
APAS: Application-Specific Accelerators for
RLWE-based Homomorphic Linear Transformations

Song Bian, Member, IEEE Dur E Shahwar Kundi, Member, IEEE Kazuma Hirozawa,
Weiqiang Liu, Senior Member, IEEE Takashi Sato, Senior Member, IEEE

Abstract—Recently, the application of multi-party secure com-
puting schemes based on homomorphic encryption in the field
of machine learning attracts attentions across the research fields.
Previous studies have demonstrated that secure protocols adopt-
ing packed additive homomorphic encryption (PAHE) schemes
based on the ring learning with errors (RLWE) problem exhibit
significant practical merits, and are particularly promising in en-
abling efficient secure inference in machine-learning-as-a-service
applications. In this work, we introduce a new technique for per-
forming homomorphic linear transformation (HLT) over PAHE
ciphertexts. Using the proposed HLT technique, homomorphic
convolutions and inner products can be executed without the use
of number theoretic transform and the rotate-and-add algorithms
that were proposed in existing works. To maximize the efficiency
of the HLT technique, we propose APAS, a hardware-software
co-design framework consisting of approximate arithmetic units
for the hardware acceleration of HLT. In the experiments, we
use actual neural network architectures as benchmarks to show
that APAS can improve the computational and communicational
efficiency of homomorphic convolution by 8× and 3×, respec-
tively, with an energy reduction of up to 26× as compared to the
ASIC implementations of existing methods.

Index Terms—Homomorphic Encryption, Ring Learning with
Errors, Secure Inference, Neural Networks, Homomorphic Lin-
ear Transformation, Number Theoretic Transform

I. INTRODUCTION

Due to the powerful blind computing capability and succinct
ciphertext representations, ring learning with errors (RLWE)
based homomorphic encryption (HE) schemes are known to be
efficient in constructing secure multi-party computation (MPC)
protocols. As suggested by previous works [1], HE is ex-
tremely efficient in processing linear operations (e.g., matrix-
vector products) when compared to other MPC protocols such
as secret sharing [2], [3] or Yao’s garbled circuit [4], [5]. As
a result, over the past several years, significant advancements
were observed regarding the efficient utilization of HE in vari-
ous MPC applications, notably in the field of secure inference
(SI) based on convolutional neural networks (NN) [1], [6].

This work was partially supported by JSPS KAKENHI Grant
No. 20K19799, 20H04156, 20K21793, JST CREST Grant No. JPMJCR19K5,
JST PRESTO Grant No. JPMJPR20M7, and National Natural Science Foun-
dation of China under Grant No. 62022041, 61871216. The authors also
acknowledge support from VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Synopsys, Inc.

S. Bian, K. Hirozawa, and T. Sato are with the Department of Communi-
cations and Computer Engineering, Kyoto University, Kyoto 606-8501, Japan
(e-mail: sbian@easter.kuee.kyoto-u.ac.jp; takashi@easter.kuee.kyoto-u.ac.jp).

D.S. Kundi*, and W. Liu are with the College of Electronic and
Information Engineering, Nanjing University of Aeronautics and Astro-
nautics, Nanjing 211106, China (e-mail: dureshahwar@nuaa.edu.cn; li-
uweiqiang@nuaa.edu.cn). * She is also with National University of Sciences
and Technology, Pakistan.

Unfortunately, the software-hardware co-design framework
for HE-based MPC schemes remain somewhat unexplored.
A number of works have discussed the general hardware
design for RLWE-based (fully) HE schemes, most of which
are proposed for the number-theoretic transform (NTT) based
approaches [7]–[13], with a limited number of works that
utilize the standard polynomial multiplication algorithms [14],
[15]. However, we point out that most of the existing hardware
accelerators either only focus on traditional cryptographic
applications (e.g., public-key encryption schemes), or are
proposed for general HE constructions without real-world
application in mind. Since HE requires drastically different
hardware platforms depending on the application, the benefits
of existing hardware platforms are obscure. For example, in a
recent work [11], a hardware architecture for homomorphically
searching through a 216-record database is proposed, where the
parameters are set to ensure a 96-bit security level. Nonethe-
less, it is not obvious how such search capability can be of
practical merit, as most of the real-world databases contain
far more records than 216. Similarly, in [12], the performance
statistics of a single ciphertext multiplication are reported for
extremely large RLWE parameters (e.g., n = 215 and q is
a 1440-bit integer). While the hardware acceleration proves
to be fruitful, it is not likely that practical applications can
tolerate such level of performance overhead. Hence, while
using a set of fictional parameters suffices to show the benefit
of application-specific accelerators, abstract designs proposed
in existing works cannot be readily deployed to real-world
tasks.

In this work, we propose a new homomorphic linear trans-
formation (HLT) technique for the efficient evaluation of NN-
based SI schemes. Since the proposed HLT allows for simple
arithmetic operations, we also devise APAS, a hardware-
software co-design framework that dynamically instantiates
application-specific hardware architectures. While it is com-
monly believed that NTT is an indispensable design element
in implementing efficient HE operators [1], [11], [16], the
proposed HLT directly performs linear transformation over
the homomorphic ciphertexts, without the use of expensive
NTT and homomorphic rotations. By adopting the proposed
HLT technique, we can use dynamic approximate hardware
architectures [17] in APAS to further improve the practical
efficiency of NN-based SI. The main contributions of this work
are summarized as follows.

• Efficient Homomorphic Linear Transformation: To the

best of our knowledge, we are the first to formulate
homomorphic operations over RLWE-based HE cipher-
texts as linear transformations without the use of NTT.
Our fundamental insight is that linear transformations
over vector spaces preserve the decipherability of the
RLWE ciphertext. A proof-of-concept implementation of
our technique is available at [18].

• Dynamic Hardware Accelerator for HE: To the best
of our knowledge, APAS represents the first approxi-
mate accelerator design for RLWE-based homomorphic
computations. We find that per-network hardware design
achieves around 2× time and 6×–9× area reductions,
along with a similar-level of power savings compared to
existing fixed NTT hardware implementations.

• Improving Secure Inference Efficiency: Instead of fic-
tional computational workloads, we use the convolu-
tion layers in a well-known binary convolutional NN
(CNN) [19] as benchmarks for APAS. We are able to
reduce the homomorphic convolution latency by 8×.
We also achieve 106 (resp. 26×) energy reduction com-
pared to the CPU (resp. application-specific hardware)
implementation of the best-known existing works, while
improving the prediction accuracy by roughly 4%.

The rest of this paper is organized as follows. First, in
Section II, we provide preliminaries on the BFV cryptosys-
tem, RLWE-based homomorphic convolution, and SI based
on NN. Second, we introduce the proposed HLT technique
in Section III. Third, we present the APAS framework in
Section IV. Forth, we provide detailed analysis on the target
application (i.e., NN-based SI), and compare our designed
hardware with NTT-based approaches in Section V. Finally,
Section VI concludes this work.

II. PRELIMINARIES

A. Notations

Throughout the paper, we use the standard notation a ∈ Znq
to refer to a vector a with dimension n where elements ai ∈ a
belong to Zq , the set of integers modulo q. Vectors that are
transformed by NTT (resp., negacyclic NTT) are noted with
a hat, e.g., â = NTT(a) (resp., â = NegNTT(a)). Matrices
are written in capital (e.g., A), and lg x is the shorthand for
log2 x.

We provide the following list of commonly used variables
and their brief definitions to enhance the readability of this
work. The formal definitions of the variables can be found in
later sections.
• p, q: p and q are moduli used in the HE schemes, where p

is the plaintext modulus, and q is the ciphertext modulus.
• n, m, Φm(x): n and m are sometimes used interchange-

ably in this work, as they both dictate the lattice dimen-
sion. We have n = φ(m), where φ(·) is the Euler’s totient
function. Φm(x) is the m-th cyclotomic polynomial. We
also use Rq to denote the quotient ring R/qR, where
R = Z[x]/〈Φm(x)〉 is the ring of polynomials modulo
Φm(x).

• u, w: The input image and NN weight matrices that are
flattened as vectors. The lengths of u and w are denoted
as nu and nw, respectively. We also make use of η =
min(nu, nw). [u] means the encrypted version of u.

• ci, co: The input and output number of channels for a
particular NN convolution layer.

• e, ε: We use e to depict the RLWE errors, and ε the
approximation errors.

• ·, ∗, ◦: When dealing with vectors, · is the standard inner
product operator, ∗ is the convolution operator, and ◦ is
the Hadamard product operator.

B. Packed Homomorphic Encryption

We use the private-key version of the BFV [20] imple-
mented in the SEAL homomorphic encryption library [21] as
an illustration of a typical real-world realization of RLWE-
based packed additive homomorphic encryption (PAHE)
scheme. A BFV instance is parameterized by the tuple
(n, p, q, χσ), where n is the lattice dimension, p is the plaintext
modulus, q is the ciphertext modulus, and χσ is a discrete
Gaussian distribution parameterized by σ. We use U1 to denote
the uniform distribution over the set {−1, 0, 1}, and Uq for
the uniform distribution over {0, 1, · · · , q − 1}. BFV makes
use of a pair of one-dimensional negacyclic NTT operators
(NegNTT, NegINTT) to efficiently compute polynomial mul-
tiplications.
• Key Generation: First, generate the secret key vector

s ← Un1 , where all of the n elements in s are sampled
from the distribution U1. The secret key is kept private to
the protocol participant (e.g., the client in Section II-D)
who executes the encryption function.

• Encryption: Upon receiving a plaintext vector û ∈ Znp ,
compute u = NegINTT(û) ∈ Znp . Uniformly sample
an integer vector a ← Unq and draw a vector e ← χnσ .
Compute

c1 =

NegINTT(NegNTT(a) ◦ NegNTT(s)) + e + u · q/p,
(1)

where ◦ is the Hadamard product between two vectors.
Let c0 = −a. Release the output ciphertext [u] = (c0, c1)
to public communication channels.

• Decryption: Upon receiving the ciphertext [u] from pub-
lic channels, compute

u = bp
q

(NegINTT(NegNTT(c0) ◦ NegNTT(s)) + c1)e

(2)

with the private secret key s, where b·e is the rounding
operator.

