
Improved Quantum Hypercone Locality Sensitive
Filtering in Lattice Sieving

Max Heiser∗

Abstract

The asymptotically fastest known method for solving SVP is via lattice sieving,
an algorithm whose computational bottleneck is solving the Nearest Neighbor Search
problem. The best known algorithm for solving this problem is Hypercone Locality
Sensitive Filtering (LSF). The classical time complexity of a sieve using Hypercone
LSF is 20.2925d+o(d). The quantum time complexity is 20.2653d+o(d), which is acquired
by using Grover’s algorithm to speed up part of the enumeration.

We present an improvement to the quantum algorithm, which improves the time
complexity to 20.2571d+o(d). Essentially, we provide a way to use Grover’s algorithm
to speed up another part of the process, providing a better tradeoff. This improve-
ment affects the security of lattice-based encryption schemes, including NIST PQC
Round 3 finalists.

1 Introduction
Lattice-based cryptography has received wide attention in recent years, in part due to its
perceived resistance against quantum attacks. As such, the vast majority of applicants in
NIST’s post-quantum standardization process are lattice-based. Attacks against lattice-
based ciphers often require finding the shortest vector in a lattice whose shortest vector is
exceptionally short. This is the unique SVP problem. The most efficient known algorithm
for solving this problem is BKZ [4, 24, 28], which uses an exact SVP solver of a smaller
dimension as a subroutine.

The asymptotically fastest known algorithms for exact SVP are lattice sieving algo-
rithms. Their time complexity is 2cd+o(d), where d is the dimension of the lattice and c
is a constant determined by which sieving algorithm is used. Compared to enumeration
algorithms [11, 13, 23], whose time complexity is 2ω(d), sieving algorithms achieve better
performance in high dimensions at the expense of large memory requirements. Accord-
ingly, the current record in the SVP challenge [27] solves SVP in dimension 180 by sieving
[10], and the top 10 performances all use sieving algorithms. Reducing the constant c in
the exponent of the time complexity of sieving algorithms directly affects the expected
security of lattice-based cryptographic schemes [20, 28].

The main procedure in lattice sieving is finding close pairs of lattice vectors in a long
list, and substracting one vector from the other to create a shorter lattice vector. When
performing this procedure repeatedly, we continually shorten the vectors in the list until

∗heisermax@protonmail.com

1



it contains the shortest vector in the lattice. The problem of finding close pairs of vectors
in a list is the Nearest Neighbor Search problem [12].

The first sieving algorithm was introduced in [1], which was later shown to provably
solve SVP in time 22.465d+o(d) [22, 25]. Heuristic analyses [21, 22] further suggested that
sieving algorithms can solve SVP in time 20.415d+o(d), and presented practical improve-
ments. Research into k-sieves and overlattice sieves [6, 29, 30] improved the heuristic
time complexity to 20.378d+o(d). Further work [5, 15, 19] improved sieving by apply-
ing Locality Sensitive Hashing and Locality Sensitive Filtering techniques to the nearest
neighbor search routine, improving the time complexity to 20.292d+o(d). Various practical
and subexponential improvements have been suggested over time [2, 8, 9, 10, 17, 26].

Quantum versions of sieving algorithms were analysed in [16, 18]. Namely, the quan-
tum sieve using locality sensitive filtering was shown to run in time 20.265d+o(d). Quantum
versions of k-sieves were examined in [14], giving a time-space tradeoff. Recently, while
we were conducting this research, a sieving algorithm using quantum random walks was
suggested in [7] with time complexity 20.2570d+o(d). Several practical aspects of quantum
sieving algorithms were examined in [3].

1.1 Contributions
We present an improvement to the quantum locality sensitive filtering algorithm described
in [16], which improves its time complexity from 20.265d+o(d) to 20.2571d+o(d). The main
idea is applying Grover’s algorithm to a part of the calculation that was previously done
classically. Namely, instead of classically finding all relevant filters for a vector, we use
Grover’s algorithm with a circuit that samples a random relevant filter. We conjecture
this improvement is somewhat orthogonal to the improvement in [7], and in future work
the two algorithms may possibly be combined.

