
On the Security and Performance of Blockchain Sharding

Runchao Han∗†, Jiangshan Yu∗?, Haoyu Lin‡§, Shiping Chen†, Paulo Esteves-Verı́ssimo¶
∗Monash University, {runchao.han, jiangshan.yu}@monash.edu

†CSIRO-Data61, shiping.chen@data61.csiro.au
‡FluiDex, chris.haoyul@gmail.com

§ZenGo X
¶KAUST, paulo.verissimo@kaust.edu.sa

Abstract— In this paper, we perform a comprehensive evalu-
ation on blockchain sharding protocols. We deconstruct the
blockchain sharding protocol into four foundational layers
with orthogonal functionalities, securing some properties.
We evaluate each layer of seven state-of-the-art blockchain
sharding protocols, and identify a considerable number of
new attacks, questionable design trade-offs and some open
challenges. The layered evaluation allows us to unveil secu-
rity and performance problems arising from a fundamen-
tal design choice, namely the coherence of system settings
across layers. In particular, most sharded blockchains use
different trust and synchrony assumptions across layers,
without corresponding architectural guarantees. Unless a hy-
brid architecture were used, assuming differentiated system
settings across layers can introduce subtle but severe failure
syndromes or reduce the system’s performance.

1. Introduction

Bitcoin [1] introduces the concept of permissionless
blockchain, where participants (aka nodes) jointly main-
tain a public ledger of transactions. Nodes can join and
leave the system at any time, and continuously execute
consensus protocols to agree on incoming transactions and
append them to the ledger. Consensus protocols for per-
missionless blockchains usually suffer from poor scalabil-
ity. For example, Proof-of-Work (PoW)-based consensus
in Bitcoin processes less than ten transactions per second.
Solutions for blockchain scalability and performance have
been seeked primarily by improving the mechanisms used.
Dramatic improvements have been achieved along this
early avenue since Bitcoin (e.g. in Proof-of-Stake-based
consensus [2], [3] and Layer-2 protocols [4]).

More recently, sharding, used earlier in other kinds of
permissioned distributed transactional systems [5]–[10],
has been showing promise for scaling permissionless
blockchains. In recent years, several academic propos-
als [11]–[15] and industry projects [16], [17] on permis-
sionless sharded blockchains have been proposed. Shard-
ing serves as an orthogonal approach that can work with
any kind of existing blockchains, and complement further
previous “mechanism-oriented” advances in performance
and scalability. In a nutshell, sharding aims at dividing
nodes into different consensus groups (aka shards) that
process transactions concurrently, so that it advances with

. ? Jiangshan Yu is the corresponding author.

Shard #1Nodes

Shard
allocation

Cross-shard
transaction

Intra-shard
transaction

Shard #2

Shard #3

Cross-shard
communication

Users

TxTx

Figure 1: An example sharded blockchain with three shards.
Byzantine nodes and users are labelled in red. Intra-shard and
cross-shard transactions are labelled in green and blue, respec-
tively.

less blocking or serialising situations, without compro-
mising consistency or scalability. As shown in Figure 1,
in a sharded blockchain, nodes (that are either correct or
Byzantine) are allocated into different shards. Nodes in
each shard maintain their ledger that contains transactions,
which are submitted from users of the sharded blockchain.
A transaction may involve a single shard (called intra-
shard transaction) or multiple shards (called cross-shard
transaction). To process cross-shard transactions, nodes in
different shards may communicate with each other.

While this “divide-and-conquer” principle is intuitive,
designing blockchain sharding protocols is challenging,
and it still remains unknown whether existing blockchain
sharding protocols are secure or practical. Similar to
sharding other distributed systems, sharding blockchains
introduces consistency issues across shards. Existing anal-
ysis either merely summarises designs [18], or focuses on
specific components of blockchain sharding such as iden-
tity management [19] and cross-shard transactions [20],
[21]. A deep security analysis of sharded blockchains,
namely in the context of model choices and security-
performance trade-offs, is still missing. The task is made
difficult as the existing blockchain sharding papers are
diverse in terms of definitions, design objectives and ap-
plication scenarios.

1.1. Our contributions

In this paper, we close this gap by performing a
comprehensive evaluation of sharded blockchains. Our
evaluation identifies a considerable number of new attacks,

design trade-offs and open challenges. Most notably, we
identify an important design choice that is overlooked by
existing sharded blockchains, namely the coherence of
system settings across layers.

Comprehensive evaluation of sharded blockchains.
To evaluate sharded blockchains, we deconstruct the
blockchain sharding problem into four foundational layers
with orthogonal functionalities. The four layers, sum-
marised in §3, include data layer that defines how the
ledger is formatted and divided into different shards;
membership layer that defines how nodes are allocated to
different shards; intra-shard layer that defines how each
shard processes local transactions; and cross-shard layer
that defines how shards process cross-shard transactions.
The functionality of data layer is captured by a set of
verification rules; the functionality of membership layer
is captured by shard allocation [19]; the functionality of
intra-shard layer is captured by leader election [22] and
consensus; and the functionality of cross-shard layer is
captured by Concurrency Control [23] and Atomic Com-
mit [24]. For each protocol layer, we suggest and analyse
the required security properties and performance metrics
for sharded blockchains w.r.t. their design objectives and
possible attacks. Of independent interest, this can serve as
an evaluation framework assisting the future development
for sharded blockchains.

We select seven state-of-the-art sharded blockchains,
deconstruct them into the four layers, and evaluate the
layer according to our definitions. The evaluated sharded
blockchains, summarised in §4, include five academic pro-
posals (Elastico [11], Omniledger [12], Chainspace [14],
RapidChain [13], and Monoxide [15]) and two industrial
projects (Zilliqa [16] and Ethereum 2.0 [17]).

Evaluation results. Our evaluation shows that none
of the evaluated proposals is secure nor practical, due
to a considerable number of new attacks and question-
able design choices. Most notably, our analysis (§6.1)
shows that the leader election protocols in Elastico and
Zilliqa cannot remain correct under a single Byzantine
node, breaking their liveness and safety, respectively (Ta-
ble 3a). In addition, we identify three attacks (§7.2) on
the Atomic Commit protocols in Omniledger, RapidChain,
and Monoxide, breaking their correctness (Table 5).

We summarise our findings in each protocol layer
below. For the data layer (§5), we identify five design
choices and analyse two design trade-offs regarding how
the ledger is partitioned among shards and how transac-
tions are ordered. For the intra-shard layer (§6), we show
that existing sharded blockchains provide an inadequate
treatment of leader election, which in fact is challenging
to design and relies on strong assumptions. For the cross-
shard layer (§7), we relate the cross-shard communica-
tion problem with the distributed transaction problem in
distributed systems research. We apply well-established
models in database literature [25]–[27] to define Concur-
rency Control for sharded blockchains, evaluate Concur-
rency Control proposals in sharded blockchains, narrow
down design space of Concurrency Control for sharded
blockchains and reveal the trade-offs behind different de-
sign choices. For Atomic Commit, we identify three new
attacks, and show that sharded blockchains should employ
Non-Blocking Atomic Commit (NB-AC) [28] to resist

these attacks. We evaluate existing sharded blockchains
in the NB-AC model, and show that only Elastico and
Zilliqa satisfy all properties of NB-AC by using a spe-
cialised shard as centralised coordinator. This result is
consistent with a recent work [20] that proves solving
cross-chain/shard communication is impossible without a
trusted third party. We also analyse the trade-off between
performance and consistency [29] for Atomic Commit.
Insights on the coherence of system settings. Based
on the system-level evaluation, we identify an overlooked
design choice that greatly affects the security and perfor-
mance of sharded blockchains, namely the coherence of
system settings across layers (§8). All evaluated sharded
blockchains assume different system settings for different
protocol layers, without corresponding architectural guar-
antees. Unless a hybrid architecture were used, assuming
differentiated system settings across layers can introduce
subtle but severe failure syndromes, or reduce the sys-
tem’s performance [30]. To achieve optimal security and
performance, different protocol layers should instead work
under the same system setting.

1.2. Paper organisation

Section 2 provides the system model for sharded
blockchains. Section 3 summarises our protocol stack.
Section 4 summarises all evaluated blockchain sharding
protocols. Section 5, 6 and 7 provide the analysis of data
layer, intra-shard layer, and cross-shard layer, respectively.
Section 8 provides the analysis on concerns across layers.
Section 9 concludes this paper.

2. System model

In this section, we present the model of sharded
blockchains, including system setting, system components
and correctness properties.

2.1. System setting

Instead of providing a fixed system setting for the
evaluated sharded blockchains, we include their system
settings as a part of our evaluation. This is because sharded
blockchains specify different system settings for different
application scenarios. The system setting of a sharded
blockchain concerns three aspects, namely network syn-
chrony, trust model and fault tolerance degree.
Network synchrony concerns the timing guarantees of
message deliveries. We consider three types of network
models: synchronous, partially synchronous, and asyn-
chronous. In synchronous networks, messages will be
delivered within a known finite time bound; in partially
synchronous networks [31], messages will be delivered
within some unknown finite time bound, or a known finite
time bound that becomes valid after some elapsed time
(i.e., the global stabilisation time); and in asynchronous
networks, messages will be delivered eventually but with-
out a known time bound.
Trust model concerns the dependence of the protocol
on particular components, in order to execute correctly.
For example, a protocol may assume the existence of a
trusted-third-party, i.e. a centralised identity authority to

2

issue and manage identities for the system, or make use
of a smart contract platform.
Fault tolerance degree concerns the resilience of the pro-
tocol, in terms of the level of threat it can cope with while
remaining correct. Given the permissionless settings, we
consider Byzantine faults. The fault tolerance degree is
quantified as the least percentage of voting power that the
Byzantine adversary should control to break the protocol.
Different protocols quantify voting power using different
metrics, such as computing power in PoW-based consen-
sus and deposited cryptocurrency in PoS-based consensus.

