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Abstract. Integral cryptanalysis is a powerful tool for attacking sym-
metric primitives, and division property is a state-of-the-art framework
for finding integral distinguishers.

This work describes new theoretical and practical insights into tradi-
tional bit-based division property. We focus on analyzing and exploiting
monotonicity/convexity of division property and its relation to the graph
indicator. In particular, our investigation leads to a new compact repre-
sentation of propagation, which allows CNF/MILP modeling for larger
S-Boxes, such as 16-bit Super-Sboxes of lightweight block ciphers or even
32-bit random S-boxes. This solves the challenge posed by Derbez and
Fouque (ToSC 2020), who questioned the possibility of SAT/SMT/MILP
modeling of 16-bit Super-Sboxes. As a proof-of-concept, we model the
Super-Sboxes of the 8-round LED by CNF formulas, which was not fea-
sible by any previous approach.

Our analysis is further supported by an elegant algorithmic framework.
We describe simple algorithms for computing division property of a set
of n-bit vectors in time O(n2n), reducing such sets to minimal/maximal
elements in time O(n2n), computing division property propagation table
of an n × m-bit S-box and its compact representation in time O((n +
m)2n+m). In addition, we develop an advanced algorithm tailored to
“heavy” bijections, allowing to model, for example, a randomly generated
32-bit S-box.

Keywords: Division Property · S-boxes · SAT · CNF · MILP · LED

1 Introduction

With the ongoing surge of lightweight cryptography, the field of cryptanalysis of
lightweight symmetric primitives is pressured to evaluate the security as precisely
as possible: adding a few extra rounds as a security margin is not affordable in
the lightweight setting. Among the most powerful cryptanalysis techniques are
linear and differential cryptanalysis, and integral cryptanalysis. For example,
the long-standing MISTY1 [24] block cipher was broken recently by integral
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cryptanalysis [1, 32] (based on division property, the topic of this work) with a
surprisingly low time complexity 270. While provable security arguments against
linear and differential cryptanalysis exist already since the design of the AES
block cipher [10], provable security arguments against integral attacks started to
appear only recently [18].

Division property is a state-of-the-art technique for finding integral distin-
guishers in symmetric ciphers. Since the seminal work of Todo [33] focusing
on word/state-based division property, many improvements and variants of the
technique were developed. The focus shifted towards bit-based division prop-
erty [34], followed by a surprisingly effective MILP-based approach [38] (mixed-
integer linear programming) of finding division property-based distinguishers
via the search of the so-called division trails. This line continued with a series
of works improving MILP and SAT/SMT-based (satisfiability modulo theories)
modeling [14, 21, 27, 31]. Classic (also called traditional or conventional) divi-
sion property is imperfect : it may miss an integral distinguisher, although it
never produces a false positive. A more recent advancement is the development
of “perfect” monomial prediction techniques [17, 18, 20], which require counting
division trails and so far are computationally feasible only in a few cases. This
work focuses on traditional division property, as it remains powerful and the
most widely applicable tool for integral cryptanalysis.

From the theory side, following preliminary analysis [15, 29], the work of
Boura and Canteaut [5] formalized and studied the state-based division property
in terms of parity sets. In particular, they showed that state-based division prop-
erty of a set is defined by the set’s algebraic degree. While many of their results
about parity sets translate directly into bit-based division property, such links
were not explicitly stated. To the best of our understanding, the theory behind
bit-based division property is not fully developed. Furthermore, very recently,
Carlet [7] proposed method for bounding the algebraic degree of a composition
of function from the degrees of their graph indicators. It is a natural question
whether division property can be improved by incorporating such bounds. A
recent work [9] studied formally relationships between different variants of divi-
sion property and algebraic degree bounds for composite functions, such as the
Boura-Canteaut bound [4]. However, this work did not consider graph indicator-
based bounds, leaving this gap open. As a part of this work, we aim to fill
the aforementioned gaps and extend the theory, focusing on the monotonic-
ity/convexity aspects of division property and relations with the graphs of the
analyzed functions.

The imperfectness of traditional bit-based division property shows up in var-
ious ways. Division property analysis can be applied to any Boolean circuit
implementation of a cipher (constructed from e.g. AND and XOR gates). How-
ever, due to the imperfectness, information gets lost during propagation through
the circuit. Considering larger parts of the cipher, such as S-boxes and linear
maps, allows to slow down the loss of information. For example, Zhang and Ri-
jmen [39] showed that propagating division property through a linear map via
a basic COPY-and-XOR implementation is imperfect. The right way to handle
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a linear map is to encode all invertible square submatrices of the linear map’s
matrix. A typical linear layer of a lightweight block cipher operates on at least
16 bits and its matrix may contain a large number of invertible submatrices. En-
coding the division property propagation through such a layer in a SAT/MILP
instance deemed to be not feasible until recently, when Hu, Wang and Wang [21]
proposed a generic SMT-based solution, which is feasible for up to 64-bit lin-
ear maps. Lambin, Derbez and Fouque [22] showed that propagation through
S-boxes is also fragile: combining an S-Box with a linear map may also result in
loss or gain of information.

To battle the imperfectness of traditional division property, Derbez and
Fouque [11] proposed to increase its precision by considering a Super-Sbox -
a composition of the cipher’s linear map with the adjacent S-boxes - as a single
propagation unit. For many lightweight block ciphers, Super-Sboxes are 16-bit
bijections. The results of [11] shows that this approach increases precision sig-
nificantly and allows to find new integral distinguishers for 1-2 more rounds for
some ciphers. However, SAT/MILP modeling of Super-Sboxes was not feasible
by state-of-the-art techniques and the authors of [11] had to develop an ad-hoc
search technique. In fact, they challenged the community to develop SAT/MILP
modeling of such large mappings: “We also believe this work will challenge the
community in handling such large propagation tables with generic solvers for
MILP, SAT or SMT models.”. As a part of this work, we provide a solution to
this challenge, based on our theoretical advancement.

Our contribution This work focuses on theory and practice of traditional division
property. All other variants, such as three-subset division property [34] (and
without the unknown subset [17]), monomial prediction [20], are out of scope of
this work. The main contributions of this work are:

1. Development of the theoretic framework behind the classic division property.
This includes fine-grained (bit-based) formulations of previous statements
about division property, exhibiting convexity of division property and its
relation to the recent graph indicator-based bounds by Carlet [7].

2. Compact characterization of division property propagation through a func-
tion F by means of the (reduced) division property of its graph. This yields
compact constraint systems for MILP/SAT solvers, allowing us to model
much larger S-boxes than was previously possible, including 16-bit Super-
Sboxes and, as a proof-of-concept, randomly generated 32-bit S-boxes. We
also introduce additional techniques for improving modeling efficiency.

3. A framework for manipulation of dense sets of binary vectors. It includes sim-
ple algorithms for computing division property of a set of n-bit vectors (com-
plexity O(n2n)), reducing such sets to minimal/maximal elements (complex-
ity O(n2n)), computing division property propagation table of an n×m-bit
S-box and its compact representation (complexity O((n+m)2n+m)). These
algorithms improve previous best algorithms by a factor of 2n. In addition,
we develop an advanced algorithm for the compact representation tailored
to “heavy” n-bit bijections, for which it runs in time Õ(2n) (heuristically).
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4. As a proof-of-concept, we apply our techniques to 8-round LED and show
that its Super-Sbox model does not yield integral distinguishers (although
they might still exist), even with linear masks applied to an input and an
output Super-Sbox. This fills the gap left by [11], as their approach was not
feasible for LED.

Our implementations are written in a mix of Python and C++, featuring
performance and a convenient API. All the source code will be made publicly
available. For details, see:

https://github.com/CryptoExperts/AC21-DivProp-Convexity

Outline Section 2 provides the necessary background with a focus on the partial
order on bit-vectors. In Section 3, we briefly reintroduce traditional division
property and develop its theory, culminating in a new compact representation.
As a byproduct, we exhibit a direct link between division property and graph
indicators. The following Section 4 focuses on CNF/MILP modeling aspects
of the new representation. Section 5 presents our algorithmic framework for
manipulating dense sets of binary vectors. Finally, in Section 6, we show how
our techniques can be applied to model the Super-Sbox representation of LED.

2 Preliminaries

Boolean operations AND,OR,XOR,NOT denoted respectively by ∧,∨,⊕,¬ can
be applied to (pairs of) single bits or bitwise to bit-vectors. We use 1 ∈ Fn2
(resp. 0) to denote the all-one (resp. all-zero) vector of a dimension n depending
on the context. We write ¬x := x ⊕ 1 and ¬X := {¬x | x ∈ X}, X ⊆ Fn2 , to
disambiguate from the set complement X := {y ∈ Fn2 | y /∈ X}. The unit vectors
ej ∈ Fn2 , 0 ≤ j < n, are the vectors with the j-th (0-based) coordinate equal to
1 and all other coordinates equal to 0.

