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Abstract. ECDSA algorithm is usually used in ICT system to achieve
communication authenticity. But weakness in various implementations
of the algorithm may make its security deviate from theoretical guar-
antee. This paper proposes a new lattice-based weak curve fault attack
on ECDSA. An elliptic curve is weak if the problem of ECDLP in a
subgroup of the point group ⟨G⟩ is computationally solvable in practice,
where G is the specified basis point of ECDSA algorithm. Since ECDLP
is not required to be computationally practical in the whole group of
⟨G⟩, our approach extends the known existing attacks along this line. In
detail, the proposed attack assumes a fault injection process can perturb
a segment of consecutive bits of the curve parameter a in the Weierstrass
equation of ECDSA. An analysis on the density of smooth numbers in-
dicates the faulty value a′ parameterized elliptic curve is weak in high
probability. Then we show the faulty value a′ can be recovered by a ded-
icated quadratic residue distinguisher, which makes it possible to collect
enough side channel information about the nonce used in the ECDSA
signature generation process. With the help of these information, we can
construct a lattice to recover the private key with lattice basis reduction
techniques. Further, we show the same strategy can defeat the nonce
masking countermeasure if the random mask is not too long, and makes
the commonly employed countermeasures ineffective. To our knowledge,
the problem remains untractable to the existing weak curve fault attacks.
Thus the proposed approach can find more applications than the existing
ones. This is demonstrated by the experimental analysis.
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1 Introduction

1.1 Existing work on fault attacks

Elliptic curve digital signature algorithm (ECDSA) has found its extensive use
in practice. It is mainly used for data authentication in network communica-
tion protocols (e.g., TLS protocol), financial IC cards and various embedded
cryptographic devices. Over the last decades, side channel attack (SCA) and



fault attack (FA) have been found exploitable on different implementations of
ECDSA. Regarding SCA, obtaining useful side channel information is general-
ly the initial step of various attacks. For example, in [14,23,24], an adversary,
when collecting enough side channel information about the nonce or some in-
termediates, can construct specific instances of shortest vector problem (SVP)
or closest vector problem (CVP) in lattice, and then employ the lattice basis
reduction methods to recover the signature generation key. In [4], Brumley et al.
shown how to target wNAF scalar multiplication in OpenSSL, and obtain some
leaked bits of nonces by timing attack. In [2,1], flush + reload such like attacks
have been used to obtain the leaked bits by employing the flaws of instruction
cache and scheduling (of CPU). In addition, power analysis [12] and template
attack [10] can also be conducted on ECDSA based on valid power traces.

In this paper, what we are interested on is fault attacks. The structure of
FA is quite similar to SCA. Firstly, FA manages to obtain valid side channel
information about the nonce in ECDSA, then translates the obtained informa-
tion into a lattice so as to recover the private key through lattice basis reduction
algorithms. The difference of FA from SCA is that, the leakage of side chan-
nel information in FA is actively induced by fault injection approaches, such as
laser injection, electromagnetic injection or voltage glitch interference and so on.
The induced signal can perturb the execution flow of the signature generation
algorithm, which makes instruction skipped or some intermediates faulty, then
makes the target produces faulty signatures. A dozen of fault attacks on ECDSA
have been proposed since very early of this century. Here we only review some
of them that are related to lattice analysis.

In PKC 2005 [21], Nacache et al. introduced a lattice-based fault attack on
DSA. In their approach, if some least significant bits of nonce are set to be 0
by inducing voltage glitch, the private key in DSA can be recovered by solving
some instance of CVP in lattice. Schmidt et al. in FDTC 2009 [27] introduced
a new differential fault model. If a point addition or doubling operation during
scalar multiplication can be skipped by fault injection, some bits of the nonce
can be obtained by differential analysis. Nguyen et al. [25] summarized this
kind of fault attacks, and called them lattice-based fault attacks. Cao et al. in
ICISC 2015 [5] also introduced a random fault model targeting the y-coordinate
of intermediate point during the calculation of scalar multiplication, which can
tolerate more random faulty bits. These fault attacks can be summarized as two
types. The first one assumes fault injection [21,25] is induced directly toward the
nonce during signature generation, and can make some bits known or fixed. The
other one assumes that fault injection is induced into the calculation of scalar
multiplication, then differential distinguisher [27,5] is required to recover the bits
of the nonce.