2.2. System components

Nodes are participants who jointly maintain the ledger
for the system. The system is permissionless: anyone can
participate in the system as a node, and nodes can join and
leave the system at any time. Each node pi has a pair of
secret key and public key (ski, pki), and is identified by
its public key pki in the system. Each node only connects
to a small subset of nodes. Nodes are partitioned into
different shards, and each node only belongs to a single
shard. In each shard, nodes execute in epochs. For each
epoch, nodes execute consensus to agree on some new
transactions; pack agreed transactions into a block; and
append the block to the ledger. To process cross-shard
transactions, nodes in a shard may communicate with
nodes in other shards.
Users create transactions and send them to nodes. Nodes
verify incoming transactions continuously. If an incoming
transaction is valid, then the node moves it to its memory
pool, i.e., the set of pending transactions. For each epoch,
nodes in each shard sample some transactions from their
memory pools to agree on.
Ledger is the collection of system states jointly main-
tained by nodes. We use “object” to refer to the irreducible
unit of system states. The ledger consists of a number of
objects, or a number of transactions recording changes of
objects. Each object is owned by a user, and has a unique
identifier and a value (i.e., the amount of coins). Each
transaction consists of input objects and output objects,
plus some transaction fee. Each object can only be the
output of a single transaction on the ledger. An object is
inactive if the current ledger includes a transaction with
this object as input. An object is active if the current
ledger includes a transaction creating this object and no
transaction takes this object as input.

There are two types of transactions, namely intra-
shard transactions whose input and output objects belong
to a single shard and cross-shard transactions whose input
and output objects belong to different shards. A cross-
shard transaction may be conflicted with transactions in
other shards. If conflicted transactions are included in the
ledger, then it will cause different kinds of anomalies. For
example, two transactions having the same input object are
considered conflicted. If the two transactions are included
in the ledger, then the object is used twice, leading to a
double-spending attack.

2.3. Model of an individual shard

A sharded blockchain includes a number m of shards,
each of which works as an independent distributed ledger.

We model individual shards based on well-established
models of distributed ledger protocols [32]. In each shard,
nodes jointly maintain a ledger formed as a blockchain,
i.e., a chain of blocks. Each block records a number of
transactions. Each transaction records transition of some
states. To abstract the process of verifying transactions,
we define an oracle V (tx, L, `) that, given transaction tx,
ledger L and height `, outputs 1 if tx is a valid transaction
at height ` of ledger L, otherwise 0. The transaction format
and definition of V (·) depends on the data layer design,
which we will analyse in §5.

Same as distributed ledger protocols [32], a shard
has to satisfy two properties, namely shard-persistence
and shard-liveness. Persistence formally states the tamper-
resistance of blockchains. It specifies that if a valid trans-
action tx becomes d-deep (i.e., is followed by d consec-
utive blocks) in the blockchain of a correct node, then
it will be “stable”: all correct nodes will include tx in
the same position of their blockchains, and the adversary
cannot revert tx in their blockchains.

Definition 2.1 (d-Shard-Persistence). A shard satisfies d-
Shard-Persistence if the following holds. If a correct node
in the shard includes a valid transaction tx at height ` on
its local ledger which is at least (` + d)-long, then any
correct node in the shard includes tx at the same position
as the node’s ledger.

Liveness formally states the censorship-resistance of
blockchains. It specifies that if a valid transaction tx is
submitted to correct nodes for a certain time range of
generating u new blocks, then tx will eventually be stable
(i.e., become d-deep in blockchains of all correct nodes),
and the adversary cannot censor tx, i.e., preventing tx
from being confirmed.

Definition 2.2 ((u, d)-Shard-Liveness). A shard satisfies
(u, d)-Shard-Liveness if the following holds. If a valid
transaction tx is given as input to all correct nodes in a
shard for u consecutive blocks, then all correct nodes in
the shard will include tx in a block that is at least d-deep
on its local ledger.

2.4. Model of a sharded blockchain

Sharded blockchain aims at scaling the blockchain
system by running multiple blockchains in parallel. Let
L = {L1, . . . , Lm} be the set of ledgers in the sharded
blockchain, where m is the number of shards. First, every
shard in the sharded blockchain should satisfy shard-
persistence and shard-liveness.

Definition 2.3 (d-Persistence). A sharded blockchain
satisfies d-Persistence iff all shards satisfy d-Shard-
Persistence.

Definition 2.4 ((u, d)-Liveness). A sharded blockchain
satisfies (u, d)-Liveness iff all shards satisfy (u, d)-Shard-
Liveness.

In addition, a sharded blockchain has to satisfy valid-
ity, meaning that no transaction in the ledger is conflicted
with each other. To abstract the process of resolving
conflicts introduced by cross-shard transactions, we define
oracle C(txx, txy) that, given two transactions txx and
txy, outputs 1 if txx and txy are conflicted, otherwise 0.

3

TABLE 1: The protocol stack of blockchain sharding protocols.

Protocol layer Sub-protocol Functionality

Cross-shard layer Atomic
Commit

Protecting correctness of
cross-shard transactions

Concurrency
Control

Protecting correctness of
concurrent transactions

Intra-shard layer Consensus Agreeing on transactions
within each shard

Leader
election

Electing a leader for each
shard

Membership layer Shard
allocation

Partitioning nodes into
different shards

Data layer - Defining the ledger format

The definition of transaction conflicts and the specifica-
tion of C(·) depend on the data layer design, which we
will analyse in §5. Cross-shard communication may be
required in C(·).

Definition 2.5 (Validity). For any two correct nodes at
shard kx and ky, let Lx and Ly be their local ledgers,
respectively. If they include transaction txx and txy in
the blocks at height `x and `y in Lx and Ly, respectively,
then the following holds:

• V (txx, Lx, `x) = 1,
• V (txy, Ly, `y) = 1, and
• C(txx, txy) = 0.

Note that our evaluation will only show whether a
sharded blockchain satisfies the properties without calcu-
lating the concrete degrees u and d, which depend on
system parameters when instantiating the system.

3. Protocol stack

In this section, we deconstruct the sharded blockchain
into four protocol layers focusing on orthogonal func-
tionalities. As summarised in Table 1, the protocol stack
consists of four layers, including 1) data layer that defines
the ledger’s format; 2) membership layer that partitions
nodes into different shards; 3) intra-shard layer that agrees
on transactions within a shard; and 4) cross-shard layer
that processes cross-shard transactions.

3.1. Data layer

Data layer concerns the ledger format, i.e., how system
states are represented, evolved, and stored. Apart from
concerns that exist in non-sharded blockchains, the data
layer raises some additional concerns on cross-shard trans-
actions, and thus affects the cross-shard layer design in
sharded blockchains. First, how transactions are ordered
affects the frequency of resolving conflicts between con-
current transactions. In addition, how ledgers are parti-
tioned among shards affects the communication overhead
of verifying cross-shard transactions. Concurrency Control
and Atomic Commit, the two protocols addressing these
two concerns, constitute the cross-shard layer. We will
analyse the design spaces and their trade-offs of the data
layer in §5.

3.2. Membership layer

Membership layer is responsible for allocating nodes
into different shards. This functionality is informally stud-
ied in existing blockchain sharding proposals, and has
recently been formalised as the shard allocation pro-
tocol [19]. Shard allocation protocols are non-trivial to
design. Specifically, the adversary can launch the single-
shard takeover attack (aka 1% attack) [33], [34] by
gathering its corrupted nodes to the victim shard and
compromising the shard’s consensus. As voting power is
distributed among shards, compromising a single shard
requires fewer corrupted nodes than compromising a non-
sharded blockchain. To defend against the single-shard
takeover attack, the shard allocation protocol has to move
some nodes to other shards periodically. However, a node
moving to another shard incurs non-negligible overhead,
as it needs to synchronise the shard’s ledger and find peers
in the shard from scratch. The blockchain community
refers the issue as the reshuffling problem [35], [36].

For completeness, we summarise existing studies of
shard allocation below, and refer readers to the paper [19]
for detailed analysis. A shard allocation protocol concerns
all aspects of system settings in §2.1. It has four correct-
ness properties, namely liveness, allocation-randomness,
unbiasibility, and the optional allocation-privacy. Live-
ness specifies that for each epoch, every correct node
eventually obtains a valid shard membership; γ-allocation-
randomness specifies that for each epoch, every node has
probability γ to stay in its current shard, and probability
1−γ
m−1 to move to each other shard; unbiasibility speci-
fies that every node cannot manipulate the shard alloca-
tion distribution specified in allocation-randomness; and
allocation-privacy specifies that a shard membership can-
not be computed by others unless the node itself reveals it.
It has four performance metrics, namely communication
complexity, self-balance and operability. Communication
complexity is the amount of communication for obtaining
a shard membership; self-balance is the ability that a
sharded blockchain recovers from load imbalance; and
operability is the overhead of nodes moving among shards.
The evaluation [19] shows that no shard allocation pro-
tocol in existing sharded blockchains is fully correct or
performant. Based on the evaluation, the authors [19]
identify and prove a trade-off between self-balance and
operability.

3.3. Intra-shard layer

Intra-shard layer is responsible for processing intra-
shard transactions in this shard and cross-shard transac-
tions involving this shard. The intra-shard layer protocol
acts the same ways as a non-sharded blockchain, where
nodes jointly maintain a ledger of transactions and keep
agreeing on new transactions. The non-sharded blockchain
protocol usually involves two subprotocols, namely leader
election and (leader-based) consensus.

Figure 2 describes the execution of the intra-shard
layer. For each epoch in a shard, nodes run the leader
election protocol to elect a leader (aka primary node).
The leader samples a subset of valid transactions from its
memory pool, packs them into a block, and broadcasts
this block to other peers in this shard. Nodes in this shard

4

Shard

Leader
election Consensus

Agree on

Node
Leader

Tx Memory
poolPropose

block
Tx

TxTx

Tx Tx Tx

Tx

Tx

Ledger

Figure 2: Intra-shard layer. Nodes run a leader election protocol
to select a leader. The leader selects a subset of transactions
from its memory pool, packs selected transactions into a new
block, and broadcasts this block to nodes. Nodes then execute
the consensus protocol to agree on this block. If agreed, nodes
will append it to the ledger.

then execute the consensus protocol to agree on these
transactions and update states of the ledger accordingly.
We will analyse required properties of leader election
and consensus and evaluate designs in existing sharded
blockchains in §6.

