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Abstract. A (t, n)-public key threshold cryptosystem allows distribut-
ing the execution of a cryptographic task among a set of n parties by
splitting the secret key required for the computation into n shares. A
subset of at least t + 1 honest parties is required to execute the task
of the cryptosystem correctly, while security is guaranteed as long as at
most t < n
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parties are corrupted. Unfortunately, traditional threshold

cryptosystems do not scale well, when executed at large-scale (e.g., in the
Internet-environment). In such settings, a possible approach is to select
a subset of n players (called a committee) out of the entire universe of
N � n parties to run the protocol. If done naively, however, this means
that the adversary’s corruption power does not scale with N as other-
wise, the adversary would be able to corrupt the entire committee. A
beautiful solution for this problem is given by Benhamouda et al. (TCC
2020) who present a novel form of secret sharing, where the efficiency of
the protocol is independent of N , but the adversarial corruption power
scales with N . They achieve this through a novel mechanism that guar-
antees that parties in a committee stay anonymous until they start to
interact within the protocol.
In this work, we initiate the study of large-scale threshold cryptosystems.
We present novel protocols for distributed key generation, threshold en-
cryption, and signature schemes that guarantee security in large-scale
environments with complexity independent of N . One of our key con-
tributions is to show how to generically transform threshold encryption
and signature schemes, which are secure against static adversaries (and
satisfy certain additional properties), to secure threshold cryptosystems
that offer strong security in the large-scale setting.

1 Introduction

In a threshold cryptosystem [18, 22, 17], a secret key sk is distributed among a
set of n parties, where each party holds a share sk i of the secret key. A subset
of t+ 1 parties is needed to re-construct the secret key (or carry out the crypto-
graphic task such as signing), while ≤ t parties learn nothing about the sensitive
information. A threshold cryptosystem consists of two components. First, a pro-
tocol for securely generating the secret key – so-called distributed key generation
(DKG) [41] – that enables the parties to securely generate a shared sk and the
corresponding public key pk . At the end of this protocol each party holds its



secret key share sk i and is aware of the public key pk . Second, a distributed
version of the cryptosystem, where the parties can use their shares to perform
the cryptographic tasks. Two important examples of threshold cryptosystems
are threshold signatures for signing messages in a distributed fashion (e.g., [9,
37]), and threshold public key encryption for distributed decryption of cipher-
texts (e.g., [43, 13, 36]).

Traditionally, threshold cryptographic schemes have been considered in a
setting where the number of parties n is relatively small and the adversary is
restricted to corrupt at most t < n/2 parties. This upper bound is required
to achieve guaranteed output delivery [16], i.e., the adversary cannot stall the
system even when behaving in an arbitrary malicious way. When we move to a
large-scale Internet setting with a large user base (e.g., as prominently considered
in the blockchain setting), several new challenges arise. In particular, we aim for
a solution that is scalable when the number of users in the universe – denoted
by N – drastically increases. On the one hand, we aim at a protocol where only
a small subset of the entire population carry out the cryptographic computation
(e.g., running DKG with thousands of users is practically infeasible). On the
other hand, we want that the adversary can corrupt a fraction of all parties N ,
such that its corruption power is not bounded by a small value t.

To address these two challenges, the recent work of Benhamouda et al. [7]
introduces the concept of evolving-committee proactive secret sharing (ECPSS).
In a nutshell, to achieve an efficient solution, ECPSS considers a committee of
n parties (where n is independent of the number N of parties in the universe)
that hold a shared secret. In addition, to ensure that the corruption power of
the adversary is linear in N , Benhamouda et al. combine two ideas, namely (1)
using dynamic proactive secret sharing and (2) anonymizing the identity of the
secret share holders in this protocol. Let us provide some more details on the
solution of [7]. Dynamic proactive secret sharing is a secret sharing protocol
that proceeds in epochs, where the adversary is allowed to corrupt at most
t parties per epoch. Such an adversary is often also referred to as a mobile
adversary [40]. To ensure security in this setting dynamic proactive secret sharing
schemes deploy a so-called handover protocol, where the shared secret is re-
shared to a new committee at the end of each epoch. While a mobile adversary
can corrupt over time � N users, the naive application of dynamic proactive
secret sharing only tolerates t < n/2 corruptions. To circumvent this, inspired by
recent advances in blockchain consensus, Benhamouda et al. introduce a novel
concept of anonymity. More precisely, after a party in a committee is activated
and communicates (e.g., for reconstructing the shared secret), a new committee is
selected in such a way that the members of the new committee stay anonymous.
This feature guarantees that an adversary cannot target the members of the
small-sized committee, even for a corruption power of� n corruptions per epoch.

The original work of Benhamouda et al. [7] considers only the question
of how to store a secret in a large scale environment. This work has recently
been extended in the so-called YOSO model of computation (“You only speak
once”) [26], which presents a general framework for committee-style secure com-
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putation with anonymity. The result of [26] is however mainly a feasibility result
(we will discuss it – and in particular its limitations – in more detail in Sec. 1.2),
and relies on techniques from general purpose secure multiparty computation.
In this work we initiate the study of scalable threshold cryptography for large
scale environments, where the adversary’s corruption power per epoch can grow
with N . We discuss our main contributions in more detail below.

1.1 Our Contribution

The goal of this work is to study threshold public key cryptosystems that are
executed by a small set of n parties among a large universe of N parties. We
call such schemes large-scale threshold public key cryptosystems and require that
these schemes must be secure in presence of an adversary whose corruption
power is proportional to N , and in particular � n. We call such an adversary
fully mobile adversary. Traditionally, threshold cryptography considered three
different corruption models, namely (1) static, (2) adaptive and (3) mobile ad-
versaries, where a static adversary must choose the set of corrupted parties at
the beginning of a protocol execution while an adaptive adversary is allowed to
corrupt parties at any time. Finally, a mobile adversary has been considered in
the proactive setting, where a protocol proceeds in epochs and the adversary
is not only allowed to corrupt parties during an epoch but to also “uncorrupt”
parties at the end of an epoch. All of these adversarial models are restricted
in that the corruption power of the adversary is a fraction (typically < 1/2) of
the size of protocol participants n. In contrast, in this work we consider fully
mobile adversaries, whose corruption power is proportional to the universe size
N thereby allowing to corrupt > n parties.

In our work, we first formalize the concept of discrete-log-based large-scale
distributed key generation schemes and show a concrete instantiation. We follow
the idea of Benhamouda et al. [7] to achieve security against a fully mobile ad-
versary through anonymization. This, however, complicates the construction and
security proof as we have to ensure that parties stay anonymous as long as they
are involved in the protocol execution. The main challenge arises from the fact
that distributed key generation protocols are typically highly interactive. This
poses a problem in our full security setting since parties can at most speak once
in order to preserve their anonymity. In particular, distributed key generation
schemes typically require parties to commit to a value and, in a later round of
the protocol, send the correct opening to the commitment. In our construction,
we address this problem by relying on the future broadcast primitive as intro-
duced in [26]. Future broadcast allows parties to secret share the opening of a
commitment to a future committee which will then publish the shares at a later
time. We believe that our formalization of large-scale DKG protocols and the
corresponding discrete-log-based protocol can pave the way for designing DKG
protocols under different assumptions such as the RSA assumption which has
been mentioned as an open problem in [26].

We next consider the setting of large-scale non-interactive threshold public
key encryption and signature schemes. To this end, we give a generic transfor-
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mation for discrete-log-based threshold encryption and signature schemes that
are secure against static corruptions (and satisfy certain properties), to achieve
security against fully mobile adversaries. In general, the challenge when proving
security of threshold schemes with adaptive or mobile security is that one must
exhibit a simulator that simulates the view of the adversary without knowing
the secret key of the scheme. That is, the simulator does not know the secret
key shares of some honest parties and thereby, upon corruption of these parties,
annot provide an internal state that is consistent with previous information that
the adversary has seen.

We circumvent this issue by designing our protocols carefully in such a way
that allows us to construct a simulator whose answers to the adversary’s corrup-
tion queries are consistent with the view of the adversary. At a high level, we
achieve this by postponing the publication of secret key share dependent values
to the end of an epoch while still guaranteeing correctness and security of our
scheme. As such, the simulator can maintain a set of secret key shares which look
consistent from the adversary’s view of the protocol execution, as long as the
adversary does not corrupt more than t secret key shareholders per epoch. We
ensure this corruption upper bound by leveraging on the idea of Benhamouda
et al. [7] of keeping the identities of secret key shareholders anonymous until the
end of an epoch.

We emphasize that previous works on threshold public key crpytosystems in
the proactive (mobile) setting considered an adversary who can either be (1)
static or (2) adaptive, where in the former the adversary must commit to its
corruption choice at the beginning of an epoch and in the latter, the adversary
is allowed to corrupt parties at any time. However, in these previous works, the
adversary is restricted to corrupting at most a minority of secret key shareholders
and is therefore strictly weaker than a fully mobile adversary.

Finally, we give concrete instantiations of our generic transformation based on
the threshold encryption scheme from Shoup and Gennaro [43] and the threshold
signature scheme from Boldyreva [9]. We emphasize that our large-scale schemes
are non-interactive as long as the underlying scheme is non-interactive as well.

1.2 Related Work

Anonymity and You Only Speak Once Paradigm. The most relevant previous
work for us is by Benhamouda et al. [7] who introduce the notion of evolving-
committee proactive secret sharing (ECPSS) which extends previous secret shar-
ing notions in the following ways: (1) an ECPSS scheme includes a procedure to
select the committee of secret shareholders, and (2) an ECPSS scheme does not
assume that an adversary corrupts at most a minority of parties in a commit-
tee but rather provides a mechanism for provably achieving this. Benhamouda et
al. present an instantiation of an ECPSS scheme which they prove secure against
a fully mobile adversary by keeping the identities of the secret shareholders
anonymous among a large set of parties. That is, they prove that if the adver-
sary corrupts at most 25% of all parties in the universe, their ECPSS scheme
remains secure. A recent work by Gentry et al. [25] improves Benhamouda et
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al.’s solution by allowing for a more powerful adversary that can corrupt up
to less than 50% of all parties. We recall the definition of ECPSS schemes in
Sec. 2.6 and we provide a more detailed description of the ECPSS scheme of
Benhamouda et al. in Sec. 3.

Another recent work of Gentry et al. [26] generalizes the concept of comput-
ing on secrets among anonymous parties by introducing the you only speak once
(YOSO) model and showing how to realize information theoretical and compu-
tational secure multi-party computation in this model. However, this work is
mainly a feasibility result and it relies on certain idealized functionalities that
currently cannot be instantiated. In a similar spirit, a recent work by Choud-
huri et al. [15] presents general-purpose multi-party computation in the so-called
fluid model, where parties can dynamically join and leave the protocol execution.
However, the authors of [15] do not analyze their solution w.r.t. a fully mobile
adversary who has sufficient corruption power to potentially corrupt a majority
of the universe’s participants.

Threshold Cryptosystems. There has been extensive work in the field of threshold
cryptosystems. Distributed key generation (DKG) protocols have been studied in
the past mostly in the static corruption setting (e.g., [41, 24, 33, 14]). Recently,
Gurkan et al. [29] presented a DKG protocol with aggregatable and publicly-
verifiable transcripts based on a gossip network which reduces communication
complexity and verifcation time but is secure only against static adversaries. Abe
and Fehr [1] and Canetti et al. [13] proposed DKG protocols which are secure
against adaptive adversaries. Most related to our work is the recent work by
Groth [28] which introduces a non-interactive distributed key generation proto-
col, which is secure against a mobile adversary who corrupts at most a minority
of parties at a time. However, this work does not consider the fully mobile setting
that we consider in our work.

Threshold public key cryptosystems have been extensively studied with secu-
rity against static adversaries (e.g., [12, 10, 44, 43, 9]) and adaptive adversaries
(e.g., [23, 13, 32, 35, 36, 37, 19]). Herzberg et al. [31] proposed a solution how
to generically proactivize discrete-log-based public key threshold cryptosystems.
However, their generic construction is only secure in the static proactive setting.
Finally, there have been works in the adaptive proactive adversarial setting (e.g.,
[21, 13, 2]) which is the setting that is most similar to the setting we consider
in this work. However, all of the above mentioned works focus on an adversary
(static, adaptive or mobile) that is restricted to only corrupt at most a minority
of the participants in the universe, whereas we consider a fully mobile adversary
that has sufficient corruption power to corrupt a large fraction of all parties.

We provide discussion on additional related work in Appendix A.

2 Preliminaries

In this section, we provide required notation and discussion on our communi-
cation and adversarial model as well as building blocks that we require for our
work.
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2.1 Notation

We use the notation s←$ H to denote that a variable s is sampled uniformly at
random from a set H. For an integer i, we use [i] to denote the set {1, · · · , i}. For
a probabilistic algorithm A, we use s←$ A(x) to denote that s is the output of an
execution of A on input x. For a deterministic algorithm B, we use s← B(x, r)
to denote that s is the output of an execution of B on input x and randomness
r. We use the notation s ∈ A(x) to denote that s is in the set of possible outputs
of A on input x.

For a set of parties C and a protocol Π, we use the notation Π[C〈x1,··· ,x|C|〉]
to denote that Π is jointly executed by all parties Pi ∈ C with respective secret
inputs xi for i ∈ [|C|]. Furthermore, we use the notation Π[C〈x1,··· ,x|C|〉](y) if

all Pi ∈ C receive a common public input y. Finally, for a set of parties U s.t.
C ⊂ U and a protocol Π ′ we use the notation Π ′[C〈x1,··· ,x|C|〉, U ](y) to denote

the joint execution of Π ′ by all parties in U with common public input y where
party Pi ∈ C has secret input xi with i ∈ |C|.

2.2 Communication and Adversarial Model

Our communication and adversarial model follows the model of Benhamouda et
al. [7]. We assume that parties have access to an authenticated broadcast channel
and a public key infrastructure (PKI). Furthermore, we consider a synchronous
communication model where messages broadcasted in some round i are received
by all other parties in round i+ δ where δ is a fixed upper bound. A blockchain
network satisfies this communication model.

The authenticated broadcast channel is the only means of communication in
our model. In particular, we do not consider sender-anonymous channels which
are inherently difficult to construct in practice and significantly simplify the
problem of keeping the identity of parties anonymous.

We further assume that communication between parties during the lifetime
of the system can be divided into epochs. At the beginning of each epoch, all
parties broadcast a new public key via the PKI.

We consider a fully mobile adversary who can monitor the broadcast channel
and corrupt parties at any point in time. Corrupted parties are controlled by
the adversary and can deviate arbitrarily from the protocol execution. A fully
mobile adversary can corrupt a certain fraction p of all parties in the system
at any point in time. The fraction p is called the adversary’s corruption power.
The adversary can further decide to “uncorrupt” a corrupted party, i.e., once
an uncorrupted party broadcasts a new public key to the PKI it is no longer
controlled by the adversary.

We also assume that parties can erase their internal states such that upon
their corruption, the adversary would be oblivious to the secret values that a
party had previously stored and erased. Note that this is an inherent requirement
in all proactive protocols.
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2.3 Public Key Encryption

Throughout this work, we use different notions of public key encryption (PKE)
which we briefly recall here. We first give the definition of a PKE scheme and
then provide the security notion of secrecy under selective opening attacks. We
then recall the definition of anonymous PKE before providing the definition of
a non-interactive threshold PKE scheme.

Definition 1. A public key encryption scheme PKE consists of a tuple PKE =
(KeyGen,Enc,Dec) of efficient algorithms which are defined as follows:

KeyGen(1λ): This probabilistic algorithm takes as input a security parameter λ
and outputs a public key pk and a secret key sk.

Enc(pk ,m): This probabilistic algorithm takes as input a public key pk and a
message m and outputs a ciphertext ct.

Dec(sk , ct): This algorithm takes as input a secret key sk and a ciphertext ct
and it outputs either ⊥ or a message m.

Secrecy under selective opening attacks (RIND-SO). We now recall the
indistinguishability-based notion of receiver selective opening security (RIND-
SO) from Hazay et al. [7] for public key encryption schemes, which in turn is
based on [20] and [6]. The RIND-SO notion defines a security game between a
challenger and an adversary in which the challenger first samples a set of key
pairs and then sends the public keys to the adversary. The adversary then chooses
a distribution D and receives a vector of ciphertexts, which encrypt messages
that are sampled from D. The adversary can then choose some of the ciphertexts
and receives the corresponding secret keys which can be used to decrypt them.
Finally, for the remaining ciphertexts, the adversary either receives the correct
plaintext or randomly sampled messages from D, conditioned on the opened
plaintext1.

Definition 2 (Efficiently Resamplable Distribution). Let k, n > 0. A dis-
tribution D over ({0, 1}k)n is efficiently resamplable if there is a PPT algorithm
ResampD such that for any I ⊂ [n] and any partial vector m′I consisting of |I|
k-bit strings, ResampD(m′I) returns a vector m sampled from D|m′I i.e., m is
sampled from D conditioned on mI = m′I .

Definition 3 (RIND-SO Security). For a PKE scheme PKE = (Gen,Enc,Dec),
security parameter λ ∈ N, and a stateful PPT adversary A, the RIND-SO game
Rind-SOAPKE(λ) is defined as follows:

1. (sk,pk) := (sk i, pk i)i∈[n] ← (Gen(1λ))i∈[n]
2. (D,ResampD, state1)← A(pk)
3. m := (mi)i∈[n] ← D
1 Note that D must be efficiently resamplable, namely it should be possible to draw

new elements from D conditioned on the opened plaintexts.
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4. c := (ci)i∈[n] ← (Encpki
(mi; $))i∈[n]

5. (I, state2)← A(c, state1)
6. m′ ← ResampD(mI)

7. b← {0, 1}, m∗ ←

{
m′ if b = 0

m if b = 1

8. b′ ← A(skI ,m
∗, state2)

The advantage of the adversary A is defined as 2 · |Pr[b = b′] − 1
2 |. A PKE

scheme is RIND-SO secure, if every PPT A only has negligible advantage (in λ)
in winning the above game.

Anonymous PKE We now briefly recall the definition of an anonymous PKE
scheme as introduced by Bellare et al. [5].

Definition 4. A public key encryption scheme PKE = (KeyGen,Enc,Dec) is
anonymous if for every PPT adversary A there exists a negligible function ν in
the security parameter λ such that Pr[AnonAPKE(λ) = 1] ≤ 1/2 + ν(λ) where the
game AnonAΣAPKE

(λ) is defined as follows:

1. The game executes the key generation procedure twice to obtain key pairs
(pk i, sk i) ←$ KeyGen(1λ) for i ∈ {0, 1} and forwards pk0, pk1 to the adver-
sary.

