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In 2014, the author conceived of a quantal version of the classical cryptographic Diffie-Hellman
key exchange protocol. However, a resulting paper was declined to be published (by a here not
disclosed journal) due to the lack of a security proof. No further publication attempts then were
made by the author. In the time being, the same idea was conceived by others as well, resulting
in a number of publications by others regarding this (previously declined) topic. As the author is
unaware of the exact order in time of his own ideas compared to the ones of others, of course no prior
art or similar claim is intended to be made here. However, the significance of the author’s original
idea is underlined, despite of being rejected by peer review mechanisms. And despite the fact that,
even today, quantal security proofs are - at best - in their infancy. The paper at hand therefore
serves two purposes: First, it might serve others (especially young researchers) as an example to
not feel discouraged by publication refusals, if they truly deem the own research as an important
novelty. Second, it provides an easy to understand introduction to grasp the concept of a quantum
Diffie-Hellman key exchange. All of the following paragraphs, including the following remainder of
this abstract, are taken from the original 2014 publication attempt and are unchanged in comparison
to the 2014 original:
In this work, a quantal version of the classical cryptographic Diffie-Hellman key exchange protocol is
introduced. It is called Quantum Diffie-Hellman key exchange. Unlike for the existing quantum key
distribution protocols, actual quantum states, and not their measurement outcomes, are regarded
as finally exchanged keys/information. By implementation of that quantal Diffie-Hellman version,
both communication parties in the end are in possession of identically prepared, and secret quan-
tum states. Thus the cryptographically important principle of forward secrecy is now available in
a quantum physical framework. As a merit of the quantum setting, an improvement of the clas-
sical Diffie-Hellman protocol is also achieved, as neither of the two parties exactly know the final,
exchanged states.

PACS numbers: 03.65.Ta, 03.67.-a, 03.67.Dd

Introduction
Since the introduction of the first quantum key exchange
protocol [1], the two former disjoint disciplines of
quantum physics and cryptography began to get closer
to each other. The main novelty of quantum physical
concepts in cryptographic settings is owing to the
differences of Shannon information theory and quantum
physical principles. For instance, usage of principles
like complementarity, and non-cloneability [1], and
entanglement [2] on the one hand imposes restrictions
on information processing. But on the other hand it
grants new ways of tackling cryptographic challenges. In
the next sections, the author introduces quantal versions
of a key exchange protocol, known as Diffie-Hellman key
exchange [3]. By this, a well-established protocol, which
is utilized in almost every secured communication envi-
ronment, now experiences a transition to the framework
of quantum physics.
This paper is organized as follows: In the first three
sections, the Quantum Diffie-Hellman protocol will be
introduced, an example given and a short discussion
delivered. After that, a further modified protocol
version is devised. It makes use of an also presented
qubit authentication method, in order to harden the
Quantum Diffie-Hellman scheme against a common type
of attack. A final conclusion section then ends this paper.

Quantum Diffie-Hellman scheme
There are two corner stones of the classical Diffie-
Hellman key exchange protocol (short: DH) in general:
First, that the finally exchanged keys themselves are not
transmitted, nevertheless both communication parties af-
terwards are in possession of identical keys or key infor-
mation. Second, that despite both parties in the end
being in possession of identical keys, neither of the two
actually knows or can easily determine, what secret in-
formation was contributed by the other party in order to
complete the key exchange.
In the following, a novel quantum physics based DH pro-
tocol (short: qDH) will be discussed in detail. The coun-
terpart to the final key in the regular DH protocol will
be a quantum state in the qDH scheme. The prerequi-
sites of the qDH protocol are discussed in the next lines.
Given two communication parties A, and B, which are
able to exchange qubits. Both parties A, and B, each
hold a set of secret values, denoted by SA, and SB, re-
spectively. These fixed secrets, during the course of the
key exchange scheme, will serve to generate shared, se-
cret states for A, and B. These generated secret states
then are regarded as ephemeral ones, whereas the initial
secrets contained in SA, and SB, are kept stored by A,
and B, respectively. Prior to the qDH communication,
both parties need to have agreed on a set SP of publicly
known, shared information. As quantum states and their
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manipulation are considered in qDH, SP comprises state
information of a common, initial state. It will be de-
noted by |0〉. Hence SP = {|0〉 , ...}, with “...” indicating
optional presence of further, shared, and publicly known
information. The initial state |0〉 being shared, or pub-
licly known, means that both A, and B must be able to
prepare such an exact state. Starting point for any oper-
ation for A, and B then has to be such a mutually known
state. Furthermore, the sets SA, SB, and SP give rise to
individual unitary operators U(SA), U(SB), and U(SP),
respectively. Actual examples for SA, SB, SP, and their
respective unitary operations will be given later. First,
it is shown, how the general qDH scheme constitutes:

