measurement state is atmost
1.

Now we can use the state |ΨGood
j (UPD; a, s1, s2,B′(yasa

))〉 to analyze the norm of
|ΨBad

j (UPD; a, s1, s2,B′(yasa
))〉. First let us inspect the norm squared of the bad state:∥∥∥|ΨBad

j (UPD; a, s1, s2,B′(yasa
))〉
∥∥∥2

=
∑

x,η,a,~x,~η′,~η,w′,w

∑
ηa′

sa
,ηa

sa

ᾱx,η,a,~x,~η′,ηa′
sa
,w′

αx,η,a,~x,~η,ηa
sa
,w〈ψ(x, η, a, ~x, ~η′, ηa′sa

, w′)|ψ(x, η, a, ~x, ~η, ηasa
, w)〉∑

~ya∈Ga(~xa\{x},~xā)

1
|Ga(sa − 1, sā)|

ω~ηa·~ya

Na

∑
~yā∈Gā(~x1,~x2|~ya)

1
|Gā(s1, s2)|ω

~ηā·~yā

Nā

1
N2
a (Na − ba(s1, s2)) ω̄

(ηa′
sa

+η)B′(ya
sa

)
Na

ω
(ηa

sa
+η)B′(ya

sa
)

Na
γ2 ∑
ya′

sa
∈[ν]︸ ︷︷ ︸

=ν

, (103)

39

where ν = Na − ba(s1, s2) and γ = 1 for |ΨBad
j,1 (UPD; a, s1, s2,B′(yasa

))〉 and ν = Na and

γ =
√
|Gā(sa−1,sā)|
|Gā(s1,s2)| for |ΨBad

j,2 (UPD; a, s1, s2,B′(yasa
))〉 (in the second case the sum goes over

ya′sa
6∈ Ba(x | D(~x \ {x})) instead of ya′sa

∈ [ν]). It is easy to notice, that the only difference
between Eq. (103) and norm squared of |ΨGood

j (UPD; a, s1, s2,B′(yasa
))〉 lies in the factor

νγ2

N2
a(Na−ba(s1,s2)) . This factor in the modified good state equals 1

ba(s1,s2) . This observation
implies that ∥∥∥|ΨBad

j (UPD; a, s1, s2,B′(yasa
))〉
∥∥∥

=
√

b(s) · νγ2

N2
a (Na − ba(s1, s2))

∥∥∥|ΨGood
j (UPD; s,B′(yasa

))〉
∥∥∥ . (104)

Togetherwith the bound on the norm in the left hand side this proves the claimed bounds.

Claim 15, together with the bound from Eq. (97) gives us:∥∥∥|ΨBad
j,1 (UPD; a, s1, s2)〉

∥∥∥ ≤ ba(s1, s2)
Na

, (105)

∥∥∥|ΨBad
j,2 (UPD; a, s1, s2)〉

∥∥∥ ≤ ba(s1, s2)√
Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| . (106)

The bounds from Eq. (105) in Eq. (96) give us the bound on the additive error in the
UPD branch. The additive error for the REM branch (|ΨBad

j (REM)〉 in Eq. (91)) is much
easier to calculate: As registerD(x) is normalized and all the rest of the state is the same
as |ΨGood

j (REM)〉, the only error comes from the factor ba(s1,s2)
Na

. To calculate the norm of
the state we can follow the analysis of Eq. (103). Finally we get:∥∥∥|ΨBad

j,1 (UPD)〉
∥∥∥ ≤ max

a,s1,s2

(
ba(s1, s2)

Na

)
, (107)

∥∥∥|ΨBad
j,2 (UPD)〉

∥∥∥ ≤ max
a,s1,s2

(
ba(s1, s2)√

Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|

)
, (108)

∥∥∥|ΨBad
j (REM)〉

∥∥∥ ≤ max
a,s1,s2

(
ba(s1, s2)

Na

)
, (109)

where a ∈ {1, 2} and s1, s2 ≤ j − 1.

