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Abstract. Oblivious Polynomial Evaluation (OPE) schemes are interactive protocols between a
sender with a private polynomial and a receiver with a private evaluation point where the receiver
learns the evaluation of the polynomial in their point and no additional information. They are used
in Private Set Intersection (PSI) protocols.
We introduce a scheme for OPE in the presence of malicious senders, enforcing honest sender
behavior and consistency by adding verifiability to the calculations. The main tools used are FHE for
input privacy and arguments of knowledge for the verifiability property. MyOPE deploys sublinear
communication costs in the sender’s polynomial degree and one to five rounds of interaction.
In other words, it can be used as a verifiable computation scheme for polynomial evaluation over
FHE ciphertexts. While classical techniques in pairing-based settings allow generic succinct proofs
for such evaluations, they require large prime order subgroups which highly impact the communica-
tion complexity, and prevent the use of FHE with practical parameters. MyOPE builds on generic
secure encodings techniques that allow composite integers and enable real-world FHE parameters
and even RNS-based optimizations. It is best adapted for the unbalanced setting where the degree
of the polynomial and the computing power of the sender are large.
MyOPE can be used as a building block in specialized two-party protocols such as PSI (this use-
case is hereafter described), oblivious keyword search, set membership and more using the OPE
instantiation.
As another contribution, our techniques are generalized to applications other than OPE, such as
Symmetric Private Information Retrieval (SPIR), to make them secure against a malicious sender.

1 Introduction

1.1 Oblivious Polynomial Evaluation

Secure Two-Party Computations (2PC). Secure two-party computations enable two parties to
mutually run a protocol computing the execution of a function f(·, ·) on their private inputs
x, y, and allowing the parties to learn the output f(x, y) but nothing else about the inputs.
Seminal results from the 80s, e.g. [Yao86] have shown that with 2PC it is possible to securely
evaluate any boolean circuit. Since these first feasibility results, a long line of works focused
on improving the efficiency of the computational and communication costs in 2PC protocols.
Two approaches were followed in these efforts: (1) improving generic protocols that compute
any boolean or arithmetic circuit and (2) designing tailored protocols for practical functions.
The latter approach focuses on taking advantage of these functions’ particular structure to gain
efficiency. Some examples of such 2PC are schemes designed for search problems [HT10,Ver11],
RSA key generation [Gil99], set intersection [JL09,HN12], or polynomial evaluation [NP99].

Malicious Security of 2PC. An important aspect to consider when designing 2PC schemes is the
adversarial model. In the semi-honest (or passive) adversarial model, a.k.a. honest-but-curious,
the corrupted parties follow the protocol, but try to learn more about the private inputs of other
parties, so there is no impact on the correctness of computation results. On the other hand,
in the malicious (active) adversarial model, corrupted parties can collaborate in any way and
misbehave arbitrarily, without following the protocol description. Therefore, assuring not only
the privacy of the inputs, but also the correctness of the outputs (robustness) is essential in
such scenarios. Most often, a 2PC protocol execution preserves the privacy of the inputs against
malicious adversaries. Regarding the correctness of the output, giving consistency guarantees
on the outputs of the honest parties generally comes with big overheads.
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Oblivious Polynomial Evaluation. A particular case of 2PC is Oblivious Polynomial Evaluation,
where the function to be evaluated is a polynomial f(X) of fixed degree N secretly chosen by
the sender. The receiver chooses the secret evaluation point m. After running OPE, the receiver
obtains the value f(m) without learning anything else about the polynomial f and without giving
the sender any information about the point m.

OPE is an important building block for various 2PC schemes that generally require mul-
tiple executions of an OPE protocol for the same polynomial and different evaluation points.
However, the standard definition of receiver privacy does not preclude the sender from cheat-
ing by using a polynomial of higher degree than expected or changing the polynomial between
multiple executions. Therefore, extending the security to malicious senders is essential for such
applications.

Unfortunately, when relying on general 2PC protocols to securely perform the OPE func-
tionality in the malicious setting, some efficiency overheads incur: schemes for Boolean circuits
apply the cut-and-choose technique which requires repeating the computation K times in order
to prevent cheating except with probability 2−K , while 2PC schemes for arithmetic circuits run
an expensive preprocessing model to generate correlated randomness.

1.2 Motivation: Applications of OPE

The first custom OPE protocol was defined and introduced in [NP99] and is secure only against
passive adversaries. While few constructions were built since, the OPE functionality can lead
to various interesting applications such as data mining [LP00], private set intersection (PSI)
(in their original paper [NP99], Naor and Pinkas mention the contact discovery use-case),
privacy-preserving keyword search [JL09], set membership (related to PSI), and RSA key gen-
eration [Gil99].

Private Set Intersection. Private Set Intersection (PSI) is a well-studied specialized form of 2PC
that allows two parties to jointly compute the intersection of their input sets, without revealing
any other information about them (other than upper bounds on their sizes). Although protocols
for PSI have been built upon generic 2PC, more efficient custom protocols can be achieved by
taking advantage of the problem’s structure.

A recent line of works reduces interactions in unbalanced PSI schemes by using (Leveled)
Fully Homomorphic Encryption (FHE) as a tool [CLR17,CHLR18]. In an unbalanced PSI pro-
tocol the sender has a set of much larger size than the receiver, and also bigger storage and
computational power. While [CLR17] achieves few rounds of interaction, it is secure only against
passive adversaries. The follow-up work [CHLR18] extends the security to consider malicious
receivers. This is done at the cost of an expensive preprocessing phase with a linear number
of interactive rounds in the receiver’s set size, and does not address the more relevant case of
malicious senders.

The real challenge in PSI is enforcing that the sender performs the correct computation. In
the schemes mentioned above, the sender can deviate from the prescribed protocol and make
the receiver compute an arbitrary intersection. Since the sender obtains a homomorphically
encrypted copy of the receiver’s set, they could compute other circuits than the pre-established
one. Therefore, if the protocol returns the intersection result to the sender, then not only the
result but also the receiver’s privacy are compromised. For example, in FHE-based PSI schemes,
it is possible for the sender to force the receiver to output their full set as the result of an
intersection.

In [CHLR18] the authors heuristically argue that the misbehavior of a malicious sender can
be mitigated by using a complex hash function H that the sender is unable to evaluate for an
encrypted input y. Given the fast-paced advancements made by FHE schemes in recent years,
there is no guarantee that a higher degree polynomial could not be evaluated and such a PSI
system is insecure when one considers malicious senders. We address these limitations and show
an alternative way to build unbalanced PSI with malicious senders.
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1.3 Related Work

Despite its broad applicability, the study of the OPE functionality includes only few practical
and secure protocols, initiated in [NP99] and further continued in works like [CL01,ZB05,HL09].

While [NP99] proposed the first construction for OPE, it relies on a newly introduced in-
tractability assumption: the noisy polynomial interpolation. Naor and Pinkas conjectured that it
could be reduced to a more widely studied assumption, the polynomial reconstruction problem.
Nevertheless, as shown in [BN00], this conjecture seems not to hold in general.

OPE Schemes with Active Security. Among recent OPE schemes, to the best of our knowledge,
the only ones secure against malicious attacks are [HL09,Haz18]. However [HL09] has at least 17
rounds of interaction and the parties send each other O(λN) Paillier encryptions, where λ is the
security parameter and N the degree of the polynomial. Also, their claimed efficiency holds only
for sufficiently low degree polynomials. [GNN17] has active security too, but communication is
also linear in N .

[Haz18] shows an OPE scheme for polynomial evaluation in the exponent of a DLog group
using algebraic Pseudo-Random Functions (PRF). They focus on improving the computational
efficiency of [HL09] by reducing the number of modular exponentiations, and removing the
trusted setup requirement, while preserving the same number of rounds of interaction and
communication complexity as in [HL09], and apply their scheme to private set membership
2PC.

[PRTY20] gives malicious security for PSI with symmetric set sizes a bit smaller than ours,
but the communication is linear and with concrete parameters it is about the same order as our
for sets of size 220.

Verifiable Computation (VC). Introduced by [GGP10], VC schemes are cryptographic sys-
tems that enable checking the integrity of results from delegated computations. More recent
works [FNP20,BCFK20] have improved the efficiency and the expressivity of VC schemes to
work for computations over encrypted data. These schemes, however, require proving the entire
FHE circuit evaluation which is very expensive. Moreover, they neither allow using practical
parameters for the FHE scheme, nor speedups through classical optimisations such as Residue
Number System (RNS).

Polynomial Commitments (PC). First introduced by [KZG10], PCs are commitments for poly-
nomials of maximal degree N and coefficients in a field F that support an interactive argument
of knowledge to prove the correct evaluation of a committed secret polynomial in a given point.
However, while this ensures verifiability of the evaluation result, it does not protect the privacy
of the evaluation point.

Private Information Retrieval (PIR) Using Somewhat Homomorphic Encryption (SwHE). A
long line of PIR articles such as introduced in [TP11] uses Somewhat Homomorphic Encryption
with ciphertexts of zero or one multiplied with elements of the sender’s database, added up and
sent back to the receiver. However, communication is linear in the size of the sender’s set, and
there is no verifiability.

1.4 Our Contribution

In this work, we study the Oblivious Polynomial Evaluation (OPE) functionality in the malicious
setting and show an application to Private Set Intersection (PSI): the untrusted sender is asked
to commit an input polynomial and prove consistency of the evaluation with respect to the
initial commitment.

More precisely, we introduce MyOPE, a scheme for oblivious evaluation of polynomials of
high degree N that achieves O(N1/d) communication costs, where d can be freely chosen and
optimized with respect to the ciphertext sizes. This sublinear communication improves on the
state-of-the-art. Concretely, in order to avoid malicious attacks, we enforce honest behavior of
the sender (the evaluator) by asking an extra proof for the claimed result of the evaluation with
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respect to some committed polynomial. This is of main importance when OPE is used in PSI,
where the same or related polynomials have to be evaluated on distinct inputs. MyOPE is best
adapted for large degree polynomials in the unbalanced setting with computationally powerful
senders. In our experiments we consider polynomials with degrees N from 220 to 240.

MyOPE can be seen as a Verifiable Computation over encrypted data, in the following
sense: the sender provides a proof of their honest behavior during the homomorphic polynomial
evaluation, to convince the receiver.

Our Techniques. In a nutshell, MyOPE uses FHE to encrypt the receiver’s input m under their
key, so that the sender can proceed with the homomorphic evaluation over the ciphertext c to
obtain an encryption of f(m) that the receiver can thereafter decrypt. For efficient verifiability,
we also need a commitment Cf of f(X) that is compatible with the FHE. At this point we
remark that the sender needs to perform an expensive evaluation over the FHE ciphertext c with
a multiplicative depth corresponding to the logarithm of the degree of their polynomial f(X).
Practical FHE schemes may still not be efficient enough for this when the degree of f(X) is large.
To overcome this, we can find the best trade-off between communication and computational
costs, depending on the polynomial degree N . Namely, the receiver will send O(N1/d) encrypted
powers of m for some carefully chosen d. Then the sender will homomorphically compute the
ciphertexts ci of the remaining powers mi of m in order to evaluate a ciphertext of f(m) by a
simple inner product with the vector of the coefficients. The computation of the ciphertexts ci
will require an only d multiplicative-depth for the FHE circuit.

At this step, a malicious sender could just use arbitrary values ci instead. Our scheme
MyOPE requires the prover/sender to (compactly) commit the vector of ciphertexts (ci)i and
prove it indeed coincides with the correct values. To check this, the receiver asks for a random
linear combination of the ci’s. Since the vector (ci)i is committed before seeing the random
challenge, the sender has negligible probability to compute the expected value if the committed
values are incorrect.

The core argument used in this step enables checking that an inner product between a
committed vector of ciphertexts and a public vector (here a random challenge chosen by the
receiver) has an expected value when decrypted (value unknown to the prover). Similarly, for
the final step, the sender has to convince the receiver that the inner product between the vector
of the ciphertexts ci’s committed at the previous step and the initial polynomial commitment
Cf was performed correctly.

While FHE will protect receiver’s privacy (the message m), some additional noise will be
added by the sender to the final ciphertext to let the receiver learn f(m) but nothing else about
f. The sender will also give guarantees about the added noise.

Applications. The MyOPE checks are useful when we furthermore need to ensure consistency
between repetitions. In the context of PSI, in order to determine the intersection of the sets X =
{x1, . . . , xN} owned by the prover and Y = {y1, . . . , yK} owned by the verifier, the sender/prover
generates the polynomial f =

∏N
i=1(X − xi), commits it, and the receiver will learn whether

f(yj) = 0 for each of their yj ’s, but nothing else, by multiple evaluations of the same polynomial
on multiple inputs. To check whether the evaluations are equal to zero or not, the sender
first commits f in Cf and to avoid information leakage, the polynomial is randomized by a
multiplication factor at each evaluation. After the initial commitment Cf , the sender/prover
draws a random invertible coefficient r for each evaluation in a specific point x, commits r · f and
proves it is f multiplied with a secret r using the zero-knowledge quadratic check from Section
3. MyOPE is then used to evaluate r · f(x), which is equal to zero iff f(x) = 0.

Extensions. We believe that our techniques for lifting OPE from passive security to malicious
sender security are generic and of independent interest. The main tool is a proven inner-product
that can be applied to lift other 2PC computation protocols to the malicious setting. We illus-
trate such an extension in the case of Symmetric Private Information Retrieval (SPIR). SPIR
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schemes allow a receiver to ask for a secret index of a data in the sender’s set, and the receiver
then only learns this sole data. Our augmented SPIR protocol allows a receiver to recover the
i-th field of a private database owned by the sender, without leaking the index i, even against
a malicious sender, once the database has been compactly committed.

Efficiency in Practice. When using the Fan-Vercauteren FHE scheme [FV12], from the plaintext
ring Zt[X]/r(X), where r(X) = Xn+1, into the ciphertext ring Zq[X]/r(X), the core parameters
are the integers n, q, and t. In order to understand various parameter choices, we provide some
rough cost estimates for the FHE: each ciphertext is 2n log q bits long, and the underlying
plaintexts n log t bits long. With a MyOPE instantiation for polynomials of degree N = 230, we
set n = 215 and use t on 56 bits and q on 839 bits, to obtain appropriate semantic security for
the FHE and decryption correctness. Then, the size of the FHE ciphertexts to be sent is a bit
more than 1 GByte. Our proof of the sender’s honest behavior has less than 25 MByte size for
a soundness of 2−30, with 5 rounds. The non-interactive proof with a soundness in 2−80 requires
less than 100 MBytes.

2 Preliminaries
2.1 OPE: Oblivious Polynomial Evaluation

To define an OPE protocol as a two party protocol run between a receiver and a sender over a
ring R, we first agree on the input and output:

Input: Receiver – an input x ∈ R, Sender – a polynomial f(X) ∈ R[X].
Output: Receiver – f(x), Sender – nothing.

We consider the simplified setting where the sender gets no output. Such a protocol should
satisfy correctness, sender privacy and receiver privacy, which are first defined in the honest-
but-curious setting. Thereafter, we will deal with malicious senders. Privacy notions can be
formulated as indistinguishability games:

Definition 1 (Sender Privacy with an Honest-but-Curious Receiver). For any PPT
adversary A executing honestly the receiver’s part on input x, for any f 6= f ′ ∈ R[X], such that
f(x) = f ′(x), the views that A sees in case the sender’s input is f and in case the sender’s input
is f ′ are computationally indistinguishable.

Definition 2 (Receiver Privacy with an Honest-but-Curious Sender). For any PPT
adversary A executing honestly the sender’s part, for any x 6= x′ ∈ R, the views that A sees in
case the receiver’s input is x and in case the receiver’s input is x′ are computationally indistin-
guishable.

Malicious Sender Security. To get receiver privacy and correctness even in the case of a malicious
sender, one usually enforces honest sender behavior: the sender first commits the polynomial
f(X) and then proves the answers are consistent with that initial commitment.

2.2 FHE: Fully Homomorphic Encryption

Fully homomorphic encryption has been introduced in [Gen09]. Since the initial construction,
major improvements have been made, with now practical and efficient solutions. In this work
we will use the Fan-Vercauteren FHE scheme [FV12].

The Fan-Vercauteren FHE. One usually denotes Rt = Zt[X]/r(X) the plaintext message
space and Rq = Zq[X]/r(X) the ciphertext space.

The FV encryption scheme [FV12] is described by parameters Γ = (q, t, σ), with q,N ∈ N
such that 0 < σ < 1, where the size of q and noise parameter σ depend on several constraints,
and namely the expected multiplicative depth for the correctness and the security of the Ring-
LWE problem for the semantic security.