Theorem 1 There exists a quantum algorithm using locality sensitive filtering which
(heuristically) solves SVP in dimension d with time complexity 20.2571d+o(d).

Outline. In Section 2 we provide background on Locality Sensitive Filtering (LSF) as a
general scheme and explain the core idea of our improvement in high level. In Section 3 we
discuss hypercone LSF and the details of our algorithm, as well as its analysis. In Section
4 we discuss Random Product Codes and construct a circuit used by the algorithm.

2 Overview of Our Algorithm
As a part of lattice sieving, we are required to solve the following problem: Given a
long list of N vectors in Rd, find all pairs of close vectors. This is the Nearest Neighbor
Search problem (NNS). In the context of lattice sieving, vectors are said to be close (or
neighbors) if the angle between them is ≤ 60◦, and N ≈ (sin 60◦)−d ≈ 20.2075d such that
every vector has ≈ 1 close neighbor in the list.

The best known algorithm for solving NNS is Locality Sensitive Filtering (LSF). The
main idea is to create a set of filters, and use them to construct buckets such that vectors
in the same bucket are more likely to be close. The algorithm is to then check all pairs
of vectors that are in the same bucket, and find those which are close. The pseudo-code
of the scheme is as follows:

2



LSF Scheme
(1) Generate filters {f1, ...ft}
(2) Initialize empty buckets {B1, ..., Bt}
(3) For v in V :
(4) For fi in Filters(v):
(5) Add v to Bi
(6) For v in V :
(7) For fi in Filters(v):
(8) For w 6= v in Bi:
(9) If v is close to w:
(10) Add (v, w) to neighboring pair list

Notice that in order to perform loops (4) and (7) above efficiently, we need to quickly find
the relevant filters for a given vector. The simple solution is to enumerate over all filters
and check which of them is relevant for v. However, this enumeration would take much
more time than necessary as v is not relevant for the vast majority of filters. Ideally,
we would like to find the relevant filters for v in time Õ(F), where F is the number of
relevant filters. This operation is realized using Random Product Codes, which we discuss
later. If each bucket contains Õ(B) vectors on average, then the algorithm takes

Õ(NF +NF +NFB)

where

• The first term accounts for constructing the buckets; (3-5)

• The second term accounts for computing the relevant filters of each vector; (7)

• The third term accounts for checking all vectors in the relevant filters’ buckets.
(8-10)

Note that runtime is optimized when B = 1, that is, every bucket contains Õ(1) vectors.

2.1 Quantum Improvements
When attempting to apply Grover’s algorithm in order to speed up locality sensitive
filtering, the first idea may be to use Grover search on each bucket. This reduces each
bucket’s search time by a square root, to get Õ(NF +NF +NF

√
B). However, this is

not optimal: Note that the vast majority of buckets do not contain a neighbor of v, as
v only has ≈ 1 neighbor in the entire list. We could concatenate all relevant buckets to
one long list, and use Grover search to find the Õ(1) close neighbors. This would take
Õ(NF +NF +N

√
FB) time. This is, in essence, the quantum LSF algorithm in [16].

Our starting point for this paper is the following modification of the above algorithm.
Currently, in order to find neighbors of v we classically find the relevant buckets for v,
then apply Grover search to the union of these buckets. If we skip the classic step of
finding these buckets and instead use Grover’s algorithm with a circuit that samples a
relevant bucket and a potential candidate from that bucket in Õ(1) time, then the time
complexity would be Õ(NF + N

√
F + FB) = Õ(NF + N

√
F + N

√
FB), essentially

applying a square root factor to the second term (bucket iteration) in addition to the
third (candidate iteration).