In particular, this paper focuses on weak curve fault attacks, which is some-
how different from the above categories. In [17], Kim et al. showed faults to
the modulus p can also be applied to do FA on ECDSA. The attack assumes
fault injection can flip some bit of the modulus p, then obtain a weak curve on
which solving elliptic curve discrete logarithm problem (ECDLP) is computa-
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tionally practical. The solution reveals some leakage information about nonce
k, by which two faulty signatures are enough for the lattice attack to recover
the private key. However, the approach requires a strong fault model that only
one bit (or a few bits) of p is flipped and the faulty modulus p′ is known to the
adversary. Moreover, it requires all the prime factors pi of p

′ and the orders ni

of subgroups Z/peii (where p′ =
u∏

i=1

peii , pi < pj for 1 ≤ i < j ≤ u and ei ∈ N) to

be relatively small, such that the time complexity O(
√
nu) of solving ECDLP in

this case is practical. In addition, in order to mount lattice attack, the product

n′(=
u∏

i=1

ni) of all the orders ni should satisfy n′ ≥ n1/2, that is, the bit length

of n′ should be greater than half of the key length of ECDSA, which restrains
the applicability of the fault attack.

1.2 Our approach

In this paper, we propose a lattice-based weak curve fault attack on ECDSA.
An elliptic curve is weak if ECDLP in a subgroup of the point group ⟨G⟩ is
computationally solvable in practice, where G is the specified basis point of
ECDSA algorithm. (See Definition 3 for detail.) Note the definition does not
require ECDLP in the whole group of ⟨G⟩ being computationally solvable, which
is the main difference of our approach from the existing known attacks.

In more detail, we consider a continuous segment of the curve parameter a
can be randomly disturbed by fault injection. The faulty value of a, called a′

hereafter, is not required to be known, but can be guessed by a specific quadratic
residual distinguisher, see the Algorithm ALG-GUESS-PARA in Section 3.2. Then
if the induced curve is weak such that ECDLP in some subgroup of ⟨G⟩ can be
solved practically, we can collect enough reduced information about the nonce.
Formally, the weakness is characterized by a factor d of the order n′ of G in the
weak curve. And the reduced information is expressed in the form of modulo d,
see the Algorithm ALG-OBTAIN-NONCEINFO in Section 3.2. Then this type of
information can be employed to construct a lattice for key recovery (see Section
3.3). The dimension N of the lattice is tightly related to the module d. In short,
the bigger d is, the smaller N would be.

In addition, for ECDSA with random scalar masking, the proposed approach
is still practical without any additional masked bits leakage. For example, if
k′ = k + λn, where k is the real scalar and λ is a 64-bit random number, the
approach can succeed by selecting bigger modulus d (see Section 3.4).

Our study on the density of smooth numbers shows the probability that
n′ includes some big prime factors is much greater than that of all its prime
factors being small(see Section 3.5). It thus indicates the proposed approach
can find more applications than the existing weak curve fault attacks. This is
demonstrated by the experimental analysis in Section 4.
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2 Preliminaries

In this paper, we consider elliptic curves on prime field Fp, where p is an odd
prime.

2.1 Elliptic curve in Fp

Generally, the Weierstrass equation of elliptic curves in Fp is given by

E(a, b) : y2 = x3 + ax+ b mod p,

where parameters a, b ∈ Fp satisfy 4a3 + 27b2 ̸= 0.

The group of rational points in elliptic curve E(a, b) is defined by

G =
{
(x, y)|y2 = x3 + ax+ b mod p, x, y, a, b ∈ Fp

}
∪ {O},

where O is the infinite point.

Let G be an element in G with order n (which is usually a prime), ⟨G⟩ be
the additive subgroup of G generated by G. If P = (x, y) ∈ ⟨G⟩, then the inverse
element −P ∈ ⟨G⟩ of P is (x,−y). For any integer k ∈ Zn, the calculation of
kG = G + G + . . . + G (k times) is called the scalar multiplication in E(a, b),
and can be calculated using point doubling and addition operations.

Point Addition

If P = (x1, y1) ∈ ⟨G⟩,Q = (x2, y2) ∈ ⟨G⟩, and P ̸= ±Q, then (x3, y3) = P+Q
satisfies

x3 = λ2 − x2 − x1
y3 = λ(x1 − x3)− y1

, where λ = y2−y1

x2−x1
.