• Homomorphic Addition: For two ciphertexts [u] =
(cu,0, cu,1) and [v] = (cv,0, cv,1), output [u + v] =
[u] � [v] = (cu,0 + cv,0, cu,1 + cv,1).

• Homomorphic Hadamard Product: The � operator
takes as inputs a ciphertext [u] = (cu,0, cu,1) where

Algorithm 1 The InnerProd operator applied to a ciphertext
vector [u] and a plaintext vector v.
Require: [u], w

1: [v] = [u] ◦w
2: for i = n/2, n/4, · · · , 1 do
3: [v] = [v] � rot([v], i)

4: [y] = [v](0)
5: return [y]

Algorithm 2 The Conv operator applied to a ciphertext vector
[u] and a plaintext vector v using the input-packing technique
proposed in [1]. Here w(i) refers to the i-th vector element
in w.
Require: [u], w

1: [v] = [u] � w(0)
2: for i = 1, 2, · · · , n− 1 do
3: [v] = [v] + rot([u], i) � w(i)

4: return [v]

u = NegINTT(û) and a plaintext vector w. First, we
compute ŵ = NegNTT(w), and output

[û ◦ ŵ] =[u] � ŵ

=(NegNTT(cu,0) ◦ ŵ,NegNTT(cu,1) ◦ ŵ).
(3)

• Homomorphic Rotation: Upon input
[u] ∈ Z2×n

q , let u = (u0, u1, · · · , un−1),
rot([u], k) = [(uk, uk+1, · · · , un−1, u0, · · · , uk−1)]
for k ∈ {0, · · · , n− 1}.

C. Homomorphic Operators over BFV

The BFV cryptosystem provides native support to
HomOps = (�,�, rot) in a PAHE setting, and most open-
source BFV libraries [22], [23] implement the above operators
as library routines. On the other hand, other operators like
homomorphic convolution and inner product need to be built
upon the native operators. Over the past few years, some works
have discussed how to efficiently leverage the packing ability
of BFV to implement general linear operations, e.g., in [1], [6].
Here, we give example constructions of the inner product and
the convolution operators to illustrate the design complexity.

Suppose we have a plaintext vector w ∈ Znp and an
encrypted vector [u], where u ∈ Znp for the lattice dimension n
and plaintext modulus p. Algorithms 1–2 respectively explain
how the inner product and convolution operators can be
implemented by only using HomOps. We observed that, the
inefficiency in both algorithms stem from the fact that when
multiple plaintext values are encrypted into a single ciphertext
(e.g., [u] encrypts n plaintext integers in u), interactions
between the plaintext values are not allowed. In other words,
current methods offer no direct ways of adding two plaintext
values in a single ciphertext. As a result, both algorithms
adopt the rotate-and-add strategy, which is complex from two
perspectives: i) extra keys need to be generated (known as

Encrypt Decrypt

Bob (Client)

Alice (Server)

u

...

...
*[u w] sB

*u w + s[]B

ReLU

Pool ...
Conv

Conv

Convolutoinal Neural Network

“Person”

Fig. 1. An overview on a general CNN structure, where the convolution is
implemented by the secure protocol proposed in [1].

the Galois keys) to perform the computationally expensive
key switching operations in rot, and ii) the actual run-time
of the rotate-and-add strategy vary significantly for differ-
ent vector and matrix dimensions. Consequently, as further
discussed in Section II-D, the computational time for linear
operations dominates the total runtime in NN-based SI, and
the performance profile is extremely non-linear with respect
to the input dimensions [24].

D. Secure Inference and Related Works

While early explorations in NN-based SI generally adopts
single-protocol approaches [6], [25]–[29], it was recently
discovered that mix-protocol approaches [1], [24] combining
HE and traditional MPC schemes achieve better accuracy and
efficiency.

We provide a high-level sketch of the mix-protocol approach
proposed in [1] in Fig. 1. A typical CNN has a number of
linear (e.g., convolutional layers) and non-linear (e.g., ReLU
activation) layers. Through the sequential evaluations of the
layers, specific tasks, for example, recognizing people in
images as shown in Fig. 1, can be achieved. Here, we only
provide a brief summary on the protocol for homomorphic
convolution layers, and more details on the complete secure
inference protocol can be found in [1]. Bob as a client first
flattens his two-dimensional input image U ∈ Zno×nip into a
vector u ∈ Znup in a raster-scan manner, where nu = ni · no.
Bob then encrypts the vector using Eq. (1), and sends [u]
to Alice. Alice convolves the encrypted ciphertext [u] with a
plaintext w according to Algorithm 2. After the homomorphic
convolution, Alice homomorphically adds a random vector sB
to the convolution result (i.e., [v]=[u*w]) to prevent weight
leakage as [v + sB mod p] where p is the plaintext modulus.
The randomized results are returned to Bob, completing one
round of homomorphic convolution. We point out that the
repeated computation of linear layers (e.g., convolution layers
and fully-connected layers) generally amounts from 40% to as
much as 90% of the total inference time in SI protocols [1],
[24].

Except HE-based methods, we also see recent advances in
secure inference protocols based on secret sharing (SS) [3],
[16] and garbled circuits (GC) [5]. For MPC-based technique,
it is reported that the online inference time can be signifi-
cantly reduced. However, we point out that the total inference
time in [16] remains the same as [1]. Meanwhile, purely
garbled circuit (GC) based secure inference techniques, such
as XONN [5], face a much more significant performance-
accuracy trade-off. For example, while XONN can perform
a round of secure inference within 3 seconds, the prediction
accuracy is only 81.85%. The authors need to manually scale
the neural network to obtain an accuracy of 86% where the
inference latency inflates to 65.94 seconds [5]. As later demon-
strated in Section V-B, using the proposed HLT technique,
we can easily adopt properly quantized layers (that is not
binary) to improve the prediction accuracy while keeping a
low inference latency.

E. Hardware Implementation for RLWE-based HE

While a plethora of hardware architectures are proposed to
accelerate the RLWE-based HE cryptosystems [7]–[9], [13],
[30]–[32], to the best of our knowledge, most (if not all)
designs integrate the NTT acceleration unit as a fundamental
hardware element. The primary reason is that such platforms
are general-purpose, i.e., they can accelerate any HE scheme
(including fully HE) adopted in any application. Nevertheless,
we point out that the performance for general-purpose HE
systems is not yet practical. For example, the FHE-based
secure inference protocol proposed in [6] takes 730 seconds
to carry out a single inference over the CIFAR-10 dataset,
while it only takes less than 50 seconds on the most recent
mix-protocol approach [1], [16].

In contrast to existing works where the design efforts in
the software and hardware layers are separated, we propose
a software-hardware co-design approach, where the proposed
HLT technique is designed to allow for an efficient hardware
implementation, and the hardware accelerator is application-
specific to HLT (e.g., we do not implement the NTT unit).

III. HOMOMORPHIC LINEAR TRANSFORMATION WITHOUT
NTT

As NTT-based HLT are complex and expensive to compute,
a natural question to ask is, if we can avoid the rotate-and-
add construction in the first place. In this section, we observe
that, by using a set of modified homomorphic encryption and
decryption functions, any HLT can be directly carried out
without NTT and Algorithms 1–2.

A. The Ring Structure of the RLWE Ciphertext

Before delving into the actual cryptosystem construction,
we first explain one of the main theoretical complexities that
was hidden from the cryptosystem description in Section II-B.
Instead of integer vectors, all of the operands involved in
RLWE-based cryptosystems are polynomials in a quotient ring
Rq defined by the m-th order cyclotomic polynomial Φm(x)
for some m ∈ Z. Here, Rq is isomorphic to Znq , where n is

the degree of Φm(x) and is defined as n := φ(m). It is noted
that this isomorphism is extremely important, as it lays the
foundation for our proposed technique. Additions and multi-
plications between these RLWE ciphertexts then correspond
to ring operations. For additions, the arithmetic procedure is
the same, i.e., computing coordinate-wise summations modulo
q. Meanwhile, for multiplications between two polynomials in
Rq , we need to reduce the product polynomial over Φm(x)
and q. Depending on the exact instantiation of Φm(x) (i.e.,
the exact value of m), the reduction over Φm(x) varies in its
algorithmic construction and computational efficiency.

When m is a power of 2, the multiplications of polynomials
modulo the m-th cyclotomic polynomial Φm(x) = xn + 1
(where m = 2n) become negacyclic convolutions. Subse-
quently, negacyclic NTT is utilized according to the convo-
lution theorem [33], i.e.,

a(x) ∗ b(x) mod xn + 1

= NegINTT(NegNTT(a(x)) ◦ NegNTT(b(x))) (4)

for two (univariate) polynomials a(x) and b(x). Without
NegNTT, polynomial multiplications can be directly com-
puted using schoolbook algorithms, where the reduction mod-
ulo xn + 1 results in alternating signs in the product summa-
tion [15]

a ∗ b mod xn + 1 =

n−1∑
i=0

n−1∑
j=0

(−1)b(i+j)/ncaibjx
i+j mod n.

(5)

However, [15] did not discuss the case when n is not a
power of two. In this work, in order to fully leverage the
benefits of custom hardware, we consider quotient rings over
Φm(x) where m is a prime. The prime-order cyclotomic
polynomials are known to have the form Φm(x) =

∑m−1
i=0 xi.

It is obvious that a reduction over
∑m−1
i=0 xi is different from

a reduction modulo xn + 1. In fact, the reduction of the
product between two polynomials over prime-order Φm can
be calculated in a similar (and actually simpler) way as

a ∗ b mod

m−1∑
i=0

xi =

m−1∑
i=0

m−1∑
j=0

aibjx
i+j mod n. (6)

In what follows, we outline a unified RLWE cryptosystem that
supports both power-of-two and prime order cyclotomic rings,
avoiding the use of NTT.

B. Modified Cryptosystem

The key generation and encryption steps are mostly identical
to that in Section II-B. The only difference is that we set
n = φ(m) for some integer m. Therefore, a, e and s will be
integer vectors in Znq = Zφ(m)

q . We also instantiate the m-th
cyclotomic polynomial Φm.
• Key Generation: As in Section II-B, generate the secret

key vector s ← Un1 . The secret key is kept private
to the protocol participant who executes the encryption
function.

