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Abstract. Combining several primitives together to offer greater secu-
rity is an old idea in cryptography. Recently, this concept has resurfaced
as it could be used to improve trust in new Post-Quantum (PQ) schemes
and smooth the transition to PQ cryptography. In particular, several
ways to combine key exchange mechanisms (KEMs) into a secure hybrid
KEM have been proposed. In this work, we observe that most PQ KEMs
are built using a variant of the Fujisaki-Okamoto (FO) transform. Thus,
we propose several efficient combiners that take OW-CPA public-key en-
cryption schemes (PKEs) and directly build hybrid IND-CCA KEMs.
Our constructions are secure in the ROM and QROM and can be seen
as generalizations of the FO transform. We also study how the hash
functions (ROs) used in our transforms can be combined in order to im-
prove efficiency and security. In a second part, we implement a hybrid
KEM using one of our combiners as a proof-of-concept and benchmark
it. More precisely, we build a hybrid IND-CCA KEM from the CPA-
secure versions of HQC and LAC, two NIST Round 2 PQ proposals. We
show that the resulting KEM offers comparable performances to HQC,
thus improving security at a small cost. Finally, we discuss which PQ
schemes should be combined in order to offer the best efficiency/security
trade-off.

1 Introduction

Redundancy is one of the most important concepts of computer science, mostly
used to prevent the failure of one component affecting the whole system. In
cryptography, the same idea has been used under different terms and in differ-
ent forms. For instance, increasing the security of DES by performing multi-
ple encryptions was studied by Merkle and Hellman in 1981 [18] and in 2005,
Herzberg [13] studied so-called tolerant encryption schemes, which remain se-
cure even if one or several of their components are broken. However, the topic
became popular in the last few years, following the launch of the post-quantum
(PQ) standardization process.

As promising developments have been made in the development of quantum
computers, the need for secure post-quantum public-key cryptography (PKC)
primitives is pressing. This led the US National Institute of Standards and Tech-
nology (NIST) to launch a post-quantum standardization process for public-key
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encryption (PKE), key-exchange mechanisms (KEMs) and signatures in 2017.
In the second round, 26 proposals were retained and only 7 have been selected
for the third round of this process (+8 “alternate candidates”).

Most of the assumptions the PQ schemes are based on (e.g. learning with
errors, syndrome decoding) have been less extensively studied than their classical
counterparts (e.g. factorization, discrete logarithm). Thus, combining several
of these schemes into one is considered a sound idea. For example, one could
combine both a standard PKE/KEM scheme with a PQ one, and ideally the
resulting cryptosystem should be secure as long as one of the underlying schemes
is secure. Such systems have been popularized under the term hybrid schemes
and the way the underlying systems are combined is called a combiner. Moreover,
if the resulting hybrid scheme is secure as long as one of the underlying systems
is secure, the combiner is said to be robust.

When it comes to PQ cryptography, hybrid schemes have many advantages,
such as:

1. Guaranteeing security as long as practical quantum computers do not exist
as discussed above.

2. Fulfilling the standards requirement by combining a standardized scheme
with another one which is not. This possibility is actively considered by
NIST1.

3. Allowing a smooth transition between classical and PQ cryptography in
practice. Hybrid cryptography would allow support of both classical and PQ
schemes, allowing compatibility between older and newer systems.

4. Combining multiple PQ schemes together might offer better confidence as
most of the problems/assumptions are newer and less studied. Such hybrid
schemes would come at the cost of efficiency, however combining two efficient
schemes might result in a more efficient scheme than one inefficient one. Such
ideas and issues were briefly discussed on the NIST PQ forum2. We focus
mostly on this application of hybrid systems in this work.

Unfortunately, hybrid schemes do not offer much improvement in terms of
theoretical security. Indeed, if both underlying schemes require 2λ operations to
be broken, the hybrid system would be broken in 2λ+1 operations (i.e. we gain
only 1 bit of security). In practice however, the security gain might be better,
depending on the underlying schemes. Indeed, one might reasonably argue that
the probability of a major breakthrough in two different problems believed to
be hard by the community is lower than the probability of one (but even more
devastating) breakthrough. In any case, while the practical security offered by
hybrid cryptosystems obviously depends on many parameters, we think that
such schemes offer a greater security boost than what can be deduced from the
theoretical bounds only.

1 https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
2 https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/

msRrR13muS4

https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/msRrR13muS4
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/msRrR13muS4
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Fig. 1: Solid arrows indicate results implied by our combiners, bold arrows in-
dicate QROM security. The dashed arrow indicates results from Hofheinz et
al. [14].

Our contributions

Several authors have considered KEM or signature combiners targeting post-
quantum systems in recent years [5,3,11]. However, all the combiners introduced
in these papers work in a black-box manner on IND-CCA KEMs. That is, com-
biners that take two KEMs (or signature schemes) as inputs and output the
hybrid construction. Yet, most PQ KEM proposals share a very similar struc-
ture: an OW/IND-CPA secure PKE is introduced and then the Fujisaki-Okamato
(FO) transform or a variant (e.g. [9,10,14,22]) is applied to give an IND-CCA
KEM. Therefore, one could try to directly combine the IND-CPA schemes to
give an IND-CCA KEM, hopefully getting better performances. Therefore, we
present in this report several hybrid FO-like transforms which combine two OW-
CPA PKEs into one IND-CCA KEM. We also generalize these constructions to
n schemes (i.e. n PKEs are combined into one KEM).

Compared to previous work, our combiners are simpler as they do not require
extra primitives such as special types of PRFs or MACs. As a result, they are
slightly more efficient by removing calls to these primitives and by optimizing
the use of hash functions. Finally, our combiners follow a different paradigm as
they replace FO transforms. Thus, they would likely be implemented in cryp-
tographic libraries directly, whereas previous combiners would likely be imple-
mented in applications/protocol libraries (e.g. openssl). Hence, our constructions
offer another approach that might be useful to implementors, for example for
optimization or security purposes.

The main disadvantage of FO transforms is that they are only secure in the
random oracle model (ROM) and we prove the security of our FO-like hybrid
combiner in the ROM as well. However, as all PQ IND-CCA KEM submitted to
the NIST process are only proven secure in the ROM, it does not add an extra
assumption. We also prove that one of our combiners is secure in the Quantum
Random Oracle Model (QROM). The results are summarized in Figure 1.

At a high level, our combiners share the same structure as a system that
would apply a robust PKE combiner (e.g. concatenating ciphertexts) followed
by a FO-like transform to get a KEM. However, having one scheme for the
whole process allows a fine-grained control over the way key derivation and de-
randomization are performed, in turn offering better flexibility. For instance, we
study how one can combine hash functions (i.e. random oracles) s.t. our main FO-
like combiner is more efficient or secure. More precisely, we define the properties
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the functions g (used to derive random coins in our construction) and h (used
to derive the shared key) should have in order for our construction to be secure.
Such theoretical analysis is important, as it was demonstrated that Random
Oracles in FO transforms are easily misimplemented in practice [1]. Therefore,
by presenting generic n-PKEs-to-KEM combiners with detailed security proofs
and several examples of ROs combinations, we hope to offer clear flexibility and
security guarantees to implementors.

As a proof of concept, we implemented a hybrid KEM based on the IND-CPA
version of HQC and LAC, two round 2 proposals to the NIST PQ standardisation
process. We call this hybrid KEM hqc lac 128 and we report and analyse how
this scheme compares to the other round 2 proposals3. In particular, we show
that the performance of the hybrid scheme is comparable to the performance
of the least efficient underlying scheme (i.e. HQC in this case). Moreover, as
our combiner is highly parallelizable, our tests show that a parallelized version
of hqc lac 128 is as efficient as HQC in term of speed, excluding a negligible
overhead (mainly due to the creation of an additional thread). We think this
demonstrates that using a hybrid PQ system in place of a single PQ scheme
may increase significantly the security at a small cost.

Finally, we compute the theoretical performance (based on the data from
eBACS [2]) of every possible hybrid scheme based on two PQ IND-CPA schemes
that are based on assumptions of a different type (e.g. a lattice-based scheme with
a code-based scheme). We discuss the performance of the most efficient ones in
two metrics, namely public key/ciphertext size and encapsulation/decapsulation
speed. This analysis shows that a given hybrid scheme struggles to perform as
well as an efficient non-hybrid one in both metrics.

Related work

Many authors have considered robust combiners for different primitives, like
combiners for PKE [6,25], hash functions [7,8], commitment schemes [13], PQ
signatures [5], AEAD [20]. Recently, robust combiners for KEM have also been
considered by Giacon et al. in [11]. In that work, they propose various robust
combiners in the standard model and in the random oracle model that take
two IND-CCA KEM and output another IND-CCA KEM. Similarly, Bindel et
al. [3] propose similar robust KEM combiners which are secure against quantum
adversaries. Our combiners differ from these as we aim at building a monolithic
IND-CCA KEM based on several IND-CPA (or OW-CPA) PKEs. In a way,
we bypass the intermediate KEM constructions, as many KEMs are based on
FO-transformed IND-CPA schemes.

Another related line of work is the construction of Fujisaki-Okamoto (FO)-
like transforms [9,10], which have been a hot topic these last years. Several
variants meant to be secure in the quantum random oracle (QROM) have been
proposed along with tighter security proofs [14,22,21,17]. Our combiner can be

3 At the time of the tests, round 3 proposals were not announced.
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seen as a generalization of a FO-like transform as it takes multiples CPA-secure
PKEs and outputs a robust IND-CCA KEM.

2 Notation

Let A be a randomized algorithm, then we write b←$A to indicate b is assigned
the value output by A. Similarly, if Ψ (resp. X ) is a distribution (resp. a set),
then x←$Ψ (resp. x←$X ) means that x is sampled uniformly at random from
Ψ (resp. X ). We denote by 1P the indicator function which returns 1 if the
predicate P is fulfilled and 0 otherwise. We write [n] the set {0, 1, . . . , n− 1}.

Let A be an algorithm. Then, we write A ⇒ b to denote the event A outputs
b. Finally, in an algorithm (or game) abort means the algorithm is stopped and
”output b” means the algorithm is stopped and b is returned.

3 PKC and KEM

We recall several standard definitions in Public-Key Cryptography, namely PKE
and KEM.

3.1 Public-Key Encryption scheme

Definition 1 (Public-Key Encryption). A Public-Key Encryption scheme
is composed of four algorithms setup, gen, enc, dec:

• pp←$ setup(1λ): The setup algorithm randomly generates the public param-
eters pp according to a security parameter λ.

• (pk, sk)←$ gen(pp): The key generation algorithm takes the public parameters
as inputs and outputs the public key pk and the secret key sk.

• ct←$ enc(pp, pk, pt): The encryption algorithm takes as inputs the public pa-
rameters pp, the public key pk and a plaintext pt ∈ M and it outputs a
ciphertext ct.

• pt′ ← dec(pp, sk, ct): The decryption procedure takes as inputs the public
parameters pp, the secret key sk and the ciphertext ct ∈ C and it outputs a
plaintext pt′ ∈M∪ {⊥}.

The setup, gen and enc are probabilistic algorithms that can be made determinis-
tic by adding random coins as inputs. The decryption procedure is deterministic.
Finally, for the sake of simplicity, we omit the public parameters in the inputs
from now on.

Correctness. We define the δ(qH)-correctness in the random oracle model (ROM)
as in [14], using the game CORR defined in Figure 2. We say a PKE scheme is
δ(qH) correct if for any ppt adversary A making at most qH adversary to the
random oracle H, we have

Pr[CORRPKE(A)⇒ 1] ≤ δ(qH , λ)
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CORRPKE(A)

pp←$ setup(1
λ

)

(pk, sk)←$ gen(pp)

pt← AH(pk, sk)

ct←$ enc(pk, pt)

return 1dec(sk,ct)6=pt

Fig. 2: Correctness game.

IND-ATKbPKE(A)

pp←$ setup(1
λ

)

(pk, sk)←$ gen(pp)

define ct∗ ← ∅

pt0, pt1 ← A
OATK1

(pk)

ct∗ ←$ enc(pk, ptb)

b
′ ← AO

ATK2
(pk, ct∗)

return b
′

Oracle ODec(ct)

1 : if ct = ct∗ : return ⊥

2 : pt′ ← dec(pp, sk, ct)

3 : return pt′

Fig. 3: Indistinguishability games.

where λ is the security parameter, we omit it from now on for the sake of sim-
plicity. That is, no adversary can find with probability greater than δ(qH) a
plaintext such that its encryption does not decrypt to the original plaintext.
The correctness δ might depend on the number of queries to the RO, thus it is
represented as a function of qH . The correctness in the standard model is the
same except δ is fixed.

Definition 2 (IND-CPA/CCA/CCA1). We consider the game defined in
Figure 3, where the oracles given in each game are defined as in the left of
Table 1. A PKE scheme PKE = (setup, gen, enc, dec) is IND-ATK for ATK ∈
{CPA,CCA,CCA1} if for any ppt adversary A we have

Advind-atk
A,PKE =

∣∣Pr
[
IND-ATK1

PKE(A)⇒ 1
]
− Pr

[
IND-ATK0

PKE(A)⇒ 1
]∣∣ = negl(λ)

where Pr
[
IND-ATKbPKE(A)⇒ 1

]
is the probability that A wins the IND-

ATKbPKE(A) game defined in Figure 3.

Plaintext and Validity Checking. We also recall three less common security def-
initions: One-Wayness under Plaintext-Checking Attacks (OW-PCA)/Validity
Checking Attacks (OW-VA)/Plaintext and Validity Checking Attacks (OW-
PVCA). These notions are useful when proving the security of FO-like trans-
forms, as shown by Hofheinz et al. [14]. All these notions are weaker than IND-
CCA but they model the concept of reaction attacks, that is when an adversary
can observe whether a decryption is successful or not.
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Table 1: Oracles for IND and OW games.

ATK CPA CCA1 CCA

OATK1 ⊥ ODec ODec

OATK2 ⊥ ⊥ ODec

ATK CPA PCA VCA PVCA

OATK ⊥ OPCO OVCO OPCO,OVCO

OW-ATKPKE(A)

pp←$ setup(1
λ

)

(pk, sk)←$ gen(pp)

pt∗ ←$M

ct∗ ← enc(pk, pt∗)

pt′ ← AO
ATK

(pk, ct∗)

return 1pt′=pt∗

Oracle OPCO(pt, ct)

1 : pt′ ← dec(pp, sk, ct)

2 : return 1pt′=pt

Oracle OVCO(ct 6= ct∗)

1 : pt′ ← dec(pp, sk, ct)

2 : return 1pt′∈M

Fig. 4: One-Wayness games.