Point doubling

If P = (x1, y1) ∈ ⟨G⟩ and P ̸= −P , then (x3, y3) = 2P satisfies

x3 = λ2 − 2x1
y3 = λ(x1 − x3)− y1

, where λ =
3x2

1+a
2y1

.

An important notice is that the parameter b is not involved in the calculation
of point doubling and addition. The order of E(a, b), denoted by #E (a, b) can
be calculated using SEA algorithm [11].

2.2 ECDSA digital signature algorithm

The ECDSA signature algorithm is described in Algorithm 1 with some less
important details being abstracted away.

As shown in Algorithm 1, the randomly generated nonce k is involved in the
calculation of ECSM kG (step 3) and the calculation of s (step 6), which are
exactly the targets of our attacks.
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Algorithm 1 Signature generation of ECDSA

Input: The definition of a specific elliptic curve E(a, b), a base point G of the curve
with order n, private key dA ∈ Zn, message m.

Output: Signature pair (r, s).
1: e = H (m), where H is a cryptographic hash function;
2: Generate k randomly from Zn ;
3: Q(x1, y1) = kG;
4: r = x1 mod n;
5: if r = 0 then goto step 2;
6: s = k−1(e+ dAr) mod n;
7: if s = 0 then goto step 2;
8: return (r, s)

2.3 Smoothness of weak curve order

The following definitions are required to better describe our approach. For all of
them, let n be the order of point G in E(a, b).

Definition 1. Denote the prime factorization of n by n =
u∏

i=1

qeii , where qi ∈ N

is a prime factor of n, ei > 0 denotes the degree of qi in the factorization and
qi < qj for 1 ≤ i < j ≤ u. For y ∈ N, if the biggest prime factor qu meets qu ≤ y,
then n is called y-smooth.

Definition 2. The elliptic curve discrete logarithm problem (ECDLP) in E(a, b)
is defined as: given G ∈ G with order n and an element Q ∈ ⟨G⟩, compute the
value k ∈ Zn such that Q = kG.

To our knowledge, the best known generic algorithm [31,26] in classical com-
puter for solving ECDLP in arbitrary elliptic curves needs O(

√
qu) group op-

erations in computation. We call an ECDLP instance practically solvable if its
solving complexity is not bigger than a predefined constant PRAC COMP. In
this paper, we set PRAC COMP= 264 group operations by considering currently
achievable computing power of classical computers, which can be redefined to
adapt to the future development of computing technology.

Definition 3. We call n practically solvable smooth (with respect to the group
⟨G⟩) if the ECDLP on ⟨G⟩ is practically solvable. We call n partially solvable
smooth (with respect to the group ⟨G⟩) if there exists a factor d of n such that
the ECDLP on ⟨(n/d)G⟩(with order d) is practically solvable. Finally, we call n
practically unsolvable smooth (with respect to the group ⟨G⟩) if n does not belong
to the above two cases.

In this paper, E(a, b) is called a weak (elliptic) curve if the order n of the
chosen base point G of E(a, b) is partially solvable smooth or practically solvable
smooth.
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2.4 Existing fault attacks on weak curves

In this section, we introduce an existing fault attack on weak curves with solvable
smooth order [17,3], which can also be used to weak curves with partially solvable
smooth order.

It is assumed that the y-coordinate of G is disturbed by a fault injection
process, i.e., G = (xG, yG) is changed into G′ = (xG, yG′) with yG ̸= yG′ .
Then with overwhelming probability, the faulty G′ is not on the original curve
E(a, b) (the only exception being yG = −yG′). Note since parameter b is not
involved in the calculation of scalar multiplication, G′ can be viewed on a new
curve E(a, b′), and then Q′ = kG′ is calculated on the curve E(a, b′), where
b′ = y2Q′ − xQ′3 − axQ′ = y2G′ − xG′3 − axG′ .

