
1

Cuproof: A Novel Range Proof with Constant
Size

Cong Deng, Xianghong Tang, Lin You∗, Gengran Hu

Abstract—By combining inner-product and Lagrange’s four-square theorem, we structure a range proof scheme which is called
Cuproof. The scheme of Cuproof would make a range proof to prove that a secret number v ∈ [a, b] without exposing redundant
information of v. In Cuproof, the communication cost and the proof time is constant. Once the interval of range proof is large, the
scheme of Cuproof would show better. Zero-knowledge proof is widely used in blockchain. For example, zk-SNARK is used by Zcash
as its core technology in identifying transactions. Up to now, various range proofs have been proposed as well their efficiency and
range-flexibility are enhanced. Bootle et al. firstly used inner product method and recursion to an efficient zero-knowledge proof. Then,
Benediky Bünz et al. came up with an efficient zero-knowledge argument called Bulletproofs which convinces the verifier that a secret
number lies in [0, 2n]. The scheme of Cuproof is based on the scheme of Bulletproofs.

Index Terms—Blockchain, Zero-Knowledge proof, Range proof, Inner-product, Bulletproofs.

F

1 INTRODUCTION

The blockchain-based cryptocurrencies enable peer-to-
peer transactions and make sure the transactions are valid.
In the system of Bitcoin [1], all the transactions are recorded
in a common ledger. So every one can check whether the
transactions in the ledger are valid. The hash function also
makes the transactions in blockchain can’t be tampered.
However, every coin has two sides. The transparency is
both an advantage and a disadvantage of Bitcoin. In a
transaction of Bitcoin, the data of transaction, the addresses
of sender and receiver are all transparent which means the
anonymities of Bitcoin is not so strong.

In order to offset the disadvantage of Bitcoin, other cryp-
tocurrencies like Zcash [2] was proposed. The transactions
between shielded addresses are the special parts of Zcash. In
these kind transactions, although the traders’ addresses and
the amount are all covert, the validity of these transactions
can still be checked because of a kind of zero knowledge
proof so called zk-SNARK. However, zk-SNARK requires a
trusted setup that means the trusted setup should be honest.
The trusted setup is the weakness of zk-SNARK because
once the setup organization is rantankerous, the safety of
secret number in the proof can’t be guaranteed. To avoid
trusted setup, some other zk-SNARKs without trusted setup
were proposed. For example, Srinath Setty [3] put forward
a kind of zk-SNARK which doesn’t need a trust setup.
One could also avoid trusted setup by using STARK [4].
According to the property of protecting anonymity, more

• Cong Deng is with the School of Communication Engineering, Hangzhou
Dianzi University, Hangzhou, China, 310018.
Email: mrdengcong@gmail.com

• Xianghong Tang is with the School of Communication Engineering,
Hangzhou Dianzi University, Hangzhou, China, 310018.
Email: tangxh@hdu.edu.cn

• Lin You is with the School of Communication Engineering, Hangzhou
Dianzi University, Hangzhou, China, 310018.
Email: mryoulin@gmail.com (Corresponding author)

• Gengran Hu is with the School of Communication Engineering,
Hangzhou Dianzi University, Hangzhou, China, 310018.
E-mail: grhu@hdu.edu.cn

and more cryptocurrencies apply zero knowledge proof as
a tool to avert the disclosure of users’ information.

Our work is based on Bulletproofs [5]. We combine the
Lagrange integers theorem to Bulletproofs [5] to construct
an range proof for arbitrary interval. In our scheme, the
communication costs are 2 elements of Gp, 4 elements of Zp,
2 elements of Gq , 3 elements of Zq , and 12 elements of Z. The
12 elements of Z are in interval [−6p, 3p2 + 6p]. Comparing
to the communication costs of Bulletproofs [5] which is log-
arithmic in n, the communication costs of ours is constant.
So when the interval of range proof is large, our scheme has
more advantages than Bulletproof in communication costs.

1.1 Related work

There are lots of researches on range proof from the day
the first relevant algorithm of range proof was proposed.
Brickel et al. [6] first stated the correlative algorithm of
range proof in 1987. Its aim was to send reliable values
to other participants gradually so that can allow a user
with a discrete logarithm to disclose a bit of information to
another user that any other user can verify as they receive
each bit. In 1998, Chan et al. [7] showed how to use [6] to
verify the non-negative transaction amount and enhanced
the algorithm in [6]. This is so called CTF proof and because
its security depends on modulus, to keep completeness, the
order of group must be unknown. In 2000, Boudot [8] used
the square numbers to build an effective range proof which
is based on CFT. Using the Lagrange’s four-square theorem
[9], ”any non-negative integer can be represented as the sum
of square of four integers”, Lipmaa [10] pushed out a proof
of any range for first time. In 2005, Groth [11] pointed out
that if y was a non-negative integer, then 4y + 1 could be
represented as the sum of square of three integers. The pro-
tocol of [11] needs a trusted setup to generate RSA modulus
or needs a prohibitively large modulus. Using Boneh-Boyen
signature based on bilinear pairings implementation (BBS)
[12], Teranishi and Sako [13] proposed many anonymous

2

authentication in 2006, based this work, in 2008, Camenisch
et al. [14] used signature method which relies on the security
of the q-Strong DiffieHellman assumptions to construct a
range proof. In 2014, Mira Belenkiy [15] designed a scheme
to extended the u-proof cryptographic specification [16]
with the set member proof, this scheme can be used twice
to compare the size of the committed value to make a range
proof. In 2019, Maller et al. presented Sonic [17] which is
the first potentially practical zk-SNARK with fully succinct
verification for general arithmetic circuits with such an SRS,
but the verson of Sonic enabling fully succinct verification
still requires relatively high proof construction overheads.
Then, Ariel Gabizon et al. presented Plonk [18] which is
more efficient than Sonic.

Bootle et al. [19] made a step forward on the efficiency
of space in zero-knowledge proof based on discrete loga-
rithms. They used inner product method and recursion to
enhance the efficiency of zero-knowledge proof. Based on
these works, Benediky Bünz et al. [5] improved method
of inner product certificate and came up with a more effi-
cient zero knowledge proof scheme so called Bulletproofs.
Not only can it be applied to the range of certificates
and reshuffle and other applications, but also doesn’t need
trusted setup. Our works are based on the techniques of
Bulletproofs [5].