2. The game receives a message m from the adversary.
3. The game chooses at random a bit b←$ {0, 1} and executes ctb ← Encpkb

(m).
The game sends ctb to the adversary.

4. The adversary outputs a bit b′ and wins the game if b′ = b.

We define the advantage of the adversary A as

AdvAAnon,PKE(λ) = 2 · Pr[AnonAΣAPKE
(λ) = 1)]− 1

2
.

Threshold Public Key Encryption

Definition 5. A non-interactive (t, n)-threshold public key encryption scheme
TPKE consists of a tuple of efficient algorithms and protocols TPKE = (Setup,
KeyGen,TEnc,TDec,TShareVrfy,TCombine) which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as
input and output public parameters pp.

KeyGen(pp, t, n): This probabilistic algorithm takes as input public parameters
pp and two integers t, n ∈ N. It outputs a public key pk, a set of verification
keys {vk i}i∈[n] and a set of secret key shares {sk i}i∈[n] .

TEnc(pk ,m,L): This probabilistic algorithm takes a public key pk, a message
m and a label L as input and outputs a ciphertext ct.

TDec(sk i, ct , L): This algorithm takes as input a secret key share sk i, a cipher-
text ct and a label L and it outputs either ⊥ or a decryption share ct i of the
ciphertext ct.
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TShareVrfy(ct , vk i, ct i): This deterministic algorithm takes as input a ciphertext
ct, a verification key vk i and a decryption share ct i and it outputs either 1
or 0. If the output is 1, ct i is called a valid decryption share.

TCombine(T, ct): This deterministic algorithm takes as input a set of valid de-
cryption shares T such that |T | = t and a ciphertext ct and it outputs a
message m.

Consistency A (t, n) − TPKE scheme must fulfill the following two consistency
properties.
Let pp ← Setup(1λ) and (pk , {vk i}i∈[n], {sk i}i∈[n])←$ KeyGen(pp, t, n).

1. Decryption consistency: For any message m, any label L and any ciphertext
ct ←$ TEnc(pk ,m,L), it must hold that

TShareVrfy(ct , vk i,TDec(sk i, ct , L)) = 1.

2. Reconstruction consistency: For any message m, any label L, any ciphertext
ct ←$ TEnc(pk ,m,L) and any set T = {ct1, · · · , ct t} of valid decryption
shares ct i ← TDec(sk i, ct , L) with sk i being t distinct secret key shares, it
must hold that TCombine(T, ct) = m.

CCA-Security We recall the definition of chosen-ciphertext security for a (t, n)−
TPKE scheme with static corruptions. Consider a PPT adversary A playing in
the following game TPKE–CCAATPKE:

1. The adversary outputs a set B ⊂ {1, · · · , n} with |B| = t to indicate its
corruption choice. Let H := {1, · · · , n} \B.

2. The game executes
pp ← Setup(1λ)

and
(pk , {vk i}i∈[n], {sk i}i∈[n])← KeyGen(pp, t, n).

It sends pp, pk and {vk i}i∈[n] as well as {sk j}j∈B to the adversary.
3. The adversary A is allowed to adaptively query a decryption oracle, i.e.,

on input (ct , L, i) with ct ∈ {0, 1}∗, L ∈ {0, 1}∗ and i ∈ H, the decryption
oracle outputs TDec(sk i, ct1, L).

4. Eventually, A chooses two messages m0,m1 with |m0| = |m1| and a label L
and sends them to the game. The game chooses a random bit b ←$ {0, 1}
and sends ct∗ ←$ TEnc(pk ,mb, L) to A.

5. A is allowed to make decryption queries with the exception that it cannot
make a query on ciphertext ct∗.

6. Eventually, A outputs a bit b′. The game outputs 1 if b′ = b and 0 otherwise.

Definition 6. A non-interactive (t, n)-threshold public key encryption scheme
TPKE is secure against chosen-ciphertext attacks with static corruptions if for
every PPT adversary A there exists a negligible function ν in the security param-
eter λ, such that Pr[TPKE–CCAATPKE(λ) = 1] ≤ 1/2+ν(λ). We define the advan-
tage of A in game TPKE–CCAATPKE as AdvATPKE–CCATPKE

= |Pr[TPKE–CCAATPKE =
1]− 1/2|.
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2.4 Non-Interactive Zero-Knowledge

We now recall the definition of a non-interactive zero-knowledge (NIZK) proof
of knowledge which has first been introduced in [8].

Definition 7. A NIZK proof of knowledge with respect to a polynomial-time
recognizable binary relation R is given by the following tuple of PPT algorithms
NIZK := (Setup,Prove,Verify), where (i) Setup(1λ) outputs a common refer-
ence string crs; (ii) Prove(crs, (Y, y)) outputs a proof π for (Y, y) ∈ R; (iii)
Verify(crs, Y, π) outputs a bit b ∈ {0, 1}. Further, the NIZK proof of knowledge
w.r.t. R should satisfy the following properties:

(i) Completeness: For all (Y, y) ∈ R and crs ← Setup(1λ), it holds that
Verify(crs, Y,Prove(crs, (Y, y))) = 1 except with negligible probability;

(ii) Soundness: For any (Y, y) 6∈ R and crs ← Setup(1λ), it holds that
Verify(crs, Y,Prove(crs, (Y, y))) = 0 except with negligible probability;

(iii) Zero knowledge: For any PPT adversary A, there exist PPT algorithms
Setup′ and S, where Setup′(1λ) on input the security parameter, outputs a pair
(c̃rs, τ) with τ being a trapdoor and S(c̃rs, τ, Y ) which on input c̃rs, τ and a state-
ment Y , outputs a simulated proof π̃ for any (Y, y) ∈ R. It must hold that (1)
the distributions {crs : crs ← Setup(1λ)} and {c̃rs : (c̃rs, τ) ← Setup′(1λ)} are
indistinguishable to A except with negligible probability; (2) for any (c̃rs, τ) ←
Setup′(1λ) and any (Y, y) ∈ R, the distributions {π : π ← Prove(c̃rs, Y, y)} and
{π̃ : π̃ ← S(c̃rs, τ, Y )} are indistinguishable to A except with negligible probabil-
ity.

2.5 Secret Sharing

We briefly recall the notions of (robust) secret sharing and evolving-committee
proactive secret sharing. For completeness, we provide descriptions of the notions
of proactive secret sharing and dynamic proactive secret sharing in Appendix A.

Secret Sharing A (t, n)-secret sharing scheme consists of sharing and recon-
struction procedures, where the sharing procedure allows a dealer to share a
secret s to a committee of n parties and the reconstruction procedure allows
a subset of this committee of size ≥ t to reconstruct the original secret s. A
(t, n)-secret sharing scheme must fulfill the following two properties against an
efficient adversary A that corrupts at most t− 1 parties.

1. Secrecy: A learns no information about s, if the dealer is uncorrupted.
2. Reconstruction: Any set of honest secret shareholder of size ≥ t can recon-

struct the original secret s.

Shamir’s secret sharing [42] is the most prominent (t, n)-secret sharing scheme
and we will recall it here briefly. Let q be a prime and let 1 ≤ t ≤ n < q. The
dealer chooses a secret s ∈ Zq and a random polynomial F (x) = a0 + a1x +
· · ·+ at−1x

t−1 where a0 = s. For 1 ≤ i ≤ n, the dealer computes si = F (i) and
sends si to secret shareholder Pi. A set S of honest shareholders with |S| ≥ t can
reconstruct s via interpolation. More concretely, for any i ∈ Zq and any j ∈ S
there exist lagrange coefficients li,j such that F (i) =

∑
j∈S li,jsj .

10



Robust Secret Sharing. Robust secret sharing extends the reconstruction
property of secret sharing schemes in the sense that a secret s can be successfully
reconstructed from any set of secret shares as long as the set includes at least t
correct shares.

2.6 Evolving-Committee Proactive Secret Sharing

Recently, Benhamouda et al. [7] introduced the notion of evolving-committee
proactive secret sharing (ECPSS), which is defined w.r.t. a universe of N parties
and parameters t ≤ n < N . Similar to dynamic proactive secret sharing (see
Appendix A), ECPSS allows to share a secret to a committee of parties and to
periodically exchange the secret shareholders of the committee. ECPSS further
extends previous secret sharing notions by providing a procedure that selects a
size n committee from all N parties and by proving that a fully mobile adversary
with corruption power p s.t. p ·N > t− 1 can at most corrupt t− 1 shareholders
at a time.

We now recall the definition of an ECPSS scheme as given in [7].

Definition 8 (ECPSS). An evolving-committee proactive secret sharing scheme
with parameters t ≤ n < N consists of the following procedures:

Setup: Optional procedure that provides the initial state for a universe of N
parties.

Sharing: Shares a secret s among an initial committee of size n.
Committee-Selection: This procedure is executed among all N parties and

selects the next n-party committee.
Handover: This procedure is executed among n parties, takes the output of

committee-selection and the current shares and re-shares them among the
next committee.

Reconstruction: Takes t or more shares from the current committee and re-
constructs the secret s or outputs ⊥ on failure.

An ECPSS protocol is scalable if the messages sent during committee-selection
and handover are bounded in total by some fixed poly(n, λ), independent of N .

An ECPSS scheme must fulfill the same secrecy and (robust) reconstruction
properties as a (robust) secret sharing scheme.

We call an ECPSS scheme (λ, n, t− 1, p)-secure, if it satisfies the secrecy and
reconstruction property w.r.t. a security parameter λ, committee size n, upper
bound t − 1 of corrupted parties in the committee and adversarial corruption
power p.

3 ECPSS Construction from Benhamouda et al. [7]

In this section, we recall the scalable ECPSS scheme with security against a
fully mobile adversary as presented by Benhamouda et al. [7] as it constitutes
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an important building block of our work. We denote the scheme by Σ′ECPSS.
The main idea behind the scheme is to achieve scalability by choosing small
committees of secret shareholders whose size n does not depend on the total set
of parties N . However, due to the small committee size, a fully mobile adversary,
whose corruption power is proportional to N instead of n, is able to corrupt all
members of the committee, thereby compromising security. Benhamouda et al.’s
idea to tackle this issue is to keep the identity of the committee members hidden
from the adversary, i.e., the committee members should be anonymous until they
have to communicate for the first time.

We now provide an overview of the Σ′ECPSS scheme to show how anonymity is
achieved. The scheme proceeds in epochs, at the beginning of which all parties in
the system generate a key pair for an anonymous public key encryption scheme.
This key pair is denoted to as the long-term keys of a party. All parties broadcast
their long-term public key to the PKI.

In each epoch two committees are selected, a nominating and a holding com-
mittee. The latter is responsible for maintaining the secret shares of the original
secret while the former is responsible for selecting the members of the holding
committee. The nominating committee self-selects, for instance by the use of
verifiable random functions. This self-selection process ensures that members of
the nominating committee remain anonymous until they send a message via the
broadcast channel for the first time in the current epoch. After self-selecting, each
member of the nominating committee randomly selects a member of the holding
committee, generates a fresh session key pair (also referred to as ephemeral key)
and encrypts the ephemeral secret key under the long-term public key of the
selected holding committee member. The resulting ciphertext is then broadcast
along with the ephemeral public key.

Upon broadcasting these values the members of the nominating committee
erase their internal state as their identity is now known to the adversary. All N
parties can now check if they were selected to the next holding committee by
trying to decrypt the published ciphertexts. At this point, the previous-epoch
holding committee (which holds the shares of the secret) encrypts (a sharing of)
the secret shares under the ephemeral public keys and broadcasts the resulting
ciphertexts. Again, as broadcasting compromises anonymity, the parties in the
previous holding committee first erase their internal states. We refer the reader
to [7] for the full description of the Σ′ECPSS scheme.

We will now describe the Setup procedure as well as the Select and Handover
procedures in more detail as these are most relevant for our work.

The Setup procedure works as follows.

Setup(1λ): On input a security parameter λ, this procedure chooses a λ-bit prime
q and executes crs ← NIZK.Setup(1λ) to generate the common reference
string crs of a NIZK proof system (cf. Def. 7). The procedure outputs public
parameters pp := (crs, q).2

2 For simplicity, we omit the setup of the PKI here.
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During the Select procedure, a nominating committee first self-selects and
then in turn selects the next n-party holding. We omit the details on the self-
selection of the nominating committee and just describe the selection of the
holding committee. In the following, we denote by APKE the anonymous pub-
lic key encryption scheme and by PKE the public key encryption scheme that
generates the ephemeral keys. Both of these schemes must be RIND-SO secure.

Select procedure:

Let Cnom be the self selected committee (nominating committee) which selects the
next n-party holding committee. Each party Pi ∈ Cnom does the following:

1. Choose a nominee for the next holding committee p ∈ [N ] and let pkp be this
selected party’s long-term public key which was broadcast to the PKI at the
beginning of the current epoch.

2. Generate a new ephemeral key pair (eski, epki)← PKE.KeyGen(1λ), and compute
ci ← APKE.Encpkp

(eski).
3. Erase eski, and broadcast (epki, ci).

Upon receiving pairs ((epk1, c1), · · · , (epkn, cn)), all parties Pj with j ∈ [N ] do the
following:

4. Verify that the broadcasters were indeed in the self-selected committee Cnom.
Otherwise, ignore the tuple sent by a party not in the committee Cnom.

5. For each tuple (epki, ci) try to decrypt ci using your long-term secret key sk j . If
successful, Pj is in the next holding committee and stores the decrypted value
eski.

Due to the self-selection of the nominating committee and the use of the anony-
mous public key encryption scheme APKE, the members of the holding com-
mittee are anonymous from the adversary’s point of view (except for members
already corrupted before being selected). Indeed, Benhamouda et al. show that
for specific holding committee sizes and adversarial corruption power, the ad-
versary cannot corrupt more than t ≈ n/2 members of the holding committee
except with negligible probability in the security parameter. We note that there
is no guarantee that the Select procedure will indeed select a holding commit-
tee of size n, since malicious parties in the nominating committee can refuse to
nominate a party to the holding committee. However, this does not affect the
functionality or security of the Σ′ECPSS scheme, since a malicious party in the
nominating committee can always nominate a malicious party to the holding
committee. Therefore, refusing to nominate any party to the holding committee
decreases the number of total parties n but likewise, the number of possibly cor-
rupted parties t. For simplicity, we assume for the rest of this work that Select
chooses holding committees of size exactly n.

We now describe the Handover procedure. This procedure enables the current
holding committee to “pass” its shares of a secret to the next-epoch holding
committee (selected via the Select procedure). In order to do so, each member of
the current holding committee re-shares their secret share and sends the resulting
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shares to the new holding committee by encrypting them under the ephemeral
public keys broadcast at the end of the Select procedure.

Handover procedure:

Let C be a holding committee such that each party Pi ∈ C for i ∈ [n] knows a
secret share si ∈ Zq. In this procedure, the entire universe of parties U first runs a
self-selection process to select a nominating committee Cnom and then executes Select
to select the next-epoch holding committee C′ such that each Pj

′ ∈ C′ is associated
with an ephemeral public key epkj .

a

Each party Pi ∈ C does the following:

1. Choose a random degree-t polynomial Fi(x) = ai,0 + ai,1x+ · · ·+ ai,tx
t ∈ Zq[x]

with ai,0 = si and compute the shares si,j := Fi(j) for j ∈ [n].
2. For each j ∈ [n] compute ci,j ← PKE.Encepkj (si,j).
3. Let comi be a commitment to si from the Handover procedure of the previous

epoch. Compute a NIZK proof πi for the statement that (comi, {ci,j}j∈[n]) are a
commitment and encryptions of values on a degree-t polynomial w.r.t. evaluation
points j ∈ [n].

4. Choose a long-term key pair (sk ′i, pk
′
i) ← APKE.KeyGen(1λ) and erase sk i and

all protocol secrets.
5. Broadcast (pk ′i, πi, {ci,j}j∈[n]).

Upon receiving (pk ′i, πi, {ci,j}j∈[n]) for i ∈ [n], all parties P ′j ∈ C′ do the following:

6. Verify the NIZKs πi and for the first t+ 1 valid proofs πi store i in a set Qual.
7. Compute si,j ← PKE.Deceskj (ci,j) for all i ∈ Qual.
8. Compute the secret share s′j =

∑
i∈Qual li ·si,j ∈ Zq, where li are the correspond-

ing Lagrange coefficients.

a For simplicity, we assume that Select is executed as part of the Handover procedure.
This is different from the original protocol description in [7], but does not affect
the functionality or security of the protocol.

Finally, we note that Benhamouda et al.’s solution can be instantiated with
different parameters. For instance, it has been shown to be (128, 889, 425, 0.05)-
secure or (128, 38557, 19727, 0.25)-secure. A recent work by Gentry et al. [25]
showed how to improve these parameters by introducing a new Select mechanism
that allows Σ′ECPSS to remain secure for any p < 1

2 . More concretely, for p =
0.25 they only require a holding committee of size 680 and for p = 0.40 a
committee of size 3500, which are significant improvements compared to the
original parameters from [7].

Our (slightly) modified Σ′ECPSS Construction. In our work, we consider a slightly
modified version of the Handover and Select procedures. Instead of erasing the
long-term secret key sk i in step 4 of the Handover procedure, sk i is already erased
at the end of step 5 of the Select procedure. It is easy to see that this change does
not affect the functionality of the Σ′ECPSS scheme as sk i is never used after step
5 of the Select procedure. For the rest of this paper we use this modified version
and denote it by ΣECPSS. This subtle but important modification is essential for
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the security proofs of our large-scale distributed key generation protocol and our
generic large-scale threshold public key encryption scheme.

4 Large-Scale Distributed Key Generation

In this section, we first formally define the notion of large-scale distributed key
generation (LS–DKG) and then present a construction in our model.

4.1 Model

A (t, n)-distributed key generation protocol (DKG) allows a set of n parties to
generate a public/secret key pair (pk , sk) such that all n parties learn pk , but no
single party learns sk . Instead each party learns a share of the secret key s.t. any
subset of t+ 1 parties can reconstruct sk . A DKG protocol is considered secure
if an adversary that corrupts at most t parties learns no information about sk .

A large-scale (t, n)-distributed key generation protocol (LS–DKG) differs from
the above notion of distributed key generation protocols in the sense that it is
defined w.r.t. a universe of parties U from which a committee of parties C
of size n with n < |U | is selected. This committee can then execute the key
generation protocol. In terms of security, an LS–DKG protocol does not rely on
the assumption that an adversary can corrupt at most t parties in C (as previous
notions of DKG do), but rather assumes a fully mobile adversary with corruption
power p that can corrupt up to p · |U | > t parties.

We now present the formal definition of a LS–DKG protocol.