• Encryption: Upon receiving the plaintext vector u ∈ Znp ,
we directly compute

c1 = (a ∗ s + e + u · q/p) mod Φm(x) (7)

where ∗ is the convolution operator. Similar to Sec-
tion II-B, we set c0 = −a and output the ciphertext
[u] = (c0, c1) to public communication channels.

• Decryption: We use a slightly more general version of
the RLWE decryption function. We assume that the input
ciphertext [u] is of the form [u] = (C0, c1), where C0 ∈
Zn×nq is some matrix. With secret key s, compute

u = bp
q

(
(C0 · s + c1) mod Φm(x)

)
e (8)

Observe that, when C0 is the circulant matrix constructed
by rotating the entries in c0, Eq. (8) correctly decrypts
[u] because of the fact that cyclic (and negacyclic)
convolutions are equivalent to multiplications by circulant
matrices [33], [34], i.e.,

Circ(c0) · s ≡ c0 ∗ s ≡ −a ∗ s mod Φm(x). (9)

Here, Circ converts a vector into its appropriate circulant
matrix form.

• Homomorphic Addition: The � operator is exactly the
same as in Section II-B.

• Homomorphic Linear Transformation: Upon a ci-
phertext [u] = (cu,0, cu,1) where u ∈ Znp and some
matrix W ∈ Zn×np , we define the homomorphic linear
transformation HLTF and the homomorphic inner product
operator � as

[f(u)] = HLTF([u]) = W � [u] mod Φm(x), (10)

where f : Znp → Znp is some linear transformation that is
essentially an automorphism over the vector space Znp .
The relationship between HLTF, W, and � is further
discussed in Section III-D.

C. Security for the Modified Cryptosystem

First, it is pointed out that, in RLWE-based cryptosystems,
the order of the cyclotomic polynomial (m) can have a
negative security impact [35]. Fortunately, the analysis in [35]
shows that, when m is a prime or a power of two, the underly-
ing RLWE problem is no easier to solve than the standard LWE
case. Therefore, while the proposed HLT technique works for
any m, in this work, we only consider the power-of-two and
the prime cases to ensure provable security.

The security of the modified cryptosystem can be easily
deduced from the security of the original cryptosystem. Com-
bined with the analyses in [35], we point out that the key
generation and encryption steps in Eq. (1) and Eq. (7) are
algebraically equivalent. Essentially, the view of the adversary
on both the original and the modified cryptosystems remains
the same, which is the encrypted ciphertext (c0, c1) that is
indistinguishable from uniformly random strings as guaranteed
by the hardness of the LWE problem. Therefore, any success-
ful attack on the modified cryptosystem will be a successful

attack on the original cryptosystem. A formal proof for the
following proposition is provided in Appendix A.

Proposition 1. The cryptosystem specified in Section III-B is
as secure as that specified in Section II-B against semi-honest
adversaries.

D. Main Theorem on Homomorphic Linear Transformation
As mentioned in Section III-A, RLWE ciphertexts reside

in Rq which are isomorphic to Znq . On the other hand, the
plaintext space in our modified cryptosystem is Znp , without
any explicit algebraic structure. Taking the coefficient embed-
ding defined in [36], we equivalently stated that polynomials
in Rq form a Zq-module of rank n. Additionally, the module
becomes an n-dimensional vector space Vq when q is a prime
(i.e., Zq becomes the finite field Fq). Similarly, while we did
not intentionally impose a structure on the plaintext space, the
plaintext vectors form a natural Zp-module with rank n, and
we also get a vector space Vp when p is a prime.

From the perspective of linear algebra, we know that any
linear transformation F : Vq → Vq obeys the following rules.

F(u + w) = F(u) + F(w), and (11)
F(u) = W · u, (12)

where u,w ∈ Vq , and W ∈ Zn×nq . Note that when the linear
transformation is applied to a matrix, we assume that it is
applied to each column vector of the matrix. Subsequently,
we have the following theorem.

Theorem 1. Let p, q be primes. For any BFV ciphertext
[u] = (c0, c1) ∈ R2

q , let HLTF : R2
q → Rn+1

q be a
function over the BFV ciphertext where F : Vq → Vq is
any linear transformation. There exists a linear transformation
f : Vp → Vp where it holds that

Dec
(
HLTF([u])

)
= Dec

(
F(Circ(c0)),F(c1)

)
= f(u) (13)

except for a small probability δ (referred to as the decryption
failure probability).

Proof. From the definition of the modified decryption function
in Eq. (8), we have that

Dec
(
F(Circ(c0)),F(c1)

)
= bp

q

(
(F(Circ(c0)) · s + F(c1)) mod Φm(x)

)
e. (14)

Observe that

F(c1) = F(a ∗ s + e + u · q/p)
= F(a ∗ s) + F(e) + F(u · q/p) from Eq. (11)
= F(Circ(a) · s) + F(e) + F(u · q/p) (15)
= F(Circ(a)) · s + F(e) + F(u · q/p). (16)

Here, the derivation from Eq. (15) to Eq. (16) follows from
Eq. (12) and the associativity of linear transformations, i.e.,

F
(
Circ(a) · s

)
= W ·

(
Circ(a) · s

)
=
(
W · Circ(a)

)
· s

= F(Circ(a)) · s, (17)

where W is the matrix whose multiplication corresponds to the
linear transformation F. Therefore, the decryption function in
Eq. (14) becomes

bp
q

(
(F(Circ(−a)) · s + F(Circ(a)) · s

+ F(e) + F(u · q
p

)) mod Φm(x)
)
e

= bp
q

(
F(e) + F(u · q

p
)) mod Φm(x)

)
e (18)

= b
(
F(
p

q
· e) + F(u) mod Φm(x)

)
e mod p. (19)

Following the same decryption analysis from standard RLWE
cryptosystems (we provide a detailed decryption failure anal-
ysis in Section IV-B), Eq. (19) evaluates to

(
F(u) mod

Φm(x) mod p
)

except for some small probability δ. Finally,
simply take f(u) =

(
F(u) mod Φm(x) mod p

)
, and we

obtain the theorem.

An immediate corollary that follows from Theorem 1 is as
follows.

Corollary 1. Let p, q be primes. For any BFV ciphertext [u] =
(c0, c1) ∈ R2

q and any invertible matrix W ∈ Zn×nq , there
exists a matrix W ∈ Zn×np , where

Dec
(
HLTW([u])

)
= Dec

(
W · Circ(c0),W · c1)

)
= W · u

(20)

except for a small probability δ.

Note that the · operator in Eq. (20) is the normal dot product
defined in the vector space Vq . Since Corollary 1 follows
trivially from the fact that any linear transformation over vector
spaces corresponds to multiplication by some invertible matrix,
we omit a formal proof.

Correctness for Decryption: From Eq. (19), it is observed
that, for the decryption function to correctly round off the
errors, F(p/q ·e) mod Φm(x) ≤ 1/4 is needed. Since the size
of e is random, the following probability is defined as the
RLWE decryption failure probability.

Pr[F(p/q · e) ≥ 1/4] < δ (21)

where δ should be kept small. The exact value of δ can be
dependent on the actual application, and we give more detailed
analyses in Section IV-B.

E. Application to Homomorphic Convolution

First, we point out that, by Theorem 1, the following
equation holds true

Dec(HLTw([u])) = Dec(w ∗ Circ(c0),w ∗ c1) = w ∗ u,
(22)

for two vectors u ∈ Znup and w ∈ Znwp . Second, observe that,
when the linear transformation F is the convolution operator,
we have the following equality

w ∗ Circ(c0) = Circ(w ∗ c0). (23)

Since we also know that inner products between circulant
matrices and vectors become convolutions as noted in Eq. (9),
we have that

w ∗ Circ(c0) · s = Circ(w ∗ c0) · s = w ∗ c0 ∗ s. (24)

Therefore, we actually have

Dec(HLTw([u])) = Dec(w ∗ c0,w ∗ c1) = w ∗ u. (25)

Basically, Eq. (25) is stating that a direct convolution over
an RLWE ciphertext corresponds to the homomorphic con-
volution between u and w, without the need of NTT and
Algorithm 2. In what follows, we provide an alternative proof
to Eq. (25) and take a closer look at why it holds true for
different cyclotomic rings sketched in Section III-B.

1) Theoretical Explanation: Here, we first explain the
homomorphic convolution operator when n = φ(m) is a
power of two, and then provide a similar analysis when
m is a prime. For the ease of presentation, all arithmetic
operations in this section are performed with respect to the
(polynomial) ring structure (e.g., for a, b ∈ Rq , a ∗ b refers to
a ∗ b mod Φm(x), q), except when explicitly stated.

Power-of-Two Case: When we use a power-of-two cyclo-
tomic polynomial (i.e., in the form xn + 1) to instantiate
our RLWE cryptosystem in Section III-B, by definition, the
convolutions computed in Eq. (5) and Eq. (4) are equivalent.
Then, we encrypt u ∈ Znup using Eq. (7) without the use of
NTT as

[u] = (−a,a ∗ s + e + u · q/p). (26)

Convolving [u] with a plaintext vector w ∈ Znwp modulo the
cyclotomic polynomial Φm(x) and some integer modulus q,
we get

[u] ∗w = (−a ∗w,a ∗ s ∗w + e ∗w + u ∗w · q/p). (27)

Decrypting the result, we have

Dec([u] ∗w) = bp
q

(c0 ∗w ∗ s + c1 ∗w)e

= bp
q

(−a ∗ s ∗w + a ∗ s ∗w + e ∗w + u ∗w · q
p
e

= bp · e ∗w
q

+ u ∗we. (28)

When e is small enough in Eq. (28), the errors are rounded
off, and u∗w is recovered. In other words, [u]∗w is actually
a valid encryption of [u ∗w], as stated in Eq. (25).

Therefore, we do not need the complex procedures in
Algorithm 2 to homomorphically convolve two vectors. The
plaintext vector can be directly convolved with the ciphertext
vector, and we obtain the convolution result after decryption.
We emphasize that the above procedure only remains correct
when the following condition is met

u ∗w = u ∗w mod Φm, or equivalently
nu + nw − 1 < φ(m) = n (29)

where the length of u is nu, and that of w is nw. We
also stress that the convolution on the left hand side of

*
... Power-of-two

Prime...

