
Counterexample to OWF Self-XOR Being a DOWF

Nathan Geier
Tel Aviv University

nathangeier@mail.tau.ac.il

Abstract

We study the effects of the XOR transformation, that is, f⊕2(x1, x2) := f(x1) ⊕
f(x2), on one-wayness. More specifically, we present an example showing that if one-
way functions exist, there also exists a one-way function f such that f⊕2 is not even a
distributional one-way function, demonstrating that one-wayness may severely deteri-
orate.



1 Introduction

Arguably, the two most basic bit-string operations are concatenation and bit-wise XOR. In-
tuitively speaking, we understand that concatenation of several independent instances weak-
ens “pseudo-randomness” (or indistinguishability when comparing two distributions) but
improves one-wayness. We would like to think of the XOR as an opposing operation, one
which improves “randomness” (or indistinguishability) but weakens one-wayness, though this
is not exactly accurate. In contrast to the case of concatenation, one XOR is already enough
to drastically improve “randomness” or destroy the OWF property altogether (examples will
be given in Subsection 1.1). Here, we try to consider a more refined question: Perhaps apply-
ing the XOR transformation to a OWF does not necessarily result a OWF (which is folklore
knowledge), but maybe some more delicate form of one-wayness remains. Distributional
one-way functions, introduced by Impagliazzo and Luby [IL89], express a weaker notion of
one-wayness where the adversary does not only need to supply some preimage, but rather, it
needs to supply a uniform preimage (up to some small error). The intuition why this notion
may be interesting here is that oftentimes, in such counterexamples, we invert the one-way
function using somewhat “artificial” inputs, while the DOWF requirement forces us to out-
put a preimage which is very close to uniform. It should be noted here that the existence of
OWFs is equivalent to that of DOWFs, but nevertheless, not every DOWF is necessarily a
OWF while the opposite does hold, so for specific functions this notion is indeed weaker. As
it turns out, the folklore counterexample showing that applying XOR to a OWF does not
necessarily produce a OWF, which one may stumble upon in an introductory cryptography
course, is not easily generalized to the case where the resulted function is only claimed to be
a DOWF. This appears to be a non-trivial twist on a very basic question. In this paper, we
provide a more involved counterexample, showing that the XOR transformation applied to
a OWF does not even have to produce a DOWF. Some of the techniques presented in this
paper may be of independent use.

1.1 Basic Observations

Let us informally make a few basic observations, folklore knowledge or easy to see, supporting
what we mentioned above regarding the XOR transformation. In the following, we let
f⊕2(x1, x2) := f(x1)⊕ f(x2).

Claim 1.1 (Being a OWF is not preserved). If OWFs exist, there exists a OWF f such that
f⊕2(x1, x2) is not a OWF.

Proof sketch. Let g be a OWF, w.l.o.g. length-doubling, and define

f(x, y, b) :=

{
y, g(x) b = 0

g(x), y b = 1

where |y| = |g(x)|. It is not hard to see that f is a OWF since a random y usually does not
have a preimage, but we can easily invert every z = z1, z2 where |z1| = |z2|, w.r.t. f⊕2, by
choosing b1 = 0, b2 = 1, then choosing x1, x2 arbitrarily, and finally set y1 = z1 ⊕ g(x2) and
y2 = z2 ⊕ g(x1).

1



Remark 1.1. The XOR transformation may sometimes preserve being a OWF: If OWFs
exist, there exists a OWF f such that f⊕2 is a OWF. For example, choose a length-tripling
PRG.

Notice that the counterexample no longer works if we only require f⊕2 to be a distribu-
tional one-way function, since the inverter always outputs preimages with b1 6= b2, and this
only happens with probability half over a random input, so the statistical distance between
U, f(U) and A(f(U)), f(U) must be at least half for our inverter A. In this paper we provide
another counterexample to show that f⊕2 is not necessarily a DOWF.

