A Practical Verifiable Delay Function and Delay
Encryption Scheme

Angelique Faye Loe!, Liam Medley!, Christian O’Connell?, and Elizabeth A.
Quaglial

! Royal Holloway University of London angelique.loe.2016, liam.medley.2018,
elizabeth.quaglia, @rhul.ac.uk
2 Independent co362@cantab.ac.uk

Abstract. We present a novel construction for a Verifiable Delay Func-
tion (VDF), in which the prover is challenged to produce the factorisation
of a special class of RSA modulus. Our approach produces a VDF with
a very efficient verification procedure.

The properties of our VDF allow us to establish the design of the first
practical Delay Encryption scheme, a primitive introduced at EURO-
CRYPT 2021. We provide a formal security analysis of our results, as
well as an implementation study detailing the practical performance of
our VDF.

Keywords: verifiable delay function, proof of work, delay encryption

1 Introduction

Verifiable delay functions (VDFs) were introduced in 2018 by Boneh et al. [5]
as a primitive which takes a fixed length of time ¢ to compute, regardless of
parallelism, and is fast to verify. VDFs use a computational task, e.g., repeated
squaring, to provide a reliable ‘proof of elapsed time’ in decentralised applications
such as randomness beacons and the design of blockchain protocols [8].

Boneh et al. left as an open problem the construction of a theoretically op-
timal VDF, which they describe as a simple, inherently sequential function re-
quiring low parallelism to compute, and which is very fast to invert. Shortly
after, three papers were proposed to address this problem. Wesolowski [31] and
Pietrzak [25] each proposed a scheme based on repeated squaring in a group of
unknown order, with different protocols to verify the proof of correct computa-
tion. Then De Feo et al. [13] proposed a VDF framework based on isogenies of
supersingular elliptic curves, which improved upon the evaluator efficiency by
having an empty proof, at the cost of requiring a very long setup.

Each of these schemes is an improvement upon the schemes suggested by
Boneh et al. in their seminal paper, but none have a verification procedure with
a runtime of O(1), and hence are not theoretically optimal.

In this work we present a theoretically optimal VDF candidate, which im-
proves upon the current state of the art, combining the efficiency benefits of an
empty proof with a fast setup algorithm, and a verification procedure which runs

2 Loe, Medley, O’Connell, Quaglia

in O(1). The underlying computational task is the same as that of Wesolowski
and Pietrzak’s schemes, namely repeated squaring, but the essence of our VDF
is different: the challenge is to factorise a particular type of RSA modulus.

In the schemes by Wesolowski and Pietrzak, the challenge given to the eval-
uator is a random value, which is then raised to the power of 2¢. The evaluator
must also compute a proof, which is then used in the verification protocol to
check the computation output is correct. By contrast, our VDF challenge is
carefully chosen to ensure the computation output is useful: by evaluating the
VDF, the prover is able to factorise the RSA modulus. Therefore, instead of com-
puting a proof and running a protocol, our VDF output can be quickly verified
by multiplying the factors of the RSA modulus.

An additional benefit of this feature is that, if we allow parties to encrypt
messages to this RSA modulus, our VDF can be used to ensure that the de-
cryption key is recovered, and therefore the ciphertexts can be decrypted, only
after the prescribed delay. This is the premise of Delay Encryption (DE), a
primitive introduced by Burdges and De Feo [7] at EUROCRYPT 2021. In Bur-
dges et al [7], a DE scheme is derived from the isogeny-based VDF, which is
based on a key encapsulation mechanism, and outputs a hash function as a key
derivation function. However, this scheme comes with concrete implementation
issues, including very large evaluator storage. By combining our VDF with RSA
encryption in a natural way, we obtain a DE scheme based on a public key
encryption scheme instead, avoiding these implementation issues and inheriting
the underlying efficiency of our VDF.

We go on to present a practical implementation of our construction across
two hardware environments. We first use a cluster of four Raspberry Pi 3 Model
B computers (quad-core 1.2 GHz CPU, 1 GB of memory) to demonstrate perfor-
mance of different modulus sizes in an embedded environment. We complement
these results with an implementation on a desktop PC using a consumer grade
quad-core 3.2 GHz Intel i5 processor, with 16 GB of memory.

1.1 Contributions

In our work we construct a novel, theoretically optimal VDF candidate, i.e., it is
simple, inherently sequential, and very fast to invert. We provide a security and
efficiency analysis of our construction, proving that our VDF is cryptographically
secure, and theoretically more efficient than the alternative candidates.

We present evidence of the practicality of our scheme by providing an im-
plementation study using Raspberry Pi devices and a desktop PC, showing that
our VDF can be run efficiently on consumer grade hardware. We show that run-
ning a 2048-bit setup takes approximately one second on a desktop PC and 30
seconds on a Raspberry Pi. Furthermore, the verification on both devices runs
in less than one second regardless of the time parameter.

Finally, we build the first practically implementable Delay Encryption scheme,
using our VDF scheme and the RSA-OAEP public key cryptographic scheme
[20]. We prove the scheme secure and implement it on a desktop PC.

A Practical Verifiable Delay Function and Delay Encryption Scheme 3

Paper layout In Section 2 we provide a formal, game-based definition of a VDF,
following Pietrzak [25]. In Section 3 we introduce our P-VDF construction. We
first give a brief overview, before giving the number theoretic preliminaries, and
then provide the formal construction. In Section 4 we prove formally that our
construction meets the security properties defined in Section 2. In Section 5 we
compare the theoretical efficiency and security assumptions of our construction
against other VDF candidates. In Section 6 we give details of our implementa-
tion, showing the concrete efficiency of our construction. In Section 7 we extend
our P-VDF construction to build an efficient delay encryption scheme.

2 Verifiable Delay Functions

We now provide the definition and properties of a generic VDF [5,25]. Note that
V is the verifier, P is the prover, and A is the adversary.

2.1 VDF Definition

In this work we follow Pietrzak [25], and define a VDF as a tuple of algorithms:
(Setup, Gen, Eval, Verify). In our notation « indicates deterministic evaluation,
and <= indicates randomised evaluation.

— pp <= Setup(17). Setup is an algorithm run by V that takes security param-
eter 1 and outputs the public parameter pp. Setup runs in time poly(x).

— (pp, C,t) <= Gen(pp,t). Gen is an algorithm run by V that takes the public
parameter pp and a time parameter ¢t and outputs a random challenge C. The
parameter ¢ indicates the number of sequential steps required to evaluate C.
Gen runs in time poly(k).

— y < Eval(pp,C,t). Eval is an algorithm run by P that takes the public
parameter pp, a challenge C' and evaluates a solution y in ¢ sequential steps.
To qualify as a VDF, the solution y must be unique.

— {accept, reject} < Verify(pp, C,t,y). Verify is an algorithm run by V that
confirms the soundness of solution y against the challenge C and time pa-
rameter t. If y is sound Verify outputs accept. Verify runs in time polylog(t)
and poly(k).

2.2 VDF Properties

In this section we provide the properties of a VDF. A VDF must be: correct,
sound, sequential, efficiently verifiable, and unique [5,25].

— A VDF is correct if a solution output by Eval is accepted by Verify with over-
whelming probability. This is made precise in the correctness game, Game
2.1.

— A VDF is sound if any solution %’ output by any algorithm &, where ' #
y < Eval, has a negligible probability of being accepted by Verify. This is
made precise in the soundness game, Game 2.2.

4 Loe, Medley, O’Connell, Quaglia

1 V generates random public parameter, challenge, and time parameter:
pp <= Setup(1”), (pp, C,t) <r Gen(pp,t).;
2 P selects the legitimate algorithm Eval to generate solution:
y < Eval(pp, C,t).;
3 V verifies the solution: {accept, reject} < Verify(pp, C,t,y).;
‘P wins if Verify outputs accept.;
A VDF is correct if P wins with probability 1 — negl(k).;

Game 2.1: VDF Correctness Game

1 V generates random public parameter, challenge, and time parameter:
pp <= Setup(1”), (pp, C,t) <= Gen(pp,t).;
2 A selects a PPT algorithm &, to generate solution: y’ < £(pp, C, t), where
y' #y < Eval(pp, C,t).;
3 V verifies the solution: {accept, reject} <+ Verify(pp, C,t,y').;
A wins if Verify outputs accept.;
A VDF is sound if A wins with probability negl(k).;

Game 2.2: VDF Soundness Game

— A VDF is sequential if the following is true. Suppose A is provided with a
public parameter pp and is given a polynomially bounded time to precompute
on this public parameter prior to being provided with a random challenge
C. The property of sequentiality follows if A is unable to compute an output
y’ by an algorithm £; which takes less that ¢ sequential steps to calculate,
such that y' = y < Eval(pp, C,t). This is made precise in the sequentiality
game, Game 2.3.

[u

V generates random public parameter: pp <= Setup(17).;

A selects a PPT algorithm &, to pre-process L < &,(pp, t), where &, runs in
time O(poly(t, K)).;

V generates random challenge, C+—=r Gen(pp,t).;

A selects a PPT algorithm €<+, where €<+ runs in less than ¢ sequential steps
to generate solution: y' < E<(L, pp, C,t).;

A wins if y' = y < Eval(pp, C, t).;

A VDF is sequential if A wins with probability negl(x).;

N

W

Game 2.3: VDF Sequentiality Game

Efficient verifiability is achieved if Verify runs in time polylog(t) and poly(x).
Verify must be notably faster than Eval.