Assume the induced curve has a solvable smooth order n′ =
u∏

i=1

qeii with

respect to the group ⟨G′⟩. Then given Q′, G′ and n′, the following approach
can be used to compute the scalar k. Firstly, the reduced value k mod qi can
be obtained by solving the ECDLP instance n′

qi
Q′ = k n′

qi
G′(i = 1, ..., u) with

Pollard-rho algorithm [31]. Next, the reduced value ki = k mod qeii (i = 1, ..., u)
can be obtained by Pohlig-Hellman algorithm [26]. Finally, the modulo-n′ re-
duced value t = k mod n′ can be obtained by Chinese remainder theorem(CRT).
Hence, k = t+ µn′, where µ ∈ {0, ..., ⌊n/n′⌋}. Enumerate all the possible values
of µ to calculate the corresponding k, when Q = kG, k is just the correct one
that we are looking for.

The above approach shows that n′ must be solvable smooth so as to solve
ECDLP instances on ⟨G′⟩ and ⌊n/n′⌋ ≤ PRAC COMP. Otherwise, the ap-
proach cannot be applied in practice.

2.5 Lattice basis reduction

Lattice analysis is a key technique to our approach. We thus give some funda-
mental background about lattice attacks.

Let B = {b1, . . . , bN} ⊆ Rm be a series of N linearly independent vectors.

The lattice generated by B is defined as L(B) =
{∑N

i=1 xibi : xi ∈ Z
}
, where

B serves as a basis for the lattice L(B), and we call the integers N and m
its rank and dimension respectively. If m = N , L is called a full rank lattice
with dimension N . The shortest vector problem (SVP) and closest vector prob-
lem (CVP) are two computational complexity problems crucial to lattice-based
cryptography. We give them below.

Definition 4. [20]

(1) Shortest Vector Problem: Given a basis of a lattice L, find a lattice
vector v ̸= 0 such that ∥v∥ ≤ ∥u∥ for any nonzero vector u ∈ L.
(2) Closest Vector Problem: Given a basis of a lattice L and a target
vector t ∈ Rm, find a lattice vector v ∈ L closest to the target t, which
means dist(v, t) ≤ dist(u, t) for any vector u ∈ L, where dist(·, ·) denotes the
Euclid norm of two points.
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For an N -dimensional approximate SVP, there exist some polynomial-time
basis reduction algorithms which can output short lattice vectors when the ap-
proximate factor is large enough. Among those algorithms, LLL algorithm [18]
is the most typical one, and BKZ-algorithm [7] has been the most practical algo-
rithm for lattice basis reduction based on a series of optimizing technique [28,29].

For random lattices with dimension N , Gaussian heuristic gives a probable
estimation on the length of shortest lattice vector in the sense of average as
in [22], from which Gaussian expected shortest length of anN -dimensional lattice
L could be defined to be

σ(L) =
√

N

2πe
vol(L)1/N .

Generally, the actual shortest lattice vector is much easier to be found as the
increment of the gap between the shortest length and the Gaussian heuristic.
If it is significantly shorter than σ(L), it can be located in polynomial time by
using LLL and related algorithms. Heuristically, assuming the lattice L behaves
like random, if there exists a lattice vector whose distance from the target is
much shorter than σ(L), this lattice vector is expected to be the closest vector
to the target. Accordingly, this special CVP instance usually could be solved by
Babai algorithm or embedding-based SVP.

3 Lattice-based weak curve attack

In this section, we present our lattice-based weak curve attack on ECDSA. The
attack consists of two steps: 1) Obtain reduced information of the nonce by weak
curve fault attack; 2) Construct an instance of CVP by virtue of the reduced
information, and resolve it to recover the private key.

3.1 Fault model

The fault attacks we consider in this paper aim at modifying the curve parameter
a by inducing fault to the corresponding physical storage cells (RAM, EEPROM
or CPU register for example). Further, we mainly consider a type of random
fault, in which a continuous l-bit segment of a is modified randomly by fault
injection and the starting bit location of fault is also randomly picked. The fault
can be permanent or transient. A permanent fault means the value corresponding
to the parameter is definitely changed, and fixed on the faulty value. A transient
fault means the parameter keeps the faulty value unless the original value is
explicitly restored. The faulty bits length l is usually valued from {1, 8, 16, 24,
32} considering the byte-based cell structure of storage.

Assume, before running the signature generation (Algorithm 1), an adversary
induces a permanent (or transient) fault to the parameter a of elliptic curve
E(a, b). Denote the modified parameter by a′ and suppose it is different from a
in a continuous l-bit segment. Therefore, the base point G = (xG, yG) will be on
a new curve E(a′, b′) : y2 = x3+a′x+b′ mod p, and b′ = yG

2−xG3−a′xG mod p.
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Correspondingly, the ECSM Q = kG of step 3 in Algorithm 1 will be actually
computed on the new curve E(a′, b′). Let the new order of G be n′. Finally, the
faulty signatures (r′, s′) are output to the adversary.