3



On first glance this does not seem to improve the runtime, as the first term (construct-
ing the buckets) always dominates the second. For this reason, we need to add a small
modification to the algorithm: Each filter will have two thresholds - a strong one and
weak one. Only vectors passing the strong threshold will enter the corresponding bucket
in lines (4-5). However, when iterating over relevant filters in line (7), we will consider a
filter relevant even if v only passes the weak threshold. This will offload runtime from the
construction of the buckets to the enumeration over filters, which results in an improve-
ment because the latter is sped up by Grover’s algorithm. The updated pseudo-code is
as follows:

LSF Scheme (multiple thresholds)
(1) Generate filters {f1, ...ft}
(2) Initialize empty buckets {B1, ..., Bt}
(3) For v in V :
(4) For fi in StrongFilters(v):
(5) Add v to Bi
(6) For v in V :
(7) For fi in WeakFilters(v):
(8) For w 6= v in Bi:
(9) If v is close to w:
(10) Add (v, w) to close pair list

The new runtime is Õ(NFstrong + N
√
Fweak + N

√
FweakB), and the parameters can be

balanced such that the three terms have the same order of magnitude. This is the essence
of the quantum algorithm we present. We note that in [16] the method of multiple
thresholds was used for a different purpose - to create a time-memory tradeoff, whereas
here we use it to improve the runtime itself.

As mentioned above, we will later have to describe a circuit that samples a relevant
filter (and a vector from the corresponding bucket) in Õ(1) time. This extends the
algorithm for calculating the F relevant filters in time Õ(F) which is known for Random
Product Codes.

In the next section we describe the algorithm and analysis in more detail, assuming
the existence of a circuit for sampling filters. The construction of this circuit is described
in section 4.

3 Details of Our Algorithm

3.1 Hypercone LSF
Recall the main idea of LSF: Create a set of filters, and use them to construct buckets
such that vectors in the same bucket are more likely to be neighbors. In Hypercone LSF,
each bucket is a hypercone around some central vector. In more detail, each filter is a
unit vector f in some direction, and a vector v passes the filter if 〈v, f〉 ≥ β for some fixed
β > 0 (since the vectors v are usually normalized to have unit length, this condition is
equivalent to the angle between v and f being at most cos−1(β)). When using both weak
and strong thresholds (see subsection 2.1), we would use two values 0 < α < β, where
α and β would correspond to the weak and strong threshold respectively. We say that v

4



and f are α-close or β-close if 〈v, f〉 ≥ α or 〈v, f〉 ≥ β respectively. Vectors v1, v2 are
said to be neighbors if 〈v1, v2〉 ≥ 1

2 (equivalent to having angle ≤ 60◦).

As described in section 2, we first construct buckets containing the vectors that are β-
close to each filter. Then, for each vector v we look for neighbors of v in the buckets
corresponding to filters that are α-close to v.

One needs to make sure that (almost) every pair of neighbors is found via at least one of
the filters. A pair of vectors is found via a certain filter if this filter is α-close to one of the
vectors and β-close to the other. We construct Õ(p−1) filters, where p is the probability
of this condition holding for a single filter, namely p =

(
1− 4

3 (α
2 − αβ + β2)

)d/2+o(d).
In order for the algorithm to be efficient, one needs a method to quickly find the

relevant (α-close or β-close) filters for a given vector. This is provided by Random Product
Codes, a method for choosing the filters with a certain structure that allows one to find
the relevant filters in time Õ(F), where F is the number of relevant filters. In our
improvement, we extend this algorithm to enable sampling a relevant filter in Õ(1) time.

3.2 Analysis of Hypercone LSF
We use similar notation to [16]. We have n = 2cnd+o(d) vectors in Rd (with cn ≈ 0.2075
in the context of lattice sieving), and we create t = 2ctd+o(d) filters. For each filter f , we
create a bucket of all vectors v that are β-close to f . We achieve this by iterating over
all vectors v, finding the β-close filters for v and placing v in the corresponding buckets.
When searching for neighbors of a vector v, we compute the filters that are α-close to
v, and search for neighbors in the corresponding buckets. The probability of a random
vector being α-close or β-close to a given filter is 2cαd+o(d) or 2cβd+o(d) respectively, where
cx = 1

2 log2(1 − x
2) for x ∈ {α, β}. The constraint that most close pairs of vectors are

found this way with high probabilty translates into ct = − 1
2 log2(1−

4
3 (α

2 − αβ + β2)).
In our analysis, we use the heuristic that the lattice points in our list behave similarly

to uniformly random points on the sphere. This heuristic is frequently used in analysis
of sieving algorithms, and has been studied in [22]. We further assume that the filters
constructed by the random product code behave as uniformly random points on the
sphere. This heuristic was justified in [5, 16].