In the introduction, we also mentioned that one XOR may already be enough to drasti-
cally improve “randomness”. Let us briefly elaborate, though this has no relevance to the
rest of the paper:

Claim 1.2 (“Randomness” may get significantly amplified). There exists a random variable

X over {0, 1}poly(n) that is 1 − neg(n) far from uniform, such that X1 ⊕X2 is neg(n)-close
to uniform where X1, X2 are two independent draws from X.

Proof sketch. Let X ′ be an r.v. resulted by drawing x, y ∼ U2n and outputting (x, y, 〈x, y〉).
We have that X ′ is 1/2-far from uniform, but X ′1⊕X ′2 is neg(n)-close to uniform. We choose
X to be the concatenation of n independent instances of X ′.

Remark 1.2. The XOR transformation cannot create perfect uniformity out of thin air:
For a random variable X, if X1 ⊕X2 is uniformly distributed then so must be X.

1.2 Results

Theorem 1.1 (Informal). If one-way functions exist, there also exists a one-way function
f such that f⊕2(x1, x2) is not distributionally one-way.

1.3 Overview

A naive approach of generalizing the counterexample would be, instead of choosing a bit b to
decide the position of g(x), to draw i ← [p(n)] and output y1, . . . , yi−1, g(x), yi+1, . . . , yp(n).
This gives for every polynomial p(n), a construction of a OWF f with a distributional inverter
for f⊕2 of statistical distance 1/p(n). However, the main issue remains: we only know how
to output preimages where i1 6= i2 but we have that i1 = i2 happens with inverse-polynomial
probability. What we want is a single construction for f such that for every q(n), we can
distributionally invert f⊕2 with statistical distance better than 1/q(n).

We are going to construct a OWF f such that f⊕2 can be distributionally inverted
completely (distance zero) in expected polynomial time p(n), thus in particular, for every
q(n) we can terminate the inverter after p(n) · q(n) steps and have statistical distance at
most 1/q(n) to its output. The main idea behind the construction of f is as follows: we are
given w.l.o.g. a length-preserving OWF g. On input (x, y, π) where |x| = n, |y| = n2 and
π is interpreted as a random injection from [n] → [n2], we set f ’s output to (y′, π) where
y′ is computed from y by replacing for every i the π(i)’th bit of y by the i’th bit of g(x).
It is not hard to see why f is a OWF. Let us briefly explain the intuition why f⊕2 can be
distributionally inverted in expected polynomial time.

2



For an image z = (y′1 ⊕ y′2, π1 ⊕ π2) of f⊕2, imagine we are given x∗1, x
∗
2, π

∗
1, π

∗
2 drawn

from the conditional distribution. Then we can easily output a continuation y∗1, y
∗
2 from the

conditional distribution, which is just a random consistent continuation, by first choosing y∗1
at random except for positions in Im(π∗2) \ Im(π∗1) where it must be fixed according to the
values we were given, to a XOR between appropriate positions of z and x∗2. Next, y∗2 is fixed
in the only consistent way possible in positions [n2] \ Im(π∗2), according to a XOR between
appropriate positions of z and x∗1, y

∗
1, while in Im(π∗2) it is drawn at random. To conclude, if

we are able to generate x∗1, x
∗
2, π

∗
1, π

∗
2 according to the conditional distribution, then we can

also appropriately generate a continuation y∗1, y
∗
2.

For the next step, imagine we are only given π∗1, π
∗
2 drawn from the conditional distribu-

tion. Here we will be using standard rejection sampling: simply keep drawing pairs x∗1, x
∗
2

until we find a pair that is consistent with z, namely, the XOR between x∗1 and x∗2 at posi-
tions corresponding to the intersection Im(π∗1)∩ Im(π∗2) is consistent with z. The idea here is

that in expectation we draw up to 2|Im(π∗
1)∩Im(π∗

2)| times until we find a pair consistent in the
intersection, and over random injections π∗1, π

∗
2 from [n] to [n2], the expected value of this

term is polynomially bounded. Note an important subtlety here: we generated a uniform
consistent pair x∗1, x

∗
2, while a priory the conditional distribution may weigh them differently.