The notation xu, u ∈ Fn2 , is used to denote the monomial
∏n−1
i=0 x

ui
i , letting

x0i = 1. Any Boolean function f : Fn2 → F2 has a unique expression f(x) =⊕
u∈Fn2

aux
u, where au ∈ F2. This expression is called the algebraic normal form

(ANF) of f . We say that f contains the monomial xu if au = 1 in the ANF of f .
The ANF support of f , denoted SuppANF (f), is the set of all exponents u with
au = 1 in the ANF of f .

The indicator vector of a set X ⊆ Fn2 is the vector I ∈ F2n

2 such that
Ix = 1 if and only if x ∈ X. Here we use the natural identification of Fn2
with {0, . . . , 2n − 1}. By an abuse of notation, we will identify a set X with its
indicator vector implicitly. The indicator function of X is the map 1X : Fn2 →
F2 : x 7→ Ix.

The graph of a function F : Fn2 → Fm2 , denoted ΓF , is the set

ΓF = {(x, y) | x ∈ Fn2 , y = F (x)} ⊆ Fn2 × Fm2 .

The graph indicator of F is the indicator function of its graph ΓF .
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2.1 Partial order

We use the product order on vectors over F2, which is, for x, y ∈ Fn2 , x � y if
and only if xi ≤ yi for all i. We write x ≺ y if x � y and x 6= y.

Definition 1. The lower closure of a set X ⊆ Fn2 , denoted by LowerClosure (X),
is the set of all u ∈ Fn2 with u � x for some x ∈ X:

LowerClosure (X) := {u ∈ Fn2 | ∃x ∈ X : u � x} =
⋃
x∈X
{u ∈ Fn2 | u � x} .

The upper closure of a set X ⊆ Fn2 , denoted by UpperClosure (X), is the set of
all u ∈ Fn2 with x � u for some x ∈ X:

UpperClosure (X) := {u ∈ Fn2 | ∃x ∈ X : u � x} =
⋃
x∈X
{u ∈ Fn2 | u � x} .

A set X is an upper set if its upper closure is X itself. A set X is a lower set
if its lower closure is X itself.

Remark 1. An intuitive interpretation is as follows. For each vector in X, the
upper closure converts positions with the value 0 into a wildcard, whereas the
lower closure converts positions with the value 1 into a wildcard.

Example 1. LowerClosure ({110, 001}) = {000, 010, 100, 110, 000, 001} .
Example 2. UpperClosure ({110, 001}) = {001, 011, 101, 110, 111} .
Proposition 1. Let X,Y be lower sets (resp. upper sets). Then, X ∪ Y and
X ∩ Y are lower sets (resp. upper sets); X is an upper set (resp. a lower set).

Definition 2. A subset X ⊆ Fn2 is called convex, if for any a, b, c ∈ Fn2 , a �
b � c and a, c ∈ X imply b ∈ X. An equivalent condition is

X = LowerClosure (X) ∩UpperClosure (X) .

Definition 3. The max-set of a set X ⊆ Fn2 , denoted by MaxSet (X), is the set
of all maximal elements in X:

MaxSet (X) := {u ∈ X | @x ∈ X : x � u} .

The min-set of a set X ⊆ Fn2 , denoted by MinSet (X), is the set of all minimal
elements in X:

MinSet (X) := {u ∈ X | @x ∈ X : x ≺ u} .

Max-/min-sets are compact representations of lower/upper sets. Max-/min-
sets are antichains (their elements are pairwise incomparable) and so are convex.

Proposition 2. The operator ¬ anti-commutes with MinSet, MaxSet, LowerClosure,
UpperClosure: for any set X,

¬MinSet (X) = MaxSet (¬X) , ¬LowerClosure (X) = UpperClosure (¬X) ,

¬MaxSet (X) = MinSet (¬X) , ¬UpperClosure (X) = LowerClosure (¬X) .
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3 New insights into division property

We start by briefly reformulating the traditional bit-based division property in
terms of parity sets in (Subsection 3.1). Then, we present a complete link with
the set indicator (Subsection 3.2). This link helps us to develop new characteriza-
tion of transitions (Theorem 1), which in turn leads to a compact representation.
Next, Subsection 3.6 summarizes the observed convex structure of division prop-
erty transitions, setting the basement for modeling techniques described in Sec-
tion 4. In Subsection 3.7, we revisit the approach of applying input/output linear
masks and reformulate it in our framework. Finally, relationships with recent
graph indicator-based degree bounds by Carlet [7] are investigated in Subsec-
tion 3.8.

3.1 Division property and parity sets

Boura and Canteaut [5] introduced the notion of parity sets as another view of
division property.

Definition 4 (Parity set [5]). The parity set of a set X ⊆ Fn2 , denoted
ParitySet (X), is the set of all u ∈ Fn2 such that

⊕
x∈X x

u = 1.

We reformulate the bit-based division property [33,34] in terms of parity sets
and the partial order framework.

Definition 5 (Bit-based division property). A set X ⊆ Fn2 satisfies bit-
based division property K ⊆ Fn2 , if

ParitySet (X) ⊆ UpperClosure (K) .

We define two special cases of division property mainly to simplify analysis.

Definition 6. For any set X ⊆ Fn2 , define:

1. the minimal division property MinDP (X) of X as

MinDP (X) := MinSet (ParitySet (X)) ,

2. the full division property FullDP (X) of X as

FullDP (X) := UpperClosure (ParitySet (X)) .

Boura and Canteaut developed distinguishers based on UpperClosure (ParitySet (X)),
however the link with the bit-based division property was not explicitly estab-
lished. In fact, they showed [5, Prop.6] that UpperClosure (ParitySet (X)) is
precisely what is preserved when X goes through a constant addition:

UpperClosure (ParitySet (X ⊕ c)) = UpperClosure (ParitySet (X))

for all c ∈ Fn2 . It follows that bit-based division property is essentially equivalent
to parity sets in the presence of key additions.
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3.2 Link with the set indicator

We first note that the parity set of a set is closely linked to the ANF of the
indicator of the set.

Proposition 3. Parity set’s coefficients can be expressed in terms of the ANF
(Möbius) transform in the reverse direction:

u ∈ ParitySet (X) ⇔
⊕
x�u

1X(x) = 1 ⇔
⊕
x∈Fn2

xu · 1X(x) = 1.

Proof. The elements x ∈ X contributing to the sum
⊕

x∈X x
u = 1 in Definition 4

are precisely those with x � u.

Corollary 1. For any set X ⊆ Fn2 ,

ParitySet (X) = ¬SuppANF (1¬X) .

Several works [3, 5, 15] established independently the relation between the
degree of a set and its state-level division property. Let Dn

k consist of all vectors
of Fn2 of weight at least k. Then, a set X ⊆ Fn2 satisfies the division property
Dn
k if and only if the degree of the indicator 1X of the set is at most n− k. The

following proposition generalizes this relation to the case of bit-based division
property. Naturally, minimal vectors of a bit-based division property define maxi-
mal monomials that can occur in the ANF of the indicator. As minimal/maximal
vectors are compact representations of upper/lower sets, the same fact holds also
for the respective closures.

Proposition 4. Let X ⊆ Fn2 . Then,

MinDP (X) := MinSet (ParitySet (X)) = ¬MaxSet (SuppANF (1X)),

UpperClosure (ParitySet (X)) = ¬LowerClosure (SuppANF (1X)) .

Proof. Follows from Corollary 1, Proposition 2 and the fact that the set of max-
terms in the ANF does not change on adding a constant to the input:

MinSet (ParitySet (X)) = MinSet (¬SuppANF (1¬X))

=¬MaxSet (SuppANF (1¬X)) = ¬MaxSet (SuppANF (1X)) .

3.3 Division property propagation

Xiang et al. [38] proposed a method to propagate division property through
a public function (an S-box). Essentially the same method was described by
Boura and Canteaut in terms of parity sets, although not linked to the division
property. We define division property transitions based on these methods.

Definition 7 (Division property transition). Let S : Fn2 → Fm2 , u ∈ Fn2 , v ∈
Fm2 . We say that (u, v) is a valid division property transition for S and write

u
S−→ v if there exist u′ � u, v′ � v, such that Sv

′
(x) contains the monomial xu

′
.