3.2.1 Classical Complexity

The classical complexity of Hypercone LSF is 2ctimed+o(d), where

ctime = max {ct + cβ , ct + cα, ct + cα + cn + cβ}+ cn

The three terms inside the max{·} account for three parts of the process for each vector:

• The first term accounts for placing each vector into the β-close buckets;

• The second term accounts for computing the α-close filters of a vector;

• The third term accounts for checking all vectors in the relevant buckets.

Optimizing for time complexity, we get ctime ≈ 0.2925 and α = β = 1
2 .

5



3.2.2 Quantum Complexity

The quantum complexity of Hypercone LSF as described in [16] is 2qtimed+o(d), where

qtime = max

{
ct + cβ , ct + cα,

1

2
(ct + cα + cn + cβ)

}
+ cn

The third term is halved by using Grover search on the list of candidate vectors. Opti-
mizing for time complexity, we get qtime ≈ 0.2653 and α = β =

√
3
4 .

3.2.3 Improved Quantum Complexity

We propose an improvement to quantum Hypercone LSF, in which the new time com-
plexity is 2q

′
timed+o(d), where

q′time = max

{
ct + cβ ,

1

2
(ct + cα) ,

1

2
(ct + cα + cn + cβ)

}
+ cn

Optimizing for time complexity, we get q′time ≈ 0.2571 and β = 1
2 , α ≈ 0.4434. For

reference, the values of the relevant parameters are

cα = −0.1579, cβ = −0.2075, ct = 0.2571, cn = 0.2075

In order to achieve this time complexity, we design a circuit that samples an α-close
filter to v, and a vector in the corresponding bucket. Using Grover’s algorithm with this
quantum circuit to search for neighbors, we acquire a 1

2 factor on the last two complexity
terms, rather than just the third.

4 Circuit for Filter Sampling

4.1 Random Product Codes
The filters in LSF are constructed via Random Product Codes: We choose b,m such that
d = b ·m where m = O(log d). We let the set of filters be C = C1 × · · · × Cm, where the
subcodes Ci = {f (1)i , ...f

(t′)
i } ⊂

√
1/m ·Sb−1 for i = 1, ...,m are sets of t′ = t1/m random,

independent, uniform vectors over the sphere
√

1/m · Sb−1. The parameter m is taken
to be O(log d) to enable efficient decoding as well as sufficient randomness (see [5, 16] for
further details).

The structure of Random Product Codes can be utilized to quickly find the relevant
filters for a vector v: Suppose that we wish to find all of the α-close filters, i.e. filters f
for which 〈v, f〉 ≥ α. Writing f = (f1, ..., fm) and v = (v1, ..., vm), we may instead write
this condition as

∑m
i=1〈vi, fi〉 ≥ α. This structure allows one to find the relevant filters

in time Õ(F), where F is the number of relevant filters, as is normally done in LSF. We
extend this algorithm to allow sampling one of the relevant filters in time Õ(1).

4.2 Filter Sampling Overview
To describe how we sample one of the relevant filters, we first examine how one normally
finds the set of all relevant filters in LSF. Broadly speaking, the relevant filters are a subset

6



of the leaves in a certain tree (said to be good leaves). To find all of them, one explores
the tree from the root downwards in a pruned enumeration routine. In comparison, we
need to sample a uniformly random good leaf.

To sample a good leaf efficiently, we need some information about the structure of the
tree. Namely, it suffices to know how many good leaves are there below each node - we
could then perform a process in which we start from the root, and continually walk down
to one of the children of the current node randomly with probabilities weighted by the
number of good leaves below each child. This would allow sampling a uniformly random
good leaf, but requires evaluating the number of good leaves below each node. Naively,
this requires traversing the entire tree, which is costly. Fortunately, the tree and the
subset of good nodes have a structure that allows evaluating this quantity using dynamic
programming - albeit using a slightly larger set of good leaves. After sampling from this
larger set, we use rejection sampling in order to sample a leaf from the original set of
good leaves.