— Uniqueness is achieved if for any tuple (pp,C,t) output by Setup and Gen,
only a single value of the solution y will be accepted by Verify. That is, the
solution y can only be equal to a single value.

A Practical Verifiable Delay Function and Delay Encryption Scheme 5

3 Practical VDF

We begin this section by providing an overview of our Practical VDF (P-VDF).

P-VDF overview A summary of the inputs and outputs for the Setup, Gen,
Eval, and Verify algorithms of our P-VDF construction are as follows:

pp:= N <= Setup(1¥)
(C = (x,x0,2—_¢),t) <=r Gen(pp,t)
y=(p,q) <« Eval(pp,C,t)
{accept, reject} <« Verify(pp, C,t,y)

In our P-VDF Setup computes the public parameter pp := N which is a special
class of RSA modulus known as a Blum integer [4]. Gen then generates the
challenge C = (z,x0,2_¢). To generate C the element x is efficiently sampled
such that Jy(x) = —1, where Jn(z) is the Jacobi symbol [20]. Next, the seed
is calculated as zg = 22 mod N. Crucial to our P-VDF is the term x_;, where
332_1 = 2o mod N. We will provide the details of the efficient calculation of the
term x_; with the use of the Chinese Remainder Theorem in Section 3.2.

Eval then sequentially calculates the term z_; := 2’ = ,/zy by repeated
squaring. The term 2’ has the property Jn(2’) = +1. Therefore, Eval obtains
22 =q"7 = o mod N, where x # 2’ mod N. Thus Eval obtains all four square
roots of xy once z’ is sequentially calculated. Therefore, Eval can recover the
non-trivial factors of N in polynomial time using the result from Rabin [26].
Once Eval recovers the factors of N it sets the solution y := (p’,¢’). Finally,
Verify outputs accept if p’q’ = N. The insight of our P-VDF construction is how
the term x_ is calculated by the Gen algorithm, and how the Eval algorithm is
able to calculate the non-trivial factors of N.

In the subsequent subsections we review the relevant time-lock assumption
and number theory which are required to understand the specifics of our con-
struction. These theorems will be relevant to the formal security analysis of our
construction in Section 4. We also provide the detail of each algorithm in our
P-VDF construction.

3.1 Time-Lock Assumption and Number Theory

We now review the time-lock assumption and number theory required to con-
struct our P-VDF. For well-known theorems we refer to the relevant sources and
we prove the other theorems in Section 4 and Appendix A.1.

The RSW time-lock assumption [27] is core to a number of notable VDFs in
the latest literature [5,12,25,31]. Like RSW-based VDF's our P-VDF also relies
on this assumption.

Definition 1. RSW time-lock assumption: Let N = pq where p and q are
distinct odd primes. Uniformly select x € Z%;, where Z% = {z|z € (0,N) A

6 Loe, Medley, O’Connell, Quaglia

ged(z, N) = 1}. Then set the seed term as xg := x> mod N. If a probabilistic
polynomial time (PPT) adversary A does not know the factorisation of N or
group order ¢(N) then calculating xy = x%t mod N is a non-parallelizable calcu-

lation that will require t sequential modular exponentiations calculated with the
Algorithm 3.1 Square and Multiply [27].

Algorithm 3.1: Square and Multiply [10]

input : (a,b,N), // a,b,N €N, a® mod N
d=1
B :=bin(b) // b in binary
for j € B do

d :=d? mod N

if j =1 then

‘ d = da mod N
end

T N N I S

end
output: d

Secondly we note that the modulus used in our P-VDF will be a Blum integer
[4]. A Blum integer N = pg, is the product of two Gaussian primes. A Gaussian
prime has the property p = 3 mod 4.

Next, we provide the definition of quadratic residues.

Definition 2. Quadratic Residues in Zy are numbers r that satisfy congru-
ences of the form:

z?=r mod N (1)

If an integer x exists such that the preceding congruence is satisfied, we say that
r is a quadratic residue of N. If no such x exists we say that v is a quadratic
non-residue of N.

The Jacobi symbol, denoted Jn(r), is a function which defines the quadratic
character of r in Equation 1. The Jacobi Symbol can be calculated in polynomial
time using FEuler’s Criterion.

Theorem 1. FEuler’s Criterion can be used to calculate the Jacobi Symbol of the
number v in Equation 1 for a prime modulus p. If ged(r,p) = 1, then:

1 { +1,ifr € QR, @)

—1,ifr € QN'R,,

Where r € QR,, indicates that r is a quadratic residue of p and r € QNR,,
indicates that r is a quadratic non-residue of p.

A Practical Verifiable Delay Function and Delay Encryption Scheme 7

When the modulus is a prime number if the Jacobi symbol evaluates to +1
then r is always a quadratic residue and if the Jacobi symbol evaluates to —1
then r is always a quadratic non-residue. The Jacobi symbol is more complex
when the modulus is a composite number N = pq.

Corollary 1. (Of Theorem 1). Euler’s Criterion can be used to calculate the
Jacobi Symbol of the number r in Equation 1 for a composite modulus N if the
factorisation of N is known.

Algorithm 3.2 shows how to determine the quadratic character of r for com-
posite N using Theorem 1 and Corollary 1. When N is composite the quadratic
character of r can take three formats. If the Jacobi symbol evaluates to —1 then
r is always a quadratic non-residue, denoted QN R;,l. However, if the Jacobi
symbol evaluates to +1 then r can either be a quadratic residue, denoted OR y
or a quadratic non-residue denoted QN ’R#.

Algorithm 3.2: Calculating Jy (1) for composite N.
input : (r,p,q)

Tp(r) = 727 mod P

Tq(r) = r*T mod q

[y

2
3 if Jp(r) = 1A Jy(r) =1 then
4 ‘ T = QRN
5 else if J,(r) = —1 A J4(r) = —1 then
6 | x:=QNR}!
7 else
8 ‘ T = Q./\/RE1
9 end
output: =

Quadratic residues and quadratic non-residues for composite N have a dis-
tinct distribution in Z7%.

Theorem 2. The cardinality of QRyx, ONRY', and QN'RY' for composite
N = pq, where p and q are distinct primes is as follows:

_ 25l _ o)

QRw| =7 =
jovry| = E] _ o), ®)

Lzl e

e

Where,

Zy| = o(N) = (p—1)(qg— 1), and $(N) is Euler’s totient function.

8 Loe, Medley, O’Connell, Quaglia

Next, we discuss how to calculate preceding terms of the seed term zg € QR
in an RSW time-lock sequence. To calculate the subsequent term of zy in the
sequence evaluate r; = x%l mod N by inputting (z¢,2%, N) into Algorithm 3.1.

If the factorisation of N is known Theorem 1 can be used in conjunction with
the Chinese Remainder Theorem (CRT) to calculate the term x_1 in polynomial
time. The CRT can be found in our Auxiliary material.

Theorem 3. Let p be a Gaussian prime. For any r € Zy, if Jp(r) = +1, then

p+1

finding o such that o = \/r mod p can be found by calculating o = r « mod p.

Ezample 1. Let N = 67139 = pqg = 9313. Given the seed zog = 776 € QRny,
the square root of zo mod IV, denoted by z_1 = \/xg, can be found as follows:

pt1

— calculate o = z,* =2} =21 mod p
a+1

— calculate B =z, =23 =9 mod ¢

— calculate z_1 = aq(q¢~! mod p) + Bp(p~! mod q) = 128862

Then « and § are calculated using Theorem 3 and x_; is calculated using the
CRT. Note that (¢~ mod p) and (p~! mod ¢q) are calculated using Euclid’s Ex-
tended Algorithm. To verify correctness, note that 1288622 = 776 = xo mod N.
We provide formal analysis of this in Section 4.

If r € QR then the CRT implies that there are four distinct solutions to
Equation 1.

Theorem 4. For all N = pq, where p and q are distinct odd primes, each
r € QRN has four distinct solutions.

If N is a Blum integer, then the four square roots of each r € QR has
specific properties. That is, two of the square roots of r are quadratic non-
residues with Jacobi symbol —1, one square root is a quadratic non-residue with
Jacobi symbol +1, and one square root is a quadratic residue.

Theorem 5. Let N be a Blum integer. Then for all r € QRy, if 22 = 2/° =

r mod N, where x # +12', then without loss of generality Jn(+z) = —1, and
In(xz") = +1. That is +z € QNRJ_VI, ' € QRN and —2' € QJ\/'RF. We
refer to ¥’ € QR as the principal square root of r mod N.

Finally, we discuss a method to factor a Blum integer N in polynomial time
if specific information is provided.

Fermat’s factorisation method is a technique to factor an odd composite
number N = pq in exponential time [11]. The method requires finding = and 2’
such that 22 — 2/> = N is satisfied. Then the left-hand side can be expressed as
a difference of squares (z — 2’)(z + 2') = N.

Fermat’s method can be extended to finding « and 2’ to satisfy the following
weaker congruence of squares condition z? = 2’ % mod N , where © # +x’. This
congruence can be expressed as (x—a’)(z+2’) = 0 mod N. Finding a congruence
of squares forms the basis for several sub-exponential sieving-based factorisation
algorithms [11]. However, if x and #’ in a congruence of squares are known, then
factoring N can be done in polynomial time.