Definition 9. A large-scale (t, n)-distributed key generation protocol (LS–DKG)
is run among a universe of parties U = {P, · · · , PN} with N > n and consists
of a tuple LS–DKG = (Setup,TKeyGen) of an efficient algorithm and a protocol
which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as
input and outputs public parameters pp.

TKeyGen[U ](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each
Pj receives as input public parameters pp and two integers t, n ∈ N such that
1 ≤ t ≤ n. The protocol selects a committee of parties C with |C| = n and
outputs to all parties Pj ∈ U a public key pk and to each party Pi ∈ C a
secret key share sk i.

In this work, we focus on discrete-log-based threshold cryptosystems, i.e.,
threshold schemes that operate over a cyclic group G of prime order q and output
secret/public key pairs of the form (x, gx), where x ∈ Zq and g is a generator of
G. We now present the correctness properties of an LS–DKG scheme, which are
similar to the correctness properties for DKG schemes in the discrete-log setting
as introduced by Gennaro et al. [24].

Correctness: An LS–DKG protocol must satisfy the following three correctness
properties.
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1. All subsets of t + 1 secret key shares provided by honest parties in C
define the same unique secret key sk .

2. After the execution of TKeyGen, all parties Pj ∈ U know the same public
key pk which corresponds to the secret key sk .

3. sk and pk are uniformly distributed in Zq and G, respectively.

In addition to correctness, an LS–DKG scheme must satisfy the following secrecy
property similar to the definition of Gennaro et al. [24].

Secrecy: An LS–DKG scheme is (λ, n, t, p)-secret if for every fully mobile ad-
versary A with corruption power p s.t. p · |U | > t, there exists an efficient
algorithm S, which on input a uniformly random element pk ∈ G, generates
an output distribution which is computationally indistinguishable from A’s
view of the output distribution of a real execution of the LS–DKG scheme
that outputs pk .

We call a large-scale distributed key generation protocol LS–DKG (λ, n, t, p)-
secure, if it is (λ, n, t, p)-secret and satisfies the correctness property.

4.2 Construction

We are now ready to present our construction of a large-scale distributed key
generation (LS–DKG) protocol. Before we explain our construction in detail, we
first give an overview about the challenges that arise when designing an LS–DKG
protocol and how we solve these challenges.

Technical challenges. Typically, discrete-log based DKG protocols are executed
among a fixed set of parties where the execution can be divided into three phases:
(1) share distribution, (2) qualification and (3) public key reconstruction phase.
In the first phase, i.e., the share distribution phase, each party Pi chooses a
random value si and distributes shares of this value to the other parties via
a verifiable secret sharing protocol. Additionally, party Pi broadcasts a com-
mitment to the group element gsi . The verifiability of the sharing is crucial as
it allows to identify misbehaving parties and consequently it allows to exclude
those parties from the further execution of the protocol. In other words, the
verifiability allows to identify a set of parties, which behaved honestly in the
first phase and therefore “qualify” to participate in the further execution of the
protocol. As such the phase of identifying the set of qualified parties is called
the qualification phase. At this point, all qualified parties can reconstruct their
respective secret key share which is typically done by summing up the secret
shares each party received from all qualified parties. In the final phase of the
protocol, the public key reconstruction phase, each qualified party Pi opens its
commitment to gsi , which enables the parties to reconstruct the public key from
all the opened commitments (which is typically done by taking the product of
all opened elements).

In our setting, we need to design a scheme that is secure against fully mobile
adversaries. Note that such an adversary has sufficient corruption power p to
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corrupt p · |U | > t parties, which would trivially break the security of the scheme.
To tackle this issue, we resort to anonymity, i.e., our protocol keeps the identity
of parties anonymous by using the ECPSS scheme ΣECPSS as described in Sec. 3.
In order to achieve anonymity using the ECPSS scheme, we must instantiate
our DKG protocol in the YOSO (you only speak once) model, where each party
is allowed to communicate at most once per epoch with other parties3. This,
however, raises two issues as compared to previous DKG schemes since (1) parties
cannot interactively identify misbehaving parties as is typically done in verifiable
secret sharing protocols and (2) parties cannot first commit to a value and later
send the opening of the commitment. To overcome these restrictions imposed by
the YOSO model, we must design a protocol which can be executed in the span
of multiple committees such that parties in one committee hand-over their state
to the parties of the subsequent committee.

Overview of our construction. Our LS–DKG protocol (which we denote through-
out this paper by ΠLS–DKG) follows the same three-phase framework of previous
DKG protocols, while addressing the challenges of being executed in the YOSO
model. At the core of our protocol lies the ΣECPSS scheme which allows select-
ing a committee of anonymous parties and passing on secret information from
one committee to another. We further employ a non-interactive zero-knowledge
(NIZK) proofs such that honest behavior can be proven without requiring any
interaction, and we carefully design our protocol in such a way that parties can
commit to a value and hand-over the corresponding opening to the next com-
mittee which broadcasts the opening at a later time. This latter technique has
first been introduced by Gentry et al. [26] who called it future broadcast and who
pointed out its importance in the YOSO model. In the following, we provide a
more detailed description of our solution.

The starting point of our protocol is the committee selection phase, during
which two anonymous committees C and C ′ of size n are selected via executions
of the ΣECPSS.Select procedure. The protocol then proceeds to the share distri-
bution phase, during which each party Pi ∈ C chooses two random values si and
ri which it shares to committee C ′ via the techniques of the ΣECPSS scheme.
Additionally, Pi broadcasts the value gsi+ri and finally, in order to make the
sharing publicly verifiable without the need for any interaction, Pi broadcasts
a NIZK proof that proves honest behavior of Pi during the share distribution
phase.

In the next phase of our protocol, the qualification phase, each party Pj
′ ∈ C ′

creates a set of qualified parties Qual, which consists of the first t + 1 parties
from committee C who gave a correct NIZK proof. We note that at this point,
the public and secret key of the protocol are fixed as pk =

∏
i∈Qual g

si and

sk =
∑
i∈Qual si. Each party Pj

′ can now reconstruct a secret key share from
the shares of si it received from parties Pi ∈ Qual. The only missing piece is
to reconstruct and publish the corresponding public key pk . In order to do so,
however, parties in C ′ have to “unblind” the elements gsi+ri by interactively

3 Recall that parties are no longer anonymous upon sending a message.
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reconstructing the values gri of qualified parties. This requires parties to speak
and therefore to handover the protocol execution to a new committee C ′′.

In the final phase of the protocol, the public key reconstruction phase, all
parties in U can use the unblinded values gsi for all Pi ∈ Qual to compute the
public key as pk =

∏
i∈Qual g

si .
We now give a formal description of our LS–DKG protocol ΠLS–DKG w.r.t.

ΣECPSS, a NIZK proof system NIZK and a public key encryption scheme PKE.

Setup(1λ): On input a security parameter λ, execute ppECPSS ← ΣECPSS.Setup(1λ)
and crs1 ← NIZK.Setup(1λ). Parse ppECPSS := (crs2, q) and set crs := crs1||crs24.
Choose a group G of prime order q with generator g such that the dlog prob-
lem is hard in G. Output public parameters ppLS–DKG := (crs,G, q, g).

TKeyGen(ppLS–DKG, t, n) procedure:

In the following, we denote by PKE the public key encryption scheme that generates
the ephemeral keys of the ΣECPSS scheme.

Input: ppLS–DKG := (crs,G, q, g) and integers t, n ∈ N, s.t. n ≥ 2t+ 1.

Committee Selection Phase:
1. During the committee selection phase, all parties in U execute ΣECPSS.Select twice

to select committees C and C′ where |C| = |C′| = n. Note that after the execution
of ΣECPSS.Select each party Pj

′ ∈ C′ is associated to an ephemeral public key epkj
which is known to all parties in C.

Share Distribution Phase:
2. Each party Pi ∈ C does the following:

(a) Choose si ←$ Zq and ri ←$ Zq.
(b) Choose random degree-t polynomials F si (x) = asi,0+asi,1x+· · ·+asi,txt ∈ Zq[x]

with asi,0 = si and F ri (x) = ari,0 + ari,1x+ · · ·+ ari,tx
t ∈ Zq[x] with ari,0 = ri.

(c) Compute shares si,j := F si (j) and ri,j := F ri (j) for j ∈ [n].
(d) For all j ∈ [n] compute csi,j ← PKE.Encepkj (si,j) and cri,j ← PKE.Encepkj (ri,j).

(e) Compute Ai = gsi+ri .
(f) Compute a NIZK proof πi for the statement that the decrypted values of all
{csi,j}j∈[n] and all {cri,j}j∈[n] are shares of two degree-t polynomials s.t. the
sum of the polynomials’ free terms equals the dlog of Ai.

(g) Erase all secret values, i.e., shares si,j and ri,j , polynomials F si and F ri and
values si and ri.

(h) Broadcast (Ai, πi, {csi,j}j∈[n], {cri,j}j∈[n]).

Qualification Phase:
3. Let Qual = ∅. Upon receiving the tuples (Ai, πi, {csi,j}j∈[n], {cri,j}j∈[n]) for i ∈ [n],

all parties Pj
′ ∈ C′ check if πi is valid and if so, store i in Qual until |Qual| =

t+ 1.a

4. For all i ∈ Qual do the following:

4 For simplicity we only use the concatenated CRS in our protocols and proofs, and
assume that each NIZK proof system can extract the correct CRS and uses it for
the proof generation.
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(a) Compute si,j ← PKE.Deceskj (csi,j).
(b) Compute ri,j ← PKE.Deceskj (cri,j).

5. Compute the secret key share sk ′j ∈ Zq as sk ′j =
∑
i∈Qual si,j .

6. Compute r′j =
∑
i∈Qual ri,j and R′j = gr

′
j .

7. Compute a NIZK proof π′j that proves that the dlog of R′j is the sum of the
decryptions of cri,j under eskj .

8. Erase values {si,j , ri,j}i∈Qual and r′j .
9. Execute ΣECPSS.Handover[C

′
〈sk′1,··· ,sk′n〉,U ](ppECPSS). This execution selects a com-

mittee C′′ with |C′′| = n s.t. each Pk
′′ ∈ C′′ learns a refreshed secret key share

sk ′′k .
10. Broadcast (R′j , π

′
j).

Public Key Reconstruction Phase:
11. Let Rand = ∅. Upon receiving {(R′j , π′j)}j∈[n], all parties in U compute the set

Qual as above and check for all j ∈ [n] if π′j is valid and if so store R′j in Rand
until |Rand| = t+ 1.

12. Compute the public key pk ∈ G as pk =
(∏

k∈QualAk
)
·
(∏

j∈RandR
′lj
j

)−1

where

lj are the corresponding lagrange coefficients.

a We are implicitly assuming that there is an order on these tuples.

Theorem 1. Let the discrete-log assumption hold in G, let NIZK be a non-
interactive zero-knowledge proof system as per Def. 7, ΣECPSS be a (λ, n, t, p)-
secure instantiation of the evolving-committee proactive secret sharing scheme
as presented in Sec. 2.6 and PKE be a RIND-SO secure public key encryption
scheme. Then the protocol ΠLS–DKG from Sec. 4.2 is a (λ, n, t, p)-secure large-
scale (t, n)-distributed key generation scheme.

In order to prove Theorem 1, we have to show that ΠLS–DKG satisfies the cor-
rectness and secrecy property w.r.t. to a fully mobile adversary with corruption
power p. We therefore state and prove the following lemmas.

Lemma 1. The large-scale (t, n)-distributed key generation scheme ΠLS–DKG as
presented in Sec. 4.2 the correctness property.

We provide the proof of Lemma 1 in Appendix B.

Lemma 2. The large-scale (t, n)-distributed key generation scheme ΠLS–DKG as
presented in Sec. 4.2 is (λ, n, t, p)-secret.

Proof Sketch: We provide the full proof of Lemma 2 in Appendix B, and only
give the main ideas of the proof here. For the proof we need to construct a
simulator which on input a public key pk , can simulate an execution of the
ΠLS–DKG protocol to a fully mobile adversary A in such a way that (1) the
simulated execution is computationally indistinguishable from a real execution
of ΠLS–DKG from A’s point of view and (2) the public key that is output by the
simulated execution is pk .
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At a high level, the main challenge in the simulation is the following. The
simulator, on behalf of honest parties Pi in committee C, has to first broadcast
the elements gsi+ri and send a sharing of ri and later adjust these values de-
pending on the set of qualified parties and the values chosen by the adversary
such that the following condition holds:

pk =
∏

k∈Qual

gsk+rk ·

 ∏
j∈Rand

gr
′
j
lj

−1 . (1)

As a first step of our proof, we show that a fully mobile adversary A can
corrupt at most t parties in each committee (i.e., in C, C ′ and C ′′ respectively)
by exhibiting a reduction to the secrecy property of the ΣECPSS scheme. That
is, we show that if A is able to corrupt more than t parties in either of C,
C ′ or C ′′ with non-negligible probability, then we can construct an adversary
that corrupts more than t parties of a holding committee in ΣECPSS with non-
negligible probability, thereby breaking the secrecy property of ΣECPSS. From
this follows that there is an honest majority in each of the committees C, C ′

and C ′′.
The main idea behind our simulation is to use the fact that the adversary

corrupts at most a minority of parties in each committee. More concretely, this
fact allows to make the following two observations: (1) there must exist at least
one honest party in Qual since the set of qualified parties Qual consists of t+ 1
parties, and (2) the simulator has sufficient information to reconstruct all values
r′j for all parties Pj

′ ∈ C ′ and thereby to learn all elements R′j . This allows the
simulator to first compute a value R′ s.t. pk =

∏
k∈Qual g

sk+rk ·R′. The simulator

then adjusts the elements R′j for some honest parties Pj
′ in C ′ such that for any

subset S ⊂ {R′1, · · · , R′n} with |S| = t + 1 it is possible to reconstruct R′ via
interpolation in the exponent. The simulator thereby ensures that Eq. (1) holds.
The simulator can then broadcast the elements R′j along with a simulated NIZK
proof. The fact that there is at least one honest party in the set Qual ensures
that the adversary cannot distinguish the simulated values R′j from the real ones.

5 Large-Scale Threshold Public Key Encryption from
Discrete-Log-Based TPKE Schemes

We are now ready to present our generic transformation from a discrete-log-based
statically secure threshold PKE scheme (TPKE) according to Definitions 5 and
6, to a large-scale non-interactive threshold PKE scheme (LS–TPKE) through
anonymization techniques similar to what we have seen in the previous sections.
We first start by introducing the notion of large-scale threshold public key en-
cryption and then provide our generic transformation from a discrete-log-based
TPKE to an LS–TPKE scheme using the evolving-committee proactive secret
sharing solution ΣECPSS from Section 3, the large-scale distributed key gener-
ation scheme ΠLS–DKG from the previous section and a NIZK proof system. In
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Appendix D, we show a concrete instantiation of our generic transformation
based on the TPKE scheme by Shoup and Gennaro [43].

5.1 Large-Scale Non-Interactive Threshold Public Key Encryption

In this section, we formally define the notion of a large-scale non-interactive
threshold public key encryption scheme LS–TPKE. Let us start by pointing out
the main differences between an LS–TPKE scheme and a TPKE scheme.

First, in contrast to a TPKE scheme, an LS–TPKE scheme does not consider
the committee of secret key shareholders as an external input to the protocol,
but rather includes the committee selection procedure as part of the scheme.
More precisely, we define an LS–TPKE scheme w.r.t. to a universe U of par-
ties from which committees are selected. Second, the execution of an LS–TPKE
scheme proceeds in epochs, i.e., its execution is divided into time intervals at
the beginning of which a new committee of secret key shareholders is selected.
In order to transition from one epoch to the next, the previous-epoch committee
must pass the secret key shares on to the next-epoch committee. We therefore
add a refresh procedure to an LS–TPKE scheme which allows for such a tran-
sition between epochs. Finally, and most importantly, we define the security of
an LS–TPKE scheme w.r.t. to a fully mobile adversary whose corruption power
grows in the universe size |U | instead of the size of the committee of secret key
shareholders. Hence, the adversarial corruption power suffices to possibly corrupt
all secret key shareholders in one epoch.

We now provide the formal definition of an LS–TPKE scheme.

Definition 10. A large-scale non-interactive (t, n)-threshold public key encryp-
tion scheme (LS–TPKE) is defined w.r.t. a universe of parties U = {P, · · · , PN}
with N > n and consists of a tuple LS–TPKE = (Setup,TKeyGen,TEnc,TDec,
TShareVrfy,TCombine,Refresh) of efficient algorithms and protocols which are
defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as
input and outputs public parameters pp.

TKeyGen[U ](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each
Pj receives as input public parameters pp and two integers t, n ∈ N such that
1 ≤ t ≤ n. The protocol selects a committee of parties C with |C| = n and
outputs to all parties Pj ∈ U a public key pk and to each party Pi ∈ C a
verification key vk i and a secret key share sk i.

TEnc(pk ,m,L): This probabilistic algorithm takes a public key pk, a message
m and a label L as input and outputs a ciphertext ct.

TDec(sk i, ct , L): This algorithm takes as input a secret key share sk i, a cipher-
text ct and a label L and it outputs either ⊥ or a decryption share ct i of the
ciphertext ct.

TShareVrfy(ct , vk i, ct i): This deterministic algorithm takes as input a ciphertext
ct, a verification key vk i and a decryption share ct i and outputs either 1 or
0. If the output is 1, ct i is called a valid decryption share.
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TCombine(T, ct): This deterministic algorithm takes as input a set of valid de-
cryption shares T , s.t. |T | = t + 1 and a ciphertext ct and it outputs a
message m.

Refresh[C〈sk1,··· ,skn〉, U ](pp): This is a protocol involving a committee C with
|C| = n and the universe of parties U . Each Pi ∈ C takes as secret input a
secret key share sk i and all parties Pj ∈ U take as input public parameters
pp. The protocol selects a committee of parties C ′ with |C ′| = n and outputs
to each party Pi

′ ∈ C ′ a verification key vk ′i and a secret key share sk ′i.

We will now define the properties that an LS–TPKE must satisfy, namely
Consistency and CCA-Security. In these definitions, we denote by Cj the com-
mittee in the j-th epoch (similarly for a party Pi

j ∈ Cj , we denote verification
keys as vk ji , secret key shares as sk ji and decryption shares as ctji ). We require
an LS–TPKE scheme to satisfy the following consistency properties.