4.3 The Enumeration Tree
Consider the following tree: Its nodes at level 0 ≤ k ≤ m are labeled by vectors in
C1 × · · · × Ck, and the parent of (f1, ..., fk−1, fk) is the direct prefix (f1, ..., fk−1). The
leaves correspond to filters, and we fix a certain subset of the leaves G ⊆ C1 × · · · × Cm
which are called good leaves. To begin with, the good leaves will be ones corresponding
to α-close filters, but we will slightly alter this choice later.

For a node x, we define L(x) to be the number of good leaves below x. Given an oracle
to L, we may sample a random good leaf by starting at the root and iteratively walking
to one of the children of the current node with probabilities weighted by the number of
good leaves below each child. The following pseudo-code describes this process:

Leaf Sampling Scheme
(1) x← root
(2) For i = 1, 2, ...,m:
(3) For y ∈ Children(x):
(4) py ← L(y)

L(x)
(5) Choose y ∈ Children(x) randomly with probability py
(6) x← y
(7) Return x

The values L(x) may be calculated recursively beforehand, starting from the leaves and
going up (using L(x) =

∑
y∈Children(x) L(y)). However, this takes as much time as the

number of nodes in the tree. In our case, the specific structure of the tree and subset of
good leaves provides a more efficient way to evaluate L.

Recall that a leaf f = (f1, ..., fm) is good if 〈v, f〉 =
∑m
i=1〈vi,fi〉 ≥ α. The number of

good leaves below a node (f1, ..., fk) is the number of suffixes (fk+1, ..., fm) for which

m∑
i=k+1

〈vi,fi〉 ≥ α−
k∑
i=1

〈vi,fi〉

Notice that this condition is similar for all nodes at level k: We define Nk(γ) to be
the number of suffixes (fk+1, ..., fm) for which

∑m
i=k+1〈vi,fi〉 ≥ γ. Given an oracle for

7



calculating Nk(γ) we could easily calculate L(x) for each node x by the formula

L ((f1, ..., fk)) = Nk

(
α−

k∑
i=1

〈vi,fi〉

)
The values of Nk(γ) could also be calculated recursively, but there are infinitely many
values of γ to consider, as it is a continuous parameter. Our solution to this problem is
to slightly enlarge the set of good leaves, in a way that essentially limits and discretizes
the set of possible values of γ.

4.4 Discretization of Good Leaf Condition
Fix an integer R = θ(m · d). A filter f = (f1, ..., fm) is called pseudo-relevant if

m∑
i=1

dR〈vi, fi〉e
R

≥ bRαc
R

This is the same as the previous definition of relevancy, except we round each summand
to an integer multiple of 1

R . If we change the subset of good leaves to correspond to
pseudo-relevant filters instead of relevant filters, then the number of good leaves below
a node x = (f1, ..., fk), now denoted LR(x), is the number of suffixes (fk+1, ..., fm) for
which

∑m
i=k+1

dR〈vi,fi〉e
R ≥ γ, where γ =

bRαc−
∑k
i=1dR〈vi,fi〉e
R which is an integer multiple

of 1
R . We define NR

k (γ) to be the number of such suffixes for general γ. Notice that

−1 ≤ R〈vi, fi〉
R

≤
m∑

i=k+1

dR〈vi, fi〉e
R

≤ R〈vi, fi〉+m

R
≤ 1 +

m

R

Therefore, NR
k (γ) = NR

k (1 + m
R ) for γ > 1 + m

R , and likewise NR
k (γ) = NR

k (−1) for
γ < −1. This means that we only need to check values −1 ≤ γ ≤ 1 + m

R which are
multiples of 1

R , and there are 2R + m + 1 = O(R) such values. This allows efficiently
calculating all values of NR

k (γ) iteratively, starting from k = m and going from k to k−1
by the formula

NR
k−1(γ) =

∑
fk∈Ck

NR
k

(
γ − dR〈vk, fk〉e

R

)
(∗)

We can then calculate the value of LR(x) for every node x via

LR ((f1, ..., fk)) = NR
k

(
bRαc −

∑k
i=1 dR〈vi, fi〉e
R

)
(∗∗)

and sample a random good leaf as in the pseudo-code above, which translates to a random
pseudo-relevant filter.