2 Multiplicative errors The multiplicative error is a factor that multiplies a part of
the state |ψ×j 〉ADJ . Similarly as before we need to take care of the fact that the joint state
of the adversary and the oracle is a sum over databases of different sizes and queries to
different interfaces:

|ψ×j 〉 =
∑
a,s1,s2

|ψ×j (a, s1, s2)〉, (110)

where the states |ψ×j (a, s1, s2)〉 are orthogonal. The terms are also orthogonal in |ΨGood
j 〉 =∑

a,s1,s2 |Ψ
Good
j (a, s1, s2)〉.

There are two sources of multiplicative errors, ADD from Eq. (79) and REM from
Eq. (91), we split the two sources with the triangle inequality. We deal with both in the
same way, just the final bound is different.

40

Let us write down the two parts, one affected by the error and the second not:

|ΨGood
j 〉AD|0〉J =

∑
a,s1,s2

α(a, s1, s2)|ϕ1(a, s1, s2)〉+ β(a, s1, s2)|ϕ2(a, s1, s2)〉, (111)

|ψ×j 〉ADJ =
∑
a,s1,s2

α(a, s1, s2)|ϕ1(a, s1, s2)〉

+ (1 + g)
√

1− eβ(a, s1, s2)|ϕ2(a, s1, s2)〉, (112)

where (1 + g)
√

1− e is the multiplicative error, in the case ADD the error is g =√
|Gā(sa+1,sā)|
|Gā(s1,s2)| − 1 and e = ba(sa+1,sā)

Na
. In the case REM the error is g =

√
|Gā(sa−1,sā)|
|Gā(s1,s2)| − 1

and e = ba(s1,s2)
Na

. We know that∑
a,s1,s2 |α(a, s1, s2)|2 + |β(a, s1, s2)|2 ≤ 1, because we excluded a single branch of the su-

perposition, for ADD and REM. This inequality implies∑
a,s1,s2 |β(a, s1, s2)|2 ≤ 1. We continue with the bound∥∥∥|ψ×j 〉ADJ − |ΨGood

j 〉AD|0〉J
∥∥∥

=
∥∥∥∥∥ ∑
a,s1,s2

(
1− (1 + g)

√
1− e

)
β(a, s1, s2)|ϕ2(a, s1, s2)〉

∥∥∥∥∥ (113)

=
√ ∑
a,s1,s2

(
1− (1 + g)

√
1− e

)2
|β(a, s1, s2)|2 ≤ max

a,s1,s2

(
1− (1 + g)

√
1− e

)
≤ max

a,s1,s2
((1 + g)e− g) . (114)

Maximization is done over a ∈ {1, 2} and s1, s2 ≤ j − 1.

Bound on one step From Equations (94), (107), and (114) (for the two sources of error)
the bound on the single step is

εstep(j) ≤ max
a∈{1,2},s1,s2≤j−1

(
2ba(s1, s2)

Na
+ ba(s1, s2)√

Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1

)

+ ba(sa + 1, sā)
Na

√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

))
(115)

and the final bound is∥∥∥|ΨGood
i 〉AD|0〉J − |Φi〉ADJ

∥∥∥
≤

i∑
j=1

max
a∈{1,2},s1,s2≤j−1

(
2ba(s1, s2)

Na
+ ba(s1, s2)√

Na(Na − ba(s1, s2))

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)|

+ ba(s1, s2)
Na

√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa − 1, sā)|
|Gā(s1, s2)| − 1

)

+ ba(sa + 1, sā)
Na

√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| −

(√
|Gā(sa + 1, sā)|
|Gā(s1, s2)| − 1

))
. (116)

41

A.3 Bound on εFind(i)

To bound the norm of
∥∥∥JRUiH \ VRUi−1|ΨGood

i−1 〉
∥∥∥we have to bound the norm of all states

from Sec. A.1 that have the superscript Find (they contain |1〉J).
Lemma 16. For states defined in preceding sections we have∥∥∥JRUiH \ VRUi−1|ΨGood

i−1 〉
∥∥∥ = εFind(i)

≤ max
a∈{1,2},s1,s2≤i−1

√Na − ba(sa + 1, sā)
Na

√
|HADD

a (s1, s2)|
|Gā(s1, s2)|

+
√
ba(sa + 1, sā)

Na
+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)√ |Gā(sa − 1, sā)|

|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√
|HREM

a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

 . (117)

Proof. For all Find states we start bounding the norm by splitting the norm by a and sizes
of the databases, like in Eq. (96). Let us now go through the three important modes of
operation, i.e. adding, updating, or removing from the database.