{ [u]

Empty u
w

{[u w]

1

1 1
1

1 1

*

Fig. 2. Conceptual illustration of schoolbook based homomorphic convolution
with prime and power-of-two cyclotomic polynomial reduction, where black
dots are the coefficients in the ciphertext vector [u] that contains the actual
values from u, red circles are those that only contains errors, and blue dots
are the plaintext weight vector w.

Eq. (29) is not polynomial multiplication in the ring Rq (it is a
normal convolution). As also listed in Eq. (29), an equivalent
correctness condition is that the total length of the convolved
result is less than φ(m) = n. Under such condition, the
convolution formula defined in Eq. (5) evaluates to

u ∗w mod xn + 1 =

nu−1∑
i=0

nw−1∑
j=0

uiwjx
i+j mod n (30)

where the negacyclic wrapping never occurs (i + j is always
less than n).

Prime Order Case: When the ring of choice is based
on prime order cyclotomic polynomials, since we do not
have the fast NTT-based Hadamard product operator, existing
works offer no efficient methods of evaluating homomorphic
convolutions between the encrypted vector [u] and a plaintext
vector w. However, the exact algorithm in the power-of-two
example in Eq. (25) can also be performed over prime-order
cyclotomic rings, with the same correctness condition specified
in Eq. (29) (here, we are trying to avoid the cyclic wrap-
around, instead of the negacyclic one when m is a power
of two). Note that for m a prime, φ(m) = m − 1. Being
able to choose m as a prime integer significantly improve
the practicality of RLWE-based HE, as the efficiency of HLT
strongly depends on the size of the ciphertext polynomial.

2) Illustrative and Equivalent Matrix Demonstration: To
better explain the proposed approaches for homomorphic
convolution, we first sketch a toy example in Fig. 2. Here, the
ciphertext [u] with a dimension of 6 contains a plaintext input
u of length 3, where the upper three slots (red circles in Fig. 2)
remains empty. The weight vector w also has 3 elements. We
can see that when the length of the convolved result u∗w (5 in
this case) is less than or equal to the length of the ciphertext
(6 in the example), a ciphertext polynomial multiplied by a
plaintext polynomial is equivalent to performing an internal
convolution over the encrypted plaintext filling out the empty
ciphertext slots. In terms of the ciphertext polynomial, the
result has a total length of 8, where the higher-order 2
terms (containing only errors) will be wrapped around through
reductions over Φm according to either Eq. (5) or (6).

Following the illustrative example, we now provide an
equivalent derivation using the notations in Theorem 1 and
Corollary 1 for Fig. 2. As mentioned, a circular convolution
between u and w corresponds to the multiplication of u by a
circulant matrix constructed from w. Denote d = a ∗ s + e,
recall that c1 = d+ q

pu. Let di ∈ d, ui ∈ u, and wi ∈ w, we
have

W · c1

=

w0 w1 w2 0 0 0
0 w0 w1 w2 0 0
0 0 w0 w1 w2 0

0 0 w0 w1 w2

±w2 0 0 0 w0 w1

±w1 ±w2 0 0 0 w0

 ·

d0 + q
pu0

d1 + q
pu1

d2 + q
pu2

d3
d4
d5

T

(31)

= w ∗ (d +
q

p
u) ≡ w ∗ c1 mod Φm(x) (32)

where the ± signs in W stem from the cyclotomic reduction.
The ± signs are positive when we have a prime-order cyclo-
tomic reduction (i.e., m is prime), and negative when m is a
power of two. By Corollary 1, Eq. (31) evaluates to u ∗ w
after decryption.

Using terms defined in Theorem 1, we showed that when
the plaintext linear transformation f is taken to be the cyclic
convolution, we can construct a matrix W, where the mul-
tiplication by W corresponds to the ciphertext transforma-
tion F([u]) mod Φm(x) mod p. Hence, in order to produce
meaningful arithmetic operations over the ciphertexts that live
in the designated cyclotomic rings, W needs to be carefully
constructed, with additional constraints such as Eq. (29) and
the ± signs in Eq. (31).

In summary, we showed that homomorphic convolutions,
a special case of the linear transformation in Theorem 1,
can be carried out in an efficient manner without the use
of NTT operators and Algorithm 2. In a practical sense,
when a ciphertext of [u] ∈ Z2×n

q is convolved with w,
according to Eq. (5), the operation has an overall complexity
of O(n · nw) < O(3 · n · lg n) when nw � n. In other words,
our proposed homomorphic convolution has a time complexity
that is less than the rotate-and-add approach in Algorithm 2
when nw is small, as in the case of CNN filters.

In what follows, we instantiate the linear transformation
technique under a packed homomorphic convolution setting
in Section III-F, and a homomorphic inner product setting in
Section III-G.

F. Packed Homomorphic Convolution

Since n needs to be quite large to ensure RLWE security,
most existing works adopt the Smart-Vercauteren (SV) packing
technique [37] to maximize the plaintext slot utilization of the
RLWE ciphertext [1]. One of the main practical issue with
the direct homomorphic convolution devised in Section III-E
is that, since we do not apply the NTT-based SV packing
technique, when both the input plaintext and the filter are

extremely short (i.e., nu + nw � φ(m)), we waste a large
number of the φ(m)-dimensional ciphertext space.

Through the use of Theorem 1, we show a provably correct
construction to perform packed homomorphic convolution
over a single ciphertext. We observe that, since the op-
erator can be any linear transformation expressed through
an invertible matrix, we can change the construction of W
to permit separate convolution on different region of the
ciphertext. As an example, we wish to convolve two sets
of inputs ui,uj ∈ Z2

p (without loss of generality, we use a
smaller example to save space) encrypted as a single ciphertext
c1 = a ∗ s+e+ q

p (ui||0||uj ||0), where || is the concatenation
operator. Suppose also that we have filters wi,wj ∈ Z2

p. In
this case, n needs to satisfy n ≥ 6, since the two convolutions
each can have a maximum length of 3 (convolution between
two 2-dimensional vectors). To compute ui ∗wi and uj ∗wj ,
consider the following matrix multiplication

W · c1 =

[
Wi 0
0 Wj

]
·

d0 + q
pui,0

d1 + q
pui,1
d2

d3 + q
puj,0

d4 + q
puj,1
d5

T

(33)

=
[
wi ∗ (di + q

pui) wj ∗ (dj + q
puj)

]
(34)

where

Wi =

 wi,0 wi,1 0
0 wi,0 wi,1
±wi,1 0 wi,0

 ,Wj =

 wj,0 wj,1 0
0 wj,0 wj,1

±wj,1 0 wj,0

 ,
0 are 3×3 zero matrices, di = [d0 d1 d2] and dj = [d3 d4 d5].
Essentially, we are conducting two separate convolutions over
two separate regions of the same ciphertext. The main observa-
tion here is that, the separate convolutions in Eq. (34) is equal
to Eq. (33). Consequently, Corollary 1 guarantees that, as long
as W is an invertible matrix, Eq. (34) decrypts to the vector
[ui ∗wi uj ∗wj], which contains the two separate convolution
results. Since W is diagonal, it is invertible as long as both Wi

and Wj are invertible. This condition can be easily satisfied
as both wi,wj are assumed to be non-zero (convolutions with
all-zero vectors are generally meaningless).

As it turns out, for an n-dimensional ciphertext, the above
technique allows us to embed bn/(nu + nw − 1)c plaintext
inputs into a single ciphertext.

G. Application to Inner Product

Theorem 1 actually allows for arbitrary linear transforma-
tion to be carried out on RLWE ciphertexts, without the rotate-
and-add approach in Algorithm 1. For brevity, we only provide
an abstract analysis to inner products as a demonstration of
our idea.

Here, let u be a nu-dimensional vector in Znup encrypted
as (c0, c1) = (−a,a ∗ s + e + q

pu) (where u is properly
zero-padded) as in Section III-F, and W a nu × nw matrix in

1) Generate Lattice
Dimension

nu nw

2) Generate
Modulus pQuant.

3) Analyze
Error Size
and

Generate
Modulus

4) Analyze
Security

5) Approximate &
Synthesize HW

Rejection

Accept

m

p

(m, p, q)

(m, p, q)

q

Fig. 3. The APAS framework that automatically generates RLWE parameters
and the corresponding approximate hardware architectures.

Znu×nwp . We can construct an (n×n)-dimensional matrix W
as

W · c1 (35)

=

[
W 0
0 I

]
·

d0 + q
pu0

...
dnu−1 + unu−1

dnu
...

dn−1

T

=

[
W · (dnu + u)

dn−nu

]

(36)

where we define dnu to be [d0 · · · dnu−1], dn−nu as
[dnu · · · dn−1], and I is the identity matrix with dimension
((n−nu)×(n−nw)). After decryption, Corollary 1 guarantees
that the output is W · u, which is precisely the inner product
between u and W . We note that the proposed technique is
particularly useful when W is a sparse matrix (e.g., in the
case of sparse circulant matrices for short convolutions).

IV. APPLICATION-SPECIFIC HARDWARE FOR
HOMOMORPHIC CONVOLUTION

The theoretical results in Section III standout when
application-specific hardware is adopted. For CPUs, basic
arithmetic operations run roughly in the same amount of time
and energy, with or without the use of NTT. Conversely in
this section, we show that, without NTT, we can significantly
reduce the complexity of the underlying hardware. We propose
APAS, a hardware-software co-optimization framework to
automatically generate application-specific hardware architec-
tures for the corresponding linear transformation. We use
homomorphic convolution (based on the proposed technique)
as a demonstration, since this operation dominates the runtime
of NN-based SI schemes [1]. However, our framework applies
generally to all types of HLTs.

A. Overview of APAS

The central question to APAS is how hardware architectures
can be synthesized to maximize the efficiency of the homo-
morphic convolution computations involved in SI. As Fig. 3
shows, the framework utilizes five subcomponents in achieving
this goal. We first sketch a general flow of the framework,
and then discuss some of the important steps. Since APAS
is designed for instantiating hardware accelerators used in
homomorphic convolution, the inputs to the framework are the

discrete sequences to be convolved. As before, we assume that
the inputs to APAS are two one-dimensional vectors u ∈ Znupu
and w ∈ Znwpw .