Otherwise, we write u 6S−→ v.
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The defined kind of transition corresponds to full division property in the
output and is useful for analysis. In practice, minimal (reduced) output division
property is used as it reduces the search space of trail search algorithms.

Definition 8 (Minimal transition). Let u
S−→ v. If v is minimal such vector,

then we say that u
S−→ v is a minimal transition and write u

S−−−→
min.

v.

Transitions allow to propagate division property through a public function.
Due to monotonicity of division property, the propagation can be done by prop-
agating each element of division property set K into a set of elements of output
division property and taking a union over all such sets. This is a standard “propa-
gation rule” in the division property literature, and was also formulated in terms
of parity sets in [5, Prop.7].

Proposition 5. Let S : Fn2 → Fm2 and let X ⊆ Fn2 satisfy division property
K ⊆ Fn2 . Then, the odd-multiplicity elements of S(X) satisfy division property
K′, with

K′ =
⋃
u∈K

{
v ∈ Fm2 | u

S−→ v
}
.

Remark 2. It is sufficient to consider minimal transitions u
S−−−→

min.
v instead of all

u
S−→ v, however, even in this case the resulting division property K′ is not guar-

anteed to be minimal and has to be reduced if required so by search algorithms.

3.4 Core transitions and their characterizations

In this subsection, we describe the key component of our work: a new compact
description of the set of division property transitions of a function. This new
description is rather natural and turns out to be equivalent to the minimal
division property of the graph of the function, or, alternatively, to the set of
maximal monomials in the ANF of the graph indicator of the function.

First, we define a new subclass of transitions, called core transitions, which
are minimal transitions with additional maximality restriction of the input divi-

sion property vector. The idea is that, by Definition 7, a valid transition u
S−→ v

induces valid transitions u′
S−→ v for all u′ � u. As a result, it is sufficient to

store transitions with maximal u and minimal v. Indeed, any minimal transition

u
S−→ v can be covered by some maximal u′ such that u′

S−→ v is a core transition.

Definition 9 (Core transitions). Let u
S−→ v. If (u, v) is (maximal,minimal)

such pair, then we say that u
S−→ v is a core transition and write u

S−−→
core

v.

Remark 3. Todo and Morii [35] proposed alternative compact structure of divi-
sion property transitions. Their idea is to group input division property vectors
by the output division sets they propagate to. However, the main usage of their
compact structure was in an ad-hoc exhaustive trail search. It is not clear if
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SAT/MILP-based trail search can profit from such a structure. Our structure,
on the contrary, lends itself naturally to compact CNF/DNF/MILP encodings
(see Section 4).

We now show that core transitions have rich equivalent characterizations in
terms of the ANFs of products of outputs bits, in terms of the ANF of the graph
indicator and, finally, in terms of the (minimal) division property of the graph
of the function.

Lemma 1. Let f : Fn2 → F2, u ∈ Fn2 . Then,⊕
x∈Fn2

xuf(x) = 1 (1)

and u is minimal such vector if and only if the ANF of f contains maximal
monomial x¬u.

Proof. Let X be the support of f . By Proposition 3, (1) holds if and only if
u ∈ ParitySet (X). By Proposition 4, we get that u is minimal in ParitySet (X)
if and only if ¬u is maximal in SuppANF (1X) = SuppANF (f).

Theorem 1. Let S : Fn2 → Fm2 , u ∈ Fn2 , v ∈ Fm2 . The following statements are
equivalent:

1. u
S−−→

core
v (i.e., (u, v) is (maximal,minimal) such that u

S−→ v);

2. (u, v) is (maximal,minimal) such that Sv(x) contains the monomial xu;
3. (¬u, v) belongs to DivCoreS := MinDP (ΓS) := MinSet (ParitySet (ΓS));

(Definition 10 below)
4. the graph indicator 1ΓS (x, y) contains the maximal monomial xuy¬v.

Proof. (1⇔ 2) Observe that u
S−−→

core
v implies that Sv(x) contains the monomial

xu. Conversely, if Sv(x) contains the monomial xu, then u
S−→ v. It follows that

the extremality is transferred in both directions.
(2⇔ 3) By Definition 4, (¬u, v) ∈ MinSet (ParitySet (ΓS)) if and only if⊕

(x,y)∈ΓS

x¬uyv =
⊕
x∈Fn2

x¬uSv(x) = 1 (2)

and (¬u, v) is minimal such pair. For any fixed v, by Lemma 1, (2) holds with
¬u minimal if and only if Sv(x) contains the maximal monomial xu. It follows
that the extremality is transferred in both directions.

(3⇔ 4) Follows from Proposition 4 applied to the set ΓS .

Remark 4. While characterizations 1 and 2 are related simply by definition, the
other relations are more interesting. Remarkably, (1 ⇔ 3) identifies division
property propagation through S with the (minimal) division property of the
graph of S; (2⇔ 4) identifies extreme exponents (u, v) such that Sv(x) contains
xu with maximal monomials in the graph indicator of S.
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Note that the asymmetry of maximality/minimality of u/v is not present
in characterizations 3 and 4: valid division property transitions of both S and
S−1 (if it exists) are determined by the same set of minimal vectors (¬u, v) ∈
ParitySet (ΓS), or, equivalently, by the same set of maximal monomials xuy¬v

in the ANF of the graph indicator of S. This yields the following proposition.

Proposition 6. Let S be a permutation of Fn2 , u, v ∈ Fn2 . Then,

u
S−→ v if and only if ¬v S−1

−−→ ¬u,

u
S−−→

core
v if and only if ¬v S−1

−−→
core

¬u.

Proof. If u
S−→ v, then by Definition 7 there exist u′ � u, v′ � v such that

u′
S−−→

core
v′ and then by Theorem 1⊕

(x,y)∈ΓS

x¬u
′
yv
′

= 1.

By swapping roles of x, y, we obtain ¬v′ S
−1

−−→ ¬u′. Since ¬u′ � ¬u,¬v′ � ¬v, we

get ¬v S−1

−−→ ¬u. Equivalence for core transitions holds because the extremality
condition is the same for both directions: (¬u, v) is minimal.

Remark 5. This result is an extension of [5, Lemma 3] to the framework of
division property transitions and extremality. The cited lemma states that Sv(x)
contains xu if and only if (¬S−1)¬u(¬x) contains x¬v. Furthermore, a similar
degree-based statement was given by Boura and Canteaut already in [4].

Importantly, this proposition shows a bijection between forward and back-
ward integral distinguishers based on division property. While this relation was
known before, it is unfortunately rarely used in the literature to convert discov-
ered forward distinguishers into backward distinguishers.

3.5 Division core and its relation to transition classes

From now on, we focus on the studying the set of core transitions. Due to the
aforementioned symmetry, it is more convenient to study its characterization
as the the min-set of the parity set of the graph of S. As we shall use this set
extensively, we introduce a new term for brevity.

Definition 10 (Division Core). Let S : Fn2 → Fm2 . Define the division core
of S, denoted DivCoreS, as the minimal division property of the graph of S:

DivCoreS := MinDP (ΓS) = MinSet (ParitySet (ΓS)) =

= MinSet

(u, v) ∈ Fn2 × Fm2

∣∣∣∣ ⊕
(x,y)∈ΓS

xuyv = 1


 .
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We deduce the following characterization of division property transitions
solely from the division core.

Theorem 2. Let S : Fn2 → Fm2 . Then,

1. u
S−→ v if and only if (¬u, v) ∈ UpperClosure (DivCoreS);

2. u
S−−−→

min.
v if and only if (¬u, v) ∈ MinSetv(UpperClosure (DivCoreS));

3. u
S−−→

core
v if and only if (¬u, v) ∈ DivCoreS.

If, in addition, n = m and S is bijective:

4. v
S−1

−−→ u if and only if (u,¬v) ∈ UpperClosure (DivCoreS);

5. v
S−1

−−−→
min.

u if and only if (u,¬v) ∈ MinSetu(UpperClosure (DivCoreS));

6. v
S−1

−−→
core

u if and only if (u,¬v) ∈ DivCoreS.

Here, the subscript of MinSet defines the variable on which the min-set is com-
puted (the vectors are labeled (u, v)).