1 TheADD case For the state |ΨFind
j,1 (ADD)〉we first analyze its norm squared; Forget-

ting for now the factors multiplying the whole state, the situation is similar to Eq. (101)
but instead of focusing on the sum over yasa+1 we show that the norm squared of
|ΨFind

j,1 (ADD)〉 is a sum of norms of states that differ in the sum over ~yā. The states on
the right hand side have the sum over ~yā split according to∑

~yā∈Gā(~x1,~x2|~ya)\Gā(~xa∪{x},~xā|~ya)
=

∑
~yā∈Gā(~x1,~x2|~ya)

−
∑

~yā∈Gā(~xa∪{x},~xā|~ya)
. (118)

Note that both states constructed with sums over sets Gā(~x1, ~x2 | ~ya) and Gā(~xa∪{x}, ~xā |
~ya) have unit norm. The former state has norm equal to |ΨGood

j−1 (ADD)〉, the norm
of this state does not change when replacing register D(x) with an empty entry of
the database. The latter state is just the good state before the application of the ad-
versary’s unitary: U†j |ΨGood

j (ADD)〉. This analysis follows the same reasoning as pre-
sented in the proof of Claim 15. Given that |ΨFind

j,1 (ADD)〉 without the additional factor√
Na−ba(sa+1,sā)

Na

√
|HADD

a (s1,s2)|
|Gā(s1,s2)| has bounded norm we have the following bound:

∥∥∥|ΨFind
j,1 (ADD)〉

∥∥∥ ≤ max
a,s1,s2

√
Na − ba(sa + 1, sā)

Na

√
|HADD

a (s1, s2)|
|Gā(s1, s2)| . (119)

The second state has norm bounded in the following way:∥∥∥|ΨFind
j,2 (ADD)〉

∥∥∥ ≤ max
a,s1,s2

√
ba(sa + 1, sā)

Na
. (120)

This bound holds , because except for the factor in front of the state and register Da(x)
the state is just a good state (one from just before the query we analyze in Eq. (79)).
Moreover register D(x) is normalized (given the fact that η is explicit in the adversary’s
register).

42

2 The UPD case In this case we have∥∥∥|ΨFind
j,1 (UPD)〉

∥∥∥ ≤ max
a,s1,s2

ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

, (121)

where we follow the same reasoning as in the proof of Lem. 14 and Claim 15. For
|ΨFind

j,2 (UPD)〉 we consider the norm square and see that we deal with a difference of
two norms with different sets for ~yā, similarly to |ΨFind

j,1 (ADD)〉, but the split is done as
follows: ∑

~yā∈Gā(~xa\{x},~xā|~ya)\Gā(~x1,~x2|~ya)
=

∑
~yā∈Gā(~xa\{x},~xā|~ya)

−
∑

~yā∈Gā(~x1,~x2|~ya)
. (122)

The first state is just |ΨBad
j,2 (UPD)〉. The second state is more problematic to deal with , so

we just lower bound its norm by 0. We know the bound on |ΨBad
j,2 (UPD)〉 so by just taking

care of the additional factors we get the bound:∥∥∥|ΨFind
j,2 (UPD)〉

∥∥∥
≤ max

a,s1,s2

ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)√ |Gā(sa − 1, sā)|

|Gā(s1, s2)| , (123)

where the sign function ensures that if there is no error in Dā the norm of the state is 0.