As we show in the next subsection, the set of pseudo-relevant filters contains the set
of relevant (α-close) filters, and not much more. So after we sample a pseudo-relevant
filter, we may check whether it is α-close to v, and otherwise discard it and sample a
new one. This rejection sampling procedure samples a uniformly random relevant filter.
Once we sample such a filter, we may simply choose a uniformly random vector from
the corresponding bucket, which completes the construction of a circuit for sampling
candidates.

8



4.5 Analysis
The complete algorithm for candidate sampling is as follows: We initially perform pre-
processing in which we iteratively calculate all values of NR

k (γ) for all 0 ≤ k ≤ m and
−1 ≤ γ ≤ 1+ m

R (where k and Rγ are integers). We start with k = m, setting NR
m(γ) = 1

if γ ≥ 0 and NR
m(γ) = 0 if γ < 0. After calculating NR

k (γ) for fixed k and all γ, we may
calculate NR

k−1(γ) via the recursive formula (∗). After the preprocessing is complete, we
may sample a good leaf in the tree by starting from the root and traveling down as de-
scribed in the pseudo code above, using the formula (∗∗) to evaluate the number of good
leaves below a given node. We translate the good leaf sampled into a pseudo-relevant
filter. If it is relevant, we find the corresponding bucket and sample a random vector
from this bucket. If it is not relevant, we continue sampling good leaves until a relevant
filter is found.

4.5.1 Preprocessing

At each level 0 ≤ k ≤ m we perform O(R) summations of t′ summands each, which takes
Õ(R · t′) time. Therefore the entire preprocessing routine takes Õ(m ·R · t′) = Õ(m2 ·d · t′)
which is 2o(d).

4.5.2 Sampling a Pseudo-Relevant Filter

At each step we iterate over t′ children of the node x, evaluate the number of good
leaves below each of them (which takes Õ(1) time given the preprocessed data), and
choose a child with probabilities weighted by these numbers. We do this by choosing a
uniformly random integer ` ∈

[
0,LR(x)

)
, ordering the children as y1, ..., yt′ , and choos-

ing the child yj if ` ∈
[∑j−1

j′=1 LR(yj′),
∑j
j′=1 LR(yj′)

)
. The correct value of j can be

found naively in time O(t′) by complete enumeration, or in time O(log t′) by binary
search. The latter option requires some more negligible preprocessing (namely, calculat-

ing
∑j−1
j′=1NR

k

(
γ −

⌈
R〈vk,f(j′)

k 〉
⌉

R

)
for all k, γ, j), but both options take subexponential

time. The sampling routine takes Õ(m · t′) or Õ(m · log t′) depending on whether or not
binary search is used. In both cases the time complexity is 2o(d), and if binary search is
used then it is in fact poly(d).

4.5.3 Rejection Sampling

Observe that

f is α-close =⇒ f is pseudo-relevant =⇒ f is (α− ε)-close

where ε = m+1
R = θ

(
1
d

)
. This follows from the fact that

R · (〈v, f〉 − α) ≤
m∑
i=1

⌈
R〈vi, f (j)i 〉

⌉
− bRαc ≤ R · (〈v, f〉 − α) +m+ 1

The left part means that the set of pseudo-relevant filters contains the set of relevant
filters. The right part means that the proportion of relevant filters to pseudo-relevant

9



filters is at least (
1− α2

)d/2+o(d)
(1− (α− ε)2)d/2+o(d)

=

(
1− α2

)d/2+o(d)
θ(1) · (1− α2)

d/2+o(d)
= θ(1)

so the rejection sampling only increases the time complexity by a constant factor.
To sum up, the preprocessing takes subexponential time, and each sample takes poly-

nomial time. Therefore both have negligible effect on the time complexity.

5 Conclusion
In this paper we have proposed an algorithm which improves upon the quantum LSF-
based sieving algorithm in [16] and reduces its time complexity from 20.2653d+o(d) to
20.2571d+o(d). While this is slightly more than the 20.2570d+o(d) given by the quantum
random walk based algorithm in [7], future work may combine the two techniques into
an algorithm with lower time complexity than both.