1. Party A prepares a qubit state |0〉, as given in the
set of shared, publicly available information SP.
Afterwards, A sends a qubit |ψA〉 := U(SA) |0〉 to
B, where U(SA) is a unitary operator, depending
on the secrets of set SA.

2. Party B receives |ψA〉 and modifies it by its own
unitary operator U(SB), depending on the secrets
of set SB. This results in |ψBA〉 := U(SB) |ψA〉.

3. Now B performs similar steps than A did during
the preceding two steps: B prepares a qubit state
|0〉, as given in the set of shared, publicly available
information SP. B sends a qubit |ψB〉 := U(SB) |0〉
to A.

4. Party A receives |ψB〉 and modifies that state by
with U(SA), and unitary U(SP). This results in
|ψAB〉 := U(SP)U(SA) |ψB〉.

Both communication parties are now in possession of the
following states: |ψAB〉 (for A at the end of step 4) and
|ψBA〉 (for B at the end of step 2). We now require, that

U(SP)U(SA)U(SB) = U(SB)U(SA) . (1)

Given that constraint for U(SA), U(SB), and U(SP), one
has

|ψAB〉 = |ψBA〉 , (2)

and thus both A, and B are in possession of identical
quantum states, without ever having transmitted these
final states and without both parties knowing the other
party’s set of secrets.
The next table visualizes that concept. Each enframed
row represents one of the above steps 1 to 4. That column
headed by A represents actions on the side of A. Likewise
for the column headed by B. The column “quantum chan-
nel” depicts the quantum states transmitted and their
transmission direction.

In the following, a simple example for SA, SB, SP,
and their respective unitary operators is presented.

A quantum channel B

1. |0〉 7→ U(SA) |0〉 |ψA〉
=: |ψA〉 −→

2. |ψA〉 7→
U(SB) |ψA〉
=: |ψBA〉

3. |0〉 7→
|ψB〉 U(SB) |0〉
←− =: |ψB〉

4. |ψB〉 7→
U(SP)U(SA) |ψB〉

=: |ψAB〉

TABLE I. Quantum Diffie-Hellman scheme. Starting from
top, steps 1 to 4 show the sequential protocol process and
actions between party A (column “A”) with secrets SA, and
party B (column “B”) with secrets SB. The column “quan-
tum channel” depicts actual the communication process and
transmission direction via a quantum channel. Owing to Eq.
(2), in the end both A, and B, possess identical states |ψAB〉,
and |ψBA〉, respectively.

Example
Given SP = {|0〉 , n̂} is shared between A, and B, or
publicly available. n̂ is a vector ∈ R3 of unit modulus.
Choosing SA = {α}, with α ∈ R a secret real number,
that α serves as parameter for the operator

U(SA) = U(α) := exp
(
−i α

2
n̂ · σ̂

)
. (3)