For efficiency reasons, with the possibility of using FHE with RNS [BEHZ16], we will assume
q =

∏`
i=1 pi for prime factors t = p1 ≤ . . . ≤ p`. We additionally take t such that t|q. We denote
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∆ = q/t and χ the Gaussian distribution on Z with standard deviation σ. The FV encryption
scheme [FV12] consists in the following algorithms:

KG(1λ, Γ )→ (sk, pk): On input the security parameter λ and the efficiency parameters Γ , sam-
ple a, s ← Rq and set (p, p′) = (−(a · s + e), a) ∈ R2

q . sk = s is the secret key, where the
coefficients of e are taken from χ. The public key pk contains (p, p′) with a relinearization
key rlk.

Enc(pk,m)→ (c, c′): Using (p, p′) from pk and a message m ∈ Rt, compute ciphertext (c, c′) =
(p · u + e1 +∆ ·m mod q, p′ · u + e2 mod q) , with coefficients of u, e1, e2 also taken from χ.

Dec(sk, (c, c′))→ m: Given sk = s, compute

d = c + c′ · s = ∆ ·m− e · u + e2 · s + e1 = ∆ ·m + v mod q

m′ = bd/∆e = b(∆ ·m + v)/∆e = m + bv/∆e mod t

where v = −e · u + e2 · s + e1 is the error term: m′ = m if ‖v‖∞ ≤ ∆/2.
Eval(pk, f, (ci, c

′
i)i=1,...,`)→ (cf , c

′
f ): Given pk, an arithmetic circuit f with bounded multiplica-

tive depth and ` ciphertexts (ci, c
′
i)i=1,...,` output the ciphertext (cf , c

′
f ).

The addition of two ciphertexts is a ciphertext of the sum of the plaintexts. Multiplicative op-
erations have also been shown possible with additional information to relinearize the ciphertext
after a product using rlk. For Eval to be correct, Dec(sk, (cf , c

′
f )) should return f(m1, . . . ,m`)

where Dec(sk, (ci, c
′
i)) = mi for i = 1, . . . , `, with overwhelming probability. More detail on the

FV parameters is provided in Appendix E.

Remarks. We stress that for verifiable computations, the evaluator will have to provide proofs
of correct operations on the ciphertexts (c, c′) ∈ R2

q . We will thus have to deal with polynomials
over rings (and not fields).

Since the verifier can decrypt, we also need to require circuit privacy [SYY99]. This ensures
the final ciphertext reveals no information about f. Indeed, not only is the encrypted input
impacted by executing f, but also the noise, which might thus leak information about the
function f. While several approaches have been proposed to avoid such leakage, we will apply
the noise-flooding proposed by Gentry, which consists in adding a larger random noise to the
final result. This will then make the final noise independent of f.

2.3 SNARKs: Succinct Non-Interactive Arguments of Knowledge

Zero-knowledge proofs/arguments are cryptographic protocols between two parties, a prover
Prove and a verifier Ver, in which the prover can convince the verifier about the validity of a
statement without leaking any extra information beyond the statement validity. SNARKs are
non-interactive such protocols with a proof size independent of the size of the statement to be
proven.

Bitansky et al. [BCI+13] provide an abstract model to build SNARKs under the concept
of Linear PCP (LPCP). LPCPs are a form of interactive proofs where security holds under
the assumption that the prover is restricted to computing only linear combinations of their
inputs. These proofs can then be transformed into SNARKs by means of extractable linear-only
encoding schemes that will restrict the prover to linear-only operations. Our techniques are
similar and use generic linear-only encodings adapted for FHE ciphertexts.

Formal definitions of SNARKs and zk-SNARKs are given in Appendix A.

2.4 Secure Encoding Schemes over Rings

As stressed above, we will have to consider polynomials over rings. So we revisit the linear
encodings defined in [BCI+13,GGPR13] in order to deal with rings.

Definition 3 (Encoding Scheme). An encoding scheme over a ring R consists in a tuple of
algorithms (Gen,E).
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– (pk, sk, vk) ← Gen(1λ), a key generation algorithm that takes as input a security parameter
and outputs public information pk, a secret key sk, and a verification key vk, that can be
either public or private;

– E ← Esk(a), a (probabilistic) encoding algorithm mapping a ring element a ∈ R in the
encoding space E, using the secret key sk.

Properties. An encoding scheme should satisfy the following properties, with efficient and
correct algorithms:

– L-Linearly homomorphic: An algorithm Evalpk(E1, . . . , EL; c1, . . . , cL), on input public in-
formation pk, encodings E1 = Esk(a1), . . . , EL = Esk(aL), and coefficients c1, . . . , cL ∈ R,

outputs an encoding of
∑L

i=1 ci · ai;
– L-Quadratic root verification: An algorithm QCheckvk(Q,E1, . . . , EL), on input the verifi-

cation key vk, a quadratic polynomial Q ∈ R[X1, . . . , XL] and encodings E1 = Esk(a1), . . . ,
EL = Esk(aL), checks whether or not the relation Q(a1, . . . , aL) = 0 is satisfied in R;

– Image verification: An algorithm Verifyvk(E), on input the verification key vk and an element
E, verifies E is an actual encoding of some element in R: this algorithm not only verifies
that E ∈ E , but also that there exists an element a ∈ R such that E can be an encoding of
a.

According to the verification key that can be either public or private, the verification processes
will be either public or private.

Secure Encodings. We now formally define the soundness properties for the above verification
algorithms, in terms of knowledge-soundness:

Definition 4 (Linear-Only Extractability). An encoding scheme (Gen,E) over R is ex-
tractable if for any PPT adversary A, there exists a PPT extractor ExtA such that the following
probability is negligible in the security parameter:

Pr

[
QCheckvk

(
X −

n∑
i=1

ciXi, E,E1, . . . , En

)
= false Verifyvk(E) = true

]

on the probability space (pk, sk, vk) ← Gen(1λ), a1, . . . , an
$← R, Ei ← Esk(ai), for i = 1, . . . , n,

and (E; c1, . . . , cn)← (A||ExtA)(pk, (Ei)i).

While the encoding is linearly-homomorphic, the above extractability property requires that
it be impossible to derive new valid encodings excepted by linear combinations: any new valid
encoding E of some a ∈ R will necessarily satisfy a =

∑
i ciai, for extractable elements ci ∈

R. Intuitively, when an encoding E passes the verification test, one can extract the linear
combination of the given initial encodings.

Zero-Knowledge Proofs. The above properties will be enough for a binding commitment,
but additional blinding factors in an appropriate masking set M will be required for hiding
commitments, which will depend on the ring R (see below for the particular case of R = Zq).
Then, Zero-Knowledge proofs will be needed for Quadratic root verifications with private linear
combinations: ZKLQCheckvk(Q,E1, . . . , EL;E′1, . . . , E

′
µ), on input a quadratic polynomial Q ∈

R[X1, . . . , XL] and encodings E1 = Esk(a1), . . . , EL = Esk(aL), E′1 = Esk(b1), . . . , E′µ = Esk(bµ).
The verification key vk on the verifier side and the private coefficients c1, . . . , cµ on the prover
side prove that the relation Q(a1, . . . , aL) =

∑
ci · bi is satisfied. The ci’s will be the blinding

factors in M.

Paillier-Based Secure Encodings. In Appendix B, we recall some constructions from pairing-
based techniques (with public verification key vk) and from the linearly-homomorphic Paillier
encryption scheme [Pai99] (with private verification key vk), as already explained in [GGPR13].
As we will hereafter exploit it, we just recall the latter:
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– (pk, sk, vk)← Gen(1λ): Run Paillier key generation KG→ (sk, pk = N), where N is an RSA

modulus and set vk = (sk, α
$← Z∗N ).

– (Enc(a),Enc(α · a)) ← Esk(a): A Paillier ciphertext of a scalar x ∈ ZN is E = (1 + N )x ·
rN mod N 2, for some random r

$← Z∗N . An encoding is thus 4 logN bit-long.

This is an additively-homomorphic encryption scheme over ZN , but in order to get the L-
linear homomorphism over Zq, we will needN > Lq2. The linear-only extractability is reasonable
to assume, as this scheme is not known to be multiplicatively homomorphic when N is hard to
factor. Hence, for a quadratic check, the verifier decrypts the ciphertexts modulo N , which is
the value in N, and one can then check the quadratic relation in Zq on the cleartexts.

We stress that for our commitments to be hiding, we will need to add random masks to the
plaintexts: a random integer in M = [[0; 2λLq2]], for a security parameter λ, will statistically
hide the plaintext x. More details are provided in Appendix B. For correct decryption and for
the soundness of the ZKLQCheck proofs on µ secret scalars, we will need N > 2µL · 2λq3. As µ
will never be larger than 4, we will need N > L · 2λ+3q3.

For our concrete instantiations, in Section 5, we take N between 2560 and 3072 bits, which
for an RSA modulus is consistent with a security parameter λ between 80 and 128.

3 Commitments

A major contribution of this paper is the construction of commitments of multivariate poly-
nomials over rings so that succinct proofs can later be described. This is in the same vein as
in [FNP20], but the latter is only defined for secure encodings based in pairings, whereas we
describe here the construction from any security encodings. While not publicly verifiable any-
more, this will be useful to build compact commitments of polynomials over Zq, where q may
contain small prime factors (but still larger than the degree of the polynomials), for a desig-
nated verifier. These commitments may not hide the polynomials but just guarantee the binding
property, with a unique opening. We thereafter show how to also make them hiding, so that
no information leaks about the committed polynomials (when needed), with zero-knowledge
arguments for the relations the polynomials may satisfy, for a designated verifier.

3.1 Binding Commitments

Because of the linear-only combinations, one can limit encodings in sub-spaces. As we can
also do quadratic verifications, we will be able to check products of two polynomials. From an
encoding scheme (Gen,E) over a ring R, we can define a compact binding commitment scheme
over multivariate polynomials. More precisely, such commitment schemes will be defined by 4
algorithms:

– Setup(1λ,R, (Rπ)π) generates the public key pk and the verification key vk, according to the
polynomial space R, and the authorized subspaces (Rπ)π;

– Commitpk(u,Rπ), for a polynomial u ∈ Rπ ⊆ R, outputs a commitment C of u;
– Validityvk(C,Rπ), for a commitment C, verifies whether this is a valid commitment for an

(unknown) polynomial u in the appropriate subspace Rπ;
– Quadraticvk(Q,C1, . . . , C`), for valid commitments Ci of (unknown) polynomials ui and a

quadratic polynomial Q in ` variables, verifies whether Q(u1, . . . , u`) = 0 in R.

For the above definition to make sense, for any adversary A, there exists an extractor ExtA such
that for any valid commitment C generated by A, ExtA outputs the committed polynomial
u ∈ Rπ.

While R will usually be a global ring of polynomials, such as R[X] or R[X,Y ], the sub-spaces
Rπ will only be the module generated by a limited basis, R[Xn−1], R[Y N ], or R[Xn−1, Y N ], where
the explicit exponents limit the degrees.

A Warm-Up with the Ring of Polynomials R = R[X]. Before dealing with multivariate
polynomials, we start with univariate polynomials, to illustrate some requirements and some
issues:
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– Setup(1λ,R = R[X], (R1 = R[Xn−1])) first runs (pk′, sk′, vk′) ← Gen(1λ), chooses a random

element s
$← R∗ and, for i ∈ [[0;n − 1]], sets Ei ← Esk′(s

i). Then, the public key of the
commitment scheme is pk = (pk′, {Ei}i), while the verification key is vk = vk′;

– Commitpk(u,R1), for a polynomial u =
∑n−1

i=0 uiX
i ∈ R1 ⊂ R of degree at most n − 1,

outputs E = Eval({Ei}i, {ui}i) = E(
∑

i uis
i) = E(u(s));

– Validityvk(E) is exactly the Verify of the encoding scheme, as it outputs whether this is a
valid encoding or not, and thus a valid commitment or not.

Thanks to the linear-only extractability, when a player generates a valid encoding (or commit-
ment) E, being only given (E0, . . . , En−1), one can extract (ci) such that E is an encoding of
c0 + c1s + . . . cn−1s

n−1 in R, and thus of the polynomial c =
∑

i ciX
i in R. Our above com-

mitment scheme on polynomials is thus extractable under the linear-only extractability of the
secure encoding scheme.

In addition, thanks to the quadratic verification on the encodings, if we have four polynomials
u, v, m and r such that m = u·v mod r, which means that m = u·v+r·q, where all the polynomials
are of degree at most n−1, we can check such a product: from valid commitments U and V of u
and v, R and Q of r and q, respectively, and M of the polynomial m, all of degree at most n−1,
as they are all simple encodings, QCheck(X1X2 +X3X4−X5, U, V,R,Q,M) = true implies that
m(s) = u(s) · v(s) + r(s) · q(s). According to the ring R, this might imply the expected relation,
or not. If R is a large enough field, this is true.

However, in the following, we will be interested in the particular case of R = Zq, with
q = p1 · . . . · p` a product of ` prime integers p1 < . . . < p`. Having m(s) = u(s) · v(s) +
r(s) · q(s) mod q while m 6= u · v + r · q in Zq[X] means there is an index j ∈ [[1; `]] such that
m(s) = u(s) · v(s) + r(s) ·q(s) mod pj while m 6= u · v+ r ·q in Zpj [X]. Under the Schwartz-Zippel
lemma [Sch80,Zip79], this probability is bounded by 2n/pj for each j, as the total degree of
the relation is at most 2n. Hence, the probability over s to have a false positive is bounded by
2n`/t. This probability is unfortunately non-negligible for polynomial prime factors. According
to the expected soundness parameter ε, to reduce the probability of false positive cases, the
natural solution is to iterate K times, with multiple evaluation points sk, for k ∈ [[1;K]], so
that (2n`/t)K ≤ ε. But then, we have to make sure the same polynomials are committed in
each point. We now directly deal with bivariate polynomials, and this could be extended to
multivariate polynomials, but notations would become hard to follow.

3.2 Commitments on Bivariate Polynomials

We now build commitments on bivariate polynomials over Zq for a composite q, providing
a way to deal with scalars and univariate polynomials, when they are evaluated in one-fixed
coordinate or a fixed point. In addition, a bivariate polynomial is a way to encode multiple
univariate polynomials: given N polynomials uj =

∑
i uj,iX

i ∈ Zq[X], of degree n − 1, we can
consider the polynomial in Zq[X,Y ]: u(X,Y ) =

∑
j Y

juj(X) =
∑

j,i uj,iX
iY j .

As explained above, in order to reduce the probability of errors with the Schwartz-Zippel
lemma, we will use encodings in K multiple points. We will additionally prove they all encode
the same polynomial.

Setup(1λ,R = Zq[X,Y ],R2 = Zq[Xn−1, Y N ]) first runs (pk′, sk′, vk′)← Gen(1λ), chooses

K tuples of random elements sk, tk
$← Z∗q and, for k ∈ [[1;K]], i ∈ [[0;n− 1]], and j ∈ [[0;N ]], sets

Ek,j,i ← Esk′(s
i
k · t

j
k). To explicitly limit to some degrees, such as R2 = Zq[Xn−1, Y N ] or even to

univariate polynomials. One also chooses K tuples of random elements r
(1)
k , r

(2)
k

$← Z∗q . Then,

for k ∈ [[1;K]], i ∈ [[0;n − 1]], and j ∈ [[0;N ]], one sets E
(2)
k,j,i ← Esk′(r

(2)
k · s

i
k · t

j
k) for bivariate

polynomials in R2 = Zq[Xn−1, Y N ]. The public key of the commitment scheme is composed of

the above encodings pk = (pk′, {Ek,j,i, E
(2)
k,j,i}k,j,i), and the verification key is vk = vk′. For our

application, other sub-spaces will be added, but in this section, we focus on R2 = Zq[Xn−1, Y N ].

More spaces are detailed in Appendix C, with other random values r
(ι)
k .
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Commit(u,Zq[Xn−1, Y N ]), for a polynomial u =
∑N

j=0

∑n−1
i=0 uj,iX

iY j inR2 = Zq[Xn−1, Y N ],

outputs C = (Eu = (Ek, E
(2)
k )k, Πu), for k ∈ [[1;K]], with Πu detailed later, where

Ek ← Eval({Ek,j,i}j,i, {uj,i}j,i) = E(u(sk, tk))

E
(2)
k ← Eval({E(2)

k,j,i}j,i, {uj,i}j,i) = E(r
(2)
k · u(sk, tk))

such that QCheck(X1 −X2 ·X3, E
(2)
k , Ek, E

(2)
k,0,0) = true

The idea behind the twin encodings Eu = (Ek, E
(2)
k )k is that the first element Ek is com-

patible between all the polynomials in R = Zq[X,Y ], independently of the constraints on the
allowed monomials, while the second element restrains the polynomial space: the limited basis

in {E(2)
k,j,i}j,i and the relation with E

(2)
k,0,0 limits to R2 = Zq[Xn−1, Y N ]. Note there is still a

non-negligible probability of false positives when accepting a twin encoding, as remarked above,
as the quadratic check might accept the relation on the specific points without the relation
holding on the polynomials. We will say an encoding Ek is valid when the relation really holds

on the extracted polynomials from the twin encodings (Ek, E
(2)
k ). Intuitively, for each index k,

the probability of false positive (accepting an invalid twin encoding) is bounded by `D/t, where
D will be the maximal total degree of the polynomials that one will be able to generate from the

elements in the basis provided as input, as E
(2)
k,0,0 encodes a polynomial of degree 0. An additional

proof Πu (either provided from an interactive protocol or built in a non-interactive way) is thus
appended to the commitment to make the validity check sound, with error-probability εc for
each commitment: a huge fraction of the encodings are valid and encode the same polynomial.