On the compactness of division core. By Sperner’s theorem, the division core,
as a min-set, has size bound O(2n+m/

√
n+m). This might seem as not so

“compact” representation. For example, linear functions with domain Fn2 contain

only vectors of weight n (to show this, consider any minimal transition u
S−−−→

min.
v

and observe that wt(¬u) + wt(v) = n). Furthermore, for a random binary
matrix Fn×m2 one can expect a large number of invertible submatrices which
translates into a large number of minimal/compact division property transitions
(see [21,39]). Perhaps counter-intuitively, it follows that linear maps are the ones
that may achieve the largest size of the division core, which could be interpreted
as having the most complex division property propagation. On the opposite side,

for a random function of full degree, most minimal transitions u
S−−−→

min.
v have v

of very small weight which translates into small-weight vectors in division core.
This in turn makes most vectors of larger weight redundant and so the division
core is expected to be a small set. The right intuition is that “heavier” functions
tend to have “simpler” division property propagation and this is exactly captured
by the division core as a compact representation.

Finally, we describe a new view on division trail composition in terms of the
division core. The proof is given in the full version of this paper [36].

Proposition 7. Let F : Fn2 → Fm2 , G : Fm2 → Fr2, u ∈ Fn2 , w ∈ Fr2. Then, there
exists a valid division trail

u
F−→ v

G−→ w

if and only if there exist a ∈ Fn2 , b, b′ ∈ Fm2 , c ∈ Fr2 such that

a � ¬u, (a, b) ∈ DivCoreF , b ∧ b′ = 0, (b′, c) ∈ DivCoreG, c � w.
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3.6 Convex structure of the set of minimal transitions

In theory, identifying valid transitions (UpperClosure (DivCoreS)) is sufficient to
identify propagation of division property and resulting integral distinguishers.
In practice, it is crucial to also remove redundant transitions to reduce the
search space of automated SAT/MILP solvers or ad-hoc search engines such
as [11, 33, 34]. Therefore, we analyze the set of minimal/reduced transitions in
more details.

Definition 11. Let S : Fn2 → Fm2 . Define the following sets:

IS :=
{

(u, v) ∈ Fn2 × Fm2 | ¬u 6
S−→ v

}
,

MS :=
{

(u, v) ∈ Fn2 × Fm2 | ¬u
S−→ v,@v′ ≺ v : ¬u S−→ v′

}
,

RS :=
{

(u, v) ∈ Fn2 × Fm2 | ¬u
S−→ v,∃v′ ≺ v : ¬u S−→ v′

}
.

Remark 6. These sets contain respectively invalid transitions, minimal transi-
tions and redundant transitions through S. The defining condition of MS is

equivalent to ¬u S−−−→
min.

v.

Proposition 8. The sets IS ,MS ,RS form a partition of Fn2 × Fm2 . Moreover,
IS is a lower set, MS is a convex set, RS is an upper set.

Proof. The conditions of set generators in the sets’ definitions clearly induce a
partition of Fn2 × Fm2 .

It is clear thatMS ∪RS = UpperClosure (DivCoreS) (both from the defini-
tions and the fact that it is the complement of IS). Since IS is the complement
of this upper set, it must be a lower set.

The convexity ofMS follows from the fact thatMS = (Fn2 × Fm2 ) \RS \ IS .
Indeed, let a, c ∈ MS . If there exists b /∈ MS such that a � b � c, then from
b ∈ IS it would follow that a ∈ IS and so a /∈ Ms. The same argument applies
to c and RS , leading to contradiction.

We emphasize that all the three sets IS ,MS ,RS can be derived from the
division core DivCoreS , highlighting its universality as a compact representation:

IS = UpperClosure (DivCoreS),

MS = MinSetv(UpperClosure (DivCoreS)),

RS = IS ∪MS .

Remarkably, these sets can themselves be expected to have compact represen-
tations in the form of max-set for IS , min-set for RS , and both min-set and
max-set for MS . We discuss concrete efficient algorithms for computing these
sets in Section 5.

Note that the maximal upper-set of removable vectors is given by

R′S := LowerClosure (MS).
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Compared to RS , it may include some extra vectors from IS (but it always is a
superset of RS). While its size is not smaller than that of RS , most often it has
a simpler structure resulting in smaller models, as we shall see later on examples
(see Table 1 in Section 4).

3.7 Linear combinations at the input/output

Lambin, Derbez and Fouque [22] noticed that division property is not preserved
under a composition of S-boxes with linear maps. One has to consider such
maps in order to find integral distinguishers with a non-cube-shaped affine space
at the input and/or a balanced linear combination of bits at the output. The
authors of [22] exhausted all 4-bit linear maps to be composed with one S-box
at the input and one S-box at the output. In [11], Derbez and Fouque showed
that exhaustion of linear maps is unnecessary and exhaustion of linear masks is
sufficient, tremendously reducing the complexity.

For the input linear masks, they use the fact that an affine space of dimension
n−1 can be defined by its 1-dimensional orthogonal complement, i.e. by its single
non-zero vector. It is thus sufficient to define a linear bijective map that maps
this vector to a single bit (completed arbitrarily), compose its inverse at the input
of an S-box in the first round (and recompute the division property propagation
through the composition), and assume this bit to be a constant and all other
bits to be active in the division trail search.

For the output linear masks, the approach is more straightforward: define
a bijective linear map that maps the chosen linear combination to a single bit,
compose it at the output of an S-Box in the last round (and recompute the
division property propagation through the composition), and, finally, check if
this single output bit is balanced.

Formulaton in our framework We now formulate this problem and simplify
its solution in our framework. For simplicity, we assume that an “S-box” covers
the full state. The case when target S-boxes cover only part of the state follows
naturally. Our analysis is restricted to using traditional division property to find
such distinguishers.

Let Sin : Fn2 → Fn2 be a bijection, F : Fn2 → Fm2 , Sout : Fm2 → Fr2. Let α ∈
Fn2 , β ∈ Fr2 be the input and the output linear masks respectively, α 6= 0, β 6= 0.
We are interested in the integral (zero-sum) distinguishers of Sout ◦F ◦ Sin with
the input linear mask α and the output mask β:⊕

x∈Fn2 ,〈α,x〉=c

〈β, Sout ◦ F ◦ Sin(x)〉 = 0, c ∈ F2 a constant.

The approach of [11,22] is to search for division trails through each of the three
steps of the composition

(〈β, Sout〉) ◦ F ◦ (Sin ◦ L−1α ),
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where Lα ∈ GLn(F2) is any such that the first coordinate of Lα(x) equals to
〈α, x〉. To ensure the precision, the first and the last step must be propagated as
units. The following theorem states an equivalent to the method of [11] sufficient
condition of existence of such an integral distinguisher based on division property.
As we will show in Subsection 4.3, this leads to easy and efficient CNF/MILP
modeling.

Theorem 3. Let Lα ∈ GLn(F2) be such that Lα(x) = (〈α, x〉 , . . .) Then, there
exists a division trail

(0, 1, . . . , 1)
Sin◦L−1

α−−−−−→ u
F−→ v

〈β,Sout〉−−−−−→ (1)

if and only if u
F−→ v and

¬u ∈ LowerClosure
(
SuppANF

〈
α, S−1in

〉)
, (3)

v ∈ LowerClosure (SuppANF 〈β, Sout〉) . (4)

Proof. The first transition by Proposition 6 is equivalent to ¬u
Lα◦S−1

in−−−−−→ (1, 0, . . . , 0),

equivalently ¬u
〈α,S−1

in 〉−−−−−→ (1), equivalent to (3). The last transition is similarly
equivalent to (4).

Remark 7. For a non-invertible Sin : Fn′2 → Fn2 , one can replace the Boolean
function y 7→

〈
α, S−1in (y)

〉
by the function

y 7→
⊕

x∈(Sin◦L−1
α )−1(y)

〈α, x〉 .

3.8 Relationships with graph indicator-based degree bounds

Recently, Carlet [7] derived new degree bounds on compositions of functions
based on the degrees of the graph indicators of the involved functions. It is
a natural question whether these bounds can beat traditional bit-based divi-
sion property and whether division property can be improved by incorporating
these bounds. In this section, we show a close relationship of these bounds with
division property propagations, based on the relationship of division property
propagation and the graph indicator given by Theorem 1.

Carlet in [8] gives an elegant expression for the graph indicator of the com-
position of functions in terms of their graph indicators.

Proposition 9 ( [7, 8]). Let Gi : Fmi−1

2 → Fmi2 , i ∈ {1, . . . , r}, let F = Gr ◦
. . . ◦G1. Then,

1ΓF (x, z) =
⊕

(y1,...,yr−1)

∈Fm1
2 ×...×F

mr−1
2

1ΓG1
(x, y1) · 1ΓG2

(y1, y2) · . . . · 1ΓGr
(yr−1, z).
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Example 3. Let H : Fn2 → Fm2 , G : Fm2 → Fr2. Then,

1ΓG◦H (x, z) =
⊕
y∈Fm2

1ΓH (x, y)1ΓG(y, z).