Definition 3 (One-Wayness and Plaintext/Validity Checking). Let M
be the message space, PKE a PKE scheme and we consider the games defined in
Figure 4 with the different oracles as defined on the right in Table 1. Then, PKE
is OW-ATK, for ATK ∈ {CPA,PCA,VCA,PVCA}, if for any ppt adversary A
we have

Advow-atk
PKE (A) = Pr [OW-ATKPKE(A)⇒ 1] = negl(λ)

where Pr [OW-ATKPKE(A)⇒ 1] is the probability that the adversary wins the
OW-ATK game.

3.2 Key Encapsulation Mechanism (KEM)

Definition 4 (Key Encapsulation Mechanism). A KEM is a tuple of four
algorithms setup, gen, encaps, decaps:

• pp←$ setup(1λ): The setup algorithm takes the security parameter λ as input
and outputs the public parameters pp.
• (pk, sk)←$ gen(pp): The key generation algorithm takes as inputs the public

parameters and it outputs the public key pk and the secret key sk.
• ct,K ←$ encaps(pp, pk): The encapsulation algorithm takes as inputs the pub-

lic parameters pp, the public key pk and it outputs a ciphertext ct ∈ C and a
key K ∈ K.
• K ′ ← decaps(pp, sk, ct): The decapsulation procedure takes as inputs the pub-

lic parameters pp, the secret key sk and the ciphertext ct ∈ C and it outputs
a key K. If the KEM allows explicit rejection, the output is a key K ∈ K or
the rejection symbol ⊥. If the rejection is implicit, the output is always a key
K ∈ K.
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IND-ATKKEM(A)

pp←$ setup(1
λ

)

(pk, sk)←$ gen(pp)

st← AO
ATK1

(pk)

b←$ {0, 1}

ct∗, K0 ←$ encaps(pk)

K1 ←$K

b
′ ← AO

ATK2
(st, pk, ct∗, Kb)

return 1b′=b

Oracle ODec(ct)

1 : if ct = ct∗ then return ⊥

2 : K
′ ← decaps(pp, sk, ct)

3 : return K
′

Fig. 5: Indistinguishability games.

The setup, gen and encaps are probabilistic algorithms that can be made deter-
ministic by adding random coins as inputs. The decapsulation function is deter-
ministic. For the sake of simplicity, we omit the public parameters in the inputs
from now on.

Definition 5. We consider the games defined in Figure 5. The oracles the ad-
versary has access to are defined on the left in Table 1 and K is the key space.
A KEM scheme KEM = (setup, gen, encaps, decaps) is IND-ATK if for any ppt
adversary A we have

Advind-atk
KEM (A) =

∣∣∣∣Pr [IND− ATKKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl(λ)

where Pr [IND− ATKKEM(A)⇒ 1] is the probability that A wins the IND-
ATKKEM(A) game defined in Figure 5.

4 FO-like transforms

Fujisaki and Okamoto introduced one of the first generic IND-CPA to IND-CCA
transforms for PKE [9,10] in 1999 and many have followed (e.g. [16,19]). In recent
years, transforms have been a hot topic due to their heavy use in PQ proposals
and several variants of the FO transform have been proposed and proven secure
in the ROM and in the quantum ROM (QROM, i.e. the adversary can make
quantum queries to the RO) [21,22,4]. However, we focus here on results proven
by Hofheinz et al. [14], which generalize and decompose FO-like transforms in
smaller parts. We recall three transforms from this paper which will be useful to
construct and understand our combiners.

The first one is the T transform, which takes an OW/IND-CPA PKE
PKE′ = (setup′, gen′, enc′, dec′) and outputs an OW-PVCA PKE scheme PKE =
(setup, gen, enc, dec), it is presented in Figure 6, where G : {0, 1}∗ 7→ {0, 1}λ is a
hash function modelled as a RO. As both setup and generate functions are the
same, we do not present them here. Informally, the transform derandomizes the
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enc(pk, pt)

coins← G(pt)

return enc′(pk, pt; coins)

dec(sk, ct)

pt′ ← dec′(sk, ct)

if pt′ =⊥ or enc(pk, pt′) 6= ct

return ⊥

return pt′

Fig. 6: T transform.

underlying scheme by computing the random coins as the hash of the message.
Then, the decryption function checks that the ciphertexts are well-formed by
re-encrypting the decrypted message.

Before stating the security result of this transform, we need to introduce the
notion of γ-spreadness.

Definition 6 (γ-spreadness). For any public-key pk and plaintext pt, we de-
fine the min-entropy of enc(pk, pt) as

γ(pk, pt) = − log

(
max
ct∈C

Pr [ct = enc(pk, pt)]

)
where the probability is taken over the randomness of enc, the logarithm is in base
2 and C is the ciphertext domain. Then, we say that a PKE scheme is γ-spread
if for any public-key pk and plaintext pt, we have γ(pk, pt) ≥ γ. This implies
that Pr[ct = enc(pk, pt)] ≤ 2−γ .

Then, the following theorem formally states the security of the T transform.

Theorem 1 (OW-CPA
ROM
====⇒ det. OW-PVCA, Theorem 3.1 [14]). Let

G be a hash function modelled as a random oracle, PKE′ a γ-spread and δ(qG)-
correct PKE scheme, and PKE the resulting PKE after applying T. Then, for
any OW-PVCA adversary A issuing at most qG, qV queries to G and OVCO,
respectively, there exists an OW-CPA adversary B s.t.

Advow−pvca
PKE (A) ≤ qG · δ + qV · 2−γ + (qG + 1) · Advow−cpa

PKE′ (B)

where the running time and the number of queries of B are similar to the ones
of A.

We present now the two other transforms called U⊥ and U 6⊥. These transforms
convert an OW-PVCA (resp. OW-PCA) PKE into an IND-CCA KEM. The
transforms are shown in Figure 7 and the setup algorithm is not detailed. The
only difference between both transform is that in U 6⊥ the rejection is implicit
(i.e. when an error occurs during decryption a random key is returned instead of
the error symbol). The security of these constructions is formally stated in the
following theorems.
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gen()

(pk, sk)←$ gen1

s←$M // U6⊥

sk← (sk, s) // U6⊥

return (pk, sk)

encaps(pk)

pt←$M
ct← enc(pk, pt)

K ← H(pt, ct)

return ct, K

decaps(sk, ct)

parse sk, s← sk // U6⊥

pt′ ← dec(sk, ct)

if pt′ =⊥ return ⊥ // U⊥

if pt′ =⊥ return H(s, ct) // U 6⊥

return H(pt′, ct)

Fig. 7: U⊥ and U 6⊥ transforms from [14].

Theorem 2 (PKE OW-PVCA
ROM
====⇒ KEM IND-CCA, Theorem

3.3 [14]). Let H be a random oracle, PKE a δ-correct PKE scheme, and KEM
the resulting KEM after applying U⊥ on PKE. Then, for any KEM IND-CCA
adversary A issuing at most qH , qD queries to H and OCCA, respectively, there
exists an OW-PVCA adversary B s.t.

Advind−cca
KEM (A) ≤ Advow−pvca

PKE (B)

and B makes at most qH queries to both checking oracles.

Theorem 3 (PKE OW-PCA
ROM
====⇒ KEM IND-CCA, Theorem

3.4 [14]). Let H be a random oracle, PKE a δ-correct PKE scheme and KEM the
resulting KEM after applying U6⊥ on PKE. Then, for any KEM IND-CCA ad-
versary A issuing at most qH queries to H, there exists an OW-PCA adversary
B s.t.

Advind−cca
KEM (A) ≤ Advow−pca

PKE (B) +
qH
|M|

where B makes at most qH queries to the random oracle and the running time
of B is roughly the same as the one of A.

5 FO-like combiners

We wish to design constructions that take two (or more) IND/OW-CPA schemes
instead of one and output an IND-CCA KEM. Compared to black-box combin-
ers, this approach allows for lower-level combiners, which in turn can be more
efficient. As more precise examples, we consider KEM combiners proposed by
Bindel et al. [3]. These 3 constructions, namely XtM, dualPRF and N are based
on special kinds of MAC and PRF. In the XtM combiner, the keys must be
split and a tag on the ciphertexts is computed. Similarly, in the dualPRF and
N combiners, multiple passes on the keys and ciphertext must be performed to
derive the key (see Bindel et al. [3] for more details). All these operations add
complexity and/or increase the ciphertext length while being redundant if the
underlying KEMs are built using a FO-like transform. Thus, one could hope to
remove several superfluous computations and primitives by looking at the actual
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gen()

(pk1, sk1)←$ gen1

(pk2, sk2)←$ gen2

pk← (pk1, pk2)

sk← (sk1, sk2)

return (pk, sk)

enc(pk, (pt1, pt2))

parse (pk1, pk2)← pk

ct1 ← enc1(pk1, pt1;G(pt1))

ct2 ← enc2(pk2, pt2;G(pt2))

return (ct1, ct2)

dec(sk, (ct1, ct2))

parse (sk1, sk2)← sk

pt′1 ← dec1(sk1, ct1)

pt′2 ← dec2(sk2, ct2)

if enc1(pk1, pt′1;G(pt′1)) 6= ct1 :

return ⊥

if enc2(pk2, pt′2;G(pt′2)) 6= ct2 :

return ⊥

return (pt′1, pt′2)

Fig. 8: T‖ combiner.

implementation of the underlying KEMs. We apply this idea to construct sev-
eral new combiners, which we call FO-like combiners. In addition of not being
black-box, these combiners differ from other proposals in the fact that they take
several PKEs as inputs and output a KEM.

5.1 T‖ combiner

For our first construction, the idea is to apply twice the T transform of Hofheinz
et al. [14] (see Figure 6) to obtain an OW-PCA PKE from two OW-CPA PKEs
PKEi = (setupi, geni, enci, deci), i ∈ {1, 2}. We call this FO-like combiner T‖
and we present it in Figure 8 (we omit the setup algorithm, which is trivial).
Then, one can apply the U6⊥ transform (see Figure 7) and Theorem 3 to obtain
an IND-CCA KEM. The message space M of the resulting PKE is M1 ×M2

(i.e. the space product of the two message spaces). This construction is actually
a useful intermediary step towards a more general OW-CPA to KEM IND-CCA
combiner we present in the next section.

The following theorem shows that T‖ is a robust combiner (as long as one of
the two underyling PKEs is OW-CPA, the resulting PKE is OW-PCA).

Theorem 4. Let PKE be the PKE resulting from applying T‖ on PKE1 and
PKE2, which are respectively δ1 and δ2 correct. In addition, let G be a hash
function modelled as a random oracle. Then, for all ppt OW-PCA adversary A
making at most qG queries to G and qP queries to the plaintext-checking oracle,
there exists adversaries B1 and B2 such that

Advow−pca
PKE (A) ≤ (qG+qP )·(δ1+δ2)+(qG+1)·min{Advow−cpa

PKE1
(B1),Advow−cpa

PKE2
(B2)}

where B1 and B2 run in about the same time as A.

Proof. We first show that the trivial PKE combiner C in Figure 9 is a robust OW-
PCA combiner. Let PKE = C(PKE1,PKE2) be the PKE resulting from applying
C on two PKEs PKE1 and PKE2. We show w.l.o.g. that the OW-PCA security
of PKE reduces to the OW-PCA security of PKE1. The OW-PCA game against
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gen()

(pk1, sk1)←$ gen1

(pk2, sk2)←$ gen2

pk← (pk1, pk2)

sk← (sk1, sk2)

return (pk, sk)

enc(pk, (pt1, pt2))

parse (pk1, pk2)← pk

ct1 ← enc1(pk1, pt1)

ct2 ← enc2(pk2, pt2)

return (ct1, ct2)

dec(sk, (ct1, ct2))

parse (sk1, sk2)← sk

pt′1 ← dec1(sk1, ct1)

pt′2 ← dec2(sk2, ct2)

return (pt′1, pt′2)

Fig. 9: Trivial PKE combiner C.

OW-PCAPKE(A)

pp←$ setup(1
λ

)

((pk1, pk2), (sk1, sk2))←$ gen(pp)

(pt∗1 , pt∗2)←$M1 ×M2

ct∗ ← enc(pk, (pt∗1 , pt∗2))

(pt′1, pt′2)← AO
PCO

(pk, ct∗)

return 1(pt′1,pt′2)=(pt∗1 ,pt∗2)

Oracle OPCO((pt1, pt2), (ct1, ct2))

pt′1 ← dec1(pp, sk1, ct1)

pt′2 ← dec2(pp, sk2, ct2)

return 1(pt1,pt2)=(pt′1,pt′2)

Fig. 10: OW-PCA game against PKE for the proof of Theorem 4.

PKE is presented in Figure 10. One can see that the plaintext-checking oracle
can easily be simulated by an adversary having access to a plaintext-checking
oracle for PKE1 and holding the secret key sk2. Thus, we can easily build an
adversary B against the OW-PCA security of PKE1. This adversary generates
itself pk2, sk2, ct

∗
2, runs A and simulates perfectly the PCO oracle with its own

oracle and sk2. When A returns (pt′1, pt
′
2), B returns pt′1 and wins with at least

the same advantage as A. Hence,

Advow−pca
PKE (A) ≤ min{Advow−pca

PKE1
(B1),Advow−pca

PKE2
(B2)} .

To conclude, one can just observe that T‖(PKE1,PKE2) =
C(T(PKE1),T(PKE2)), where T is the OW-CPA to OW-PCA transform
from Hofheinz et al. [14]. Therefore, Theorem 3 holds the proof. ut

Corollary 1. Let KEM be the KEM resulting from applying U 6⊥ ◦ T‖ onto two
PKE schemes PKE1 and PKE2, which are δ1-correct and δ2-correct, respectively.
Then, for any IND-CCA adversary A making at most qH and qG queries to the
ROs H and G, respectively, and qD queries to the decapsulation oracle, there
exists OW-CPA adversaries B1 and B2 such that

Advind−cca
KEM (A) ≤ qH

|M1||M2|
+ (qG + qD) · (δ1 + δ2)

+ (qG + 1) ·min{Advow−cpa
PKE1

(B1),Advow−cpa
PKE2

(B2)}

where Mi is the message space of PKEi and Bi runs in about the same time as
A.