Note that our fault model has the following limitations: 1) parameter a must
be involved in the calculation of ECSM (except that a is sometimes substituted
with p − 3 when a = p − 3 for sake of resources optimization); 2) There is no
point verification checking whether the input point is on the original elliptic
curve during the calculation of ECSM. Otherwise, our attack will not work.

3.2 Proposed fault attack on weak curves

Suppose signatures on the weak curve can be retrieved after the signature gener-
ation procedure. We will run the following two algorithms sequentially to obtain
reduced information about the nonce k. Then, in Section 3.3 we will use the
obtained information to construct lattices and recover the private key.

Algorithm ALG-GUESS-PARA: Guess and determine a′ and xQ′

Step 1-1. Let T be a set for storing the possible values of a′. Regarding its
initial size, if assuming the fault injection step induced a randomly located
and randomly valued continuous l-bit segment errors to a, then initially the
number of possible values for a′ is |T| = (la − l + 1)2l, where la be the bit
length of a.

Step 1-2. Run the signature generation procedure to obtain a faulty signature
pair (r′, s′). Then deduce the x-coordinate xQ′ mod p of the faulty point Q′

from r′. We separate different cases to consider the deduction.
– If p < n then xQ′ mod p = r′ mod n;
– If p > n and xQ′ mod p < n, then we also have xQ′ mod p = r′ mod n;
– Regarding the case of p > n but xQ′ mod p > n, we have the deduction

as follows. Note n|#E(a, b) (where #E(a, b) is the number of point in
E(a, b)), and in a standard curve the factor h (satisfying hn = #E(a, b))
is usually set to be h = 1 or 2. By Hasse theorem [13], we have p +
1 − 2

√
p ≤ hn ≤ p + 1 + 2

√
p. Hence, xQ′ mod p = r′ + λn < p, and

the integer λ can be valued only 1 or 2 when p > 26, depending on the
concrete values of p and n.

Step 1-3. Sieve T to find valid a′. For each possible a′ ∈ T, calculate b′ =
y2G − x3G − a′xG mod p, and for each value xQ′ derived in step 2, compute

Y = x3Q′ + a′xQ′ + b′ mod p.

If Y is a quadratic residue modulo p, keep a′ in T; otherwise, eliminate it
from T.

Step 1-4. If the size of T is greater than 1, go to Step 1-2; otherwise, regard
the only value in T as the the faulty parameter a′. Then run the SEA
algorithm [11] to compute the order n′ of G on the curve E(a′, b′), and
factorize it using some subexponential-time algorithms (such as Pollard p−1
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or number field sieve algorithms). Note when n′ ≤ 512, the factorization
step is practical. If the factorization result shows that n′ is partially solvable
smooth, we get a valid a′; otherwise repeat Algorithm ALG-GUESS-PARA to
induce a new curve until getting a valid a′ with partially solvable smooth
n′. (Note we don’t need n′ to be solvable smooth.) The condition can be
satisfied after a number of trials considering the density of smooth numbers
(See 3.5 for detail). So in the following we assume there exists a factor d of
n′ such that d is practically solvable smooth with respect to E(a′, b′) (see
the definitions in Section 2.3). Finally, we end the algorithm.

The above “quadratic residue” distinguisher can eliminate about a half of the
invalid values in each invocation. Hence, the total computation complexity is
about O((la − l + 1)2l+1).

Algorithm ALG-OBTAIN-NONCEINFO: Obtain reduced value of nonce k

Based the derived valid a′, run the following steps to collect as much as useful
reduced information about the nonce.

Step 2-1. Run the signature generation procedure to get a signature (r′, s′),
and based on the derived (a′, b′) compute possible values {xQ′} and Y as
above. Since there is only one correct value for xQ′ , to remove the erroneous
computed values, we discard the signature (r′, s′) if more than one Y derived
from it are quadratic residue modulo p, and re-generate a new signature
(r′, s′) until the condition is satisfied. When the correct xQ′ on curve E(a′, b′)

is calculated, we obtain two possible points (xQ′ ,±
√
Y ) of Q′.