However, since for every consistent pair x∗1, x
∗
2 the number of consistent continuations y∗1, y

∗
2

is exactly the same as it depends only on the cardinality of the intersection Im(π∗1)∩ Im(π∗2),
the conditional distribution of x∗1, x

∗
2 is simply uniform over consistent pairs.

Lastly, we need to generate π∗1, π
∗
2. Here we run into a problem: we cannot simply choose

π∗1 at random and set π∗2 = π∗1 ⊕ (π1⊕ π2), because every consistent pair (π∗1, π
∗
2) may have a

different number of continuations, so the conditional distribution is not necessarily uniform.
(Though this may be resolved if g is assumed to be a one-way permutation.) Instead, we
will add information to our OWF f so that π1, π2 may be reconstructed. As it turns out,
there exists an efficient transformation E such that (a, b) can be efficiently reconstructed
from (a⊕ b, E(a)⊕E(b)) for a 6= b. We will use it by modifying the output to (y′, π, E(π)).

2 Definitions

First, some basic definitions and notation: For a bit-string x, we denote by x[i] the i’th bit
of x, and similarly by x[i : j] the sub-string between position i to j, ends included. For
n ∈ N, let [n] := {1, . . . , n}. We denote by Un the uniform distribution over {0, 1}n. For
distributions P,Q over Ω, we denote by |P −Q| the total variation distance between them,
that is, 1

2

∑
ω∈Ω |P (ω)−Q(ω)|. In addition, we rely on the following standard computational

concepts and notation:

• For p : N→ R, by p = poly(n), we mean that p(n) is a polynomial in n.

• A function µ : N→ [0, 1] is negligible, denoted µ = neg(n), if for every p = poly(n) we
have that µ(n) < 1/p(n) for large enough n’s.

• A function f : {0, 1}∗ → {0, 1}∗ is poly-time computable if there exists p = poly(n)
and a Turing machine T such that on every input x, T outputs f(x) after at most
p(|x|) steps.

3



• A non-uniform PPTA = {An} is a sequence of probabilistic circuits such that size(An) ≤
p(n) for some p = poly(n).

Definition 2.1 (One-Way Function). A poly-time computable f : {0, 1}∗ → {0, 1}∗ is a
one-way function if for every n.u. PPT A = {An} it holds that

Pr
y←f(Un)

[
An(y) ∈ f−1(y)

]
= neg(n).

Definition 2.2 (Distributional One-Way Function). A poly-time computable f : {0, 1}∗ →
{0, 1}∗ is a distributional one-way function if there exists p = poly(n) such that for every
n.u. PPT A = {An}, for large enough n’s, it holds that

|(Un, f(Un)− An(f(Un)), f(Un))| > 1/p(n).

Definition 2.3 (The XOR Transformation). Given f : {0, 1}∗ → {0, 1}∗, we define

f⊕2(x) :=

{
f (x[1 : n/2])⊕ f (x[n/2 + 1 : n]) n = |x| is even
f⊕2(x[1 : n− 1]) n = |x| is odd

Remark 2.1. This definition naturally extends to f⊕k, which we do not study in this paper.

3 The Counterexample

Let us present the construction and proof more formally.

Theorem 3.1 (Main). If one-way functions exist, there also exists a one-way function f
such that f⊕2 is not a distributional one-way function.

The Construction. Let g be a OWF, w.l.o.g. length-preserving. We define f on input
(x, y, π) where |x| = n, |y| = n2, |π| = poly(n) by interpreting π as an injection from [n] to
[n2] and setting the output to (y′, π, E(π)) where |y′| = |y| with

y′[i] =

{
g(x)[π−1(i)] i ∈ Im(π)

y[i] otherwise

and E is an efficient transformation family such that for a 6= b with |a| = |b| = m, we can
efficiently reconstruct (a, b) from (a ⊕ b, Em(a) ⊕ Em(b)). More details on how E may be
implemented are given in Lemma 3.3. Also note that defining f over strings of length `(n)
where ` = poly(n) is done w.l.o.g. since we can always extend f by ignoring some (but up to
(1− 1/poly) fraction) of the input bits and later on have the distributional inverter of f⊕2

draw them uniformly.