1.2 Contributions
Our scheme is established on the techniques of [5] and the
theorem of [11]. The protocol of ours can make a proof for ar-
bitrary range. The argument of ours has small computation
complexity. The main difference between the protocol of [5]
and ours is that the cost of communication of [5] is logarith-
mic in n but the cost of ours is constant. The key is that we
combine the Theorem 2 to the protocol of [5]. Our protocol
satisfies three security properties of zero-knowledge proof:
correctness, soundness and zero-knowledge.

1.3 Structure of the paper
In Section 2, some mathematical symbols, definitions and
theorems are given. The framework and construction of
our range proof protocol are stated in Section 3. In Section
3.1, we show how to construct a proof which convinces
the verifier that the prover knows the secret number v. In
Section 3.2, we describe the protocol of our range proof
which proves that v ∈ [a, b]. Some comparisons with other
referred works and the performance of cuproof are shown
in Section 4. Finally, the Forking Lemma and the proof of
Theorem 3 will be given in Appendix B.

2 PRELIMINARIES

Before we state our protocol, we first state some of the
underlying tools. In this paper, A is a PPT adversary which
is a probabilistic interactive Turing Machine that runs in
polynomial time in the security parameter λ.

2.1 Assumptions
Definition 1 (Discrete Log Relation). For all PPT adversaries
A and for all n ≥ 2 there exists a negligible function µ(λ) such
that

P

 G = Setup
(
1λ
)
,

g1, . . . , gn
$← G;

a1, . . . , an ∈ Zp ← A (g1, . . . , gn)

:
∃ai 6= 0,∏n
i=1 g

ai
i = 1


6
µ(λ)

As Benediky Bünz et al [5] states,
∏n
i=1 g

ai
i = 1 is a non

trivial discrete log relation between g1, ..., gn. The Discrete
Log Relation assumption makes sure that an adversary can’t
find a non-trivial relation between randomly selected group
elements. This assumption is equivalent to the discrete-log
assumption when n ≥ 1.

2.2 Commitments
Definition 2 (Commitments). A non-interactive commitment
scheme consists of a pair of probabilistic polynomial time algo-
rithms (Setup, Com). The setup algorithm pp ← Setup(1λ)
generates public parameters pp for the scheme, for security pa-
rameter λ. The commitment algorithm Compp defines a function
Mpp × Rpp → Cpp for message space Mpp, randomness space
Rpp and commitment space Cpp determined by pp. For a message
x ∈ Mpp, the algorithm draws r $← Rpp uniformly at random,
and computes commitment com = Compp.

Definition 3 (Homomorphic Commitments). A homomorphic
commitment scheme is a non-interactive commitment scheme such
that Mpp,Rpp and Cpp are all abelian groups, and for all x1, x2 ∈
Mpp, r1, r2 ∈ Rpp, we have

Com(x1; r1) + Com(x2; r2) = Com(x1 + x2; r1 + r2).

For ease of notation we write Com = Compp.

Definition 4 (Hiding Commitment). A commitment scheme
is said to be hiding if for all PPT adversaries A there exists a
negligible function such that.∣∣∣∣∣∣∣P

 b = b′
pp← Setup(1λ);

(x0, x1) ∈ M2
pp ← A(pp), b

$← (0, 1), r
$← Rpp,

com = Com(xb; r), b
′ ← A(pp, com)

− 1
2

∣∣∣∣∣∣∣
≤
µ(λ)

where the probability is over b, r,Setup and A. If µ(λ) = 0 then
we say the scheme is perfectly hiding.

Definition 5 (Binding Commitment). A commitment scheme
is said to be binding if for all PPT adversaries A there exists a
negligible function µ such that.

P

[
Com(x0; r0) = Com(x1; r1),
x0 6= x1

pp← Setup(1λ),
x0, x1, r0, r1 ← A(pp)

]
≤
µ(λ)

where the probability is over Setup and A. If µ(λ) = 0 then we
say the scheme is perfectly binding.

In the following content, to make sure that discrete log
in the groups we used is intractable for PPT adversaries,
the order p, q of these groups is implicitly dependent on the
security parameter.

3

Definition 6 (Pedersen Commitment). Mpp,Rpp =
Zp,Cpp = G with G of order p

Setup : g′, h′
$← G,

Com(x; r) = (g′xh′r).

Definition 7 (Pedersen Vector Commitment). Mpp =
Znp ,Rpp,Cpp = G with G of order p

Setup : g = (g1, ..., gn), h
′ $← G,

Com(x = (x1, ..., xn; r)) = h′rgx = h′r
∏
i g
xi
i ∈ G.

Under the discrete logarithm assumption, the Pedersen
vector commitment is perfectly hiding and computationally
binding. If r = 0, then the commitment is binding but not
hiding.

2.3 Zero-Knowledge Arguments of Knowledge

In our protocol, we construct zero-knowledge arguments of
knowledge. A zero-knowledge proof of knowledge means
a prover can convince a verifier that some statement holds
without revealing any information about why it holds. An
argument is a proof which holds when the prover is com-
putationally bounded and certain computational hardness
assumptions hold. The formal definitions as follows.

The arguments are consisted of three interactive al-
gorithms (Setup, P , V), they are all run in probabilistic
polynomial time. The three interactive algorithms are the
common reference string generator Setup, the prover P ,
and the verifier V . The algorithm Setup produces a common
reference string σ on input 1λ. The transcript produced by
P and V when interacting on inputs s and t is denoted by
tr ←< P(s),V(t) >. We write < P(s),V(t) >= b, if verifier
rejects then b = 0, if verifier accepts then b = 1.

We let R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a polynomial-
time-decidable ternary relation. Given σ, the w is a witness
for a statement u only if (σ, x, w) ∈ R. We define the CRS-
dependent language

Lσ = {x|∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w in the
relation R

Definition 8 (Argument of Knowledge). The triple
(Setup, P, V) is called an argument of knowledge for relation R
if it satisfies the following two definitions.

Definition 9 (Perfect completeness). (Setup, P, V) has
perfect completeness if for all non-uniform polynomial time ad-
versaries A

P

[
(σ, u, w) /∈ R
or 〈P(σ, u, w),V(σ, u)〉 = 1

σ ← Setup(1λ)
(u,w)← A(σ)

]
= 1.