In this section, we target the soundness of the commitments, whereas our ultimate goal will
be a soundness bound εs for our global proof. To achieve this soundness bound, we will first
require all the commitments to be correct, excepted an error probability εs/3, the relations be-
tween the commitments to also hold excepted with error probability εs/3, and the bounds on the
noise-flooding to be small enough with error probability εs/3. Hence, we use a specific soundness
parameter εc ≤ εs/3νc for commitments, where νc will be the total number of commitments.

Validity(C) first verifies the twin encodings, which checks the appropriate sub-spaces for each

Ek: the quadratic check with the limited bases in {E(2)
k,j,i}k,j,i guarantees the limited list of

monomials, but with an error probability bounded by 2`D/t. Note that in this section, D =
N + n − 1, because of the limited R2, but monomials with higher degrees will be required
later. With K large enough, we can expect a large number of valid encodings Ek: let us assume
more than K/5 encodings are not valid, this will remain undetected with probability at most
(`D/t)K/5. If we impose t ≥ 2S × 2`D (where S will be seen as a security margin, all along this
analysis), the error probability is less than 2−(S+1)K/5. Hence, the number of valid encodings
Ek is greater than 4K/5 excepted with probability upper-bounded by 2−(S+1)K/5.

But this is not enough to amplify the above Schwartz-Zippel lemma: one also has to make
sure that all the valid Ek encode the same polynomial u to exploit the iterations in the quadratic
check between encoded polynomials:

uk(X,Y )− u(X ′, Y ′) = u(X,Y )− u(X ′, Y ′)

= u(X,Y )− u(X,Y ′) + u(X,Y ′)− u(X ′, Y ′)

= (Y − Y ′) · v(X,Y, Y ′) + (X −X ′) · w(X,X ′, Y ′).

This can be checked with random xm, ym
$← Zq, sent by the verifier:

u(X,Y )− u(xm, ym) = (Y − ym) · vm(X,Y ) + (X − xm) · wm(X),

from the proof

Πu = (um ← u(xm, ym), (Vk,m ← E(vm(sk, tk)),Wk,m ← E(wm(sk)))k)m
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that can be checked as

QCheck(X1 − um − (X2 − ym) ·X3 − (X4 − xm) ·X5,

Ek, Ek,1,0, Vk,m, Ek,0,1,Wk,m) = true

For each k ∈ [[1;K]], if the above relations do not hold at the polynomial level (which means for
the polynomials vk,m, wk,m, encoded in Vk,m, and Wk,m respectively, possibly in any sub-space)
for more than 1/3 of the m ∈ [[1;M ]], they will remain undetected with probability at most
(`(D + 1)/t)M/3 ≤ 2−(S+1)M/3. Otherwise

uk(X,Y )− um = (Y − ym) · vk,m + (X − xm) · wk,m

for more than 2M/3 indices m. Then, for any k′ 6= k, that correspond to valid encodings Ek and
Ek′ , at least M/3 common values (xm, ym) satisfy both relations in k and k′, hence uk(xm, ym) =
uk′(xm, ym) = um. As a consequence, as the polynomials uk and uk′ were committed before
seeing (xm, ym), there are M/3 random points in which the two polynomials are equal. Then
uk = uk′ , excepted with probability upper-bounded by (`D/t)M/3 ≤ 2−2M . A false acceptance for
some pair (k, k′) of consecutive valid encodings is upper-bounded by 2K · 2−(S+1)M/3. Globally,
the probability of having a false positive among the valid encodings Ek is bounded by 2K ·
2−(S+1)M/3.

We thus complete the commitments inR2: in addition to the twin encodings Eu = (Ek, E
(2)
k )k,

after having received (or seen) (xm, ym)m, one completes the commitment with the proofs Πu,
for k ∈ [[1;K]], m ∈ [[1;M ]]
– in Commit(u,Zq[Xn−1, Y N ]), Πu = (um, (Vk,m,Wk,m)k)m;

Then, we can state the following security result, which can be extended to other subspaces:

Theorem 5 (Knowledge-Soundness of Commitments in R2). For any commitment C =

(E = (Ek, E
(2)
k )k, Π = (um, (Vk,m,Wk,m)k)m), if C successfully passes all the validity checks and

quadratic root checks, on randomly chosen (xm, ym)
$← Z2

q, there exists a polynomial u ∈ R2

such that at least 4K/5 of the twin encodings actually encode u (which can be extracted from the
extractability of valid encodings), excepted with probability less than 2−(S+1)K/5+2K ·2−(S+1)M/3,
where q =

∏`
i=1 pi, with all pi ≥ 2S × 2`D, and D is the maximal degree of the polynomials in

the subspace.

Quadratic Root Checks. According to the above analysis, if we assume t ≥ 2S × 2`D, for all
the accepted commitments, we know that we have at least 4K/5 valid encodings of the same
polynomials in all twin encodings:
– if the number of invalid encodings is greater than K/5, they will remain undetected with

probability less than 2−(S+1)K/5.
– all these valid encodings contain the same polynomial u, excepted with probability less than

2K · 2−(S+1)M/3.
As a consequence, when all the verifications succeed for the commitment, there are at least 4K/5
valid encodings on the same polynomial u, excepted with small error probability. Hence, when
4 commitments are involved in a quadratic check, at least K/5 common indices k correspond to
valid encodings on the same polynomials in the 4 commitments. Those polynomials then satisfy
the relation excepted with probability less than (2`D/t)K/5 ≤ 2−S·K/5.

More Parameters. Commitments in Zq[Xn−1] thus consist of 2K + KM = K(M + 2) en-
codings, and M scalars in Zq while commitments in Zq[Xn−1, Y N ] consist of 2K + 2KM =
2K(M + 1) encodings, and M scalars in Zq.

The above analysis was for commitments that appear in quadratic checks involving c = 4
commitments, hence one required 4K/5 valid encodings. When other values of c in {2, 3, 4},
this is enough to have cK/(c + 1) valid encodings in the c commitments to have K/(c + 1)
common indices, and then the soundness of the equation is 2−S·K/(c+1). More detail is provided
in Appendix C.
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Corollary 6. When all the tests pass in a quadratic check between at most c prover-generated
commitments, that are all valid, the relation is really satisfied on the committed polynomials
(which can be extracted from the extractability of valid encodings), excepted with probability less
than 2−S·K/(c+1).

Bounds on K and M are detailed in Appendix F.

3.3 Hiding Commitments

These commitments with encodings are strongly binding, because of the knowledge-soundness,
but are not hiding, as sometimes expected from commitments. Because of the quadratic verifi-
cation, if the verifier hesitates between two polynomials in a commitment C, they can commit
them and do a simple linear verification, as they know vk.

To statistically hide the content, one has to add random blinding elements from the appro-
priate masking set M to every encodings, to get hiding encodings. We illustrate this here with
with R2 = Zq[Xn−1, Y N ]. In Appendix C, we also detail the case of R3 = Zq[Y N ].

Commit∗(u,Zq[Xn−1, Y N ]), the hiding commitment for a bivariate polynomial u(X,Y ) =∑N
j=0

∑n−1
i=0 uj,iX

iY j ∈ R2 = Zq[Xn−1, Y N ], outputs the tuple C∗ = (E∗u = (E∗k , E
(2∗)
k , πk)k, Π

∗
u),

where for all indices k ∈ [[1;K]] and m ∈ [[1;M ]], with ρk, ρ
′
k

$←M:

E∗k ← Eval({Ek,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρk}) = E(u(sk, tk) + ρk)

E
(2∗)
k ← Eval({E(2)

k,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρ
′
k}) = E(r

(2)
k · u(sk, tk) + ρ′k)

with πk = {ZKLQCheck(X1 −X2 ·X3, E
(2∗)
k , E∗k , E

(2)
k,0,0;Ek,0,0, E

(2)
k,0,0) = true}

as the quadratique relation is equal to ρ′k × 1− ρk × r
(2)
k , with private scalars ρk and ρ′k, and a

proof, using random xm, ym
$← Zq sent by the verifier, of

u(X,Y )− u(xm, ym) = (Y − ym) · vm(X,Y ) + (X − xm) · wm(X)

= (Y − ym) · vm + (X − xm) · wm

which can be verified with

Π∗u = (V ∗k,m ← E(vm(sk, tk) + ρk,m),W ∗k,m ← E(wm(sk) + ρ′k,m), πk,m)k,m

for random ρk,m, ρ
′
k,m

$←M, chosen by the prover for their privacy, and

πk,m = {ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true}

where anybody can compute

E
(m)
k,1,0 = Eval({Ek,1,0, Ek,0,0}, {1,−ym}) = E(tk − ym)

E
(m)
k,0,1 = Eval({Ek,0,1, Ek,0,0}, {1,−xm}) = E(sk − xm)

as the quadratic relation is equal to ρk + u(xm, ym)− ρk,m(tk − ym)− ρ′k,m(sk − xm). One thus
proves their knowledge of the 4 private scalars, ρk ∈M (the same as above), um = u(xm, ym) ∈ R
(the same for all the k’s), and ρk,m, ρ

′
k,m ∈M.

Let us assume that a reasonable fraction of the twin encodings (E∗k , E
(2∗)
k ) are valid for a

polynomial u∗k in Zq[Xn−1, Y N ]. For each k, the quadratic check guarantees that

u∗k(X,Y ) = uk(X,Y ) + ρk = (Y − ym) · vk,m + (X − xm) · wk,m
+ ρk + um − ρk,m · (Y − ym)− ρ′k,m · (X − xm)

excepted with the same error probability as in Theorem 5. On the other hand, one can state:
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Theorem 7 (Hiding Property of Commitments in R2). For any commitment C∗ =

(E∗ = (E∗k , E
(2∗)
k , πk)k, Π

∗ = (V ∗k,m,W
∗
k,m, πk,m)k,m), thanks to the random masks, and the zero-

knowledge proofs, all the encodings are statistically indistinguishable from random encodings.

Note that for a hiding commitment, we have zero-knowledge proofs on K(M + 1) equations
involving globally 2K(M + 1) + M private scalars (but at most 4 in each equation). In Ap-
pendix B.3, we detail the zero-knowledge proofs when the encoding relies on the Paillier’s en-
cryption scheme: soundness is 2−λ

′
, for λ′ < log2 t, then one needs to iterate − log2(εs/3νc)/λ

′

times. Each proof consists of K(M + 1) Paillier ciphertexts and 2K(M + 1) +M scalars in Zq,
iterated log(3νc/εs)/ log t times. Soundness also implies the RSA modulus needs to be larger
than L · 2λ+3q3.

3.4 Quadratic Root Check

The check Quadratic(Q,C1, . . . , C`), on non-hiding commitments, for a quadratic polynomial Q,
that verifies whether the committed polynomials Pi’s in the Ci’s satisfy the relationQ(P1, . . . , P`) =
0, is performed as a QCheck on the encodings for each index k. Since a huge fraction of the in-
dices k encode the same polynomials, for the prover-generated commitments, iterations amplify
the soundness.

When some hiding commitments are involved, one additionally has to prove the appropriate
blinding factors. More concretely, let us consider the binding commitment D of d, and the
hiding commitments C∗ and H∗ of c∗ and h∗ respectively, with blinding factors ρk, σk ∈ M
respectively. The relation c∗ = d× h∗ can be checked as:

Quadratic(X1 −X2 ·X3, C
∗, D,H∗)

= ZKLQCheck(X1 −X2 ·X3, C
∗
k , Dk, H

∗
k ;Ek,0,0, Dk) for all k

as the quadratic relation is equal to ρk · 1− σk · d, where ρk and σk are the same private values
as the ones used in the validity verification of the hiding commitments C∗ and H∗.

We stress that we only allow quadratic verifications where at most one polynomial is com-
mitted in a hiding way in each quadratic product. In the end, we know that the quadratic
equations among polynomials are satisfied in at least K/5 random points. They are thus satis-
fied by the polynomials excepted with probability less than 2−S·K/5, which is chosen to be much
less than εs/3νe, where νe is the global number of equations to be checked.

3.5 Complete Construction of the Commitment

As already explained, in our application, we are considering q = p1 · . . . ·p`, a composite modulus
q, with ` prime factors p1 < . . . < p`. We will work in subspaces of R = Zq[Xn−1, Y 2N ]. We will
consider the subspacesR1 = Zq[Xn−1],R2 = Zq[Xn−1, Y N ],R3 = Zq[Y N ], and Zq[Y 2N ] with no
term in Y N , denoted R4 = Zq[Y 2N\N ], hence D = 2N , so we will assume t ≥ 2S × 4N`. Details
on the complete construction of the commitments with system setup and detailed contents and
checks are given in Appendix C.

4 Verifiable Inner Product

We now have the tools to allow the receiver/verifier with their private input message m to learn
in a verifiable way the inner product of the vector Φ(m) = (φ(m, 0), φ(m, 1), . . . , φ(m, N)) with
a private vector F = (fj)j∈[[0;N ]], committed by the sender/prover, where φ is a function known
by them both, depending on the application. If φ(m, j) = mj , the inner product corresponds to
the Oblivious Polynomial Evaluation (OPE) of the polynomial F with coefficients (fj)j on the
message m; if φ(m, j) = δµ,j , with δ the Kronecker symbol and µ ∈ [[0;N ]] such that m is the
representation of µ, it provides the µ-th coefficient of f, which would coincide with a Symmetric
Private Information Retrieval (SPIR) application. We now show how the sender can provide
this evaluation with fully homomorphic encryption in a provable way.
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More precisely, we consider the above FV scheme that encrypts messages from Rt =
Zt[X]/r(X), where r = Xn + 1, into Rq = Zq[X]/r(X) for q = p1 × . . . × p`, with 2S × 4N` ≤
t = p1 < . . . < p`.

The receiver encrypts the input m ∈ Rt under their own key, and sends Enc(m) = (c, c′) ∈
R2
q , in order to get back the homomorphic inner product of Φ(m) = (φ(m, j))j∈[[0;N ]] ∈ RN+1

t

with F = (fj)j∈[[0;N ]] ∈ RN+1
t , committed by the sender, with a proof of correct value (d, d′) =

Enc(〈Φ(m),F〉) ∈ R2
q , that thereafter decrypts to 〈Φ(m),F〉 ∈ Rt, using the receiver’s decryption

key.
From (c, c′), and possible additional intermediate ciphertexts, sent by the receiver, the sender

is able to compute (uj , u
′
j) = Enc(φ(m, j)), for j ∈ [[0;N ]], in any way they want, using the

homomorphic properties of the encryption scheme:

(uj , u
′
j) = Enc(φ(m, j)) =

(
n∑
i=0

uj,i ·Xi,
n∑
i=0

u′j,i ·Xi

)
∈ R2

q .

Thereafter, the goal is to evaluate the inner products:

(d, d′) = Enc(〈Φ(m),F〉) = Enc

 N∑
j=0

fj · φ(m, j)

 =
N∑
j=0

fj · Enc(φ(m, j))

=
N∑
j=0

fj · (uj , u′j) =

 N∑
j=0

fj · uj ,
N∑
j=0

fj · u′j

 .

The sender can add noise to hide F in the evaluation and prove the correct evaluation of d̃ = d+z∗

and d̃′ = d′ + z′∗ so that (d̃, d̃′) decrypts to 〈Φ(m),F〉. The pair (z∗, z′∗) will be committed in
a hidden way, with a proof of correct noise, in the appropriate range, to ensure the correct
decryption.

This verifiable evaluation will be done in two steps: first, the sender will prove the correct
evaluation of all the (uj , u

′
j), while committed in a very compact way. Then, a proof of the inner

product is provided. We will later explain how everything remains succinct.
For the following proof and analysis to hold, we need the property, in the particular case

where L = N + 1:

Definition 8 ((L, d)-Rt-Linear-Homomorphism). For any ai, ui ∈ Rt, for i = 1, . . . , L,

Dec

(
L∑
i=1

ai · (ci, c′i)

)
=

L∑
i=1

ai · ui ∈ Rt

where (ci, c
′
i) ∈ R2

q is an encryption of ui obtained from a circuit of multiplicative depth bounded
by d.