This expression naturally allows to bound possible monomials in 1ΓF (x, z):
(i) 1ΓF (x, z) does not contain a monomial multiple of xuz¬v if and only if (ii)

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr
(yr−1, z)

does not contain a monomial multiple of xuym1
1 ym2

2 . . . y
mr−1

r−1 z¬v. By Theorem 1,

the condition (i) is equivalent to: for any v′ � v, F v
′
(x) does not contain a mono-

mial multiple of xu. Sufficient conditions for (ii) can be derived from degree
bounds of the involved graph indicators, as done in [7]. In this way, graph indi-
cators’ degrees allow to derive upper bounds on monomials occurring in products
of outputs of the composition F .

We now show that bit-based division property verifies a stronger condition,
which in fact can be seen as a bit-based formulation of the degree-based bounds.

Theorem 4. Let F,Gi be defined as above. Let I be the formal expansion (i.e.,
no ⊕-cancellations) of

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr
(yr−1, z).

Then, I contains a monomial multiple of

xuym1
1 ym2

2 . . . y
mr−1

r−1 z¬v (5)

if and only if there exists a valid division trail

u
G1−−→ w1

G2−−→ . . .
Gr−1−−−→ wr−1

Gr−−→ v. (6)

Proof. By Theorem 1, each link in the trail has an equivalent condition on the
monomial multiple in the corresponding graph indicator:

u
G1−−→ w1 ⇔ 1ΓG1

(x, y1) contains a monomial multiple of xuy¬w1
1 ,

w1
G2−−→ w2 ⇔ 1ΓG2

(y1, y2) contains a monomial multiple of yw1
1 y¬w2

2 ,

. . .

wr−1
Gr−−→ v ⇔ 1ΓGr−1

(yr−1, z) contains a monomial multiple of y
wr−1

r−1 z¬v.

(⇒) If I contains a monomial multiple of (5), there exists one monomial per
each of 1ΓG1

,1ΓG2
, . . . such that all these monomials multiply to (5). Clearly,

there must exist w1, . . . , wr−1 such that 1ΓG1
(x, y1) contains a monomial mul-

tiple of xuy¬w1
1 , 1ΓG2

(y1, y2) contains a monomial multiple of yw1
1 y¬w2

2 (to get
ym1
1 ), etc.

(⇐) If there exists a trail of the form (6), then there exist corresponding
monomial multiples of xuy¬w1

1 , yw1
1 y¬w2

2 , etc. that obviously multiply to a mono-
mial multiple of (5).
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This theorem gives an alternative view on division property trails: a divi-

sion property trail u
G1−−→ . . .

Gr−−→ v is equivalent to a chain of monomials, one
from each of the graph indicators of the composed functions G1, . . . , Gr, such
that, in their product, all intermediate variables are fully saturated, the input
variable has an exponent succeeding u and the output variable has an exponent
succeeding ¬v. In particular, division property allows to derive an upper bound
on monomials occurring in the graph indicator of the composition.

While an existence of such a trail / a monomial chain does not mean that 1ΓF

in fact contains a monomial multiple of xuy¬v (due to the possible cancellations),
the inverse is true: for 1ΓF to contain such a monomial multiple, there must exist
a corresponding division trail.

We conclude that traditional bit-based division property is optimal in de-
termining upper bounds on monomials in 1ΓF as long as cancellations in the
product

1ΓG1
(x, y1)1ΓG2

(y1, y2) . . .1ΓGr
(yr−1, z)

are not considered.

4 CNF modeling of a convex set

In this section, we show that the convex structure of division property transitions
from Subsection 3.6 naturally lends itself to CNF models. We recall that it is
sufficient to derive constraints removing the lower set IS and the upper set RS
(or R′S).

Remark 8. Any CNF formula can be trivially converted to a MILP system,
however MILP inequalities are generally more expressive and one can expect
a significant reduction in the number of inequalities compared to the number
of clauses. Recently, Udovenko [37] developed techniques for constructing small-
est MILP models for Boolean functions. In particular, an efficient approach for
modeling monotone Boolean functions (lower/upper sets) is given and can be
directly applied to remove the lower set IS and the upper set RS/R′S optimally
(separately).

Throughout this section, we consider division property transitions in the

“directionless” (symmetric) way: for a transition u
S−→ v, we consider the vector

(¬u, v). This is done for convenience and has no extra cost since the variable
negation is free in CNF/MILP models.

4.1 Basic modeling

A lower set W is called principal if it is spanned by a single element: W =
LowerClosure ({w}). Such a lower set can be removed by one CNF clause pre-
cisely without removing any other point from the hypercube {0, 1}n. In fact, up
to negation of the variables, a principal lower set is exactly what can be removed
by a single CNF clause. It is thus a building block of general CNF modeling tools
such as the Quine-McCluskey algorithm [25,26].
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Proposition 10. Let w ∈ Fn2 . Then,

x /∈ LowerClosure ({w}) ⇐⇒
∨

i:wi=0

xi

x /∈ UpperClosure ({w}) ⇐⇒
∨

i:wi=1

¬xi.

Since a general lower set is a union of principal lower sets by definition, it can
be removed by a set of clauses each removing a principal lower set spanned by
one of the maximal elements. The case of an upper set is completely analogous.

Corollary 2. The setMS of minimal division property transitions can be mod-
eled by |MaxSet (IS)| + |MinSet (RS)| constraints (CNF clauses or integer in-
equalities).

It is also easy to show that such CNF model is optimal (in the number of
clauses), although separately for each of the two sets IS and RS . The proof is
omitted due to the page limit.

Proposition 11. Let L ⊆ Fn2 be a lower set. If a CNF formula precisely removes
L from the hypercube {0, 1}n, then it contains at least |MaxSet (L)| clauses.

We provide the sizes of the relevant sets for a variety of S-boxes in Table 1.
For optimal CNF encodings, we used the Quine-McCluskey algorithm together
with the open source SCIP optimization suite [13] to find/bound the minimum
number of clauses (approach described in [6]).

Example 4. Consider the AES S-Box S : F8
2 → F8

2 as an example. Its division core
DivCoreS contains 122 vectors (u, v) ∈ F8

2 × F8
2 with (wt(u),wt(v)) distributed

as follows:
(0, 8) : 1, (1, 1) : 25, (1, 2) : 40, (1, 3) : 6,
(2, 1) : 26, (2, 2) : 4, (3, 1) : 19, (8, 0) : 1.

Here, weights (8, 0) and (0, 8) correspond to the vectors (1, 0), (0, 1) which in
turn correspond to the division property of the domain and of its image. The
set MaxSet (IS) contains 87 maximal invalid vectors, the MinSet (RS) contains
319 minimal redundant vectors. Therefore, minimal transitions through S can
be precisely described by 406 CNF clauses (and 87 are sufficient at the cost of
allowing redundant transitions). Using the alternative upper bound allows to
further reduce the number to 87+274=361 clauses.

We compare briefly with other tools/methods. The automated tool Solva-
tore [12] generates 2921 CNF clauses. A tool from Hu-Wang-Wang [21] uses
the STP solver and generates a DNF formula by enumerating all 2001 valid
non-redundant trails. Our approach can be easily adapted to compute two DNF
formulas with much less clauses: 122 + 119 = 241. With the Quine-McCluskey
algorithm (applied to division property in [14]) we obtain the optimal value of
234 CNF and a heuristic value of ≤151 DNF clauses. This is about 2 times bet-
ter than our result, showing however that our models are close to optimal (in
particular, removing invalid and redundant trails separately is done optimally
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by Proposition 11). Most importantly, Quine-McCluskey is not applicable to
larger S-boxes while our method can produce CNF/DNF models of very good
quality.

func. S n |MinDPPTS | |DivCoreS | |MaxSet (IS)| |MinSet (RS)|
∣∣MinSet

(
R′S

)∣∣ CNF (our)
CNF
(opt.)