Step 2-2. Without loss of generality, assume Q′
1 =

(
xQ′ ,

√
Y
)
= uG. Let ℓ =

n′/d, we can solve the problem of ECDLP

ℓQ′
1 = u(ℓG)

in the d-ordered subgroup ⟨ℓG⟩ to obtain u mod d. Specifically, if Q′
1 is the

correct choice of Q′, we have k = u mod d; otherwise if −Q′
1 is the correct

choice of Q′, we obtain k = (d− u) mod d.
Step 2-3. Repeat the above two steps N times to obtain reduced information

about the nonces {ki}Ni=1, where each reduced information is denoted by

ki = ci + λid

for i = 1, ..., N , where ci =

{
ui, for yQ′ =

√
Y

d− ui, for yQ′ = −
√
Y

and 0 < λi < n/d.

3.3 Proposed lattice-based ECDSA key recovery algorithm

We show how to use the retrieved information about ki to construct lattices and
then recover the private key dA.
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For each i ∈ {1, ..., N}, we first assume the correct value of ci is identified,
then we have

si(ci + λid) = ei + ridA, (1)

where ei is the hash value of message mi and 0 < λi < n/d. The identification
of correct value of ci is discussed at the end of this subsection.

The equation (1) can be transformed as

λi = si
−1d−1ridA − (d−1ci − si

−1d−1ei) mod n. (2)

Let Ai = si
−1d−1ri mod n, Bi = d−1

(
ci − si

−1ei
)
+n/(2d), then there exists

a hi ∈ Z such that

|AidA + hin−Bi| < n/(2d) (i = 1, ..., N). (3)

We can construct a lattice L by the above inequations (3), and the row
vectors {b1, ..., bN+1} of the matrix

M =


n 0 · · · 0
0 n · · · 0
...

. . .
...

0 · · · n 0
A1 · · · AN 1/(2d)


construct a basis of L.

Let the target vector t = (B1, . . . , BN , 0) ∈ ZN+1. There exists a lattice
vector v = xM with the coordinate vector x = (h1, . . . , hN , dA) ∈ ZN+1. From
inequations (3), we have

∥v − t∥ <
√
N + 1n/(2d). (4)

Heuristically, we assume L is a random lattice. As introduced in Section 2.5,

if ∥v − t∥ is much less than σ (L) (=
√

N+1
2πe vol(L)

1
N+1 ), we expect v to be the

closest vector to t in L, where vol (L) = det(M) = nN/(2d). Hence, it is required

∥v − t∥ <
√
N + 1n/(2d) ≪

√
N + 1

2πe

(
nN/(2d)

) 1
N+1 . (5)

Let f = ⌈logn⌉ and ld = ⌈log d⌉. If N > f+log
√
2πe

ld+1−log
√
2πe

and ld > log
√
2πe−1,

heuristically the inequality (4) can be viewed as a special instance of CVP in
lattice L. Consequently, the vector v can be determined by solving the instance
of CVP to reveal the private key dA.

In addition, the inequality (3) is equivalent to

|AidA + hin−Bi| < n/2ld(i = 1, ..., N), (6)

which is a hidden number problem(HNP)[23,24]. By the same way, it can be
transformed into a CVP to recover dA.
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It is assumed above that all the values of {ci}Ni=1 are correctly guessed before
the lattice attack. The reality is that there are two solutions for each ci after
the Algorithm ALG-OBTAIN-NONCEINFO, and it is not sure which one is the
correct. Though it is computationally difficult to make it certain in general, but
from the above analysis, we know the needed number N of faulty signatures
for lattice attack depends on the size of factor d. Or in order to ensure the
practicality of the lattice attack, d should not be too small. In fact, the larger d
is, the smaller N would be. For example, d is generally recommended to satisfy
d ≥ 28 such that N ≈ 45 for 256-bit ECDSA. So when N is not too big, it is still
possible to enumerate all the possible ci in practice. Specifically, the worse-case
time complexity for the lattice attack in this case is O(2NT ), where T represents
the time required for each running of the lattice attack.

3.4 Attack on ECDSA with scalar masking

Generally, scalar masking is one of the most common countermeasures for ECD-
SA to resist SCA. For example, nonce ki during signature generation is masked
as k′i with a random number αi, i.e., k

′
i = ki+αin(i = 1, ..., N). This countermea-

sure also could block the existing lattice attacks [14,23,24], since it is required
to obtain all the bit leakage information of {αi}Ni=1. By comparison, our attack
is affected much less, specifically as follows.