4.1 Commitment of F

One can first note that ring elements in Rt and Rq are polynomials of degree at most n − 1,
and can be encoded into R1 = Zq[Xn−1]. The sender’s vector F ∈ RN+1

t can be committed

using the polynomial f =
∑N

i=0 fj · Y j in Rt[Y ], where fj =
∑n−1

i=0 fj,i · Xi, can be committed

in a hidden way in R2 = Zq[Xn−1, Y N ] as f∗ =
∑N

j=0

∑n−1
i=0 fj,i · XiY N−j (with reverse order

coefficients) into F ∗.
The sender can also compute and publish the noisy inner products d̃ and d̃′ in Rq, the

expected ciphertext of the result, for some private q∗, q′∗, z∗, z′∗ ∈ Rq:

d̃ =

N∑
j=0

fj · uj + z∗ − q∗ · r d̃′ =
N∑
j=0

fj · u′j + z′∗ − q′∗ · r.
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The polynomials z∗, z′∗, q∗, q′∗ are committed in a hidden way in Z∗, Z ′∗, Q∗, Q′∗, in R1 =
Zq[Xn−1]. The inner products must be proven, which is the goal of the second part, after we
have proven the correct computation of the (uj , u

′
j)’s, as both together will prove correctness of

the ciphertext (d̃, d̃′).

4.2 Validity of the (uj, u′j)’s

We thus start by proving the validity of the encryptions of the φ(m, j). From the ciphertexts
(uj , u

′
j) that the prover computed on their own, they then define the polynomials:

u(X,Y ) =
N∑
j=0

uj(X) · Y j =
N∑
j=0

n−1∑
i=0

uj,iX
iY j u′(X,Y ) =

N∑
j=0

u′j(X) · Y j

and commit them from the sub-space R2 = Zq[Xn−1, Y N ] into U and U ′ respectively. Our first
step is to prove that the polynomials committed in U and U ′ by the sender indeed satisfy,
for any exponents j ∈ [[0;N ]], (uj , u

′
j) = Enc(φ(m, j)), or more precisely that the decryptions

Dec(uj , u
′
j) that we denote ϕm,j are indeed φ(m, j) ∈ Rt, for m initially encrypted by the verifier

in (c, c′).

The verifier first chooses and sends a random polynomial n
$← Rt (or it can be generated

by a hash function on the previous data to remove interaction). Both parties can compute,
nj = nj =

∑n−1
i=0 nj,i ·Xi in Rt, for all j ∈ [[0;N ]], and commit them in R2 = Zq[Xn−1, Y N ] as

t =
∑N

j=0

∑n−1
i=0 nj,i ·XiY N−j (with reverse order coefficients) into T . Then, the prover computes

and sends (b, b′) =
∑N

j=0 nj · (uj , u′j) in R2
q .

Since this is symmetric, we now focus on the first component (without ′), and similar analysis
will have to be done on the second component (with ′): the prover also computes and sends l
so that

∑N
j=0 nj · uj = b + l · r, that they both commit as L in R1 = Zq[Xn−1].

The verifier chooses and sends a sequence of random scalars βκ
$← Zq, for κ ∈ [[1;Λ]]. They

will define vκ,j = uj(βκ) ∈ Zq for j ∈ [[0;N ]]. We thus have the polynomial:

vκ(Y ) =
N∑
j=0

vκ,j · Y j =
N∑
j=0

uj(βκ) · Y j =
N∑
j=0

n−1∑
i=0

uj,iβ
i
κ · Y j = u(βκ, Y )

that can be committed as Vκ in R3 = Zq[Y N ], and proven correct with the quadratic check

u(X,Y )− vκ(Y ) = u(X,Y )− u(βκ, Y ) = (X − βκ) · wκ(X,Y ) (1)

on the commitment Wκ of wκ ∈ R2 = Zq[Xn−1, Y N ] and the public commitment Cκ of X −βκ,
and thus only 3 prover-generated commitments (U , Vκ, and Wκ, as Cκ is public). With tκ =
t(βκ, Y ) =

∑N
j=0 nj(βκ) · Y j publicly computed and committed in Tκ, we can note that

vκ(Y ) · tκ(Y ) =
∑

0≤i,j≤N
vκ,i · nj(βκ) · Y N+i−j

=
∑

0≤i≤N
vκ,i · ni(βκ) · Y N +

∑
0≤i 6=j≤N

vκ,i · nj(βκ) · Y N+i−j

and ∑
0≤i≤N

vκ,i · ni(βκ) =
∑

0≤i≤N
ui(βκ) · ni(βκ) = bκ + lκ · rκ

where bκ = b(βκ), lκ = lκ(βκ), and rκ = r(βκ) can be publicly computed in Zq, so we can check:

vκ(Y ) · tκ(Y )− (bκ + lκ · rκ) · Y N =
∑

0≤i 6=j≤N
vκ,i · nj(βκ) · Y N+i−j = yκ(Y ) (2)
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with a commitment Yκ of yκ in R4 = Zq[Y 2N\N ] and CN a public commitment of Y N , which
makes only 2 prover-generated commitments (Vκ and Yκ).

We stress that because of the repetitions in each commitment (up to K, according to the
kind of relations they are involved in, and the number of prover-generated commitments), we
know (see Corollary 6) that when all the tests pass, the above equations (1) and (2) are all
satisfied with error probability less than 2Λ · 2−(S+1)K/4.

They altogether prove that, for each κ ∈ [[1;Λ]], bκ + lκ · rκ is the coefficient of Y N in
vκ(Y ) · tκ(Y ), and so

∑
j uj(βκ) · nj(βκ) = b(βκ) + l(βκ) · r(βκ) mod q for the random βκ, on

polynomials committed beforehand, of degree n. Hence,
∑

j uj ·nj = b+ l · r, excepted with error

probability bounded by 2`n/t ≤ n/2S+1N , from the Schwartz-Zippel lemma.

For Λ large enough (to be set later), after all these steps, on both b and b′, one gets the
proof that, in Rq,

b =
N∑
j=0

nj · uj b′ =
N∑
j=0

nj · u′j : (b, b′) =
N∑
j=0

nj · (uj , u′j).

These relations hold for both b and b′ excepted with error probability bounded by 2 × (2Λ ·
2−(S+1)K/4 + (n/2S+1N)Λ).

The verifier now checks that Dec(b, b′) =
∑N

j=0 n
j · φ(m, j), which thus leads to

∑N
j=0 n

j ·
ϕm,j =

∑N
j=0 n

j · φ(m, j) in Rt. We can thus consider the polynomial
∑

j(ϕm,j − φ(m, j)) · Y j

in Rt, which evaluates to zero in the random point n
$← Rt. Note that Rt is a ring that

is the product of large fields only: r = X2k + 1 is not irreducible in any Zp[X] for a prime
p, but for well-chosen prime, all the factors have large degrees: according to [BGM93], with
t + 1 = 2a(2p + 1), for any integer p, a ≥ 2, and n = 2k, then all the factors have degree
2k+1−a. If one chooses t = 3 mod 8, a = 2, and there are just two irreducible factors of degree
2k−1 = n/2: the above polynomial thus has all zero coefficients by the Schwartz-Zippel lemma,
excepted with probability 2×N/tn/2, as the polynomial is of degree N and n is randomly chosen
among tn/2 possible values in each of the two fields. Hence, ϕm,j = φ(m, j) in Rt, excepted with
probability bounded by 2N/tn/2, which is clearly negligible.

4.3 Validity of (d̃, d̃′)

As above, we focus on d̃ with respect to all (uj)j and z∗, q∗. The same should be done for d̃′

with respect to all (u′j)j and z′∗, q′∗, but for the same (fj)j and z, r:

d̃ =
N∑
j=0

fj · uj + z∗ − q∗ · r.

This following analysis is quite similar to the previous one, considering f∗, (z∗, q∗), d̃ instead
of t, p, b, and with hidden intermediate values, as (fj)j is private to the prover, contrarily to n
which was publicly chosen by the verifier. One first proves the quadratic relation on the hidden
commitment of g∗κ(Y ) = f∗(βκ, Y ) =

∑N
j=0 gκ,j · Y N−j in R3 = Zq[Y N ], where gκ,j = fj(βκ),

and the hiding commitment of h∗κ(X,Y ) in R2 = Zq[Xn, Y N ], so that

f∗(X,Y )− g∗κ(Y ) = f∗(X,Y )− f∗(βκ, Y ) = (X − βκ) · h∗κ(X,Y ) (3)

with only 3 prover-generated commitments. And similarly, one proves in a hidden way:

q∗(X)− q∗κ = q∗(X)− q∗(βκ) = (X − βκ) · q∗κ(X) (4)

z∗(X)− z∗κ = z∗(X)− z∗(βκ) = (X − βκ) · z∗κ(X) (5)
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#variables
Binding

or
Hiding

Polynomials #commitments

1v B vκ, v
′
κ, yκ, y

′
κ 6Λ

H q∗, q′∗, q∗κ, q′∗κ , u∗k, e∗1,k, e∗2,k, z∗κ, z′∗κ , g∗κ 5Λ+ 2 + 3Z

2v B u, u′,wκ,w
′
κ 2(Λ+ 1)

H f∗, h∗κ Λ+ 1

Total 14Λ+ 5 + 3Z

Fig. 1. Number of Commitments in the Global Proof, and Size in Number of Encodings, with Λ =
d(log2(24/εs))/(S + 1 + log2(N/n))e

with the private q∗κ = q∗κ(βκ) and z∗κ = z∗κ(βκ) in Zq that will be also used below. There are only
2 prover-generated commitments in each relation. We can note

vκ(Y ) · g∗κ(Y ) =
∑

0≤i,j≤N
vκ,i · gκ,j · Y N+i−j

=
∑

0≤i≤N
vκ,i · gκ,i · Y N +

∑
0≤i 6=j≤N

vκ,i · gκ,j · Y N+i−j

and ∑
0≤i≤N

vκ,i · gκ,i =
∑

0≤i≤N
ui(βκ) · fi(βκ) = d̃(βκ)− z∗(βκ) + q∗(βκ) · r(βκ)

= d̃κ − z∗κ + q∗κ · rκ

where d̃κ = d̃(βκ) and rκ = r(βκ) can be publicly computed, and so one proves

vκ(Y ) · g∗κ(Y )− (d̃κ − z∗κ + q∗κ · rκ) · Y N = sκ(Y ) (6)

with a commitment of sκ in R4 = Zq[Y 2N\N ] and a public commitment of Y N .

Again, from Corollary 6, when all the tests pass, the above equations (3), (4), (5), and (6)
are all satisfied with error probability less than 3Λ · 2−(S+1)K/4.

They altogether prove that, for each κ ∈ [[1;Λ]], dκ − z∗κ + q∗κ · rκ is the coefficient of Y N in
vκ(Y ) · g∗κ(Y ), so

d̃(βκ) =
∑
j

uj(βκ) · fj(βκ) + z∗(βκ)− q∗(βκ) · r(βκ) mod q

for the random βκ, on polynomials committed beforehand. Hence,

d̃ =
∑
j

uj · fj + z∗ − q∗ · r,

excepted with error probability bounded by 2`n/t ≤ n/2S+1N , for each κ. Again, these relations
hold for both d̃ and d̃′ excepted with error probability bounded by 2 × (3Λ · 2−(S+1)K/4 +
(n/2S+1N)Λ).

Globally, the error probability is bounded by 2×(5Λ·2−(S+1)K/4+2×(n/2S+1N)Λ). We thus
need to take Λ =

⌈
log2(24/εs)/ log2(2S+1N/n)

⌉
different values for βκ so that 4×(n/2S+1N)Λ ≤

εs/6, and K > 4 log2(60Λ/εs)/(S+ 1) so that 2× 5Λ · 2−(S+1)K/4 ≤ εs/6 too, so that the global
error on the equations be bounded by εs/3.

On the other hand, as shown on Figure 1, the global number of commitments is bounded
by 14Λ+ 5 + 3Z. We explain the 3Z commitments in the next section to build (z∗, z′∗). We thus
need to take εc ≤ εs/(3× νc) = εs/(3(14Λ+ 5 + 3Z)).

Indeed, after all these steps, on both d̃ and d̃′, one gets the proof that, in Rq, (d̃, d̃′) is a
ciphertext of 〈Φ(m),F〉, if the noise (z∗, z′∗) is correct.
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4.4 Proofs on the Noise (z∗, z′∗)

We now have to prove that the polynomials (z∗, z′∗) are indeed of the form

(z∗, z′∗) =
(
p · u + e1 mod q, p′ · u + e2 mod q

)
, (7)

with coefficients of u, e1, e2 small enough for the correctness of the decryption. The sender needs
to make them follow the appropriate distribution for their own privacy. Using noise-flooding,
the sender will thus choose u, e1, e2, commit them in a hidden way, and prove their relationship
with (z∗, z′∗), as a simple public linear combination of commitments.

Then, the sender has to prove the bounds on the coefficients of u, e1, e2. Let us focus on u (the
same should be done for e1 and e2), with the generation of multiple random polynomials rk, for
k = 1 . . . , Z, according to a Gaussian distribution on Z with standard deviation σ′. For random
scalars δk

$← [[−η; η]], one asks to see the linear combination r =
∑

k δkrk, with coefficients
ri =

∑
k δkrk,i that follow a Gaussian distribution on Z with standard deviation σ′ ·

∑
k δk.

They should thus be smaller than 10 · σ′ ·
∑

k δk (excepted with probability 2−128). One can
thus check that. When true, this at least proves that |rk,i| ≤ 10 · σ′ ·

∑
k δk ≤ 10Z · σ′η, with

overwhelming probability. We can thus define u =
∑

k δ
′
krk, for random scalars δ′k

$← {−1, 1}. We
then know that ‖u‖∞ ≤ 10Z2 ·σ′η. We will then have to consider this bound for the correctness
of the FHE decryption, the bound B′′ on the final ciphertext error.

Bounds are explained in detail in Appendix D. To reduce the probability of having false
negatives, θ linear combinations will be published. In the end we find that with η of the order of
(1/εs)

1/5, we have θ = 5. We can then take Z = 8, σ′ = 2λB′/80, and q ≈ 2λ+3η×2tB′(2nB+1).
This increases the initial size of q by λ + 3 + log η more bits. With λ = 128, εs = 2−128, and
η = 221, this is 152 more bits.

4.5 Protocol Overview

Here are all the steps in the interactive version of the protocol, that can be run in 5 rounds:
1. The public information for the encoding and the FHE are provided by the receiver to the

sender;
2. The receiver encrypts their message m ∈ Rt with possible additional intermediate cipher-

texts. They send these ciphertexts;
3. The sender commits their vector F, as f∗;
4. The sender computes all the Enc(φ(m, i)) = (ui, u

′
i), for i ∈ [[0;N − 1]] from the ciphertexts

sent by the receiver, and sends a compact commitment (U,U ′);
5. The sender generates but sends hiding commitments of (u∗k, e

∗
1,k, e

∗
2,k);

6. from a hash on these commitments, both parties can generate the scalars δ′k ∈ {−1,+1}.
The sender can generate (z∗, z′∗) =

∑
k δ
′
k(p · u∗k + e∗1,k, p

′ · u∗k + e∗2,k mod q), and send the

resulting ciphertext (d̃, d̃′). The receiver can derive the commitments (Z∗, Z ′∗) on (z∗, z′∗);
7. The receiver can ask for (or derive from a hash) scalars δk ∈ [[−η; η]], θ times, and the

sender sends the receiver the
∑

k δk(p · u∗k + e∗1,k mod q, p′ · u∗k + e∗2,k mod q) and the
aggregation of the random values for the related hidden commitment, so they can check the
coefficients are small enough;

8. from a hash on the (U,U ′), both parties generate a challenge n ∈ Rt: the sender uses it to
generate and send (b, b′) and (l, l′);

9. The receiver can ask for (or derive from a hash) {βκ ∈ Zq}, for κ ∈ [[1;Λ]];
10. The sender generates vκ,wκ, yκ, sκ, as well as g∗κ, h

∗
κ, q
∗
κ, z
∗
κ, zκ, and the twin polynomials

with ′, and sends the twin encodings of these polynomials to the receiver;
11. The receiver can ask for (or derive from a hash) {(xm, ym) ∈ Z2

q}, for m ∈ [[0;Mmax]];
12. The sender generates the proofs of all their previous commitments, and the zero-knowledge

proofs on the quadratic relations, with additional random challenges either from the re-
ceiver or derived from a hash, and the sender sends the answers to the receiver;
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13. The receiver verifies all the proofs with respect to the twin encodings and the required
quadratic checks to prove the correctness of (b, b′) and (d̃, d̃′).