Although blockchain protocols can be leaderless, we
still include leader election in our evaluation for two
reasons. The first reason is the completeness of the eval-
uation: all our evaluated sharded blockchains use leader
election protocols, except for Chainspace. The second rea-
son is that to exclude leader election, blockchain protocols
have to employ leaderless consensus, which is currently
more of theoretical interest due to the high communication
complexity and strong system setting requirements [37].

3.4. Cross-shard layer

Cross-shard layer is responsible for processing cross-
shard transactions that involve multiple shards. Process-
ing cross-shard transactions faces two major challenges,
namely 1) resolving conflicts between concurrent cross-
shard transactions and 2) including cross-shard transac-
tions “atomically”: eventually, a cross-shard transaction is
either included or omitted in the ledgers of all involved
shards. Both challenges also exist in distributed transac-
tions that involve multiple computers. Existing distributed
systems research [38] suggests to handle the two tasks by
using Concurrency Control (CC) [23] and Atomic Commit
(AC) [25], respectively.

To explain CC and AC, we will use an example cross-
shard transaction tx. Let tx = {a1 → b2} be a cross-shard
transaction that takes object a1 on shard #1 as input and
outputs object b2 on shard #2. As tx involves both shard
#1 and #2, it has to be included in both shards.
Concurrency Control. In non-sharded blockchains, a
transaction is included in the ledger instantly once the
block including it is included in the ledger. In sharded
blockchains, including tx is likely to take multiple epochs,
as tx are processed by two different shards that are
executing independently. Within this time gap, there might
be concurrent conflicted transactions attempting to access
a and b. To avoid anomalies caused by conflicted trans-
actions, the cross-shard layer has to achieve a property
called isolation (“I” in ACID [39]), which specifies how
and when changes made by a transaction become visible
to other transactions. Concurrency Control (CC) [23] is

Commit

Commit

Start End

Cross-shard tx

Shard #2

Shard #1

(a) Successful case. If tx is in-
cluded, b2 will be active and a1

will be removed.

Commit
Commit

Start End

Error

AbortCross-shard tx

(b) Failed case. If tx is not in-
cluded, a1 will remain active and
b2 will be inactive.

Figure 3: Concurrency Control in sharded blockchains.

Commit

Commit

Start End

Cross-shard tx

Shard #2

Shard #1

(a) Successful case. If shard #1
includes tx, then shard #2 has to
include tx as well.

Commit

Commit

Start End

Error

AbortCross-shard tx

(b) Failed case. If shard #1 omits
tx due to some error, then shard
#2 should omit tx as well.

Figure 4: Atomic Commit in sharded blockchains.

a family of protocols that achieve isolation by properly
scheduling concurrent-but-conflicted transactions.

Figure 3 describes the functionality of CC for
blockchain sharding. Suppose tx is included in shard #1
earlier than in shard #2. If both shards include tx, then
b2 will be active on shard #2. If both shards discard tx,
then a1 will be active on shard #1. During the time gap,
neither a1 nor b2 can be inputs of other transactions.

Atomic Commit. Shard #1 and #2 should have the same
decision on tx: eventually, both shards should include
or discard tx. If shard #1 includes but shard #2 omits
tx, then a1 is locked (i.e., cannot be spent) forever. If
shard #1 omits but shard #2 includes tx, then a1 is used
as input twice, leading to a double-spending attack. To
prevent these two scenarios, a cross-shard communica-
tion primitive is required. The primitive has to satisfy
two properties, namely agreement, i.e., two shards agree
on the execution results of tx and termination, i.e., tx
will eventually be executed on both shards. Otherwise,
conflicted transactions can be executed, and the sharded
blockchain’s validity will be broken. Atomic Commit
(AC) is the family of protocols that provide agreement.
Non-Blocking Atomic Commit (NB-AC) [28] is an AC
variant that additionally provides termination.

Figure 4 describes the functionality of AC in the
context of blockchain shards. For cross-shard transaction
tx, if shard #1 includes tx, then shard #2 has to include tx
as well. Otherwise, if shard #1 omits tx due to some error,
then shard #2 should omit tx as well. We will analyse
required properties of CC and AC in §6.

5

4. Existing sharded blockchains

In this section, we summarise the design of sharded
blockchains that we will evaluate. As the paper focuses on
permissionless settings, we choose to evaluate seven state-
of-the-art permissionless sharded blockchains, including
five academic proposals Elastico [11], Omniledger [12],
RapidChain [13], Chainspace [14] and Monoxide [15],
and two industry projects Zilliqa [16] and Ethereum
2.0 [40].
Elastico and Zilliqa. In Elastico [11], the ledger is
formed as a single blockchain. Each node maintains the
entire ledger. For each epoch, nodes in a special shard
called final committee execute a Distributed Randomness
Generation (DRG) protocol [41] to generate a random
output. Each node solves a PoW with the random output
and its public key as input. The node is allocated to a shard
according to the prefix of its PoW solution. The first shard
becomes the final committee. In each shard, nodes execute
Monarchy [42] to elect a leader, and execute PBFT [43]
to agree on the block proposed by the leader. The final
committee gathers all blocks, merges them into a single
block, and appends it to the ledger.

Zilliqa [16] is an industry project that adapts the
Elastico protocol with three main optimisations. First,
the random output is derived from the last block’s hash
rather than generated from DRG. Second, instead of using
Monarchy for leader election, the node with the smallest
PoW solution in a shard is elected as leader. Third,
Zilliqa incorporates Collective Signing [44] with PBFT,
in order to reduce communication complexity from O(n2)
to O(n).
Omniledger. In Omniledger [12], the ledger is partitioned
into different shards. Each part of the ledger is structured
as a Directed Acyclic Graph (DAG) of blocks. Each block
consists of a number of objects (rather than transactions).
Objects are distributed to different shards according to
their IDs. For each epoch, all nodes execute the Rand-
Hound [45] DRG protocol to produce a random output.
Nodes are allocated to shards randomly by a centralised
identity authority. In each shard, each node runs Verifiable
Random Function (VRF) over the random output and
its identity, and the node with the smallest VRF output
is elected as leader. The leader proposes a block, and
nodes execute ByzCoinX – an optimised version of the
ByzCoin [44] consensus protocol – to agree on the block.

To process cross-shard transactions, Omniledger em-
ploys the Atomix Atomic Commit (AC) protocol. We
describe Atomix by using the cross-shard transaction
tx = {a1 → b2} in §3.4 as an example. First, the user
sends tx to shard #1, and requests shard #1 to lock
a1. Nodes in shard #1 verify tx, perform a ByzCoinX
consensus on locking a1, and send a proof-of-acceptance
of a1 to the user. The user then constructs a unlock-to-
commit transaction consisting of the proof-of-acceptance
of a1, tx, and object b2, then sends this transaction to
shard #2. Nodes in shard #2 execute ByzCoinX consensus
to agree on the unlock-to-commit transaction. If accepting
this transaction, shard #2 executes another ByzCoinX
consensus on adding b2 as an active object.
RapidChain. In RapidChain [13], the ledger is parti-
tioned into different shards. Each part of the ledger is

formed as a blockchain. Each block consists of a set
of transactions. Each transaction is allocated to a shard
according to the input object’s ID. Each node should solve
a PoW to join the system. Nodes are allocated to different
shards following the Commensal Cuckoo rule [46]. For
each epoch, nodes in each shard elect a leader (Rapid-
Chain does not specify the leader election protocol), and
execute a synchronous BFT consensus protocol [47] to
agree on the block proposed by the leader. The leader is
also responsible for coordinating cross-shard transactions.
Given cross-shard transaction tx = {a1 → b2}, the
leader of shard #2 splits tx to two intra-shard transactions:
tx1a = {a1 → x} and tx2b = {x → b2}, then sends tx1a
and tx2b to nodes in shard #1 and shard #2, respectively.
After nodes in shard #1 agree on tx1a, the leader of shard
#2 proposes tx2b .

Chainspace. Chainspace [14] is a sharded smart contract
platform. In Chainspace, the ledger is partitioned into dif-
ferent shards. Each part of the ledger consists of a Directed
Acyclic Graph (DAG) of objects, as well as transaction
hashes. Objects are distributed to shards according to their
IDs. Chainspace does not specify how newly joined nodes
are allocated to different shards. If an existing node wants
to move to another shard, then it should send a request
to the system by using a transaction, and nodes vote to
approve its request. Chainspace does not elect leaders
for intra-shard consensus. Instead, once a node receives
a transaction, this node will initiate a consensus within its
shard (plus a cross-shard AC if the transaction is cross-
shard) on that transaction.

To process cross-shard transactions, Chainspace em-
ploys the S-BAC protocol, which combines an optimistic
concurrency control (OCC) protocol and an AC protocol.
Unlike AC protocols in other sharded blockchains, S-BAC
requires input shards to communicate with each other.
Thus, we describe S-BAC using a transaction with multi-
ple inputs in different shards. Let tx = {a1, b2 → c3} be a
transaction with two inputs a1 on shard #1 and b2 on shard
#2, and an output c3 on shard #3. In S-BAC, the user first
sends tx = {a1, b2 → c3} to shard #1 and #2, and the two
shards verify tx with an intra-shard consensus. If valid,
the two shards exchange a1 and b2, and execute another
consensus to inactivate a1 and b2. Note that if a1 or b2 is
inactivated by another transaction before the two shards,
tx will be aborted. After that, the two shards send tx to
shard #3, and meanwhile exchange the status of a1 and b2
and respond to the user. When shard #3 receives tx, shard
#3 performs an intra-shard consensus on creating c3.