A Practical Verifiable Delay Function and Delay Encryption Scheme 9

Theorem 6. Let N be a Blum integer. If x and =’ are known such that x% =
2'* mod N, where x # +x’ mod N, then the non-trivial factors of N can be
recovered in polynomial time.

Proof. Proofs for Theorems 1, 2, 4, and Corollary 1 can be found in [20]. Proofs
for Theorems 3 and 6 can be found in Section 4. The proof for Theorem 5 can
be found in Appendix A.1.

3.2 P-VDF Construction

We now provide the details of our P-VDF construction. We begin by presenting
the notation for the pseudo code of our implementation, and then we give the
full details of our construction.

Notation In the pseudo code := indicates assignment, = indicates equality, #
indicates inequality, () indicates a tuple, and U (a,b) indicates the uniform selec-
tion of an integer that is between a,b € Z, where a < b and a, b are inclusive. The
symbols A, V, = indicate logical conjunction (and), logical (inclusive) disjunction
(or), and negation (not), respectively.

Construction of the P-VDF We now provide the full details of the P-VDF.

Algorithm 3.3: Setup run on security parameter 1% to create the
public parameter pp.

input :1°

p,gi=1

while p = ¢ do
p = prime(%)
q = prime(%)

end

N :=pq

(=220 S NV I

1) V runs pp := N<=r Setup(1”) to generate the public parameter as seen on
Algorithm 3.3 Setup. The function prime(j) on lines 3 and 4 is the Miller-Rabin
Monte Carlo algorithm [22] which generates j bit Gaussian primes. That is,
p <= prime(j). This guarantees that N, which is calculated on line 6, is a Blum
integer. V then runs (C := (x,zg, z_¢),t)<=r Gen(pp, t) to generate the challenge
and the time parameter as seen in Algorithm 3.4 Gen. Gen first enters a while
loop. The purpose of the while loop is to find an x such that x € QN Rf\,l. The
logic statement on line 1 condenses the conditional statements in lines 3,5 and
7 of Algorithm 3.2 using De Morgan’s laws [17]. Once a suitable z is found z is
set to 22 mod N.

10 Loe, Medley, O’Connell, Quaglia

Algorithm 3.4: Gen run on public parameter pp and time parameter
t to create the public challenge C.

input : pp,t
1 Jp(x), Jq(x) =1
2 while =(Jp(z) = 1A Tg(x) # 1) A (Tp(z) 1A Ty(x) =1) do
3 | z:=U(2N)
4 Ip(x) = 2" mod D
5 Jq(z) = 2% mod q
6 end
7 20 = x2> mod N
P+t 0d p—
Sat::mg‘* ar 1modp
g1t o
Qﬁt::mg“ da 1modq

10 2 = a;q(q~" mod p) + Bip(p~* mod ¢q) mod N
11 C = (z,%0,T—¢)
output: (pp = N,C,t)

We note that it is also possible to efficiently sample parameter x without
knowledge of p and g using algorithm A.2 Samplex, which we present in Appendix
A.2. Samplex allows any party to select the randomised challenge for P, whilst
still ensuring that = € Q/\/’R;,l, and it can be used in lieu of lines 1-6 of the
Algorithm 3.4 Gen. This use of Samplex moderates the trust assumption of Gen
by allowing a party that does not run Setup to choose the input.

Once z is sampled and x(is computed the term z_; is calculated, where
xz_tt = x9 mod N. To calculate x_; in polynomial time, Euler’s Criterion, the
Fermat-Euler Theorem and the CRT must be applied. A toy example of this
calculation is noted in Example 1 and the Fermat-Euler Theorem can be found
in Appendix A.1, Theorem 14.

In Algorithm 3.4 Gen, we let w = pfil, then Theorem 3 tells us that o =
VZo = i mod p. Let a; be the t*h square root of xp mod p. For example, if
t =2, then ay = \/\/z0 = (2§)¥ = :108’2. Therefore, oy = xfjt mod p. Note that
the exponent wf, for large ¢ will make calculating xfjt mod p computationally
infeasible. Therefore, the Fermat-Euler Theorem is used so the exponent w! can
be reduced mod(p — 1).

Next, a; is calculated, where oy is the ¢ square root of o mod p. Next,
By is calculated, where f3; is the t*" square root of zo mod ¢. To complete the
calculation of the term z_;, the CRT is used on line 10, where the terms (¢~ mod
p) and (p~! mod q) are calculated using Euclid’s Extended Algorithm.

The challenge C' is set to the tuple (z,zg,z_;) and then V passes (pp, C,t)
to P who must solve:

Given (pp, C,t), find the factors of pp := N.

2) P runs y < Eval(pp, C,t) to evaluate the challenge, as seen on Algorithm
3.5 Eval. First Eval calculates the term z’ in ¢ — 1 sequential steps by evaluating

A Practical Verifiable Delay Function and Delay Encryption Scheme 11

xQ_t; " mod N. This is where the sequential calculation takes place using Algo-

rithm 3.1 with inputs (z_;,2t~1, N). The term 2’ is guaranteed to be in QRy

by Definition 2. P now has = € Q/\/R&l and 2’ € QRy. Therefore, x must be
distinct from z’, and we have 2% = 2’ > = zomod N. Finally, using the result
from Theorem 6, Eval calculates gcd(xz — 2’, N) to recover one factor p’ of N
using Euclid’s Extended Algorithm. Next, m is calculated to recover

the other factor ¢’. Finally, Eval passes the solution y := (p/,¢’) to V.

Algorithm 3.5: Eval runs on public parameter, challenge, and time
parameter pp, C,t to produce solution y.

input : pp,C,t

// pp=N, C=(x,x0,7-¢)
12 = x%t,:l mod N
2 p' = ged(xz — ', N)

3 q = g
4 y=(p,q)
output: y

3) V runs V « Verify(pp, C, t,y) to verify if solution y is sound, as seen on Al-

gorithm 3.6 Verify. Verify checks if p’q’ = N and also checks if acztt“md @'=1(@"=1) 164

N = x9. The second check validates that the parameter ¢ was honestly dis-
tributed from V to P, and it also validates that p’ and ¢’ are not trivial factors
of Nie., p' =1and ¢ = N. The second check also uses the Fermat-Euler Theo-
rem in Appendix A.1, Theorem 14 to reduce the exponent 2! mod (p'—1)(q'—1).
If both conditions are true, then Verify outputs accept, else it outputs reject.

Algorithm 3.6: Verify checks the soundness of y against the public
parameter, public challenge and time parameter pp, C,t.

input : pp,C,t,y
// pp=N, C= (xvmovm*i)’ Y= (p,7q/)
t ’ !’
if p'q = N Az, @ D@D 164 N = 4 then

1

2 ‘ V := accept
3 else

4 ‘ V :=reject
5 end

output: V

12 Loe, Medley, O’Connell, Quaglia

4 Security Analysis

In this section we provide a formal security analysis that our P-VDF is correct,
sound, sequential, unique, and efficiently verifiable, as discussed in Section 2.2.

We begin by proving the correctness of our P-VDF. The definition of cor-
rectness indicates that every output of Eval must be accepted by Verify with
overwhelming probability. In our P-VDF Algorithm 3.6 Verify outputs accept if
the solution y := (p', ¢') are the non-trivial factors of N.

Theorem 7. The P-VDF is correct.

The correctness proof must show that the construction of our P-VDF allows
an honest prover to factor the public parameter N during the execution of Al-
gorithm 3.5 Eval. The proof of correctness will require a sequence of arguments
based on the Theorems outlined in Section 3.1.

First, we must prove that Algorithm 3.4 Gen correctly selects the term x such
that x € QN R;,l.

Corollary 2. (Of Theorem 2). The while loop in Algorithm 3.4 Gen efficiently
samples x € Q/\/’Rf\,1 with overwhelming probability.

Proof. The while loop in Algorithm 3.4 Gen selects a quadratic non-residue with
Jacobi Symbol equal to —1 by running a series of Bernoulli trials with proba-
bility P (z = Q/\/RJ_Vl) = 1. This forms a geometric distribution G ~ Geo(3).
Therefore, we can expect to find z € QN'RY' in E{G} = 2 trials.

Second, we must prove that Algorithm 3.4 Gen correctly calculates the term
x_y, which is the t'" principal square root of zg. This proof begins by proving
Theorem 3, and subsequently uses the CRT for the final proof.

Proof. (Theorem 3). Let a = r"i mod p. Then o? = (r’i)2 = 5 =

r mod p. Next, let p—;l =1+ % Therefore, by Euler’s Criterion (Theo-

1

rem 1) o? = r r% = r mod p. We refer to a as the principal square root of

r mod p.

Theorem 8. The Algorithm 3.4 Gen correctly calculates the t*" principal square
root x_; of the seed xg.

Proof. Let w = lei. If Algorithm 3.4 Gen provides the seed term xg € QRy,
then, by Theorem 3, the t*" principal square root of 2y mod p is ay := ;cgt mod p

and the ¢ principal square root of g mod ¢ is B = a:(“)’t mod ¢. Then, the CRT
is used to calculate: z_; := [a;q(¢~! mod p) + Bip(p~! mod ¢)] mod N.

Third we must prove that the Algorithm 3.5 Eval correctly calculates the
term 2’ € QR y using Algorithm 3.1.

Theorem 9. Algorithm 5.1 Square and Multiply correctly calculates the term
x;, where x; = x%L mod N.