Claim 3.1. If g is a OWF, then f proposed above is also a OWF.

Proof. An inverter for f immediately yields an inverter for g: given g(x), draw y and π and
compute f(x, y, π) which only depends on x through g, and feed to the inverter of f . For any
preimage (x′, y′, π′) of f(x, y, π) it must be that π = π′ and furthermore, for every i ∈ Im (π)
we have g(x)[π−1(i)] = y′[i] = g(x′)[π−1(i)] which implies that g(x) = g(x′).

4



The XOR. The function we are trying to invert, up to a poly number of ignored bits which
we can later draw at random, is

f⊕2(x1, y1, π1, x2, y2, π2) = f(x1, y1, π1)⊕ f(x2, y2, π2) = (y′1 ⊕ y′2, π1 ⊕ π2, E(π1)⊕ E(π2)).

To be more explicit, we note that

(y′1 ⊕ y′2)[i] =


g(x1)[π−1

1 (i)]⊕ g(x2)[π−1
2 (i)] i ∈ Im(π1) ∩ Im(π2)

g(x1)[π−1
1 (i)]⊕ y2[i] i ∈ Im(π1) \ Im(π2)

y1[i]⊕ g(x2)[π−1
2 (i)] i ∈ Im(π2) \ Im(π1)

y1[i]⊕ y2[i] otherwise

The Adversary. First, A uses (π1 ⊕ π2, E(π1) ⊕ E(π2)) to reconstruct (π1, π2), except
for the special case of π1 = π2 for which A simply keeps guessing (π, x1, x2, y1, y2) until a
preimage is found. After the reconstruction, A keeps drawing pairs x∗1, x

∗
2 until a consistent

pair is found, that is

∀i ∈ Im(π1) ∩ Im(π2) : g(x∗1)[π−1
1 (i)]⊕ g(x∗2)[π−1

2 (i)] = (y′1 ⊕ y′2)[i].

Finally, A chooses a random consistent continuation y∗1, y
∗
2 as follows:

(y∗1[i], y∗2[i]) =


(random bit, random bit) i ∈ Im(π1) ∩ Im(π2)(
random bit, g(x∗1)[π−1

1 (i)]⊕ (y′1 ⊕ y′2)[i]
)

i ∈ Im(π1) \ Im(π2)(
(y′1 ⊕ y′2)[i]⊕ g(x∗2)[π−1

2 (i)], random bit
)

i ∈ Im(π2) \ Im(π1)

(random bit, same random bit⊕ (y′1 ⊕ y′2)[i]) otherwise

We want to show that A produces the correct distribution, and also that its running time is
polynomially bounded in expectation over a random input to f⊕2 and A’s random coins.

Claim 3.2. The output of A is a random preimage of f⊕2.

Proof. This is straightforward in the case of π1 = π2. In the general case, this can be shown
by noting these two points:

• A always terminates when given a legal image, and whenever it does, it outputs a legal
preimage. This follows readily from a direct inspection.

• Given any image z = (z1, z2, z3) as input, the probability for A to output any legal
preimage (x1, y1, π1, x2, y2, π2) is the same and depends only on z. We have that π1, π2

are determined by z2, z3 and chosen by A with probability 1. It must be that x1, x2

satisfy the consistent pair condition so A then chooses them with probability

1∣∣{x1, x2 | ∀i ∈ Im(π1) ∩ Im(π2) : g(x1)[π−1
1 (i)]⊕ g(x2)[π−1

2 (i)] = z1[i]
}∣∣

5



which only depends on z1, π1, π2 and thus only on z1, z2, z3. Finally, from the definition
of f⊕2, the following conditions must be satisfied by y1, y2:

∀i ∈ Im(π2) \ Im(π1) : y1[i] = g(x2)[π−1
2 (i)]⊕ z1[i]