Monoxide. In Monoxide [15], the ledger is partitioned
into different shards. Each part of the ledger is formed as
a blockchain. Each block contains a number of transac-
tions. Each transaction can only have one input object
and one output object. A transaction is allocated to a
shard according to its input object’s ID. Nodes can join
any shards. Similar to Bitcoin, Monoxide employs PoW-
based leader election and Nakamoto consensus. Existing
analysis proves that Nakamoto consensus works under
partially synchronous networks [48]. Nodes are allowed
to do Chu-ko-nu mining, i.e., mine on multiple shards
simultaneously. Monoxide takes a similar approach with
RapidChain for cross-shard transactions: each cross-shard
transaction is split to multiple intra-shard transactions that

6

are submitted individually. Monoxide assumes nodes are
incentivised to process cross-shard transactions, as they
want to earn the fee in these transactions. Monoxide calls
this guarantee as eventual atomicity.
Ethereum 2.0. Ethereum 2.0 is the next generation of
the Ethereum project [49], aiming at scaling Ethereum via
sharding. In Ethereum 2.0 [40], the ledger is partitioned
into different shards, including a beacon chain and a num-
ber of shard chains. The beacon chain is the main chain
that stores cross-shard transactions, manages validators
who produce and verify blocks, and generates randomness
periodically using the RANDAO protocol [50]. Nodes
in shard chains execute consensus and append blocks
independently. Transactions belong to different smart con-
tracts, and smart contracts are allocated to different shards
according to their IDs. Each node stores a part of the
ledger as well as block headers of the entire ledger. Each
shard samples a subset of nodes called validators via
the “custody game”, a deposit-based weighted sortition.
Nodes first deposit some coins in a special deposit con-
tract to join the validator registry. With the random output
from the beacon chain as entropy, the deposit contract
randomly samples a number of validators and a leader
from all nodes. The leader proposes a block, and validators
execute the Casper [51] consensus protocol to agree on the
block. To process cross-shard transactions, users submit
transactions on both input shards and output shards. Given
cross-shard transaction tx = {a1 → b2} between a sender
and a receiver, the sender splits tx to two intra-shard
transactions: tx1a = {a1 → x} and tx2b = {x→ b}. Then,
the sender sends tx1a to shard #1. Once tx1a is included,
the shard will create a receipt consisting of the block’s
Merkle branch with tx1a, a1, and the receiver of tx2b . With
this receipt and block headers of shard #1, any node can
verify the status of a1. The receiver verifies the receipt,
and sends tx2b together with the receipt to shard #2. Shard
#2 then validates tx2b using the receipt, and will include
tx2b if valid.

5. Data layer

We consider the following design choices for the data
layer.
• Ledger unit: the irreducible unit in a ledger (e.g.,

transaction or object).
• Unit allocation: how a ledger unit is allocated to a

shard.
• Consensus unit: the item appended to the ledger for

each consensus epoch (e.g., block or transaction).
• Ledger partitioning: whether each node stores a part

of the ledger (sharded) or the entire ledger (repli-
cated).

• Ordering: how ledger units are ordered (e.g., partial
ordering or total ordering).

Table 2 summarises design choices of the data layer
made by blockchain sharding proposals. Based on the
evaluation, we analyse the design space and trade-offs
inside these design choices.
Ledger unit: transaction v.s. object. Among these
sharding protocols, only Omniledger uses object as ledger
unit, and other protocols use transaction. The only ad-
vantage of storing objects is to reduce the ledger size,

TABLE 2: Design choices of the data layer.

Led
ge

r unit

Unit
all

oc
.

Con
sen

su
s unit

Par
tit

ion
ing

Ord
eri

ng

Elastico Tx Arbitrary Block Replicated Total
Omniledger Object ID Block Sharded Partial
RapidChain Tx Input ID Block Sharded Partial
Chainspace Tx Input ID Tx Sharded Partial
Monoxide Tx Input ID Block Sharded Partial

Zilliqa Tx Arbitrary Block Replicated Total
Ethereum 2.0 Tx SC. ID Block Sharded Partial

as the ledger does not need to record historical objects.
However, without storing transactions, the history of mod-
ifications on objects will be lost, making it hard to roll
back transactions. Rollback may happen in two scenarios.
First, with Atomic Commit in the cross-shard layer, cross-
shard transactions may be aborted halfway and rolled
back. Second, when the intra-shard layer uses a prob-
abilistic consensus protocol, e.g., Nakamoto consensus,
transactions may be first included but later reverted. To
add the rollback support without storing all transactions,
the sharded blockchain has to store some coarse-grained
historical states of objects. For example, Omniledger la-
bels inactive objects rather than removing them from the
ledger. Other approaches such as versioning objects and
checkpointing [52], [53] can also be used for storing
historical states of objects.

Consensus unit: transaction v.s. block. While in
Chainspace nodes execute consensus over transactions,
in other sharded blockchains nodes execute consensus
over blocks. These design choices are basically param-
eterised by the consensus unit, i.e., block size limit, the
number of transactions a block can include. Apart from
existing concerns on the block size limit in non-sharded
blockchains [54], the block size limit introduces some
other concerns related to the cross-shard communication
in sharded blockchains. On the positive side, specifying
a small consensus unit increases the throughput limit.
As a pair of blocks are more likely to be conflicted
than a pair of transactions, small consensus units can
be processed at a higher concurrency level, leading to
higher throughput limit. On the negative side, specifying
a small consensus unit reduces the actual throughput.
With smaller consensus units, invocations of consensus
and Atomic Commit are more frequent, introducing extra
communication overhead. When the network capacity is
limited, it may become the performance bottleneck and
limit the throughput.

Thus, there is a trade-off between the throughput limit
and the actual throughput, parameterised by the consensus
unit size. While our evaluated proposals experiment on
the relationship between actual throughput and consensus
unit size in their own models, a unified analysis regarding
the trade-off is still missing, and we consider it as future
work.

Partitioning: sharded v.s. replicated. Within these
sharding protocols, Elastico and Zilliqa replicate the
ledger among shards, while other protocols divide the
ledger into different shards. The ledger partitioning has
a direct impact on the construction of oracle C(txx, txy).
Replicating ledgers is similar to parallel chains [55]–[58],

7

where the ledger consists of multiple shards, and nodes
execute consensus on these shards in parallel. With all
shards, nodes can verify cross-chain transactions locally,
and C(txx, txy) does not involve cross-shard communica-
tion [20], which we will show is challenging to solve in §7.
However, replicating ledgers inevitably introduces O(m)
more overhead on communication and storage, where m
is the number of shards.

Thus, there exists a trade-off between the complexity
of cross-shard communication and the overhead of stor-
ing/synchronising ledgers, parameterised by the portion
of the ledger a node should synchronise with. Ethereum
2.0 employs an in-between solution that minimises the
overhead while bypassing the cross-chain communication
problem: each node stores a part of the ledger as well as
block headers of the entire ledger, so that any node can
verify cross-shard transactions locally. Other possibilities
over this trade-off are considered as future work.
Total ordering v.s. partial ordering. Among these
blockchain sharding protocols, Elastico and Zilliqa en-
force total ordering on transactions, and other protocols
only enforce partial ordering. We observe that total order-
ing is not always desired for sharded blockchains. First,
not all transactions need to be ordered. In permission-
less blockchains, different users hold different accounts
and active objects. Transactions involving different sets
of users are independent of each other, and therefore
can be unordered. Second, ordering transactions requires
shards to synchronise with each other, which inevitably
introduces extra communication overhead. For example,
Elastico and Zilliqa allow nodes in a special shard to be
the final committee. The final committee collects blocks
from all other shards, merges them to a single block, and
appends this block to the blockchain. The final committee
works as a barrier [59] that synchronises all shards: all
shards should wait before every shard produces a block.

6. Intra-shard layer

In this section, we analyse the required properties
of the intra-shard layer, and evaluate existing intra-shard
layer designs. As mentioned in §3, the intra-shard layer
consists of two protocols, namely leader election and con-
sensus. Given the rich literature in consensus [64]–[67],
we build our analysis on consensus upon existing studies.
Our evaluation shows that, leader election is overlooked
by existing designs, but it usually introduces strong as-
sumptions.

6.1. Leader election

In each shard, nodes execute the leader election pro-
tocol to elect a leader, who is responsible for proposing
the next block and/or coordinating intra-shard consensus.
System setting. In addition to aspects mentioned in §2,
we also evaluate the weight for leader election. A node’s
weight is in proportion to the chance that it is elected as
the leader. For example, the weight can be computational
power and financial stake in PoW-based and PoS-based
leader election, respectively.
Correctness and performance metrics. We model the
leader election for sharded blockchains based on existing

models [22], [68]. Leader election for blockchain sharding
should satisfy the following five properties:
• Public verifiability: given a node’s public key, its

leadership proof and the system state, anyone can
verify whether this node is the leader at this system
state.

• Uniqueness: after election, only one node (in a shard)
can provide a valid leadership proof.

• Unpredictability: for any epoch t, the probability of
making an accurate guess on the leader of any shard
at the (t + 1)-th epoch is in proportion to the ratio
between the guessed node’s weight and its shard’s
total weight at epoch t.

• Fairness: no node can manipulate its probability of
being elected.

• Termination: for every epoch, eventually, there will
be a node elected as leader.

Public verifiability allows nodes to verify the leader’s
identity. Uniqueness ensures that only a single node can
become the leader and initiate the consensus protocol.
Unpredictability and fairness prevent the adversary from
corrupting the leader throughout the protocol execution.
Termination prevents nodes in the sharded blockchain to
lose liveness forever. The performance metric of the leader
election protocol is the communication complexity.
Evaluation and analysis. We evaluate the strength of
the system setting, in the understanding, from a systems
theory viewpoint, that strength of a system setting is in-
versely proportional to its coverage. Table 3a summarises
our evaluation results. Our evaluation shows that leader
election is overlooked by existing proposals. Specifically,
RapidChain and Ethereum 2.0 require leader election
protocols but do not provide detailed specifications. In
Ethereum 2.0, the leader election protocol executes upon
a smart contract, which is assumed to be secure. Elastico
and Zilliqa’s leader election protocols cannot tolerate any
Byzantine fault. Elastico uses Monarchy [42] for leader
election, where a single Byzantine node can stall the pro-
tocol forever by withholding messages. Zilliqa elects the
node with the smallest PoW solution in a shard as leader.
A Byzantine node can withhold its PoW solution, allow
another node to be the leader, and publish its PoW solution
to revert the current consensus execution. Omniledger’s
leader election protocol relies on a trusted third party
(TTP).