A Practical Verifiable Delay Function and Delay Encryption Scheme 13

Proof. The input to calculate the term x; in Algorithm 3.1 Square and Multiply
is (79,2%, N), where g € QRy is the seed term, and N = pq, where p and q
are distinct odd primes. By Definition 2, selecting g € QRy can be done by
uniformly selecting z € Z% and setting 2o = 2% mod N. Consider the base case
when ¢ := 1. The algorithm proceeds as follows: d is set to 1 and the exponent
b := 2! is set to the binary string B = 10. Next, the algorithm enters the for
loop on the first iteration. On the first iteration j is the first digit of B, which
is 1. Next d := 1 is squared to output 1. Then the first conditional if statement
is met as j = 1, therefore d := 129 = x¢o mod N, and the first iteration of
the loop is done. On the second iteration j is the second digit of B, which is
0. Next, as d was set to zo on the first iteration d is now set to zZ mod N on
the second iteration. The first conditional if statement is not met, and the loop
terminates as the final digit of B was processed. The algorithm then returns
di=z;=2% = x%l mod N, as required. Therefore, the base case is true.

By the inductive hypothesis we claim that for any ¢ := k, the loop invariant
of Algorithm 3.1 returns the term x%k mod N after k iterations. Therefore after

k iterations, where b was set to 28!, Algorithm 3.1 will have d := x%k mod N,
and j will be the final digit of B := 10...0. For any k, the variable B will be a
binary string starting with the digit 1 followed by a trail of k digits equal to 0.
Therefore, after the first iteration of the for loop all remaining j € B will be 0.
Thus, at the k + 1 iteration of the for loop d will be set to 7 mod N, and by
definition 27 = x4 = x%k“ mod N. Finally, Algorithm 3.1 will terminate at
the k + 1 iteration as the final digit of B was processed, and the algorithm will

k41
return d := z3° mod N.

Finally, Theorem 6 is proven to show that Algorithm 3.5 Eval calculates
ged(a’ — z, N) to recover a non-trivial factor of N [26].

Proof. (Theorem 6.) As x and 2’ are distinct we have 22 = 2/ > mod N. This
implies that pq | 2% — 2'?. As p and q are both prime this indicates that p | (x —
')z +2a') and ¢ | (z — 2')(z + 2'). Also, because p is prime it must be the case
that p | (z — 2') or p | (z + 2’). Similarly, it must be the case that ¢ | (x — 2)
or ¢ | (x 4+ 2'). Without loss of generality, assume that p | (z — 2z’) is true and
that ¢ | (x — ') is true. This implies that pg | (z — '), which indicates that
2 = 2’ mod N. This is a contradiction because z and a’ are distinct. Then it
must be the case that p | (x —2’) and ¢ t (x — 2’). Therefore, one of the
factors of N can be recovered by calculating p’ := ged(z — 2/, N) using Euclid’s
Extended Algorithm, and the other factor of N can be recovered by calculating
N

/o — 4V
7= gdl@—a',N) ~ p'

We now prove Theorem 7, the correctness of our P-VDEF.

Proof. (Theorem 7) Suppose V honestly generates a random public parameter,
challenge, and time parameter pp := N = pq,C := (x,z,2_¢),t and presents
these to honest P. Next, suppose P selects the legitimate evaluation algorithm
Eval to evaluate pp, C, t. Algorithm 3.5 Eval will calculate the term z’ by entering

14 Loe, Medley, O’Connell, Quaglia

the following parameters (z_;, 2!~ N) into Algorithm 3.1, which will output

’ o 2t71
=zt

2, mod N. The term z’ is guaranteed to be correct by Theorem 9
and is guaranteed to be in QRy by Definition 2. P now has x € Q/\fRfvl
and 2/ € QRy. This guarantees that x must be distinct from z’. Therefore,
by Theorem 6, calculating p’ = ged(z — 2/, N) will recover one factor of N
using Euclid’s Extended Algorithm, and the other factor can be recovered by
calculating ¢’ = m.

Once N is factored P will pass the solution y := (p’, ¢') to V to verify. Verify
will then confirm if p’¢’ = N and if fotmOd E'=D@ =D hod N = zo are both
true. If p’ and ¢’ are non-trivial factors of N, then the second check will be correct
by the Fermat-Euler Theorem 14 and Corollary 3 in Appendix A.1. Therefore,

Verify will output accept with overwhelming probability.
Theorem 10. The P-VDF is unique.

Proof. The fundamental theorem of arithmetic states that every integer greater
than 1 has a unique prime number factorisation. By construction, the public
parameter of our P-VDF is pp := N = pgq = ¢p, where p and ¢ are distinct odd
primes. That is, the prime factorisation of N is unique up to ordering because
multiplication in Z has the commutative property. Therefore, if the solution
y := (p,¢') output by Eval is accepted by Verify it must be the case that either:

pP=pAd =q (4)
pP=qAd =p (5)

Theorem 11. The P-VDF is sequential.

Proof. Suppose V honestly generates a random public parameter pp and presents
this to a PPT adversary A. Let A produce a PPT algorithm &, to pre-process
the parameter pp and produce output £ + &,(pp).

Next, suppose V honestly generates a public challenge C' = (x, zg, z_), using
Algorithm 3.4 Gen, where x € Q/\/R]_\,l7 zo = 22 mod N, and 2 _, is the t*" square
root of zg.

To win the sequentiality game, .4 must compute a solution y* := (p*, ¢*), such
that y* = y < Eval(pp, C,t). Namely, A must recover the non-trivial factors of
N in less than t sequential steps.

We split the proof into two parts: i) when A attempts to compute an 2/,
where 2’ = \/zo mod N and 2’ € QRy, in less than t sequential steps, and ii)
when A attempts to recover the non-trivial factors of N using a method that
does not use .

We start by proving part (i): that computing =’ in time less than ¢ reduces
to the RSW time-lock assumption. First note that pre-processing is carried out
before the selection of C. Therefore, the probability that £ can compute 2’ in
less than ¢ steps is negligible. Specifically, if Eval is honestly run, then 2’ :=
22" mod N is calculated using Algorithm 3.1 with the input (z_;, 2!, N). By
the RSW time-lock assumption calculating 2’ using Algorithm 3.1 requires ¢ — 1

A Practical Verifiable Delay Function and Delay Encryption Scheme 15

sequential steps. Once 2’ is calculated, Algorithm 3.5 Eval recovers the factors
of N by calculating p' := gcd(x — 2/, N) and ¢’ = g then sets y := (p/, ¢).

Next, suppose A selects a PPT algorithm €4 to evaluate x’ in less than
t — 1 sequential steps. Finding such an 2’ using £.; reduces to the RSW time-
lock assumption and we obtain a contradiction. Therefore, A will not be able to
recover p* := gcd(z — 2’, N) without sequentially evaluating .

Next, we prove part (ii): that factoring N faster than sequential squaring
reduces to an open problem. First note that N is a Blum integer, which is an
RSA modulus that is the product of Gaussian primes. Therefore, we assume N
cannot be factored by any PPT algorithm with more than negligible probability.

Next, giving A either (N, z,xo,t) or (N,x_¢,t) also reduces to a standard
factoring assumption, as seen in Section 4 of Rabin [26]. What remains is to
show that giving an adversary all of the challenge C' does not allow them to
factorise N. To see this, note that xg can be trivially obtained from x, and that
by construction z_; and z¢ are terms in a BBS_.CSPRNG sequence [4].

Knowledge of these terms does not allow factorisation of N faster than se-
quential squaring unless 1:2_1@“\7)) mod N is calculated efficiently. This is an open
problem given by Theorem 9 of Blum et al. [4,14,18].

Therefore, the only way a PPT algorithm could produce a solution y* =y +
Eval given (L, pp, C,t) with non-negligible probability is to sequentially evaluate
a2’ and subsequently recover the factors by calculating p’ := ged(x — 2/, N) and
a =

Theorem 12. The P-VDEF is sound.

Proof. Suppose V honestly generates a random public parameter, challenge and
time parameter (pp, C,t) and presents these to an adversary A. The public pa-
rameter N = pq is a Blum integer. Next, suppose A selects an algorithm & to
evaluate y* < E(pp, C,t), where y* := (p*,q*), y* # y + Eval(pp,C,t), and y :=
(p',q"). Further, suppose A wins the soundness game, i.e., Verify accepts the so-
lution y* with non-negligible probability. Algorithm 3.6 Verify will output accept
if conditions i) p*¢* = N and if condition ii) xZ_ttmOd E" D@D pod N
are both true.

First consider condition i) p*¢* = N. By the fundamental theorem of arith-
metic, the factors of N are the set {1,p, ¢, N}. Also, by Theorem 10 the solution
y:= (p’,¢') is unique up to ordering. Therefore, for the condition i) to evaluate
as true, it must be the case that either case (1) or case (2) is true:

L (p"=pAqg*=q)
2. (p*=1AN¢g"=N)

If (1) is true, then it must be the case that y* := (p*,¢*) = vy := v/, ¢).
Therefore case (1) can be excluded as it implies that y* = y < Eval(pp, C, t).

Finally, assume case (2) is true and Verify accepts the solution y* with over-
whelming probability. If case (2) is true, then condition i) p*¢* = N will be
true. However, if p* = 1, then (p* — 1)(¢* — 1) = 0 and reducing 2¢ mod 0 is

16 Loe, Medley, O’Connell, Quaglia

equivalent to dividing by 0. This is not defined and implies that condition ii)
will not evaluate to true. Therefore, we have a contradiction, as Algorithm 3.6
Verify will output reject with overwhelming probability.