Definition 10 (Computational Witness-Extended Emula-
tion). if for all deterministic polynomial time P∗ there exists an
expected polynomial time emulator ε such that for all pairs of

interactive adversaries A1,A2, there exists a negligible function
µ(λ) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P

 A1(tr = 1)

σ ← Setup(1λ),
(u, s)← A2(σ),
tr ← 〈P∗(σ, u, s),
V(σ, u)〉

−

P

 A1(tr) = 1
∧(tr is accepting
=⇒ (σ, u, w) ∈ R)

σ ← Setup(1λ),
(u, s)← A2(σ),
(tr, w)← εO(σ, u)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where the oracle is given by O = 〈P∗(σ, u, s),V(σ, u)〉, and
permits rewinding to a specific point and resuming with fresh
randomness for the verifier from this point onwards, Then we say
(Setup, P, V) has witness-extended emulation. Another way to
define computational witness-extended emulation is restricting to
non-uniform polynomial time adversaries A1 and A2.

In this paper, the witness-extended emulation is used by
us to define knowledge soundness as used for example in
[19] and defined in [20] [21]. If an adversary produces an
argument which satisfies the verifier with some probability,
then there exists an emulator which produces an identically
distributed argument with the same probability, but also a
witness. The s can be thought as the internal state of P∗,
including randomness. The emulator is allowed to rewind
the interaction between the prover and the verifier to any
action, and restore the prover with the same internal state,
but with new randomness to the verifier. If P∗ in state s
makes a convincing argument, then ε can extract a witness,
and therefor, we have an argument of knowledge of w such
that (σ, u, w) ∈ R.

Definition 11 (Public Coin). An argument of knowledge
(Setup, P, V) is called public coin if all messages sent from the
verifier to the prover are chosen uniformly at random and inde-
pendently of the prover’s messages, i.e., the challenges correspond
to the verifier’s randomness ρ.

If an argument of knowledge does not leak information
about w apart from what can be deduced from the fact
that (σ, x, w) ∈ R, then it is zero knowledge. In this paper,
we will prefer arguments of knowledge which have special
honest-verifier zero-knowledge. This means that, given the
challenge value of the verifier, the entire argument can be
effectively simulated without the need for a witness.

Definition 12 (Perfect Special Honest-Verifier Zero-Knowl-
edge). A public coin argument of knowledge (Setup, P, V) is a
perfect special honest verifier zero knowledge (SHVZK) argument
of knowledge for R if there exists a probabilistic polynomial time
simulator S such that for all pairs of interactive adversaries
A1,A2:

Pr

 (σ, u, w) ∈ R and A1(tr) = 1

σ ← Setup(1λ)
(u,w, ρ)← A2(σ),
tr ← 〈P(σ, u, w),
V(σ, u; ρ)〉



= Pr

 (σ, u, w) ∈ R and A1(tr) = 1
σ ← Setup(1λ),
(u,w, ρ)← A2(σ),
tr ← S(u, ρ)


where ρ is the public coin randomness used by the verifier.

4

In this definition the adversary chooses a distribution
over statements and witnesses but is still not able to dis-
tinguish between the simulated and the honestly generated
transcripts for valid statements and witnesses.

Now we define range proofs. Range proofs are proofs
that the prover knows an opening to a commitment, such
that the committed value is in a certain range. Range proofs
can be used to state that an integer commitment is to a
positive number or that two homomorphic commitments to
elements in a field of prime order will not overflow modulo
the prime when they are added together.

Definition 13 (Zero-Knowledge Range Proof). Given a com-
mitment scheme (Setup, Com) over a message space Mpp which
is a set with a total ordering, a Zero-Knowledge Range Proof is a
SHVZK argument of knowledge for the relation RRange:

RRange : (pp, (com, l, r), (x, ρ)) ∈ RRange ↔ com
=

Com(x; ρ) ∧ (l ≤ x < r).

Theorem 1 (Lagrange’s four-square theorem). Any non-
negative integer can be composed of the square of four integers.

The proof for Theorem 1 is given in [9], and [10] offers
an algorithm for finding four such squares.

Theorem 2 (Positive Integer Decompose). If x is a positive
integer, then 4x+ 1 can be written as the sum of three squares.

The proof for Theorem 2 is given in [11], and [9] offers
an efficient and simple algorithm for finding three such
squares. Theorem 2 also means writing 4x+1 as the sum of
three squares implies that x is non-negative.

2.4 Notation

Let p, q denote two prime numbers. Let Gp,Gq denote cyclic
groups of order p, q. Let Zp,Zq denote the ring of integers
modulo p, q. Let Z denote the set of integers. Let N denote
the set of natural numbers. Let Gnp and Znp be vector spaces
of dimension n over Gp and Zp respectively. Let Z∗p denote
Zp \ 0. Generators of Gp are denoted by g′, h′, v, u ∈ Gp.
Generators of Gq are denoted by g, h ∈ Gq . Group elements
which represent commitments are capitalized and blinding
factors are denoted by Greek letters, i.e. C = gahα is a
Pedersen commitment to a. In our protocol the Gp is known
by P and V , the Gq is V ’s secret cyclic group that P doesn’t

know at first, i.e. the P doesn’t know q at first. x $← Z∗p
means the uniform sampling of an element from Z∗p. In this
paper, a ∈ Fn is a vector with elements a1, ..., an ∈ F.
For a number c ∈ Zp and a vector a ∈ Znp , we denote by
b = c · a ∈ Znp the vector where bi = c · ai. Let 〈a,b〉 =∑n
i=1 ai · bi denote the inner product between two vectors

a,b ∈ Fn and a◦b = (a1 ·b1, ..., an ·bn) ∈ Fn the Hadamard
product or entry wise multiplication of two vectors. We
define vector polynomials p(x) =

∑d
i=0 pi · xi ∈ Znq [x]

where each coefficient pi is a vector in Znq . The inner product
between two vector polynomials l(x), r(x) is defined as

〈l(x), r(x)〉 =
d∑
i=0

i∑
j=0

〈li, rj〉 · xi+j ∈ Zq[x] (1)

Let a‖b denote the concatenation of two vectors: if a ∈ Znp
and b ∈ Zmp then a‖b ∈ Zn+mp . For 0 6 ` 6 n, we use
Python notation to denote slices of vectors:

a[:`] = a[0:`] = (a1, ..., a`) ∈ F`,

a[`:] = a[`:n] = (a`+1, ..., an) ∈ Fn−`.