3 The REM case Finally we have

∥∥∥|ΨFind
j,1 (REM)〉

∥∥∥ ≤ max
a,s1,s2

√
Na − ba(s1, s2)

Na

√
|HREM

a (s1, s2)|
|Gā(s1, s2)| , (124)

that can be derived in the same way as the bound on norm of |ΨFind
j,1 (ADD)〉. For the

second state we have∥∥∥|ΨFind
j,2 (REM)〉

∥∥∥ ≤ max
a,s1,s2

√
ba(s1, s2)(Na − ba(s1, s2))

Na
(125)

and to get it we follow the same reasoning as for |ΨFind
j,2 (ADD)〉.

We use these bounds and the triangle inequality to bound the second term in Eq. (43):∥∥∥JRUiH \ VRUi−1|ΨGood
i−1 〉

∥∥∥
≤ max

a∈{1,2},s1,s2≤i−1

√Na − ba(sa + 1, sā)
Na

√
|HADD

a (s1, s2)|
|Gā(s1, s2)|

+
√
ba(sa + 1, sā)

Na
+ ba(s1, s2)3/2

Na

√
Na − ba(s1, s2)

+ ba(s1, s2)√
Na(Na − ba(s1, s2))

sgn
(∣∣∣HREM

a (s1, s2)
∣∣∣)√ |Gā(sa − 1, sā)|

|Gā(s1, s2)|

+
√
Na − ba(s1, s2)

Na

√
|HREM

a (s1, s2)|
|Gā(s1, s2)| +

√
ba(s1, s2)(Na − ba(s1, s2))

Na

 . (126)

43

Symbol Index

x
$← X x chosen uniformly from set X 4

[N] The N -element set [N] := {0, 1, . . . , N − 1}
x← A x is assigned the output of algorithm A 4
|x| Cardinality of a set x / length of a string x/

absolute value
A,B An adversary, a classical or quantum algo-

rithm
8

Bad A "bad" event in a game. 5
B(1 | D) The bad set of for relation R 13
CFOY Compressed Fourier Oracle 7
CPhOY Compressed Phase Oracle 7
CStOY Compressed Standard Oracle 7
D The distinguisher 5
D The set of databases 20
f A function f : {0, 1}n → {0, 1}n or f : [N] →

[N].
Find Event of measurement of the relation R re-

turning 1
8

FO Fourier Oracle, QFTY FN ◦ StO ◦ QFT†Y FN 6
F The set of functions {f : [N]→ [N]} 6
|ΨGood

q 〉 The state with database D 6∈ R. 17
G(s) The good set of for relation R 13
|ψ〉 A quantum state, a normalized vector in a

Hilbert space
‖|ψ〉‖ Norm of a quantum state
O (n) Complexity class "big O"
PhO Phase Oracle, QFTYN ◦ StO ◦ QFT†YN 6
JR Projector on relation R. 15
QFTN The Quantum Fourier Transform 4
Rate-1/3 The Rate 1/3 Construction 9
R Random Oracle
S Classical and quantum simulators. 9, 21
StO Standard Oracle 6
VR The unitary outputting D ∈ R. 16
⊕ Bitwise XOR

44

https://en.wikipedia.org/wiki/Big_O_notation

	Introduction
	Preliminaries
	Indifferentiability
	Game Playing Proofs for Indifferentiability
	Compressed Oracles
	Punctured Oracles and Relations
	One-way To Hiding Lemma

	The Rate-1/3 Compression Function

	Classical Indifferentiability of Rate-1/3
	Bound on P[Find]
	Proof of Lem. 9
	Overview
	Introduction
	The good state
	Final Bound

	Simplification of the Bound
	Concrete Bound for the Rate-1/3 Relation

	Tight Indifferentiability of Rate-1/3
	Quantum Indifferentiability Proof
	Indifferentiability Attacks
	Classical Attack
	Quantum Attack

	Conclusions
	Acknowledgments
	References
	Additional Details on the Proof of Lem. 9
	 69640972 i-1Good"526930B after a query
	Bound on `39`42`"613A``45`47`"603Astep(j)
	Bound on `39`42`"613A``45`47`"603AFind(i)

	Symbol Index