In the above protocol, some of the scalars can either be sent by the verifier or taken from a hash
function, using the Fiat-Shamir paradigm [FS87].

In the latter setting, the challenges (δk)k, (βκ)κ and (xm, ym)m, and challenges in the zero-
knowledge proofs are derived from a hash function on the values that should not be modified by
the prover. This leads to a non-interactive protocol. When they are generated by the verifier,
leading to a 5-round protocol, the soundness can be reduced to 2−30, as the prover should then
cheat on-line.

4.6 Security Claims

The security of such 2PC protocols is two-folds, with privacy and correctness. The former
guarantees that no information leaks about the parties’ inputs beyond the obtained result, and
the latter ensures the result is correct.

Honest-but-Curious Security. In the honest-but-curious case described in definitions 1 and
2, where the players play honestly, thanks to the correctness of the FHE scheme, the result
obtained after decryption by the receiver is the correct one.

The receiver’s privacy is ensured as they send only ciphertexts of their input message: under
the semantic security of the FHE, no information leaks about m.

The sender’s privacy is also ensured thanks to the hidden commitment on their vector F,
that is statistically hiding, but also with the noise-flooding in the final ciphertext (d̃, d̃′) that
hides the evaluated circuit too, and thus the vector F, but only reveals 〈F, Φ(m)〉: the sender’s
privacy is statistical.

Security against a Malicious Sender. The goal of our work was to enhance security a
against malicious sender, which can only impact the correctness, as the sender does not receive
any information: thanks to the additional proofs, the receiver has a guarantee of correct output
(d̃, d̃′) and correct decryption.

Contributions. During all the descriptions, we have shown the correctness and soundness
of the commitments and proofs. Soundness differs for interactive proofs (with εs = 2−30) and
non-interactive proofs (with εs = 2−λ).

Knowledge-soundness comes from the linear-only extractability of the encoding scheme:
the above soundness proves the extracted polynomials are valid witnesses, and satisfy all the
equations.

Thanks to the hiding commitments and the zero-knowledge proofs, the above global proof
is also zero-knowledge from the prover’s point of view: no information leaks on their private
inputs.

Succinctness. Beside the security, this is our main goal: the proof essentially consists of a few
millions encodings, plus a similar number of zero-knowledge proofs: communication complexity
only depends on the security parameter. Concrete sizes for the proofs are provided on Figure 2,
but we would first like to show that our construction is asymptotically succinct in the case of
OPE: we want to evaluate f(m) for a polynomial f of degree N , using the FV FHE scheme, and
the above SNARK.

Ciphertexts to be sent: Let us consider any constant d ∈ N, and define the basis b = d(N +
1)1/d+1e. Then, any k ∈ [[0;N ]] can be written in basis b as

∑d
i=0 xib

i, with xi ∈ [[0; b−1]]. Hence,

from the ciphertexts of all the powers mxib
i

for xi ∈ [[0; b − 1]] and i ∈ [[0; d]], one can compute
ciphertexts of all the powers. The verifier will thus have to send (d + 1)b ciphertexts, where
bd ∼ N so about dN1/d ciphertexts, and the prover will be able to rebuild all the ciphertexts
with circuits of maximal multiplicative depth d.
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The Receiver’s Privacy: As recalled in Appendix E, the semantic security of the FV scheme
relies on the decision Ring-LWE problem, which is related to the SIVP problem with some
approximation factor γ(n) [PRS17]. If we take σ = αq =

√
n, for the Gaussian distribution of

the secret key and the noise, then we have γ(n) ≤ q
√

log n, which will be polynomial in n, in
our case, as shown below.

The Sender’s Privacy: In order to hide the evaluated circuit, we add some noise to the final
result: in order to make the global noise statistically independent of the circuit, we add a noise
2λ times larger than the original noise. We discuss below the original noise for the correctness,
and we will then multiply it by 2λ. The proof of correct noise does not exclude a noise that is
a bit larger, which even improves the sender’s privacy.

Correctness: As recalled in Appendix E, using the [LN14] noise derivation formula, the error
noise growth after having evaluated a sequence of d multiplications with a fresh ciphertext is
bounded by Cd1V + dCd−1

1 C2 = Cd−1
1 · (C1V + dC2), where:

C1 ≤ 11tn5/2 C2 ≤ 20n
3
2 t2(n+ `) V ≤ 201n2

With reasonable assumptions on our parameters we find the correctness result on this noise,
and also when it is greatened with the noise flooding, as detailed in Appendix E.

Communication: With theses parameters, for a fixed constant d, with N = nd,

log t ≈ (d+ 1) log n log q ≈ 3(d+ 1) log t ≈ 3(d+ 1)2 log n.

A ciphertext thus consists of 2n elements in Zq: 6(d + 1)2n log n bits each. The verifier first
sends (d + 1)

⌈
(N + 1)1/d+1

⌉
≈ dnd/d+1 ciphertexts, so approximately 6d(d + 1)2n2−1/d+1 log n

bits, which is in O(n2 log n) = Õ(N2/d).

The size of the encoding being only linearly impacted by the size of q, we have a proof size
in Õ(1) when N grows. This provides the succinctness of the proof.

5 Applications

The protocol described in this paper can be deployed for several applications, depending on
the function φ defining the receiver vector (φ(m, 0), . . . , φ(m, N)) from which we get the scalar
product with the sender’s vector. Hereafter we detail the cases of PSI (using OPE), and of
SPIR.

5.1 Application to Private Set Intersection

As already explained, we can apply this technique to PSI, where the receiver owns a set X =
{x1, . . . , xa} of cardinality #X , the sender a set Y = {y1, . . . , yb} of cardinality #Y, and the
receiver wants to learn the intersection. We consider the case where #Y is much larger than
#X , and hope to get a protocol essentially linear in #X only. To this aim, we follow the basic
approach from [FNP04], with the polynomial P (Y ) =

∏N
i=1(Y − hi) committed once for all in

P ∗, where the values hi ∈ Rt encode the elements yi in the sender’s set, and the degree N = #Y.
Then the receiver wants to check whether P (xi) = 0 on every input xi.

Thanks to the verifiability of our proof, and even the knowledge-soundness of our com-
mitments, our PSI protocol is secure against malicious senders, as they cannot use distinct
polynomials as P in each execution.

The protocol can be adapted to support adding elements to the sender’s set, with a new
check to make sure the old sender’s polynomial divides the new one which only has additional
roots.
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|N | |n| d ` S |t| |q| Receiver Commun. |N | Sender Communications
FHE

Security
Total
Size

εs : 2−30 ; 2−80 ; 2−128

20 14 4 14 21 47 656 100 218 MB 2133 8 MB 74 MB 267 MB
25 15 5 16 16 48 753 251 636 MB 2430 13 MB 137 MB 503 MB
30 14 5 16 11 48 753 81 583 MB 2434 24 MB 271 MB 1.03 GB
30 15 5 15 20 56 839 209 1.3 GB 2693 9 MB 90 MB 324 MB
35 15 5 15 15 56 839 209 2.28 GB 2698 14 MB 149 MB 550 MB
35 15 5 14 25 66 922 179 2.51 GB 2947 6 MB 54 MB 207 MB
40 15 5 15 10 56 839 209 4.01 GB 2703 26 MB 317 MB 1.2 GB

Fig. 2. Parameters and Security Bounds for the Fully Homomorphic Encryption (FHE) and the Proof, with
t ≥ 2S ·4N`. FHE size encompasses all the ciphertexts sent by an honest-but-curious receiver, and the proof sizes
columns encompass all the elements the sender (with enforced honest behavior) sends back, including cleartexts.
|x| is the bit-length of x.

5.2 Application to Symmetric Private Information Retrieval

In the Symmetric PIR setting, the sender owns a set Y = {y1, . . . , yN} of cardinality N , and
the receiver wants to retrieve an element of the sender’s set with a private index µ. To this aim,
the sender defines F as a vector of representations of their set elements in Rt, the receiver a
representation m = τ(µ) of their index µ in Rt (optimizations could be made using a smaller
space than Rt), and we apply our scheme with φ(m, j) = δµ,j , where δ is the Kroenecker

symbol. Writing µ and j in the basis b with µ =
∑d

k=0 µkb
k and j =

∑d
k=0 jkb

k, where the
µk, jk ∈ [[0; b− 1]]:

φ(τ(µ), j) = δµ,j = δ∑d
k=0 µkb

k,
∑d
k=0 jkb

k =

d∏
k=0

δµk,jk =

d∏
k=0

φ(τ(µk), jk)

So sending the encryptions of ψ(m, k, i) = φ(τ(µi), k) = δµi,k for i ∈ [[0; d]], k ∈ [[0; b − 1]]
allows the sender to calculate all the required ciphertexts with circuits of multiplicative depth
d. Because bd ∼ N , the receiver sends (d + 1)b ≈ dN1/d ciphertexts. This is the same number
of ciphertexts as in the PSI application.

This can also be adapted to growing sender databases, adding new elements as coefficients
of the sender polynomial and making sure the difference of the new one and the old one only
has monomials of a specified degree range.

5.3 Experiments

Parameters and Sizes. Concrete sizes are provided in Figure 2, for one execution of our
OPE protocol on a polynomial of degree N . Security bounds on the privacy of FHE use the
LWE estimator [APS15], for N between 220 and 240, for a variable security margin S ≥ 6 in
t ≥ 2S × 2`D. Indeed, the size of the proof depends a lot on Λ. The larger N/n is, the shorter
the proof, but S also has a huge impact, as shown on Figure 2, when S makes Λ decrease, with
the number of encodings. However, when S grows, so does t, which can lower FHE security and
make the FHE ciphertexts heavier. In Figure 2, parameter sets either in favor of lowering the
weight of the receiver or the sender’s communications are given for a particular N .

In this figure, the φ parameter was not toggled, as our choice seemed a good compromise
between FHE ciphertexts size and proof sizes, but of course it could be.

One can note these results are quite practical, in particular with the interactive version,
where only a few MBytes have to be sent for the proof, which is much less than for the FHE
ciphertexts, even for high security levels. A python script to test more parameters is provided
in Appendix F, along with a description of all the optimizations performed in this script.
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Supplementary Material

A SNARKs and zk-SNARKs

Let us recall the formal definition of (zero-knowledge) succinct non-interactive arguments of
knowledge (zk-SNARKs), for a Boolean relation R on words or statements u and witnesses w,
of an NP language.

Definition 9 (SNARK). A SNARK is defined by three algorithms,

Gen(1λ,R): on input a security parameter λ ∈ N and an NP relation R, the generation algorithm
outputs a common reference string crs;

Prove(crs, u, w): given a common reference string crs, an instance u and a witness w such that
R(u,w) = true, this algorithm produces a proof π;

Ver(crs, u, π): on input the common reference string crs, an instance u, and a proof π, the verifier
algorithm outputs false (reject) or true (accept);

satisfying the following properties:

Correctness. For all valid statement u (i.e., it exists a witness w such that R(u,w) = true),

Pr
[
Ver(crs, u, π) = false crs← Gen(1λ,R), π ← Prove(crs, u, w)

]
= negl(λ);

Succintness. The size of the proof is linear in the security parameter λ, i.e. independent of
the size of the computation or the witness;

Knowledge-Soundness. for the class Z of auxiliary input generators: for any PPT adversary
AKS there exists a PPT extractor ExtA such that:

Pr

[
Ver(crs, u, π) = true crs← Gen(1λ,R), aux← Z(crs)
∧ R(u,w) = false ((u, π);w)← (AKS‖ExtA)(crs, aux)

]
= negl(λ).

Intuitively, this means that for any prover able to produce a valid proof for a statement in the
language, there exists an efficient extractor that outputs a witness for the given statement;

Zero Knowledge. There exists a stateful interactive polynomial-size simulator Sim = (Simcrs,SimProve)
such that for all stateful interactive distinguishers D, for every large enough security param-
eter λ ∈ N, every auxiliary input aux, the two probabilities are negligibly close:

Pr[R(u,w) = true ∧ D(π) = 1 crs← Gen(1λ,R), (u,w)← D(crs, aux),

π ← Prove(crs, u, w)];

Pr[R(u,w) = true ∧ D(π) = 1 (crs, trap)← Simcrs(1λ), (u,w)← D(crs, aux),

π ← SimProve(crs, trap, u, aux)].

B Encodings

In this section we illustrate the definition of secure encodings with two distinct constructions.
the first provides public verifiability whereas the second will be for designated verifier only.

B.1 Encodings over R = Zq from Pairings

The Knowledge of Exponent Assumption, introduced by Damgard [Dam92] states that given
g and gα in a group G, it is hard to create c and ĉ in that group G so that ĉ = cα, without
knowing a such that c = ga. The only way to compute ĉ being to generate (gα)a.
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In a pairing-friendly setting pk = (G1,G2,GT , q, g, g, e), one can check the appropriate re-
lation between c and ĉ, with gα. We can thus consider such a pairing-friendly setting with
q = p1 · . . . · p` a product of ` prime integers p1 < . . . < p` (possibly with ` 6= 1, so that Zq
is a ring, but not necessarily a field), we denote G = e(g, g). The verification key is vk = gα

for the secret key α
$← Zq: the encoding function Esk is Esk(a) = (ga, gα·a, ga) ∈ G2

1 × G2. It
is clearly L-linearly-homomorphic for any L. The bilinear map e allows public quadratic root
verification, on the elements ga and ga: for example, Q = X1 ·X2 −X3 on encodings of a1, a2

and a3, it can be done with e(ga1 , ga2) · e(g−a3 , g) = e(g, g)Q(a1,a2,a3). This must be done after
image verification of any individual encoding with e(ga, g) = e(g, ga) and e(ga, vk) = e(gα·a, g).
They are both public, as vk is public.

To hide the content of an encoding, one just needs the encoding E′ = (g, gα, g) of 1, multi-
plied by a private random factor inM = Zq. To prove the existence of µ such private coefficients
ci such that Q(a1, . . . , aL) =

∑
cibi mod q is satisfied, one has to prove the knowledge of (ci)i

such that
V = e(g, g)Q(a1,...,aL) =

∏
e(gbi , g)ci

which can be done with a classical Schnorr-proof, from the encodings Esk(bi), as V = e(g, g)Q(a1,...,aL)

can be computed thanks to the pairing. Using the Fiat-Shamir paradigm[FS87], this proof can

be non-interactive: with random exponents ki
$← Zq, the prover sets D =

∏
e(gbi , g)ki , gets

a random challenge e = H(V, {Esk(bi)}, D) ∈ [[0; 2λ]], with 2λ < p1, and generates the proof
Π = ({si = ki − eci mod q}, e) ∈ Zµq × [[0; 2λ]]. The verifier can compute

D′ =
∏

e(gbi , g)si × V e

and check whether e
?
= H(V, {Esk(bi)}, D′). Indeed, if the statement is true∏
e(gbi , g)si × V e =

∏
e(gbi , g)si × (

∏
e(gbi , g)ci)e

=
∏

e(gbi , g)si+eci =
∏

e(gbi , g)ki = D.

The linear-only extractability relies on the above Knowledge of Exponent Assumption, that
requires the hardness of the discrete logarithm in the bilinear generic group model, which
additionally requires all prime factors pk to be large enough (at least 2λ bits, for a security
parameter λ). An encoding is a tuple of elements in E = G2

1 ×G2, and a zero-knowledge proof
of µ scalars contains µ elements from Zq and the challenge in [[0; 2λ]]. If case of multiple proofs,
one can use a unique global challenge e, and the same (ki, si) can be used for the same private
scalars ci. Hence, globally, the size if thus µ′ elements from Zq where µ′ is the total number of
private scalars, independently of the number of equations, plus one challenge. The requirement
of large prime factors will be prohibitive when used with Fully Homomorphic Encryption, as
this will make quite large q, the modulus of the ciphertext space. We thus do not detail more.