Present 4 47 16 20 24 24 44 26
Knot 4 49 26 32 29 27 59 40
Ascon 5 190 71 83 93 83 166 115
Keccak 5 137 57 45 75 25 70 50
Fides 6 419 188 146 359 254 400 222
Misty S7 7 1779 436 396 1000 967 1363 607
AES 8 2001 122 87 319 274 361 234
Skinny-128 8 2089 611 193 1383 198 391 246
DryGASCON-
256

9 7983 631 480 1309 552 1032 475

Misty S9 9 27 623 6755 5120 18 575 16 868 21 988
10403-
11819

LED MixColumn 16 177 643 913 177 643 913 33 412 334 974 429 33 061 66 473 -
Midori-64 Mix-
Column

16 9 834 496 9 834 496 56 39 337 984 56 112 112†

Skinny-64
MixColumn

16 1 185 921 1 185 921 40 6 324 912 44 84 84†

Midori-64 Super-
Sbox (all keys)

16 14 714 723 2 380 924 1 912 088 6 277 211 4 317 883 6 229 971 -

LED Super-Sbox
(all keys)

16 8 458 909 319 606 321 168 1 119 494 1 261 465 1 440 662 -

LED Super-Sbox
(zero key)

16 8 481 417 382 591 388 134 1 215 435 1 317 330 1 603 569 -

Table 1: Sizes of the convex sets relevant for modeling division property for
a variety of S-boxes. MinDPPTS is the set of all minimal division property
transitions. DivCoreS is the compact set containing all the information about
division property transitions. MaxSet(IS) and one of MinSet(RS), MinSet(R′S)
define the number of CNF clauses sufficient for SAT modeling (see Section 4).
† since MixColumn of Midori-64/Skinny-64 consist of 4 parallel independent 4-
bit maps, the optimal CNF was computed from concatenating 4 optimal CNF
models (28/21 clauses respectively) of each 4-bit block.

4.2 Cardinality bounds

Cardinality bounds allow to bound the number of bits equal to 1 among a given
set of variables. A popular CNF construction for encoding cardinality bounds is
due to Sinz [28] and is based on the so-called sequential counters, which encode
addition of variables in the unary representation. Although it requires auxiliary
variables, it is known to perform well on practice, since it is decided by unit
propagation. Cardinality bounds using sequential counters were used recently
for differential/linear trail search using SAT-solvers [30].
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Cardinality bounds may be particularly helpful for constraining division
property transitions, as they can remove a large number of transitions at a
very low cost. There are two particular use cases.

The first use is to replace a precise convex upper bound (e.g., MinSet (RS)

or MinSet
(
R̃S
)

) by a simpler (yet possibly imprecise) cardinality upper bound.

Here, we use the fact that removing precisely all redundant transitions is not
necessary: it is usually done as a heuristic aid for SAT solvers to reduce the
search space. For a function S, this cardinality constraint is given by wt(u||v) ≤
h, where h := maxw∈MS

wt(w) and u, v are the division property variables

modeling the transition ¬u S−→ v.
The second use is to supplement precise bounds to allow faster conflicts dur-

ing the SAT search. Cardinality bounds allow solvers to quickly skip a large
part of invalid transitions, and to process the remaining precise constraints
on the remaining smaller search space. In addition to the upper bound de-
scribed above, a supplementary lower bound is given by l ≤ wt(u||v), where
l := minw∈MS

wt(w).

The case of a linear map We consider the particular case of a linear map

S : Fn2 → Fn2 . For a minimal transition ¬u S−−−→
min.

v it is known that wt(¬u) =

wt(v) is necessary but not sufficient. In the symmetric form (u, v), this constraint
becomes

n−wt(u) = wt(v) ⇔ wt(u||v) = n.

A redundant transition (u, v) is such that wt(v) > wt(¬u), implying

wt(u||v) > n.

It follows that redundant transitionsRS can be removed with a single cardinality
constraint wt(u||v) ≤ n.

Proposition 12. For a linear map S : Fn2 → Fn2 , for some I ⊆ IS, the set
RS ∪ I can be removed with a single cardinality constraint wt(u||v) ≤ n, where
(u||v) ∈ F2n

2 .

Remark 9. It is natural to use the more strict constraint wt(u||v) = n, since it
may also remove a larger part of IS .

Remark 10. This constraint is equivalent to wt(¬u) = wt(v) and is basic and
well-known in the literature. What is important for our purposes is that it fully
removes RS .

Example 5. Consider the MixColumns matrix of LED [16], M : F16
2 → F16

2 (see
Table 1). It is such that:

|MM | = 177 643 913; |MinSet (RM )| = 334 974 429;

|MaxSet (IM )| = 33 412; |MinSet (R′M )| = 33 061.
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Despite a large number of minimal division property transitions (177M), it can
be modeled by only 33k CNF clauses plus a cardinality constraint, which adds
a negligible amount of clauses and auxiliary variables.

Remark 11. The approach of [21] (using auxiliary variables) allows to model
large linear layers (up to 64 bits), by encoding the submatrix invertability con-
dition in the problem, in a way that requires the SMT solver to find the inverse
matrix. We remark though that it was only presented in the SMT form, not in
pure SAT or MILP.

The advantage of our SAT encoding (which although has a smaller feasible
range of about 16-bit linear maps) is its simpler form and the fact that it can be
decided by unit propagation: given the input and output mask (u, v), the SAT
solver can decide its validity without making further guesses (although at the
cost of verifying a possibly large number of clauses).

4.3 Linear masks at the input / at the output

In Subsection 3.7, we derived simple conditions for applying linear masks at the
input and/or at the output. We now show how to model these conditions. We
recall that we consider a composition Sout ◦F ◦Sin with an input linear mask α
and an output linear mask β. Theorem 3 provides the following necessary and

sufficient conditions (together with the validity of u
F−→ v):

¬u ∈ LowerClosure
(
SuppANF

〈
α, S−1in

〉)
,

v ∈ LowerClosure (SuppANF 〈β, Sout〉) .

These three conditions can be efficiently modeled by CNF/MILP formulas as
was described in Subsection 4.1.

Moreover, it is sufficient to check if a transition u
F−→ v is valid for any of

maximal exponents ¬u, v in the ANFs of
〈
α, S−1in

〉
and 〈β, Sout〉 respectively.

However, the maximality of v can not be guaranteed in practice since the corre-

sponding trail u
F−→ v may be redundant, while standard modeling approaches

disallow redundant transitions for efficiency reasons.
For the input case, we can restrict the division property mask of the input

to F to take values only from ¬MaxSet
(
SuppANF

〈
α, S−1in

〉)
, with the goal of

reducing the search space. Since a max-set is an antichain, it is convex, and can
be modeled by removing the complementary lower and upper bounds. Formally,
define

U := MaxSet
(
SuppANF

〈
α, S−1in

〉)
,

P := MaxSet
(

UpperClosure (U)
)
,

Q := MinSet
(

LowerClosure (U)
)
.

Then, a vector x ∈ Fn2 belongs to U (we set x := ¬u) if and only if

(x /∈ LowerClosure (P )) ∧ (x /∈ UpperClosure (Q)),

which can be encoded by |P |+ |Q| CNF clauses (or MILP inequalities).
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5 Algorithmic framework for dense sets

5.1 Bitwise transformations, lower, upper, min-, max-sets

We start by introducing a simple yet very generic and powerful tool for ma-
nipulating dense subsets of Fn2 represented by their indicator vectors. This is a
straightforward abstraction of well-known algorithms such as the Möbius trans-
form for computing the ANF, the Walsh-Hadamard transform, sum-over-subsets
technique, etc. The tool is described in Algorithm 1.

Algorithm 1 Bitwise multidimensional transform

Input: array X ∈ A2n , transformation map f : A2 → A2, mask I ∈ Fn
2 set to 1 by

default
Output: in-place transformed array X ∈ A2n

Complexity: O(wt(I)2n) ≤ O(n2n)

1: function Transform[f, I](X)
2: for all i ∈ {0, . . . , n− 1}, s.t. I has i-th bit set do . 0-based
3: for all j ∈ {0, . . . , 2n − 1}, s.t. j has (n− 1− i)-th bit set do . 0-based
4: (Xj−2i , Xj)← f(Xj−2i , Xj)

5: return X

Definition 12. Define the following maps with the signature (F2)2 → (F2)2:

XOR-up : (a, b) 7→ (a, b⊕ a),

XOR-down : (a, b) 7→ (a⊕ b, b),
OR-up : (a, b) 7→ (a, b ∨ a),

OR-down : (a, b) 7→ (a ∨ b, a),

LESS-up : (a, b) 7→ (a, b ∧ ¬a), equiv. b← b ∧ [a < b],

MORE-down : (a, b) 7→ (a ∧ ¬b, b), equiv. a← a ∧ [a > b].

Proposition 13. The defined transformations have the following effects:

1. Transform[XOR-up] computes the Möbius transform (involution), i.e. trans-
forms the truth table of a Boolean function into its ANF and vice versa.

2. Transform[XOR-down] computes the involution ParitySet;
3. Transform[OR-up] computes UpperClosure.
4. Transform[OR-down] computes LowerClosure.
5. Transform[LESS-up] ◦ Transform[OR-up] computes MinSet.
6. Transform[MORE-down] ◦ Transform[OR-down] computes MaxSet.