Let t(x) = 〈l(x), r(x)〉, then the inner product is defined
such that t(x) = 〈l(x), r(x)〉 holds for all x ∈ Zp. For vectors
g = (g1, ..., gn) ∈ Gnp and a ∈ Znp we write C = ga =∏n
i=1 g

ai
i ∈ Gp. For m ∈ Z∗p we set ~m = (1, 2, 3, ...,m) ∈

Zmp .

3 EFFICIENT RANGE PROOF PROTOCOL

In this section, we will present our range proof protocol.

3.1 Four Integers Zero-Knowledge Proof

We now describe how to use the inner-product argument
to construct a proof. The proof convinces the verifier that a
commitment V contains a number v without revealing v.

In our proof, a Pedersen commitment V is an element in
the same group G that is used to perform the inner product
argument.

We let v ∈ Zp and let V ∈ Gp be a Pedersen commitment
to v which uses randomness r. The proof system proves the
following relation:

{(g, h, V ∈ Gp, v, r ∈ Zp) : V = hrgv} (2)

Let a = (a1, a2, a3, a4) ∈ Z4
p be the vector containing the

four numbers, y = ~4 · y these numbers satisfy the equation:

v = a21 + a22 + a23 + a24, so that 〈a,a〉 = v (3)

The prover P uses a constant size vector commitment
A ∈ Gp to commit to a. To convince the verifier that v is
a positive number, the prover must proves that he knows
an opening a ∈ Z4

p of A and v, r ∈ Zp such that V = hrgv

and 〈a,a〉 = v. To construct this zero knowledge proof, the
verifier should choose a random z ∈ Zp and then the prover
proves that

〈a,a〉z2 + 〈a− a,y〉z = vz2 (4)

This equality can be re-written as:

〈a · z − y,a · z + y〉 = vz2 − δ(y) (5)

The verifier can easily calculate that δ(y) = 〈y,y〉 ∈ Zq . So
the problem of proving (3) holds is reduced to proving a
single inner-product identity.

If the prover sends to the verifier the two vectors in the
inner product in (5) then the verifier could check (5) itself
by using the commitment V to v and be convinced that
(3) holds. But these two vectors reveal the information of
a, so the prover cannot send them to verifier. To solve this
problem, we use two additional blinding terms sL, sR ∈ Z4

p

to blind these vectors.

5

To prove the statement (2), P and V should obey the
following protocol:

P on input v, r and uses the algorithm to compute : (6)
a = [a1, a2, a3, a4] s.t.〈a,a〉 = v (7)

α
$← Zp (8)

A = hαgaha ∈ Gp (9)

sL, sR
$← Z4

p (10)

ρ
$← Zp (11)

S = hρgsLhsR ∈ Gp (12)
P → V : A,S (13)

V : y, z
$← Z∗p (14)

V → P : y, z (15)

Here let us expound two linear vector polynomials
l(x), r(x) in Z4

p[x], and a quadratic polynomial t(x) ∈ Zp[x]
as follows:

l(x) = az − y + sLx ∈ Z4
p[x]

r(x) = az + y + sRx ∈ Z4
p[x]

t(x) = 〈l(x), r(x)〉 = t0 + t1 · x+ t2 · x2 ∈ Zp[x]

The constant terms of l(x), r(x) are the inner product vec-
tors in (5), and the blinding vectors sR, sL make sure that
the prover can publish l(x), r(x) for one x ∈ Z∗p and doesn’t
need to reveal any information of a. The constant term of
t(x) which is denoted as t0 is the result of the inner product
in (5). The prover needs to convince the verifier that the
following equation is true:

t0 = v · z2 − δ(y)

P computes : (16)

τ1, τ2
$← Zp (17)

Ti = gtihτi ∈ Gp, i = {1, 2} (18)
P → V : T1, T2 (19)

V : x
$← Z∗p (20)

V → P : x (21)
P computes : (22)

l = l(x) = az − y + sLx ∈ Z4
p (23)

r = r(x) = az + y + sRx ∈ Z4
p (24)

t̂ = 〈l, r〉 ∈ Zp (25)

τx = τ2 · x2 + τ1 · x+ z2r ∈ Zp (26)
µ = αz + ρx ∈ Zp (27)

P → V : τx, µ, t̂, l, r (28)
V check these equations and computes : (29)

P = Az · Sx · g−y · hy ∈ Gp (30)

P
?
= hµ · gl · hr ∈ Gp (31)

gt̂hτx
?
= V z

2

g−δ(y) · T x1 · T x
2

2 ∈ Gp (32)

t̂
?
= 〈l, r〉 ∈ Zp (33)

Corollary 1 (Four-Integers zero-knowledge proof). The
Four-Integers zero-knowledge proof presented in Section 3.1 has

perfect completeness,perfect special honest verifier zero-knowledge,
and computational witness extended emulation.

Proof. The Four-Integers zero-knowledge proof is a special
case of aggregated Logarithmic proof from Section 3.2 with
m = 1. This is therefore a direct corollary of Theorem 3.

3.2 Aggregating Logarithmic proofs

Benediky Bünz et al [5] stated a kind of proof for m values
which is more efficient than conducting m individual range
proofs, based on the protocol of it, we can also perform a
proof form values like [5] does. In this section, we show that
this can be done with a slight modification to the protocol
of proof in Section 3.1. The relation that we will proof as
follows:

{(g, h ∈ Gp,V ∈ Gmp ;v, r ∈ Zmp) : Vj = hrjgvj ∀ j ∈ [1,m]}
(34)

The prover is very similar to the prover for a simple zero-
knowledge proof in Section 3.1, only with the following
slight modifications. First, we set y = y ·

−→
M, |
−→
M| = 4 ·m. In

(6), the prover needs to compute a ∈ Z4·m
p so that:

〈a[(j−1)·4:j·4],a[(j−1)·4:j·4]〉 = vj for all j in [1,m].

We accordingly change l(x) and r(x) as follows:

l(x) =
m∑
j=1

z · j
(
0(j−1)·4‖a[(j−1)·4:4j]‖0(m−j)·4

)
− y+ sL · x

(35)

r(x) =
m∑
j=1

z · j
(
0(j−1)·4‖a[(j−1)·4:4j]‖0(m−j)·4

)
+y+ sR ·x

(36)
To compute τx, we adjust for the randomness of each

commitment Vj , so that τx = τ1 · x+ τ2 · x2 + z2
m∑
j=1

j2 · rj .