Consistency A (t, n) − LS–TPKE scheme must fulfill the following two consis-
tency properties. For any λ ∈ N, any pp ← Setup(1λ) and any (pk , {vk1

i }i∈[n],
{sk1

i }i∈[n]) ← TKeyGen[U ](pp, t, n) with selected committee C1, for j > 1 we

define ({vk ji}i∈[n], {sk ji}i∈[n]) recursively as

({vk ji}i∈[n], {sk ji}i∈[n])← Refresh[Cj−1〈skj−1
1 ,··· ,skj−1

n 〉, U ](pp)

1. Decryption consistency: For any message m, any label L and any ciphertext
ct ← TEnc(pk ,m,L), it must hold that

TShareVrfy(ct , vk ji ,TDec(sk ji , ct , L)) = 1

2. Reconstruction consistency: For any message m, any label L, any ciphertext
ct ← TEnc(pk ,m,L) and any set T = {ctj1, · · · , ctjt+1} of valid decryption

shares where each decryption share is computed as ctji ← TDec(sk ji , ct , L)

with t+ 1 distinct secret key shares sk ji , it holds that TCombine(T, ct) = m.

CCA-Security In the following, we give the definition of chosen-ciphertext secu-
rity for a (t, n)−LS–TPKE scheme considering an efficient fully mobile adversary
A with corruption power p s.t. p · |U | > t. The state-of-the-art communication
model for designing and analyzing protocols that are secure against such a strong
adversary, is the YOSO model, in which committee members can speak at most
once before having to hand over their secret key share to the next committee.
This has the following interesting implications on the definition of the security
game as compared to the notion of CCA-security for a TPKE scheme (cf. Ap-
pendix A). First, upon a decryption oracle query, the game has to output decryp-
tion shares on behalf of honest secret key shareholders. However, this requires
these shareholders to “speak”. As each party should speak only once, outputting
decryption shares must be executed simultaneously with a refreshing of the secret
key shares to the next committee. Second, in contrast to traditional threshold
public key encryption schemes, the verification key of each honest committee
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member remains private until decryption shares are output. Note that (1) the
verification keys are required only to check the validity of decryption shares and
(2) verification keys depend on the secret key shares, i.e., they are refreshed in
each epoch. Therefore, it is sufficient to output verification keys simultaneously
with the decryption shares at the end of an epoch.

We formally define the following game LSTPKE–CCAALS–TPKE(λ) which is ini-
tialized with a security parameter λ:

1. The game executes Setup(1λ) and obtains public parameters pp, which it
forwards to the adversary A. For each epoch j ≥ 0, the game maintains a
set of corrupted parties Bj which is initialized as Bj := ∅.

2. The adversary A is given access to the following corruption oracle:
– Corruption oracle: On input an index i ∈ [N ], the game checks if⌊

|Bj |+1
|U |

⌋
≤ p. If so, A receives the internal state of party Pi

j and the

game sets Bj ← Bj ∪ {Pij}.
3. The game executes TKeyGen[U ](pp, t, n). The protocol selects a committee
C1 with |C1| = n and outputs a public key pk , a set of verification keys
{vk1

1, · · · , vk1
n} and a set of secret key shares {sk1

1, · · · , sk1
n}, such that Pi

1 ∈
C1 learns vk1

i and sk1
i .

4. At this point, A additionally obtains access to the following oracles:
– Refresh oracle: On input a set NBj ⊆ Bj , the game executes the

protocol Refresh[Cj〈skj
1,··· ,sk

j
n〉, U ](pp) and sets Bj+1 ← Bj \NBj .

– Decryption oracle: On input a set NBj ⊆ Bj and a set of ciphertexts
CT j with a set of associated labels ALj , the game computes ctji,k ←
TDec(sk ji , ctjk, L

j
k) for all ctjk ∈ CT j and Ljk ∈ ALj for all parties Pi

j ∈
Cj \ Bj . Then, the oracle calls the Refresh oracle on input NBj and
finally the game returns all tuples ({ctji,k}k∈|CT j |, vk ji ) to A.

5. Eventually, A chooses two messages m0,m1 with |m0| = |m1| and a label L
and sends them to the game. The game chooses a random bit b ←$ {0, 1}
and sends ct ′ ←$ TEnc(pk ,mb, L) to A.

6. A is allowed to make queries as described in steps 2. and 4. with the exception
that it cannot make a decryption query on ciphertext ct ′.

7. Eventually, A outputs a bit b′. The game outputs 1 if b′ = b and 0 otherwise.

Definition 11. A large-scale non-interactive (t, n)-threshold public key encryp-
tion scheme LS–TPKE with a universe of parties U is secure against chosen-
ciphertext attacks w.r.t. parameters (λ, n, t, p) s.t. p · |U | > t if for every fully
mobile PPT adversary A with corruption power p there exists a negligible func-
tion ν in the security parameter λ, such that

Pr[LSTPKE–CCAALS–TPKE(λ) = 1] ≤ 1/2 + ν(λ).

We define the advantage of A in game LSTPKE–CCAALS–TPKE as

AdvALSTPKE–CCA,LS–TPKE(λ) = |Pr[LSTPKE–CCAALS–TPKE(λ) = 1]− 1/2|.

We call a large-scale non-interactive (t, n)-threshold public key encryption
scheme LS–TPKE scheme (λ, n, t, p)-secure, if it satisfies the consistency and
CCA-security property w.r.t. parameters (λ, n, t, p).
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5.2 Generic Transformation from TPKE to LS–TPKE

We are now ready to show our generic transformation of discrete-log-based non-
interactive threshold encryption schemes secure against static adversaries to a
large-scale non-interactive threshold encryption scheme. We will show in Appx. E
how our techniques can be similarly applied to non-interactive threshold signa-
ture schemes. At a high level, we utilize our LS–DKG protocol ΠLS–DKG as pre-
sented in Sec. 4, the evolving-committee proactive secret sharing scheme ΣECPSS

as described in Sec. 3 and a NIZK proof system to transform a non-interactive
(t, n)-threshold encryption scheme secure against static adversaries TPKE to a
large-scale non-interactive (t, n)-threshold encryption scheme secure against fully
mobile adversaries LS–TPKE.

Properties of the TPKE scheme. For our transformation, we require the
underlying TPKE scheme to fulfill the three properties Has-DKG, Sk-To-Vk and
Has-Sim. The first property Has-DKG states that the TPKE scheme must be
compatible with the ΠLS–DKG protocol, i.e., the public key and secret key shares
as output by ΠLS–DKG.TKeyGen can be used in TPKE. The property Sk-To-Vk
states that a secret key share and its corresponding verification key must form
a discrete-log instance in the TPKE scheme. Finally, the property Has-Sim says
that for TPKE there must exist a simulator that can simulate the TPKE–CCA
game (cf. Appendix A) to a static adversary on input a public key, verification
keys and t secret key shares.

We now formally define the required properties for our transformation. Let
U be a universe of parties. Let λ ∈ N be the security parameter, ppLS–DKG ←
ΠLS–DKG.Setup(1λ), ppTPKE ← TPKE.Setup(1λ) and t, n ∈ N s.t. 1 ≤ t ≤ n. Note
that ppLS–DKG can be parsed as ppLS–DKG := (crs,G, q, g).

1. Has-DKG: For all

(pk , {sk1
i }i∈[n])← ΠLS–DKG.TKeyGen[U ](ppLS–DKG, t, n)

and all

(pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n])← TPKE.KeyGen(ppTPKE, t, n),

the distributions of the tuples (pk , {sk1
i }i∈[n]) and (pk ′, {sk ′i}i∈[n]) are indis-

tinguishable5.

2. Sk-To-Vk: For all (pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n]) ← TPKE.KeyGen(ppTPKE, t, n),

it holds that vk ′i = gsk
′
i .

3. Has-Sim: There exists an efficient algorithm S that behaves as follows: Let
(pk , {vk ′j}j∈[n], {sk ′i}i∈[n]) be a tuple generated by the TPKE.KeyGen proce-

dure, i.e., (pk , {vk ′j}j∈[n], {sk ′i}i∈[n]) ∈ TPKE.KeyGen(ppTPKE, t, n). Then the

5 This property implies that ΠLS–DKG and TPKE operate over the same group G with
the same generator g.
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algorithm S on input the public key pk , verification keys {vk ′j}j∈[n] and only

t of the secret key shares {sk ′i}i∈[t], can simulate the game TPKE–CCAATPKE
as presented in Def. 6 w.r.t. (ppTPKE, pk , {vk ′j}j∈[n]) to an efficient static ad-
versary A such that A cannot distinguish the simulation from the execution
of the real game except with negligible probability in λ.

Construction Let us now provide our generic construction of a large-scale
threshold public key encryption scheme ΠLS–TPKE = (Setup,TKeyGen,TEnc,
TDec,TShareVrfy,TCombine,Refresh) with CCA-security using the large-scale
distributed key generation scheme ΠLS–DKG = (Setup,TKeyGen) as described in
Sec. 4, the ECPSS scheme ΣECPSS = (Setup,Share,Select,Handover,Rec) as pre-
sented in Sec. 3, a threshold public key encryption scheme TPKE = (Setup,KeyGen,
TEnc,TShareVrfy,TCombine) secure against static adversaries and a NIZK proof
system NIZK = (Setup,Prove,Verify) as per Def. 7. We detail the generic con-
struction below.

ΠLS–TPKE.Setup(1λ): On input a security parameter λ, execute

ppTPKE ← TPKE.Setup(1λ),ppLS–DKG ← ΠLS–DKG.Setup(1λ)

crs1 ←NIZK.Setup(1λ)

Recall that ppLS–DKG can be parsed as ppLS–DKG := (crs2,G, q, g). Output
public parameters pp := (ppTPKE, ppLS–DKG, crs1).

ΠLS–TPKE.TKeyGen(pp, t, n): On input public parameters pp and two integers
t, n ∈ N s.t. n ≥ 2t + 1, this protocol parses pp := (ppTPKE, ppLS–DKG, crs1)
and calls the ΠLS–DKG.TKeyGen(ppLS–DKG, t, n) procedure, which selects a
committee C1 with |C1| = n and outputs a public key pk to all parties in
U and secret key shares sk1

i to each party Pi
1 ∈ C1. Additionally, all Pi

1

compute vk1′

i := gsk
1
i and a NIZK proof π1

i proving that vk1′

i was computed

correctly6. Pi
1 then sets the verification key vk1

i := {vk1′

i , π
1
i }.

ΠLS–TPKE.TEnc(pk ,m,L): This is the TPKE.TEnc procedure.

ΠLS–TPKE.TDec(sk ji , ct , L): This is the TPKE.TDec procedure.

ΠLS–TPKE.TShareVrfy(ct , vk ji , ctji ): On input a ciphertext ct , a verification key

vk ji := {vk j
′

i , π
j
i } and a decryption share ctji in epoch j, this procedure checks

if πji is a valid proof w.r.t. vk j
′

i (i.e., it checks if vk j
′

i is indeed the correct
verification key of party Pi

j ∈ Cj). If this check does not hold, the procedure

outputs 0. Otherwise, it outputs TPKE.TShareVrfy(ct , vk j
′

i , ctji ).

6 We note that π1
i can be efficiently computed and verified since its witness is

sk1
i and its statement consists of the ciphertexts that are broadcast during the

ΠLS–DKG.TKeyGen procedure.
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ΠLS–TPKE.TCombine(T, ct): This is the TPKE.TCombine procedure.

ΠLS–TPKE.Refresh[Cj−1〈skj−1
1 ,··· ,skj−1

n 〉, U ](pp): This protocol is executed between a

committee Cj−1 in epoch j − 1 and the universe U , where each Pi
j−1 ∈

Cj−1 receives as input a secret key share sk j−1i and each party Pk ∈ U
receives as input pp := (ppTPKE, ppLS–DKG, crs1). The protocol first runs
ΣECPSS.Handover which selects a committee Cj with |Cj | = n and outputs
refreshed secret key shares sk ji to each Pi

j ∈ Cj . Additionally, all Pi
j ∈ Cj

compute vk j
′

i := gsk
j
i , generate a NIZK proof πji that the verification key

was computed correctly7 and set vk ji := {vk j
′

i , π
j
i }.

Theorem 2. Let ΠLS–DKG be a (λ, n, t, p)-secure instantiation of the large-scale
(t, n)-distributed key generation protocol from Sec. 4, TPKE a non-interactive
(t, n)-threshold public key encryption scheme which is secure against chosen-
ciphertext attacks with static corruptions according to Def. 6, ΣECPSS a (λ, n, t, p)-
secure instantiation of the evolving-committee proactive secret sharing scheme as
presented in Sec. 3 and NIZK a non-interactive zero-knowledge proof system as
per Def. 7. Assume that TPKE satisfies the properties Has-DKG, Sk-To-Vk, and
Has-Sim, then ΠLS–TPKE is a (λ, n, t, p)-secure large-scale non-interactive (t, n)-
threshold public key encryption scheme.

In order to prove Theorem 2, we have to show that ΠLS–TPKE satisfies de-
cryption consistency and reconstruction consistency as well as security against
chosen-ciphertext attacks w.r.t. parameters (λ, n, t, p). We therefore state the
following lemmas.

Lemma 3. The large-scale non-interactive (t, n)-threshold public key encryption
scheme ΠLS–TPKE as described in Sec. 5.2 satisfies decryption consistency and
reconstruction consistency.

Proof. This lemma follows directly from the consistency properties of the TPKE
scheme, the properties Has-DKG and Sk-To-Vk, the completeness property of the
NIZK proof system and from the (robust) reconstruction property of the ΣECPSS

scheme. We provide a proof outline for Lemma 3 in Appendix C.

Lemma 4. The large-scale non-interactive (t, n)-threshold public key encryption
scheme ΠLS–TPKE as described in Sec. 5.2 is secure against chosen-ciphertext
attacks w.r.t. parameters (λ, n, t, p).

Proof Sketch. We provide the full formal proof of Lemma 4 in Appendix C.
We provide now a high level proof sketch that summarizes the main ideas of our
proof. At a high level, we show that if there exists a fully mobile adversary B with
corruption power p who can win game LSTPKE–CCABΠLS–TPKE

with non-negligible

7 We note that πji can be efficiently computed and verified since its witness is
sk ji and its statement consists of the ciphertexts that are broadcast during the
ΣECPSS.Handover procedure.
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probability, then there exists an efficient static adversary A who can use B to
win its own game TPKE–CCAATPKE (cf. Def. 6) with non-negligible probability.
Therefore, we show how A can simulate game LSTPKE–CCABΠLS–TPKE

to B in such
a way that the simulation is indistinguishable from a real execution to B and
how A can use B’s output bit b′ to win its own game.

The first step of our proof, similar to the proof of Lemma 2, is to show that B
corrupts at most t secret key shareholders (i.e., committee members) per epoch.
We show this by providing reductions to the secrecy properties of the ΠLS–DKG

and ΣECPSS schemes.
We then show how A simulates the game LSTPKE–CCABΠLS–TPKE

to B w.r.t.

the public key pk that it receives from its own game TPKE–CCAATPKE. A embeds
pk in game LSTPKE–CCABΠLS–TPKE

by executing the simulator code of the ΠLS–DKG

scheme (cf. Fig. 1) on input pk . After this execution, A knows the secret key
shares of all honest and malicious parties. Note however that, according to the
simulation strategy for the ΠLS–DKG scheme, these secret key shares are merely
random values in Zq that are independent of pk . The main idea of the proof is

now to show that A can simulate game LSTPKE–CCABΠLS–TPKE
to the adversary

B, without B noticing that the committee members hold a sharing of a random
value.

In order to show this, we make the following crucial observation that is unique
to the YOSO model. To simulate the decryption oracle to B, the adversary A
has to simulate verification keys and decryption shares for honest committee
members that are consistent with B’s view. In particular, this means that these
simulated verification keys and decryption shares are not consistent with the
secret key shares of honest parties. However, as the YOSO model requires com-
mittee members to first erase their secret key shares before outputting their
verification key and decryption shares, this inconsistency between public infor-
mation and the internal state of honest parties remains undetected by B. Said
differently, if B corrupts a committee member before this member has output its
verification key and decryption shares, there exists no inconsistent public infor-
mation through which B could distinguish the simulation from a real execution
(as long as B corrupts at most t committee members). On the other hand, if B
corrupts a committee member after this member has output its verification key
and decryption shares, then the secret key share has already been erased and
there is again no inconsistency between public information and internal states.

Remark 1. We note that the scheme ΠLS–TPKE inherits the security guarantee
of the underlying TPKE scheme, i.e., if the TPKE scheme is chosen-ciphertext
secure, then so is ΠLS–TPKE. On the other hand, if TPKE is chosen-plaintext
secure, then so is ΠLS–TPKE. We omitted chosen-plaintext security for LS–TPKE
schemes in our model since we opt for the strongest possible security guarantees.

We note that our generic transformation can be instantiated with multiple
different discrete-log-based TPKE schemes (e.g., [43, 4] and with slight adjust-
ments [38]). We show in Appendix D how to instantiate our generic transforma-
tion with the TPKE scheme from [43].
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In Appendix E, we present a model for large-scale non-interactive threshold
signature schemes and argue that the transformation that we presented in this
section can be applied for threshold signature schemes as well. At a high level, the
model follows the ideas of the model of LS–TPKE schemes, i.e., a large-scale non-
interactive threshold signature scheme is defined w.r.t. to a universe U of parties
and proceeds in epochs at the beginning of which a new committee of secret
key shareholders is selected. The definition includes a refresh procedure which
allows to transition from one epoch to the next by selecting a new committee
and refreshing the secret key shares. Finally, an LS–TSIG scheme must be secure
w.r.t. a fully mobile adversary whose corruption power suffices to corrupt an
entire committee of secret key shareholders.

6 Applications

In this section, we show several interesting applications of our LS–DKG protocol
combined with LS–TSIG and LS–TPKE schemes.

Our schemes are perfectly suited to be used in blockchain networks, which
have increasingly gained attention in the cryptography community as they have
proven to be surprisingly versatile for the realization of cryptographic primitives
and protocols. We split applications of our solutions into two categories, (1)
storage of blockchain-backed secrets and (2) adding signing functionality to a
blockchain.

6.1 Storage of Blockchain-Backed Secrets

Any information stored on a blockchain is publicly available to all users which
severely restricts the usefulness of a blockchain and the class of applications
it supports. Recently, Benhamouda et al. [7] and Goyal et al. [27] presented
solutions based on secret sharing to allow the storage of secret values on a
blockchain8. At a high level, these solutions allow a client to secret share a value
to a committee, which then stores the secret and periodically refreshes the shares
to a new committee. However, for many applications it is not necessary to store
the secret on the entire blockchain, but it rather suffices to have a functionality
that allows to commit to a secret and have the blockchain open the commitment
in case of malicious behavior during the execution of the application.