With the masked nonce k′i, we have

Q = k′iG and si = ki
−1(ei + ridA) = k′i

−1
(ei + ridA) mod n.

Accordingly, the reduced information derived by weak curve fault attack meet-
s k′i = ci + λid, where lαi denotes the bit length of αi and λi < 2f+lαi

−ld .
Substitute ci into si and mount lattice attack. If ld > log

√
2πe + lαi − 1 and

N > f+log
√
2πe

ld−lαi
+1−log

√
2πe

, the private key dA can be recovered by constructing an

instance of CVP. There is no bit leakage of αi required in our lattice attack
except a bigger d. Moreover, the needed d can be obtained with high propor-
tion in experiments. For example, if lαi = 32, the experimental success rate of
fault injection is still up to 80% since ld is recommended as 40 (see Section 4).
Obviously, our lattice attack is more practical on ECDSA with scalar masking.

3.5 The density of smooth numbers

When comparing with existing weak curve fault attacks in [17,3,8] (see Sec-
tion 2.4), our attack puts weaker condition on the process of fault injection.
Specifically, the order of the induced weak curve in the proposed method is only
required to be partially solvable smooth in the proposed attack, which is weaker
than the existing attacks. The following analysis on the smoothness of a random
number demonstrates that the weaker condition improves the applicability of
proposed attack significantly.
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Let z be an integer with prime factorization z =
u∏

i=1

peii . We say z is y-

smooth if max
1≤i≤u

{pi} ≤ y, as mentioned in Section 2.3. We denote by ψ(x, y) the

number of integers z ≤ x such that z is y-smooth. In [9], a result on the bound
of ψ(x, y) shows smooth numbers with suitable x, y are relatively common to
meet. Specifically, let ϵ be an arbitrary positive constant, then for x ≥ 10 and
y ≥ (lnx)1+ϵ, we have

ψ(x, y)/x = e−(1+o(1))u lnu as x→ ∞,

where u = lnx/ ln y and e is the natural number. Note for a fixed x the density
of smooth numbers (i.e., ψ(x, y)/x) is an increasing function with respect to the
bound y of factors. For instance, we can roughly get ψ(2256, 2247)/2256 = 0.963
and ψ(2256, 2128)/2256 = 0.25 (where o(1) is set to be 0 in the approximation).
It means smooth (integer) numbers in the scope of [1, x] with at least one large
factor could be much more frequent than those with only smaller factors. Note
the action of n′ is not uniformly random, since the injected fault is only consid-
ered to impact very limited bits of the parameter a of the curve. However, as
in [9], we make a heuristic assumption that the probability of sampling n′ in this
method is subject to the density given by ψ(x, y)/x. If considering practicality
the 2128-smooth n′ (with probability 25%) is required by existing weak curve
attacks. Our attack extends the possibility of fault attacks on ECDSA with 256-
bit private key. In more detail, considering the case that n′ is 2247-smooth (with
probability 96.3%), though solving ECDLP in the case is currently unpractical,
if collecting enough reduced information about the nonce with respect to a small
factor d of n′ (which is close to 29), our attack is still practical. This is supported
by the experiments in Section 4.

In conclusion, since with high probability the order n′ has at least a big
prime factor in factorization (determined by PRAC COMP), the existing weak
curve attacks (which require n′ to be practically solvable smooth) may not be
efficient in practice. In comparison, our attack can survive in this case with high
probability, since we only need n′ to be partially solvable smooth. The price is
that our attack need more faulty signatures (in number N) to construct lattice,
which is much greater than the one in [17]. But this is affordable in practice,
since we can usually ask the target to generate enough faulty signatures once
fault has been induced, especially when it is permanent.

4 Experimental analysis

In this section, we do the experiments to validate the applicability of the pro-
posed attack. The emphasis is on checking Algorithm ALG-OBTAIN-NONCEINFO
and the lattice based key recovery algorithm. Therefore, the fault injection pro-
cess is not conducted in the experiments. If learning more engineering aspects
of fault injection, see the reference [16].