The verification check (28) needs to be adjusted to include
all the Vj commitments.

gt̂hτx = Vz2·~m◦~mg−δ(y)T x1 T
x2

2 (37)

Finally,we change the definition of A(8) as follows:

A = hα
m∏
j=1

g
j·a[(j−1)4:4j]

[(j−1)4:4j] ·
m∏
j=1

h
j·a[(j−1)4:4j]

[(j−1)4:4j] (38)

Theorem 3 (Aggregate Logarithmic Proof). The aggregate
logarithmic proof presented in Section 3.2 has perfect complete-
ness, perfect honest verifier zero-knowledge and computational
witness extended emulation.

The proof for Theorem 3 is presented in Appendix B We
can eliminate a trusted setup by using a hash function which
needs to map from {0, 1}∗ to Gp\1 to generate the public
parameters g,h, g, h from a small seed. [22] gives a way to
built this kind of hash function. This protocol can also be
transformed into a NIZK protocol by using the Fiat-Shamir
heuristic.

6

3.3 Final Protocol

In this section, we will demonstrate how to proof that a
secret number is within an arbitrary interval. The Theorem
2 is used in this section. The goal of our range proof protocol
is convincing the verifier that the secret number v is in
[a, b]. We will set a, b ∈ Zp, d = (d1, d2, d3, d4, d5, d6), the
d1, d2, d3, d4, d5, d6 satisfy the following conditions:

d21 + d22 + d23 = 4v − 4a+ 1 = v1,
d24 + d25 + d26 = 4b− 4v + 1 = v2 ∈ Zp

For the soundness of the final zero-knowledge protocol
of this paper, the V = gvhr dose’t mod any integer because
prover dose’t know q at first. The whole protocol is similar
to the special case of the aggregating logarithmic proofs
from Section 3.2 when m = 2,a = Z6

p and we will proof
the following relation:

{(g, h ∈ Gq, g′ ∈ Gp,V ∈ G2
q) :

Vj = hrjgvj ∀ j ∈ [1, 2], V = gvhr ∧ v ∈ [a, b]}

The protocol is as follows:

P on input v computes : (39)
v1 = 4v − 4a+ 1, v2 = 4b− 4v + 1 ∈ Zp (40)

d = (d1, d2, d3, d4, d5, d6) ∈ Z6
p (41)

α
$← Zp (42)

A = (h′)α
2∏
j=1

g
j·d[(j−1)3:3j]

[(j−1)3:3j] ·
2∏
j=1

h
j·d[(j−1)3:3j]

[(j−1)3:3j] ∈ Gp (43)

sL, sR
$← Z6

p (44)

ρ
$← Zp (45)

S = (h′)ρgsLhsR ∈ Gp (46)
P → V : A,S (47)

V : y, z
$← Z∗p (48)

V → P : y, z, q (49)

Here, as showed in Section 3.1, t(x) = 〈l(x), r(x)〉 = t0 +

t1 · x+ t2 · x2 ∈ Zq[x].

P computes : (50)

r, τ1, τ2
$← Zq (51)

r1 = 4r, r2 = −4r ∈ Zq (52)

Ti = gtihτi ∈ Gq, i = {1, 2} (53)
(t1, t2 can be computed directly without knowing x)

P → V : T1, T2 (54)

V : x
$← Z∗p (55)

V → P : x (56)
P computes : (57)

l = z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3)− y + sLx

(58)

l ∈ Z6 (59)

r = z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3) + y + sRx

(60)

r ∈ Z6 (61)

t̂ = 〈l, r〉 = t0 + t1 · x+ t2 · x2 ∈ Zq (62)

τx = τ2x
2 + τ1x+ z2

2∑
j=1

j2 · rj ∈ Zq (63)

µ = αz + ρx ∈ Zp (64)

P → V : τx, µ, t̂, l, r (65)
V computes and checks these equations : (66)

V1 =

(
V

ga

)4

· g =
V 4

g4a−1
= g4v−4a+1h4r = gv1hr1 ∈ Gq

(67)

V2 =

(
gb

V

)4

· g =
g4b+1

V 4
= g4b−4v+1h−4r = gv2hr2 ∈ Gq

(68)

V = (V1, V2) ∈ G2
q (69)

P = AzSxg−yhy ∈ Gp (70)

P
?
= (h′)µglhr ∈ Gp (71)

gt̂hτx
?
= Vz2·(~2◦~2)g−δ(y)T x1 T

x2

2 ∈ Gq (72)

t̂
?
= 〈l, r〉 ∈ Zq (73)

Theorem 4 (Range Proof). The range proof presented in Section
3.3 has perfect completeness, perfect special honest verifier zero-
knowledge, and computational witness extended emulation.

The proof for Theorem 4 is presented in Appendix C.

4 PERFORMANCE

4.1 Theoretical Performance
In Table 1 we show the communication cost of range proof
protocols of Bulletproofs [5] and ours. The table 1 states the
number of elements of group, ring, set which are applied
in range proof protocol. We set m = 2 in the range proof
protocols of Bulletproofs [5] to achieve a range proof that

7

TABLE 1
the number of elements

Protocol Gp Zp Gq Zq Z
Bulletproofs [5] 6 + 2 logn 5 0 0 0
Cupoof 2 4 2 3 12

proves v ∈ [a, b]. We compare our range proofs against
Bulletproofs [5]. The table indicates that our range proof
protocol has advantages when n is large. The proof size
of Bulletproofs [5] grows by an additive logarithmic factor
while ours is constant.

4.2 Realistic Performance
In order to evaluate the performance of our range proofs in
practice, we provide a reference implementation in Python
and employ the elliptic curve secp256k12 which has 128
bit security to structure cycle groups. We performed our
experiments on an Intel i5-7500 CPU system throttled to 3.4
GHZ and we used a single thread. The performance is as
practicable as we expectet. Table 2 shows the proof time,
verify time and gates of range proofs under the different
intervals. Figure 1 shows the line chart of proving time
and the line chart of verification time (no including witness
generation). Figure 2 shows the sizes of different interval
range proofs.