Proof. This is a simple consequence of Theorems 3 and 4. ut
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BA,O
PCO1

1 (pk1, ct
∗
1)

pp2 ←$ setup2(1
λ

)

(pk2, sk2)←$ gen2(pp2)

pt∗2 ←$M2

ct∗2 ← enc2(pk, pt∗2)

(pt′1, pt′2)← AO
PCO

((pk1, pk2), (ct∗1 , ct∗2))

return pt′1

Oracle OPCO((pt1, pt2), (ct1, ct2))

r ← OPCO1 (pt1, ct1)

pt′2 ← dec2(pp, sk2, ct2)

return 1r=1∧pt2=pt′2

Fig. 11: OW-CPA adversary for the proof of Theorem 4.

Discussion. Let UT 6⊥‖ be the combiner resulting from composing U6⊥ and T‖.

One could wonder whether combining two PKEs in a trivial way (i.e. encrypting
pt1, pt2 as (enc1(pt1), enc2(pt2)) and decrypting both ciphertexts independently)
and then applying a FO-like transform would hold a robust IND-CCA KEM. In
fact, this would give a combiner similar to UT6⊥‖ , except the random coins would

be split into two parts (G(pt1, pt2))λ1 and (G(pt1, pt2))λ2 for each encryption
procedure, where λi is the number of coins needed by the encryption of PKEi.
As G is a RO, both shares would be independent and the result would be similar
to the coins G(pti) in our UT6⊥‖ transform. We preferred the latter solution as it

is possible to compute the coins in parallel and we think it makes the separation
between both sets of coins clear. One could also wonder whether setting the
coins to G(pt1, pt2) would work. This, in turn, creates a correlation between
both ciphertexts, which cannot be dealt with in the security proof.

The choice of computing the deterministic coins for cti based on σi only (in-
stead of σ1 and σ2) has positive and negative impacts on the resulting scheme.
Efficiency: Both ciphertexts are totally independent and can be computed in
parallel. In turn, this would allow to keep a key share static for a period of time
while varying the other one. This could improve consequently the efficiency of
hybrid schemes in protocols.
Malleability and misuse resistance: The ciphertexts of the resulting KEM
ct∗ = (ct∗1, ct

∗
2) are somewhat malleable. Indeed, it is easy to modify a cipher-

text into another one s.t. the decryption is valid. For instance, ct′ = (ct∗1, ct
′
2),

for a valid ct′2, will decapsulate properly to the key H(σ∗1 , σ
′
2, ct

′). This has no
consequence in the ROM as the RO hides perfectly σ∗1 , but this does not neces-
sarily seem a desired property. In particular, due to this malleability effect, the
key must be derived as H(σ1, σ2, . . .) and other KDFs that would seem intuitive
lead to security flaw. For instance, computing the key as H(σ1)⊕H(σ2) in the
transform makes a trivial IND-CCA attack possible.

Efficiency. One can see that the main cost of the combiner is to compute two
hash values on the two plaintexts (i.e. seeds) and then a hash on the two plain-
texts and ciphertexts. This already seems slightly more efficient than the XtM
(XOR-then-MAC) combiner proposed by Bindel et al. [3]. Indeed, XtM doubles
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gen()

(pk1, sk1)←$ gen1

(pk2, sk2)←$ gen2

pk← (pk1, pk2)

sk← (sk1, sk2)

return (pk, sk)

encaps(pk)

parse (pk1, pk2)← pk

(σ1, σ2)←$M1 ×M2

ct1 ← enc1(pk1, σ1;G(1, σ1, σ2))

ct2 ← enc2(pk2, σ2;G(2, σ1, σ2))

K ← H(σ1 ⊕ σ2)

return (ct1, ct2), K

decaps(sk, (ct1, ct2))

parse (sk1, sk2)← sk

σ
′
1 ← dec1(sk1, ct1)

σ
′
2 ← dec2(sk2, ct2)

if enc1(pk1, σ
′
1;G(1, σ

′
1, σ
′
2)) 6= ct1 :

return ⊥

if enc2(pk2, σ
′
2;G(2, σ

′
1, σ
′
2)) 6= ct2 :

return ⊥

return H(σ
′
1 ⊕ σ

′
2)

Fig. 12: UT‖ combiner.

the size of the keys returned by the underlying KEMs, split them and compute
a MAC on the ciphertexts using two halves of the keys.

Now, as the ciphertexts in post-quantum cryptography can be large (usually
a few kilobytes), computing a hash on two ciphertexts can be an expensive
operation. Our combiner presented in the next section fixes this drawback.

5.2 UT‖

We now propose an FO-like combiner similar to T‖ that combines two OW-CPA

PKEs into an IND-CCA KEM. In a way, we skip the U6⊥ transform to get directly
a KEM. The idea is to encrypt two seeds (i.e. plaintexts) σ1, σ2 using the PKE
resulting from T‖ and then compute the key as H(σ1⊕σ2). However, in order to
avoid the malleability issue described in the previous section, the deterministic
coins are computed as G(i, σ1, σ2). This links both ciphertexts together and
makes tampering one of the two more difficult. Note that in order to compute
the XOR, we assume that the seeds σi are binary strings or that there exists an
efficient and unique encoding of these objects as binary strings. Alternatively,
one can take the hash of a plaintext to get a binary seed. All these options are
compatible with our combiner and the choice of an approach depends on the
underyling PKEs. We present the combiner in Figure 12.

Now, the following theorem formally states the security of the UT‖ combiner.

Theorem 5. Let KEM be the KEM resulting from applying UT‖ on PKE1 and
PKE2, which are respectively δ1 and δ2 correct, and γ1 and γ2-spread. In addition,
let G and H be hash functions modelled as a random oracle. Then, for all ppt
IND-CCA adversary A making at most qG, qH and qD queries to G,H and ODec,
respectively, there exists adversaries B1 and B2 such that

Advind−cca
KEM (A) ≤(qD + qG + 1) · (δ1 + δ2) + qD · (2−γ1 + 2−γ2)

+ (qG + qH) ·min{Advow−cpa
PKE1

(B1),Advow−cpa
PKE2

(B2)}

where B1 and B2 run in about the same time as A and make the same number
of queries.
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Proof. We first show that if a valid ciphertext is submitted to the decapsulation
oracle, then the corresponding plaintexts have been queried to G, and thus one
can simulate the decapsulation oracle without the secret key. Then, one can
show that the deterministic coins used to compute the challenge ciphertexts
look perfectly random until the adversary queries the challenge plaintexts to
G. Finally, by the same property of the RO, the challenge key looks perfectly
uniform unless the adversary queries σ1 ⊕ σ2 to H. We proceed by game
hopping, the sequence of games is presented in Figure 13. Note that for the sake
of simplicity, we consider the IND-CCA game in which the adversary receives
the challenge straight away (i.e. no two phases game).

Game Γ 0: This is the original KEM IND-CCA game for the KEM ob-
tained by applying the UT‖ combiner on two PKEs.

Game Γ 1: In this game, we enforce the correctness of the challenge ci-
phertexts and the ciphertexts that can be computed by the adversary using the
RO G. In particular, we abort if the challenge ciphertexts break the correctness
property or if any σi in a query m to G is of the form (i, σ1, σ2) and is s.t.
enci(pki, σi;G(m)) breaks the correctness property. Now, both challenge queries
to G made by the game (i.e. (i, σ∗1 , σ

∗
2)) are fresh, hence by the property of

the RO and the δi correctness of the underlying schemes PKEi, the probability
there is a correctness error is at most δ1 + δ2. Then, throughout the game, at
most 2qD queries is made to G by the game in the decapsulation oracle (qD
of the form (1, σ1, σ2) and qD of the form (2, σ1, σ2)) and qG by the adversary.
Hence, in the worst case all these queries are fresh and the probability there is a
correctness error is upper bounded by (qD + qG + 1) · (δ1 + δ2). Hence, we have

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ (qD + qG + 1) · (δ1 + δ2) .

Game Γ 2: We modify the previous game as follows in the decapsulation oracle.
We check whether there exist both ((1, σ1, σ2), g1) and ((2, σ1, σ2), g2) in LA
s.t. enci(σi; gi) = cti. If this is the case, (let’s call this event found) we return
H(σ1 ⊕ σ2), otherwise we return the key K output by the decapsulation
function. Now, if found occur, we return the same key as in game Γ 1. Indeed,
by the perfect correctness of the tuples in LA enforced in game Γ 1, if we find
(σ1, σ2) s.t. enci(σi;G(i, σ1, σ2)) = cti, then deci(ski, cti) = σi. Hence, we have,
Pr[Γ 1 ⇒ 1] = Pr[Γ 2 ⇒ 1].

Game Γ 3: We modify the previous game as follows. In the decapsulation
oracle, we simply return ⊥ if found does not occur. Hence, game Γ 2 and Γ 3

differ iff the decapsulation oracle successfully decrypts ct but the adversary did
not query to G neither (1, σ′1, σ

′
2) or (2, σ′1, σ

′
2), where (enc1(σ′1), enc2(σ′2)) = ct

(i.e. at least one tuple is not in LA). Now, by the perfect correctness of tuples
in LA, this event is equivalent to the decapsulation oracle successfully (i.e. the
re-encryption checks pass) recovering the seeds σ1, σ2 but either (1, σ1, σ2) or
(2, σ1, σ2) or both were not queried to G by the adversary. Let fail be this event
and we prove the following lemma.
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Lemma 1.
Pr[fail] ≤ qD · (2−γ1 + 2−γ2) .

Proof. Let failk be the event that fail happens at the k-th decapsulation query
and pk = Pr[failk]. By an union bound, it is clear that

Pr[fail] ≤
qD∑
k=1

pk .

Now, let’s consider an algorithm Bk as defined in Figure 14. This adversary
simulates perfectly the view of the adversary in game Γ 3 until the k-th query.
In particular, for each decapsulation query ct = (ct1, ct2), it checks whether
there exists both ((1, σ1, σ2), g1) and ((2, σ1, σ2), g2) in LG s.t. enci(pki, σi; gi)
for i ∈ [2]. We call this condition cond and if it is fulfilled Bk outputs H(σ1⊕σ2),
otherwise it outputs ⊥.

In the k-th decapsulation query, if cond is fulfilled it aborts. Otherwise, it
sets i s.t. there is no ((i, σ1, σ2), gi) ∈ LG s.t. enci(pki, σi; gi) = cti. Note that
such an i will be found because cond was not fulfilled. Also, this condition might
be fulfilled for both i = 1 and i = 2. If it the case, the algorithm sequentially
performs the remaining of the instructions for both i = 1 and i = 2. Next, it
decrypts ct1 and ct2 to both σ′1 and σ′2. By the definition of i and the perfect
correctness of the values σi in LG, we have that (i, σ′1, σ

′
2) /∈ LG. In addition, by

the perfect corectness of the challenge ciphertexts we have (σ′1, σ
′
2) 6= (σ∗1 , σ

∗
2).

Finally, Bk queries g′i ← G(i, σ′1, σ
′
2) and outputs 1 iff enci(pki, σi; g

′
i) = cti.

Now, as g′i = G(i, σ′1, σ
′
2) was never queried to G, it is sampled uniformly at

random and thus Pr[enci(pki, σ
′
i; g
′
i) = cti] ≤ 2−γi by the γi-spreadness of PKEi.

In the worst case, the check is performed for both i = 1 and i = 2 and thus
Pr[Bk(A)⇒ 1] ≤ 2−γ1 + 2−γ2 . Now, we simply observe that if failk occurs, then
Bk perfectly simulates the decapsulation oracle in Γ 2 and Γ 3 in the first k − 1
queries and it will output 1 by the definition of failk. Thus,

pk ≤ Pr[Bk(A)⇒ 1] ≤ 2−γ1 + 2−γ2 .

Taking the union bound on the pk holds the result. ut

By the previous lemma, we have

|Pr[Γ 2 ⇒ 1]− Pr[Γ 3 ⇒ 1]| ≤ qD · (2−γ1 + 2−γ2) .

Game Γ 4: First note that the decapsulation oracle does not use the secret key
anymore. Then, in Γ 4, we raise a flag chal1 and abort if the adversary queries
(i, σ∗1 , σ

∗
2). In addition, we raise a flag chal2 and abort if the adversary queries

σ∗1 ⊕ σ∗2 to H. Now, if chal1 or chal2 happens, one can break the OW-CPA
property of both PKEs. We give the reduction B1 that breaks the one-wayness
of PKE1 in Figure 15. More precisely, as long as chal1 ∪ chal2 does not happen,
the adversary cannot distinguish a game where the coins used to compute the
challenge ciphertexts are deterministic from a game where the coins are taken
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at random. In addition, it cannot distinguish a game where K is random from
a game where K = H(σ∗1 ⊕ σ∗2). Therefore, the probability that chal1 ∪ chal2

happens is the same in Γ 4 and in the OW-CPA game played by B1. Now, if
chal1∪chal2 happens in a game where the challenge coins and the key are random,
one can break the one-wayness of the underlying scheme. Thus, we have

|Pr[Γ 3 ⇒ 1]− Pr[Γ 4 ⇒ 1]| ≤ (qG + qH) ·min{Advow−cpa
PKE1

(B1),Advow−cpa
PKE2

(B2)} .

Note that we have a factor qG + qH because in the reduction we cannot check
which query m contains the challenge seeds σ∗i (if we picked a query to G)
or σ∗1 ⊕ σ∗2 (if we picked a query to H). Indeed, in the OW-CPA game, the
challenge coins are taken at random and are unknown to the adversary. More
details are given in the proof of Theorem 4.

Game Γ 5: Finally, in this last game we replace the challenge key K0 by a
random one. As K0 and K1 have the same distribution now, we have Pr[Γ 5 ⇒
1] = 1

2 . In addition, since the adversary cannot query σ∗1⊕σ∗2 anymore, it cannot
distinguish between a real key and a random key by the property of the RO H.
Hence, we have |Pr[Γ 4 ⇒ 1]−Pr[Γ 5 ⇒ 1]| = 0. Collecting the probabilities and
folding the OW-CPA adversaries into one hold the result. ut

Generalisation to n PKEs. While the UT‖ combiner presented in Figure 12
takes two PKEs as input, it is straightforward to generalise it to n PKEs. Each of
the n ciphertexts will simply be computed as enci(pki, σi;G(i, σ1, . . . , σn)) and
the key as H(⊕ni σi). Then, the security of such a combiner (we call it UTn‖ ) can
be stated in the following Theorem, which is a generalization of Theorem 5.