B.2 Encodings over R = Zq from a Linear-Only Encryption Scheme

Given a linear-only encryption scheme (Enc,Dec) from Zq onto C, for any integer q, one chooses a

random private element α
$← Z∗q , to be the secret key of the encoding. Then, pk is the public key

of the encryption scheme, while vk is α together with the secret decryption key of the encryption
scheme. It is thus private. Then, the encoding function Esk is Esk(a) = (Enc(a),Enc(α·a)) ∈ C×C.
It is clearly linearly-homomorphic from an additively-homomorphic encryption scheme. The
decryption algorithm allows any root verification using the decryption key in vk, while the
image verification tests whether the two decryption values verify the secret ratio α. The linear-
only extractability depends on the specific encryption scheme: but either the encryption scheme
is fully/somewhat homomorphic, or this property is satisfied. An encoding is a pair of elements
in E = C × C.
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More concretely, one can use Paillier encryption scheme [Pai99] with a large RSA modulus

N , the encryption of x ∈ ZN is E = (1 +N )x · rN mod N 2, for r
$← Z∗N . The ciphertext space

is thus C = Z∗N 2 . For the decryption, one needs the value ϕ = ϕ(N ) which is equivalent of the
knowledge of the factorisation of N : as ϕ(N 2) = Nϕ, Eϕ = (1 +N )xϕ = 1 + xϕ · N mod N 2.
If ϕ is invertible modulo N , one can extract x modulo N .

For the encoding, the public key pk is thus the modulus N , the secret key sk is a random
element α

$← Z∗N , and the verification key vk is the decryption key ϕ(N ) and the secret value
α:

– Esk(a) = ((1 +N )a · rN0 mod N 2, (1 +N )α·a · rN1 mod N 2), for r0, r1
$← Z∗N ;

– Verifyvk(C0, C1) first decrypts both ciphertexts using ϕ(N ) to get x0, x1 mod N , and checks
whether x1 = α · x0 mod N .

An encoding is thus 4 logN bit-long.

We want an encoding on Zq, one can thus take N > q to encode elements x ∈ [[0; q − 1]].
Decoding first decrypts both ciphertexts modulo N , with the elements in [[−N/2;N/2]], checks
the relation with α modulo N , and reduces it again modulo q in [[0; q−1]] to extract the encoded
value in Zq. For further verifications (quadratic checks), one just considers the decryption of
the first ciphertext in [[−N/2;N/2]], and relations among the cleartexts.

From L ciphertexts Ei = (1 +N )xi · riN mod N 2, for ri
$← Z∗N , one can compute the linear

combination with coefficients smaller than q,
∏
Ecii = (1 + N )

∑
cixi · (

∏
rcii )N , which is an

encryption of
∑
cixi mod N . It decodes to

∑
cixi if |

∑
cixi| < N/2: we thus have to take

N > 2L · q2 if the encodings are fresh encodings that encrypt elements in [[0; q − 1]]. For a
quadratic check, using vk, the verifier can decrypt all the encodings modulo N and reduce them
modulo q to check the relation modulo q. There is no more constraint on N .

To hide the content of an encoding, even with respect to the owner of the secret key, one
uses a random encoding of a random private mask in [[0; 2λLq2]], to act as a statistically hiding
one-time pad, furthermore randomized with N -th powers to remove any information in the
initial random coins. In this case, one needs N > 2L · 2λq2 for correct decryption modulo N ,
without wrapping around modulo N before the reduction modulo q. Hence M = [[0; 2λLq2]].

About the zero-knowledge verification ZKLQCheck(Q, (Ei)i; (E′i)i), to prove the existence of
µ coefficients ci ∈M such that Q(a1, . . . , aL) =

∑
cibi mod q is satisfied, on the encodings E1 =

Esk(a1), . . . , EL = Esk(aL), E′1 = Esk(b1), . . . , E′µ = Esk(bµ), one has to prove the knowledge
of (ci) in V = Eval({E′i}, {ci}), for i ∈ [[1;µ]], where the verifier knows, after decryption of the
encodings (Ei)i and quadratic computations modulo q, V ′ = (1 + N )Q(a1,...,aL) mod q mod N 2.
One wants to prove that V and V ′ decrypt to the same value modulo q: V = V ′ × (1 +
N )qr1 · rN0 mod N 2, but for unknown values r0, r1. We stress that we only consider the first
ciphertext in the encodings. One thus proves the knowledge of ci ∈ M for i ∈ [[1;µ]] such that
V =

∏
E′i

ci = V ′×(1+N )qr1 ·rN0 mod N 2. The ci’s are the masks in [[0; 2λLq2]], but one can use
their q-reduction. Then, as the encodings E′i can encrypt elements in [[−Lq2;Lq2]], |r1q| ≤ µLq3.

For the latter zero-knowledge proof, the prover chooses random ki
$← Zq, with additional

noise ν ′
$← [[0; 2λLq2]] and ν

$← Z∗N , to hide any extra information beyond the modulo q relation,

and sets D =
∏
E′i

ki · (1 +N )qν
′
νN mod N 2, gets a random challenge e (possibly derived from

(Q, (Ei)i, (E
′
i)i, D) in [[0; 2λ

′ − 1]] and outputs the proof Π = (D, (si = ki − eci mod q)i) ∈
ZN 2 × Zµq .

For the moment, we use a different space [[0; 2λ
′ − 1]] for the challenge, with λ′ possibly

smaller than λ or − log εs, in which case − log εs/λ
′ parallel repetitions should be performed for

correct soundness. One can check

e← H(Q, (Ei)i, (E
′
i)i, D) D′ ←

∏
E′i

si · (V ′)e mod N 2 Dec(D/D′)
?
= 0 mod q
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Indeed,

D′ =
∏

E′i
si × (V ′)e =

∏
E′i

si × V e · (1 +N )−eqr1 · r−eN0

=
∏

E′i
ki−eci ×

∏
E′i

eci × (1 +N )−eqr1 · r−eN0

=
∏

E′i
ki · (1 +N )−eqr1 · r−eN0 = D · (1 +N )−q(er1+ν′) · (re0ν)−N mod N 2.

One must make sure that 2eqr1 ≤ N : with N ≥ 2µL · tq3 (where t is the smallest prime
factor of q and 2λ

′
< t), there is no reduction modulo N before the reduction modulo q. The

zero-knowledge proof Π of µ scalars thus contains 2 logN + µ× log q bits.
In case of multiple equations involving the same secret ci, the same challenge is used, and

the same (ki, si), reducing the bit-size to 2 logN×#Equations + log q×#Secrets.

B.3 Proofs for a Hiding Commitment in R2

Let us illustrate on the proof of validity of a hiding commitment in R2, as presented in Sec-

tion 3.3. Commit∗(u,Zq[Xn−1, Y N ]), outputs the tuple C∗ = (E∗u = (E∗k , E
(2∗)
k )k, Π

∗
u), where for

all indices k ∈ [[1;K]] and m ∈ [[1;M ]], with ρk, ρ
′
k

$←M and σk, σ
′
k ∈ Z∗N :

E∗k ←
∏
j,i

E
uj,i
k,j,i × E

ρk
k,0,0 × σ

N
k mod N 2

E
(2∗)
k ←

∏
j,i

E
(2)
k,j,i

uj,i × Eρ
′
k
k,0,0 × σ

′
k
N

mod N 2

with ZKLQCheck(X1 −X2 ·X3, E
(2∗)
k , E∗k , E

(2)
k,0,0;Ek,0,0, E

(2)
k,0,0) = true for which the verifier can

compute the plaintexts in E
(2∗)
k and E∗k , and then the quadratic relation ak, that should be

ak = ρ′k × 1− ρk × r
(2)
k mod q:

V ′k = (1 +N )ak = (1 +N )ρ
′
k×1−ρk×r

(2)
k mod q mod N 2

and the encodings in the proof Π∗u :

V ∗k,m ← (1 +N )vm(sk,tk)+ρk,m mod q · σNk,m mod N 2

W ∗k,m ← (1 +N )wm(sk)+ρ′k,m mod q · σ′k,m
N

mod N 2

for random ρk,m, ρ
′
k,m

$← M, chosen by the prover for their privacy, and some unknown

σk,m, σ
′
k,m ∈ Z∗N , using random xm, ym

$← Zq obtained by a hash function, and

ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true

where

E
(m)
k,1,0 = Ek,1,0 · E−ymk,0,0 mod N 2 E

(m)
k,0,1 = Ek,0,1 · E−xmk,0,0 mod N 2

Again, the verifier can compute the plaintexts in the input encodings, and the plaintext bk,m to
be proven, that should be bk,m = ρk + u(xm, ym)− ρk,m(tk − ym)− ρ′k,m(sk − xm) mod q. They
build V ′k,m:

V ′k,m = (1 +N )bk,m = (1 +N )ρk+u(xm,ym)−ρk,m(tk−ym)−ρ′k,m(sk−xm) mod q mod N 2
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As the same ρk and the same um = u(xm, ym) are used many times, the prover first randomly

chooses Tk, T
′
k, vm, Tk,m, T

′
k,m

$← [[0; q − 1]], ν ′k, ν
′
k,m

$← [[0; 2λLq2 − 1]], νk, νk,m
$← Z∗N and sets

Dk = E
T ′k
k,0,0 · (E

(2)
k,0,0)−Tk(1 +N )qν

′
kνNk mod N 2

Dk,m = ETkk,0,0 × E
vm
k,0,0 × E

(m)
k,1,0

−Tk,m × E(m)
k,0,1

−T ′k,m
(1 +N )qν

′
k,mνNk,m mod N 2

The huge range for ν ′k, ν
′
k,m

$← [[0; 2λLq2−1]] is to hide the random values even if then encodings
come from L-linear combinations (which is not the case in this specific proof, but will be for
the relation (6), with vκ).

A challenge e ∈ [[0; 2λ
′−1]] is provided by the verifier or drawn from a hash function evaluated

on the statement to be proven and all the (Dk)k and (Dk,m)k,m, and the proof eventually consists
of Π = ((Dk)k, (Dk,m)k,m, (Sk, S

′
k)k, (wm)m, (Sk,m, S

′
k,m)k,m), where

Sk = Tk − eρk mod q S′k = T ′k − eρ′k mod q

wm = vm − eum mod q

Sk,m = Tk,m − eρk,m mod q S′k,m = T ′k,m − eρ′k,m mod q

It thus contains K(M + 1) ciphertexts (the number of equations), of 2 logN bits, and 2K(M +
1) +M scalars in [[0; q − 1]] (the number of private masks), of less than log q bits.

The verifier can first compute the challenge e, and

D′k = E
S′k
k,0,0 · (E

(2)
k,0,0)−Sk × (V ′k)e mod N 2

D′k,m = ESkk,0,0 × E
wm
k,0,0 × E

(m)
k,1,0

−Sk,m × E(m)
k,0,1

−S′k,m × (V ′k,m)e mod N 2

They then decrypt all the Dk/D
′
k and Dk,m/D

′
k,m, that should be 0 modulo q, as there is no

reduction modulo N before the reduction modulo q, thanks to the constraint on N > 2µL ·2λq3.

Soundness. After a rewinding, with a different challenge ẽ 6= e, such that D′k and D̃′k decrypt
to the same value modulo q, and D′k,m and D̃′k,m decrypt to the same value modulo q, where

D′k = E
S′k
k,0,0 · (E

(2)
k,0,0)−Sk × (V ′k)e mod N 2

D̃′k = E
S̃′k
k,0,0 · (E

(2)
k,0,0)−S̃k × (V ′k)ẽ mod N 2

D′k,m = ESkk,0,0 × E
wm
k,0,0 × E

(m)
k,1,0

−Sk,m × E(m)
k,0,1

−S′k,m × (V ′k,m)e mod N 2

D̃′k,m = ES̃kk,0,0 × E
w̃m
k,0,0 × E

(m)
k,1,0

−S̃k,m × E(m)
k,0,1

−S̃′k,m × (V ′k,m)ẽ mod N 2

we have both

Ak = E
S′k−S̃

′
k

k,0,0 · (E(2)
k,0,0)S̃k−Sk × (V ′k)e−ẽ mod N 2

Ak,m = ESk−S̃kk,0,0 × Ewm−w̃mk,0,0 × E(m)
k,1,0

S̃k,m−Sk,m × E(m)
k,0,1

S̃′k,m−S
′
k,m × (V ′k,m)e−ẽ mod N 2

decrypt to 0 modulo q, while the small size of the answers and the evaluation of V ′k and V ′k,m by

the verifier on small scalars guarantees no wrap-up modulo N : qαk, qαk,m < 2µLq3 + 2λ
′
q < N ,

even with encodings generated from L-linear combinations in

Ak = (1 +N )qαkβNk mod N 2 Ak,m = (1 +N )qαk,mβNk,m mod N 2
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If we assume ẽ− e invertible modulo q, and set ε = (ẽ− e)−1 mod q, we can compute

ρ′k ← (S′k − S̃′k) · ε mod q ρk ← (Sk − S̃k) · ε mod q

um ← (wm − w̃m) · ε mod q

ρk,m ← (Sk,m − S̃k,m) · ε mod q ρ′k,m ← (S′k,m − S̃′k,m) · ε mod q

all smaller than q

E
ρ′k
k,0,0 · (E

(2)
k,0,0)−ρk = V ′k · (1 +N )qα

′
kγNk mod N 2

Eρkk,0,0 × E
um
k,0,0 × E

(m)
k,1,0

−ρk,m × E(m)
k,0,1

−ρ′k,m
= V ′k,m · (1 +N )qα

′
k,mγNk,m mod N 2

Eventually, if N > 2µLq3, all the exponents to (1 +N ) remain smaller than N , which proves
the soundness, until ẽ− e is invertible: one can take 2λ

′
smaller than the smallest prime factor

of q, so that any non-trivial difference will always be invertible, and iterate several times in
parallel with multiple challenges e, to increase soundness. For N , this is safe to take it larger
than 2µL2λq3. As µ will always be smaller than 4, in each individual equations, we can take
N > L2λ+3q3.

Zero-Knowledge. Thanks to the random masks inM, the plaintexts are statistically hidden. The
proofs contain tuples ((Dk)k, (Dk,m)k,m, (Sk, S

′
k)k, (wm)m, (Sk,m, S

′
k,m)k,m), where the cipher-

texts statistically hide their representations modulo q, and the scalars are uniformly distributed
in [[0; q − 1]]. Hence, a statistical zero-knowledge proof that guarantees the hiding property of
the commitments.

C Commitments

C.1 Commitments in Additional Subspaces

In our proof of inner product, we will use polynomials in multiple subspaces of R = Zq[X,Y ].
In addition to R2 = Zq[Xn−1, Y N ], we will use R1 = Zq[Xn−1], R3 = Zq[Y N ], and Zq[Y 2N ]
with no term in Y N , denoted R4 = Zq[Y 2N\N ]. For this, we draw additional random elements

r
(1)
k , r

(3)
k , r

(4)
k

$← Z∗q for k ∈ [[1;K]], and set:

E
(1)
k,i ← E(r

(1)
k · s

i
k) i ∈ [[0;n− 1]]

E
(3)
k,j ← E(r

(3)
k · t

j
k) j ∈ [[0;N ]]

E
(4)
k,j ← E(r

(4)
k · t

j
k) j ∈ [[0; 2N ]] \ {N}

and we extend

Ek,j,i ← E(sik · t
j
k) i ∈ [[0;n− 1]], j ∈ [[0; 2N ]]

Note that D becomes max{N + n − 1, 2N} = 2N , for N ≥ n. We then commit the polynomi-
als Commit(u,Zq[Y N ]) or Commit(u,Zq[Y 2N\N ]) with appropriate twin encodings, that can be
verified as above: for each pair k 6= k′ of valid encodings:

uk(Y )− uk′(Y
′) = u(Y )− u(Y ′) = (Y − Y ′) · v(Y, Y ′)

and so for a random ym
$← Zq chosen by the prover:

u(Y )− u(ym) = (Y − ym) · v(Y, ym) = (Y − ym) · vm,
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from
Πu = (um ← u(ym), (Vk,m ← E(vm(tk)))k)m

as

QCheck(X1 − um − (X2 − ym) ·X3, Ek, Ek,1,0, Vk,m) = true

and the rest of the proof follows as in Section 3.2, with thus Πu = (um, (Vk,m)k)m, for k ∈ [[1;K]],
m ∈ [[1;M ]].

C.2 Univariate Hiding Commitments

Commit∗(u,Zq[Y N ]), the hiding commitment for a univariate polynomial u(Y ) =
∑N

j=0 ujY
j ∈

R3 = Zq[Y N ], outputs the tuple C = (Eu, (Ek, E
(3∗)
k )k, Πu), where for all indices k ∈ [[1;K]] and

m ∈ [[1;M ]] with ρk
$←M:

Ek ← Eval({Ek,j,0}j , {Fk}, {uj}j , {ρk}) = E(u(tk) + ρk · rk),

E
(3∗)
k ← Eval({E(3∗)

k,j,0}j , {F
(3∗)
k }, {uj}j , {ρk}) = E(r

(3∗)
k (u(tk) + ρk · rk))

with QCheck(X1 −X2 ·X3, E
(3∗)
k , Ek, E

(3∗)
k,0 ) = true

and a proof, using random ym
$← Zq sent by the verifier, of u(Y ) − u(ym) = (Y − ym) · vm(Y )

which can be checked with Πu = (Vk,m ← E(vm(tk) + ρk,m · rk))k,m for random ρk,m
$← Z∗q ,

chosen by the prover for their privacy, and

ZKLQCheck(X1 − (X2 − ym) ·X3, E
∗
k , Ek,1,0, Vk,m;Ek,0,0, F

(t)
k , Fk) = true

where one proves the knowledge of the 3 scalars um = u(ym), ρ′k,m = ρk − ρk,m · ym and ρk,m so
that the above relation is equal to

um × 1 + ρk,m × rk · tk − ρ′k,m × rk mod q.