Previous studies show that leader election is challeng-
ing in permissionless settings. Calzado et al. [68] model
and evaluate leader election under crash faults and dy-
namic mobile networks. They evaluate several leader elec-
tion protocols, and show that no protocol resists against
all failures. Boneh et al. [22] formally study Single Secret
Leader Election (SSLE) and propose two protocols, but
both protocols rely on randomness beacon and complex
cryptographic primitives such as Fully Homomorphic En-
cryption and Indistinguishable Obfuscation.

6.2. Consensus

Given the rich literature in consensus [64]–[67], we
summarise correctness properties and performance metrics
for consensus protocols, and mention previously identified
issues of consensus protocols used by these blockchain

8

TABLE 3: Evaluation of intra-shard layer. N/A means the protocol is not specified, and symbol “-” means the protocol is not needed.

(a) Leader election.

Protocol System setting Correctness Performance

Netw
or

k
syn

c.

Tru
st

Fau
lt

tol
era

nce

W
eig

ht

Public
ve

rif
.

Uniquen
ess

Unpred
ict

ab
ilit

y

Fair
ness

Term
inati

on

Com
m. co

mpl.

Elastico [42] Sync. - 0 - 3 3 3 3 3 O(n2)
Omniledger VRF-based Sync. Leader N/A - 3 3 3 3 3 O(1) ∼ O(n)
RapidChain N/A N/A N/A N/A - N/A N/A N/A N/A N/A N/A
Chainspace - - - - - - - - - - -
Monoxide PoW-based Part. Sync. - 1/2 Comp. 3 7** 3 7† 3 O(n)

Zilliqa VRF-based Sync. - 0 Comp. 3 3 3 3 3 O(n)
Ethereum 2.0 PoS-based N/A Smart

contracts
N/A Stake 3 N/A N/A N/A N/A O(1)

* Solved by the underlying membership layer ** Solved by Nakamoto consensus
† With selfish mining [60], the adversary can increase its chance of being elected as leader.

(b) Consensus protocols.

Protocol System setting Correctness Performance

Netw
or

k
syn

c.

Tru
st

Fau
lt

tol
era

nce

Agr
eem

en
t

Vali
dity

Term
inati

on

Finali
ty

Com
m. co

mpl.

Elastico PBFT Part. Sync. - 1/3 3 3 3 3 O(n2)
Omniledger ByzCoinX Part. Sync. - 1/3 3 3 7 [61] 3 O(n)
RapidChain [47] Sync. - 1/2 3 3 3 3 O(n2)
Chainspace PBFT Part. Sync. - 1/3 3 3 3 3 O(n2)
Monoxide Nakamoto Part. Sync. - 1/2 3 3 3 7 O(n)

Zilliqa PBFT + CoSi Part. Sync. - 1/3 3 3 3 3 O(n)
Ethereum 2.0 Casper FFG Async. Smart

contracts
1/3 3 3 7 [62], [63] 3 O(n)

sharding protocols. We consider system settings men-
tioned in §2, and evaluate consensus protocols against the
following three properties [24]:
• Agreement: no two honest nodes decide differently.
• Validity: the value decided must be a value proposed.
• Termination: all honest nodes eventually decide.
• (Optional) Finality [69]: if a correct node appends

a block B before another block B′ to its local
blockchain, then no correct node appends B′ before
B to its local blockchain.

We consider a single performance metric, namely the
communication complexity. Table 3b summarises our eval-
uation on consensus. Note that fault tolerance capacity is
quantified by voting power, of which the definition de-
pends on protocol designs. It shows that all consensus pro-
tocols either require quadratic communication complexity
or fail to satisfy termination, except for Nakamoto consen-
sus used by Monoxide. To summarise, Omniledger’s Byz-
CoinX consensus protocol does not satisfy termination,
as it can lose liveness when the leader is Byzantine, as
pointed out by Yu et al. [61]. Ethereum 2.0’s Casper FFG
consensus protocol executes upon a special smart contract,
where nodes (aka validators) post their votes to agree on
the next block. Casper FFG does not satisfy termination,
as it will never terminate when none of the blocks at a
certain height reaches the finalisation threshold [62], [63].

7. Cross-shard layer

In this section, we evaluate the cross-shard layer. As
mentioned in §3, the cross-shard layer consists of Concur-

rency Control (CC) and Atomic Commit (AC). We evaluate
and analyse CC and AC separately.

For CC, we find that existing sharded blockchains do
not separate CC and AC, and focus less on designing
and analysing CC compared to AC. We isolate CC from
AC for them and analyse these CC protocols based on
well-defined models in database literature [25]–[27]. Our
evaluation shows that existing sharded blockchains choose
different types of Concurrency Control protocols with
different isolation levels. We thus narrow down the design
space and analyse the trade-offs of Concurrency Control
for sharded blockchains.

For AC, we show that cross-shard transactions should
employ a variant of AC called Non-Blocking AC
(NB-AC) [28]. We evaluate AC protocols of sharded
blockchains in the lens of NB-AC. Based on our eval-
uation, we analyse the challenges of achieving agreement
and termination, and discuss the performance through two
criteria, namely communication complexity and timing of
consistency.

7.1. Concurrency Control

Background. Transactional systems such as databases
have to satisfy the isolation property [25]: concurrent
transactions do not affect each other. Concurrency Con-
trol (CC) is a family of protocols that provide isolation
by specifying how and when modifications made by a
transaction become visible to other transactions.

There are four types of CC protocols [70], [71],
namely coordinator-based CC, timestamp-based CC (T/O,
aka deterministic scheduling) pessimistic concurrency

9

control (PCC), and optimistic concurrency control (OCC).
In coordinator-based CC, there exists a centralised co-
ordinator who receives transactions from users, orders
transactions and resolves conflicts between transactions.
In timestamp-based CC, transactions are timestamped by a
global clock and are processed chronologically according
to the timestamps. PCC and OCC are both implemented
by using locks, and they make different assumptions on
the conflict rate of transactions. PCC assumes most trans-
actions are conflicted, and follows the two-phase locking
(2PL) approach: a transaction locks its accessed objects,
then modifies objects, and finally releases locks on the
objects. OCC assumes few transactions are conflicted, and
follows the modify-validate-commit/rollback approach: a
transaction modifies objects while saving a copy of origi-
nal objects, then verifies if other transactions modify these
objects, and finally commits modifications if no other
transaction does this, otherwise rolls back modifications.

System setting. Concurrency Control (CC) does not rely
on any of the system setting aspects discussed in §2. A CC
protocol specifies a set of rules that should be followed
when appending a transaction to the ledger. Any node
can verify whether a transaction satisfies these rules for
a ledger, without relying on communication with other
nodes or trusted third parties.

Correctness and performance. CC’s correctness in-
cludes safety and liveness. Safety defines the isolation
guarantee of transactions. There are various isolation lev-
els [25]. With higher isolation level, concurrent transac-
tions have less impact on each other, but fewer transac-
tions can be executed concurrently. There are two widely
accepted isolation levels, namely serialisability (I-S) and
snapshot isolation (I-SI). Serialisability is the strongest
isolation guarantee, and snapshot isolation is a relatively
weaker one.

• Serialisability (I-S) [26]: for any set of transactions
(that might be executed concurrently) and their exe-
cution result r, there exists a sequence of them such
that its execution result is equivalent to r.

• Snapshot isolation (I-SI) [27]: for any transaction
tx, 1) all read operations on an object in tx return
the same result (e.g., the result of the first read
operation), and 2) iff no other concurrent transactions
modify objects read by tx, tx will commit, otherwise
tx will rollback.

The key difference between them is that snapshot iso-
lation does not prevent the write skew anomaly, where two
transactions (tx1, tx2) simultaneously read the same set
of objects a and b, simultaneously make disjoint updates
(e.g., tx1 updates a and tx2 updates b), and simultaneously
commit, without noticing the latest updates made by each
other. Serialisability is usually achieved by PCC, while
snapshot isolation is usually achieved by OCC.

Liveness is defined the same way as termination [72]:
transactions will eventually terminate rather than halting
halfway. To conclude, we evaluate CC against the follow-
ing two properties:

• Safety: the protocol guarantees a certain isolation
level.

• Liveness: the execution of any transaction will not
halt halfway.

TABLE 4: Evaluation of Concurrency Control.

Protocol Correctness Performance

Safe
ty

Live
ness No

cro
ss-

sh
ar

d

co
mm.

Elastico Coordinator I-S† 3 7
Omniledger 2PL I-S 3* 3
RapidChain 2PL I-S 3* 3

Chainspace OCC I-SI‡ 3 7
Monoxide 2PL I-S 3* 3

Zilliqa Coordinator I-S 3 7
Ethereum 2.0 2PL I-S 3* 3

* Users have incentive to finish cross-shard transactions.
† I-S means serialisability. ‡ I-SI means snapshot isolation.

For CC’s performance, we evaluate whether nodes in
different shards need to communicate with each other.

Evaluation and analysis. Table 4 summarises our evalu-
ation results on CC. Elastico and Zilliqa use coordinated-
based CC that achieves serialisability and liveness, and
requires cross-shard communication. The final committee
receives blocks from all shards, and merge all blocks to
a single one where transactions are ordered. Omniledger,
RapidChain, Monoxide and Ethereum 2.0 use the two-
phase locking (2PL) protocol that achieves serialisability
and liveness, and requires no cross-shard communication.
Omniledger, RapidChain, Monoxide, and Ethereum 2.0
achieve liveness by using incentive: users need to submit
their cross-shard transactions in order to receive money.
Chainspace’s S-BAC protocol implements an OCC proto-
col that achieves snapshot isolation and liveness. The OCC
protocol forbids concurrent write operations, and detecting
them requires cross-shard communication.