Theorem 6. Let KEM be the KEM resulting from applying UTn‖ on
PKE1, . . . ,PKEn, which are respectively δ1, . . . , δn correct, and γ1, . . . , γn-spread.
In addition, let G and H be hash functions modelled as a random oracle. Then,
for all ppt IND-CCA adversary A making at most qG, qH and qD queries to G,H
and ODec, respectively, there exists adversaries B1, . . . ,Bn such that

Advind−cca
KEM (A) ≤(qD + qG + 1) ·

n∑
i=1

δi + qD ·
n∑
i=1

2−γi

+ (qG + qH) ·min{Advow−cpa
PKE1

(B1), . . . ,Advow−cpa
PKEn

(Bn)}

where B1, . . . ,Bn run in about the same time as A and make the same number
of queries.

Proof idea. The proof is exactly the same as the one for the security of UT‖
with two PKEs except we consider n schemes. In particular, the probability of
having a correctness or spreadness error in some query is upper bounded by∑n
i=1 δi and

∑n
i=1 2−γi , respectively. Also, the reductions Bi from the OW-CPA

of the PKEs still work the same, as an adversary Bi picks all σ∗j s.t. j 6= i. That
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Γ i(A)

pp←$ setup(1
λ

); (pk, sk)←$ gen(pp)

(σ
∗
1 , σ
∗
2 )←$M1 ×M2

coins1 ← G(1, σ
∗
1 , σ
∗
2 ); coins2 ← G(2, σ

∗
1 , σ
∗
2 ) // Γ

0
-Γ

4

coins1, coins2 ←$R2
// Γ

5

ct∗1 ← enc1(pk1, σ
∗
1 ; coins1)

ct∗2 ← enc2(pk2, σ
∗
2 ; coins2)

if ∃i ∈ [2] s.t. deci(ski, ct∗i ) 6= σ
∗
i : abort // Γ

1
-Γ

5

b←$ {0, 1}

K0 ← H(σ
∗
1 ⊕ σ

∗
2 ) // Γ

0
-Γ

4

K0 ←$K // Γ
5

K1 ←$K

b
′ ← AO

Dec
(pk, (ct∗1 , ct∗2), Kb)

return 1b′=b

Oracle ODec(ct = (ct1, ct2))

flag← false

if ct = ct∗ then return ⊥
if ∃((1, σ1, σ2), g1) ∈ LA s.t. enc1(pk1, σ1; g1) = ct1

and ∃((2, σ1, σ2), g2) ∈ LA

s.t. enc2(pk2, σ2; g2) = ct2 : // Γ
2
-Γ

5

return H(σ1 ⊕ σ2) // Γ
2
-Γ

5

return ⊥ // Γ
3
-Γ

5

K
′ ← decaps(pp, sk, ct) // Γ

0
-Γ

2

return K
′

// Γ
0
-Γ

2

H(m)

if ∃h s.t. (m,h) ∈ LH :

return h

if m = (σ
∗
1 ⊕ σ

∗
2 ) : // Γ

4
-Γ

5

chal2 ← true // Γ
4
-Γ

5

abort // Γ
4
-Γ

5

h←$ {0, 1}n

LH ← LH ∪ {(m,h)}
return h

G(m)

if ∃g s.t. (m, g) ∈ LG :

return g

if m = (1, σ
∗
1 , σ
∗
2 ) or // Γ

4
-Γ

5

m = (2, σ
∗
1 , σ
∗
2 ) : // Γ

4
-Γ

5

chal1 ← true // Γ
4
-Γ

5

abort // Γ
4
-Γ

5

g ←$ {0, 1}n

LG ← LG ∪ {(m, g)}

if parse m = (i, σ1, σ2) succeeds : // Γ
1
-Γ

6

if deci(ski, enci(pki, σi; g)) 6= σi : // Γ
1
-Γ

5

abort // Γ
1
-Γ

5

if m queried by A // Γ
1
-Γ

5

LA ← LA ∪ {(m, g)} // Γ
1
-Γ

5

return g

Fig. 13: Sequence of games for the proof of Theorem 5.

is, if (i, σ∗1 , . . . , σ
∗
n) is queried, Bi can recover σ∗i , otherwise we can replace the

deterministic coins by random ones. Similarly, if σ∗ = ⊕nj σ∗j is queried by the
adversary to H, Bi can recover σ∗i by computing σ∗ ⊕j 6=i σ∗j . ut

Security in the Quantum Random Oracle Model (QROM). As the orig-
inal FO-transform, our combiner could be made secure in the QROM by adding
a hash in the ciphertext, this technique is often called plaintext confirmation.
For simplicity, here we show that our T‖ transform generalized to n PKEs is
secure in the QROM (it outputs an OW-PCA scheme). We call this transform
Tn‖ and it is detailed in Figure 20 in Appendix A. Then, it suffices to combine

the QROM secure QU⊥m transform from Hofheinz et al. [14] to get an IND-CCA
secure KEM in the QROM. One can show the following theorem.

Theorem 7. Let PKE be the PKE resulting from applying Tn‖ on
PKE1, . . . ,PKEn, which are respectively δ1, . . . , δn-correct. In addition, let
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Bk(A)

pp←$ setup(1
λ

); (pk, sk)←$ gen(pp)

(σ
∗
1 , σ
∗
2 )←$M1 ×M2

coins1 ← G(1, σ
∗
1 , σ
∗
2 ); coins2 ← G(2, σ

∗
1 , σ
∗
2 )

ct∗1 ← enc1(pk1, σ
∗
1 ; coins1)

ct∗2 ← enc2(pk2, σ
∗
2 ; coins2)

if ∃i ∈ [2] s.t. deci(ski, ct∗i ) 6= σ
∗
i : abort

b←$ {0, 1}

K0 ← H(σ
∗
1 ⊕ σ

∗
2 )

K1 ←$K

b
′ ← AO

Dec
(pk, (ct∗1 , ct∗2), Kb)

return 1b′=b

Oracle ODec(ct = (ct1, ct2))

if ct = ct∗ then return ⊥
if ∃((1, σ1, σ2), g1) ∈ LG s.t. enc1(pk1, σ1; g1) = ct1

and ∃((2, σ1, σ2), g2) ∈ LG
s.t. enc2(pk2, σ2; g2) = ct2 :

if k-th query : abort

return H(σ1 ⊕ σ2)

if k-th query :

(σ
′
1, σ
′
2)← (dec1(sk1, ct1), dec2(sk2, ct2))

for i s.t. 6 ∃((i, σ1, σ2), gi) ∈ LG s.t. enci(pki, σi; gi) = cti

g
′
i ← G(i, σ

′
1, σ
′
2)

if enci(pki, σ
′
1; g
′
i) = cti : return 1

abort

return ⊥

G(m)

if ∃g s.t. (m, g) ∈ LG :

return g

g ←$ {0, 1}n

LG ← LG ∪ {(m, g)}
if parse m = (i, σ1, σ2) succeeds :

if deci(ski, enci(pki, σi; g)) 6= σi :

abort

return g

Fig. 14: Adversary Bk for the proof of Lemma 1.

Gi be hash functions modelled as (independent) quantum random oracles. Then,
for all quantum OW-PCA adversary A making at most qG queries to all oracles
Gi and qP queries to the plaintext-checking oracle, there exists adversaries
B1, . . . ,Bn such that

Advow−pca
PKE (A) ≤

(
8 · (1 + qG + qP )2 + 1

) ∑
i∈[n]

δi

+ (1 + 2qP + 2qG) ·
√

min{Advow−cpa
PKE1

(B1), . . . ,Advow−cpa
PKEn

(B2)}

where B1, . . . ,Bn run in about the same time as A and make at most qG + qP
queries to the QROs.

Proof. The detailed proof of Theorem 7 can be found in Appendix A. ut
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BA,G1 (pk1, ct
∗
1)

pp2 ←$ setup2(1
λ

)

(pk2, sk2)←$ gen2(pp2)

σ
∗
2 ←$M2

ct∗2 ← enc2(pk, σ∗2 )

K ←$K

run AO
Dec
2 ((pk1, pk2), (ct∗1 , ct∗2), K)

sample a random query (m,h) from LG ∪ LH
if (m,h) ∈ LG :

parse ((i, pt′1, σ
∗
2 ), g)← m

return pt′1

if (m,h) ∈ LH :

return σ
∗
2 ⊕m

Fig. 15: OW-CPA adversary for the proof of Theorem 5.

This result then implies that QU⊥m◦Tn‖ is a robust FO-like combiner in the QROM

by using Theorem 4.5 of Hofheinz et al. [14]. Note that the proof of Theorem 7
is very similar to the proofs of FO security in the QROM. As a result, the bound
could much likely be made tighter using recent QROM techniques (e.g. [4,17,21]).
In addition, we conjecture that our main combiner UT‖ could be proven secure in
the QROM without the additional hash, using the compressed oracle techniques
by Zhandry [24]. We leave these improvements as future work.

5.3 Other combiners

It has been shown that the implementation of ROs in FO-like transforms, in
particular in the de-randomization step (i.e. computation of the deterministic
coins), is particularly vulnerable to implementation mistakes [1]. Thus, it is of
interest to study how these coins can be computed without compromising the
security of the resulting scheme. We show in this section how hash functions
(i.e. ROs) can be combined s.t. the de-randomization step is secure and efficient.
Many combinations of hash functions are possible and we propose a few of those
below, offering flexibility to implementors. Finally, we consider using different
hash functions to increase the security at no (or very small) cost. This relates to
the notion of hash combiner [7,8], which constructs a hash function that fulfils
certain security properties as long as one of the underlying hash functions has
this property. In our case, we want the hash functions to behave as random
oracles, thus we can combine two different functions to make the whole scheme
secure as long as one of the hash functions is indistinguishable from a RO.

How to combine hash functions. From now on, in order to distinguish
(random) functions from random oracles, we denote a function by a small letter
and a RO by a capital letter (e.g. g(x) is a function evaluated on x and G(x) is a
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g(i, σ1, σ2)

G(σ1 ⊕ σ2)⊕G(i, σi)
G1(i, σ1)⊕G2(i, σ2)

Table 2: Different g functions, where G,Gi are ROs.

RO queried on x). Note that in our case, the functions are defined using random
oracles (e.g. g(x) := G(1, x)⊕G(2, x)). We consider replacing the RO G in our
combiners by such a random function g (but still in the ROM).

One can see from the proofs of security of both T‖ and UT‖ that we want
the deterministic coins to be indistinguishable from random ones until we can
recover the seeds (or plaintexts) from the list of queries. In addition to this
property, one also wants the values g(i, σ1, σ2) to be close to uniform. Indeed,
in the proof of Theorem 5, we extensively use the fact that the correctness
and spreadness property hold with probability at least δ and 2−γ , respectively,
even when the coins are not random but computed as g(i, σ1, σ2). Obviously,
if the values g(1, σ1, σ2) are not sampled uniformly at random, this may not
hold anymore. In other words, we want g(i, σ1, σ2) to be either computable by
the adversary using its queries to G or distributed uniformly at random. We
developped formal definitions (called Extractable Random Function (ERF) and
Indistinguishable unless Queried (IUQ)) capturing these properties, they are
presented in Appendix B. We give two examples of such functions g satisfying
these properties in Table 2. Note that these are based on a RO G.

Replacing H. As we did for G, one can also replace the key derivation function
H by another random function h. However, as the way we derive the key in the
combiner QU‖ (i.e. H(σ1 ⊕ σ2)) is already efficient, we do not give any example
of such function h here. More details can be found in Appendix B.

Then, one can show the following theorem.

Theorem 8 (Informal). Let g be a function from Table 2. Let h(σ1, σ2) :=
H(σ1, σ2) or h(σ1, σ2) := H(σ1) ⊕ H(σ2). Then, the UT‖ transform where the
deterministic coins for encrypting the seed σi are computed as g(i, σ1, σ2) instead
of G(i, σ1, σ2) and the key is derived as h(σ1, σ2), is still a robust combiner.

A formal version of this result is proven in Appendix B.3.

Hash combiners. As some of the proposed functions g use more than one hash
functions, these functions are themselves hash combiners. Thus, it is of interest to
study the robustness of such constructions. That is, if one of the underlying hash
functions is broken (i.e. shown not to behave as a RO), is the g function (thus
the whole FO-like combiner) still secure? As one of the main security concerns
of the use of FO-like transforms is that the proofs are in the ROM, using robust
hash combiners may improve the trust in such constructions.
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The last function g in Table 2 is actually a robust combiner with respect to
the RO property and one of the seeds. That is, G1(i, σ1) ⊕ G2(i, σ2) is indis-
tinguishable from a RO, even if G1 (or G2) is any function. Hence, if we take
both g(i, σ1, σ2) = G1(i, σ1)⊕G2(i, σ2) and h(σ1, σ2) = H1(σ1)⊕H2(σ2) in the
FO-like combiner, we will obtain a secure KEM as long as Gi and Hi and PKEi
are secure for some i ∈ [2].

Proposition 1 (Informal). Let g(i, σ1, σ2) = G1(i, σ1) ⊕ G2(i, σ2) and
h(σ1, σ2) = H1(σ1)⊕H2(σ2). We call a tuple (Gi, Hi,PKEi) secure if Gi, Hi are
ROs and PKEi is OW-CPA. Let KEM be the hybrid KEM resulting from applying
UT‖ on PKE1 and PKE2 with g and h to derive the deterministic coins and key,
respectively. Then, KEM is IND-CCA if (G1, H1,PKE1) or (G2, H2,PKE2) (or
both) is secure.