Fig. 1. Proof time

Fig. 2. Sizes for range proofs

5 CONCLUSION

In this paper, we construct an efficient range proof which
proves that v ∈ [a, b]. Our scheme is based the work of
Bulletproofs. In our protocol, by combining the Theorem 2
to Bulletproofs, we reduce the cost of communication to con-
stants and make the computation complexity small which

TABLE 2
Range proofs:performance

Problem size Gates π Size Timing (ms)
(bytes) prove verify

8 bit 6 2068 543 138.4
16 bit 6 2078 556 139.8
32 bit 6 2088 556 139.6
64 bit 6 2099 552 139.4
128 bit 6 2119 556 139.9
256 bit 6 2181 568 141.6

enhance the efficiency of zero-knowledge range proof. Our
range proof has unconditional soundness and perfect zero-
knowledge. The inadequacy of our range proof is that it
is an interactive range proof. There are lots of room for
improvement in our protocol. For example, we hope to
make this range proof a non-interactive range proof in
future.

APPENDIX A
A GENERAL FORKING LEMMA

Now we briefly describe the forking lemma of [19] that will
be needed in the proofs.

Suppose that we have a (2µ + 1)-move public-coin ar-
gument with µ challenges x1, ..., xµ in sequence. Let ni ≥ 1
for 1 ≤ i ≤ µ. Consider

∏µ
i=1 ni accepting transcripts with

challenges in the following tree format. The tree has
∏µ
i=1 ni

leaves and depth µ. The root of the tree is labeled with the
statement. Each node of depth i < µ has exactly ni children,
each labeled with a distinct value of the ith challenge xi.

This can be referred to as an (n1, ..., nµ)-tree of accepting
transcripts. Given a suitable tree of accepting transcripts,
one can compute a valid witness for our inner-product
argument, range proof, and argument for arithmetic circuit
satisfiability. This is a natural generalization of special-
soundness for Sigma-protocols, where µ = 1 and n = 2.
Combined with Theorem 3, this shows that the protocols
have witness-extended emulation, and hence, the prover
cannot produce an accepting transcript unless they know a
witness. For simplicity in the following lemma, we assume
that the challenges are chosen uniformly from Zp where
|p| = λ, but any sufficiently large challenge space would
suffice. The success probability of a cheating prover scales
inversely with the size of the challenge space and linearly
with the number of accepting transcripts that an extractor
needs. Therefor if

∏µ
i=1 ni is negligible in 2λ, then a cheating

prover can create a proof that the verifier accepts with only
negligible probability.

Theorem 5 (Forking Lemma, [19]). Let (Setup,P,V) be a
(2k+1)-move, public coin interactive protocol. Let χ be a witness
extraction algorithm that succeeds with probability 1 − µ(λ) for
some negligible function µ(λ) in extracting a witness from an
(n1, ..., nk)-tree of accepting transcripts in probabilistic polyno-
mial time. Assume that

∏k
i=1 ni is bounded above by a polynomial

in the security parameter λ. Then (Setup,P,V) has witness-
extended emulation.

We use the protocol of [5] to proof that our protocol
has witness-extended emulation, so the theorem is slightly
different than the one from [19]. We allow the extractor χ

8

to fail with negligible probability. Whenever this happens
the Emulator ε as defined by Definition 10 also simply
fails. Even with this slight modification this slightly stronger
lemma still holds as ε overall still only fails with negligible
probability.

APPENDIX B
PROOF OF THEOREM 3

Proof. Perfect completeness always holds as the fact that
t0 = z2 · 〈 ~m◦ ~m,v〉−δ(y,y) for all valid witnesses. In order
to prove perfect honest-verifier zero-knowledge, we con-
struct a simulator which produces a distribution of proofs
for a given statement (g, h ∈ Gp,g,h ∈ G4·m

p ,V ∈ Gmp)
which is indistinguishable from valid proofs produced by
an honest prover interacting with an honest verifier. All
proof elements and challenges according to the randomness
supplied by the adversary from their respective domains
were chosen by the simulator or directly computed by
the simulator. S and T1 are computed according to the
verification equations, i.e.:

S = (h−µ · g−l−y · hy−r ·Az)−x
−1

T1 = (g−t̂−δ(y) · h−τx·V
z2·~m◦~m

· T x
2

2)−x
−1

Finally, according to the simulated witness (l, r) and the ver-
ifier’s randomness, the simulator runs the inner-product ar-
gument. In the proof, all elements are either independently
randomly distributed or their relationship is completely
defined by the verification equation. Because we can suc-
cessfully simulate the witness, the inner product argument
remains zero knowledge. Thus leaking information about
witness or revealing it does not change the zero-knowledge
property of the overall protocol. The simulator which runs
in time O(V + PInnerProduct) is efficient.

We construct an extractor χ to prove computational wit-
ness extended emulation. The extractor χ uses 4 ·m different
values of y,m+2 different values of z, and 3 different values
of the challenge x to run prover. Additionally it invokes
the extractor for the inner product argument on each of the
transcripts. This results in 4 ·m · (m+2) ·3 ·O(1) valid proof
transcripts.

For each transcript, in order to extract a witness l, r
to the inner product argument such that hµglhr = P ∧
〈l, r〉 = t̂, the extractor χ first runs the extractor χInnerProduct
for the inner-product argument. Using 2 valid transcripts
and extracted inner product argument witnesses for dif-
ferent x challenges, we can compute linear combinations
of (29) such that in order to compute α, ρ,a, sL, sR such

that A = hα
m∏
j=1

g
j·a[(j−1)4:4j]

[(j−1)4:4j] ·
m∏
j=1

h
j·a[(j−1)4:4j]

[(j−1)4:4j] , as well as

S = hρgsLhsR .
If the extractor can compute a different representation of

A or S with any other set of challenges (x, y, z), then this
yields a non-trivial discrete logarithm relation between in-
dependent generators h,g,h which contradicts the discrete
logarithm assumption.

Then using these representations of A and S and l and
r, we find that for all challenges x, y, and z

l = l(x) = z ·
m∑
j=1

j · (0(j−1)4‖a[(j−1)4:4j]‖0(m−j)4)− y + sLx

r = r(x) = z ·
m∑
j=1

j · (0(j−1)4‖a[(j−1)4:4j]‖0(m−j)4) + y + sRx

Once these equalities do not hold for all challenges and l, r
from the transcript, then we have two distinct representa-
tions of the same group element using a set of independent
generators. This would be a non-trivial discrete logarithm
relation.

With given y and z, we takes 3 transcripts for different
x′s and uses linear combinations of equation (33) to compute
τ1, τ2, t1, t2 such that

T1 = gt1hτ1 ∧ T2 = gt2hτ2 .