The same analysis as for the R2 case can be done for the soundness of the proof, but with less
strict bounds, as degrees are lower.

C.3 Complete Construction of the Commitment

In the following, we are considering q = p1 · . . . · p`, a composite modulus q, with ` prime factors
p1 < . . . < p`. We will work in subspaces of R = Zq[Xn−1, Y 2N ]. We will consider the subspaces
R1 = Zq[Xn−1], R2 = Zq[Xn−1, Y N ], R3 = Zq[Y N ], and R4 = Zq[Y 2N\N ], hence D = 2N , so
we will assume t ≥ 128N`.

Setup of the System: Setup(1λ,R, (Ri)i) first runs (pk′, vk′)← Gen(1λ), chooses K tuples of

random elements sk, tk
$← Z∗q , as well as K tuples of random elements r

(1)
k , r

(2)
k , r

(3)
k , r

(4)
k ,

$← Z∗q ,
to limit the combinations of the bases. Then, for k ∈ [[1;K]], one sets

R = Zq[Xn−1, Y N ] + Zq[Y 2N ] Ek,j,i ← E(sik · t
j
k) (i, j) ∈ ([[0;n− 1]]× [[0;N ]])

∪ ({0} × [[N + 1; 2N ]])

R1 = Zq[Xn−1] E
(1)
k,i ← E(r

(1)
k · s

i
k) i ∈ [[0;n− 1]]

R2 = Zq[Xn−1, Y N ] E
(2)
k,j,i ← E(r

(2)
k · s

i
k · t

j
k) i ∈ [[0;n− 1]], j ∈ [[0;N ]]

R3 = Zq[Y N ] E
(3)
k,j ← E(r

(3)
k · t

j
k) j ∈ [[0;N ]]

R4 = Zq[Y 2N\N ] E
(4)
k,j ← E(r

(4)
k · t

j
k) j ∈ [[0; 2N ]]\{N}

Then, the public key of the commitment scheme is set to pk′ with all these encodings, while the
verification key is vk′. For R, we can limit to Zq[Xn−1, Y N ] + Zq[Y 2N ], with (n + 1) × N + n
encodings in the public key, sent once for many proofs.
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Commitment Generation: there are two commitment algorithm, with or without the hiding
property.

Non-Hiding Commitment. We have defined commitments on specific subspaces:R1 = Zq[Xn−1],
R2 = Zq[Xn−1, Y N ], R3 = Zq[Y N ], and R4 = Zq[Y 2N\N ]:

Commit(u,Zq[Xn−1]): it outputs C = (Eu = (Ek, E
(1)
k )k, Πu), for k ∈ [[1;K]], where

Ek ← E(u(sk)) E
(1)
k ← E(r

(1)
k · u(sk)),

and for all m ∈ [[1;M ]]: xm
$← Zq chosen by the verifier (or from a hash function for a

non-interactive proof), and then

Πu = (um ← u(xm), (Wk,m ← E(wm(sk)))k)m

where wm is such that u(X) − um = (X − xm) · wm(X): in total, these are 2K encodings,
plus M scalars and KM encodings for the proof.

Commit(u,Zq[Xn−1, Y N ]): it outputs C = (Eu = (Ek, E
(2)
k )k, Πu), for k ∈ [[1;K]], where

Ek ← E(u(sk, tk)) E
(2)
k ← E(r

(2)
k · u(sk, tk)),

and for all m ∈ [[1;M ]]: (xm, ym)
$← Z2

q chosen by the verifier (or from a hash function for a
non-interactive proof), and then

Πu = (um ← u(xm, ym), (Vk,m ← E(vm(sk, tk)),Wk,m ← E(wm(sk)))k)m

where vm and wm are such that

u(X,Y )− um = (Y − ym) · vm(X,Y ) + (X − xm) · wm(X).

In total, these are 2K encodings, plus M scalars and 2KM encodings for the proof.

Commit(u,Zq[Y N ]): it outputs C = (Eu = (Ek, E
(3)
k )k, Πu), for k ∈ [[1;K]], where:

Ek ← E(u(tk)) E
(3)
k ← E(r

(3)
k · u(tk)),

and for all m ∈ [[1;M ]]: ym
$← Zq chosen by the verifier (or from a hash function for a

non-interactive proof), and then

Πu = (um ← u(ym), (Vk,m ← E(vm(tk)))k)m

where vm is such that u(Y )−um = (Y − ym) · vm(Y ). In total, these are 2K encodings, plus
M scalars and KM encodings for the proof.

Commit(u,Zq[Y 2N\N ]): as the previous case but replacing r(3) with r(4) and analogously (3)
indices with (4) indices.

Hiding Commitment. We only focus on R2 and R3:

Commit∗(u,Zq[Xn−1, Y N ]): it outputs C∗ = (E∗u = (E∗k , E
(2∗)
k , πk)k, Π

∗
u), for k ∈ [[1;K]], where,

with ρk, ρ
′
k

$←M, where M is the appropriate masking set:

E∗k ← Eval({Ek,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρk}) = E(u(sk, tk) + ρk)

E
(2∗)
k ← Eval({E(2)

k,j,i}j,i, {Ek,0,0}, {uj,i}j,i, {ρ
′
k}) = E(r

(2)
k · u(sk, tk) + ρ′k)

with πk = {ZKLQCheck(X1 −X2 ·X3, E
(2∗)
k , E∗k , E

(2)
k,0,0;Ek,0,0, E

(2)
k,0,0) = true}
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and for all m ∈ [[1;M ]]: (xm, ym)
$← Z2

q chosen by the verifier (or from a hash function for a

non-interactive proof), and then for random ρk,m, ρ
′
k,m

$← Z∗q chosen by the prover for their
privacy:

Π∗u = (V ∗k,m ← E(vm(sk, tk) + ρk,m),W ∗k,m ← E(wm(sk) + ρ′k,m)k,m

where vm and wm are such that

u(X,Y )− u(xm, ym) = (Y − ym) · vm + (X − xm) · wm

with

πk,m = {ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true}

KM additional zero-knowledge proofs of knowledge of 4 scalars ρk,m, ρ′k,m, ρk, and um =
u(xm, ym). In total, this is 2K encodings, plus KM encodings for the proof, and KM zero-
knowledge proofs of 4 scalars.

Commit∗(u,Zq[Y N ]): it outputs C∗ = (E∗u = (E∗k , E
(3∗)
k , πk)k, Π

∗
u), for k ∈ [[1;K]], where, with

ρk, ρ
′
k

$←M:

Ek ← E(u(tk) + ρk) E
(3∗)
k ← E(r

(3)
k · u(tk) + ρ′k)

with πk = {ZKLQCheck(X1 − X2 · X3, E
(3∗)
k , E∗k , E

(3)
k,0,0;Ek,0,0, E

(3)
k,0,0) = true}, and for all

m ∈ [[1;M ]]: ym
$← Zq chosen by the verifier (or from a hash function for a non-interactive

proof), and then for random ρk,m
$← Z∗q chosen by the prover for their privacy:

Π∗u = (V ∗k,m ← E(vm(tk) + ρk,m))k,m

for vm such that u(Y ) − u(ym) = (Y − ym) · vm(Y ) with KM additional zero-knowledge
proofs of knowledge of 3 scalars ρk,m, ρk, and um = u(ym). In total, this is 2K encodings,
plus KM encodings for the proof, and KM zero-knowledge proofs of 3 scalars.

Validity Check: it also depends on hiding or non-hiding commitments and on the space Rπ.

Non-Hiding Commitment. Validity(C,Rπ) first checks the twin encodings, for k ∈ [[1;K]]:

R1 QCheck(X1 −X2 ·X3, E
(1)
k , Ek, E

(1)
k,0) = true

R2 QCheck(X1 −X2 ·X3, E
(2)
k , Ek, E

(2)
k,0,0) = true

R3,R4 QCheck(X1 −X2 ·X3, E
(3/4)
k , Ek, E

(3/4)
k,0 ) = true

and then, for k ∈ [[1;K]] and m ∈ [[1;M ]], either

R1 QCheck(X1 − um − (X2 − xm) ·X3, Ek, Ek,0,1,Wk,m) = true

R2 QCheck(X1 − um − (X2 − ym) ·X3 − (X4 − xm) ·X5,

Ek, Ek,1,0, Vk,m, Ek,0,1,Wk,m) = true

R3,R4 QCheck(X1 − um − (X2 − ym) ·X3, Ek, Ek,1,0, Vk,m) = true
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Hiding Commitment. Validity∗(C,Rπ) first checks the twin encodings, for k ∈ [[1;K]]:

R2 QCheck(X1 −X2 ·X3, E
(2∗)
k , Ek, E

(2)
k,0,0) = true

R3 QCheck(X1 −X2 ·X3, E
(3∗)
k , Ek, E

(3)
k,0) = true

and then, for k ∈ [[1;K]] and m ∈ [[1;M ]], the zero-knowledge proofs

R2 ZKLQCheck(X1 − (X2 − ym) ·X3 − (X4 − xm) ·X5,

E∗k , Ek,1,0, V
∗
k,m, Ek,0,1,W

∗
k,m;Ek,0,0, Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true

R3 ZKLQCheck(X1 − (X2 − ym) ·X3, Ek, Ek,1,0, V
∗
k,m;Ek,0,0, E

(m)
k,1,0, E

(m)
k,0,1) = true

D Proving Correct Noise

In the case of an honest choice of the rk’s by the sender, coefficients of u follow a Gaussian
distribution on Z with standard deviation Z · σ′. For their privacy, the sender needs 10Z · σ′ ≥
2λ · B′, where B′ is the maximal error in the clean ciphertext (d, d′). This bound is analysed
later.

Eventually, the publication of the linear combination r reveals information about the rk’s,
and the larger η is, the more information leaks. For the check on r to detect large coefficients,
one should avoid similar coefficients to compensate, and so with similar random coefficients in
the linear combination: false negative will happen with probability bounded by 1/2η. We can
reduce it to εs/3 with θ iterations: (1/2η)θ ≤ εs/3, with θ ≥ log2(3/εs)/(1+log2 η). On the other
hand, we need to make sure that enough entropy remains: entropy of Gaussian random variables
rk,i is log2(σ′

√
2πe), so globally there are Z log2(σ′

√
2πe) bits of entropy revealed. With θ linear

combinations, one reveals θ log q bits for each index i. One would like to still have log2(Z·σ′
√

2πe)
bits remaining for true randomness in the noise: Z log2(σ′

√
2πe) ≥ θ log2 q + log2(Z · σ′

√
2πe):

θ = log2(3/εs)/(1 + log2 η) Z · σ′ ≥ 2λ ·B′/10

(Z − 1) log2(σ′
√

2πe) ≥ θ log2 q + log2 Z

On the other hand, for the correctness during the decryption, if u, e1, and e2 follow the same
process, we will need q > 2t · 10Z2 · σ′η · (2nB + 1), as the randomness in the decryption key is
likely bounded by B = 10σ. Hence, q ≥ 2ληZ × 2tB′(2nB + 1), where B′ is the error bound in
the clean ciphertext (d, d′), after deterministic evaluation.

E FHE Parameters

As explained in the preliminaries, we consider the Fan-Vercauteren Fully Homomorphic En-
cryption scheme [FV12].

Notations. Let R be the ring Z[X]/r(X), where r(X) = Xn + 1. Given a polynomial p ∈ R,
we denote ‖p‖∞ the infinity norm, i.e. the max of its coefficients. We also define the polynomial
multiplication expansion factor δ as

δ = max
c,d∈R

{‖c · d‖∞/(‖c‖∞ · ‖d‖∞)}.

By taking the cyclotomic polynomial r(X) = Xn + 1, the worst-case bound for this expansion
factor is δ = n.
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The Fan-Vercauteren FHE. We denote Rt = Zt[X]/r(X) (with r ∈ Zt[X] an irreducible
polynomial of degree n) the plaintext message space and Rq = Zq[X]/r(X) the ciphertext
space, and we denote ∆ = q/t. We will denote χ the Gaussian distribution on Z with standard
deviation σ.

The FV encryption scheme [FV12] defines (p, p′) = (−(a · s + e), a) ∈ R2
q as the public key,

with the coefficients of the secret key s and the error e taken from χ, thereafter reduced modulo
q. A fresh ciphertext of m ∈ Rt can be written as

(c, c′) =
(
p · u + e1 +∆ ·m mod q, p′ · u + e2 mod q

)
,

with coefficients of u, e1, e2 also taken from χ. In order to decrypt, using the secret key s, one
computes

d = c + c′ · s = ∆ ·m− e · u + e2 · s + e1 = ∆ ·m + v mod q

m′ = bd/∆e = b(∆ ·m + v)/∆e = m + bv/∆e mod t

where v = −e · u + e2 · s + e1 is the error term: m′ = m if ‖v‖∞ ≤ ∆/2.
Assuming the coefficients of the error polynomials and the secret key polynomial are bounded

by B, we just require B · (2nB + 1) ≤ ∆/2 for correct decryption. In particular, Pr[‖e‖∞ >

10 · σ, e $← χ] ≤ 2−128.

Semantic Security. From [PRS17]], if 0 ≤ α < 1 be some real, and the modulus q is such
that σ = αq = ω(1), then there is a polynomial quantum reduction from the SIVP prob-
lem with approximation factor γ(n) to the average-case decision Ring-LWE where γ(n) ≤
max{ω(

√
n log n/α),

√
2n}. For the SIVP problem to be hard, we need γ(n) to be polynomial

in n. And the semantic security of the FV scheme relies on the decision Ring-LWE problem.
We can take σ = αq =

√
n, then we have γ(n) ≤ q

√
log n, which will be polynomial in n, in our

case.

Correctness Let ai ∈ Rt be L polynomials and (ci, c
′
i) be L ciphertexts generated with a

circuit of depth d, encrypting mi ∈ Rt. In order to decrypt the linear combination, we compute:

L∑
i=1

ai · ci + s ·
L∑
i=1

ai · c′i =
L∑
i=1

ai

(
ci + s · c′i

)

=

L∑
i=1

ai(∆ ·mi + vi) mod q = ∆ ·
L∑
i=1

ai ·mi +

L∑
i=1

ai · vi mod q

We have the required (L, d)-Rt linear homomorphism property if∥∥∥∥∥
L∑
i=1

ai · vi

∥∥∥∥∥
∞

≤
L∑
i=1

n‖ai‖∞ · ‖vi‖∞ ≤ nt
L∑
i=1

‖vi‖∞ ≤ ∆/2.

Using [LN14] noise derivation formula, the error noise growth after having evaluated a sequence
of d multiplications with a fresh ciphertext is bounded by Cd1V +dCd−1

1 C2 = Cd−1
1 ·(C1V +dC2),

where

C1 = n2tB + 4nt C2 = n2B(B + t2) +
n`q2/`B

2
V = B(2nB + 1)

where

C1 ≤ 11tn5/2 C2 ≤ 20n
3
2 t2(n+ `) V ≤ 201n2
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assuming n ≥ 5, σ =
√
n, B = 10 ·

√
n ≤ t2, and the basis for relinearization w = q2/` ≤ 4t2.

With the additional assumption ` ≤ n, the initial error in the result is bounded by

Lnt · Cd−1
1 ·

(
C1V + dC2

)
≤ Lnt · (11tn5/2)d ·

(
201n2 + 4dt

)
.

With our additional noise-flooding, the error is still bounded by 22λ+4Lnt · (11tn5/2)d ·
(
201n2 +

4dt
)
. For this bound, we take the pessimistic situation of η = 2λ and Z = 16.

With dt ≥ 201n2, it is sufficient to have the condition: 5 · 22λ+4 · t2Lnd · (11tn5/2)d ≤ q/2t.
As t = p1 < . . . < p`, q ≥ t`. We can thus take ` such that

160 · 22λ · Lnd · (11n5/2)d ≤ t`−3−d.