1) Dimension Generation: Under the condition in Eq. (29),
we set n = min(NextPow2(nu + nw − 1), NextPrime(nu +
nw − 1)). Basically, NextPow2 finds the smallest power-
of-two that is larger than nu + nw − 1, and NextPrime
the smallest prime satisfying the same requirement. If the
next power-of-two is smaller than the next prime, we take
n = NextPow2(nu + nw − 1), and m = 2n. Otherwise, we
have n = NextPrime(nu+nw−1), and n = m−1 in this case.
In particular, we observe that many images have dimensions
that are of a power of two (e.g., the CIFAR-10 dataset is
of dimension 32 × 32), which makes the convolved results
slightly longer than a power-of-two vector. In such case, we
can adopt prime-order cyclotomic polynomials in instantiating
the RLWE cryptosystem.

2) Plaintext Modulus Generation: Generating the plaintext
modulus p is easy, as p only needs to be large enough to
contain the convolved results. In other words, we need to
ensure that p ≥ u ∗ w, where u ∗ w is computed according
to Eq. (30). For a multi-channel NN convolution with ci input
channels, this translates to a correctness requirement of

p ≥ ci ·max(u) ·max(w) · η. (37)

where η = min(nu, nw). Note we do not require p ≡ 1 mod n
for n a power of two as in most existing NTT-based ap-
proaches [1], [38]. However, p does need to be a prime to
ensure that Zp is isomorphic to the prime-order finite field
Fp.

3) Error Analysis and Ciphertext Modulus Generation:
Analyzing the error accumulation behavior with a fixed di-
mension m and plaintext modulus p is one of the central
contributions of APAS, and we will provide further details
in Section IV-B. Roughly speaking, we estimate the size of
e ∗ w in Eq. (28), and generate the ciphertext modulus q to
ensure correct decryption. Note that similar to p, q also does
not need to split over n.

4) Security Analysis: In this work, we use the framework
given in [39] to provide the equivalent LWE bit security.
When the security requirement is not fulfilled, we reject the
parameter sets and re-generate m and q. This process is
repeated until parameters that satisfy both error and security
constraints are generated.

5) Hardware Synthesis: Given q, nw and the error analysis,
we can instantiate approximate hardware units to maximize
the energy efficiency of APAS. Note that the architecture is
dynamic, i.e., for different q and nw, we can have drastically
different architectures. We give concrete example architectures
in Section IV-C.

B. Error Analysis

Following the analysis in Section III-E and [40], for an
approximate evaluation of the homomorphic convolution in

Eq. (27), the error behavior can be formulated as

(Approx(−a) ∗w,Approx(a ∗ s + e + u · q/p) ∗w)

= ((−a + ε0) ∗w, (a ∗ s + e + u · q/p+ ε1) ∗w). (38)

for some approximation error vectors ε0, ε1. During decryp-
tion, we compute

bp
q

(−a ∗ s ∗w + ε0 ∗ s + (a ∗ s + e + u · q
p

+ ε1) ∗w)e

= bp
q

(ε0 ∗ s + ε1 + e) ∗w + u ∗we. (39)

The decryption remains correct as long as

Pr[|p
q

(ε0 ∗ s + ε1 + e) ∗w)| ≥ 1/4] < δ. (40)

Here, we assert that Eq. (40) is a soft bound, in the sense
that δ > 0 can be arbitrary depending on the application. For
example, in a typical CNN-based inference scheme, prediction
accuracy ranges from mid 80% to 99%. As a result, even
if 0.1% of the ciphertext cannot be correctly decrypted, the
resulting accuracy degradation is hardly noticeable as demon-
strated in Section V-B. Hence, in this work, we set δ = 10−3.

Let n = φ(m) as mentioned. Substituting a and b in Eq. (5)
with e and w, we see that the l-th coefficient θl for xl after
the convolution and reduction over a power-of-two cyclotomic
polynomial can be written as

θl =

n−1∑
i=0

(−1)(n−l−1+i)/nwie(n−i+l) mod n, (41)

and we can simply remove the alternating −1 term in case of
prime-order cyclotomic polynomial. Since the alternating sign
(in the case of power-of-two Φ) becomes uniform once we take
a sum (e.g., in the decryption process) over l, we only need to
study the norm bound for the product distribution

∑n−1
i=0 wi ·

e(n−i+l) mod n, which is basically the inner product between
w and a permuted version of e. Notice that the summation in
Eq. (41) is actually taken over η = min(n, nw). In CNN, it
is generally the case that nw (the length of the filter) is much
smaller than the lattice dimension n. Therefore, the size of θl
can also be kept small.

We adopt the powerful Chernoff-Cramér inequality to derive
an upper bound on the product distributions for all terms in
Eq. (40). The reason that simpler bounds, such as Lemma 2.2
in [41] used in [38], [40], cannot be easily borrowed is that
many of the operands involved do not follow well-defined
distributions (e.g., a discrete Gaussian distribution). In the
experiment, we show that Chernoff-Cramér gives us bounds
that are sharp enough for practical purposes.

Concretely, the Chernoff-Cramér inequality is stated as
follows.

Theorem 2. (Theorem D.1 in [42]) Let ψ be a distribution
over R and let X0, · · · , Xη−1 be independent and identically

distributed variables drawn from ψ, with mean µ. Then, for
any t such that Mψ(t) <∞, it holds that

Pr

[
η−1∑
i=0

Xi ≥ ηµ+ β

]
≤ exp(−βt+ η ln(Mψ(t))), (42)

where Mψ(t) is the moment generating function defined as

Mψ(t) := E[exp(t(ψ − E[ψ]))] (43)

Since Theorem 2 holds for any bounded distribution, we
can apply the theorem to the random variable Xwe = w · e
or Xwε = w · ε. Here, we define w and ε to be random
variables coming from the weight and approximate error
distributions, respectively. Therefore, the summation of X over
η is precisely the inner product w · ε. Finally, we note that
the L2 bound on the convolved result ε0 ∗ w ∗ s follows a
similar derivation, where we can apply the Chernoff-Cramér
inequality twice, first on ε0 ∗w and then on (ε0 ∗w) ∗ s.

While existing studies have proposed methods for bounding
intrinsic RLWE [42] and approximation errors [40], errors
generated by homomorphic evaluation of arbitrary linear trans-
formation cannot be bounded using some presumed distri-
bution without a specific target application. In NN-based SI
schemes, the weight quantizer (denoted as pw) is generally
much smaller than p (e.g., pw = 2 in binary networks [5], [19])
because p needs to be large enough to contain the convolved
results between u and w (and therefore p > pw strictly). We
provide a more concrete example and asymptotic analysis in
Section V-C. Nevertheless, for our application, we can safely
assume that the weights are distributed according to some sub-
Gaussian distribution over the range of its valuation. We note
that existing NTT-based approaches cannot benefit from this
small-operand properties of the CNN filters. As noted in [1],
after NTT, even binary operands become uniformly distributed
over the entire plaintext space, i.e., p.

In the experiments, we provide a concrete example and
the resulting theoretical bounds on the size of the errors. In
addition, we also simulate the actual product error distribution
and decryption failure probability (i.e., the left hand side in
Eq. (40)) to show that a simulation-based approach acquires
(slightly) tighter error bounds.

C. Approximate Hardware Architecture

The main difficulty in designing the hardware accelerator
in APAS is that, the hardware architectures vary significantly
from network to network. For example, in recent works [16],
[24], [43], neural architecture search (NAS) is conducted in
searching the best NN for SI. The resulting network architec-
ture has highly non-uniform parameterizations, where both the
filter sizes and quantization factors vary from layer to layer.
In this section, we adopt a network-specific approach in the
design and implementation of approximate hardware for NN-
based SI.

The approximate hardware architecture used in APAS is
sketched in Fig. 4. The approximate multiplier shares simi-
larities with existing designs in [40], where the lg q-bit input

Leading
One

Reduction
over q

u

w

lg pw

M
ux

lg q

κ+ lg pw
κ lg q

lg q

Barrel
Shifter

The APAS Architecture

lg (lg q)

lg q+lg pw

Fig. 4. A high-level abstraction of the approximate hardware architecture
adopted in APAS.

lg q +1

q
lg pw

lg q

u w.

lg q+lg pw

lg q+lg pw

Barrel
Shifter

Reduction
 over q

lg q

Fig. 5. The modified Barrett reduction unit for a fixed bit-width modulus q.
It is noted that for the subtractor, the upper operand is the subtrahend, and
lower operand represents the minuend.

u ∈ u is approximated by a κ-bit integer. Here, κ = dlg qe−k
and k is the approximation factor. The leading one detection
unit feeds the position of the first one in the input to a Mux,
where the Mux selects the κ-bit integer following the leading
one from the input number. The approximated number is
multiplied by a dlg pwe-bit input w ∈ w. First, we note that
dlg pwe is assumed to be small relative to the RLWE plaintext
modulus dlg pe where dlg pe = dlg (pu · pw)e (e.g., dlg pwe
can be as small as two bits in binary neural networks, while
dlg pe = 13 bits to contain the convolved results). Therefore,
in extreme cases, we do not need a full-fledged multiplier,
but only one or two κ-bit approximate adders. Next, the most
important observation we make is that, dlg qe is dynamic from
layer to layer. When the current dlg qe is drastically smaller
than the maximum dlg qe in the entire NN, we can save powers
by gate clocking the registers for the upper bits in all operands.

1) Modified Barrett Reduction Unit: One of the main
differences between [40] and Fig. 4 is the need to reduce the
product over q, since q is generally not selected to be a power
of two in RLWE based cryptosystems. In addition, we observe
that q, as well as lg pw, are not fixed in APAS. Therefore,
the proposed modular reduction unit, shown in Fig. 5, adopts
the Barrett reduction algorithm [44] with a dynamic modulus
construction. For some input product u · w, the reduction is
carried out by calculating

y = (u · w)− q ·
(
((u · w) · γ)� `

)
(44)

where γ = b2`/qc, and u · w is the product to be reduced.
Benefiting from the fully custom hardware, we can set ` =
dlg qe. We omit a formal proof, but only point out that, in the
original Barrett reduction algorithm, the reduced result is in
the range of [0, 2q]. However, in our modified architecture, we

TABLE I
NEURAL ARCHITECTURES USED FOR PARAMETER INSTANTIATION

Layer Type Filter Dimension Quantization

CR (3× 192× 5× 5) (8, 4)

BCR (192× 160× 1× 1) (1, 1)

BCR (160× 96× 1× 1) (1, 1)

PL (3× 3)

BCR (96× 192× 5× 5) (1, 1)

BCR (192× 192× 1× 1) (1, 1)

BCR (192× 192× 1× 1) (1, 1)

PL (3× 3)

BCR (192× 192× 3× 3) (1, 1)

BCR (192× 192× 1× 1) (1, 1)

CR (192× 10× 1× 1) (8, 4)

PL (8× 8)

Accuracy on CIFAR-10: 85.9± 0.1%

always know that(
q · ((u · w)� `)

)
≤ u · w ≤

(
2q · ((u · w)� `)

)
. (45)

Consequently, y will always be in Zq , and we do not need
further range adjustments as in the original Barrett reduction
algorithm.