Theorem 13. The P-VDF is efficiently verifiable.

Proof. The Algorithm 3.6 Verify must confirm if both statements in Equation 6
are true. . , ,

Jd =N A xz/tmod (r'-1)(¢'=1) mod N _ 20 (6)
Firstly, the calculation of p’q’ is a multiplication operation which takes O(r!°823) =
poly(k) time [19]. Secondly, the calculation of xQ_ttmOd P =DE@ D 16d N re-
quires a single modular exponentiation operation. Therefore, a constant num-
ber of modular exponentiations is needed, i.e., O(1) < polylog(t). Further-
more, using Algorithm 3.1, calculating d = a® mod N takes O((log(V))2log(b))
time [28]. Observe that the exponent 2! is reduced mod(p’ — 1)(¢’ — 1), where
(p" —1)(¢' —1) < N Therefore, the number the modular exponentiation required
will take O((log(N))?log(N)) = O(x*) = poly(k) time.

5 A Comparison of VDF Candidates

In this section we compare the current VDF candidates. We assess the efficiency
of the Setup, Eval, and Verify algorithms and review the trust and security as-
sumptions of each candidate. To provide a meaningful comparison we normalise
the constructions by unifying the Gen algorithm into the discussion of the Setup
algorithm. This follows with the constructions of the Wesowlowski and De Feo
VDFs [13,31]. Furthermore, our empirical tests in Section 6 reveal that the run
time of Gen is dominated by Setup.

Currently, there are two classes of VDF, the RSW-based and isogeny-based.
The RSW-based VDF's consist of schemes defined by Wesolowski [31] and Pietrzak
[25]. These VDFs are both based upon exponentiation in a group of unknown
order. We shall refer to these VDF candidates and our P-VDF as the RSW-based
VDFs. The De Feo et al. [13] VDF is the isogeny-based VDF candidate. This
VDF is based on supersingular isogenies and pairings in elliptic curve cryptog-
raphy.

5.1 Performance

In this section we compare the efficiency of the Setup, Eval and Verify algo-
rithms of our P-VDF against the other RSW-based VDF candidates and the
isogeny-based VDF. We also compare the size of the solution and optional proof
parameter output by Eval of our P-VDF against the other VDF candidates.

In this section, we will use the parameter A to refer to the number of bits
of security we expect from each protocol, and we follow [13] in assuming ¢ is
super-polynomial in A. This allows for a meaningful comparison between the
VDF candidates, where minimising ¢ is the priority.

A Practical Verifiable Delay Function and Delay Encryption Scheme 17

Setup The first step of Setup in our P-VDF is to generate an RSA modulus N
which must be a Blum integer (Section 3.1).

The RSW-based VDF's share a similar setup. They all require the generation
of an RSA modulus. In Pietrzak’s construction, the primes are required to be safe
primes. That is, a prime p such that (p — 1)/2 is also prime [25]. Therefore, the
RSW-based VDFs share the same asymptotic complexity of Setup, O(A3). This
is in contrast to the isogeny-based VDF which has a longer setup of O(t\3) [13].
That is, a notable gap in efficiency is present between RSW-based VDFs and
the isogeny-based VDF.

The main constraint of our P-VDF is that Setup must be run for each new
challenge. This is in contrast to the other VDF candidates. However, Figure
1 and Figure 2 in Section 6 both show that the mean and median run time
(respectively) of the Setup algorithm on a desktop PC is efficient. The figures
show that Setup generates a new 2048 bit modulus and creates a new challenge
in 1 to 2 seconds.

Eval The definition of a VDF indicates that the time complexity of computing
Eval should be t regardless of the amount of computational power used [5].
However, if a proof is included in Eval the run time is increased.

Our P-VDF and the isogeny-based VDF have empty proofs, and hence require
t sequential steps for honest evaluation. Contrastingly, the other RSW-based
VDF's require a proof in their construction. It takes O(y/f) group operations
to construct Pietrzak’s proof, and O(t) operations to construct Wesolowski’s
proof [6].

In an implementation study by Attias et al., the time spent generating the
proof was similar to the evaluation time for both constructions [1]. Both VDFs
address this limitation by indicating that the computation of the proofs can be
parallelised to reduce the run time. However, the run time overhead of proof
computation in Eval is a constraint when compared to a VDF with an empty
proof.

Verify Our P-VDF runs Verify in O(1) < polylog(t), as shown in Theorem 13.
This is more efficient than the O(*) used by the isogeny VDF and Wesolowski’s
VDF, and the log(¢) used in Pietrzak’s VDF [13]. Additionally, our P-VDF shares
the benefit of being non-interactive with the isogeny-based VDF. This will be
analysed further in Section 5.2.

Storage requirements The RSW-based VDF's require the storage of an RSA
modulus, and the challenge parameters. Whilst our P-VDF has an empty proof,
the RSW-based VDFs have an additional proof to store. Wesolowski’s proof
has the size of one group element, whereas Pietrzak’s proof has size log,(t)
elements [6].

The isogeny-based VDF has an empty proof, but still requires the evaluator
to use large amounts of storage. In the case where the evaluator runs the VDF

18 Loe, Medley, O’Connell, Quaglia

in optimal time, O(t) storage is required. However, this can be improved upon
using a time-memory trade off, meaning O(t/n) storage is required instead, at the
cost of increasing evaluation time to O(tlogn). The authors used the parameter
n = 1244 when benchmarking this scheme [13]. In Table 1 we prioritise efficient
evaluation over storage, therefore n is set to 1.

VDF ‘ Setup ‘Sequential Eval‘ Parallel Eval ‘ Verify ‘Memory cost‘Fiat Shamir
Wesolowski| O(A7) [O((1 + 15750 [O((1 + s75m)0)] O(XY) O(\%) Yes
Pietrzak O(X\%) o((1+ %)t) O((1+ =2)t) |O(log(t))| O(log(t)) Yes
Isogeny |O(tlog())) O(t) O(t) oY) O(t) No
P-VDF O(N\3) O(t) O(t) o(1) O(\?) No

Table 1: VDF candidates’ comparison: We see that our P-VDF has the best asymp-
totic complexity across every column, in particular the O(1) verification time, and
additionally does not require Fiat-Shamir.

Efficiency considerations Table 1 illustrates that the main advantages of our
P-VDF is its lack of proof and the efficiency of Verify. The isogeny-based VDF
shares the benefit of having an empty proof. However, the isogeny-based VDF
has a Setup algorithm which grows linearly with t.

Our P-VDF and the isogeny-based VDF have the most efficient evaluation
due to their lack of proofs. However, both of these candidates have less efficient
setups when compared to the RSW-based VDFs: the isogeny-based VDF has a
setup of order O(t), making it impractical for long-running VDFs. Our P-VDF
has a similar length setup as the RSW-based VDFs, but with the limitation
that it is single-use (Section 6). The other RSW-based VDF's have the additional
strength that challenges with different time parameters can be generated for each
setup, which is not possible our P-VDF and the isogeny-based VDF. Therefore,
in any setting which requires many challenges with varying values of ¢ to be
generated, Wesolowski and Pietrzak’s VDFs are the correct candidates.

However, our P-VDF and the isogeny-based VDF excel where fast verifica-
tion is desired. Both have very efficient verification procedures which are non-
interactive. In Attias et al., the proving time of both RSW-based VDFs was
similar to the evaluation time, which is undesirable [1]. Given these considera-
tions, we now compare our P-VDF with the isogeny-based VDF.

The key difference is that our P-VDF has a significantly more efficient Setup
algorithm. However, the public parameter output by Setup can only be used once,
due to N being factored during Eval. Therefore, if many challenges are required
using the same value of t, and fast verification is important, the isogeny-based
VDF is the most appropriate candidate.

For VDFs where ¢ is large, or where there are few challenges issued relative
to the time parameter ¢, our P-VDF is the most suitable, due to the impractical
length of the isogeny setup.

A Practical Verifiable Delay Function and Delay Encryption Scheme 19

5.2 Trust and Security Assumptions

Trust assumptions Our P-VDF relies upon a trusted setup to generate the
Blum integer, N. As verification requires checking the factors of IV, it must be
instantiated in such a way that the prover never learns the factors p and q.

The three other VDF candidates have similar assumptions. Both RSW-based
VDF's require the generation of a group of unknown order, such as an RSA
modulus. Using an RSA group requires a trusted setup. If the factorisation of N is
known, then the RSW time-lock assumption is bypassed (Corollary 3,Appendix
Ad).

To solve this problem, it is proposed in [31] to use class groups of an imaginary
quadratic field instead of an RSA modulus. However, this is a non-standard
security assumption, lacking the rigorous cryptanalysis of the RSA assumption.
Furthermore, the isogeny-based VDF also requires a trusted setup to generate
initial parameters. Therefore, whilst all four candidates require a trusted setup
in their simplest form, the use of class groups mean that the RSW-based VDF's
have a promising method to avoid this.

Security assumptions Both of the other RSW-based VDFs are interactive by
nature, meaning that the prover and verifier must complete a protocol to show
that the calculation was correct. This is undesirable, as it requires to prover
to be available whenever a party wishes to verify the computation is correct.
In both cases this can be made non-interactive using the Fiat-Shamir heuristic,
which involves modelling a hash function as a random oracle. Whilst this is a
standard cryptographic procedure, it weakens the security model by relying on
an additional assumption [3,23]. By contrast, our P-VDF and the isogeny-based
VDF do not use this heuristic.