Proof sketch. We assume w.l.o.g. that the tuple (G1, H1,PKE1) is secure and
G2, H2 can be any functions and PKE2 might not be OW-CPA. In addition,
we assume G1, H1, G2, H2 are mutually independent functions (e.g. this can
be implemented by RO separation). The result follows simply from the fact
that in the IND-CCA game against KEM, as long as G1 is a RO, the coins
G1(i, σ1)⊕G2(i, σ2) are indistinguishable from uniform unless (i, σ1) is queried,
irrespectively of the value G2(i, σ2). But in turn such a query would break the
OW-CPA assumption on PKE1 (or happens with negligible probability). The
same argument for h(σ1, σ2) = H1(σ1) ⊕H2(σ2) holds that the key will always
be indistinguishable from uniform if H1 is a RO and PKE1 is OW-CPA. ut

6 Implementation

As a proof of concept, we implemented a fully PQ hybrid KEM using two IND-
CPA proposals that passed to the Round 2 of the standardization process and
our combiner. As the main goal of our combiner is to increase the security while
still offering good performances, we chose HQC and LAC since

1. LAC is one of the most efficient schemes in term of speed and public-
key/ciphertext size but it has been attacked recently in [12]. More gener-
ally, it seems LAC is more vulnerable to failure attacks than other schemes
and that led this scheme to be dropped for Round 3. Thus, using it along
another cryptosystem does not imply a large overhead while preventing a
failure attack alone against LAC to break the whole scheme.

2. HQC is a code-based scheme that offers good performance, although the
hardness assumption it is based on has not been extensively studied as of
yet. Thus, combining it with another efficient scheme might provide more
confidence in this scheme at the expense of a small overhead.

3. HQC is code-based while LAC is lattice-based. Therefore, one can hope that
any improvement in breaking the assumption of one does not lead to a better
cryptanalysis of the other.
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Scheme SK (B) PK (B) CT (B) KeyGen (µs) Encaps (µs) Decaps (µs)

frodo640 19888 9616 9720 847.553 4650.037 4602.284
hqc128 3165 3125 6234 144.166 298.120 528.624
kyber512 1632 800 736 154.077 210.857 263.194
lac128 1056 544 712 115.308 199.776 311.709
hqc lac128 4221 3669 6882 260.032 484.969 813.452
hqc lac128 par 4221 3669 6882 162.502 315.137 549.516

Table 3: Performance of hqc lac128 and hqc lac128 par compared to other
schemes. The size of the public/secret key and ciphertext are in bytes. The time
for key generation, encapsulation, decapsulation is in microseconds.

6.1 Design choices

We used the reference IND-CPA implementations provided by the authors in the
second round for both schemes. Then, we applied our UT‖ combiner. In practice
we implemented G(1, ·, ·) as SHA256(·), G(2, ·, ·) as the AES-based expansion
function provided by the NIST and H(·) as SHA512(·). These choices made
the implementation easier as we could stick to most of the author’s choices.
For example, HQC encryption function in the original FO transform is using a
seed output by the AES-based expander and our choice of G(2, σ1, σ2) makes it
possible to reuse most of the code.

We implemented two versions of the hybrid cryptosystem, a standard
version that we are calling hqc lac128 and a parallel version denoted by
hqc lac128 par, both using the Level 1 (i.e. aiming at 128 bits of classical secu-
rity) reference implementations of LAC and HQC. The parallel implementation
uses the pthread library and is implemented without any other optimization. In
particular, only the encryption of the seeds is parallelized in the encapsulation
function (i.e. the encryption functions of LAC and HQC are called in different
threads) and only the decryption and reencryption is parallelized in the decap-
sulation procedure.

6.2 Results and efficiency

We tested both our hybrid schemes on a laptop running Ubuntu 14.04 with
an Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz. The results for our hybrid
schemes, the original schemes and reference implementations of two other pop-
ular lattice-based schemes (Frodo and Kyber) are reported in Table 3. The sizes
are in bytes and the times are given in microseconds (10−6s) and are averaged
over 10000 runs. Obviously, the size of the public/secret key and ciphertext are
the addition of the corresponding ones in LAC and HQC, except for the cipher-
text, which is a bit smaller. This follows from the fact that the ciphertext in
HQC contains a confirmation hash that we omit in our FO-like combiner. One
can see that compared to a proposal with large keys and ciphertexts (i.e. Frodo),
our hybrid compares well. In addition, as LAC produces small outputs, the in-
crease compared to HQC is small. That is, the size of the secret key, public key
and ciphertext is increased by roughly 33%, 17% and 10%, respectively.
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Considering the speed, the non-optimized hybrid hqc lac128 performs
slightly better than both LAC and HQC run one after the other. However, all pro-
cedures are still much faster than the ones of a slower scheme, like Frodo. On the
other hand, the parallelized hybrid hqc lac128 par offers very good performance
as one could expect from such a parallelizable design. In particular, we observe
only a 13%, 6% and 4% increase of latency compared to HQC, for key genera-
tion, encapsulation and decapsulation, respectively. Therefore, hqc lac128 par

can perform nearly as good as HQC on systems that offers efficient paralleliza-
tion, such as laptops or any machine with regularly idle processors.

We give on Figure 16 a visualisation of the performance of hqc lac128 com-
pared to other round 2 candidates with security Level 1. Most of the data comes
from the SUPERCOP [2] benchmarking system (we picked the results of a test
performed on a 2018 Intel Core i7-8809G). All round 2 proposals are represented,
except for BIKE, Round 5 and LEDACrypt, which did not have an IND-CCA
version benchmarked at the time of the test. We still added the keys and cipher-
text sizes of BIKE as they are similar to the ones of HQC.

For the hybrid scheme hqc lac128, we computed the cycles needed for key
generation, encapsulation and decapsulation as the sum of the corresponding
cycles needed by LAC and HQC. Note that this is a pessimistic approximation
as the hybrid system requires less instructions than the sum of both underlying
schemes (e.g. we apply some hash functions only once), this is confirmed in
practice by the results shown in Table 3. We do not plot the parallelized version
hqc lac128 par as the sizes are the same as in hqc lac128 and the time is upper
bounded by the latter as well.

Analysis. From all three graphs in Figure 16, we can deduce that our hybrid
does not perform particularly well compared to other schemes in these metrics.
However, one can see that the bottleneck is the use of HQC here. In particular,
hqc lac128 performs nearly as well as HQC in the metrics considered. This
confirm what we wanted to show, that is boosting security by combining a very
efficient scheme with one that is less so does not worsen much the performance
of the latter one. In other words, if one is willing to use HQC, one can as well
use the hybrid hqc lac128 for a very small overhead but arguably much better
security.

Finally, one can wonder what is the speedup of our combiners compared to
existing ones. We take as an example the XtM combiner from Bindel et al. [3],
which applies a special kind of MAC to the ciphertexts and keys. It is proposed
to implement this primitive as the concatenation (or the XOR) of two standard
MACs. This computation is the main overhead compared to our construction
and we simulated it as two calls to SHA256 on both ciphertexts and keys. This
takes approximately 40µs on our setup, hence the speedup when considering
hqc lac128 par is slightly over 10% for encapsulation. This obviously depends
on many factors like hardware, hash functions, parallelization and the underlying
schemes. For example, for small ciphertexts the speedup will be negligible while
for large ones it will be more important. Finally, we note that PQ schemes are
not optimized thus the gain might be more noticeable in the future.
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6.3 Other hybrid KEMs.

While hqc lac128 is an interesting example of the advantages offered by a PQ
hybrid KEM, one might wonder what is the optimal combination of schemes
according to some metrics. Using the same data, we computed the theoreti-
cal performance of all possible hybrid made of two PKEs based on different
assumptions (e.g. code and lattice). We considered the fastest ones in encapsu-
lation/decapsulation and the ones with the smallest public key/ciphertext size.
We present some of the most efficient ones according to these metrics in Table
4. The schemes that perform best in term of size were obviously based on SIKE,
which has by far the smallest public key/ciphertext sizes but suffer from slow
computation. Thus, we chose to show only three of these hybrid in Table 4,
in order to offer a broader view of possible schemes. Similarly, we showed only
three of the best hybrid schemes based on McEliece and NTS, which have ex-
tremely fast encapsulation/decapsulation procedures but have very large public
keys. Overall, non-lattice-based schemes are quite slower than lattice-based ones
(although some data on BIKE is missing), thus it seems that combining schemes
of these two types will not give small public key and fast encapsulation/decap-
sulation. Nevertheless, in Table 4, we also include a lattice/rank-based hybrid
scheme for completeness (i.e. NTRUhps rqcI) and a LAC-RSA hybrid KEM as
an interesting comparison.

Scheme PK (B) CT (B) Encaps (cycles) Decaps (cycles)

kyber512 sike 1 178 1 138 17 652 847 18 817 320
lac128 sike 922 1 114 17 677 983 18 871 919
NTRUhps sike 1 077 1 101 17 643 917 18 826 865
NTRUhps bike2 2 171 2 171 - -
lightsaber2 bike2 2 144 2 208 - -
lac bike2 2 016 2 184 - -
NTRUhps McEliece 261 819 827 74 361 168 478
kyber512 McEliece 261 920 928 83 291 158 933
lightsaber2 McEliece 261 792 864 102 172 186 370
NTRUhps NTSkem 320 187 827 140 165 371 082
kyber512 NTSkem 320 288 928 123 001 334 107
lightsaber2 NTSkem 320 160 864 141 882 361 544
NTRUhps rqcI 1 552 2 389 374 470 1 265 545

Table 4: Selection of efficient hybrid schemes.

We give a visualisation of the performance of these hybrid schemes compared
to the NIST proposals (and RSA 2048) in Figure 17. On the first figure, one
can easily identify the hybrid schemes based on McEliece and NTS on the right.
Then, one can see that the ones based on SIKE have a slightly worse performance
than most lattice-based schemes but still give good efficiency in the size metric. In
particular, they have a similar performance as lac rsa. Finally, both the hybrid
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schemes based on BIKE and NTRUhps rqcI have public key and ciphertext sizes
that lie between those of the rank-based proposals and some code-based ones.

On the second figure, one can see that hybrid schemes based on SIKE are slow
due to the underlying scheme. On the other hand, in term of speed the hybrid
systems based on McEliece and NTS offer competitive performance. However,
NTRUhps rqcI is the only full PQ hybrid considered that has slightly worse
than average performance in all metrics considered (i.e. bandwidth and speed).
Interestingly, we see that the decapsulation latency of RSA is one of the worst
among the schemes considered, and thus the hybrid lac rsa suffers from slow
decapsulation as well.

In general, several lattice-based schemes offer good performance in both the
chosen metrics. Hence, the hybrid constructions mostly inherits the advantages
and disadvantages of the second PKE scheme used in the construction (i.e.
isogeny, code or rank-based). Furthermore, one can see from Figure 17 that
composing a hybrid KEM from an “extreme” scheme (i.e. a scheme that per-
forms very well in one metric but very badly in another) might not be the best
option.

It seems that a better approach would be to combine two schemes based
on the same type of assumptions. However, we could loose some security since
a breakthrough in breaking one of the assumptions could automatically imply
breaking the other one. A more complete study is out of the scope of this paper
and we leave it as future research.
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Fig. 16: Visualisation of the performance of hqc lac128 compared to several
Level 1 implementation of NIST round 2 proposals.
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A QROM security

In this Appendix, we briefly recall the notion of QROM before proving the
security of the QU⊥m ◦ Tn‖ combiner in this model.

Reminders and useful lemmas

QROM. In the Quantum Random Oracle Model (QROM), a hash function H is
represented as an ideal random function quantumly accessible by the different
parties. That is, on a quantum query

∑
x,y αx,y|x, y〉, the QRO |H〉 returns∑

x,y αx,y|x, y ⊕H(x)〉, where H(·) is an ideal random function (i.e. a classical
random oracle). In general, for a function H(·) and an adversary A, we write
A|H〉 to say that A has quantum access to H.

2qH-wise independent functions and QROM. The following result was shown by
Zhandry in [23].

Lemma 2. No adversary limited to qH quantum queries to an oracle |H〉 can
distinguish between the case where |H〉 is a QRO and the case where |H〉 is a
2qH-wise independent function.

The previous lemma implies that in a reduction, one can perfectly and efficiently
simulate a QRO by sampling a 2qH -wise independent function.
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GSBPλ(A)

(λ(x))x∈X ← A
if ∃x s.t. λ(x) > λ : return 0

for x ∈ X : F (x)←$ Ber(λ(x))

x← A|F〉

return F (x)

Fig. 18: GSPB game.

Generic Search Problem with Bounded Probabilities (GSPB). The GSPB prob-
lem is defined in [14]. Informally, a quantum and unbounded adversary A has
access to a quantum oracle |F 〉, where F (x) = 1 with some probability λ(x) ≤ λ.
The goal of the adversary is to find x s.t. F (x) = 1, by querying |F 〉 q times.
The following lemma upper bounds the probability that A succeeds.

Lemma 3 (Lemma 4.2, [14]). Let GSBPλ(A) be the game defined in Figure
18, where Ber(λ) is the Bernoulli distribution with parameter λ (i.e. it outputs
1 with prob. λ, 0 othterwise. Then, for any quantum and unbouded adversary A
limited to q queries to |F 〉, we have

Pr[GSBPλ(A)⇒ 1] ≤ 8 · λ · (q + 1)2 .

where F : X 7→ {0, 1} for some set X .

Lemma 3 is useful to upper bound the probability of a correctness error in
the game. More precisely, in the security proof of UT‖ (Theorem 5), we up-
per bound the probability that some query G(i, σ1, σ2) during the game is s.t.
deci(enci(σi;G(i, σ1, σ2))) 6= σi. We can call this event faili and we state the
following lemma, which is a simple rephrasing of Lemma 4.3 in [14].

Lemma 4. Let PKEi be a δi-correct PKE and let faili be the event
defined as Gi(pt1, . . . , ptn) is queried classicaly by the game and
deci(enci(pti;Gi(pt1, . . . , ptn))) 6= pti. We consider a game Γ where at
most qGi (quantum or not) queries to |Gi〉 are made. Then,

Pr[faili] ≤ 8 · δi · (qGi + 1)2 .

Proof sketch. The proof is the same as Lemma 4.3 in [14]. Briefly, the GSBP
problem with λ = δ can be reduced to the problem of triggering faili in the game
Γ .