V. EXPERIMENTS AND COMPARISONS

A. Section Layout and Experimental Setup

In this section, we first perform accuracy and weight distri-
bution studies on a NN architecture in Section V-B. Through
these experiments, we are able to derive concrete error bounds
for the homomorphic evaluations, and subsequently instantiate
parameters for APAS in Section V-C. Finally, we synthesize
the instantiated hardware accelerators in APAS, and compare
our performance with the-state-of-the-art homomorphic con-
volution efficiencies in Section V-D.

In the experiment, we use the binary NN (BNN) proposed
in [19] to demonstrate the effectiveness of APAS. The adopted
neural architectures are listed in Table I, where CR indicates
a convolution with a point-wise ReLU layer, BCR a binarized
CR, and PL the average pooling layer. Quantization shows
the input and weight quantization factors, respectively, and
dimensions are sketched in the order of input channels, filter
channels, filter width and filter height. Compared to manually-
crafted NN, BNN exhibits higher levels of layer-to-layer
parameter variations. For example, the quantization varies
from 2-bit to 12-bit (8-bit inputs with 4-bit weights). Hence,
the application-specific dynamic architectures proposed in
Section IV-C become especially useful.

The approximate hardware architectures for the respective
parameter sets are synthesized on a 65 nm low-power process
node using Synopsis Design Compiler [45] and a Xilinx
Virtex-7 (XC7V585T-3) FPGA device.

B. Neural Architecture and Weight Distribution

In this section, we first examine the accuracy performance
and weight distributions in the trained NN using the BNN
architecture depicted in Table I. The prediction accuracy is

－2 －1 0 1 2

w
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

D
en
si
ty

－20 －10 0 10 20
w

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

De
ns
ity

Fitted Gaussian
Learned Weights

(a) (b)

Fig. 6. Distributions of weights in (a) the third BCR layer with binary weights
and (b) the first CR layer with 4-bit fixed-point weights in the trained BNN.

－0.005 0.000 0.005 0.010 0.015 0.020 0.025

t

10－11

10－8

10－5

10－2

101

104

107

β= 2152.000000
β= 4484.000000

－150 －100 －50 0 50 100 150

R a n g e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P r
o b
 a b
 ilit
 y

PMF

(a) (b)
P r
o b
 a b
 ilit
 y

Fig. 7. (a) The probability mass function defined for the product distribution
w · e. (b) The Chernoff-Cramér bounds. At the convex point, we have the
minimum β that guarantee

∑n−1
i=0 X ≤ nµ+β, except for the corresponding

small probability.

−4000 −2000 0 2000 4000
e⋅w

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

De
ns
ity

δ≤ 1−3 δ≤ 2−40

Fig. 8. The simulated product distribution of cin ·w∗e where the convolution
is carried out using the proposed homomorphic convolution technique.

TABLE II
PROPOSED PARAMETER SETS

Parameter m p lg q k Security
BNNmin 661 12289 27-bit 4 128-bit
BNNmid 1024 12289 27-bit 4 129-bit
BNNmax 1049 1228943 36-bit 5 167-bit
DArL [38] 2048 12289 55-bit - ≥ 157-bit
Gazelle [1] 2048 5324801 60-bit - 128-bit

86.1%, which is recorded on the CIFAR-10 dataset using the
PyTorch framework [19], [46].

To study the impact of decryption failure probability on
the NN prediction accuracy, we randomly select 0.1% of
the convolved results in each and every convolution layers

TABLE III
SYNTHESIZED HARDWARE ARCHITECTURE ON ASIC AND FPGA

PLATFORMS

65-nm Low Power Technology Node
Architecture Delay Area Power

(ns) (NAND) (µW)
BNNmax 3.4 4530 243

Exact 36-bit 6.4 15515 327
DArL (55-bit NTT) 7.1 31260 580

Gazelle (60-bit NTT) 7.3 40061 782
Xilinx Virtex-7 (XC7V585T-3)

Architecture Frequency Area Power
(MHz) (LUT/Reg/Slice) (mW)

BNNmax 222 390/147/146 343
Exact 36-bit 240 1051/103/344 377

DArL (55-bit NTT) 245 1932/135/592 464
Gazelle (60-bit NTT) 235 5712/384/1827 689

to fail the decryption in the forward propagation. As shown
in Table I, the prediction accuracy from an average of ten
inference runs (with different random seeds) is 85.9 ± 0.1%,
which is only slightly lower than the accuracy of a normal
inference (86.1%) without decryption failure. However, such
accuracy degradation is generally considered marginal in most
NN-based inference schemes, as the normal inference accuracy
can also vary by a similar amount because of the initial
weight randomness and the stochastic optimization process.
Furthermore, we note that, even with decryption failures, our
network is still more accurate than the neural architectures
adopted in many existing works [1], [5] (e.g., Gazelle only
has an accuracy of 81.6% on the CIFAR-10 dataset).

Next, we investigate the distribution of weights in the
trained NN. In Table I, we observe that there are four basic
types of convolution layers: 12-bit quantized 5 × 5, binary
5 × 5, binary 1 × 1 and binary 3 × 3 with varying filter
channels. The distribution of weights in the first CR layer
and third BCR layer in Table I are shown in Fig. 6(a) and (b),
respectively. Immediately, we see that, in the BCR layer, the
weight distribution approaches the Bernoulli distribution with
parameter 1/2 extremely well. In addition, when the range of
valuation is enlarged to 4-bit (from −15 to +15 in Fig. 6(b)),
we can see that the overall weight distribution approximates
a Gaussian, which means that large weight values (e.g., 15)
are much less likely to appear than smaller ones (e.g., 1).
As later described in the error estimation step, the centered
weight distribution and the short filter size generate a very
small amount of errors. As a result, we end up with much
smaller ciphertext sizes compared to existing works.

C. Parameter Instantiation

To illustrate how parameters can be instantiated (and the
derived bounds on evaluation errors), we follow the five steps
prescribed in the APAS framework (in Fig. 3) for the first CR
layer in the BNN architecture as shown in Table I.

Step 1) We generate the lattice dimension. Since the input
dimension is 1, 024 = 32 × 32, we can choose the smallest
dimension that can contain the convolved results while guar-

anteeing the security of the homomorphic encryption scheme.
Here, m is taken to be 1,049.

Step 2) We generate the plaintext modulus given nw and
nu. Since the inputs are 9-bit and weights are 5-bit with sign,
according to Eq. (37), p can be as small as 1, 228, 800 =
3 · 29 · 25 · 25, which is the maximum attainable value during
the calculation of a convolution between a ci-channel signed
8-bit input vector with a signed 4-bit filter of length nw = 25.
Note that p needs to be a prime to ensure that Zp is the field
Fp, so we take p to be a 21-bit prime 1, 228, 943 that is the
smallest prime larger than 1, 228, 800.

Step 3) With p and m, we analyze the size of the errors
generated during homomorphic evaluation using Theorem 2.
As proposed in Section IV-B, we can precisely define the PMF
of this evaluation error when the weight distribution is known.
As a demonstration, we plot the PMF of e ∗w in Fig. 7(b),
where e is a vector of the discrete Gaussian errors from the
RLWE cryptosystem, and w the NN weights. Using the PMF
sketched in Fig. 7(b), we can obtain the precise probability
of Pr

[∑m−1
i=0 Xi ≥ mµ+ β

]
in Eq. (42) for any given β.

The minimum β’s that guarantee probability below 10−3 and
2−40 are presented in Fig. 7(a). When β = 2, 152, we have
Pr
[∑η−1

i=0 Xi ≥ ηµ+ β
]
≤ 10−3. By setting q accordingly

(i.e., q/4p ≥
∑η−1
i=0 Xi), we can then ensure that δ ≤ 10−3.

To confirm the above theoretical derivation, we simulated the
size of the product cin ·w ∗e in Fig. 8 showing the respective
bound for δ ≤ 10−3 and δ ≤ 2−40. Since the simulated bound
for δ ≤ 10−3 is 1, 930 (slightly better than the theoretical
bound), we conclude that our theoretical error derivation is
quite sharp with respect to the simulated one and can be used
to capture the error characteristics for asymptotically small
values of δ. Although a simulated approach is tighter, it can
only provide bounds on relatively large δ, i.e., ones where
simple Monte-Carlo simulation finishes in finite time.

Step 4) In this case, m is selected to meet the security
constraint, and we can safely proceed. If m is too small, we
follow the protocol in Fig. 3 and return to Step 1).

Step 5) After generating the ciphertext modulus q, we can
explore the permitted approximation factor k by integrating the
approximation error into the above error analysis procedure.