An additional requirement of Wesolowski’s VDF is a hash function Hpyime,
which maps an input to the set containing the first 22* primes, and it is assumed
that this hash function is a uniformly distributed random oracle. Such a hash
function does not exist in public literature, and it is unclear how to efficiently
achieve a function which selects primes in a cryptographically secure pseudo-
random manner®. Reliance on the Hpime hash function increases the assump-
tions for the security of this construction. This means that any implementation
at present would rely on a heuristic not subjected to full cryptanalysis, testing,
and approval.

In summary, our P-VDF is built upon well studied mathematical problems
and standard assumptions. From a practical perspective, this is beneficial as it
does not rely on strong assumptions. Furthermore, our P-VDF being RSW-based
is easier to understand and cryptanalyse than the isogeny-based VDF.

3 NIST standards FIPS 180-4 [29] and FIPS 202 [30] specify the various hash functions
given approval by NIST; neither of which includes Hprime.-

20 Loe, Medley, O’Connell, Quaglia

— Setup
504 —— Eval
— Verify

Runtime [s]

t(x10°)

Fig. 1: The impact of adjusting parame-
ter ¢ on the run time of Setup, Eval, and
Verify algorithms when run on a desk-
top PC with a 2048 bit modulus. The

pi dataset

8192 ———FT—>—31- 0 | o

)

& 4096 ——{——"1}— oo

5

9

3

33072 —{—C— o

3

=

2048 —
10t 102

pc dataset

8192 —{— 1
o)
& 4096 —_— 00
E)
33072 ——{—=_}+—000
g
=

2048

100 10! 10?
Run time [s]

Fig. 2: The spread of setup time across
modulus sizes and machines. Setup
time increases in response to an in-
crease in modulus size. The dispersion

primary effect is on Eval, which displays of run times is similar across different

a linear increase. devices.

6 Implementation Analysis

In this section we describe the implementation and performance analysis of our
P-VDF. Recall from Section 5 that we unify the algorithms Gen and Setup, so
that when we write Setup, we are referring to Setup followed by Gen. The software
implementation is written in Python 3 and the code is publicly available at
https://github.com/wsAJMYbR/pvdf. Furthermore, we have ensured that the
authors of this code are anonymized.

Our testing platform consisted of two different hardware environments: a
Raspberry Pi cluster, and a desktop PC. The Pi cluster consisted of four Rasp-
berry Pi 3 Model B computers networked together. Each Pi node utilises a
quad-core 1.2 GHz CPU, with 1 GB of available memory. This enabled us to run
experiments on four different modulus sizes in parallel. The use of Raspberry Pi
devices provides an affordable and ubiquitously available device with a consistent
configuration. This facilitates the replication of our experiments and comparison
with other VDFs. Furthermore, as Raspberry Pi devices are lower power, they
represent a lower bound for hardware that may reasonably be expected to be
used in practice outside of embedded applications.

We also executed performance tests on a consumer grade desktop PC. The
machine used a quad-core 3.2 GHz Intel i5 processor, with 16 GB of available
memory. We wished to confirm that the statistical properties remained constant
over different hardware types. Additionally, this dataset provides a more prag-
matic view of performance on commercial hardware.

Figure 1 demonstrates our first experiment. This experiment shows how the
run time of Setup, Eval, and Verify is impacted by the time parameter t for
a 2048 bit modulus when run on a desktop PC. The figure shows that as t
increases the run time for Eval also increases in a predictable linear manner. The
linear variance in run time of Algorithm 3.5 Eval as ¢ varies supports the RSW

A Practical Verifiable Delay Function and Delay Encryption Scheme 21

time-lock assumption in Definition 1. Furthermore, we see that Algorithm 3.3
Setup and Algorithm 3.6 Verify remain consistently low, regardless of the size
of t. This is expected as both algorithms reduce the parameter ¢ by the group
order using the Fermat-Euler Theorem 14. We also observe that Setup has minor
variations in the run time when compared to Eval and Verify. This is a result
of the randomised nature of Setup in comparison to the deterministic behaviour
of Eval and Verify. Finally, the figure also illustrates the efficiency of Verify, as
outlined in Theorem 13.

For our next experiments we select ¢ = 5 x 10% to provide a total run time
appropriate for repeat testing. We performed experimentation over four modulus
sizes m € {2048, 3072, 4096, 8192} bit, selected to cover common modulus sizes
in use. For each modulus size, we run 70 experiments, which allows us to estimate
values with a 90% confidence interval with a 10% margin for error. The 8192 bit
modulus is included as an edge case to demonstrate performance at the upper
bound present in real world applications.

In Figure 2, we plot the spread of run times for the Setup algorithm. The
primary metric of interest is the spread of the stochastic algorithm. For both
the Pi and PC datasets, an increase in the modulus size increases the median
run time. However, there is some overlap between modulus sizes, particularly
between m = 3072 bit and m = 4096 bit. This discrepancy can be attributed to
more efficient computation afforded when log, m € N. In particular, the Miller-
Rabin primality implementation can use a fast Fourier transform which is most
efficient when dealing with powers of two [24]. The dispersion of the data points
follows a similar pattern across both data sets, with an offset in median speed
afforded by the relative difference in processor speed.

In Figure 3 we plot the run times of the Eval and Verify algorithms for
both datasets against the modulus size. We use the run time means as a metric
to eliminate variations caused by other processes on the machine, which we
assume to be Gaussian. This leaves us with a more accurate indication of the
run time of the deterministic algorithms. As with the Setup algorithm, we see
similar increases in run time as a function of modulus size for both Eval and
Verify. However, we note the large difference between the run times of Verify
and Eval. Above each bar we plot the ratio of the run time of Verify to the
run time of Eval. We see that, while there is a small increase in the ratio in
relation to the modulus size, the difference between the two remains marked.
Even at the edge case, when Eval runs in excess of four hours on the Pi when
m = 8192 bit, Verify doesn’t exceed 30 s. For most practical cases, Verify is often
results in sub-second evaluations, demonstrating practicality even in constrained
environments. As Eval factors N, our P-VDF is single-use. However, as we have
seen in our experiments, this property is not an obstacle for practical use. Even
in more computationally constrained environments such as the Pi, the Setup and
Verify algorithms do not require an impractical time cost. Although we would
recommend for a standard use case to use m < 4096 to keep the setup run
time within an appropriate bound. This leaves the value for ¢ as the primary
parameter dictating the length of the delay. As we saw in Figure 1, the value for

22 Loe, Medley, O’Connell, Quaglia

mmm Eval (pc) Eval (pi) == Verify (pc) Verify (pi)
0.00201
14 4 Z . . r
()
€
12 4 E=]
C
— >
& _
< 101 o I I I
v ©
£ o
; 2048 3072 4096 8192
? 6 - Modulus size [b]
g
<
4 0:00101
0.00076
2 .
0.00051
0.00198
O .00051 0.00075! 0.00100
2048 3072 4096 8192

Modulus size [b]

Fig. 3: Verify takes significantly less time to run than Eval across modulus sizes. The
inset shows a zoomed in view of the bar chart which is necessary for the effect of Verify
to be observed. Above each bar is the ratio Eval to Verify run time.

t can be set with reasonable accuracy to introduce a desired delay for the target
hardware.

7 A Practical Delay Encryption Scheme

Burdges and De Feo introduce the primitive of Delay Encryption (DE) [7], where
parties are allowed to encrypt messages in such a way that they can only be
decrypted once a certain amount of time has passed. A DE scheme provides
a solution to electronic voting and auctions, which circumvents the need for
a commitment scheme*. The authors provide an instantiation based upon the
isogeny-based VDF. However, they highlight that this construction comes with
implementation issues, such as large storage requirements. For example, they
indicate that an evaluator requires approximately 12 TiB for a one-hour delay.

In this section we recall the formal definitions of a DE scheme from [5] and
present an instantiation derived from our P-VDF. Our resulting scheme is se-
cure and inherits the efficiency benefits described in Section 5. Specifically, this

4 We refer the reader to [7] for a detailed discussion of DE and related primitives such
as TRE and time lock puzzles.

A Practical Verifiable Delay Function and Delay Encryption Scheme 23

means that the Practical Delay Encryption (P-DE) scheme has a more efficient
setup and requires significantly less storage that the isogeny-based instantiation.
However, this comes at the cost of having a single-use setup.

7.1 DE Definitions

We follow the definitions given in [7], altered to fit the public key encryp-
tion paradigm, rather than the KEM-DEM paradigm [20]. A Delay Encryp-
tion scheme consists of four algorithms: DE.Setup, DE.Extract, DE.Encrypt, and
DE.Decrypt. To be consistent with the parties in our P-VDF scheme we note
that V is the encrypting party (verifier), P is the decrypting party (prover), A
is the adversary, and C is the challenger.

— (ek,pk) +—= DE.Setup(1%,t). DE.Setup is an algorithm run by V that takes
a security parameter x and a time delay ¢, and produces extraction key ek,
and encryption key pk. DE.Setup must run in time poly(k,t).

— idk < DE.Extract(ek,id). DE.Extract is an algorithm run by P that takes the
extraction key ek and a session identifier id, and outputs a session key idk.