(Algorithmic) One-Way to Hiding Lemma (AO2WH). Finally, we briefly recall
the highly popular One-Way to Hiding (OW2H) Lemma in the version found
in [14]. Note that several improvements of this lemma and of similar proofs
have been presented these last few years (e.g. [4,17,21]). Those variants would
most likely improve the security bound of Theorem 9 presented below, but for
simplicity we stick to one of the simplest version.
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Lemma 5 (AOW2H). Let A be a quantum adversary making at most qH
queries to the QRO |H〉 : {0, 1}n 7→ {0, 1}m and outputting 0 or 1. Let Ext|H〉qH (A)
be the algorithm in Figure 19. Then, for any algorithm F that does not use |H〉∣∣Pr[A|H〉(inp)⇒ 1|σ←$ {0, 1}n; inp← F(σ,H(σ))]

− Pr[A|H〉(inp)⇒ 1|(σ,K)←$ {0, 1}n+m; inp← F(σ,K)]
∣∣

≤ 2qH

√
Pr[σ ← ExtA,|H〉(inp)|(σ,K)←$ {0, 1}n+m; inp← F(σ,K) .

ExtA,|H〉(inp)

i←$ [qH ]

run A|H〉(inp) until i-th query |QUERY〉 =
∑
x,y

αx,y|x, y〉

x′ ← measure first register of |QUERY〉
if A did not make i queries : return ⊥
return x′

Fig. 19: Extractor Ext for the AOW2H lemma.

Security of FO-like combiner in the QROM

The secure combiner we propose in the QROM is our T‖ construction composed

with the QROM secure QU⊥m transform from [14]. This simplifies the proof as
we only need to prove that T‖ holds a OW-PCA PKE in the QROM, as QU⊥m
is already known to convert a OW-PCA scheme into an IND-CCA KEM in the
Quantum Random Oracle Model. Our main combiner QU‖ with a confirmation
hash (i.e. adding H ′(σ) to the ciphertext) can be proven secure in the QROM in
a similar way. We note that the bound could much likely be made tighter using
recent QROM techniques (e.g. [4,17,21]). In addition, we conjecture that our
main combiner UT‖ could be proven secure in the QROM without the additional
hash, using the compressed oracle techniques by Zhandry [24]. We leave these
improvements as future work.

In the following theorem, we show that the T‖ combiner generalized to n
schemes holds a OW-PCA PKE in the QROM. We call this construction Tn‖ and
it is presented in Figure 20. Note that for the sake of the proof, the deterministic
coins are computed as Gi(·) instead of G(i, ·) as in the original T‖ transform.

Theorem 9. Let PKE be the PKE resulting from applying Tn‖ on
PKE1, . . . ,PKEn, which are respectively δ1, . . . , δn-correct. In addition, let
Gi be hash functions modelled as (independent) quantum random oracles. Then,
for all quantum OW-PCA adversary A making at most qG queries to all oracles
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gen()

for i ∈ [n] :

(pki, ski)←$ geni

pk← (pk1, . . . , pkn)

sk← (sk1, . . . , skn)

return (pk, sk)

enc(pk, (pt1, . . . , ptn))

parse (pk1, . . . , pkn)← pk

for i ∈ [n] :

ri ← Gi(pt1, . . . , ptn);

cti ← enci(pki, pti; ri)

return (ct1, . . . , ctn)

dec(sk, (ct1, . . . , ctn))

parse (sk1, . . . , skn)← sk

for i ∈ [n] :

pt′i ← deci(ski, cti)

for i ∈ [n] :

if enci(pki, pt′i;Gi(pt′1, . . . , pt′n)) 6= cti :

return ⊥

return (pt′1, . . . , pt′n)

Fig. 20: Tn‖ combiner.

Gi and qP queries to the plaintext-checking oracle, there exists adversaries
B1, . . . ,Bn such that

Advow−pca
PKE (A) ≤

(
8 · (1 + qG + qP )2 + 1

) ∑
i∈[n]

δi

+ (1 + 2qP + 2qG) ·
√

min{Advow−cpa
PKE1

(B1), . . . ,Advow−cpa
PKEn

(B2)}

where B1, . . . ,Bn run in about the same time as A and make at most qG + qP
queries to the QROs.

Proof. We proceed with a sequence of hybrid games detailed in Figure 21. The
adversary has access to the n different QROs |G1, . . . , Gn〉 which can be defined
as one oracle |G〉 = |G1, . . . , Gn〉. We assume that the message spaces Mi are
equal to {0, 1}`i for some integer `i and that Gj : {0, 1}∗ 7→ {0, 1}n.

Game Γ 0: This is the original OW-PCA game in the QROM except we
enforce correctness of the challenge ciphertext (i.e. dec(pk, ct∗) = pt∗). As the
correctness is broken for ct∗ if it is broken for at least one of the components
ct∗i , the probability of that happening is at most

∑
i∈[n] δi.

Game Γ 1: In this game, we simulate the plaintext-checking oracle by checking
whether encj(ptj ;Gj(pt1, . . . , ptj)) = ctj for all j ∈ [n]. As seen in the proof of
Theorem 4, the simulation is not perfectly iff one of the (pt1, . . . , ptn) queried is
such that the correctness is broken, i.e. decj(encj(ptj ;Gj(pt1, . . . , ptn))) 6= ptj
for some j ∈ [n]. This is precisely the failj event defined in Lemma 4. Now, the
number of quantum and classical (i.e. a quantum query not in superposition)
queries made to Gj throughout the game are at most 1 + qG + qP (i.e. 1 in the
computation of the challenge plaintext, qG by the adversary and qP for queries to
the plaintext-checking oracle). Therefore, we have Pr[failj ] ≤ 8·(1+qG+qP )2 ·δj .

Overall, we have

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ Pr
[
∪j∈[n]failj

]
≤ 8 · (1 + qG + qP )2 ·

∑
j∈[n]

δj
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where the second inequality follows from a union bound.

Game Γ 2: In game Γ 2, we replace the deterministic coins Gj(pt
∗
1, . . . , pt

∗
n) by

random coins rj ←$ {0, 1}r for all j ∈ [n]. We can then use the One-Way to
Hiding Lemma to upper bound |Pr[Γ 2 ⇒ 1] − Pr[Γ 1 ⇒ 1]|. First, we consider
the RO G := G1 ⊗ . . . ⊗ Gn s.t. G(m) = (G1(m), . . . , Gn(m)) and the function
F(x, y) shown in Figure 22 which outputs inp = (pk, ct∗). In addition, let

A′ be the adversary that receives inp, run AOPCO
1 (pk, pt∗) by simulating the

plaintext-checking oracle (this is possible since the secret key is not used in
OPCO

1 anymore) and outputs 1 iff A outputs pt′ s.t. enc(pk, pt′) = ct∗ (this is
equivalent to pt′ = pt∗ by the perfect correctness of the challenge ciphertext).
By the AOW2H Lemma (Lemma 5), one can easily see that∣∣Pr[Γ 2 ⇒ 1]− Pr[Γ 1 ⇒ 1]

∣∣ =∣∣Pr[A′|G〉(inp)⇒ 1|pt∗←$ {0, 1}`1+...+`n ; inp← F(pt∗, G(pt∗))]

− Pr[A′|G〉(inp)⇒ 1|(pt∗, r∗)←$ {0, 1}`1+...+`n+r·n; inp← F(pt∗, r∗)]
∣∣

≤ 2qow2h

√
Pr[pt∗ ← ExtA

′,|G〉(inp)|(pt∗, r∗)←$ {0, 1}`1+...+`n+r·n; inp← F(pt∗, r∗)

where Ext is the extractor defined in Figure 19 and qow2h is the number of queries
made by A′ to G, which is qG to answer A’s queries and qP to simulate the
plaintext-checking oracle (i.e. one can compute the coins (Gj(pt1, . . . , ptn))j∈[n]

with one quantum query to G). Thus, qow2h = (qP + qG). Now, the probability
that the extractor outputs pt∗ is precisely the probability that the OW-CPA
property of all underlying PKEi is broken. We provide in Figure 23 an adversary

Bj that breaks the OW-CPA security of any PKEj given ExtA
′
. Thus, we have∣∣Pr[Γ 2 ⇒ 1]− Pr[Γ 1 ⇒ 1]

∣∣ ≤ 2(qP + qG)
√

Advow−cpa
PKEj

(Bj)

for any j ∈ [n]. Finally, Pr[Γ 2 ⇒ 1] is the probability to win the OW-CPA game
against any underlying PKEj . We provide the given adversary Cj that breaks

PKEj in Figure 23. Hence, Pr[Γ 2 ⇒ 1] ≤ Advow−cpa
PKEj

(Cj) ≤
√

Advow−cpa
PKEj

(Cj).
Collecting the bounds and folding adversaries hold the result. ut

Corollary 2 (Informal). The QUm ◦ Tn‖ combiner takes n PKEs and outputs
an IND-CCA KEM which is secure as long as one of the underlying PKEs is
OW-CPA secure.

Proof. This is simply a consequence of Theorem 4.5 from [14] and Theorem 9.

B Extractable Random Functions (ERF),
Indistinguishable unless Queried (IUQ)

B.1 ERF

Definition 7 (Extractor). Let g be a random function defined using a random
oracle G. An extractor Extg for a function g is a ppt deterministic function that
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Γ i(A)

pp←$ setup(1
λ

)

((pk1, . . . , pkn), (sk1, . . . , skn))←$ gen(pp)

(pt∗1 , . . . , pt∗n)←$ {0, 1}`1+...+`n

ct∗ ← enc(pk, (pt∗1 , . . . , pt∗n))

for i ∈ [n] : // Γ
2

(r
∗
1 , . . . , r

∗
n)←$ {0, 1}rn // Γ

2

ct∗i ← enci(pki, pt∗i ; r
∗
i ) // Γ

2

if dec(sk∗, ct∗) 6= (pt∗1 , . . . , pt∗n) :

abort

pt′ ← A|G1,...,Gn〉,O
PCO
0 (pk, ct∗) // Γ

0

pt′ ← A|G1,...,Gn〉,O
PCO
1 (pk, ct∗) // Γ

1
-Γ

2

return 1pt′=(pt∗1 ,...,pt∗n)

Oracle OPCO
0 ((pt1, . . . , ptn), (ct1, . . . , ctn))

(pt′1, . . . , pt′n)← dec(pp, sk, ct)

return 1(pt1,...,ptn)=(pt′1,...,pt′n)

Oracle OPCO
1 ((pt1, . . . , ptn), (ct1, . . . , ctn))

for j ∈ [n] :

rj ← Gj(pt1, . . . , ptn)

if encj(pkj , ptj ; rj) 6= ctj :

return 0

return 1

Gj(m)

if ∃g s.t. (m, g) ∈ LGj :

return g

g ←$ {0, 1}r

LGj ← LGj ∪ {(m, g)}

return g

Fig. 21: Sequence of games for the proof of Theorem 9.

takes a set of tuples LG = {(xi, hi)}i∈[qG] defining the event {∧i∈[qG]G(xi) = hi}
and that outputs a set of tuples E = {((ij , σj1, σ

j
2), gj)}j∈[qE ] s.t.

1. (correctness) Pr[g(ij , σj1, σ
j
2) = gj |LG] = 1,∀j ∈ [qE ].

2. (initial emptiness) Extg(∅) = ∅.
3. (increasing) LG ⊆ L′G ⇒ Extg(LG) ⊆ Extg(L′G).
4. (initial queries) Let L∗G be the set of queries/responses made when computing

g(1, σ1, σ2) and g(2, σ1, σ2). Then,

Extg(L∗G) = {((1, σ1, σ2), g(1, σ1, σ2)), ((2, σ1, σ2), g(2, σ1, σ2))} .

That is, one call to the function g(i, σ1, σ2) (for different i) does not give
away any information on other values of g.

Note that the number of tuples output by the extractor qE is a function of qG,
that is the number of queries made to the RO G. In addition, we define q1

E as the
maximum number of tuples of the form (i, σ1, σ2) with a fixed σ1 (or σ2) output
by the extractor.

Now, we can define the notion of extractable random functions.

Definition 8 (Extractable Random Function (ERF)). Let g : {0, 1}∗ 7→
{0, 1}n be a (random) function defined using a random oracle G. Let Jσ1,σ2 =
{((i, σ′1, σ′2), g(i, σ′1, σ

′
2)) : σ′1 6= σ1, σ

′
2 6= σ2} be the set of input/output tuples of

g for values σ′1 and σ′2 different from σ1 and σ2, where each tuple (x, y) ∈ Jσ1,σ2



36 Löıs Huguenin-Dumittan and Serge Vaudenay

F(pt∗, r∗)

parse (r∗1 , . . . , r
∗
n)← r∗

parse (pt∗1, . . . , pt
∗
n)← pt∗

(pk, sk)←$ gen

for i ∈ [n] :

ct∗i ← enci(pki, pt
∗
i ; r
∗
i )

return (pk, ct∗)

Fig. 22: Function F for applying the AOW2H Lemma in the proof of Theorem 9.

BExtA
′
,G

1 (pkj , ct
∗
j )

for i ∈ [n], i 6= j :

(pki, ski)←$ geni

pt∗i ←$ {0, 1}`i

ct∗i ← enci(pki, pt∗i )

pt′ ← ExtA
′
((pk1, . . . , pkn), (ct∗1 , . . . , ct∗n))

return pt′j

C′A,G1 (pkj , ct
∗
j )

for i ∈ [n], i 6= j :

(pki, ski)←$ geni

pt∗i ←$ {0, 1}`i

ct∗i ← enci(pki, pt∗i )

pt′ ← AO
PCO
1 ((pk1, . . . , pkn), (ct∗1 , . . . , ct∗n))

return pt′j

Fig. 23: OW-CPA adversaries for the proof of Theorem 9.

defines the event {g(x) = y}. Then, g is an extractable random function (ERF)
if there exists an extractor Extg s.t. for any i, σ1, σ2, y,LG and J ′ ⊆ Jσ1,σ2

s.t.
Pr[J ′,LG] > 0,

Pr[g(i, σ1, σ2) = y|LG,J ′] =


1

2n , if ((i, σ1, σ2), y) /∈ Extg(LG)

1, if ((i, σ1, σ2), y) ∈ Extg(LG)

0, if ∃y′ 6= y s.t. ((i, σ1, σ2), y) ∈ Extg(LG)

In short, this notion captures the fact that either g(i, σ1, σ2) is uniformly dis-
tributed, or the extractor can compute it based on the queries made to G. In
addition, we require that there is no correlation between different values of g
when both inputs are different. Finally, we stress that when a party computes
g(i, σ1, σ2), the value of g becomes deterministic. In other words, if we let LG be
the set of corresponding queries/responses used to compute g(i, σ1, σ2), the list
Extg(LG ∪ L′G) will contain g(i, σ1, σ2), for any L′G.