∀i ∈ Im(π1) \ Im(π2) : y2[i] = g(x1)[π−1
1 (i)]⊕ z1[i]

∀i /∈ Im(π1) ∪ Im(π2) : y2[i] = y1[i]⊕ z[i]

Hence A outputs y1, y2 if it guesses correctly the values of {y1[i]}i∈Im(π2)\Im(π1) and

{y2[i]}i∈Im(π2) which happens with probability(
1

2

)|Im(π2)\Im(π1)|+|Im(π2)|

=

(
1

2

)n2−n+|Im(π1)∩Im(π2)|+n

=

(
1

2

)n2+|Im(π1)∩Im(π2)|

that depends only on π1, π2 and thus only on z2, z3.

Therefore, A outputs a uniform preimage.

Claim 3.3. The expected running time of A, over a random input to f⊕2 and the randomness
of A, is polynomially bounded.

Proof. We handle the special case of π1 = π2 at the end. For the general case, reconstructing
π1, π2 at the start and drawing y∗1, y

∗
2 at the end are done efficiently, so the term we are left

to bound is the number of draws it takes to succeed in finding a consistent x∗1, x
∗
2 pair, that

is, a pair where

∀i ∈ Im(π1) ∩ Im(π2) : g(x∗1)[π−1
1 (i)]⊕ g(x∗2)[π−1

2 (i)] = g(x1)[π−1
1 (i)]⊕ g(x2)[π−1

2 (i)].

For any fixed choice of (π1, π2), let i1 < · · · < ik be the elements of Im(π1) ∩ Im(π2) in an

increasing order, and define Proj(π1,π2) : {0, 1}2n → {0, 1}|Im(π1)∩Im(π2)| using

Proj(π1,π2)(x1, x2) =
(
g(x1)[π−1

1 (i1)]⊕ g(x2)[π−1
2 (i1)]

)
, . . . ,

(
g(x1)[π−1

1 (ik)]⊕ g(x2)[π−1
2 (ik)]

)
Then equivalently, the consistency condition can be formulated as Proj(π1,π2)(x

∗
1, x
∗
2) =

Proj(π1,π2)(x1, x2). By considering Proj(π1,π2)(U2n) as our random variable, we are exactly
in the setting of Lemma 3.2 given below, and we can use it to conclude that for every choice
of (π1, π2) the expected number of draws, over both X1, X2 and the randomness of A, is∣∣Supp

(
Proj(π1,π2)(U2n)

)∣∣ =
∣∣Im (Proj(π1,π2)

)∣∣ ≤ 2|Im(π1)∩Im(π2)|.

Finally, we bound Eπ1,π2
[
2|Im(π1)∩Im(π2)|] ≤ e3 using Lemma 3.1 which is given below. Note

that when interpreting a long enough random string as an injection from [n] to [n2], we
don’t get exactly a uniform injection but we can get something very close, say, completely
uniform unless some failure happened with probability 2−δ·n

2
. But 2|Im(π1)∩Im(π2)| is always

upper bounded by 2n, so the total expectation is at most 1 ·e3 +
(

2 · 2−δ·n2
)
·2n ≤ e4 for large

enough n’s. The case of π1 = π2 (representation-wise, not just functionality-wise) cannot
significantly increase the expected running time because it happens with probability 2−|π|,
and the expected running time in this case, using Lemma 3.2, is at most 2|x|+|y|. We can
always add dummy bits to π in order to make sure that |π| > |x|+ |y|.

6



Proof of Theorem 3.1. Given a OWF g, we construct f as described above. The theorem
then follows from claims 3.1, 3.2 and 3.3, coupled with the fact that we can stop the execution
of A after q(n)p(n) steps where p(n) is the expected running time of A, and have statistical
distance of at most 1/q(n) to A’s output, which is a uniformly distributed preimage.

Lemma 3.1. Let π1, π2 be uniformly and independently chosen injections from [n] to [n2],
then we have that Eπ1,π2

[
2|Im (π1)∩Im (π2)|] ≤ e3.