— CT +r DE.Encrypt(pk,id, M). DE.Encrypt is an algorithm run by V that
takes the encryption key pk, session id id and a message M, and outputs a
ciphertext CT. DE.Encrypt must run in time poly (k).

— {M, L} «+ DE.Decrypt(pk, id, idk, CT'). DE.Decrypt is an algorithm run by P
that takes the encryption key pk, a session identifier id, the session key idk
and a ciphertext C'T’, and outputs either a message M, or a failure symbol
1. DE.Decrypt must run in time poly(\).

A delay encryption scheme must be correct and satisfy A-Delay indistin-
guishably under chosen plaintext attacks.

1 V generates encryption and extraction keys: (ek,pk) <—r DE.Setup(1”,1t).;
2 V delay encrypts a message: CT < DE.Encrypt(pk,id,M).;
3 P computes the session key: idk «+— DE.Extract(ek,id).;
4 P decrypts the ciphertext: {M, L} «+ DE.Decrypt(pk,id,idk, CT).;
A Delay Encryption scheme is correct if P outputs M with probability
1 — negl(k).

Game 7.1: DE Correctness Game

— A delay encryption scheme is correct if any encrypted message can be de-
crypted using the session key with overwhelming probability. This is made
precise in the DE correctness game, Game 7.1 [7].

— Suppose an adversary A chooses a message My, and sends it to the challenger
C. C encrypts this message, and also chooses a random string of the same
length, before sending one of these at random to the adversary. A DE scheme
is secure if no efficient adversary can distinguish between these possibilities.
This is made precise in the A-Delay IND-CPA game, Game 7.2 [7].

24 Loe, Medley, O’Connell, Quaglia

1 A receives the encryption and extraction keys ek,pk as input, and outputs an
algorithm D < A(ek,pk).;
2 A selects a message Mo, and sends it to C.;
3 C computes CTy < DE.Encrypt(pk,id,My), and chooses CT; € {0,1}"
uniformly at random.;
4 C then picks a random bit b € {0,1} and then outputs (id, CT3).;
5 Guess. The algorithm D is run on session identifier id, and a ciphertext CTy.;
A wins if D terminates in time less than A, and the output is such that
b« D(id, CTy).;
A Delay Encryption scheme is A-Delay indistinguishable under chosen
plaintext attacks if no efficient adversary A can win the game with a
non-negligible advantage.

Game 7.2: A-Delay IND-CPA Game

7.2 Instantiation using P-VDF

We now show how to instantiate a correct and secure DE scheme using our
P-VDF and RSA-OAEP [20]. The overview of our P-DE scheme is as follows:

A summary of the inputs and outputs for the DE.Setup, DE.Extract, DE.Encrypt,
and DE.Decrypt algorithms of our P-VDF construction are as follows:

pk == (e, ko, k1, G, H),
ek := (C,t),id = N <= DE.Setup(1~,t)
idk .= (p',¢’) + DE.Extract(ek,id)
CT <nr DE.Encrypt(pk,id, M)
M +«+ DE.Decrypt(pk,id,idk, CT)

Algorithm 7.3: DE.Setup generates the extraction key ek, the en-
cryption key pk, and the session ID id for our P-DE.

input : 1%t

id :== N «r Setup(17), ek := (C := (z,z0,z_¢),t) =& Gen(pp,t)
e := 65537

ko, k1,G, H <+ params(1~)

pk = (67 k’o,kl,G, H)

output: ek,pk,id

W N =

In our P-DE we generate the extraction key ek, the encryption key pk, and
the session identifier id, with the algorithm DE.Setup where N is a Blum integer,
e is an RSA exponent such that gecd(e,¢(N)) = 1, C,t¢ are the challenge and
time parameter output from Algorithms 3.3 Setup and 3.4 Gen in our P-VDF,
and kg, k1,G, H are RSA-OAEP parameters. We note that kg, k; are integers
fixed by RSA-OEAP, and G, H are random oracles - which are cryptographically
secure hashing functions. The Algorithm DE.Setup can be seen in Algorithm 7.3.

A Practical Verifiable Delay Function and Delay Encryption Scheme 25

Algorithm 7.4: DE.Extract takes the extraction key ek and the ses-
sion identifier id and outputs the session key idk with A-Delay.

input : ek,id

// ek:=(C,t),id:=N
1 y:=(p,q) < Eval(N,C,t)
2 idk ==y

output: idk

We see on line 1 that our P-VDF Algorithm 3.3 Setup is called to output the
Blum integer and Algorithm 3.4 Gen is called to output the challenge, and
time parameter. Next, we see the public RSA exponent e defined. Typical RSA
implementations set e = 26 4 1 = 65537, as 65537 is a prime number with a
low Hamming weight [20]. Finally, the function params outputs the public RSA-
OEAP parameters, which we set as the encryption key pk. DE.Setup outputs
ek,pk,id.

Next, the DE.Extract algorithm calls Algorithm 3.5 Eval from our P-VDF to
evaluate N, C,t to output idk := (p’,¢’). The Algorithm DE.Extract can be seen
in Algorithm 7.4.

Algorithm 7.5: DE.Encrypt takes the encryption key pk, and the
session identifier id, and encrypts message M using the RSA-OEAP
encryption scheme.

input : pk,id, M

// pk = (e,ko,]ﬁ,G,H),id =N

1 M =M]| 0¥ // Zero pad to m — ko bits

2 r = rand(ko) // Generate a random ko bit number

3 X =M &Gpn_g(r) // Hash 7 to length n — ko

4 Y =r®H(X) // Hash X to length ko

5 M'" =X ||Y // Create message object

6 CT = M"° mod N // RSA encrypt
output: CT

Next the DE.Encrypt algorithm uses the encryption key and session identi-
fier and encrypts a message M using RSA-OEAP encryption and outputs the
ciphertext CT. Using RSA-OAEP, parties can encrypt messages to this modu-
lus, so that such messages can only be decrypted after algorithm DE.Extract has
terminated, implying A time has passed. The Algorithm DE.Encrypt can be seen
in Algorithm 7.5. Note that these algorithms are not sequential: The DE.Encrypt
algorithm can be run by any party using the encryption key and the session
identifier, whilst Extract is running.

Finally, the DE.Decrypt algorithm takes as input the encryption key pk, the
session identifier id and the ciphertext and uses the session key idk := (p’,¢’)

26 Loe, Medley, O’Connell, Quaglia

to calculate the Euler phi function ¢(N) = (p' — 1)(¢’ — 1) of N. By having
¢(N), the DE.Decrypt algorithm is able to recover the private RSA key d, where
d:=e~! =1 mod ¢(N), to subsequently recover the message M. The Algorithm
DE.Decrypt can be seen in Algorithm 7.6.

Algorithm 7.6: DE.Decrypt.
input : pk,id,idk, CT
// pk:= (e ko, k1,G, H),id = N,idk := (p, ¢')

1 ¢(N) =@ -1)(¢ -1)

2 d:=e ' mod ¢(N)

3 M":=CTmod N

4 X =|M"-27%] // Extract X
5 Y = M" mod 2%° // Extract Y
6 1:=Y ® Hi,(X) // Recover r
7T M =X Gk, (r) // Recover padded message
8 M:=M . 27" // Remove padding

output: M

7.3 Security

In this section we provide security proofs. Correctness of Our DE scheme relies
on the correctness of RSA, which is proved to hold in [21]. RSA encryption with
OAEP padding is known to be IND-CCA secure, as proved in [15], and we rely
on this to prove that the P-DE is A-IND-CPA secure.

Lemma 1. The P-VDEF delay encryption scheme is correct.

Proof. As shown in Theorem 7, the P-VDF is correct, meaning that the VDF
always outputs the factors p and ¢ of N. This allows for the computation of d
such that d-e =1 mod ¢(N). This ensures that RSA encryption and decryption
can be run correctly, and so the result follows from the correctness of RSA.

Lemma 2. The P-VDF based Delay Encryption scheme (P-DE) is A-Delay
Indistinguishable Under Chosen Plaintext Attacks

Proof. Let A-IND-CPAP® be the A-IND-CPA game for the P-DE, and let IND-
CPATS4 be the standard IND-CPA game for RSA.

1) A-IND-CPAPPF is strictly weaker than the IND-CPA®94 under the RSW-
time lock assumption. To see this, note that the only differences between the two
games is that i) an adversary gets no time for meaningful precomputation, as
the public parameter and challenge are published at the same time, and ii) the
algorithm D must terminate in time less than A.

2) Recall from that Theorem 11 that the P-VDF is sequential, meaning that
any algorithm that terminates in time less than A has negligible chance of solving

A Practical Verifiable Delay Function and Delay Encryption Scheme 27

the underlying P-VDF. From (1) and (2), we have that the A-IND-CPAPE game
is an instance of the IND-CPA®S4 game, with the additional constraint that all
computation and encryptions performed by an adversary with knowledge of N
must take place in time at most A.

Recall that RSA with OAEP is IND-CCA secure under the RSA assumption,
which implies it is also IND-CPA secure. This implies that if an adversary can
break the A-IND-CPAPF game, then they can also break the IND-CPARSA
game, therefore we have A-IND-CPA security.

7.4 Efficiency

The efficiency of Setup and DE.Extract of this scheme follow directly from the
underlying P-VDF. To see this, note that DE.Setup implements Setup and Gen,
and additionally specifies the OAEP parameters, and DE.Extract implements
Eval. As such, we refer the reader to Section 5 for a discussion of the efficiency
of the underlying algorithms.