The generated variables and moduli become the BNNmax

parameter set as listed in Table II, along with parameters
for other types of layers. We demonstrate three sets of pa-
rameters for different layer configurations. BNNmin is for
short convolution binary input quantizers, BNNmid for longer
convolution also with small operands, and BNNmax for the
largest parameter configuration that is able to handle a 8-
bit 32 × 32 input convolved with a 4-bit 5 × 5 filter using
a single ciphertext. The proposed HLT technique results in
asymptotically smaller level of error amplification (up to 14
bits) compared to existing works. In particular, the error am-
plification in APAS is O(pw ·

√
ci · nw), while the techniques

in [1], [38] ends up with a O(p
√
ci ·m) factor (easily over

30 bits). We note that the main source of contribution for
this asymptotic error-size reduction is that the HLT technique

TABLE IV
PERFORMANCE COMPARISON ON CONVOLUTION BENCHMARKS

Layer Input Filter Parameter Ciphertext Latency (ms) Energy (µJ)
Dimension Dimension Set Size (MBytes) (ASIC) (ASIC)

CR (3× 32× 32) (192× 5× 5) BNNmax 1.58 52.9 5.33
BCR (192× 32× 32) (160× 1× 1) BNNmid 2.49 113 26.9
BCR (160× 32× 32) (96× 1× 1) BNNmid 1.81 57.0 13.5
BCR (96× 16× 16) (192× 5× 5) BNNmid 0.585 423 13.5
BCR (192× 16× 16) (192× 1× 1) BNNmid 0.679 34.0 13.5
BCR (192× 16× 16) (192× 1× 1) BNNmid 0.679 34.0 13.5
BCR (192× 8× 8) (192× 3× 3) BNNmin 0.195 76.8 13.5
BCR (192× 8× 8) (192× 1× 1) BNNmin 0.169 8.59 13.5
BCR (192× 8× 8) (10× 1× 1) BNNmax 0.102 0.489 13.5

Technique Ciphertext Size Latency (ms) Energy (µJ)

Total

- - APAS-ASIC 8.30 MB ≈ 800 194
- - APAS-FPGA 8.30 MB ≈ 927 3.17× 105

- - [1], [38]-ASIC 23.3 MB ≈ 6,493 5,078
- - [1], [38]-FPGA 23.3 MB ≈ 3,784 26.1× 105

- - [1], [38]-CPU 23.3 MB ≈ 2,799 2.8× 108

does not need NTT, as NTT operates over the entire lattice
dimension m and plaintext modulus p.

D. Synthesis Results and Comparisons
Based on the parameter sets and Step 5) in the APAS

framework, the approximate hardware are synthesized, and the
statistics are summarized in Table III. For APAS, since we use
a fixed hardware architecture for the entire NN inference, the
hardware cost is estimated for BNNmax and will be used across
all layer evaluations. Moreover, the hardware performance
are provided on both the ASIC and the FPGA platforms. It
is observed from Table III that, while FPGA enables per-
network reconfiguration of multiplier architectures, it does
induce a significant power overhead when compared to an
ASIC implementation. We compare our instantiated BNN
architecture with general-purpose 55-bit and 60-bit modular
multipliers, as these architectures can be adopted in NTT-based
homomorphic convolutions in DArL [38] and Gazelle [1].
We observe 2× latency, 6×–9× area and 2.3×–3.2× power
reductions in the ASIC implementation.

Using Table III, we compare the ciphertext size, latency
and energy efficiency of APAS to existing works [1], [38].
The comparisons are performed using all of the convolution
layers in Table IV. The latency for APAS is estimated by

(ci ·m+
ci · co
cn

· nw ·m)) · d, (46)

where cn = bn/(nu+nw−1)c, i.e., the number of convolution
results that fit into a single ciphertext. For instance, for
BNNmax, we have a circuit delay of d = 3.5 ns, lattice
dimension of m = 1, 049, filter size of nw = 25, number
of input channels ci = 3, and number of output channels
co = 192. The per-layer latency in this case becomes 52.9 ms.
For comparison, we estimated the performance of Gazelle [1]
and DArL [38] using the ASIC multiplier in Table III with
Algorithm 2 as(

(n lg n) + (n lg n · lg q) · (cnnw − 1)

+ (n lg n+ n) · co
)
· ci
cn
· dNTT (47)

It is obvious that the NTT-based approach involves much
more operations, as we need a large number of NTT runs
for the rotations (Line 1 in Eq. (47)) as well as the filter
applications (Line 2 in Eq. (47)). Finally, the CPU performance
are extrapolated from the benchmarks reported in existing
works [1], [38].

As for the the ciphertext size, the following estimation is
used for our technique

2m ·
(
(ci · dlgApprox(q)e) + (co · dlgApprox(q)e)

)
. (48)

Since existing works do not instantiate approximate hardware,
their ciphertext size is simply calculated as 2 ·m((ci · dlg qe)+
(co · dlg qe)).

Compared to the best known works [1], [38], we achieve
nearly 3× ciphertext reduction, due to the small error growth
and approximate hardware. Furthermore, we see up to 8×
inference time reduction over the ASIC implementation and
3.4× over the CPU implementation of Gazelle. Moreover,
we reduce the total energy consumption of evaluating all
of the linear layers in Table I by 26× and 8.2× on ASIC
and FPGA platforms, respectively. Lastly, we point out that
our software-hardware co-design approach is successful in
keeping the runtime of the ASIC-based design competitive
against the FPGA and CPU ones, while reducing the total
energy consumption by 103×–105×. Therefore, we consider
the proposed HLT technique and APAS as essential building
blocks in establishing truly practical NN-based secure infer-
ence infrastructures.

VI. CONCLUSION

In this work, we proposed a novel way of performing
homomorphic linear transformation over RLWE-based PAHE
schemes that are widely used in machine-learning-as-a-service
applications. To maximize the efficiency of the HLT operators,
we also designed a hardware-software co-design framework
that automatically instantiates network-specific parameters and
hardware platforms. In the experiments, it was shown that
the latency in a real-world neural network architecture can

be reduced by as much as 8× on ASIC and 3.4× on CPU.
Furthermore, we observe up to 3× ciphertext and all-round
energy reductions across platforms.

REFERENCES

[1] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” arXiv preprint
arXiv:1801.05507, 2018.

[2] M. Keller, E. Orsini, and P. Scholl, “MASCOT: faster malicious
arithmetic secure computation with oblivious transfer,” in Proc. 2016
Conference on Computer and Communications Security. ACM, 2016,
pp. 830–842.

[3] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 1575–1590.

[4] A. C. Yao, “Protocols for secure computations,” in Proc. 23rd Annual
Symposium on Foundations of Computer Science. IEEE, 1982, pp.
160–164.

[5] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: Xnor-based oblivious deep neural network
inference.” IACR Cryptology ePrint Archive, vol. 2019, p. 171, 2019.

[6] A. Brutzkus, O. Elisha, and R. Gilad-Bachrach, “Low latency privacy
preserving inference,” arXiv preprint arXiv:1812.10659, 2018.

[7] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in International Conference
on Selected Areas in Cryptography. Springer, 2013, pp. 68–85.

[8] S. S. Roy et al., “Compact ring-LWE cryptoprocessor,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2014, pp. 371–391.

[9] Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede,
“Efficient ring-LWE encryption on 8-bit AVR processors,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2015, pp. 663–682.

[10] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating fully homomorphic
encryption in hardware,” IEEE Transactions on Computers, vol. 64,
no. 6, pp. 1509–1521, 2015.

[11] S. S. Roy et al., “Hardware assisted fully homomorphic function
evaluation and encrypted search,” IEEE Transactions on Computers,
vol. 66, no. 9, pp. 1562–1572, 2017.

[12] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International symposium
on high performance computer architecture (HPCA). IEEE, 2019, pp.
387–398.

[13] S. Bian, M. Hiromoto, and T. Sato, “Filianore: Better multiplier archi-
tectures for lwe-based post-quantum key exchange,” in Proceedings of
the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[14] V. Migliore et al., “A high-speed accelerator for homomorphic encryp-
tion using the karatsuba algorithm,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 5s, p. 138, 2017.

[15] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized
schoolbook polynomial multiplication for compact lattice-based cryp-
tography on FPGA,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 10, pp. 2459–2463, 2019.

[16] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 2505–
2522.

[17] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospective
view of approximate computing,” Proceedings of the IEEE, vol. 108,
no. 3, pp. 394–399, 2020.

[18] “Homomorphic linear transformation,” https://github.com/sbian3/
homomorphicmatrix, April 2021, Kyoto University.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-net:
Imagenet classification using binary convolutional neural networks,” in
ECCV. Springer, 2016, pp. 525–542.

[20] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[21] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-
seal v2. 1,” in International Conference on Financial Cryptography and
Data Security. Springer, 2017, pp. 3–18.

[22] “Microsoft SEAL (release 3.6),” https://github.com/Microsoft/SEAL,
June 2019, microsoft Research, Redmond, WA.

[23] Y. Polyakov, K. Rohloff, and G. W. Ryan, “PALISADE lattice cryptog-
raphy library.” https://git.njit.edu/palisade/PALISADE, 2018.

[24] S. Bian, W. Jiang, Q. Lu, Y. Shi, and T. Sato, “NASS: Optimiz-
ing secure inference via neural architecture search,” arXiv preprint
arXiv:2001.11854, 2020.

[25] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International Conference on
Machine Learning, 2016, pp. 201–210.

[26] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
arXiv preprint arXiv:1811.09953, 2018.

[27] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via MinioNN transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 619–631.

[28] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[29] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 38th IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 19–38.

[30] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, vol. 66, no. 1, pp. 3–16, 2016.

[31] J. Cathebras, “Hardware acceleration for homomorphic encryption,”
Ph.D. dissertation, Université Paris-Saclay, 2018.

[32] F. Turan, S. S. Roy, and I. Verbauwhede, “Heaws: An accelerator for
homomorphic encryption on the amazon aws FPGA,” IEEE Transactions
on Computers, vol. 69, no. 8, pp. 1185–1196, 2020.

[33] B. Hunt, “A matrix theory proof of the discrete convolution theorem,”
IEEE Transactions on Audio and Electroacoustics, vol. 19, no. 4, pp.
285–288, 1971.

[34] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The fast fourier transform
and its applications,” IEEE Transactions on Education, vol. 12, no. 1,
pp. 27–34, 1969.

[35] C. Peikert, “How (not) to instantiate ring-LWE,” in International Con-
ference on Security and Cryptography for Networks. Springer, 2016,
pp. 411–430.

[36] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[37] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in International Workshop on
Public Key Cryptography. Springer, 2010, pp. 420–443.

[38] S. Bian, M. Hiromoto, and T. Sato, “DArL: Dynamic parameter adjust-
ment for LWE-based secure inference,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition. IEEE, 2019, pp. 1739–1744.

[39] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of
learning with errors,” Journal of Mathematical Cryptology, vol. 9, no. 3,
pp. 169–203, 2015.

[40] S. Bian, M. Hiromoto, and T. Sato, “DWE: Decrypting learning with
errors with errors,” in Design Automation Conference (DAC). IEEE,
2018, pp. 1–6.