Consider the example of a fair exchange protocol. Assume two parties, say
Alice and Bob, wish to exchange secrets a and b, where Alice initially owns a
and Bob owns b. Alice and Bob could now use either solution of Benhamouda
et al. or Goyal et al. to share a and b to the committee and once both parties
have done so, the committee could send the shares of b to Alice and vice versa.
There are, however, several issues with this solution: (1) Alice and Bob have to
interact with the committee, (2) the committee has to store shares of a and b

8 Likewise Kokoris-Kogias et al. [34] presented a solution for auditable data-
management based on blockchain and threshold encryption which allows for storage
of secrets on a blockchain. We refer to Appendix A for further discussion.
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and has to possibly refresh the shares to a new committee and (3) the committee
members learn that Alice and Bob exchange secrets, thereby compromising the
two parties’ privacy. Instead, assume that each committee member holds a secret
key share of an LS–TPKE scheme and that the corresponding public key pk is
stored on the blockchain. In this case, Alice and Bob could just encrypt their
secrets under pk and exchange the ciphertexts9. Once each of them have received
the respective ciphertext, they can reveal their secrets to each other. If one party
misbehaves, say Alice, by not revealing her secret, Bob can let the committee
decrypt Alice’s ciphertext10. Note that, in the optimistic case, i.e., when no party
misbehaves, then we have that (1) there is no interaction with the committee
required, (2) the committee does not have to store and refresh the secrets a and
b and (3) the committee does not learn which parties interact with each other.

Naturally, the same idea can be used to store secrets on a blockchain if
necessary, i.e., if Alice wants to store a secret on the blockchain, she can simply
encrypt the secret under the committee’s public key and publish the ciphertext
to the blockchain. The advantage of this solution compared to the secret sharing
based solutions of Benhamouda et al. and Goyal et al. is that the committee
has to only refresh its secret key shares (instead of all secrets that are stored
on the blockchain) and therefore the communication complexity of replacing a
committee by a new committee is independent of the number of stored secrets.

6.2 Adding Signing Functionality to a Blockchain

Our LS–TSIG scheme can be used to generate signatures “on behalf” of the
blockchain. This allows to sign individual blocks of the blockchain, thereby
certifying that the block is indeed a valid part of the blockchain or sign cer-
tain messages indicating that a specific event has occurred on the blockchain.
Benhamouda et al. [7] previously mentioned that extending their solution to a
threshold signature scheme (as we did in this work) opens the door to various
interesting applications. We briefly recall two applications here. We note that
Benhamouda et al. have never formally shown how to construct such a threshold
signature scheme from their solution.

Blockchain Interoperability. Blockchain interoperability deals with the issue of
running applications across multiple different blockchain networks. This often
requires proving to a blockchain B that a certain event has occurred on another
blockchain A. In order to do so, trusted parties can be used that are part of both
networks and therefore can mediate between two blockchains. With our LS–TSIG
scheme, however, blockchain A can simply create a signature on a message indi-
cating that the event in question has occurred and this message/signature pair
can be sent to blockchain B. Parties in blockchain B merely require the signing
public key of blockchain A to verify the signature.

9 Along with NIZK proofs that prove that the ciphertexts indeed encrypt a and b.
10 We note that the label of the ciphertext can be used as a decryption policy that

might say in this case: “If Bob publishes his ciphertext on the blockchain, he is
allowed to learn the content of Alice’s ciphertext.”
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Blockchain Checkpointing. Checkpoints on a blockchain allow to certify that a
certain blockchain state is valid. This proves to be particularly useful for new
parties joining a blockchain network, as these parties are not anymore required to
download and validate the entire blockchain starting at the first block. Instead,
new parties can download the blocks since the latest checkpoint and validate the
blocks that succeed this checkpoint. This significantly improves computation
time of parties joining a blockchain system. A threshold signature scheme, like
our LS–TSIG scheme, can be used to build such checkpoints by simply signing
valid blocks. The signature serves as a proof for the block’s validity.
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A Additional Related Work and Preliminaries

A.1 Additional Related Work

Threshold Cryptography in Blockchains Numerous works have considered the
use of threshold cryptographic primitives in the context of blockchain (e.g. [34,
3, 30]). The works of Maram et al. [39] and Goyal et al. [27] both present dy-
namic proactive secret-sharing (DPSS) constructions for blockchain networks
under an honest majority assumption. Goyal et al. then proceed to define the
notion of extractable witness encryption on blockchains and show an instantia-
tion based on their DPSS scheme. Benhamouda et al. [7] extend the notion of
DPSS to an evolving-committee proactive secret sharing scheme that does not
require the honest majority assumption. Kokoris-Kogias et al. [34] present an
auditable data-management solution that is based on blockchain and threshold
encryption. However, their work lacks a formal security analysis of the presented
solution and focuses mostly on a static committee of secret key shareholders. Fi-
nally, Groth [28] presents a non-interactive distributed key generation protocol
together with a refresh procedure that allows refreshing the secret key shares to
a new committee.

A.2 Further Notions of Secret Sharing

Proactive Secret Sharing Proactive secret sharing schemes (PSS) further
extend robust secret sharing by providing an additional procedure, which allows
to refresh the secret shares. More concretely, a PSS scheme proceeds in epochs,
i.e., time intervals which are delimited by periodical executions of share refresh
procedures. The refresh procedure guarantees that shares from different epochs
cannot be combined in order to retrieve the original secret. The adversary model
for PSS schemes considers mobile adversaries that can corrupt and uncorrupt
parties, but never more than t−1 per epoch. PSS schemes must fulfill the secrecy
and (robust) reconstruction properties as mentioned above.

Dynamic Proactive Secret Sharing Similar to PSS schemes, dynamic proac-
tive secret sharing schemes (DPSS) proceed in epochs with the difference that the
committee of shareholders changes in each epoch, i.e., the refresh procedure is
executed between two different (but not necessarily disjoint) committees. DPSS
schemes must fulfill the same properties as PSS schemes.

B Proof of Theorem 1

In this section, we provide a proof of Theorem 1. We do so by first proving
Lemma 1 and then Lemma 2.
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B.1 Proof of Lemma 1

Proof. In order to prove Lemma 1, we have to show that the correctness prop-
erties 1.-3. hold. The correctness proof for properties 1. and 3. proceeds in a
similar manner as for the DKG protocol in [24]. We briefly recall the proof here.

First, we note that all parties in U compute the same set Qual during an
execution of ΠLS–DKG.TKeyGen. This is because (1) each party in U can verify
the NIZK proofs {πi}i∈[n] that are output by parties Pi ∈ C and thereby identify
valid tuples and (2) there exists an order on the tuples. Therefore it holds that
all honest parties in U compute the same set Qual consisting of t+1 valid tuples.

1. Note that if it holds that k ∈ Qual, then party Pk ∈ C must have shared
ask,0 correctly to committee C ′. Therefore, each party Pj

′ ∈ C ′ receives secret
shares sk,j ∈ Zq for all k ∈ Qual and subsequently computes its secret key
share as sk ′j =

∑
k∈Qual sk,j . Further, from Shamir’s secret sharing we know

that it must hold for any set S with |S| ≥ t+ 1 of correct secret shares that
ak,0 =

∑
j∈S lj · sk,j . From this, it follows that

sk =
∑

k∈Qual

ask,0 =
∑

k∈Qual

∑
j∈S

lj · sk,j


=
∑
j∈S

lj ·

 ∑
k∈Qual

sk,j

 =
∑
j∈S

lj · sk ′j .

The correctness for secret key shares sk ′′j of parties Pj
′′ ∈ C ′′ follows directly

from the above and from the (robust) reconstruction property of the ΣECPSS

scheme.

2. In order to show that correctness property 2. is satisfied, we have to show
that all parties Pj ∈ U know the same public key pk = gsk = g

∑
k∈Qual a

s
k,0

after an execution of ΠLS–DKG.TKeyGen. If k ∈ Qual, then Pk ∈ C must have
sent shares rk,j of the value ark,0 to party Pj

′ ∈ C ′ such that for any set S
with |S| ≥ t+1 of valid shares it holds that ark,0 =

∑
j∈S lj ·rk,j . Additionally,

Pk ∈ C must have correctly shared ask,0 and broadcast Ak = ga
s
k,0+a

r
k,0 .

Upon receiving shares rk,j , each Pj
′ ∈ C ′ computes R′j = g

∑
k∈Qual rk,j = gr

′
j

along with a NIZK proof π′j that proves correctness of R′j . All parties in U
then construct a set Rand consisting of t+ 1 correct elements R′j for j ∈ [n].
The public key is reconstructed as
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pk =

 ∏
k∈Qual

Ak

 ·
 ∏
j∈Rand

R
′lj
j

−1

=

 ∏
k∈Qual

Ak

 · (g∑j∈Rand lj ·r
′
j

)−1

=

 ∏
k∈Qual

Ak

 · (g∑j∈Rand lj ·
∑

k∈Qual rk,j

)−1

=

 ∏
k∈Qual

ga
s
k,0+a

r
k,0

 · (g∑k∈Qual a
r
k,0

)−1
=

∏
k∈Qual

(
ga

s
k,0

)
= g

∑
k∈Qual a

s
k,0

3. Since the secret key is computed as sk =
∑
k∈Qual a

s
k,0 and ask,0 is chosen

uniformly at random from Zq, it holds that sk is uniformly distributed in
Zq. Since sk is uniformly distributed in Zq, so is pk = gsk ∈ G.

B.2 Proof of Lemma 2

In order to prove Lemma 2, we first state and prove the following lemma:

Lemma 5. Let ΠLS–DKG be the large-scale distributed key generation protocol
from Sec. 4 instantiated with a non-interactive zero-knowledge proof system NIZK,
a RIND-SO secure public key encryption scheme PKE and a (λ, n, t, p)-secure
instantiation of ΣECPSS. Then there exists no fully mobile adversary A with cor-
ruption power p who can corrupt more than t parties in either of C, C ′ or C ′′

with more than negligible probability in λ.

Proof. We prove this lemma by reduction to the secrecy property of the ΣECPSS

scheme. More precisely, we show that if there exists an adversary A who can
corrupt more than t parties in either of C, C ′ or C ′′ with non-negligible proba-
bility, then we can construct a fully mobile adversary B with corruption power
p who uses A to break the secrecy property of ΣECPSS. In a nutshell, the secrecy
property of ΣECPSS states that upon choosing two secrets x ∈ Zq and y ∈ Zq
and subsequently interacting with the ΣECPSS scheme, the adversary B cannot
distinguish whether x or y has been shared in ΣECPSS.

In order to break this property using A, the adversary B simulates an exe-
cution of the ΠLS–DKG protocol as follows: As mentioned above, B first chooses
two secrets x ∈ Zq and y ∈ Zq, one of which is shared in ΣECPSS. B then sets the
universe of parties in ΠLS–DKG to the same universe as in ΣECPSS and simulates
the behavior of all honest parties in this universe to A.
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At the beginning of each epoch, all parties in the universe broadcast a new
long-term public key via the PKI. For all corrupted parties Pj that broadcast
a long-term public key pk j in ΠLS–DKG, B chooses a fresh long-term key pair

(sk ′j , pk ′j) and broadcasts pk ′j in ΣECPSS.

B must now ensure that in both schemes the same committees are selected
in each epoch. A naive approach would be to simply relay messages between
schemes ΣECPSS and ΠLS–TPKE during executions of the ΣECPSS.Select procedure.
However, this is not sufficient. Recall that the nominating committee selects par-
ties to a holding committee by broadcasting ephemeral public key and ciphertext
pairs {(epk′i, c′i)}i∈[n] where the ciphertext c′i encrypts the ephemeral secret key
esk′i corresponding to epk′i. The issue with simply relaying messages between both
schemes during the ΣECPSS.Select procedure is that B cannot learn the ephemeral
secret keys esk′i of honest committee members Pi and thereby B cannot learn
the secret shares that are exchanged during executions of the ΣECPSS.Handover
procedure in ΠLS–DKG. However, it is crucial for B to learn these secret shares in
order to simulate the rest of the protocol.

Therefore, B simulates the ΣECPSS.Select procedure as follows: upon the nom-
inating committee in ΣECPSS sending the pairs {(epk′i, c′i)}i∈[n], B first uses the
long-term secret keys sk ′j that it chose at the beginning of the epoch for cor-
rupted parties Pj to identify whether any of these parties has been selected to
the committee. If so, B learns the ephemeral secret key esk′j and encrypts it un-
der the long-term public key pk j of party Pj in ΠLS–DKG to obtain a ciphertext

cj . It forwards the pairs (epk′j , cj) to A for all corrupted parties Pj .

For all honest parties Pi that have been selected to the committee, B chooses
new ephemeral key pairs (eski, epki)← PKE.KeyGen(1λ) and forwards the pairs
(epki, c

′
i) to A. Note that now the decryption of the ciphertexts c′i and the corre-

sponding ephemeral public keys epki do not form valid key pairs. However, this
remains undetected by A (except with negligible probability) due to the RIND-
SO security of the PKE scheme and due to the fact that parties have erased
their long-term secret keys already at this point. Note that as a consequence of
this simulation, A encrypts its shares during executions of the ΣECPSS.Handover
procedure under the ephemeral public keys epki for which B knows the corre-
sponding ephemeral secret keys eski.

Apart from the simulation of the ΣECPSS.Select procedure, B executes the
ΠLS–DKG correctly for all honest parties, i.e., it follows the protocol instructions.
Note, however, that B does not know the identities of uncorrupted parties in the
current-epoch committee (i.e., C, C ′ or C ′′). Therefore, B follows the protocol
instructions of ΠLS–DKG for all honest parties in the current-epoch committee
without knowing the identities of these parties. Said differently, B prepares the
internal states of honest parties in the current-epoch committee without knowing
the identities of these parties. Upon A corrupting a party Pi, B corrupts the
corresponding party in ΣECPSS and hence learns whether or not Pi is part of
the current-epoch committee. If it is, B returns one of the internal states that it
had previously prepared for honest parties in the current-epoch committee along
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with the ephemeral secret key eski
11. Otherwise, if Pi is not in the current-epoch

committee, B forwards the internal state of Pi to A. Once committee members
in ΠLS–DKG have to broadcast values (i.e., reveal their identities), B executes
the ΣECPSS.Handover procedure in ΣECPSS by which it learns the identities of all
honest parties in the current-epoch committee. This allows B to broadcast the
prepared internal states on behalf of the honest committee members in ΠLS–DKG.

It is easy to see that the committees in ΣECPSS and ΠLS–DKG consist of the
same parties. Therefore, if A corrupts more than t parties in either of C, C ′

or C ′′, then B corrupts more than t parties in a committee in ΣECPSS, thereby
learning whether secret x or y was shared in ΣECPSS. This concludes the proof.

With Lemma 5 in place, we can now prove Lemma 2.

Proof. We describe a simulator S which on input a public key pk = gx ∈ G where
x ∈ Zq simulates an execution of ΠLS–DKG to an efficient fully mobile adversary
A such that the output distribution of S is computationally indistinguishable
from A’s view of an execution of the real protocol which ends with pk as its
output public key. In the following, we first describe the behavior of simulator
S on input pk and subsequently we show that the output distribution produced
by S is computationally indistinguishable to A from the output distribution of
a real protocol execution of ΠLS–DKG.

During the ΠLS–DKG.Setup(1λ) procedure, S runs (c̃rs1, τ)← NIZK.Setup′(1λ)
instead of crs1 ← NIZK.Setup(1λ). This allows S to obtain a trapdoor τ for the
NIZK proof system. Afterwards the execution of ΠLS–DKG.TKeyGen begins during
which the adversary A can corrupt honest parties at any time.

For all honest parties, S follows the protocol instructions ofΠLS–DKG.TKeyGen
until step 4b. As such, it correctly executes the protocol for all honest parties in
committee C. Let H ′ ⊆ C ′ and B′ ⊂ C ′ denote the sets of honest and corrupted
parties in committee C ′ respectively. Note that S knows the correct internal
states of all parties Pj

′ ∈ H ′12, in particular the values sk ′j and ri,j for i ∈ Qual.
Further, note that due to Lemma 5 there is an honest majority in each of C, C ′

and C ′′ through which S can learn the values sk ′k and ri,k for all Pk
′ ∈ B′ and

i ∈ Qual. Therefore, S can learn the elements R′j for all parties Pj
′ ∈ C ′.

In step 4b, S computes

R′ = pk−1 ·
∏

k∈Qual

Ak

such that it holds that
∏
k∈QualAk ·R′ = pk .

11 To be exact, B returns the prepared internal state which is specific to the ΠLS–DKG

protocol together with any other internal secrets that party Pi might hold, e.g.,
secret information for the self-selection functionality.

12 For simplicity, we use the notations Pj
′ ∈ H ′ and j ∈ H ′ interchangeably throughout

this paper.
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S then chooses t− |B′| parties from H ′ and assigns them to a new set SH ′

(i.e., SH ′ ∩H ′ = ∅). For all parties in SH ′, S follows the protocol instructions
of step 4b while for parties Pj

′ ∈ H ′, S sets

R′j = R′lj,0 ·
∏

i∈B′∪SH′
R
′lj,i
i (2)

where lj,i are the appropriate lagrange coefficients. Note that this allows any set
S ⊂ {R′1, · · · , R′n} with |S| = t + 1 to reconstruct R′ via interpolation in the
exponent.

In step 7, S then uses the trapdoor τ as generated during the NIZK.Setup′

procedure, to generate simulated NIZK proofs π̃′j that prove correctness of the
elements R′j .

During the simulation of steps 4b and 7, S handles corruptions as follows:

– Upon A corrupting a party Pj
′ ∈ SH ′, S sends the internal state of Pj

′ to
A and sets SH ′ = SH ′ \ {Pj ′} and B′ = B′ ∪ {Pj ′}.

– Upon A corrupting a party Pi
′ ∈ H ′, S sends the original (and not the

simulated) internal state which includes R′i = gr
′
i (instead of the simulated

value as computed in Eq. (2)) to A and chooses a party Pj
′ ←$ SH

′. It then
sets H ′ = H ′\{Pi′}, SH ′ = SH ′\{Pj ′}, H ′ = H ′∪{Pj ′} and B′ = B′∪{Pi′}.

If A corrupts a party in H ′ during the simulation of steps 4b or 7, S executes
the simulation of the respective step again for the updated sets B′, SH ′ and H ′.

The simulator S executes the rest of the protocol correctly for all honest
parties.