With ` = 3(d + 1), we need t2 ≥ 11n5/2 · (160 · 22λ · Lnd)1/d to have the (L, d)-Rt linear
homomorphism property and noise-flooding. In particular, we will need the (N, d)-Rt linear
homomorphism property: t2 ≥ 11n5/2 · (160 · 22λ ·Nnd)1/d, which will be satisfied as we already
need t ≥ 64 × 24`N ≥ 128`nd, with S = 5, N = nd, and 11n5/2 · (160 · 22λ · Nnd)1/d =
11n7/2 · (160 · 22λ · nd)1/d ≤ 22n7/2+1/d · 2(2λ+8)/d ≤ 25+(2λ+8)/dn4 ≤ 258n4 when d ≥ 5 and
λ = 128. This is less than (128)2 · 244 · n2d · n−6 ≤ (128)2 · n2d ≤ t2 when n ≥ 28.

F Python Script for Parameters

F.1 Parameters Choice

In the application, we performed optimizations on the parameters that were not necessarily
detailed in the main paper description, but will be in this section to make all parameter choices
clearer.
– The security parameter λ is set as 128, to have an 128-bit security;
– The soundness parameter εs is chosen among standard values at 2−30 for interactive proofs

and 2−80 and 2−128 for non-interactive proofs;
– The specific soundness parameter for commitments εc is taken to be less than εs/3νc, where
νc = 14Λ + 5 + 3Z, so that all the commitments are valid excepted with probability less
than εs/3, making up for a third of the possible soundness error.

– The number Λ of points, committed polynomials have to be evaluated in, is taken as Λ =⌈
log2(24/εs)

S+1+log2(N/n)

⌉
, where S is the margin length parameter given by t ≥ 2S · 2D` = 2S · 4N`.

This ensures that Λ times the probability a quadratic relationship with polynomials in βκ
is wrong, 2`n/t ≤ n/(2S+1N), is less than εs/24, and as there are 8 relationships to check,
the error coming from these verifications will not exceed εs/3, making up for a second third
of the possible soundness error;

– We choose σ = 4 and B = 10σ as the corresponding FHE parameters;
– η is the bound of the distribution of the scalars δk ∈ [[−η; η]] being multiplied with small errors

in the noise checks to prove (z∗, z′∗) is correct, where soundness error is also bounded by εs/3,
making up for the last third of the possible soundness error. Because of the noise flooding

constraints, there are Z = 2 +
⌈

λ
log2(η)+1

⌉
of these scalars at each draw, θ =

⌈
2λ/(1+log2 η)

⌉
draws, and the noise flooding constraints add

⌈
λ+ log2(η) + log2(2 + λ

log2(η)+1)
⌉

bits to q;

– Getting the FHE parameters:
– t is taken to be the next prime above 2S · 2D` = 2S · 4N` such that t ≡ 8 mod 3, so that
Rt be a ring product of two large fields of degree n/2 each, and the probability of having a
false (b, b′) decoding to the right value be negligible;
– the `− 1 next primes are then multiplied with t to obtain q;
– the maximal error in FHE ciphertexts after d multiplications is then calculated, and we
check it remains small enough to ensure correctness;
– the FHE security with these parameters is calculated using the external reference estima-
tor [APS15].
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– After these FHE parameters were calculated, a lower bound on the Paillier modulus (2RSAM),
8nNq32λ is given, so that we can be sure the Paillier encodings are never reduced modulo
N . We take |N | (RSAM) as the maximum of this bound and 2048 to ensure satisfactory
security (above 100-bit security).

Then we use the following numbers:
– FHE ciphertexts are on 2n log q bits;
– The receiver sends (d+1)

⌈
(N + 1)1/(d+1)

⌉
of these, and this is how the Global FHE Cipher-

texts Size is calculated;

– The number Λ of points is Λ =
⌈

log2(24/εs)
S+1+log2(N/n)

⌉
;

– The number of commitments, νc = 14Λ+ 3Z + 5;
– The encoding parameters are then calculated for the commitments, depending on c, the

maximal number of prover-generated commitments they will be involved with in a single
quadratic check (see Figure 3);

– The number of times a Zero-Knowledge Proof has to be repeated is taken as
⌈

log2(3νc/εs)
log2 t

⌉
;

– We need for commitments and equations involving c prover-generated commitments

K ≥ log2(3νe/εs)(c+ 1)/S K ≥ (log2(3νc/εs) + 1)(c+ 1)/(S + 1)

M ≥ 3(log2(3Kνc/εs) + 2)/(S + 1)

So we takeK = max{
⌈
(c+ 1)× log2(εc)+1

S+1

⌉
;
⌈
(c+ 1)× log2(3νe/εs)

S

⌉
} andM =

⌈
3× 2+log2(εcK)

S+1

⌉
.

– In the binding case, there are M scalars, with K(M + 2) encodings for the commitment
of a one variable polynomial and 2K(M + 1) encodings for a two variables polynomial.
– In the hiding case, there are always K(M + 1) encodings and 2K(M + 1) + M scalars,
times the number of repetitions.

– Each Paillier encoding holds on 4|N | bits;
– Each proof holds on 2|N |+ 4 log2 q bits.
– All the sizes of the commitments given in figure 4 are then added up and the final size of

the sender’s communications encompasses this and the size of the 6(1 + θ) elements of Rq
directly sent to the receiver.

#Prover-Generated Commitments: c 2 3 4

εc = 2−38 K 26 35 43
M (and binding case #Scalars) 20 20 20
#Equations (hiding case) 2184 2940 3612
#Secrets (hiding case) 4448 5960 7304
#Encodings for 1v Pol. 572 770 946
#Encodings for 2v Pol. 1092 1470 1806

εc = 2−136 K 75 100 125
M (and binding case #Scalars) 62 62 63
#Equations (hiding case) 18900 25200 32000
#Secrets (hiding case) 38048 50648 64252
#Encodings for 1v Pol. 4800 6400 8125
#Encodings for 2v Pol. 9450 12600 16000

Fig. 3. Parameters for Commitments with t ≥ 64`D, four repetitions in the zero-knowledge proofs, εs = 28 · εc,
and νe = 11.
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#variables c
Binding

or
Hiding

Polynomials Domain #commitments

1v 2 B yκ, y
′
κ R4 2Λ

H
q∗, q′∗, q∗κ, q′∗κ R1 2(2Λ+1)

z∗κ, z′∗κ
3 H u∗k, e∗1,k, e∗2,k R1 3Z
4

B
vκ, v

′
κ R3 2Λ

sκ, s
′
κ R4 2Λ

H g∗κ R3 Λ

2v 3 B u, u′,wκ,w
′
κ R2 2(Λ+ 1)

H f∗, h∗κ R2 Λ+ 1

Total 14Λ+ 5 + 3Z

Fig. 4. Number of Commitments in the Global Proof, and Size in Number of Encodings, with Λ = d(3 +
log2(3/εs))/(S + 1 + log2(N/n))e

F.2 Script

Here is the python script used to generate our figures, whose parameters are described above.

from sage.all import ∗
import math,ssl
try:

load("estimator.py") # use the local script if you downloaded it because it gains a lot of time
except:

ssl. create default https context = ssl. create unverified context
load("https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py")
# in case ssl does not work this file can be downloaded.
# load(”estimator.py”)
logging.getLogger("estimator").setLevel(logging.WARNING)

# Parameters to be tested
# MarginLength for t: t > 2∗∗MarginLength ∗ D ∗ ell
Values = [ # lN, ln, d, ell, MarginLengh

[20 , 14 , 4 , 14, 21],
# BEST 20

[25 , 15 , 5 , 16, 16],
# BEST 25

[30 , 14 , 5 , 16, 11],
[30 , 15 , 5 , 15, 20],

# BEST 30

[35 , 15 , 5 , 15, 15],
[35 , 15, 5, 14, 25],

# BEST 35

[40 , 15 , 5 , 15, 10],
# BEST 40
]

secpar = 128 # lambda
# Security bounds for commitments
Eps = [ 30, 80, 128 ]
EpsC = [ 38, 136 ]
log2 eta = 21
Z = 2 + ceil(secpar/(log2 eta+1)) # number of encodings of zero committed by the sender
theta = ceil(2∗∗(secpar/(log2 eta+1))) # number of times we draw scalars to prove the zˆ∗, zˆ∗’
addpar = log2 eta + math.log2(2+secpar/(log2 eta+1)) # because of noise−flooding
MB = 8∗1024∗1024 # MBytes
MinMarginLength = 5 # t > 32 ∗ 4N ell
sigma = 4
B = 10∗sigma

# calculating the number of commitments: nuc = AnbCmt∗Lambda + BnbCmt
AnbCmt = 14
BnbCmt = 5+3∗Z
nue = 11 # number of quadratic relations between commitments the receiver has to check
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def bitSizeOf(x):
try: return math.ceil(math.log2(x))
except: return 0

def security(n, alpha, q):
cost = estimate lwe(n, alpha, q)
min = 1000
for algo in cost.keys():

if min > bitSizeOf(cost[algo][’rop’]):
min = bitSizeOf(cost[algo][’rop’])

return min

# Security Evaluation of FHE Parameters
def FHE(lN, ln, d, ell, MarginLength):

N = 2∗∗lN; n = 2∗∗ln; D = 2∗N
parameters = { ’logN’: lN, ’n’: n, ’d’:d}
parameters[’ell’] = ell
# Correctness FHE
# Selection of the prime numbers
p=[0]∗ell
pmin = 2∗∗MarginLength ∗ 2 ∗ D ∗ ell
p[0]=next prime(pmin)
while (p[0] % 8) != 3: p[0] = next prime(p[0]+1)
t = p[0]
q = t
for i in range(ell−1):

p[i+1] = next prime(p[i]+1); q = q∗p[i+1]
# Analysis of the noise
C1 = n∗n∗t∗B + 4∗n∗t
w = q∗∗(2/ell); lw = math.floor(ell/2)+1
C2 = n∗n∗B∗(B+t∗t)+n∗lw∗w∗B; V = B∗(2∗n∗B+1)
error = N∗n∗t∗C1∗∗(d−1)∗(C1∗V+d∗C2)∗(2∗∗(secpar+addpar)); ratio = 2∗t∗error/q # added noise flooding error
parameters[’ratio’] = ratio
# Privacy FHE
sec = security(n, sigma/q, q)
parameters[’logMargin’] = MarginLength
parameters[’logpl’] = bitSizeOf(p[−1])
parameters[’logt’] = bitSizeOf(t)
parameters[’logq’] = bitSizeOf(q)
parameters[’sec’] = sec
parameters[’RSAM’] = max(2048,3+ln+lN+3∗bitSizeOf(q)+secpar) # greater than 2048 for security
return parameters

# Number of Encodings
def encodings(epsc, MarginLength, ZKrepetitions, epss, nue):

C = [2, 3, 4] # number of prover−generated encodings in equation
SizeE = [{}]∗5
for c in C:

gamma = c+1
K = math.ceil(gamma ∗ max((epsc+ 1)/(MarginLength+1), (math.log2(3∗nue)+epss)/MarginLength))
M = math.ceil(3 ∗ (epsc +2 + math.log2(K) ) / (MarginLength+1))
SizeE[c] = { ’K’: K, ’M’: M,

’1vEB’: K∗(M+2), ’2vEB’: 2∗K∗(M+1), ’EH’: ZKrepetitions∗K∗(M+1),
’SB’: M, ’SH’: ZKrepetitions∗(2∗K∗(M+1)+M) }

return SizeE

def get application results():
print("Z: "+str(Z))
print("additional bits on q: "+ str(ceil(addpar+secpar)))
for val in Values:

print("\n**********")
param = FHE(val[0], val[1], val[2], val[3], val[4])
print("\n-----------\n RSA Modulus: "+str(param[’RSAM’]))
print("\n N = 2^"+str(param[’logN’]))
print(" n = 2^"+str(bitSizeOf(param[’n’])))
print(" d = "+str(param[’d’]))
print(" ell = "+str(param[’ell’]))
print(" S = "+str(param[’logMargin’])+" >=? "+str(MinMarginLength))
print(" t on "+str(param[’logt’])+" bits")
print(" p_ell on "+str(param[’logpl’])+" bits")
print(" q on "+str(param[’logq’])+" bits")
print(" ratio = "+str(param[’ratio’]))
if param[’ratio’] > 1:



MyOPE: Malicious securitY for OPE 39

print("Correctness error! Parameters not compatible")
else:

print(" Best attack against FHE: "+str(param[’sec’]))
RSAM = param[’RSAM’]
SizeFHE = 2∗param[’n’]∗param[’logq’]
GlobalFHECiphersSize = ceil((2∗∗(param[’logN’])+1)∗∗(1/(param[’d’]+1)))∗(param[’d’]+1)∗SizeFHE
print(" FHE Size: "+str(math.ceil(GlobalFHECiphersSize/MB))+" MB")

secInd=0
for epss in Eps:

secInd=secInd+1
Lambda = math.ceil((3+epss+math.log2(3))/(param[’logN’]+param[’logMargin’]+1−math.log2(param

↪→ [’n’])))
nuc = AnbCmt∗Lambda + BnbCmt # total number of commitments
ZKrepetitions = ceil((math.log2(3∗nuc)+epss)/param[’logt’])
epsc = epss + math.ceil(math.log2(3∗nuc))
SizeE = encodings(epsc, param[’logMargin’], ZKrepetitions, epss, nue)
SizeLOE = 4∗RSAM; SizeScalar = param[’logq’]
SizeProof = 2∗RSAM + 4∗param[’logq’] # Appendix B2, mu = 4
v1c2B = 2∗Lambda∗(SizeLOE∗SizeE[2][’1vEB’] + SizeScalar∗SizeE[2][’SB’]) # binding with 1v and c=2
v1c2H = 2∗(2∗Lambda+1)∗(SizeLOE∗SizeE[2][’EH’] + SizeProof∗SizeE[2][’SH’]) # 1v c=2 hiding
v1c3H = 3∗Z∗(SizeLOE∗SizeE[3][’EH’] + SizeProof∗SizeE[3][’SH’]) # 1v c=3 hiding
v1c4B = 4∗Lambda∗(SizeLOE∗SizeE[4][’1vEB’] + SizeScalar∗SizeE[4][’SB’]) # 1v c=4 binding
v1c4H = Lambda∗(SizeLOE∗SizeE[4][’EH’] + SizeProof∗SizeE[4][’SH’]) # 1v c=4 hiding
v2c3B = 2∗(Lambda+1)∗(SizeLOE∗SizeE[3][’2vEB’] + SizeScalar∗SizeE[3][’SB’]) # 2v c=3 binding
v2c3H = (Lambda+1)∗(SizeLOE∗SizeE[3][’EH’] + SizeProof∗SizeE[3][’SH’]) # 2v c=3 hiding
GlobalEncodingsSize = v1c2B + v1c2H + v1c3H + v1c4B + v1c4H + v2c3B + v2c3H
GlobalBobComsSize = GlobalEncodingsSize + 6∗(1+theta)∗(bitSizeOf(param[’n’])+param[’logq’]) #

↪→ adding size of the b,b’,l,l’,d,d’, and the theta u∗, e1∗, e2∗ and rho cleartexts in \Rq sent by
↪→ Bob

print(" EPS_s: 2^{-"+str(epss)+"} -- EPS_c: 2^{-"+str(epsc)+"} -- Lambda: "+str(Lambda) + "

↪→ -- #Commitments: "+ str(nuc)
+" -- Bob Communic. Size: "+str(math.ceil(GlobalBobComsSize/MB))+" MB")

def get encodings fig():
# figure with number of encodings and scalars per commitment
print("\n**********\n Figure 1 data: \n")
for epsc in EpsC:

print("epsc = "+str(epsc))
SizeE = encodings(epsc, 6, 4, epsc+8, 11)
print("K: "+str(SizeE[2]["K"])+" & "+str(SizeE[3]["K"])+" & "+str(SizeE[4]["K"])+" \\\\ ")
print("M: "+str(SizeE[2]["M"])+" & "+str(SizeE[3]["M"])+" & "+str(SizeE[4]["M"])+" \\\\ ")
print("& \#Equations (hiding case) & "+ str(SizeE[2]["EH"]) +" & "+ str(SizeE[3]["EH"]) +" & "+ str(

↪→ SizeE[4]["EH"]) +" \\\\")
print("& \#Secrets (hiding case) & "+ str(SizeE[2]["SH"]) +" & "+ str(SizeE[3]["SH"]) +" & " + str(SizeE

↪→ [4]["SH"])+ " \\\\")
print("& \#Encodings for $1v$ Pol. & "+ str(SizeE[2]["1vEB"]) +" & "+ str(SizeE[3]["1vEB"]) +" & "+ str(

↪→ SizeE[4]["1vEB"]) + " \\\\")
print("& \#Encodings for $2v$ Pol. & "+ str(SizeE[2]["2vEB"]) +" & "+ str(SizeE[3]["2vEB"]) +" & " + str

↪→ (SizeE[4]["2vEB"]) + " \\\\")

get application results()
# get encodings fig()
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