Here, σ̂ is a 3-vector with the Pauli matrices σi (i = 1..3)
as components. This well-known operator is the qubit
rotation around the axis n̂ and angle α. Similarly as
in Eq. (3), if for B one defines SB = {β} with β ∈ R,
one has U(SB) = U(β) := exp(−i (β/2) n̂ · σ̂) . With
that choice of secret-dependent operators, one has
[U(SA) , U(SB)] = 0, i.e., the commutator of U(SA) and
U(SB) vanishes. This is just the requirement of Eq.
(1), if U(SP) is additionally chosen to be the identity
operator Id in qubit space. In summary, this leads to
the desired equality stated in Eq. (2).
Evidently, the presented example is only a very simple
one, where commutating operators trivially led to the
fulfillment of Eq. (1). However, it is also possible to uti-
lize non-commuting operators. In a variety of cases, the
so far unmotivated operator U(SP), and set of shared,
public information SP, then can be chosen accordingly
to cancel out emerging cross-terms. Furthermore, for
the sake of brevity, here only classical real numbers α
and β were used as individual secrets for SA, and SB,
respectively. Of course, quantum states as well could
serve as individual secrets.

Discussion
In comparison to [1] and [2], the final, pure quantum
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states resemble the exchanged keys or information. No
classical communication channel is required for the qDH
scheme. Additionally, in the end both parties A, and
B are in possession of identical quantum states, despite
the fact, that neither A nor B exactly know their state
or the other party’s contributed secret value. As a
consequence, this means even if, e.g., A revealed the
secret set SA, the overall key state |ψAB〉 still cannot
not be unambiguously determined. Unless SB would be
known as well. This is a general, important principle of
the Diffie-Hellman key exchange scheme. It is known
as forward secrecy and is, owing to the presented qDH
scheme, now available in a purely quantum physical
setting.
However, as it is for the original DH protocol, qDH as
well is susceptible to so called man-in-the-middle at-
tacks. The term man-in-the-middle-attack corresponds
to malicious behaviour, where a third party C (besides
parties A, and B) intercepts the quantum channel
between A, and B and impersonates A, or B. In case
neither party A, nor B, were aware of that interception,
instead of a qDH exchange between A, and B [short:
qDH(A, B)], one would have qDH(A, C) and qDH(C, B).
In consequence, the parties A, and B would respectively
share a respective, identical, secret quantum state with
an attacker C. Albeit both A, and B would be in good
faith of having succeeded in a proper qDH key exchange
qDH(A, B).
This obstacle can be overcome with a modified qDH
scheme, where a so called qubit authentication will be
employed. For the DH scheme, an encryption based
authentication needs to be introduced to counter a
man-in-the-middle attack. For a quantum version,
such mechanisms are not readily available. Hence, the
classical authentication mechanism has to be substituted
by another method, which will be derived in the next
section. Afterwards, that new quantum authentication
mechanism will be incorporated into qDH, leading to a
so called authenticated qDH exchange protocol (short:
aqDH).

Qubit authentication
In a authentication scheme for quantum states, compar-
ison of some arbitrary quantum state against another,
known one is necessary. Comparison is meant in the sense
that, given a qubit |ψcmp〉 whose complete state infor-
mation is known and regarded as to-be-compared value,
its equality to other (arbitrary, maybe unknown) states
|ψarb〉 is checked. For such a functionality, it is necessary
that only those states, which are (up to a phase factor)
identical to a desired state |ψcmp〉, yield an output inter-
preted as “yes”. And all other states result in an output,
which can be unambiguously interpreted as “no”.
In the next lines, for qubits, such a comparison measure-
ment scheme is devised:

1. Setup a projection operator P̂cmp :=
〈
ψ⊥cmp

∣∣, such
that it projects onto the linear qubit subspace given
by

∣∣ψ⊥cmp

〉
as base state, where

∣∣ψ⊥cmp

〉
denotes the

orthogonal complement of |ψcmp〉. As only qubits
are considered here and the dimensionality of the
state space is equal to 2, that state

∣∣ψ⊥cmp

〉
is unique

up to an irrelevant phase factor κ ∈ C with ‖κ‖ =
1. As an example: In case of photons and their
polarization as qubit state, this projection operator
P̂cmp might be implemented by a polarization filter
in the state space direction

∣∣ψ⊥cmp

〉
.