We now show that the simulation is computationally indistinguishable to
A from a real protocol execution. Note that S only deviates from the proto-
col instructions during the NIZK.Setup procedure and during steps 4b and 7
for parties Pj

′ ∈ H ′. Due to the zero-knowledge property of the NIZK proof
system, it holds that the distributions {crs1 : crs1 ← NIZK.Setup(1λ)} and
{ ˜crs1 : ( ˜crs1, τ) ← NIZK.Setup′(1λ)} are computationally indistinguishable to
A. In step 4b, S replaces the elements R′j for all Pj

′ ∈ H ′ by elements computed

as R′lj,0 ·
∏
i∈B′∪SH′ R

′lj,i
i . Note that, due to Lemma 5, there exists at least one

honest party Pi ∈ Qual and therefore all elements R′j contain at least one uni-
formly random value ri,j from an honest party in the exponent. Therefore A can
distinguish the simulated and real elements R′j only by breaking the RIND-SO
security of the PKE scheme which happens at most with negligible probability.
Finally, by the zero-knowledge property of the NIZK proof system, A cannot
distinguish the simulated NIZK proofs π̃′j from the real proofs πj except with
negligible probability.

C Proof of Theorem 2

In this section, we first provide a proof outline of Lemma 3 before giving a formal
proof of Lemma 4.

39



Simulator Code: During the simulation of ΠLS–DKG.Setup, S executes NIZK.Setup′(1λ)
instead of NIZK.Setup(1λ) through which it learns a trapdoor τ for the NIZK proof
system. Let H ′ ⊆ C′ and B′ ⊂ C′ be the sets of honest and corrupted parties in
committee C′. Note that there is an honest majority in committees C, C′ and C′′ due
to Lemma 5.
On input a public key pk , S then simulates ΠLS–DKG.TKeyGen as follows:

– S follows the protocol instructions for all honest parties until step 4b.
– In step 4b, S proceeds as follows:
• S chooses t− |B′| parties from H ′ and assigns those parties to a new set SH ′

s.t. SH ′ ∩H ′ = ∅.
• S computes the element

R′ = pk−1 ·
∏

k∈Qual

Ak.

• For all parties in SH ′, S follows the protocol instructions.
• For all parties Pi

′ ∈ B′, S computes the elements R′i.

• For all parties Pj
′ ∈ H ′, S sets R′j = R′lj,0 ·

∏
i∈B′∪SH′ R

′lj,i
i where lj,i are the

appropriate lagrange coefficients.
– In step 7, S then uses the trapdoor τ as generated during the NIZK.Setup′ proce-

dure, to generate simulated NIZK proofs π̃′j that prove correctness of the elements
R′j .

– During the simulation of steps 4b and 7, S handles corruptions as follows:
• Upon A corrupting a party Pj

′ ∈ SH ′, S sends the internal state of Pj
′ to A

and sets SH ′ = SH ′ \ {Pj ′} and B′ = B′ ∪ {Pj ′}.
• Upon A corrupting a party Pi

′ ∈ H ′, S sends the original (and not the sim-

ulated) internal state which includes R′i = gr
′
i (instead of the simulated value

as computed in Eq. (2)) to A and chooses a party Pj
′ ←$ SH

′. It then sets
H ′ = H ′ \ {Pi′}, SH ′ = SH ′ \ {Pj ′}, H ′ = H ′ ∪ {Pj ′} and B′ = B′ ∪ {Pi′}.

If A corrupts a party in H ′ during the simulation of steps 4b or 7, S executes the
simulation of the respective step again for the updated sets B′, SH ′ and H ′.

– The simulator S executes the rest of the protocol correctly for all honest parties.

Fig. 1: Simulator code for our large-scale distributed key generation protocol
ΠLS–DKG.

C.1 Proof outline of Lemma 3

We show that decryption and reconstruction consistency hold for ΠLS–TPKE for
the first epoch. For all subsequent epochs, these properties then follow from
the (robust) reconstruction property of the ΣECPSS scheme. Let λ ∈ N be the
security parameter and let pp ← ΠLS–TPKE.Setup(1λ) be the public parameters,
where pp := (ppTPKE, ppLS–DKG, crs1).

1. Due to the Has-DKG and Sk-To-Vk properties, the following holds:

for all (pk , {vk1
i }i∈[n], {sk1

i }i∈[n])← ΠLS–TPKE.TKeyGen(pp),
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where vk1
i := (vk1′

i , π
1
i ) it holds that

(pk , {vk1′

i }i∈[n], {sk1
i }i∈[n]) ∈ TPKE.TKeyGen(ppTPKE).

2. Due to the completeness property of the NIZK scheme, it holds that π1
i is a

correct NIZK proof for the correctness of vk1′

i .
3. Decryption consistency in epoch 1 then follows from the above and from the

decryption consistency property of the TPKE scheme.
4. Reconstruction consistency in epoch 1 follows from the above and from the

reconstruction consistency property of the TPKE scheme.

C.2 Proof of Lemma 4

Proof. We now present the proof of Lemma 4. To this end, we show that if there
exists a fully mobile adversary B that can win the LSTPKE–CCABΠLS–TPKE

game
with non-negligible advantage, then there also exists a static adversary A who
can win the game TPKE–CCAATPKE (cf. Section 2.3) with non-negligible advan-
tage. More precisely, we show in a series of computationally indistinguishable
games that A can use B’s output bit b′ to win its own game.

Game G0G0G0: This is the original LSTPKE–CCABΠLS–TPKE
game. In the beginning

of this game, the ΠLS–TPKE.Setup procedure is executed to generate public pa-
rameters pp. In each epoch j, the game maintains a list Bj which indicates the
set of corrupted parties in the universe U . Additionally, the game maintains two
lists HCj

and BC
j

which indicate the sets of honest and corrupted parties in
committee Cj . The execution of ΠLS–TPKE.TKeyGen generates a public key pk ,
selects a committee of secret key shareholders C1 and outputs a secret key share
sk1
i to each party Pi

1 ∈ C1. Note that B gets access to a corruption oracle, which
allows B to corrupt parties in epoch j at any point in time as long as it holds

that
⌊
|Bj |+1
|U |

⌋
≤ p. Further, B obtains access to a decryption and refresh oracle.

GameG1G1G1: This game proceeds as the previous game with the difference that
it aborts in case during any epoch j of the execution of ΠLS–TPKE.TKeyGen it
holds that |BCj | > t, i.e., in case in epoch j there are more than t corrupted
parties in Cj .

The indistinguishability argument for this game follows from the secrecy
property of the ΠLS–DKG scheme. In more detail, if an adversary B was able
to corrupt more than t parties in Cj , then we can construct an adversary A′
who simulates an execution of the ΠLS–TPKE.TKeyGen procedure to B and sub-
sequently breaks the secrecy property of ΠLS–DKG by corrupting more than t
parties in ΠLS–DKG. Upon B issuing a corruption oracle query, A′ corrupts the
corresponding party in ΠLS–DKG and relays the obtained internal state to B
(i.e., gives the control of this party to B). Due to property Sk-To-Vk, A′ can
correctly compute verification keys for corrupted parties in the last epoch of
ΠLS–DKG.TKeyGen. Therefore, we get that Pr[G1G1G1 = 0] ≤ Pr[G1G1G1 = 1] + ν1(λ)
where ν1 is a negligible function in λ.
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GameG2G2G2: This game proceeds as the previous game with the difference that
it aborts in case in any epoch j after the execution of ΠLS–TPKE.TKeyGen it holds
that |BCj | > t, i.e., in case in epoch j there are more than t corrupted parties
in Cj .

The indistinguishability argument for this game follows from the secrecy
property of the ΣECPSS scheme. That is, if an adversary B was able to corrupt
more than t parties in Cj , then we can construct an adversary A′ who can break
the secrecy property of ΣECPSS by corrupting more than t parties in ΣECPSS. The
reduction works in a similar fashion as the one in Lemma 5, i.e., A′ trying to
break the secrecy property of ΣECPSS can simulate game LSTPKE–CCABΠLS–TPKE

to B by correctly executing all instructions for all honest parties except for the
broadcasting of corrupted long-term public keys at the beginning of an epoch
and executions of the ΣECPSS.Select procedure in ΠLS–TPKE, which are simulated
as described in the proof of Lemma 5. As a consequence of this simulation, A′
does not know the identities of parties in the current-epoch committee, therefore
it is crucial that decryption shares in LSTPKE–CCABΠLS–TPKE

are output only after
the current-epoch committee has been replaced by a new committee, such that
A′ learns the identities of the parties it needs to output decryption shares for.
It is easy to see that upon B corrupting more than t parties in a committee Cj

in ΠLS–TPKE, A′ can corrupt more than t parties in the same-epoch committee
in ΣECPSS, thereby breaking the secrecy property of ΣECPSS.

Hence, we get that Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + ν2(λ) where ν2 is a negligible
function in λ.

Game G3G3G3: This game is the same as the previous game with only a syntacti-
cal change. For each epoch j after the execution of ΠLS–TPKE.TKeyGen the game
maintains another list SHCj

with |SHCj | = t − |BCj |, in addition to the sets

HCj

and BC
j

. At the beginning of epoch j, the game then randomly assigns
t− |BCj | parties from HCj

to SHCj

and removes these parties from HCj

(i.e.,

HCj ∩ SHCj

= ∅).
This change is only syntactical and therefore we get that Pr[G2G2G2 = 1] =

Pr[G3G3G3 = 1].

Game G4G4G4: This game is similar to the previous game with a modification to
the corruption oracle. In each epoch j after the execution of ΠLS–TPKE.TKeyGen,
the corruption oracle behaves as follows:

– If B sends a corruption query for a party Pk
j ∈ SHCj

, the game returns the
internal state of Pk

j and sets SHCj

= SHCj \{Pkj} and BC
j

= BC
j∪{Pkj}.

– If B sends a corruption query for a party Pi
j ∈ HCj

, the game returns the

internal state of Pi
Cj

to B and chooses a party Pk
j ←$ SH

Cj

. The game

then sets SHCj

= SHCj \ {Pkj}, HCj

= HCj ∪ {Pkj}, HCj

= HCj \ {Pij}
and BC

j

= BC
j ∪ {Pij}.

For all corruption queries for party Pi
j ∈ U , the game sets Bj = Bj ∪ {Pij}.
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The change in this game is only syntactical and therefore we have that
Pr[G3G3G3 = 1] = Pr[G4G4G4 = 1].

Game G5G5G5: This game is similar to the previous game with a modification
in the ΠLS–TPKE.Setup procedure. When the common reference string crs1 of the
NIZK proof system is generated, the game executes ( ˜crs1, τ)← NIZK.Setup′(1λ)
instead of crs1 ← NIZK.Setup(1λ). This allows the game to learn a trapdoor τ .
Since the distributions {crs1 : crs1 ← NIZK.Setup(1λ)} and { ˜crs1 : ( ˜crs1, τ) ←
NIZK.Setup′(1λ)} are indistinguishable to B except with negligible probability
(due to the zero-knowledge property of NIZK), it holds that Pr[G4G4G4 = 1] ≤
Pr[G5G5G5 = 1] + ν3(λ) where ν3 is a negligible function in λ.

Game G6G6G6: This game works as the previous game with the following differ-
ence. For each party Pi

j ∈ HCj

, the game computes a simulated NIZK proof πji
(i.e., without using the secret key share sk ji ) using the trapdoor τ and algorithm

S (cf. Def. 7) which proves that the verification key vk j
′

i has been computed

correctly w.r.t. sk ji .

Due to the zero-knowledge property of the NIZK proof system, the simulated
proof πji is indistinguishable from a real proof except with negligible probability.
It holds that Pr[G5G5G5 = 1] ≤ Pr[G6G6G6 = 1] + ν4(λ) where ν4 is a negligible function
in λ.

Game G7G7G7: This game proceeds as the previous game with the following
modification. After the execution of ΠLS–TPKE.TKeyGen, the game uses the secret
key shares sk1

i of all Pi
1 ∈ HC1

to reconstruct the secret key sk corresponding

to pk . Note that this is possible because |HC1 | ≥ t + 1. During a decryption
oracle query in an epoch j, the game then proceeds as follows: It reconstructs
a degree-t polynomial F̃ j from the secret key shares {sk jk}k∈BCj∪SHCj and sk ,

s.t. F̃ j(k) = sk jk and F̃ j(0) = sk . The game then computes secret key shares

F̃ j(i) = s̃k
j

i for all Pi
j ∈ HCj

and uses s̃k
j

i to compute decryption shares for
Pi
j .

First, note that in each epoch it holds that |HCj | ≥ t+ 1 and therefore the
game has sufficient information to compute the secret key shares {sk jk}k∈BCj .

Second, note that for each epoch j there exists a degree-t polynomial F j , s.t.
F j(i) = sk ji and F j(0) = sk for all Pi

j ∈ Cj . This polynomial is uniquely

identified by any t+ 1-size subset of {sk , sk j1, · · · , sk jn}. Therefore, we have that

F̃ j = F j and s̃k
j

i = sk ji for all Pi
j ∈ HCj

.

We therefore get that Pr[G6G6G6 = 1] = Pr[G7G7G7 = 1].

GameG8G8G8: This game proceeds similarly as the previous game with a modifi-
cation in the refresh oracle. Instead of executing the ΣECPSS.Handover procedure
on input the secret key shares sk ji for all parties Pi

j ∈ HCj

, the game first

chooses a uniformly random element xji ∈ Zq for each Pi
j and then executes
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the simulator code of ΣECPSS.Handover on input secret key shares sk jk for all

Pk
j ∈ SHCj

and xji for all Pi
j ∈ HCj

.

In case B sends a corruption query for a party Pi
j ∈ HCj

during a refresh
oracle execution, the game returns the secret key share sk ji (instead of xji ) and

repeats the steps of G8G8G8 w.r.t. the updated sets HCj

, SHCj

and BC
j

.
The indistinguishability argument of this game to the previous one follows

from the secrecy property of the ΣECPSS scheme. Note that for ΣECPSS to sat-
isfy secrecy, there must exist a simulator that can simulate the scheme in such
a way that an efficient fully mobile adversary cannot distinguish whether the
simulation is executed w.r.t. the secret key sk or a uniformly random secret ex-
cept with negligible probability. Hence, if B could detect the modification in G8G8G8

with non-negligible probability, then we could construct an efficient adversary
who could break the secrecy property of the ΣECPSS scheme with non-negligible
probability. Therefore, it holds that Pr[G7G7G7 = 1] ≤ Pr[G8G8G8 = 1] + ν5(λ) where ν5
is a negligible function in λ.

Game G9G9G9: This game proceeds similarly to the previous game with the
following modification in the decryption oracle. For all Pi

j ∈ HCj

, the game

first computes the verification key vk j
′

i as vk j
′

i = pk li,0
∏
k∈BCj∪SHCj vk

li,k
k .

The game then executes the algorithm S as per property Has-Sim on input

(pk , {vk j
′

i }i∈[n], {sk jk}k∈BCj∪SHCj ) to answer decryption queries.
In more detail, upon a decryption query from B on input a set of ciphertexts

CT j with a set of associated labels ALj , the game proceeds as follows:

1. it first computes verification keys for all parties Pi
j ∈ HCj

as described
above

2. it executes S on input (pk , {vk j
′

i }i∈[n], {sk jk}k∈BCj∪SHCj )

3. for each ctjm ∈ CT j , Ljm ∈ ALj with m ∈ [|CT j |] and Pi
j ∈ HCj

, the game
uses S to receive decryption shares {ctji,m}m∈|CT j |

4. the game outputs {ctji,m}m∈|CT j | together with the verification key vk j
′

i and

a NIZK proof πji to answer decryption oracle queries by B.

Note that for all parties Pk
j ∈ SHCj

, the game computes decryption shares
w.r.t. the secret key share sk jk.

Recall that upon a corruption query for a party Pi
j ∈ HCj

, the game removes
a party Pk

j at random from the set SHCj

and adds it to HCj

. Therefore, in
case such a corruption query occurs during a decryption oracle execution, the
game first computes the decryption shares of Pi

j w.r.t. the secret key share sk ji
and then repeats the steps of G9G9G9 w.r.t. the updated sets HCj

, SHCj

and BC
j

.
Due to property Has-Sim, there exist an efficient algorithm S as used in G9G9G9.

S simulates game TPKE–CCAA
′

TPKE such that it is indistinguishable to an effi-
cient static adversary A′ from the real game except with negligible probability.
Since the game uses S only to simulate decryption shares to B, it holds that
Pr[G8G8G8 = 1] ≤ Pr[G9G9G9 = 1] + ν6(λ) where ν6 is a negligible function in λ.
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Game G10G10G10: This game proceeds similarly to the previous game G9G9G9 with the
exception that before the execution of ΠLS–TPKE.TKeyGen, the game chooses
at random a public key pk , s.t. (pk , ·, ·) ∈ TPKE.KeyGen. Then during the
ΠLS–TPKE.TKeyGen procedure, instead of executing ΠLS–DKG.TKeyGen, the game
executes the simulator code of ΠLS–DKG.TKeyGen (cf. 1) on input pk . This code
simulates ΠLS–DKG.TKeyGen in a way such that the output public key is equal
to pk .

The indistinguishability argument follows from the secrecy property of the
ΠLS–DKG scheme. More precisely, for any secure LS–DKG scheme, there must exist
an efficient simulator which on input a public key pk can simulate the execution
of LS–DKG.TKeyGen in such a way that the execution is indistinguishable to an
efficient fully mobile adversary except with negligible probability and the output
public key equals pk . For ΠLS–DKG we presented this simulator code in Fig. 1.
Therefore, it holds that Pr[G9G9G9 = 1] ≤ Pr[G10G10G10 = 1]+ν7(λ) where ν7 is a negligible
function in λ.

By the transition from game G0G0G0 to G10G10G10 we get that

Pr[LSTPKE–CCABΠLS–TPKE
(λ) = 1] = Pr[G0G0G0 = 1]

≤ Pr[G10G10G10 = 1] + ν1(λ) + ν2(λ) + ν3(λ) + ν4(λ)

+ ν5(λ) + ν6(λ) + ν7(λ)

≤ Pr[G10G10G10 = 1] + ν(λ).

where ν(λ) ≥ ν1(λ)+ν2(λ)+ν3(λ)+ν4(λ)+ν5(λ)+ν6(λ)+ν7(λ) is a negligible
function in λ.

Having shown that the transition from game G0G0G0 to game G10G10G10 is indistin-
guishable, it remains to show that there exists an efficient static adversary A
who plays in game TPKE–CCAATPKE and simulates game G10G10G10 to B. We have to
show that A can then use B to win its own game. The only difference between
gameG10G10G10 and A’s simulation is as follows: In TPKE–CCAATPKE, A receives a chal-
lenge public key pkC , which it uses instead of the randomly chosen public key
in game G10G10G10. Since the challenge public key pkC is chosen uniformly at random,
this change is only syntactical.