[41] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-
based encryption,” in Cryptographers’ Track at the RSA Conference.
Springer, 2011, pp. 319–339.

[42] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key exchange-a new hope.” in USENIX Security Symposium, 2016, pp.
327–343.

[43] Q. Lou, B. Song, and L. Jiang, “AutoPrivacy: Automated layer-wise
parameter selection for secure neural network inference,” arXiv preprint
arXiv:2006.04219, 2020.

[44] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Conference
on the Theory and Application of Cryptographic Techniques. Springer,
1986, pp. 311–323.

[45] Design Compiler I-2013.06, Synopsys, Inc., 2013.
[46] A. Paszke and others, “Pytorch: An imperative style, high-performance

deep learning library,” in Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[47] C. Peikert, O. Regev, and N. Stephens-Davidowitz, “Pseudorandomness
of ring-lwe for any ring and modulus,” in Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, 2017, pp. 461–473.

[48] J. Blömer and S. Naewe, “Sampling methods for shortest vectors, closest
vectors and successive minima,” Theoretical Computer Science, vol. 410,
no. 18, pp. 1648–1665, 2009.

[49] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Designs, Codes and Cryptography, vol. 75, no. 3, pp.
565–599, 2015.

Song Bian Song Bian received B.S. from University
of Wisconsin-Madison in 2014. He received M.S.
and Ph.D. from Kyoto University in 2017 and 2019,
respectively. He is currently an assistant professor at
Kyoto University. His main areas of interest include
applied cryptography, secure multi-party computa-
tion and domain-specific hardware accelerators. He
was a research fellow of the Japan Society for the
Promotion of Science from 2017 to 2019.

Dur-e-Shahwar Kundi is currently a Post-doc Fel-
low at College of Electronic and Information En-
gineering, Nanjing University of Aeronautics and
Astronautics (NUAA), Nanjing, China under the
scheme of China Postdoctoral Science Foundation
2019. She received her M.Sc. and Ph.D. degree in
Electrical Engineering from National University of
Sciences and Technology (NUST), Karachi, Pak-
istan, in 2010 and 2016 respectively. Her research
interests include hardware security, cryptographic
engineering and reconfigurable computing.

Kazuma Hirozawa received the B.E. degree in
Electrical and Electronic Engineering from Kyoto
University in 2020, and is now pursuing a master
degree at the Graduate School of Informatics, Kyoto
University. His current research interests include
applied cryptography and hardware accelerators.

Weiqiang Liu (M’12-SM’15) received the B.Sc. de-
gree in Information Engineering from Nanjing Uni-
versity of Aeronautics and Astronautics (NUAA),
Nanjing, China and the Ph.D. degree in Electronic
Engineering from the Queen’s University Belfast
(QUB), Belfast, UK, in 2006 and 2012, respectively.
In Dec. 2013, he joined the College of Electronic
and Information Engineering, NUAA, where he is
currently a Professor and the Vice Dean of the col-
lege. He has been awarded the prestigious Excellent
Young Scholar Award by National Natural Science

Foundation of China in 2020. His research interests include approximate
computing, hardware security and VLSI design for digital signal processing
and cryptography.

Takashi Sato received B.E. and M.E. degrees from
Waseda University, Tokyo, Japan, and a Ph.D. degree
from Kyoto University, Kyoto, Japan. He was with
Hitachi, Ltd., Tokyo, Japan, from 1991 to 2003; with
Renesas Technology Corp., Tokyo, Japan, from 2003
to 2006; and with the Tokyo Institute of Technology,
Yokohama, Japan. In 2009, he joined the Graduate
School of Informatics, Kyoto University, Kyoto,
Japan, where he is currently a professor. He was
a visiting industrial fellow at the University of Cali-
fornia, Berkeley, from 1998 to 1999. His research

interests include CAD for nanometer-scale LSI design, fabrication-aware
design methodology, and performance optimization for variation tolerance.

APPENDIX

A. Proof for Proposition 1

Proposition 1. The cryptosystem specified in Section III-B is
as secure as that specified in Section II-B against semi-honest
adversaries.

Proof. Without loss of generality, we assume that the client
performs the encryption function over some input u ∈ Znp ,
and the server carries out the homomorphic computation
HLTF over the ciphertext [u]. From the key generation and
encryption procedures for both the original and the modified
cryptosystems, we know that the client holds the private key
s, and outputs the ciphertext [u] = (c0, c1). Here, we safely
hold it true that the original BFV cryptosystem [20] achieves
indistinguishability under chosen-plaintext attack (i.e., secure
against IND-CPA adversary). In addition, we assume that the
adversary against the client in the secure inference protocol
(the server) is semi-honest, i.e., the server follows the inference
protocol honestly, but wishes to learn as much information as
possible from the client.

Recall that the IND-CPA security of the BFV cryptosys-
tem [20] relies on the hardness of the decision ring learning
with errors (R-LWE) problem, formulated as follows. Note
that some notations are changed to match those used in this
manuscript.

Definition 1. (Definition 1 in [20]) For security parameter
λ, let Φm(x) be the m-th cyclotomic polynomial with degree
n = φ(m), and let R = Z[x]/Φm(x). Let q = q(λ) ≥ 2 be
an integer. For a random element s ∈ Rq and a distribution
χ = χ(λ) over R, denote with A(q)

s,χ the distribution obtained
by choosing a uniformly random element a ← Rq and noise
term e← χ and outputting (a,a ∗ s + e mod Φm(x), q). The
Decision-R-LWEd,q,χ problem is to distinguish between the
distribution A(q)

s,χ and the uniform distribution U(R2
q).

We also make use the following corollary from [47].

Corollary 2. (Corollary 6.3 in [47]) Let K be any number
field of degree n and R = OK = Z[ξm] be its ring of integers.
Let α ∈ (0, 1) be some real number, and q ≥ 2 be some
integer where αq ≥ 2 · ω(1). There is a polynomial-time
quantum reduction from K-SIVPγ to (average-case, decision)
R-LWEq,υα for any

γ ≤ {max(ω(
√
n log n/α),

√
2n} (A1)

Here, K-SIVP is the shortest independent vector problem
restricted to the ideal lattices in the number field K, and solv-
ing K-SIVP is assumed to be NP-hard [47], [48]. Combined
with Definition 1, Corollary 2 from [47] basically states that
the decision R-LWE problem is hard regardless of the choices
of the number field K and modulus q.

At this stage, we only need to prove that the view of any
adversary on the modified cryptosystem is indistinguishable
from the original BFV cryptosystem as described in Section II-
B. Since we use two types of cyclotomic polynomials to
instantiate the modified cryptosystem, we divide the proof
into two parts: first, we use a simple contradiction to prove
Proposition 1 in the special case where m is a power of two.
Then, we provide a simulator-based general proof for any
value of m with Corollary 2.

Power-of-Two Case: Observe that when m is a power
of two, the encryption functions in Eq. (1) and Eq. (7) are
equivalent by the convolution theorem. Specifically, we have
that, for the same a, s, u and e,

c0 = −a, (A2)
c1 = NegINTT(NegNTT(a) ◦ NegNTT(s)) + e + u · q/p

= (a ∗ s + e + u · q/p) mod Φm(x). (A3)

Now, suppose that the modified cryptosystem is not secure.
In other words, there exists an efficient (i.e., polynomial-time)
distinguisher D that can distinguish samples from the modified
cryptosystem in the form

[u]′ = (c′0, c
′
1) = (−a′,a′ ∗ s′ + e′ + u · q/p mod Φm(x))

(A4)

encrypted using Eq. (7) from uniform random polynomials
U(R2

q) in Rq . With Eq. (A2), we know that with the exactly
same a′, s′, u and e′, Eq. (1) also outputs the exactly same
ciphertext (c′0, c

′
1), i.e.,

[u]′ = (c′0, c
′
1)

= (−a′,NegINTT(NegNTT(a′) ◦ NegNTT(s′)) + e′ + u · q/p)
(A5)

which is a valid BFV ciphertext. As a result, if the modified
cryptosystem is not secure, we obtain a distinguisher D that
efficiently distinguishes valid BFV ciphertexts from uniform
random polynomials, which contradicts the security of the
BFV cryptosystem.

While the above proof works for m a power of two, we
cannot directly reduce the security of the modified cryptosys-
tem to the original BFV cryptosystem for arbitrary values of
m (including the prime-order case), as for different m, the
instantiated cryptosystems have different cyclotomic fields and
moduli. In what follows, we provide a general security proof
for the modified cryptosystem with any lattice dimension m
and ciphertext modulus q.

General Case: Here, we construct a simple simulator S that
simulates the view of the semi-honest server on the modified
cryptosystem. The simulator is constructed as follows.

1) S chooses a random tape.

2) S generates and outputs an encryption of zero [0] using
the key generation and encryption steps specified by the
modified cryptosystem with the random tape.

Essentially, S simulates the behavior of the client in the secure
inference protocol π without knowing any input. Here, the real
view of the semi-honest server on the client is

viewπ(n, p, q, χ,u) = (c0, c1) = [u]. (A6)

Meanwhile, the output of the simulator is

S(n, p, q, χ) = (c′0, c
′
1) = [0]. (A7)

From Definition 1 and Corollary 2, we know that the decision-
R-LWE problem is hard for any number field with any modu-
lus (while the reduction is quantum only, classical reductions
also exist that guarantee the hardness of decision R-LWE
for all cyclotomic fields with any modulus through modulus
switching [47], [49]). In other words, there exists no efficient
distinguisher that distinguishes R-LWE samples computed
using Eq. (7) from uniform random polynomials U(R2

q), i.e.,

[u]
c≡ U(R2

q), (A8)

for any input u ∈ Znq . Here,
c≡ means that the left and right

hand sides are computationally indistinguishable. Since [0] is
a valid encryption of a vector of zeroes, we know that

[u]
c≡ U(R2

q)
c≡ [0] (A9)

for any input u. In other words, a semi-honest server cannot
distinguish a valid encryption procedure from a simulator
assuming the hardness of the decision R-LWE problem. Con-
sequently, we can reduce the semantic security of protocol
π with the modified cryptosystem directly to the hardness
of the decision R-LWE problem, i.e., any efficient semi-
honest adversary who breaks the security of π can efficiently
solve the decision R-LWE problem (and therefore the K-SIVP
problem).