2. Setup a measurement apparatus, which resides af-
ter the projection operator P̂cmp. It only needs to
check, whether a quantum state is present or not.
In case of photons, this might simply be a fluores-
cent screen behind the projection operator of the
above step 1.

Now an arbitrary qubit |ψarb〉 consecutively undergoes
the preceding steps 1 and 2. That indeed a distinctive,
dichotomic answer is obtained, can be seen from the fol-
lowing facts: A general, arbitrary qubit |ψarb〉 can always
be uniquely decomposed according to

|ψarb〉 = a |ψcmp〉+ b
∣∣ψ⊥cmp

〉
, (4)

with a, b ∈ C and ‖a‖2 + ‖b‖2 = 1. In case of b = 0, i.e.,
in case of identical states (up to a phase factor), owing
to Eq. (4) the above step 1 absorbs |ψarb〉, leading to no
detection in step 2. This will be defined as the affirma-
tive “yes” answer. All other cases, where a 6= 0 and b 6= 0
(i.e., |ψarb〉 6= |ψcmp〉, and both not only differing by a
phase factor), will lead to a detection in step 2, again
owing to Eq. (4). This detection is regarded as a declin-
ing “no” answer. Evidently, such a comparison scheme
is suitable to serve as an authentication mechanism. In
the following, the presented scheme therefore will be
denoted by AUTH(|ψcmp〉 , |ψarb〉), in case an arbitrary
qubit |ψarb〉 has to be compared to a known qubit |ψcmp〉.

Authenticated Quantum Diffie-Hellman scheme
With the single qubit authentication method at hand,
it is now possible to improve the previously introduced
qDH scheme and harden it against man-in-the-middle at-
tacks. Unlike for authenticated Diffie-Hellman scheme
in the classical cryptographic setting, for the quantum
Diffie-Hellman scheme the main idea of implementing an
authentication component is to insert a certain control
qubit |φ〉 into the stream of exchanged qubits. Then,
only in case of no malicious interception during the qDH
scheme occurs, in the end a proper authentication of that
additional qubit should be possible. The authenticated
qDH scheme (aqDH) then reads as follows:

1. Additional to the first step in table I, a further,
arbitrary but secret qubit |φ〉 ∈ SA is sent by A.
Then party A sends the two qubits |ψA〉 (defined



4

in step 1 of table I) and |φ〉 to B in a random or-
der to avoid an attacker knowing which state the
control state is. That random order is denoted by
the notation of an unordered set {|ψA〉 , |φ〉}. The
newly introduced |φ〉 will later serve for authenti-
cation and validation purposes.

2. In step 2 now, party B is not aware of the order
of received qubits. Party B therefore randomly
chooses one of the two received states. That cho-
sen state is denoted by |η1〉 ∈ {|ψA〉 , |φ〉}. The
remainder of the two received states is denoted by
|η2〉. Then B performs a transformation similar
to step 2 of table I, this time on |η1〉, leading to
|η1〉 7→ U(SB) |η1〉 =: |ηB1〉. That state then is
kept by B.

3. Different than for step 3 of table I, B here sends
two qubits to A. This time also |η2〉 is sent to party
A, besides the newly generated |ψB〉 like in step 3
of table I. As it was in the preceding step 1, both
qubits are sent in a random order, denoted by the
unordered set {|ψB〉 , |η2〉}. Additionally, compared
to table I, upon arrival of these states at A, via a
classical communication channel, party B provides
information to A, whether the received first or sec-
ond state of step 2 was kept at B. Furthermore,
the order of states sent to A within the first part
of this step 3 is disclosed. Formally, this resembles
an enhancement of SP by the information “order of
qubit choice”, but only after the states were sent
by B and received by A.

4. Similar to step 4 in table I, |ψB〉 is transformed
to |ψAB〉. This is possible, as A can deduce, in
which order the qubits were sent by B and which
qubit presumably is |ψB〉 (in case of no intercep-
tion). With the remaining |η2〉 then A performs an
authentication procedure against the desired state
|φ〉, i.e., AUTH(|φ〉 , |η2〉). The authentication pro-
cedure’s outcome then provides means to detect a
qubit interception with probability p(detect) ≥ 3

4 .