Finally, we have to show that A can use B to win the TPKE–CCAATPKE game.
Note that the encryption procedure is the same in both the ΠLS–TPKE and TPKE
scheme. Therefore, uponA receiving challenge messagesm0 andm1 and a label L
from B, A forwards these messages as challenge messages to its own game. Upon
receiving the challenge ciphertext ct ′, A forwards it to B. Upon B outputting
a bit b′, A forwards this bit to its own game. Hence, there exists a negligible
function ν′ in λ such that it holds that

Pr[LSTPKE–CCABΠLS–TPKE
(λ) = 1] ≤ Pr[TPKE–CCAATPKE(λ) = 1] + ν(λ)

≤ 1/2 + ν′(λ) + ν(λ).
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where ν′ is a negligible function in λ.

Remark 2. We note that the adversary in game LSTPKE–CCAΠLS–TPKE
might ob-

tain access to additional oracles, depending on the model in which property
Has-Sim is satisfied. For instance, if the TPKE scheme satisfies property Has-Sim
in the random oracle model, then the adversary in game LSTPKE–CCAΠLS–TPKE

obtains access to a random oracle as well. Similar to [31], we abstract from this in
our proof, since such oracles are captured by algorithm S according to property
Has-Sim.

D Concrete Instantiation with the Shoup-Gennaro
Threshold Encryption Scheme

In the following we show a concrete instantiation of the generic transformation
as presented in the previous section. We first briefly recall the (t, n)-threshold
encryption scheme from Shoup and Gennaro [43], which we denote by SG. This
scheme has previously been proven secure against static adversaries. We show
that SG satisfies the properties Has-DKG, Sk-To-Vk and Has-Sim as defined in
Sec. 5 and thereby can be transformed into a large-scale non-interactive threshold
encryption scheme.

We now briefly recall the SG scheme and its security proof as given in [43].

Setup(1λ): On input a security parameter λ, the setup procedure generates a
group G of prime order q with generator g For simplicity, we assume that both,
the messages and labels, are l bits long. In addition, the setup procedure defines
the following hash functions:

H1 : G→ {0, 1}l, H2 : {0, 1}l × {0, 1}l ×G×G→ G, H3, H4 : G3 → Zq

The setup procedure outputs public parameters pp := (G, q, g, l,H1, H2, H3, H4).

KeyGen(pp, t, n): On input public parameters pp and integers t, n ∈ N s.t. n ≥
2t+ 1, this procedure chooses a random degree-t polynomial F (x) = a0 + a1x+
· · · + atx

t ∈ Zq[x] and sets sk i = F (i) and vk i = gski . The procedure outputs
pk = gsk , where sk = F (0), and all {vk i}i∈[n] to all parties Pi. Additionally, it
outputs to each party Pi the secret key share sk i.

TEnc(pk ,m,L): On input a public key pk , a message m ∈ {0, 1}l and label
L ∈ {0, 1}l the encryption algorithm works as follows:

1. Choose r, s←$ Zq at random
2. Compute:
c = H1(pkr)⊕m,u = gr, w = gs, ḡ = H2(c, L, u, w)
ū = ḡr, w̄ = ḡs, e = H3(ḡ, ū, w̄), f = s+ re.

The output is the ciphertext ct = (c, L, u, ū, e, f).
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TDec(sk i, ct , L, vk i): On input a secret key share sk i, a ciphertext ct = (c, L, u,
ū, e, f), a label L and a verification key vk i the decryption algorithm for party
Pi does the following:

1. Compute: w = gf/ue, ḡ = H2(c, L, u, w), w̄ = ḡf/ūe.
2. If e 6= H3(ḡ, ū, w̄), output (i, ?)
3. If e = H3(ḡ, ū, w̄), choose si ←$ Zq at random and compute:

ui = uski , ûi = usi , ĥi = gsi , ei = H4(ui, ûi, ĥi), fi = si + sk iei.

The output is a decryption share ct i = (i, ui, ei, fi).

TShareVrfy(ct , vk i, ct i): On input a ciphertext ct = (c, L, u, ū, e, f), a verifica-
tion key vk i and a decryption share ct i = (i, ui, ei, fi), the decryption share
verification algorithm does the following:

1. Check if e 6= H3(ḡ, ū, w̄) as in the decryption procedure and if so output 1
only if the decryption share is (i, ?) and 0 otherwise.

2. Compute: ûi = ufi/ueii , ĥi = gfi /h
ei
i .

3. If ei 6= H4(ui, ûi, ĥi), output 1 and 0 otherwise.

TCombine(T, ct): On input a set of valid decryption shares T := {ct i}i∈[t+1]

and a ciphertext ct = (c, L, u, ū, e, f), the share combination algorithm does the
following:

1. Check if e 6= H3(ḡ, ū, w̄) as in the decryption procedure and if so, output
?. Otherwise, assume that it holds that all ct i ∈ T are of the form ct i =
(i, ui, ei, fi).

2. Compute m = H1(
∏t+1
i=1 u

li,0
i )⊕ c.

The output is the message m.
We will now show that the SG scheme fulfills the required properties Has-DKG,

Sk-To-Vk and Has-Sim as presented in Sec. 5.2 such that it can be transformed
into a large-scale non-interactive threshold PKE scheme.

SG satisfies the properties from Sec. 5.2 In the following, for security parameter
λ ∈ N, let ppLS–DKG ← ΠLS–DKG.Setup(1λ) and ppSG ← SG.Setup(1λ) and let U
denote a universe of parties. Further, let t, n ∈ N, s.t. n ≥ 2t+ 1.

– Has-DKG: We have to show that the distribution of the tuples (pk1, {sk1
i }i∈[n])

and (pk ′, {sk ′i}i∈[n]) are indistinguishable, where

(pk1, {sk1
i }i∈[n])← ΠLS–DKG.TKeyGen[U ](ppLS–DKG, t, n)

and (pk ′, ·, {sk ′i}i∈[n])← SG.KeyGen(ppSG, t, n).

In order to do so, we have to show that the values {sk1
i }i∈[n] and {sk ′i}i∈[n]

are uniformly distributed in Zq and that the elements pk1 and pk ′ are uni-
formly distributed in G. From the correctness property of ΠLS–DKG and the
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description of SG we know that the values {sk1
i }i∈[n] and {sk ′i}i∈[n] define

degree-t polynomials F 1 and F ′ over Zq[x] with uniformly random coeffi-
cients, s.t. F 1(i) = sk1

i , F
′(i) = sk ′i and F 1(0) = sk1 and F ′(0) = sk ′.

Therefore, all values {sk1
i }i∈[n] and {sk ′i}i∈[n] are distributed uniformly in

Zq.
Further, we know that sk1 and sk ′ are uniformly distributed in Zq. Since

the values pk1 and pk ′ are each computed as pk1 = gsk
1

and pk ′ = gsk
′

respectively, both pk1 and pk ′ are uniformly distributed in G13.
– Sk-To-Vk: As evident from the description of the TKeyGen procedure of the

SG scheme, it holds for all (pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n])← SG.TKeyGen(ppSG)

that vk ′i = gsk
′
i for i ∈ [n].

– Has-Sim: In order to show that the SG scheme satisfies this property, we
briefly recall the main idea behind the security reduction of the SG scheme to
the computational Diffie-Hellman problem in presence of a static adversary
A in game TPKE–CCAATPKE (see Sec. 2.3) as presented in [43].

Reduction of SG to computational Diffie-Hellman. The reduction in [43]
shows that if there exists a static adversary A that wins the TPKE–CCAATPKE
game (cf. Def. 6) with non-negligible probability, then there also exists a
simulator S := (S1,S2)14 which solves the CDH problem with non-negligible
probability, i.e., upon receiving a CDH instance (g, ga, gb) ∈ G3, S can com-
pute gab. W.l.o.g. let A corrupt parties (P, · · · , Pt). Further, let pk = ga,
sk i ←$ Zq and vk i ← gski for i ∈ [t]. Then the simulator S first exe-
cutes subprocedure S1 on input (pk , {vk i, sk i}i∈[t]), which computes vk j =

pk lj,0
∏t
i=1 vk

lj,i
i for t+1 ≤ j ≤ n. Note that for any subset T ⊂ {vk1, · · · , vkn}

with |T | = t+1 it holds that pk =
∏

vki∈T vk lii and therefore any T uniquely
identifies pk .
S then executes S2 on input (pk , {vk j}j∈[n], {sk i}i∈[t]), which simulates game

TPKE–CCAASG as follows: In the beginning of the game, S2 sends the tuple
(pk , {vk j}j∈[n], {sk i}i∈[t]) to the adversary. Upon A initiating the challenge
phase of the game by sending a label L′ and two messages m0,m1, S2 sets the
challenge ciphertext ct ′ as follows: it chooses c′ ∈ {0, 1}l and k′, e′, f ′ ∈ Zq
at random. Then it sets

u′ = gb, ḡ′ = gk
′
, ū′ = (u′)k

′
, w′ = gf

′
/(u′)e

′
, w̄′ = (ḡ′)f

′
/(ū′)e

′
.

Finally, the simulator programs H2 and H3 such that H2(c′, L′, u′, w′) = ḡ′

and H3(ḡ′, ū′, w̄′) = e′ and S2 outputs ct ′ = (c′, L′, u′ū′, e′, f ′) to A. The idea
is that in order to guess which message is encrypted in ct ′, the adversary
has to query H1 on input u′sk = gab and thereby S2 can learn the solution
to the CDH problem. It remains to show the simulation of the decrpytion
oracle. For each query to H2 on a different input than (c′, L′, u′, w′), S2

13 We assume that ΠLS–DKG and SG operate over the same group G with generator g.
14 For ease of explanation, we present the simulator w.r.t. two subprocedures S1 and
S2.
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chooses a random k ∈ Zq and outputs ḡ = hk. Upon receiving a decryption
query for ciphertext ct = (c, L, u, ū, e, f), S2 has to compute uj = vkrj for
t+ 1 ≤ j ≤ n along with a simulated NIZK proof to prove the correctness of
the decryption. S2 first verifies that ct is a valid ciphertext and if this check
passes, it computes uj = (ū)lj,0/k

∏t
i=1 u

skilj,i .
S2 satisfies the requirements of property Has-Sim.

E Large-Scale Non-Interactive Threshold Signature
Schemes

In this section, we first introduce the notion of large-scale non-interactive thresh-
old signature schemes (LS–TSIG), before we argue that our generic transforma-
tion from a discrete-log-based TPKE scheme to a large-scale threshold PKE
scheme as presented in Sec. 5 works similarly for discrete-log-based threshold
signature schemes (TSIG). In Appendix F, we then show that the threshold
signature scheme by Boldyreva [9], which we denote by TH–BLS, satisfies the
(slightly adjusted) properties Has-DKG, Sk-To-Vk and Has-Sim as required for
our generic transformation in Sec. 5.

E.1 Large-Scale Non-Interactive Threshold Signature Scheme

The formal definition of a large-scale non-interactive threshold signature scheme
(LS–TSIG) follows the ideas of the definition of LS–TPKE schemes. That is, an
LS–TSIG scheme is defined w.r.t. to a universe U of parties and proceeds in
epochs at the beginning of which a new committee of secret key shareholders
is selected. Similarly to LS–TPKE schemes, the definition of LS–TSIG schemes
includes a refresh procedure which allows to transition from one epoch to the next
by selecting a new committee and refreshing the secret key shares. Finally, an
LS–TSIG scheme must be secure w.r.t. a fully mobile adversary whose corruption
power suffices to corrupt an entire committee of secret key shareholders.

We now provide the formal definition of a non-interactive LS–TSIG scheme.

Definition 12. A large-scale non-interactive (t, n)-threshold signature scheme
(LS–TSIG) is defined w.r.t. a universe of parties U = {P, · · · , PN} with N > n
and consists of a tuple LS–TSIG = (Setup,TKeyGen,TSign,TShareVrfy,TCombine,
Verify,Refresh) of efficient algorithms and protocols which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as
input and outputs public parameters pp.

TKeyGen[U ](pp, t, n): This is a protocol involving all parties Pj ∈ U , where each
Pj receives as input public parameters pp and two integers t, n ∈ N such that
1 ≤ t ≤ n. The protocol selects a committee of parties C with |C| = n and
outputs to each party Pj ∈ U a public key pk and to each party Pi ∈ C a
verification key vk i and a secret key share sk i.

TSign(sk i,m): This algorithm takes as input a secret key share sk i and a mes-
sage m and outputs a signature share σi.
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TShareVrfy(vk i,m, σi): This deterministic algorithm takes as input a verifica-
tion key vk i, a message m and a signature share σi and it either outputs 1
or 0. If the output is 1, σi is called a valid signature share.

TCombine(pk ,m, T ): This deterministic algorithm takes as input a set of valid
signature shares T such that |T | = t + 1, a public key pk and a message m
and it outputs a full signature σ valid under pk.

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk, a
message m and a signature σ. It outputs either 1 or 0. If the output is 1, σ
is called a valid signature.

Refresh[C〈sk1,··· ,skn〉, U ](pp): This is a protocol involving a committee C with
|C| = n and the universe of parties U , where each Pi ∈ C takes as secret
input a secret key share sk i and all parties Pj ∈ U take as input public
parameters pp. The protocol selects a committee of parties C ′ with |C ′| = n
and outputs to each party Pi

′ ∈ C ′ a verification key vk ′i and a secret key
share sk ′i.

Robustness A (t, n)− LS–TSIG scheme must fulfill the following two robustness
properties. For any λ ∈ N, pp ← Setup(1λ) and (pk , {vk1

i }i∈[n], {sk1
i }i∈[n]) ←

TKeyGen[U ](pp, t, n) with selected committee C1, for j > 1 we define the tuple
(pk , {vk ji}i∈[n], {sk ji}i∈[n]) recursively as

({vk ji}i∈[n], {sk ji}i∈[n])← Refresh[Cj−1〈skj−1
1 ,··· ,skj−1

n 〉, U ](pp)

1. Share verification: For any message m it must hold that:

TShareVrfy(vk ji ,m,TSign(sk ji ,m)) = 1

2. Reconstruction: For any message m and any set T = {σ1, · · · , σt+1} of
valid signature shares where each signature share is computed as σi ←
TSign(sk ji ,m) with t+ 1 distinct sk ji secret key shares, it must hold that:

Verify(pk ,m,TCombine(pk ,m, T )) = 1

Unforgeability In the following, we give the definition of unforgeability under
chosen-message attacks for a (t, n) − LS–TSIG scheme considering an efficient
fully mobile adversary A with corruption power p · |U | > t. We define the
following game LSSIG–UFCMAALS–TSIG(λ) which is affected by the same impli-
cations of the YOSO model as the CCA-Security game in Sec. 5. The game
LSSIG–UFCMAALS–TSIG(λ) is initialized with a security parameter λ and proceeds
as follows:

1. The game executes Setup(1λ) and obtains public parameters pp, which it
forwards to the adversary A. For each epoch j ≥ 0, the game maintains a
set of corrupted parties Bj which is initialized as Bj := ∅.

2. The adversary A is given access to the following oracle:
– Corruption oracle: On input an index i ∈ [N ], the game checks if⌊

|Bj |+1
|U |

⌋
≤ p. If so, A receives the internal state of party Pi

j and the

game sets Bj ← Bj ∪ {Pij}.
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3. The game executes TKeyGen[U ](pp, t, n). The protocol selects a committee
C1 with |C1| = n and outputs a public key pk , a set of verification keys
{vk1

1, · · · , vk1
n} and a set of secret key shares {sk1

1, · · · , sk1
n}, such that Pi

1 ∈
C1 learns vk1

i and sk1
i .

4. Additionally to the corruption oracle, the adversary A obtains access to the
following oracles:
– Refresh oracle: On input a set NBj ⊆ Bj , the game executes the

protocol Refresh[Cj〈skj
1,··· ,sk

j
n〉, U ](pp) and sets Bj+1 ← Bj \NBj .

– Signing oracle: On input a set NBj ⊆ Bj and a set of messages M j ,
the game computes σji,k ← TSign(sk ji ,m

j
k) for mj

k ∈ M j for all parties

Pi
j ∈ Cj \ Bj . Then, the oracle calls the Refresh oracle on input NBj

and finally the game returns all tuples ({σji,k}k∈|Mj |, vk ji ) to A.
5. Eventually, A outputs a message m′ and a signature σ′. A wins the game

if it has never previously queried the signing oracle on message m′ and if
Verify(pk ,m′, σ′) = 1.

Definition 13. A large-scale non-interactive (t, n)-threshold signature scheme
LS–TSIG with a universe of parties U is (λ, n, t, p)-unforgeable with p · |U | > t if
for every efficient fully mobile adversary A with corruption power p there exists
a negligible function ν in the security parameter λ, such that

Pr[LSSIG–UFCMAALS–TSIG(λ) = 1] ≤ ν(λ).

We define the advantage of A in game LSSIG–UFCMAALS–TSIG as

AdvALSSIG–UFCMA,LS–TSIG(λ) = Pr[LSSIG–UFCMAALS–TSIG(λ) = 1].

We call a large-scale non-interactive (t, n)-threshold signature scheme LS–TSIG
scheme (λ, n, t, p)-secure, if it satisfies the robustness and (λ, n, t, p)-unforgeability
property.

E.2 Generic Transformation from TSIG to LS–TSIG

We argue that we can generically transform a discrete-log-based non-interactive
(t, n)-threshold signature scheme TSIG as defined in Definition 16 into a fully-
secure non-interactive (t, n)-threshold signature scheme LS–TSIG. Our construc-
tion works in the same spirit as the generic construction from TPKE to LS–TPKE
as presented in Sec. 5.2, i.e., we make use of our ΠLS–DKG protocol as presented
in Sec. 4, the ΣECPSS scheme as described in Sec. 3 and a non-interactice zero-
knowledge proof system NIZK. In fact, there are only the following three minor
changes required as compared to the generic transformation from Sec. 5.2: (1)
the properties Has-DKG, Sk-To-Vk and Has-Sim must be defined w.r.t. TSIG in-
stead of TPKE, (2) the algorithm S in property Has-Sim obtains access to a
signing oracle and (3) all procedures that are defined w.r.t. TPKE in ΠLS–TPKE

must be replaced by procedures from TSIG, where TEnc is replaced by TSign
and TDec is replaced by Verify.
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We now formally define the required properties for our transformation. As
discussed above, we only require minimal changes as compared to the properties
and transformation from Sec. 5.2.

Let U be a universe of parties. Let λ ∈ N be the security parameter, ppLS–DKG ←
ΠLS–DKG.Setup(1λ), ppTSIG ← TSIG.Setup(1λ) and t, n ∈ N s.t. 1 ≤ t ≤ n. Note
that ppLS–DKG can be parsed as ppLS–DKG := (crs,G, q, g).

1. Has-DKG: For all

(pk , {sk1
i }i∈[n])← ΠLS–DKG.TKeyGen[U ](ppLS–DKG, t, n)

and all

(pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n])← TSIG.KeyGen(ppTSIG, t, n),

the distributions of the tuples (pk , {sk1
i }i∈[n]) and (pk ′, {sk ′i}i∈[n]) are indis-

tinguishable15.