Design space of CC. According to Table 4, existing
sharded blockchains use any of them except for T/O. The
reason why T/O is not used is that there is no global
clock in permissionless networks. Without a global clock,
the adversary can forge transactions with any timestamps,
in order to re-order transactions arbitrarily and break the
isolation guarantee.

Coordinator-based CC is less complex than PCC and
OCC, as the coordinator has a complete view of all trans-
actions. However, coordinator-based CC achieves lower
throughput limit than PCC and OCC. In coordinator-based
CC, the coordinator has to wait for all shards to produce
blocks, then merge all blocks to a single block and publish
it. The waiting process reduces the concurrency level, and
thus the throughput limit.

PCC and OCC make different assumptions on the
distribution of conflicted transactions: PCC assumes more
transactions are conflicted compared to OCC’s assump-
tion. Existing studies on evaluating and comparing PCC
and OCC show a consistent result: with more conflicted
transactions, PCC outperforms OCC, and vice versa [73].
Apart from the conflict rate assumption, OCC requires
shards to communicate with each other in order to detect
conflicted write operations before including transactions,
while PCC does not require cross-shard communication.
In addition, OCC allows to roll back transactions, and
the rolling back mechanism incurs more complexity in
protocol design.

10

7.2. Atomic Commit

System setting. We consider aspects mentioned in §2.
Correctness. Apart from the previously known replay
attack [74], we identify three new attacks on the Atomic
Commit (AC) for sharded blockchains, allowing us to
introduce the required correctness properties. The four
attacks are as follows.
1) Transaction forging attack (Figure 5a) The adver-

sary creates a fake cross-shard transaction for a shard,
then convinces other shards that this fake transaction
has been included on that shard. Without cross-shard
communication and the knowledge of the shard’s
ledger, other shards cannot determine whether this
cross-shard transaction is valid or not.

2) Message withholding attack (Figure 5b) The adver-
sary withholds some messages that should be sent to
shards. This can stop cross-shard transactions from
being processed.

3) Replay attack [74] (Figure 5c) The adversary
probes a cross-shard transaction, then replays it to
the involved shards. In permissionless networks,
nodes cannot distinguish whether their received
messages are honest but delayed, or malicious.
Such replayed messages can lead to two scenarios.
The first scenario (e.g., in Chainspace) is that the
victim shard considers the replayed transaction to
be malicious so rejects it. The second scenario (e.g.,
in Omniledger, Rapidchain, and Monoxide) is that
shards will have conflicted views on the replayed
transaction.

4) Publish-revert attack (Figure 5d) In probabilistic
consensus protocols such as Nakamoto consensus,
a transaction might be accepted first and reverted
later. Given a sharded blockchain with probabilistic
consensus, it is possible that a cross-shard transaction
is valid in some shards but has been reverted in
other shards. Consequently, shards have conflicted
views on the transaction.

To resist against these four attacks, AC in sharded
blockchains should provide the same guarantee as Non-
Blocking AC (NB-AC) [28], an AC variant that addition-
ally satisfies termination. NB-AC satisfies the following
four properties.
• Agreement: for any cross-shard transaction, all in-

volved shards have the same decision on it.
• Termination: for any cross-shard transaction, all in-

volved shards eventually decide on it.
• Abort-validity: a cross-shard transaction will be

aborted iff at least one involved shard votes to abort
it.

• Commit-validity: a cross-shard transaction will be
included iff all involved shards vote to include it.

Agreement, abort-validity and commit-validity jointly
provide resistance against transaction forging attacks. Ter-
mination provides resistance against message withholding
attacks. Agreement and termination jointly provide resis-
tance against replay attacks. Agreement provides resis-
tance against publish-revert attacks.
Performance. We evaluate two performance metrics,
namely communication complexity and timing of con-

sistency. We consider three levels of timing of consis-
tency [75] for sharded blockchains:
• Strict consistency: transactions will be seen by all

nodes once included;
• Casual consistency: transactions will be seen only by

relevant nodes once included; and
• Eventual consistency: transactions will be seen by

relevant nodes but without any timing guarantee.

Evaluation and analysis. Table 5 summarises our evalua-
tion results on AC. Omniledger, RapidChain and Monox-
ide are vulnerable to transaction forging attacks, as the
adversary can act as a user and forge transactions to
proceed AC on output shards and abort AC on input
shards. Omniledger, RapidChain, Chainspace and Monox-
ide are vulnerable to replay attacks as analysed in the pa-
per [74]. Monoxide is vulnerable to publish-revert attacks,
as Monoxide’s PoW-based consensus protocol does not
provide finality and the adversary may revert cross-shard
transactions in input shards. Thus, Omniledger, Rapid-
Chain, Chainspace and Monoxide do not achieve agree-
ment. Omniledger, RapidChain, Monoxide and Ethereum
2.0’s AC protocols are vulnerable to message withholding
attacks, as the adversary can act as a user and withhold
cross-shard transactions on output shards. Thus, they do
not satisfy termination.

Elastico and Chainspace’s AC protocols require
quadratic communication complexity. Elastico’s AC re-
quires nodes in the final committee to execute a PBFT
consensus, and Chainspace’s S-BAC protocol requires
nodes to execute PBFT consensus for multiple times, lead-
ing to quadratic communication complexity. Omniledger
and Zilliqa’s AC protocols require nodes in involved
shards to execute the CoSi-based PBFT consensus, lead-
ing to linear communication complexity. In RapidChain,
Monoxide and Ethereum’s AC protocols, nodes do not
need to execute extra intra-shard consensus, leading to
constant communication complexity.

In Elastico and Zilliqa, after all shards produce their
blocks and send them to the final committee, the final
committee merges blocks from all shards and publishes
the block to all nodes, leading to strict consistency. In
Chainspace, each cross-shard transaction invokes an AC
among only involved shards, leading to casual consis-
tency. In Monoxide and Chainspace, users split cross-
shard transactions and shards process splitted transactions
independently without cross-shard communication, lead-
ing to eventual consistency.
Challenges of achieving agreement. Our evaluation
shows that achieving agreement is challenging, due to
transaction forging and replay attacks. In fact, when shards
maintain different parts of the ledger, achieving agreement
between shards is proven to be impossible without a
trusted third party [20]. In a nutshell, when blockchains
control disjoint sets of information, solving cross-chain
communication, i.e., making blockchains to agree on
something, is equivalent to solve fair exchange, which is
proven impossible without a trusted third party [76]. The
impossibility also applies to cross-shard communication
when shards maintain different parts of the ledger.

To workaround the impossibility, sharded blockchains
have to either employ a trusted party or enforce nodes to
store redundant information of other shards. Elastico and

11

Commit
Fake

commit

Start End

Forged
proof

Cross-shard tx

Shard #2

Shard #1

(a) Transaction forging. The adver-
sary fakes tx that does not exist on
shard #1, and submits tx to shard
#2 with a fake proof that shard #2
includes tx.

Commit

Start

Keep
withholding

Cross-shard tx

(b) Messaging withholding. After
submitting tx to shard #1, the adver-
sary keeps withholding tx on shard
#2 so that tx will never terminate.

Commit

Commit

Start End
Replay

Probe

Adversary

Cross-shard tx

(c) Replay. The adversary probes
and replays tx on shard #2. With-
out proper AC, object b2 can be
locked forever, and/or object a1 can
be double-spent.

Commit

Commit

Start End

Malicious
fork

Cross-shard tx

(d) Publish-revert. After submit-
ting tx to both shards, the adversary
creates a longer fork that reverts tx
on shard #1, so that he can take
object a1 as input again.

Figure 5: Four possible attacks on Atomic Commit (AC). We use cross-shard transaction tx = {a1 → b2} as an example.

TABLE 5: Evaluation of Atomic Commit. Symbol “-” means the protocol has no name.

System setting Correctness Performance

Protocol Netw
or

k
syn

c.

Tru
st

Fau
lt

tol
era

nce

Agr
eem

en
t

Term
inati

on

Abor
t-V

ali
dity

Com
mit-

Vali
dity

Com
m. co

mpl.

Tim
ing

Elastico - Part. Sync. - 1/3 3 3 3 3 O(n2) Strict
Omniledger Atomix Async. - 1/3 7fr 7w 3 3 O(n) Eventual
RapidChain - Async. - - 7fr 7w 3 3 O(1) Eventual
Chainspace S-BAC Part. Sync. - 1/3 7r 3 3 3 O(n2) Casual
Monoxide - Async. - - 7frp 7w 3 3 O(1) Eventual

Zilliqa - Part. Sync. - 1/3 3 3 3 3 O(n) Strict
Ethereum 2.0 - Async. - - 3 7w 3 3 O(1) Eventual
f vulnerable to transaction forging attacks. w vulnerable to message withholding attacks.
r vulnerable to replay attacks. p vulnerable to publish-revert attacks.

Zilliqa employ a final committee that stores the entire
ledger and coordinates all cross-shard transactions. This
requires the final committee to be trustworthy, and in-
troduces non-negligible storage and communication over-
head. Ethereum 2.0 requires nodes to store block headers
and work as lightweight clients of all shards, so that every
node can verify all cross-shard transactions. This can be
seen as a trade-off between storage and security guarantee.

Challenges of achieving termination. When users are
responsible for submitting transactions on output shards,
the adversary can play as a user and keep withhold-
ing transactions, breaking AC’s termination. Nevertheless,
with proper CC, such withholding can be discouraged.
For example, in Omniledger, RapidChain and Monoxide,
if the adversary withholds transactions on output shards,
then its money is locked (i.e., cannot be spent) forever,
and the system still works correctly.