Additionally we can compute a v, r such that gvhr =∏m
j=1 V

z2·j2
j . Repeating this for m different z challenges, we

can compute (vj , rj)
m
j=1 such that gvjhrj = Vj ∀ j ∈ [1,m].

If there exists any transcript
m∑
j=1

z2 · j2 · vj − δ(y) + t1 · x+

t2 · x2 6= t̂ then this directly yields a discrete log relation
between g and h, i.e. a violation of the binding property of
Pedersen commitment. If not, then for all y, z challenges and
3 distinct challenges X = xj , j ∈ [1, 3]:

2∑
i=0

tiX
i − p(X) = 0

with t0 =
m∑
j=1

z2 · j2 · vj − δ(y) and p(X) =
∑2
i=0 pi ·Xi =

〈l(X), r(X)〉. Since the polynomial t(X)−p(X) is of degree
2, but has at least 3 roots (each challenge xj), it is necessarily
the zero polynomial, i.e. t(X) = 〈l(X), r(X)〉.

Because this implies that t0 = p0,the following holds for
all y, z challenges:∑m

j=1 z
2 · j2 · vj − δ(y)

=

< z ·
m∑
j=1

j · (0(j−1)4‖a[(j−1)4:4j]‖0(m−j)4),

z ·
m∑
j=1

j · (0(j−1)4‖a[(j−1)4:4j]‖0(m−j)4) >

+ < z ·
m∑
j=1

j · (0(j−1)4‖a[(j−1)4:4j]‖0(m−j)4),y >

− < y, z ·
m∑
j=1

j · (0(j−1)4‖a[(j−1)4:4j]‖0(m−j)4) + y >∈ Zp

If this equality holds for 4 · m distinct y challenges and 3
distinct z challenges, then we can infer the following:

vj = 〈aj ,aj〉 ∈ Zp ∀ j ∈ [1,m].

Because gvjhrj = Vj ∀ j ∈ [1,m], we have that (v, r)
is valid witness for relation (30). The extractor rewinds
the prover 3 · (m + 2) · 4 · m · O(1) times. Extraction is
efficient and the number of transcripts is polynomial in
λ because m = O(λ). Note that extraction either returns
a valid witness or a discrete logarithm relation between
independently chosen generators. In our definition, χ′ is

9

equal to χ but when χ extracts a discrete log relation, χ′

fails. This would happen with at most negligible probability
because of Discrete Log Relation assumption. Therefor, we
can apply the forking lemma and see that computational
witness emulation holds.

APPENDIX C
PROOF OF THEOREM 4

Proof. Theorem 4 is the special case of Theorem 3. The
proof for Theorem 4 is similar to the proof for Theorem
3, so the perfect completeness always holds as the fact that
t0 = z2 ·〈~2◦~2,v〉−δ(y,y) for all valid witnesses. In order to
prove perfect honest-verifier zero-knowledge, we construct
a simulator which produces a distribution of proofs for a
given statement (g, h ∈ Gq, h′ ∈ Gp,g,h ∈ G6

p,V ∈ G2
q)

which is indistinguishable from valid proofs produced by
an honest prover interacting with an honest verifier. All
operating procedures are the same as those in proof for The-
orem 3. S and T1 are computed according to the verification
equations, i.e.:

S = ((h′)−µ · g−l−y · hy−r ·Az)−x
−1

T1 = (g−t̂−δ(y) · h−τx ·Vz2·~2◦~2 · T x
2

2)−x
−1

Finally, according to the simulated witness (l, r) and the
verifier’s randomness, the simulator runs the inner-product
argument. Just as the proof for Theorem 3 shows, because
we can successfully simulate the witness, the inner product
argument remains zero knowledge. Thus leaking informa-
tion about witness or revealing it does not change the zero-
knowledge property of the overall protocol. The simulator
which runs in time O(V + PInnerProduct) is efficient. An
extractor χ is used by us to prove computational witness
extended emulation. The extractor χ uses 6 different values
of y, 4 different values of z, and 3 different values of the
challenge x to run prover. In addition, it calls the extractor
for the inner product argument on each of the transcripts.
This results in 72 ·O(1) valid proof transcripts.

For each transcript, in order to extract a witness l, r to the
inner product argument such that (h′)µglhr = P ∧ 〈l, r〉 =
t̂, the extractor χ first runs the extractor χInnerProduct for
the inner-product argument. Using 2 valid transcripts and
extracted inner product argument witnesses for different
x challenges, we can compute linear combinations of (36)
such that in order to compute α, ρ,d, sL, sR such that

A = (h′)α
2∏
j=1

g
j·d[(j−1)3:3j]

[(j−1)3:3j] ·
2∏
j=1

h
j·d[(j−1)3:3j]

[(j−1)3:3j] , as well as

S = (h′)ρgsLhsR .
If the extractor can compute a different representation of

A or S with any other set of challenges (x, y, z), then this
yields a non-trivial discrete logarithm relation between in-
dependent generators h′,g,h which contradicts the discrete
logarithm assumption.

Then using these representations of A and S and l and
r, we find that for all challenges x, y, and z

l = l(x)

= z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3)− y + sLx

r = r(x)

= z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3) + y + sRx

Once these equalities do not hold for all challenges and l, r
from the transcript, then we have two distinct representa-
tions of the same group element using a set of independent
generators. This would be a non-trivial discrete logarithm
relation.

With given y and z, we takes 3 transcripts for different
x′s and uses linear combinations of equation (37) to compute
τ1, τ2, t1, t2 such that

T1 = gt1hτ1 ∧ T2 = gt2hτ2 .

Also, we can compute a v, r such that gvhr =
∏2
j=1 V

z2·j2
j .

Repeating this for 2 different z challenges, we can compute
(vj , rj)

2
j=1 such that gvjhrj = Vj ∀ j ∈ [1, 2]. If there exists

any transcript
2∑
j=1

z2 · j2 · vj − δ(y) + t1 · x+ t2 · x2 6= t̂ then

this directly yields a discrete log relation between g and h.
If not, then for all y, z challenges and 3 distinct challenges
X = xj , j ∈ [1, 3]:

2∑
i=0

tiX
i − p(X) = 0

with t0 =
2∑
j=1

z2 · j2 · vj − δ(y) and p(X) =
∑2
i=0 pi ·Xi =

〈l(X), r(X)〉. Since the polynomial t(X)−p(X) is of degree
2, but has at least 3 roots (each challenge xj), it is necessarily
the zero polynomial, i.e. t(X) = 〈l(X), r(X)〉.