Proof. The proofs can be done by induction on the bit-position.

Remark 12. The transformations can be efficiently batched in an efficient bitslice
fashion, by lifting the set A and operations from F2 to Ft2 where t is the number
of considered sets.
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5.2 Division property of a set

Malviya and Tiwari [23] consider the problem of computing the minimal division
property of a given (multi)set X. They claim classical complexity O(n2n|X|) and
quantum complexity O(n2n

√
|X|).

The relation between the division property and the set indicator given by Propo-
sition 4 together with the fast MinSet algorithm from the previous subsection
lead to a simple and efficient classical algorithm with complexity O(n2n) for the
problem (see Algorithm 2).

Algorithm 2 Minimal division property of a set

Input: X ⊆ Fn
2

Output: MinDP (X) ⊆ Fn
2

Complexity: O(n2n)

1: G← indicator vector of X (∈ F2n

2 )
2: G← Transform[XOR-down] (G) . parity set of X
3: G← Transform[OR-up] (G) . upper set of parity masks
4: G← Transform[LESS-up] (G) . min-set of parity masks
5: return G . MinDP (X)

5.3 Division core and propagation table

Let S : Fn2 → Fm2 . By definition, DivCoreS := MinDP (ΓS), which can be com-
puted by Algorithm 2. This approach leads to time and memory complexity
O((n + m)2n+m). In particular, for bijective S-Boxes we get the time complex-
ity O(n22n). The complexity is independent of the S-box and of the size of the
division core.

Recall that the set of all valid division property transitions through S can
be computed as (1, 0)⊕UpperClosure (DivCoreS). To obtain the usual reduced
division property propagation table (i.e., all minimal transitions), we can simply
compute partial min-set on the second coordinate. See Algorithm 3 for details.

Algorithm 3 Division property propagation table (only minimal transitions)

Input: S : Fn
2 → Fm

2 as a lookup-table

Output: reduced DPPT of S: D =
{

(u, v) ∈ Fn
2 × Fm

2 | u
S−−−→

min.
v
}

Complexity: O((n + m)2n+m)

1: D ← DivCoreS . Algorithm 2 on ΓS , without redundant steps 3-4
2: D ← Transform[OR-up] (D) . full DPPT (up to ¬u)
3: D ← Transform[LESS-up, (0, 1)] (D) . min-set on v; =MS from Definition 11
4: return D ← (1, 0)⊕D . compute ¬u
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This in particular achieves “quadratic” complexity O(n22n), an improvement
over the “cubic” complexity O(23n) claimed in [11] for computing the DPPT
using algorithm from [38] (in the case m = n).

Finally, from the set MS computed by Algorithm 3 we can easily compute
the necessary min-/max-sets and respective complementary sets required for
modeling:

IS = UpperClosure (DivCoreS),

RS = IS ∪MS ,

R′S = LowerClosure (DivCoreS).

For the compact CNF modeling (Section 4), it is left to compute MaxSet (IS)
and MinSet (RS) (or MinSet (R′S)).

5.4 Compact representation (advanced algorithm)

In this subsection, we describe a breadth-first search algorithm which performs
much better for “heavy” functions, i.e., those having many high-degree mono-
mials in most products of output bits, implying a small size of the division core
and a small number of non-trivial invalid transitions. In this algorithm, we as-
sume access to the lookup table of the function and the memory footprint is of
the same magnitude, so this approach is limited up to about 32-bit functions on
practice.

We restrict the description to the case of a bijective function S : Fn2 → Fn2
for simplicity, as non-bijective functions would require more fine-grained case
analysis due to possible degeneracy.

We consider first vectors (u, v) ∈ DivCoreS with u = 0 or v = 0. The case
of v = 0 corresponds to the minimal division property of the domain which
leads exactly to (1, 0) ∈ DivCoreS . The case of u = 0 can be exhausted by
computing the minimal division property of the image of S (more precisely, of
the set of its elements with odd multiplicity). For bijective S this case leads
to only (0, 1) ∈ DivCoreS . Note that all predecessors of these vectors define
invalid transitions (have parity zero), and should be explicitly excluded to avoid
enumeration of the 2 · 2n “trivial” pairs.

We are going to explore all possible nonzero u, v in a breadth-first manner
(from low weight to high weight), until we obtain the full division core of S. Given
a pair (u, v) of unknown parity, and a promise that all its strictly preceeding
vectors have parity zero (due to the exploration order), we can compute its
parity by computing the parity set of (the support of) Sv or of (S−1)u; we
choose the one with the minimal weight (wt(v) or wt(u)). The parity set of,
say, Sv, may provide many other vectors (u′, v) ∈ DivCoreS . In particular, we
consider all minimal u′ in the parity set as candidates and save the corresponding
pairs (u′, v) in a set D. Although D may also include redundant vectors, each
vector of DivCoreS will be present in one of such lists of candidates.

After the main step, if (u, v) has parity one, we add it to the division core
(it is guaranteed to be minimal due to the exploration order) and continue with

23



the next pair in the queue. Otherwise, if (u, v) has parity zero, we consider
its successors for adding to the exploration queue. However, for each pair, we
maintain a counter of its direct predecessors that were visited and have parity
zero. The pair is added to the queue only when the counter is full, i.e. when
the last direct predecessor is visited. This allows to avoid duplicate processing
of (u, v), and, more importantly, ensures that all predecessors have parity zero
and the new pair is not redundant. In this way, when a new pair is visited and
it belongs to the list D of parity-1 pairs, we know that this pair is minimal and
so belongs to the division core.

The algorithm effectively explores full set IS and the bordering subset of
UpperClosure (DivCoreS) (in fact, among them, only elements of DivCoreS are
visited), which is at most 2n times larger. Note that all the predecessors of (1, 0)
and (0, 1) are excluded. Let

I×S := {(u, v) ∈ IS | u 6= 0, v 6= 0} .

Then, the algorithm performs at most 2n
∣∣I×S ∣∣ iterations of the algorithm. Each

iteration is dominated by an n-bit ParitySet computation together with its min-
set (time n2n). The total time complexity is upper bounded by O

(∣∣I×S ∣∣n22n
)
.

Note however that, due to maintaining the list D of parity-1 pairs, many visited
pairs do not incur a parity set computation. In addition, by storing masks u and
v for which the parity sets were already computed, we can avoid recomputing
them for many pairs from I×S as well. We conclude that the algorithm is expected
to be much faster on practice.

Due to the page limit, the pseudocode is given in the full version of this
paper [36].

Computing complete compact representation Since the algorithm effec-
tively enumerates full I×S , its max-set can be computed by marking redundant
vectors during the enumeration (in addition, we need to manually add direct
predecessors of (0, 1) and (1, 0) to avoid enumerating their exponentially-sized
lower sets). For the compact modeling, it is left to compute MinSet (RS). For
this purpose, we derive an alternative expression for RS .

Proposition 14. Let S : Fn2 → FM2 . Then,

RS =
⋃

(u,v)∈DivCoreS

{(u′, v′) ∈ Fn2 × Fm2 | u′ � u, v′ � v} .

Proof. Each set in the union defines redundant vectors identified by an element
(u, v) ∈ DivCoreS . Conversely, each redundant vector must have an associated
irredundant vector from (u, v) ∈ DivCoreS .

It follows that MinSet (RS) can be computed from DivCoreS by replacing
each vector (u, v) ∈ DivCoreS by the set of vectors (u, v′), where v′ is taken from
direct successors of v (i.e., v′ � v,wt(v′) = wt(v) + 1). However, redundant
vectors may occur there and a final computation of MinSet is needed. Assuming
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sparse DivCoreS , it makes sense to use the naive quadratic MinSet algorithm
instead of the dense one. The final complexity of computing MinSet (RS) is thus

upper-bounded by O(|DivCoreS |2 · n2).

Corollary 3. Let S : Fn2 → Fm2 . Then, |MinSet (RS)| ≤ m · |DivCoreS | .

Example 6. We ran the algorithm on a randomly generated 32-bit bijective S-
box. Together with the generation and inversion, it took less than a core-day on
a laptop with 64GB RAM. The resulting numbers are:

|DivCoreS | = 7 152, |MaxSet (IS)| = 2 958, |MinSet (RS)| = 40 093.

These numbers show that it would even be possible to model such an S-box in a
cipher. Although it is unlikely that such a cipher would be of interest, this proof-
of-concept show the power of the algorithm and of the compact representation to
capture the simplicity of “heavy” S-boxes (i.e., the compactness of the maximal
sets of monomials).