Remark 3.1. The bound also holds when we do not insist that π1, π2 are injections, because
collisions can only decrease the image.

Proof. First, note that

Eπ1,π2
[
2|Im(π1)∩Im(π2)|] =

n∑
k=0

2k Pr
π1,π2

[|Im(π1) ∩ Im(π2)| = k] =
n∑
k=0

2k
(
n
k

)(
n2−n
n−k

)(
n2

n

)
where we used that

Pr
π1,π2

[|Im(π1) ∩ Im(π2)| = k] =

(
n
k

)(
n2−n
n−k

)
n!(

n2

n

)
n!

because for any π1 the number of π2’s with intersection k is given by choosing k elements
from Im(π1) and another n− k from Im(π1), then ordering them. Next, using nk ≤ (n+k)!

n!
≤

(n+ k)k, we bound(
n2−n
n−k

)(
n2

n

) =
(n2 − n)! (n2 − n)!n!

(n− k)! (n2 − 2n+ k)! (n2)!
=

(n2 − n)!

(n2)!
· (n2 − n)!

(n2 − 2n+ k)!
· n!

(n− k)!
≤

≤
(
n2 − n

)−n · (n2 − n
)n−k · nk =

(
n

n2 − n

)k
=

(
1

n− 1

)k
Plugging it back, we get

Eπ1,π2
[
2|Im(π1)∩Im(π2)|] ≤ n∑

k=0

2k
(
n

k

)(
1

n− 1

)k
=

n∑
k=0

(
n

k

)(
2

n− 1

)k
1n−k =

=

(
1 +

2

n− 1

)n
≤ e2n/(n−1) ≤ e3

Where we used the Binomial theorem and 1 + x ≤ ex. We also used that 2n/(n− 1) ≤ 3 for
n ≥ 3. For n < 3, we have 2|Im(π1)∩Im(π2)| ≤ 2n ≤ en ≤ e3.

Lemma 3.2. Let X be any random variable. Consider drawing samples (x, x1, . . . , xi, . . . )
independently from X, and define the random variable N to be the first i such that xi = x.
Then, E [N ] = |Supp (X)|.
Proof. We denote by Nx the random variable N conditioned on the first draw being x.
Notice that Nx is geometrically distributed with parameter px := Pr [X = x], and thus
E [Nx] = 1/px. We have that

E [N ] = Ex←X [E [Nx]] = Ex←X
[

1

px

]
=

∑
x∈Supp (X)

px ·
1

px
= |Supp (X)| .

7



Lemma 3.3 (See [Lin69]). There exists an efficient transformation E : {0, 1}n → {0, 1}n
such that for any x, y ∈ {0, 1}n with x 6= y, we can efficiently reconstruct (x, y) from (x ⊕
y, E(x)⊕ E(y)).

Proof. Given input x ∈ {0, 1}n, E interprets it as a field element over GF(2n) and maps it
to x3. Given (u, v) = (x + y, x3 + y3) for x 6= y, the reconstruction works as follows: We
start by computing u2 + v/u = xy = x (x+ u), where division by u is legal since x 6= y, and
the first equality is true since

u3 = x3 + x2y + xy2 + y3 =
(
x3 + y3

)
+ xy (x+ y) = v + xy · u.

We conclude that x2 + ux + (u2 + u/v) = 0. Notice that any quadratic polynomial over
GF(2n) is actually a linear transformation since (a + b)2 = a2 + b2, so solving it translates
to solving a set of linear equations. Further, note that any quadratic polynomial over a field
has at most two roots, and in our case the roots are exactly x and y since they are different
and the same quadratic equation holds for y from symmetry. The reconstruction is efficient
since basic arithmetic over GF(2n) is efficiently computable, and solving our set of linear
equations can also be done efficiently.

References

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In 30th Annual Symposium on Foundations of Computer Science,
pages 230–235, 1989.

[Lin69] Bernt Lindström. Determination of two vectors from the sum. Journal of Combina-
torial Theory, 6(4):402–407, 1969.

8