Because this implies that t0 = p0, the following holds for
all y, z challenges:∑2

j=1 z
2 · j2 · vj − δ(y)

=

〈z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3),

z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3)〉

+〈z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3),y〉

−〈y, z ·
2∑
j=1

j · (0(j−1)3‖d[(j−1)3:3j]‖0(2−j)3) + y〉 ∈ Zq

If this equality holds for 6 distinct y challenges and 3 distinct
z challenges, then we can infer the following:

v1 = 〈d[:3],d[:3]〉

v2 = 〈d[3:],d[3:]〉

The equations mean that vj ≥ 0 for all j ∈ [1, 2]. Because
gvjhrj = Vj ∀ j ∈ [1, 2], we have that (v, r) is valid witness
for relation (3). The extractor rewinds the prover 72 · O(1)

10

times. Extraction is efficient and the number of transcripts
is polynomial in λ. Note that extraction either returns a
valid witness or a discrete logarithm relation between in-
dependently chosen generators. Also as what we do in the
proof for Theorem 3, χ′ is equal to χ but when χ extracts
a discrete log relation, χ′ fails. This would happen with at
most negligible probability because of Discrete Log Relation
assumption. Therefor, we can apply the forking lemma and
see that computational witness emulation holds.

ACKNOWLEDGMENT

This research is partially supported by the Key Program
of the Natural Science Foundation of China (No. 61772166)
and the Natural Science Foundation of Zhejiang province of
China (No. LZ17F020002).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Cryptography Mailing list at https://metzdowd.com, 03 2009.

[2] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments
from bitcoin,” in 2014 IEEE Symposium on Security and Privacy,
2014, pp. 459–474.

[3] S. Setty, S. Angel, and J. Lee, “Verifiable state machines: Proofs
that untrusted services operate correctly,” SIGOPS Oper. Syst.
Rev., vol. 54, no. 1, p. 40C46, Aug. 2020. [Online]. Available:
https://doi.org/10.1145/3421473.3421479

[4] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,”
Cryptology ePrint Archive, Report 2018/046, 2018, https://eprint.
iacr.org/2018/046.

[5] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and
more,” in 2018 IEEE Symposium on Security and Privacy (SP), 2018,
pp. 315–334.

[6] E. F. Brickell, D. Chaum, I. B. Damgård, and J. van de Graaf,
“Gradual and verifiable release of a secret (extended abstract),” in
Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988, pp. 156–166.

[7] A. Chan, Y. Frankel, and Y. Tsiounis, “Easy come — easy go
divisible cash,” in Advances in Cryptology — EUROCRYPT’98,
K. Nyberg, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 561–575.

[8] F. Boudot, “Efficient proofs that a committed number lies in an
interval,” in Advances in Cryptology — EUROCRYPT 2000, B. Pre-
neel, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 431–444.

[9] M. O. Rabin and J. O. Shallit, “Randomized algorithms in
number theory,” Communications on Pure and Applied Mathematics,
vol. 39, no. S1, pp. S239–S256, 1986. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713

[10] H. Lipmaa, “On diophantine complexity and statistical zero-
knowledge arguments,” in Advances in Cryptology - ASIACRYPT
2003, C.-S. Laih, Ed. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2003, pp. 398–415.

[11] J. Groth, “Non-interactive zero-knowledge arguments for vot-
ing,” in Applied Cryptography and Network Security, J. Ioannidis,
A. Keromytis, and M. Yung, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 467–482.

[12] D. Boneh and X. Boyen, “Short signatures without random ora-
cles,” in Advances in Cryptology - EUROCRYPT 2004, C. Cachin
and J. L. Camenisch, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 56–73.

[13] I. Teranishi and K. Sako, “k-times anonymous authentication with
a constant proving cost,” in Public Key Cryptography - PKC 2006,
M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 525–542.

[14] J. Camenisch, R. Chaabouni, and a. shelat, “Efficient protocols for
set membership and range proofs,” in Advances in Cryptology -
ASIACRYPT 2008, J. Pieprzyk, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 234–252.

[15] M. Belenkiy, “U-prove range proof extension,” Microsoft Research,
June 2014. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/u-prove-range-proof-extension/

[16] C. Paquin and G. Zaverucha, “U-prove cryptographic specification
v1.1 (revision 3),” Microsoft, December 2013. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
u-prove-cryptographic-specification-v1-1-revision-3/

[17] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic:
Zero-knowledge snarks from linear-size universal and updateable
structured reference strings,” Cryptology ePrint Archive, Report
2019/099, 2019, https://eprint.iacr.org/2019/099.

[18] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permu-
tations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge,” IACR Cryptol. ePrint Arch., vol. 2019, p. 953,
2019.

[19] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient
zero-knowledge arguments for arithmetic circuits in the discrete
log setting,” in Advances in Cryptology – EUROCRYPT 2016, M. Fis-
chlin and J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 327–357.

[20] J. Groth and Y. Ishai, “Sub-linear zero-knowledge argument for
correctness of a shuffle,” in Advances in Cryptology – EUROCRYPT
2008, N. Smart, Ed. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, pp. 379–396.

[21] Lindell, “Parallel coin-tossing and constant-round secure two-
party computation,” Journal of Cryptology, vol. 16, pp. 143–184, 03
2008.

[22] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Advances in Cryptology — ASIACRYPT 2001,
C. Boyd, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 514–532.

https://doi.org/10.1145/3421473.3421479
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713
https://www.microsoft.com/en-us/research/publication/u-prove-range-proof-extension/
https://www.microsoft.com/en-us/research/publication/u-prove-range-proof-extension/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://eprint.iacr.org/2019/099

	Introduction
	Related work
	Contributions
	Structure of the paper

	Preliminaries
	Assumptions
	Commitments
	 Zero-Knowledge Arguments of Knowledge
	Notation

	Efficient Range Proof Protocol
	Four Integers Zero-Knowledge Proof
	Aggregating Logarithmic proofs
	Final Protocol

	Performance
	Theoretical Performance
	Realistic Performance

	Conclusion
	Appendix A: A General Forking Lemma
	Appendix B: Proof of Theorem 3
	Appendix C: Proof of Theorem 4
	References