2. Sk-To-Vk: Let (pk ′, {vk ′i}i∈[n], {sk ′i}i∈[n]) ← TSIG.KeyGen(ppTSIG, t, n). It

holds that vk ′i = gski for all i ∈ [n].

3. Has-Sim: There exists an efficient algorithm S that behaves as follows:
Let (pk , {vk ′j}j∈[n], {sk i}i∈[n]) be a tuple generated by the TSIG.KeyGen pro-

cedure i.e., (pk , {vk ′j}j∈[n], {sk i}i∈[n]) ∈ TSIG.KeyGen(ppTSIG, t, n) and let
the algorithm S obtain access to an oracle that generates valid signatures on
arbitrary messages under pk . Then S, on input the public key pk , verification
keys {vk ′j}j∈[n] and only t of the secret key shares {sk i}i∈[t], can simulate the

game SIG–UFCMAATSIG as presented in Def. 16 w.r.t. (ppTSIG, pk , {vk ′j}j∈[n])
to an efficient static adversary A such that A cannot distinguish the execu-
tion of the simulated game from the execution of the real game except with
negligible probability in λ.

Construction We generically construct a large-scale threshold signature scheme
ΠLS–TSIG = (Setup,TKeyGen,TSign,TShareVrfy,TCombine,Verify,Refresh) which
is secure against fully mobile adversaries using the large-scale distributed key
generation scheme ΠLS–DKG = (Setup,TKeyGen) as described in Sec. 4, the
ECPSS scheme ΣECPSS = (Setup,Share,Select,Handover,Rec) as presented in
Sec. 3, a threshold signature scheme TSIG = (Setup,KeyGen,TSign,TShareVrfy,
TCombine,Verify) secure against a static adversary and a NIZK proof system
NIZK = (Setup,Prove,Verify) as per Def. 7. We detail the generic construction
below.

ΠLS–TSIG.Setup(1λ): On input a security parameter λ, execute

ppTSIG ← TSIG.Setup(1λ),ppLS–DKG ← ΠLS–DKG.Setup(1λ).

crs1 ←NIZK.Setup(1λ)

15 This property implies that ΠLS–DKG and TSIG operate over the same group G with
the same generator g.
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Recall that ppLS–DKG can be parsed as ppLS–DKG := (crs2,G, q, g). Output
public parameters pp := (ppTSIG, ppLS–DKG, crs1).

ΠLS–TSIG.TKeyGen(pp, t, n): On input public parameters pp and two integers
t, n ∈ N s.t. n ≥ 2t + 1, this protocol parses pp := (ppTSIG, ppLS–DKG, crs1)
and calls ΠLS–DKG.TKeyGen(ppLS–DKG, t, n). The protocol selects a committee
C1 and outputs a public key pk to all parties in U and secret key shares sk1

i

to each party Pi
1 ∈ C1. Additionally, all Pi

1 ∈ C1 compute vk1′

i := gsk
1
i and

a NIZK proof π1
i that the verification key vk1′

i was computed correctly16.

Pi
1 then sets vk1

i := {vk1′

i , π
1
i }.

ΠLS–TSIG.TSign(sk i,m): This procedure executes TSIG.TSign.

ΠLS–TSIG.TShareVrfy(σi, vk ji ,m): On input a signature share σi, a verification

key vk ji := {vk j
′

i , π
j
i } and a message m in epoch j, this procedure checks

if πji is a valid proof w.r.t. vk j
′

i (i.e., it checks if vk j
′

i is indeed the correct
verification key of party Pi

j ∈ Cj). If this check does not hold, the procedure

outputs 0. Otherwise, it outputs TSIG.TShareVrfy(σi, vk j
′

i ,m).

ΠLS–TSIG.TCombine(T, ct): This procedure executes TSIG.TCombine.

ΠLS–TSIG.Verify(pk ,m, σ): This procedure executes TSIG.Verify.

ΠLS–TSIG.Refresh[Cj−1〈skj−1
1 ,··· ,skj−1

n 〉, U ](pp): This protocol is executed between a

committee Cj−1 in epoch j−1 and the universe U , where each Pi
j−1 ∈ Cj−1

receives as input a secret key share sk j−1i and each party Pk ∈ U receives as
input pp := (ppTSIG, ppLS–DKG, crs1). The protocol first runs ΣECPSS.Handover
which selects a committee Cj and outputs refreshed secret key shares sk ji to

each Pi
j ∈ Cj . Additionally, all Pi

j ∈ Cj compute vk j
′

i := gsk
j
i , generate a

NIZK proof πji that the verification key was computed correctly17 and set

vk ji := {vk j
′

i , π
j
i }.

Theorem 3. Let ΠLS–DKG be the large-scale (t, n)-distributed key generation
protocol from Sec. 4, TSIG a non-interactive (t, n)-threshold signature scheme
which is secure against static adversaries according to Def. 15, ΣECPSS a (λ, n, t, p)-
secure instantiation of the evolving-committee proactive secret sharing scheme
as presented in Sec. 3 and NIZK a non-interactive zero-knowledge proof sys-
tem as per Def. 7. Assume that TSIG satisfies the adjusted properties Has-DKG,
Sk-To-Vk, and Has-Simas defined in Appendix F. Then ΠLS–TSIG is a (λ, n, t, p)-
secure large-scale non-interactive (t, n)-threshold signature scheme.

16 We note that π1
i can be efficiently computed and verified since its witness is

sk1
i and its statement consists of the ciphertexts that are broadcast during the

ΠLS–DKG.TKeyGen procedure.
17 We note that πji can be efficiently computed and verified since its witness is

sk ji and its statement consists of the ciphertexts that are broadcast during the
ΣECPSS.Handover procedure.
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In order to prove Theorem 3, we have to show that ΠLS–TSIG satisfies ro-
bustness as well as (λ, n, t, p)-unforgeability. We therefore state the following
lemmas.

Lemma 6. The large-scale non-interactive (t, n)-threshold signature scheme,
ΠLS–TSIG, satisfies robustness.

Proof. This lemma follows directly from the robustness property of the TSIG
scheme (cf. Definition 16), the properties Has-DKG and Sk-To-Vk as defined
above, the completeness property of the NIZK proof system and from the recon-
struction property of the ΣECPSS scheme.

Lemma 7. The large-scale non-interactive threshold (t, n)-threshold signature
scheme ΠLS–TSIG is (λ, n, t, p)-unforgeable.

The proof of Lemma 7 is similar to the proof of Lemma 4.
In Appendix F, we show that the threshold signature scheme by Boldyreva [9],

which we denote by TH–BLS, satisfies the adjusted properties Has-DKG, Sk-To-Vk
and Has-Sim as discussed above.

F Concrete LS–TSIG Scheme from Boldyreva TSIG
Scheme

F.1 Background on Digital Signatures and Threshold Signature
Schemes

Before we provide a concrete instantiation of our generic transformation with a
threshold signature scheme, we first recall the basic definitions of digital signa-
ture schemes and threshold signature schemes.

Definition 14 (Digital signatures). A digital signature scheme SIG consists
of a triple of algorithms SIG = (KeyGen,Sign,Verify) defined as:

KeyGen(1λ): This probabilistic algorithm takes as input a security parameter λ
and outputs a key pair (sk , pk);

Sign(sk ,m): This probabilistic algorithm takes as input a secret key sk and mes-
sage m and outputs a signature σ;

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk,
message m and signature σ and outputs a bit either 1 or 0. If the output is
1, σ is called a valid signature.

A signature scheme must satisfy that for all messages m it holds that:

Pr
[
Verify(pk ,m,Sign(sk ,m)) = 1 | (sk , pk)← KeyGen(1λ)

]
= 1,

where the probability is taken over the randomness of KeyGen and Sign.
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Definition 15 (Unforgeability). A signature scheme SIG is unforgeable if for
every PPT adversary A there exists a negligible function ν in the security pa-
rameter λ such that Pr[SIG–UFCMAASIG(λ) = 1] ≤ ν(λ), where the experiment
SIG–UFCMAASIG is defined as follows:

1. The game executes KeyGen(1λ) and obtains a key pair (sk , pk). It forwards
the public key pk to the adversary A.

2. A obtains access to a signing oracle, which on input a message m outputs a
signature σ for m under public key pk.

3. Eventually, A outputs a forgery (m∗, σ∗) and wins the game if (1) it holds
that Verify(pk ,m∗, σ∗) = 1 and (2) m∗ has never been queried to the signing
oracle before.

F.2 Threshold Signature Scheme

Definition 16. A non-interactive (t, n)-threshold signature scheme TSIG con-
sists of a tuple TSIG = (Setup,KeyGen,TSign,TShareVrfy,TCombine,Verify) of
efficient algorithms which are defined as follows:

Setup(1λ): This probabilistic algorithm takes a security parameter λ ∈ N as
input and output public parameters pp.

KeyGen(pp, t, n): This probabilistic algorithm takes as input public parameters
pp and two integers t, n ∈ N. It outputs a public key pk, a set of verification
keys {vk i}i∈[n] and a set of secret key shares {sk i}i∈[n] .

TSign(sk i,m): This probabilistic algorithm takes a secret key share sk i and a
message m as input and outputs a signature share σi.

TShareVrfy(σi, vk i,m): This deterministic algorithm takes as input a signature
share σi, a verification key vk i and a message m and it outputs either 1 or
0. If the output is 1, σi is called a valid signature share.

TCombine(pk ,m, T ): This deterministic algorithm takes as input a public key
pk; a message m and a set of valid signature shares T for m under pk such
that |T | = t+ 1 and it outputs a signature σ.

Verify(pk ,m, σ): This deterministic algorithm takes as input a public key pk,
message m and signature σ and outputs a bit either 1 or 0. If the output is
1, σ is called a valid signature.

Robustness A (t, n)−TSIG scheme must fulfill the following two robustness prop-
erties. Let pp ← Setup(1λ) and (pk , {vk i}i∈[n], {sk i}i∈[n])←$ KeyGen(pp, t, n).

1. Signing robustness: For any message m it must hold that

TShareVrfy(TSign(sk i,m), vk i,m) = 1.

2. Reconstruction robustness: For any messagem and any set T = {σ1, · · · , σt+1}
of valid signature shares σi ← TSign(sk i,m) with sk i being t distinct secret
key shares, it must hold that

Verify(pk ,m,TCombine(pk ,m, T )) = 1.
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Unforgeability We recall the definition of unforgeability for a (t, n)−TSIG scheme
with static corruptions. Consider a PPT adversary A playing in the following
game SIG–UFCMAATSIG which receives as input a security parameter λ:

1. The adversary outputs a set B ⊂ {1, · · · , n} with |B| = t to indicate its
corruption choice. Let H := {1, · · · , n} \B.

2. The game computes pp ← Setup(1λ) and sets (pk , {vk i}i∈[n], {sk i}i∈[n]) ←
KeyGen(pp, t, n). It sends pp, pk and {vk i}i∈[n] as well as {sk j}j∈B to the
adversary.

3. The adversary A is allowed to adaptively query a signing oracle, i.e., on
input (m, i) with i ∈ H, the signing oracle outputs TSign(sk i,m).

4. Eventually, A outputs a forgery (m∗, σ∗) and wins the game if (1) it holds
that Verify(pk ,m∗, σ∗) = 1 and (2) A has not previously made a signing
query on message m∗.

Definition 17. A non-interactive (t, n)-threshold signature scheme TSIG is un-
forgeable if for every PPT adversary A there exists a negligible function ν in the
security parameter λ, such that Pr[SIG–UFCMAATSIG(λ) = 1] ≤ ν(λ).

F.3 Concrete Instantiation with the Boldyreva Threshold Signature
Scheme

In the following we present the non-interactive threshold signature scheme from
[9], which we denote by TH–BLS and which has been proven secure against
static adversaries according to Definition 17. We then show that TH–BLS can be
transformed into a large-scale non-interactive threshold signature scheme, which
is secure against fully mobile adversaries using our generic transformation from
Appendix E. In order to do so, we must show that the properties Has-DKG,
Sk-To-Vk and Has-Sim hold for TH–BLS. To show that Has-Sim holds, we give
a proof sketch for a reduction of TH–BLS to the single party signature scheme
BLS as introduced in [11]. Both BLS and TH–BLS operate over so-called Gap
Diffie-Hellman (GDH) groups in which the computational Diffie-Hellman (CDH)
problem is hard, whereas the decisional Diffie-Hellman (DDH) problem is easy.
We briefly recall the notions of CDH, DDH and GDH in the following.

Computational/Decisional Diffie-Hellman Problem and GDH Groups Let G be
a cyclic group of prime order q and with generator g. Let a, b, c be elements
chosen uniformly at random from Zq.

Computational Diffie-Hellman (CDH) Given (g, ga, gb), the CDH prob-
lem is to compute gab.

Decisional Diffie-Hellman (DDH) Given (g, ga, gb, gc), the DDH prob-
lem is to decide whether c = ab.

We now recall the definition of GDH groups as given in [9].
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Definition 18 (Gap Diffie-Hellman Group). A group G of prime order q is
called a Gap Diffie-Hellman (GDH) group if there exists an efficient algorithm
V-DDH() which solves the DDH problem in G and there is no polynomial-time
(in |q|) algorithm which solves the CDH problem in G.

We now first recall the BLS scheme as presented in [11], before presenting its
threshold variant TH–BLS as presented in [9].

F.4 The BLS scheme

KeyGen(1λ): On input a security parameter λ, this procedure generates a GDH
group G of prime order q with generator g. In addition, the procedure defines
the hash function H : {0, 1}∗ → G∗ and sets pp = (G, q, g,H). Further, it picks
a secret key sk ←$ Zq and computes the corresponding public key pk ← gx and
sets sk ′ = (sk , pp), pk ′ = (pk , pp) It outputs (sk ′, pk ′).

Sign(sk ′,m): On input a secret key sk ′ and a message m, this procedure parses
sk ′ := (sk , pp) and computes a signature σ = H(m)sk and outputs σ.

Verify(pk ′,m, σ): On input a public key pk ′, a message m and a signature σ,
this procedure parses pk ′ := (pk , pp) and checks if V-DDH(g, pk , H(m), σ) = 1.
If so, this procedure outputs 1 and 0 otherwise.

The authors of [11] show that the BLS scheme is unforgeable as per Defini-
tion 15.

F.5 The TH–BLS scheme

We now recall the threshold variant of the BLS scheme, which we denote by
TH–BLS.

Setup(1λ): On input a security parameter λ, the setup procedure generates a
GDH group G of prime order q with generator g. In addition, the setup procedure
defines the hash function H : {0, 1}∗ → G∗.

The setup procedure outputs public parameters pp := (G, p, g,H).

KeyGen(pp, t, n): On input public parameters pp and integers t, n ∈ N s.t. n ≥
2t+ 1, this procedure chooses a random degree-t polynomial F (x) = a0 + a1x+
· · · + atx

t ∈ Zq[x] and sets sk i = F (i) and vk i = gski . The procedure outputs
pk = gsk , where sk = F (0), and all {vk i}i∈[n] to all parties Pi. Additionally, it
outputs to each party Pi the secret key share sk i.

TSign(sk i,m): On input a secret key share sk i and a message m, this algorithm
outputs σi = H(m)ski .

TShareVrfy(vk i,m, σi): On input a verification key vk i, a message m and a sig-
nature share σi, this algorithm outputs V-DDH(g, vk i, H(m), σi).
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TCombine(pk ,m, T ): On input a public key pk , a message m and a set of valid
signature shares T ⊂ {σ1, · · · , σn} with |T | = t + 1, this algorithm computes
σ =

∏
σi∈T (σlii ) and outputs σ.

Theorem 4. If the BLS scheme as presented in Section F.4 is unforgeable as
per Definition 15, then the TH–BLS scheme is unforgeable as per Definition 17
in the random oracle model.

Proof sketch. We provide a proof sketch for Theorem 4 by exhibiting a simu-
lator S := (S1,S2) who uses an adversary A playing in game SIG–UFCMAATH–BLS

to win its own game SIG–UFCMASBLS. S receives a public key pk from its game
SIG–UFCMASBLS as well as access to a signing and a random oracle and it has to
simulate game SIG–UFCMAATH–BLS to A. On a high level, the simulation works
as follows:

W.l.o.g. let A corrupt parties (P, · · · , Pt). Upon S receiving pk , S calls its
subprocedure S1 on input (pk , {vk i, sk i}i∈[t]) for sk i ←$ Zq and vk i = gski

with i ∈ [t]. S1 computes vk j = pk lj,0
∏t
i=1 vk

lj,i
i for t + 1 ≤ j ≤ n. Note

that for any subset T ⊂ {vk1, · · · , vkn} with |T | = t + 1 it holds that pk =∏
vki∈T vk lii and therefore any T uniquely identifies pk . S then executes S2 on

input (pk , {vk j}j∈[n], {sk i}i∈[t]), which simulates game SIG–UFCMAATH–BLS as fol-
lows:

In the beginning of the game, S2 sends (pk , {vk j}j∈[n], {sk i}i∈[t]) to the ad-
versary. Upon A issuing a random oracle query on input m, S2 forwards the
query to its own random oracle and receives a group element H(m) ∈ G. Upon
A issuing a signing query on input (m, i), S2 issues a signing query on message
m to its signing oracle and receives a signature σ = H(m)sk . S2 then computes
the signature share σi as σi = σli,0

∏t
j=1H(m)skj li,j . Finally, upon A outputting

a forgery (m∗, σ∗), S2 can simply forward the forgery to game SIG–UFCMASBLS.
S wins its game SIG–UFCMASBLS whenever A wins game SIG–UFCMAATH–BLS due
to the following reason. If (m∗, σ∗) is a valid forgery in game SIG–UFCMAATH–BLS
(i.e., A has never previously queried the signing oracle on input m∗), then S2
has never previously queried its own signing oracle on message m∗ and hence
(m∗, σ∗) constitutes a valid forgery in game SIG–UFCMASBLS.

TH–BLS satisfies the properties from Appendix E.2 We now show that the
TH–BLS scheme satisfies the three properties Has-DKG, Sk-To-Vk and Has-Sim
as required by our generic transformation from Appendix E.2.

– Has-DKG: Same as in Appenidx D. Note that we assume that ΠLS–DKG and
TH–BLS operate over the same group G. This is not an issue since ΠLS–DKG

only requires that the dlog assumption holds in G which must be the case
for any GDH group.

– Sk-To-Vk: Same as in Appendix D.
– Has-Sim: As shown in the proof sketch of Theorem 4, the algorithm S2 sat-

isfies the requirements of the Has-Sim property.
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