The experiments are conducted in a computer with 3.4GHz 8-core CPU, 8G
memory and Windows7 OS. The weak curve order n′ (derived by the faulty a′)
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is calculated by SEA algorithm implemented in Miracl library [19], and the con-
structed CVP instances are solved by employing BKZ algorithm [7] implemented
in NTL library [30] with block size 10.

Two types of 256-bit curve over prime field Fp are targeted in the experi-
ments, which are NIST P-256 [6] (hereafter called P-256) and the curve recom-
mended in SM2 digital signature algorithm (hereafter called SM2-curve which
still can be employed as the curve of ECDSA) [15] respectively. Then for each
curve, two types of bit perturbation experiments are simulated, including the
single-bit flipped fault and 16-bit random fault. The single-bit flipped fault is
to flip a bit-by-bit. Then there are 256 cases in total. The 16-bit random fault
is to randomly pick a starting bit location, characterized by a random integer
b ∈ [0, 240], and then XOR the continuous 16-bit segment (identified by b) of
parameter a with a 16-bit random number β ∈ {0, 1}16, such that a′ = a⊕(β2b).
The experiments are also done for 256 times. As a whole, four types of different
experiments are conducted, and each is done in 256 times.

Fig. 1. The proportion γ of partially solvable
smooth n′ when ld > X

Fig. 2. The proportion γ of unsolv-
able smooth n′ available for our attack
when ld > X

We then use the obtained a′ to compute n′ for each experiment. Figure 1
shows the proportion γ (Y-axis) of partially solvable smooth n′ when its factors
d satisfies ld ≥ X(X-axis), and Figure 2 shows the proportion γ (Y-axis) of the
unsolvable smooth n′ available for our attack when d satisfies ld ≥ X(X-axis)
in each type of experiment. (Note each experiment type includes 256 concrete
experiments.) When ld ≥ 8, there are partially solvable smooth orders with pro-
portion 94.9% at least, which is far greater than the proportion 35% of solvable
smooth orders required in the previous weak curve attacks. Moreover, even un-
der the case that n′ is unsolvable smooth (with about 65% proportion), there
still is 92.5% of unsolvable smooth n′ available for our attack. Obviously, most
of the weak curves derived from 256 experiments can be applied to our attack,
which increases the success rate of fault injection sharply. In addition, no matter
whether the curve is P-256 or SM2-curve, and the fault type is single-bit flipped
fault or 16-bit random fault, all the proportions of the four types of experiments
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are roughly similar with the density mentioned in Section 3.1. Hence, our attack
is effective for most of ECC signatures based on prime field.

Finally, based on some faulty a′ in SM2-curve, select d with different bit
length, and carry on the corresponding lattice attacks. As shown in Table 1,
N is the number of signatures required to achieve 100% success rate of lattice
attack, T is the time of each lattice attack and O is the maximum complexity of
the attack including the enumerating. From Table 1, the complexity of enumer-
ating the correct ci in lattice attack is computationally feasible even under the
worst case ld = 8. In addition, to speed up enumerating, the case ld ≥ 16 with
time complexity 219T is generally selected in experiments, whose proportion of
partially solvable smooth n′ is also up to 92.6% at least (See Figure 1). The
results show that the success rate of fault injection is significantly high when
ensuring the successful lattice attacks.

Table 1. The number of faulty signatures and complexity for lattice attack

Items ld = 8 ld = 9 ld = 16 ld = 32 ld = 64

N 45 40 19 9 5
T (s) ≈ 5.788 ≈ 3.675 ≈ 0.255 ≈ 0.021 ≈ 0.005
O 245T 240T 219T 29T 25T

5 Conclusion

We propose a new lattice-based weak curve fault attack on ECDSA which com-
bines the advantages of weak curve fault attack and lattice attack. The order n′ of
the weak curve generated by faulty a′ is not required to be solvable smooth, and
the reduced information of nonces is obtained by solving the ECDLP construct-
ed in a small subgroup, by which a new model of lattice attack is constructed to
recover the private key. For the single-bit flipped fault or 16-bit random fault, the
experiments show the success rate of fault injection that there exists a solvable
smooth factor d of n′ satisfying ld ≥ 8 can be as high as 94.9%. In addition, for
ECDSA with w-bits scalar masking, our attack still work with high success rate
of fault injection by selecting an appropriate d satisfying ld −w > log

√
2πe− 1.
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