Trade-off between timing of consistency and perfor-
mance. Elastico and Zilliqa achieve strict consistency
by enforcing all shards to synchronise with each other.
Chainspace achieves casual consistency by enforcing
shards involved in a cross-shard transaction to synchronise
with each other. Monoxide achieves eventual consistency
by allowing shards to process cross-shard transactions
independently. To achieve better timing of consistency,
the sharded blockchain has to either enforce more shards
to execute AC, or enforce shards to execute AC more
frequently. Both approaches incur significant communica-
tion overhead and downgrade performance. This implies a
trade-off between timing of consistency and performance:
achieving better timing of consistency usually sacrifices
performance.

8. System-level analysis

In this section, we provide the system-level evaluation
on sharded blockchains based on individual layer evalua-
tion in §5-7. The evaluation results in Table 7 show that
existing sharded blockchains either assume strong system
settings or fail to preserve all correctness properties. We
attribute the issue to the design choice that different
protocol layers assume different system settings.

8.1. Evaluation

System setting. If a system consists of multiple proto-
cols, then it remains secure only when all assumptions
made by its protocols hold, otherwise some protocols
cannot achieve all correctness properties [30], compro-
mising the entire system. Therefore, the system remains
secure under the strongest assumptions made by its pro-
tocol layers. Given this observation, we derive the system
settings of the sharded blockchains from the individual
layer evaluation. Table 6 summarises system settings of
sharded blockchains analysed in §5-7. It shows that except
for Monoxide and Ethereum 2.0, all evaluated sharded
blockchains assume incoherent system settings on dif-
ferent layers. In addition, Elastico and Zilliqa cannot
tolerate a single Byzantine node, otherwise the system
will lose liveness. Moreover, Omniledger, Chainspace and
Ethereum 2.0 rely on various trusted parties for some
protocol layers.
Correctness properties. We consider correctness prop-
erties defined in §2, namely persistence, liveness, and
validity. All sharded blockchains satisfy persistence. Om-
niledger and Ethereum 2.0 do not satisfy liveness as their

12

TABLE 6: System settings of sharded blockchains across layers.

Network
sync.

Trust Fault
tolerance

Elastico

Shard allocation Sync. - 1/3
Leader election Sync - 0

Consensus Part. Sync. - 1/3
Atomic Commit Part. Sync. - 1/3

Overall Sync. - 0

Omniledger

Shard allocation Async. Iden. auth. 1/3
Leader election Sync. Protocol leader N/A

Consensus Part. Sync. - 1/3
Atomic Commit Async. - 1/3

Overall Sync. Iden. auth.
Protocol leader

1/3

RapidChain

Shard allocation Sync. - 0
Leader election N/A N/A N/A

Consensus Sync. - 1/2
Atomic Commit Async. - -

Overall Sync. - 0

Chainspace

Shard allocation Async. Smart contracts 1
Leader election - - -

Consensus Part. Sync. - 1/3
Atomic Commit Part. Sync. - 1/3

Overall Part. Sync. Smart contracts 1/3

Monoxide

Shard allocation Async. - 1
Leader election Async. - 1/2

Consensus Async - 1/2
Atomic Commit Async. - -

Overall Async. - 1/2

Zilliqa

Shard allocation Sync. - 1
Leader election Sync. - 0

Consensus Part. Sync. - 1/3
Atomic Commit Part. Sync. - 1/3

Overall Sync. - 0

Ethereum 2.0

Shard allocation Async. - 1
Leader election N/A Smart contracts N/A

Consensus Async. Smart contracts 1/3
Atomic Commit Async. - -

Overall Async. Smart contracts 1/3

TABLE 7: System-level evaluation.

System setting Correctness

Netw
or

k
syn

c.

Tru
st

Fau
lt

tol
era

nce

Pers
ist

an
ce

Live
ness

Vali
dity

Elastico Sync. - 0 3 3 3
Omniledger Sync. iden. auth.

+ leader
1/3 3 7 7

RapidChain Sync. - 0† 3 3 7
Chainspace Part. Sync. Smart

contracts
1/3 3 3 7

Monoxide Async. - 1/2 3 3 7
Zilliqa Sync. - 0 3 3 3

Ethereum 2.0 Async. Smart
contracts

1/3 3 7 3

† RapidChain’s shard allocation protocol cannot tolerate any fault, as analysed in [19].

used consensus protocols do not satisfy termination, as
analysed in §6.2. Omniledger, RapidChain, Chainspace
and Monoxide do not satisfy validity as their Atomic
Commit protocols do not satisfy agreement, as analysed
in §7.2.

8.2. Coherence of system settings

Based on the evaluation, we observe an important
design consideration, namely the coherence of system
settings across layers. In particular, we attribute the weak
security guarantee of sharded blockchains to their design
choice that different protocol layers make different system
settings, without corresponding architectural guarantees.
Consequently, unless a hybrid architecture were used, as-
suming differentiated system settings across system layers
is a serious vulnerability and can introduce subtle but
severe failure syndromes [30]. In the context of blockchain
sharding, to remain correct on all layers, the sharded
blockchain can only work in the environment that satisfies
the strongest system setting made by protocol layers.
Otherwise, some protocol layers cannot be fully correct,
and the entire sharded blockchain can be compromised.

If the sharded blockchains are deployed in the
strongest system settings assumed in Table 7, then by
replacing protocols relying on weaker system settings with
those relying on the strongest system setting, the sharded
blockchain can achieve better performance without com-
promising security. For Elastico, Omniledger and Zilliqa,
by replacing the partially synchronous PBFT consensus
protocol with a synchronous consensus protocol, the per-
formance can be significantly improved. For Omniledger,
by using the trusted identity authority rather than a trusted
protocol leader to nominate consensus leaders, the need
of the trusted protocol leader can be removed. By using
the trusted identity authority to coordinate cross-shard
transactions rather than using the Atomix Atomic Commit
protocol, the O(n) communication overhead of Atomix
can be reduced, and the timing of consistency can be
improved.

If the sharded blockchains are deployed in weaker
system settings than those in Table 7, then they cannot
achieve some correctness properties. For example, the net-
work may be partially synchronous or even asynchronous.
If the network is partially synchronous, then some sharded
blockchains lose some correctness properties: Elastico,
Omniledger, and Zilliqa’s leader election protocols cannot
achieve termination, breaching the system’s liveness; and
RapidChain’s consensus protocol cannot achieve agree-
ment, breaching the system’s persistence. If the network
is asynchronous, then Chainspace also loses liveness, as its
consensus protocol and Atomic Commit protocol cannot
achieve termination.

9. Conclusion

In this paper, we provided a comprehensive evalu-
ation for state-of-the-art blockchain sharding protocols.
Our evaluation reveals a considerable number of new
attacks, design trade-offs and open challenges in sharded
blockchains. Based on the analysis of individual layers, we
also observed and analysed the importance of assuming
coherent system settings across protocol layers. We hope
that the blockchain community will benefit from our find-
ings and avoid our identified pitfalls in designing secure
and scalable blockchain sharding protocols.

References

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash
system,” 2008.

[2] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in Annual
International Cryptology Conference, Springer, 2017, pp. 357–
388.

[3] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly reconfig-
urable consensus and applications to provably secure proof of
stake,” in International Conference on Financial Cryptography
and Data Security, Springer, 2019, pp. 23–41.

[4] J. Poon and T. Dryja, “The Bitcoin Lightning Network: Scalable
off-chain instant payments,” 2016.

[5] A. Lakshman and P. Malik, “Cassandra: A decentralized struc-
tured storage system,” ACM SIGOPS Operating Systems Review,
vol. 44, no. 2, pp. 35–40, 2010.

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file
system,” in Proceedings of the nineteenth ACM symposium on
Operating systems principles, 2003, pp. 29–43.

13

[7] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and
B. C. Ooi, “Towards scaling blockchain systems via sharding,”
in Proceedings of the 2019 International Conference on Manage-
ment of Data, ACM, 2019, pp. 123–140.

[8] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb:
Global scale resilient blockchain fabric,” Proceedings of the
VLDB Endowment, vol. 13, no. 6,

[9] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper: Sharding
permissioned blockchains over network clusters,” in Proceedings
of the 2021 International Conference on Management of Data,
2021, pp. 76–88.

[10] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine
environment,” Proc. VLDB Endow, 2021.

[11] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ACM, 2016, pp. 17–30.

[12] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,
and B. Ford, “Omniledger: A secure, scale-out, decentralized
ledger via sharding,” in 2018 IEEE Symposium on Security and
Privacy (SP), IEEE, 2018, pp. 583–598.

[13] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
ACM, 2018, pp. 931–948.

[14] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G.
Danezis, “Chainspace: A sharded smart contracts platform,” in
25th Annual Network and Distributed System Security Sympo-
sium, NDSS 2018, San Diego, California, USA, February 18-21,
2018, 2018.

[15] J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), 2019,
pp. 95–112.

[16] Z. Team et al., “The Zilliqa technical whitepaper,” Retrieved
September, vol. 16, p. 2019, 2017.

[17] Ethereum/wiki. [Online]. Available: https://github.com/ethereum/
wiki.

[18] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Ad-
vances in Financial Technologies, AFT 2019, Zurich, Switzerland,
October 21-23, 2019, 2019.

[19] R. Han, J. Yu, and R. Zhang, “Analysing and Improving Shard
Allocation Protocols for Sharded Blockchains,” 2020, https : / /
eprint.iacr.org/2020/943.

[20] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias,
P. Moreno-Sanchez, A. Kiayias, and W. J. Knottenbelt, “Sok:
Communication across distributed ledgers,” in International Con-
ference on Financial Cryptography and Data Security, 2021.

[21] G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer, “Divide
and scale: Formalization of distributed ledger sharding protocols,”
arXiv preprint arXiv:1910.10434, 2019.

[22] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco, “Single
secret leader election,” in AFT ’20: 2nd ACM Conference on
Advances in Financial Technologies, New York, NY, USA, October
21-23, 2020.

[23] P. A. Bernstein, P. A. Bernstein, and N. Goodman, “Concurrency
control in distributed database systems,” ACM Computing Surveys
(CSUR), vol. 13, no. 2, pp. 185–221, 1981.