6 Application to LED

Derbez and Fouque [11] increased precision of traditional division property by
two techniques: (1) computing “perfect” division property propagation tables
of Super-Sboxes; (2) checking linear combinations of bits (inside Super-Sbox
boundaries) at the input and at the output. In addition, the authors designed
an ad-hoc search method, since modeling 16-bit S-boxes was not possible with
state-of-the-art techniques. They considered lightweight block ciphers with 4-bit
S-boxes and 16-bit Super-Sboxes, such as Midori64, Skinny-64, LED [16]. Their
approach succeeded for Midori64 and Skinny-64, for which they improved best
integral distinguishers by 1-2 rounds. However, the running time during their
experiments with LED was not reasonable.

In this section, we apply our new framework to handle this case. The best
integral distinguisher for LED is due to Hu, Wang and Wang [21], who managed
to model perfectly the MixColumn matrix of LED, which is MDS. The distin-
guisher covers 7 rounds, with 63 input active bits and full output state balanced.
Full balanced state may hint towards possibility of weaker distinguishers (par-
tially balanced state) on 8 or more rounds. We set to evaluate 8 rounds of LED
using the two techniques by Derbez and Fouque implemented using our advance-
ments. As we shall see, these two techniques are insufficient to find an 8-round
integral distinguisher, if it exists.

All experiments were done on the version of LED with 128-bit key (the key
size affects the constants in the Super-Sboxes).

6.1 Structure of LED and its model

The structure of LED is particularly convenient for our analysis. Each round con-
sists of four standard operations: AddConstants(AC), SubBytes(SB), ShiftRows(SR),
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MixColumns(MC). The state of LED is a 4× 4 array of 4-bit nibbles. The key is
added only after every 4 rounds (a step).

The 8-round LED has a natural Super-Sbox decomposition: 4 rounds of
Super-Sboxes (SB → MC → AC2i+1 → SB, applied on columns) with the
SR → MC → SR linear layers in-between. For example, the following equa-
tion describes the Super-Sbox decomposition of the first two rounds (note that
SR commutes with SB):

AC0 → SB→ SR→ MC→ AC1 → SB→ SR→ MC

= AC0 → SR→ (SB→ MC→ AC1 → SB)→ SR→ MC.

The key addition happens outside of the Super-Sboxes and thus does not af-
fect the modeling. However, the constant addition AC does affect Super-Sboxes,
and we compute the division property transitions for each Super-Sbox sepa-
rately, using the actual constant in the middle. In the following subsection, we
describe modeling details for the two main components: Super-Sboxes and the
MixColumns linear layer.

6.2 Modeling details

As our theoretical analysis shows that division property can be very naturally
modeled by pure CNF formulas, we set to use a bare SAT-solver (not an SMT-
solver). We chose Kissat [2], a recent solver which showed strong performance
at a recent SAT competition [19].

We modeled 2 Super-Sbox rounds with SR ◦MC ◦ SR layers in-between and
outside. The missing 2 Super-Sbox rounds are treated by the linear mask analysis
(Subsection 3.7) and by trivial Super-Sbox transitions 116 → 116, 016 → 016.
Each such model took less than a few minutes to solve on a laptop with an
Intel(R) Core(TM) i5-10210U CPU.

Modeling MixColumn matrix The MixColumn matrix of LED is an MDS matrix
M mapping F4

24 to itself. We apply directly our algorithms to compute the com-
plementary lower and upper bounds on division property transitions. The lower
bound (removing invalid transitions) consists of 33 412 vectors, the upper bound
(removing redundant transitions) contains 334 974 429 vectors, the alternative
upper bound contains 33 061 vectors. The total number of minimal transitions
is 177 643 913. We observe that 33k clauses is reasonable for the lower bound.
However, the upper bound is unnecessarily large. Therefore, we used the cardi-
nality constraint described in Subsection 4.2 to remove RM and used the 33k
clauses to remove IM .

Modeling Super-Sbox We provide numbers for the case of Super-Sbox with the
zero constant; the cases of other constants are similar. The division core contains
382 591 vectors and the number of valid minimal transitions is 8 481 417; the
complementary lower and upper bounds contain 388 134 and 1 215 435 vectors
respectively. These number are rather large, but still in a feasible range of modern
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SAT solvers. We used the 388 134 clauses to remove invalid trails precisely, while
we used a cardinality bound to remove a part of redundant trails, to avoid using
the 1 215 435 clauses per Super-Sbox for removing all redundant trails.

6.3 Exhausting all linear masks

We applied the approach from Subsection 3.7 to search for distinguishers with
linear masks applied to an input and an output Super-Sbox.

Naive approach would be to exhaust all possible linear masks α, β and check
the existence of respective distinguishers. However, as noticed by [11], many lin-
ear masks are redundant: an absence of distinguishers for one mask may imply
absence of distinguishers for others, making them redundant (in case a distin-
guisher is found, redundant masks may be re-evaluated if needed).

On practice, many linear combinations turn to have the same set of maxterms
in the ANF. For example, for the Super-Sbox of LED with the zero constant,
the number of unique sets of maxterms among linear combinations of outputs is
only 1785 (out of 65 535). The first step is thus to remove masks with duplicate
sets of ANF maxterms.

From Theorem 3 it is clear that a mask is redundant if the lower closure of the
respective ANF (i.e., that of

〈
α, S−1in

〉
or 〈β, Sout〉) covers the lower closure of the

ANF of another mask. As a result, we only need to consider masks corresponding
to minimal by inclusion lower closure of the ANF. In the example constant-0
Super-Sbox of LED, the 1785 maxterm-unique ANFs reduce further to 255 (by a
pairwise comparison). For the Super-Sbox’ inverse, among 2021 maxterm-unique
combinations again only 255 are minimal by (lower closure) inclusion.

Still, a straightforward search (as done in [11] for other ciphers) would require
solving 16×255×255 ≈ 1 million (4×4 combinations of input and output Super-
Sboxes) of search instances. This may be a feasible goal but it would require a
significant computational effort. We describe a natural optimization that shows
to be particularly helpful in the case of LED.

Reusing trails Usually, one may expect that many linear combinations of

output bits have similar ANFs. Therefore, a trail ¬u F−→ v satisfying conditions
of Theorem 3 for a pair of masks (α, β), may satisfy the conditions for some
other pairs of masks (α′, β′) as well, even if both pairs correspond to unique and
non-redundant ANFs. This condition can be checked much faster than solving a
SAT instance. This suggests the following optimization: before solving the SAT
instance for a pair of masks (α, β), check whether any previously found trail
satisfies the condition.

This approach works well for the 8-round LED. For each combination of
input/output Super-Sbox, about 30 trails are sufficient to show that the Super-
Sbox model of 8-round LED does not allow to find integral distinguishers. All
computed trails are provided in the code repository of the paper. An example
trail is provided in Figure 1.
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⟨α,x⟩�

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

SuperSbox

1111 1111 1111 1111

0010 1111 1111 1111

1111 1111 1111 1111

0110 1111 1111 1111

SR ○MC ○ SR

1111 1011 1111 1101

1111 1111 1101 1111

1111 1111 1111 1111

1101 1111 1101 1111

SuperSbox

0100 0011 1000 1000

0001 1111 0100 1111

1111 0001 0100 1010

1111 1111 0110 0100

SR ○MC ○ SR

0000 0000 1111 0000

0111 1011 0000 0011

1011 1101 1010 1101

0011 1101 0111 0111

SuperSbox

0000 0000 0100 0000

1010 0000 0000 0100

0000 0000 0000 0000

0000 0010 0010 0000

SR ○MC ○ SR

0000 0000 0000 0000

0000 0000 0000 0000

1011 0000 0000 0000

0111 0000 0000 0000

SuperSbox 11

⟨β,x⟩

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

Fig. 1: Example division trail from the 1st input Super-Sbox to the 1st output
Super-Sbox. Covers input masks α such that the ANF of

〈
α,SSB−10,0(x)

〉
contains

a multiple of x4x5x7x12x15 (zeroes in the first column after the first Super-
Sbox), output masks β such that the ANF of 〈β,SSB3,0(y)〉 contains a multiple
of y8y10y11y13y14y15 (ones in the first column before the last Super-Sbox).

6.4 Summary

Using the described techniques, we managed to show that integral distinguishers
for the 8-round LED (and, by Proposition 6, for its inverse), if any exists, can not
be found using traditional bit-based division property even with perfect Super-
Sbox modeling and arbitrary linear masks applied to Super-Sboxes at the input
and at the output. To do this, we found a small set of division trails through
8-round LED that, together with Theorem 3, proves the claim.
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