The overall scheme is also given in the following table
II, which uses the same notation and convention as in
table I. However, in table II the communication channel
also needs to transport classical information, as seen in
step 3 above.
Via that authenticated quantum Diffie-Hellman scheme,
an interception of communication thus is detectable.
This can be seen as follows: If an attacker intercepts all
of the transmitted qubits, a detection with probability
p(detect) = 1 will occur. Hence, an adversary can
intercept and replace at most only one qubit transmitted
during step 1, and one qubit during step 3. The
malicious interception succeeds, iff exactly |ψA〉 (in step
1) and |ψB〉 (in step 3) are chosen by the adversary.

A comm. B

channel

1. |0〉 7→ |ψA〉, {|ψA〉 , |φ〉}
|φ〉 −→

2. Choose |η1〉 ∈ {|ψA〉 ,
|φ〉}, remaining

qubit denoted |η2〉.
|η1〉 7→ U(SB) |η1〉 ,

=: |ηB1〉
3. {|η2〉 , |ψB〉} |0〉 7→ |ψB〉

←−

“order of

qubit choice”

←−
4. |ψB〉 7→ |ψAB〉,

AUTH(|φ〉 , |η2〉).

TABLE II. Authenticated Quantum Diffie-Hellman scheme.
Starting from top, steps 1 to 4 show the sequential proto-
col process and actions of party A (column “A”) with secrets
SA, and party B (column “B”) with secrets SB. The col-
umn “comm. channel” depicts the actual communication and
transmission direction via a combined quantum- and classical
channel. |φ〉 ∈ SA serves as an interception detection state. In
steps 1 and 3, qubits are sent in a random order, only known
to A, and B, respectively. In step 3, additionally classical in-
formation is sent by B upon arrival of the qubits at party A.
AUTH(|φ〉 , |η2〉) represents an execution of the qubit authen-
tication scheme. Due to the qubits sent in random order, the
authentication detects tampering with p(detect) ≥ 3/4).

This happens with probability p(attack) = 1
2 ·

1
2 = 1

4 .
As a result, with p(detect) = 1 − p(attack), one has
a probability of p(detect) = 3

4 for an attacker to be
detected after one protocol iteration if qubits are inter-
cepted randomly. In that case, for n iterations of aqDH,
one has p(detect, n) = 1 −

(
1
4

)n
for at least one attack

detection.

Conclusion
We close our considerations by stating, that a quantal
version (qDH) of the classical Diffie-Hellman (DH) key
exchange protocol was presented. In an actual example,
the DH remainder class arithmetic on finite fields was
substituted within qDH by arithmetics of (commutating)
spin state rotations. The presented, general principle en-
ables purely quantum physical frameworks to implement
the principle of forward secrecy.
And unlike for existing quantum key exchange protocols,
the finally obtained quantum states themselves repre-
sent the key agreed on, not their measurement outcomes.
As an improvement, compared to the classical Diffie-
Hellman key exchange, for the quantum version neither
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party is able to uniquely determine the final secret states,
which is a result of the quantum mechanical projection
postulate and the no-cloning theorem. Furthermore, at
least for qDH, no classical communication channel is nec-
essary.
However, qDH needed a modification to provide resilience
against man-in-the-middle attacks. Therefore, with the
help of a newly devised qubit authentication method, for
qubits the authenticated quantum Diffie-Hellman key ex-
change (aqDH) was introduced. By that, the risk of an
adversary undetectedly intercepting the quantum com-
munication channel, or impersonating one of the com-
munication parties was mitigated. For n protocol execu-
tions, a malicious interception is detected with a prob-
abilty of p(detect, n) ≥ 1 −

(
1
4

)n
. But that resistance

comes at the cost of a classical communication channel,
which needs to be used in order to complete an authen-
ticated quantum Diffie-Hellman key exchange.
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