[24] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to
reliable and secure distributed programming. Springer Science
& Business Media, 2011.

[25] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
control and recovery in database systems. Addison-wesley New
York, 1987, vol. 370.

[26] C. H. Papadimitriou, “The serializability of concurrent database
updates,” Journal of the ACM (JACM), vol. 26, no. 4, pp. 631–
653, 1979.

[27] M. J. Franklin, Concurrency control and recovery. 1997.
[28] R. Guerraoui, “Non-blocking atomic commit in asynchronous dis-

tributed systems with failure detectors,” Distributed Computing,
vol. 15, no. 1, pp. 17–25, 2002.

[29] E. A. Brewer, “Towards robust distributed systems,” in PODC,
vol. 7, 2000.

[30] P. Sousa, N. F. Neves, and P. Verissimo, “How resilient are dis-
tributed f fault/intrusion-tolerant systems?” In 2005 International
Conference on Dependable Systems and Networks (DSN’05),
IEEE, 2005, pp. 98–107.

[31] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” Journal of the ACM (JACM),
vol. 35, no. 2, pp. 288–323, 1988.

[32] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2015, pp. 281–310.

[33] “The zilliqa design story piece by piece: Part 1 (network shard-
ing),” https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-
design-story-piece-by-piece-part1-d9cb32ea1e65.

[34] “Ethereum sharding: Overview and finality,” https://medium.com/
@icebearhww/ethereum-sharding-and-finality-65248951f649.

[35] V. Buterin, Serenity design rationale. [Online]. Available: https:
//notes.ethereum.org/@vbuterin/rkhCgQteN?type=view.

[36] (2020). On sharding blockchains faqs. https://eth.wiki/sharding/
Sharding-FAQs.

[37] K. Antoniadis, A. Desjardins, V. Gramoli, R. Guerraoui, and M. I.
Zablotchi, “Leaderless consensus,” Tech. Rep., 2021.

[38] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and
D. R. Ports, “Building consistent transactions with inconsistent
replication,” ACM Transactions on Computer Systems (TOCS),
vol. 35, no. 4, p. 12, 2018.

[39] T. Haerder and A. Reuter, “Principles of transaction-oriented
database recovery,” ACM computing surveys (CSUR), vol. 15,
no. 4, pp. 287–317, 1983.

[40] Ethereum/eth2.0-specs. [Online]. Available: https://github.com/
ethereum/eth2.0-specs.

[41] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in
the presence of faults,” Journal of the ACM (JACM), vol. 27,
no. 2, pp. 228–234, 1980.

[42] J. Aspnes, C. Jackson, and A. Krishnamurthy, “Exposing
computationally-challenged byzantine impostors,” Technical Re-
port YALEU/DCS/TR-1332, Yale University Department of
Computer, Tech. Rep., 2005.

[43] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance,”
in OSDI, vol. 99, 1999, pp. 173–186.

[44] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing bitcoin security and performance with strong
consistency via collective signing,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 279–296.

[45] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser,
I. Khoffi, M. J. Fischer, and B. Ford, “Scalable bias-resistant
distributed randomness,” in 2017 IEEE Symposium on Security
and Privacy (SP), Ieee, 2017, pp. 444–460.

[46] S. Sen and M. J. Freedman, “Commensal cuckoo: Secure group
partitioning for large-scale services,” ACM SIGOPS Operating
Systems Review, vol. 46, no. 1, pp. 33–39, 2012.

[47] L. Ren, K. Nayak, I. Abraham, and S. Devadas, “Brief an-
nouncement: Practical synchronous byzantine consensus,” in 31st
International Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria, 2017.

[48] J. A. Garay, A. Kiayias, and N. Leonardos, “Full analysis of
nakamoto consensus in bounded-delay networks.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 277, 2020.

[49] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, vol. 151,
no. 2014, pp. 1–32, 2014.

[50] Randao: A dao working as rng of ethereum. [Online]. Available:
https://github.com/randao/randao.

[51] V. Buterin and V. Griffith, “Casper the friendly finality gadget,”
arXiv preprint arXiv:1710.09437, 2017.

[52] D. Karakostas and A. Kiayias, “Securing proof-of-work ledgers
via checkpointing,” in 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), IEEE, 2021, pp. 1–5.

[53] S. Sankagiri, X. Wang, S. Kannan, and P. Viswanath, “The check-
pointed longest chain: User-dependent adaptivity and finality,” in
International Conference on Financial Cryptography and Data
Security, 2021.

[54] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of
work blockchains,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016,
pp. 3–16.

[55] M. Fitzi, P. Gazi, A. Kiayias, and A. Russell, “Parallel chains: Im-
proving throughput and latency of blockchain protocols via par-
allel composition,” IACR Cryptology ePrint Archive, vol. 2018,
p. 1119, 2018.

14

https://github.com/ethereum/wiki
https://github.com/ethereum/wiki
https://eprint.iacr.org/2020/943
https://eprint.iacr.org/2020/943
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://blog.zilliqa.com/https-blog-zilliqa-com-the-zilliqa-design-story-piece-by-piece-part1-d9cb32ea1e65
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://medium.com/@icebearhww/ethereum-sharding-and-finality-65248951f649
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://eth.wiki/sharding/Sharding-FAQs
https://eth.wiki/sharding/Sharding-FAQs
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs
https://github.com/randao/randao

[56] H. Yu, I. Nikolic, R. Hou, and P. Saxena, “OHIE: Blockchain
Scaling Made Simple,” in 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020,
2018.

[57] J. Niu, “Eunomia: A permissionless parallel chain protocol based
on logical clock,” arXiv preprint arXiv:1908.07567, 2019.

[58] S. Forestier and D. Vodenicarevic, “Blockclique: Scaling
blockchains through transaction sharding in a multithreaded block
graph,” arXiv preprint arXiv:1803.09029, 2018.

[59] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for
barrier synchronization,” International Journal of Parallel Pro-
gramming, vol. 17, no. 1, pp. 1–17, 1988.

[60] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining
is vulnerable,” in International conference on financial cryptog-
raphy and data security, Springer, 2014, pp. 436–454.

[61] J. Yu, D. Kozhaya, J. Decouchant, and P. Verissimo, “Repucoin:
Your reputation is your power,” IEEE Transactions on Comput-
ers, 2019.

[62] Y. Wang, “Byzantine fault tolerance in partial synchronous net-
works,” 2020.

[63] Formal analysis of the cbc casper consensus algorithm with tla+.
[Online]. Available: https : / / blog . trailofbits . com / 2019 / 10 / 25 /
formal-analysis-of-the-cbc-casper-consensus-algorithm-with-tla.

[64] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry,
S. Meiklejohn, and G. Danezis, “Sok: Consensus in the age of
blockchains,” in Proceedings of the 1st ACM Conference on Ad-
vances in Financial Technologies, AFT 2019, Zurich, Switzerland,
October 21-23, 2019, 2019.

[65] J. A. Garay and A. Kiayias, “SoK: A Consensus Taxonomy in
the Blockchain Era.,” in Topics in Cryptology - CT-RSA 2020
- The Cryptographers’ Track at the RSA Conference 2020, San
Francisco, CA, USA, February 24-28, 2020, Proceedings.

[66] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of
distributed consensus protocols for blockchain networks,” IEEE
Commun. Surv. Tutorials, 2020.

[67] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-Verissimo, “Decon-
structing blockchains: A comprehensive survey on consensus,
membership and structure,” arXiv preprint arXiv:1908.08316,
2019.

[68] C. Gómez-Calzado, A. Lafuente, M. Larrea, and M. Raynal,
“Fault-tolerant leader election in mobile dynamic distributed sys-
tems,” in 2013 IEEE 19th Pacific Rim International Symposium
on Dependable Computing, IEEE, 2013, pp. 78–87.

[69] M. Vukolić, “The quest for scalable blockchain fabric: Proof-
of-work vs. bft replication,” in International workshop on open
problems in network security, Springer, 2015, pp. 112–125.

[70] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker,
“Staring into the abyss: An evaluation of concurrency control
with one thousand cores,” 2014.

[71] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker, “An
evaluation of distributed concurrency control,” Proceedings of the
VLDB Endowment, vol. 10, no. 5, pp. 553–564, 2017.

[72] F. Pedone and R. Guerraoui, “On transaction liveness in replicated
databases,” in Proceedings Pacific Rim International Symposium
on Fault-Tolerant Systems, IEEE, 1997, pp. 104–109.

[73] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li, “Extracting
more concurrency from distributed transactions,” in 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 14), 2014, pp. 479–494.

[74] A. Sonnino, S. Bano, M. Al-Bassam, and G. Danezis, “Replay
attacks and defenses against cross-shard consensus in sharded dis-
tributed ledgers,” in 2020 IEEE European Symposium on Security
and Privacy (EuroS&P), IEEE, 2020, pp. 294–308.

[75] A. S. Tanenbaum and M. Van Steen, Distributed systems: prin-
ciples and paradigms. Prentice-Hall, 2007.

[76] H. Pagnia and F. C. Gärtner, “On the impossibility of fair
exchange without a trusted third party,” Technical Report TUD-
BS-1999-02, Darmstadt University of Technology, Tech. Rep.,
1999.

15

https://blog.trailofbits.com/2019/10/25/formal-analysis-of-the-cbc-casper-consensus-algorithm-with-tla
https://blog.trailofbits.com/2019/10/25/formal-analysis-of-the-cbc-casper-consensus-algorithm-with-tla

	Introduction
	Our contributions
	Paper organisation

	System model
	System setting
	System components
	Model of an individual shard
	Model of a sharded blockchain

	Protocol stack
	Data layer
	Membership layer
	Intra-shard layer
	Cross-shard layer

	Existing sharded blockchains
	Data layer
	Intra-shard layer
	Leader election
	Consensus

	Cross-shard layer
	Concurrency Control
	Atomic Commit

	System-level analysis
	Evaluation
	Coherence of system settings

	Conclusion