ROs are ERF functions (Example). As an example, we show that ROs
are ERF. More precisely, let g(i, σ1, σ2) = G(i, σ1, σ2) as in the UT‖ combiner.
Then, we define the extractor Extg as a function that takes all tuples of the
form ((i, σ1, σ2), h) ∈ LG and outputs them. Clearly, if the extractor does not
output a given value (i, σ1, σ2), then it was not queried to the RO and it is indis-
tinguishable from a uniform value, as requested. Also, by the property of ROs,
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IUQ-bh,H,Exth
(A)

chal1 ← false; chal2 ← false

(σ1, σ2)←$M1 ×M2

h0 ←$ {0, 1}n

h1 ← h(σ1, σ2)

b
′ ← AH(σ1, σ2, hb)

return b
′

H(m)

1 : if ∃x s.t. (m,x) ∈ LH :

2 : return x

3 : x←$ {0, 1}n

4 : LH ← LH ∪ {(m,x)}

5 : if σ1 ∈ Exth(1, σ2,LH) : chal1 ← true

6 : if σ2 ∈ Exth(2, σ1,LH) : chal2 ← true

7 : if chal1 and chal2 : abort

8 : return x

Fig. 24: IUQ game.

a value G(i, σ1, σ2) is mutually independent from any set of values G(i′, σ′1, σ
′
2)

with σ1 6= σ′1 and σ2 6= σ′2. Note also that the maximum number of tuples output
by the extractor qE is upper bounded by qG.

B.2 IUQ functions

Now we define a weaker assumption than ERF for the hash function h that
derives the key in the encapsulation/decapsulation procedures. Indeed, we notice
that the only property we need from this function is to look indistinguishable
unless one can recover both challenge seeds. This must hold even if the adversary
can choose one of the seeds, as in the reduction an adversary attacking PKE1

can pick σ∗2 . We call such property Indistinguishability unless Queried (IUQ)
and define it as follows.

Definition 9 (IUQ functions). Let h(σ1, σ2) be a (random) function based on
a random oracle H with σ1 ∈ M1 and σ2 ∈ M2. We consider the IUQ game
defined in Figure 24, where the RO H is defined as shown in the game. Then, if
there exists a ppt function Exth(i, σi,LH) s.t. for any ppt adversary A

Adviuq
h,H,Exth

(A) =
∣∣Pr[IUQ1

h,H,Exth(A)⇒ 1]− Pr[IUQ0
h,H,Exth(A)⇒ 1]

∣∣ = 0

we say h is IUQ (Indistinguishable from Uniform unless Queried).

While looking cumbersome, this definition simply generalizes what we want from
the functions that derives the key. Indeed, in the IUQ game, we ask the adversary
to distinguish between a uniformly distributed value and h(σ1, σ2) for some
random (σ1, σ2). However, if there exists some extractor (or parsing function)
Exth that can recover (σ1, σ2) by observing the queries to the random oracles, the
game aborts. That captures the fact that either the adversary cannot distinguish,
or one can recover the challenge seeds (or plaintexts). Note that the function Exth
takes the index of the seeds it must recover and the other seed to capture the
fact that in a reduction attacking the one-wayness of PKE1, the adversary can
pick σ2 (and the other way around).
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Finally, note that we can ask for perfect indistinguishably (i.e. the probability
of distinguishing is 0) because we are still in the ROM. Indeed, we recall that for
a RO H, since the value H(m) is taken uniformly at random, the distribution
of H(m) is uniform as long as m is not queried to H.

In summary, the definition simply formalizes that one cannot distinguish
between uniform values and h(σ1, σ2), unless one can recover (σ1, σ2) from the
list of queries made to the random oracles.

H(σ1 ⊕ σ2) is IUQ (Example). As an example of a IUQ function, one can
consider h(σ1, σ2) := H(σ1) ⊕ H(σ2), the function used in the UT‖ combiner.
As an extractor, we define Exth(i, σ,LH) as the function that goes through all
tuples (m,h) ∈ LH and outputs m. Now, unless σ1 and σ2 are queried, the
adversary cannot distinguish a random value from h(σ1, σ2). But if both values
are queried, the IUQ game will abort because both lists output by the extractor
Exth(1, σ2,LH) and Exth(2, σ1,LH) will contain σ1 and σ2, respectively. In this
case, the advantage of IUQ adversary is 0.

B.3 IUQ and ERF in UT‖

Now, based on the IUQ and ERF definition, we prove the following theorem,
which states that the UT‖ combiner is still robust if G and H are replaced by
ERF and IUQ functions, respectively.

Theorem 10 (UT‖ and ERF/IUQ). Let h(σ1, σ2) and g(i, σ1, σ2) be a IUQ,
resp. ERF function, and H, G be the ROs h and g are based on, respectively. In
addition, let qE(|LG|), qEh(|LH |) be the maximum number of tuples output by
Extg(LG), Exth(LH), respectively (they are a function of the length of the input).
We also let q1

E(|LG|) be the maximal number of tuples with a fixed σ output by
Extg(LG) (see Definition 7). Finally, let KEM be the hybrid KEM built on top of
two OW-CPA PKEs using the UT‖ combiner, where the deterministic coins for
encrypting the seed σi are computed as g(i, σ1, σ2) instead of G(i, σ1, σ2) and the
key is computed as h(σ1, σ2) instead of H(σ1 ⊕ σ2). Then, for all ppt IND-CCA
adversary A making at most qG, qH and qD queries to the oracles G,H and ODec,
respectively, there exists adversaries B1 and B2 such that

Advind−cca
PKE (A) ≤qE(qg · 2(qD + 1) + qG) ·max{δ1, δ2}

+ (qD + q1
E(qG)) · (2−γ1 + 2−γ2)

+ (q1
E(qG) + qEh(qH)) ·min{Advow−cpa

PKE1
(B1),Advow−cpa

PKE2
(B2)}

where qg is the number of queries to G needed to evaluate g. All run in about
the same time as A and make the same number of queries.

Proof. The proof is very similar to the proof of security of the UT‖ transform.
The only difference is that we use the output of the extractors associated with
the ERF/IUQ properties of g/h instead of the list of queries LG,LH . In partic-
ular, we argue that if some value is not in these extracted lists, it is uniformly
distributed.
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Let Extg and Exth be the functions s.t. g and h are ERF and IUQ, respec-
tively. We also assume that the key space is {0, 1}n for some n. We give the
sequence of games in Figure 25.

Game Γ 1: In this game, we enforce the correctness of all ciphertexts that
can be computed using the function g. In particular, we abort if the chal-
lenge ciphertexts break the correctness property or if any (i, σ1, σ2) output
by Extg is s.t. enci(pki, σi; g(i, σ1, σ2)) breaks the correctness property. Let
LG collect all tuples of query/responses made throughout the game by
the adversary and the game itself, and LkG its state after the k-th query
to G is made. Then, we can define the set of new tuples output by the
extractor at query k as T k = Extg(LkG) \ Extg(Lk−1

G ). Hence, when submit-
ting the k-th query m to G, the probability a tuple in the corresponding
T k = Extg(Lk−1

G ∪ (m,G(m))) \ Extg(Lk−1
G ) contains a plaintext that breaks the

correctness is

Pr[
∨

((i,σ1,σ2),g(i,σ1,σ2))∈T k
deci(ski, enci(pki, σi; g(i, σ1, σ2))) 6= σi|Lk−1

G ]

≤
∑

((i,σ1,σ2),g(i,σ1,σ2))∈T k
Pr[deci(ski, enci(pki, σi; g(i, σ1, σ2))) 6= σi|Lk−1

G ]

=
∑

((i,σ1,σ2),g(i,σ1,σ2))∈T k
Pr[deci(ski, enci(pki, σi; coins)) 6= σi : coins←$ {0, 1}n]

≤ |T k| ·max{δ1, δ2}

for any query m. The equality follows from the definition of extractable random
functions and the last inequality from the δi correctness of PKEi. Then, by a
union bound, the probability a correctness error happens for any of the qE tuples
output by Extg is upper bounded by qE ·max{δ1, δ2}. Note that qE is a function
of the total number of queries submitted to G, which is qg · 2(qD + 1) + qG in
this case, where qg is the number of queries made to G at each evaluation of g
(i.e. in total 2 calls to g for the challenge ciphertexts and for each decapsulation
query and qG queries made by the adversary). Hence, we have

|Pr[Γ 0 ⇒ 1]− Pr[Γ 1 ⇒ 1]| ≤ qE ·max{δ1, δ2} .

Game Γ 2: In this game, we consider LG, which is the transcript of the queries
made to G by any party (i.e. game or adversary). We enforce that at no
point the extractor Extg(LG) contains a tuple ((1, σ∗1 , σ2), g′1) with σ2 6= σ∗2
or ((2, σ1, σ

∗
2), g′2) with σ1 6= σ∗1 s.t. enc1(pk1, σ

∗
1 ; g′1) = ct∗1 or enc2(pk2, σ

∗
2 ; g′2) =

ct∗2, respectively. We proceed as in the previous game and let T k = Extg(LkG) \
Extg(Lk−1

G ) where LkG is the state of LkG after the k-th query to G. Finally, let
L0
G be the state of LG after computing the challenge ciphertexts. Then, when

submitting the k-th (k ≥ 2) query m to G, the probability a tuple in T k breaks
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the first condition is

Pr[
∨

((1,σ∗1 ,σ2),g(1,σ∗1 ,σ2))∈T k
enc1(pk1, σ

∗
1 ; g(1, σ∗1 , σ2))) = ct∗1|Lk−1

G ]

≤
∑

((1,σ∗1 ,σ2),g(1,σ∗1 ,σ2))∈T k
Pr[enc1(pk1, σ

∗
1 ; g(1, σ∗1 , σ2))) = ct∗1|Lk−1

G ]

=
∑

((1,σ∗1 ,σ2),g(1,σ∗1 ,σ2))∈T k
Pr[enc1(pk1, σ

∗
1 ; coins)) = ct∗1 : coins←$ {0, 1}n]

≤
∣∣{((1, σ∗1 , σ2), g) ∈ T k}

∣∣ · 2−γ1
for any m, where the equality holds by the definition of ERF and the fact that
by definition a tuple in T k is not in Lk−1

G . Now, the equation holds for k = 1
as well by the last property of extractors (i.e. (1, σ∗1 , σ2) /∈ L0

G for any σ2 6= σ∗2).
Then, it is similar for the second type of failure and the probability it happens
for any of the qE tuples in Ext(Lg) is upper bounded by q1

E ·(2−γ1 +2−γ2), where
q1
E is the maximum number of tuples g(i, σ1, σ2) output by the extractor for a

fixed value σ1 or σ2. Thus, we have

|Pr[Γ 1 ⇒ 1]− Pr[Γ 2 ⇒ 1]| ≤ q1
E · (2−γ1 + 2−γ2) .

We also prove the following proposition.

Proposition 2. Let cti 6= ct∗i . In game Γ 2, if A submits (ct1, ct
∗
2) or (ct∗1, ct2)

to the decapsulation oracle, the latter either returns ⊥ or the game aborts.

Proof. We assume w.l.o.g. that the adversary submits (ct1, ct
∗
2). Let σ′1 :=

dec1(sk1, ct1). By the perfect correctness of ct∗2, dec2(sk2, ct
∗
2) = σ∗2 . If σ′1 = σ∗1 ,

then enc1(pk1, σ
′
1; g(1, σ′1, σ

∗
2)) = ct∗1 6= ct1 and the oracle replies ⊥. Otherwise,

in the re-encryption check, the game will compute g(1, σ′1, σ
∗
2) with σ′1 6= σ∗1 and

thus the extractor will output ((1, σ′1, σ
∗
2), g(1, σ′1, σ

∗
2)) at some point. By the

abort condition in game Γ 2, either enc1(pk1, σ
∗
1 ; g(1, σ′1, σ

∗
2)) = ct∗1 and the game

aborts, or enc1(pk1, σ
∗
1 ; g(1, σ′1, σ

∗
2)) 6= ct∗1 and the decapsulation oracle outputs

⊥. ut

Game Γ 3: We make nearly the exact same modifications as in game Γ 2 in the
proof of Theorem 5. That is, we check whether there exist both ((1, σ1, σ2), g1)
and ((2, σ1, σ2), g2) in Extg(LA) s.t. enci(σi; gi) = cti. If this is the case, (let’s
call this event found) we return h(σ1, σ2), otherwise we return the key K output
by the decapsulation function. In other words, this game is the same as Γ 2 of
the proof of Theorem 5 except we check for plaintexts in Extg(LA) instead of
LA. Now, if found occurs, we return the same key as in game Γ 1. Indeed, by the
perfect correctness of the tuples in Extg(LA) ⊆ Extg(LG) enforced in game Γ 1,
if we find (σ1, σ2) s.t. enci(σi; g(i, σ1, σ2)) = cti, then deci(ski, cti) = σi. Hence,
we have, Pr[Γ 2 ⇒ 1] = Pr[Γ 3 ⇒ 1].

Game Γ 4: We modify the previous game as follows. As before, this game
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is the same as game Γ 3 of the proof of Theorem 5 except we replace LA by
Extg(LA). In the decapsulation oracle, we simply return ⊥ if found does not
occur. Hence, game Γ 3 and Γ 4 differ iff the decapsulation oracle successfully
decrypts ct but the extractor could not find neither (1, σ′1, σ

′
2) or (2, σ′1, σ

′
2),

where (enc1(σ′1), enc2(σ′2)) = ct (i.e. at least one tuple is not in Extg(LA)). Now,
the ciphertexts corresponding to the seeds in Extg(LA) are perfectly correct.
Thus, this event is equivalent to the decapsulation oracle successfully (i.e. the
re-encryption checks pass) recovering the seeds σ1, σ2 but either (1, σ1, σ2) or
(2, σ1, σ2) or both were not recovered by the extractor. Let fail be this event
and we prove the following lemma.

Lemma 6.
Pr[fail] ≤ qD · (2−γ1 + 2−γ2) .

Proof. The proof is nearly the same as the proof of Lemma 1. Let failk be the
event that fail happens at the k-th decapsulation query and pk = Pr[failk]. By
an union bound, we have

Pr[fail] ≤
qD∑
k=1

pk .