DE.Encrypt and DE.Decrypt are a textbook case of RSA with OAEP padding,
and so we shall not discuss this here.

We conclude this section by noting that we have written code to implement
this DE scheme, which can be found at https://github.com/wsAJMYbR /pvdf.

8 Conclusion

In this work we constructed a practical verifiable delay function, which challenges
the prover to factor a special class of RSA modulus, known as a Blum integer.
We proved security of our construction and compared it to the current published
VDF candidates, showing that it has various advantages over the alternatives.
Further, we implemented our P-VDF on both a Raspberry Pi and on a desktop
PC, showing that it is indeed a practical construction. We then used our scheme
to construct the first practical delay encryption scheme, a tool similar to time-
lock puzzles, with applications such as e-voting. This is achieved by allowing
parties to encrypt messages to the RSA modulus using OAEP, so that they can
only be decrypted once the underlying P-VDF has been solved.

References

1. Attias, V., Vigneri, L., Dimitrov, V.: Implementation Study of Two Verifiable Delay
Functions. In: Tokenomics (2020)

2. Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. 1: Efficient Algorithms.
MIT Press, Cambridge, MA, USA (1996)

3. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the fiat-shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
Advances in Cryptology — ASTACRYPT 2012. pp. 626—-643. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012)

4. Blum, L., Blum, M., Shub, M.: A Simple Unpredictable Pseudo-Random Number
Generator. In: Journal on Computing. vol. 15, p. 364-383 (1986)

28

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Loe, Medley, O’Connell, Quaglia

Boneh, D., Bonneau, J., Biinz, B., Fisch, B.: Verifiable Delay Functions. In: Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference. pp. 757-788. Santa Barbara, CA, USA (2018)

Boneh, D., Biinz, B., Fisch, B.: A survey of two verifiable delay functions. Cryp-
tology ePrint Archive, Report 2018/712 (2018)

Burdges, J., Feo, L.D.: Delay encryption. In: Advances in Cryptology - EURO-
CRYPT 2021 - 40th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Zagreb, Croatia (2021), to appear in

Cohen, B., Pietrzak, K.: The chia network blockchain (2019)

Cook, J.: Computing Legendre and Jacobi symbols, Algorithm for computing
Jacobi symbols. https://www.johndcook.com/blog/2019/02/12/computing-jacobi-
symbols (2019)

Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT
Press, Cambridge, MA, USA, 3 edn. (2009)

Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer-Verlag, New York, NY, USA, 2 edn. (2005)

Ephraim, N., Freitag, C., Komardogski, I., Pass, R.: Continuous Verifiable Delay
Functions. In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
p. 125-154. Zagreb, Croatia (2020)

Feo, L.D., Masson, S., Petit, C., Sanso, A.: Verifiable Delay Functions from Super-
singular Isogenies and Pairings. In: Advances in Cryptology — ASTACRYPT 2019
— 25th Annual Conference. pp. 248-277. Kobe, Japan (2019)

Friedlander, J., Pomerance, C., Shparlinski, I.: Period of the power generator and
small values of carmichael’s function. In: American Mathematical Society. pp.
1591-1605. Mathematics of Computation 70 (2001) (2000)

Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: Rsa-oaep is secure under the
rsa assumption. In: Proceedings of the 21st Annual International Cryptology Con-
ference on Advances in Cryptology. p. 260-274. Springer-Verlag, Berlin, Heidelberg
(2001)

Gauss, C.: Disquisitiones Arithmeticae. Yale University Press, New Haven, CT,
USA, 1 edn. (2009)

Goodstein, R.: Boolean Algebra. Dover Publications, Mineola, NY, USA, 1 edn.
(2007)

Griffin, F., Shparlinski, I.: On the linear complexity profile of the power generator.
In: IEEE Transactions on Information Theory (Volume: 46, Issue: 6, Sep 2000).
pp. 2159 — 2162 (2000)

Karatsuba, A., Ofman, Y.: Multiplication of Many-Digital Numbers by Automatic
Computers. In: Proceedings of the USSR Academy of Sciences. pp. 293-294 (1962)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press, Boca Raton, FL, USA, 2 edn. (2014)

Lindenberg, C., Wirt, K., Buchmann, J.: Formal proof for the correctness of rsa-
pss. IACR Cryptol. ePrint Arch. p. 11 (2006)

Miller, G.: Riemann’s Hypothesis and Tests for Primality. In: Journal of Computer
and System Sciences, 13(3). pp. 300-317 (1976)

Mittelbach, A., Fischlin, M.: The Theory of Hash Functions and Random Oracles.
Springer, Cham, 1 edn. (2021)

Narayanan, S.: Improving the speed and accuracy of the miller-rabin primality test
(2014)

Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS 201. pp. 601-615. San Diego, California (2019)

A Practical Verifiable Delay Function and Delay Encryption Scheme 29

26. Rabin, M.: Digitalized signatures and public-key functions as intractable as fac-
torization. In: MIT/LCS/TR-212, MIT Laboratory for Computer Science (1979)

27. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto.
In: MIT/LCS/TR-~684, MIT Laboratory for Computer Science (1996)

28. Rosen, K.: Discrete Mathematics and Its Applications. McGraw-Hill Education,
New York, NY, USA, 8 edn. (2018)

29. of Standards, N.I., Technology: FIPS PUB 180-4, Secure Hash Standard (2015)

30. of Standards, N.I., Technology: FIPS PUB 202, SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions (2015)

31. Wesolowski, B.: Efficient Verifiable Delay Functions. In: Advances in Cryptology
— EUROCRYPT 2019. p. 379-407. Darmstadt, Germany (2019)

A Appendix

A.1 Number Theory
First, we present the Fermat-Euler Theorem.

Theorem 14. Fermat-Euler Theorem. Let N be an odd prime, or let N = pq,
where p and q are distinct odd primes. If gcd(a, N) =1, then a®™) =1 mod N,
where ¢(N) = N — 1 if N is prime or ¢(N) = (p—1)(¢—1) if N = pq.

Proof. Proof can be found in [16].

Corollary 3. Let xg € Z%. If the group order ¢(N) is known, then calculating
x; such that x; = x%t mod N can be done in loge N binary operations.

Proof. Let x; = x%t mod N. If the exponent 2! is reduced mod ¢(N) we have
2! = a¢(N) + 8, where 3 is the remainder of 2! after the ¢(N) modular re-

t
duction. Then, by Theorem 14 we have z; = 23 = z; ™1 *W) = 0o+ =

xg(N)axg = 1°z] =z mod N. The number of bits in 3 is O(log N), and 3 is
input into line 2 of Algorithm 3.1.

Next, we provide proof of Theorem 5.

Proof. (Theorem 5) If N is a Blum integer, then N = 1 mod 4. By Theorem 4
every xg € QR y has four distinct square roots +x and £z’. As N = 1 mod 4,
by the law of quadratic reciprocity Jy(x) = Iy (—2) and Iy (2') = In(—2'). Tt
must be the case that 22 = 2> mod N, which implies (z—2)(z+2') = 0 mod N,
which implies (z — 2’) | N and (z + 2’) | N. That is, without loss of generality
(x—2') =k -pand (x +a') = £ q, where k,{ € N. Therefore, J,(z) = Jp(2')
and Jy(z) = Jy(—='). As p = 3 mod 4, the law of quadratic reciprocity tells us
Jp(—=1) = —1, we have Jy(x) - Tp(—1) = Jy(—2') - Jp(—1). This implies that
JIn(—z) = In(a') or written another way Jn(z) # Jn(z').

Without loss of generality, eliminate the two roots with Jx equal to —1, say
JIn(x) = In(—zx) = —1. This leaves Jy(2') = In(—2') = +1. Tt is the case that
only one of —z' or z’ has J, = J, = 1 as p = 3 mod 4. Therefore, without loss
of generality, it is only 2’ that has the property Jy(z') = +1 and 2’ € QR y [4].

30 Loe, Medley, O’Connell, Quaglia

A.2 Jacobi Symbol Algorithm

Finally, we provide the details of Algorithm A.2 Samplex which can efficiently
sample the parameter x in the challenge C' without knowledge of the factors
p and ¢. Algorithm A.2 can be used in lieu of the while loop on lines 1-6 in
Algorithm 3.4 Gen. The proof of correctness of Algorithm A.2 can be found in
Bach et al [2]. Therefore, the proof of Corollary 2 is also relevant in the case of
Algorithm A.2. The original Python code for the function Jacobi(z, pp) can be
found in [9].

Algorithm A.1: Jacobi is run on random input x and public param-
eter pp to calculate the Jacobi symbol of z .

input : z,pp
15=1
2 while z # 0 do

3 while £ mod 2 =0 do
4 T =73
5 if ppmod 8 =3V ppmod 8 =5 then
6 | =)
7 end
8 end
9 if x mod 4 = 3 A ppmod 4 = 3 then
10 | j=—j
11 end
12 T, pp ‘= pp, T
13 x := z mod pp
14 end
15 if pp # 1 then
16 | j=0
17 end
output: j

Algorithm A.2: Samplex is run on public parameter pp to efficiently
sample parameter x without knowledge of p and gq.
input : pp
1 do
2 x = U(2,pp)
3 j = Jacobi(z, pp)
4 while j # —1
output: x