Then, we consider an algorithm Bk defined in Figure 26, which is the same
as the one defined in Figure 14 for Lemma 1, except the calls to G are replaced
by invocations of g and the checks for values in LG by checks in Extg(LG). This
adversary simulates perfectly the view of A in game Γ 4 until the k-th query. In
particular, for each decapsulation query ct = (ct1, ct2), it checks whether there
exists both ((1, σ1, σ2), g1) and ((2, σ1, σ2), g2) in Ext(LG) s.t. enci(pki, σi; gi) for
i ∈ [2]. We call this condition cond and if it is fulfilled Bk outputs h(σ1, σ2),
otherwise it outputs ⊥.

In the k-th decapsulation query, if cond is fulfilled it aborts. Otherwise, it
sets i s.t. there is no ((i, σ1, σ2), gi) ∈ Ext(LG) s.t. enci(pki, σi; gi) = cti. Next,
it decrypts ct1 and ct2 to both σ′1 and σ′2. By the definition of i and the perfect
correctness of the values σi in Extg(LG), we have that (i, σ′1, σ

′
2) /∈ Extg(LG).

In addition, by the perfect correctness of the challenge ciphertexts and Propo-
sition 2 we have σ′1 6= σ∗1 and σ′2 6= σ∗2 . Finally, Bk computes g′i ← g(i, σ′1, σ

′
2)

and outputs 1 iff enci(pki, σi; g
′
i) = cti. Now, as g′i = g(i, σ′1, σ

′
2) is not in LG and

σ′1 6= σ∗1 , σ
′
2 6= σ∗2 , it is sampled uniformly at random. More precisely, if we fix all

random coins but the ones used by G, only the responses of G and the challenge
ciphertexts (which only depend on g(i, σ∗1 , σ

∗
2)) are random. Thus, we have

Pr[enci(pki, σ
′
i; g(i, σ′1, σ

′
2)) = cti|LG, ct∗]

= Pr[enci(pki, σ
′
i; coins) = cti : coins←$ {0, 1}n] ≤ 2−γi

by the γi-spreadness of PKEi and the definition of ERF. In the worst case,
the check is performed for both i = 1 and i = 2 and thus Pr[Bk(A) ⇒ 1] ≤
2−γ1 + 2−γ2 . Now, we simply observe that if failk occurs, then Bk perfectly
simulates the decapsulation oracle in Γ 3 and Γ 4 in the first k− 1 queries and it
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will output 1 by the definition of failk. Thus,

pk ≤ Pr[Bk(A)⇒ 1] ≤ 2−γ1 + 2−γ2 .

Taking the union bound on the pk holds the result. ut

By the previous Lemma, we have

|Pr[Γ 3 ⇒ 1]− Pr[Γ 4 ⇒ 1]| ≤ qD · (2−γ1 + 2−γ2) .

Game Γ 5: We replace the deterministic coins used in the computation of the
challenge ciphertexts by random coins and we abort if the extractor Extg outputs
a tuple (i, σ∗1 , σ

∗
2) on an input m to the RO G. Let’s call this event chalg. In

addition, we replace the key by a random one when b = 0 and we raise a flag
chalh when the extractor Exth can recover both σ∗1 and σ∗2 .

One can see that as long as chalg ∪ chalh does not occur, the adversary
cannot distinguish between the coins g(i, σ1, σ2) and random coins, and between
a real and random key. Indeed, it means the extractors Extg,Exth cannot recover
the values g(i, σ∗1 , σ

∗
2) and σ∗1 , σ

∗
2 , respectively. By the definition of ERF and

IUQ this means that g(i, σ∗1 , σ
∗
2) is uniformly distributed and a random key is

indistinguishable from h(σ∗1 , σ
∗
2). Then, if chalg ∪ chalh happens, the adversary

can recover the challenge seeds and break the one-wayness properties of both
ciphertexts by inspecting the values output by both extractors. We give the
OW-CPA adversary B1 breaking PKE1 in Figure 27, which wins whenever chalg∪
chalh happens and it picked the correct extracted value. The adversary B1 picks
the second seed σ∗2 at random and runs the adversary A with both challenge
ciphertexts and a random key K, and it can simulate the decapsulation oracle
perfectly as the latter does not use the secret key. Then, if chalg∪chalh happens,
clearly (i, σ∗1 , σ

∗
2) or σ∗1 will be in the output of the extractors until the end of

the game. Thus, B1 can recover σ1

1. by looking for a tuple of the form (i, σ1, σ2∗) for some i, σ1 in the output
of Extg. There are at most q1

E such tuples, where we recall that q1
E is the

maximum number of tuples of the form (i, σ1, σ2) for a fixed σ1 or σ2 output
by the extractor.

2. by outputting a random value σ1 in the output of Exth(1, σ∗2 ,LH). There are
at most qEh of these values.

Hence, the probability that B1 wins is at least 1
q1E+qEh

Pr[chalg ∪ chalh], as it

needs to pick the correct tuple/value. On the other hand, as long as chalg∪chalh
does not happen, both games are indistinguishable. Hence,

|Pr[Γ 4 ⇒ 1]−Pr[Γ 5 ⇒ 1]| ≤ (q1
E+qEh)·min{Advow−cpa

PKE1
(B1),Advow−cpa

PKE2
(B2)} .

Now, since both K0 and K1 are uniformly distributed in Γ 5, Pr[G5 ⇒ 1] = 1
2 .

Collecting the probabilities and folding similar adversaries into one hold the
result. Hence, when h is IUQ and g is ERF, Theorem 5 still holds, but with a
bound that might be less tight. ut
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Γ i(A)

pp←$ setup(1
λ

); (pk, sk)←$ gen(pp)

(σ
∗
1 , σ
∗
2 )←$M1 ×M2

coins1 ← g(1, σ
∗
1 , σ
∗
2 ) // Γ

0
-Γ

4

coins2 ← g(2, σ
∗
1 , σ
∗
2 ) // Γ

0
-Γ

4

coins1, coins2 ←$R2
// Γ

5

ct∗1 ← enc1(pk1, σ
∗
1 ; coins1)

ct∗2 ← enc2(pk2, σ
∗
2 ; coins2)

if ∃i ∈ [2] s.t. deci(ski, ct∗i ) 6= σ
∗
i : abort // Γ

1
-Γ

5

b←$ {0, 1}

K0 ← h(σ
∗
1 , σ
∗
2 ) // Γ

0
-Γ

4

K0 ←$K // Γ
5

K1 ←$K

b
′ ← AO

Dec
(pk, (ct∗1 , ct∗2), Kb)

return 1b′=b

Oracle ODec(ct = (ct1, ct2))

flag← false

if ct = ct∗ then return ⊥
if ∃((1, σ1, σ2), g1) ∈ Extg(LA)

s.t. enc1(pk1, σ1; g1) = ct1

and ∃((2, σ1, σ2), g2) ∈ Extg(LA)

s.t. enc2(pk2, σ2; g2) = ct2 : // Γ
3
-Γ

5

return h(σ1, σ2) // Γ
3
-Γ

5

return ⊥ // Γ
4
-Γ

5

K
′ ← decaps(pp, sk, ct) // Γ

0
-Γ

3

return K
′

// Γ
0
-Γ

3

H(m)

if ∃h s.t. (m,h) ∈ LH :

return h

if m = (σ
∗
1 ⊕ σ

∗
2 ) : // Γ

5

chal2 = true // Γ
5

abort // Γ
5

h←$ {0, 1}n

LH ← LH ∪ {(m,h)}

if σ
∗
1 ∈ Exth(1, σ

∗
2 ,LH) : // Γ

5

chal1h ← true // Γ
5

if σ
∗
2 ∈ Exth(2, σ

∗
1 ,LH) : // Γ

5

chal2h ← true // Γ
5

if chal1h and chal2h : // Γ
5

abort // Γ
5

return h

G(m)

if ∃g′ s.t. (m, g
′
) ∈ LG : g ← g

′

else : g ←$ {0, 1}n

LG ← LG ∪ {(m, g)}

for ((i, σ1, σ2), g) ∈ Extg(LG) : // Γ
1
-Γ

5

if deci(ski, enci(pki, σi; g)) 6= σi : // Γ
1
-Γ

5

abort // Γ
1
-Γ

5

if σ1 = σ
∗
1 and σ2 6= σ

∗
2 : // Γ

2
-Γ

5

if enc1(pk1, σ1; g) = ct∗1 : // Γ
2
-Γ

5

abort // Γ
2
-Γ

5

if σ2 = σ
∗
2 and σ1 6= σ

∗
1 : // Γ

2
-Γ

5

if enc2(pk2, σ2; g) = ct∗2 : Γ
2
-Γ

5

abort // Γ
2
-Γ

5

if m queried by A
LA ← LA ∪ {(m, g)}

if ((1, σ
∗
1 , σ
∗
2 ), g) ∈ Extg(LA)

or ((2, σ
∗
1 , σ
∗
2 ), g) ∈ Extg(LA) : // Γ

5

abort // Γ
5

return g

Fig. 25: OW-CPA adversaries for the proof of Theorem 10.
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Bk(A)

pp←$ setup(1
λ

); (pk, sk)←$ gen(pp)

(σ
∗
1 , σ
∗
2 )←$M1 ×M2

coins1 ← g(1, σ
∗
1 , σ
∗
2 ); coins2 ← g(2, σ

∗
1 , σ
∗
2 )

ct∗1 ← enc1(pk1, σ
∗
1 ; coins1)

ct∗2 ← enc2(pk2, σ
∗
2 ; coins2)

if ∃i ∈ [2] s.t. deci(ski, ct∗i ) 6= σ
∗
i : abort

b←$ {0, 1}

K0 ← h(σ
∗
1 , σ
∗
2 )

K1 ←$K

b
′ ← AO

Dec
(pk, (ct∗1 , ct∗2), Kb)

return 1b′=b

Oracle ODec(ct = (ct1, ct2))

if ct = ct∗ then return ⊥
if ∃((1, σ1, σ2), g1) ∈ Extg(LG) s.t. enc1(pk1, σ1; g1) = ct1

and ∃((2, σ1, σ2), g2) ∈ Extg(LG)

s.t. enc2(pk2, σ2; g2) = ct2 :

if k-th query : abort

return h(σ1, σ2)

if k-th query :

(σ
′
1, σ
′
2)← (dec1(sk1, ct1), dec2(sk2, ct2))

for i s.t. 6 ∃((i, σ1, σ2), gi) ∈ Extg(LG)

s.t. enci(pki, σi; gi) = cti

g
′
i ← g(i, σ

′
1, σ
′
2)

if enci(pki, σ
′
1; g
′
i) = cti : return 1

abort

return ⊥

G(m)

if ∃g s.t. (m, g) ∈ LG :

return g

g ←$ {0, 1}n

LG ← LG ∪ {(m, g)}
for ((i, σ1, σ2), g) ∈ Extg(LG) :

if deci(ski, enci(pki, σi; g)) 6= σi :

abort

if σ1 = σ
∗
1 and σ2 6= σ

∗
2 :

if enc1(pk1, σ1; g) = ct∗1 :

abort

if σ2 = σ
∗
2 and σ1 6= σ

∗
1 :

if enc2(pk2, σ2; g) = ct∗2 :

abort

Fig. 26: Adversary Bk for the proof of Lemma 6.

Proposition 3. The two functions g(i, σ1, σ2) presented in Table 2 are ERF.

Proof.

• G(σ1 ⊕ σ2)⊕G(i, σi): We first define the extractor Extg. We can define LGi
as the list of query/responses (m, g) s.t. m is of the form (i, σi) and LG is
the list of remaining query responses. The extractor outputs:
1. {((1, σ1, σ1 ⊕ σ), g ⊕ g1) : (σ, g) ∈ LG, ((1, σ1), g1) ∈ LG1

}. That is for
each 1, σ1 that has been queried, it recovers σ2 from the queries in LG
and outputs the corresponding value of g(1, σ1, σ2).

2. {((2, σ2 ⊕ σ, σ2), g ⊕ gg) : (σ, g) ∈ LG, ((2, σ2), g2) ∈ LG2}.
This is straightforward to see that this function fulfils the properties of an
extractor. In particular, if qG queries are made to G, we have qE ≤ q2

G and
q1
E ≤ qG. Finally, we show that if g(i, σ1, σ2) is not in the output of the
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BA,G1 (pk1, ct
∗
1)

pp2 ←$ setup2(1
λ

)

(pk2, sk2)←$ gen2(pp2)

σ
∗
2 ←$M2

ct∗2 ← enc2(pk, σ∗2 )

K ←$K

run AO
Dec
2 ((pk1, pk2), (ct∗1 , ct∗2), K)

L∗G ← {σ1 : ((1, σ1, σ
∗
2 ), g) ∈ Extg(LG)}

σ1 ←$L∗G ∪ Exth(1, σ
∗
2 ,LH)

return σ1

Fig. 27: OW-CPA adversary for the proof of Theorem 10.

extractor, then it is indistinguishable from a value sampled uniformly at
random. Let g(i, σ1, σ2) = Y + X with Y = G(σ1 ⊕ σ2) and X = G(i, σi).
Clearly, by the property of RO, if σ1 ⊕ σ2 or (i, σi) was not queried to G,
we have Y , resp. X uniformly distributed. Then, g(i, σ1, σ2) is uniformly
distributed as well. Finally, if both are queried, the extractor will be able to
compute g(i, σ1, σ2).

• G1(i, σ1)⊕G2(i, σ2): We define the extractor as follows. For a given i, let LGij
be the list of query/answer for queries of the type (i, σj) toGj . For any i (here
i ∈ [2]), the extractor consider all pairs of tuples ((i, σ1), g1), ((i, σ2), g2) ∈
LGi1 ×LGi2 and for each of them outputs ((i, σ1, σ2), g1 ⊕ g2). Clearly, such
an extractor fulfils the necessary properties. Now, we show that g(i, σ1, σ2) is
distributed uniformly at random unless the extractor outputs a correspond-
ing tuple. For a given i, let Xj = Gj(i, σj) and Z = X1 +X2. Then, following
a similar argument as in the previous point holds that Z looks uniform unless
(i, σ1) and (i, σ2) have been queried to G1 and G2, respectively. If that hap-
pens, the extractor recovers g(i, σ1, σ2). Finally, as in the previous function,
we have qE ≤ q2

G and q1
E ≤ qG.

ut
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