These improvements have a direct implication on the security of lattice-based cryp-
tography. Our results, as well as the results in [7], lower the Core-SVP strength of all
lattice-based schemes by ≈ 3%, and combining them may even result in further secu-
rity losses. Given that some lattice-based finalists in Round 3 of NIST’s PQC process
already have a core-SVP strength well below the original target of 128 bits, these results
should be taken into consideration and further research must be done in order to fully
understand their implications. Future work might further decrease the security below
acceptable levels.

References
[1] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice

vector problem. In STOC, pages 601–610, 2001.

[2] Albrecht, M. R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E. W.,
Stevens, M.: The General Sieve Kernel and New Records in Lattice Reduction.
In SAC, pages 29–47, 2019.

[3] Albrecht, M. R., Gheorghiu, V., Postlethwaite, E. W., Schnack, J. M.: Estimating
quantum speedups for lattice sieves. In Advances in Cryptology – ASIACRYPT 2020,
pages 583–613, Cham, 2020. Springer International Publishing.

[4] Bai, S., Miller, S., Wen, W.: A refined analysis of the cost for solving LWE via uSVP.
In AFRICACRYPT 19, volume 11627 of LNCS, pages 181–205, 2019.

[5] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In SODA, 2016.

[6] Becker, A., Gama, N., Joux, A.: A sieve algorithm based on overlattices. In ANTS,
pages 49–70, 2014.

[7] Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In Cryptology
ePrint Archive, Report 2021/570, pages 1–29, 2021.

10



[8] Doulgerakis, E., Laarhoven, T., de Weger, B.: Sieve, Enumerate, Slice, and Lift:
Hybrid Lattice Algorithms for SVP via CVPP. In Cryptology ePrint Archive, Report
2020/487, pages 1–20, 2020.

[9] Ducas, L.: Shortest Vector from Lattice Sieving: a Few Dimensions for Free. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 125–145, 2018.

[10] Ducas, L., Stevens, M., van Woerden, W.: Advanced Lattice Sieving on GPUs, with
Tensor Cores. In Cryptology ePrint Archive, Report 2021/141, pages 1–38, 2021.

[11] Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice. In Mathematics of Computation 44(170), pages 463–471, 1985.

[12] Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse
of dimensionality. In STOC, pages 604–613, 1998.

[13] Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In STOC, pages 193–206, 1983.

[14] Kirshanova, E., Mårtensson, E., Postlethwaite, E. W., Moulik, S. R.: Quantum
Algorithms for the Approximate k-List Problem and their Application to Lattice
Sieving. In ASIACRYPT, 2019.

[15] Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In CRYPTO, pages 3–22, 2014.

[16] Laarhoven, T.: Search problems in cryptography, From fingerprinting to lattice siev-
ing. PhD thesis, Eindhoven University of Technology, 2016.

[17] Laarhoven, T., Mariano, A.: Progressive Lattice Sieving. In International Conference
on Post-Quantum Cryptography, pages 292–311, 2018.

[18] Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster
using quantum search. In Designs, Codes and Cryptography, 77(2), pages 375–400,
2015.

[19] Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using spherical
locality-sensitive hashing. In LATINCRYPT, pages 101–118, 2015.

[20] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In CT-RSA, pages 319–339, 2011.

[21] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In SODA, pages 1468–1480, 2010.

[22] Nguyen, P. Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. In J. Math. Crypt. 2(2), pages 181–207, 2008.

[23] Pohst, M. E.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. In ACM SIGSAM Bulletin 15(1), pages
37–44, 1981.

11



[24] Postlethwaite, E. W., Virdia, F.: On the Success Probability of Solving Unique SVP
via BKZ. In Cryptology ePrint Archive, Report 2020/1308, pages 1–35, 2020.

[25] Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n. In
Cryptology ePrint Archive, Report 2009/605, pages 1-7, 2009.

[26] Schneider, M.: Sieving for short vectors in ideal lattices. In AFRICACRYPT, pages.
375–391, 2013.

[27] Schneider, M., Gama, N., Baumann, P., Nobach, L.: SVP Challenge. Online at
https://latticechallenge.org/svp-challenge/ .

[28] van de Pol, J., Smart, N.: Estimating key sizes for high dimensional lattice-based
systems. In IMACC, pages 290–303, 2013.

[29] Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algo-
rithm for shortest vector problem. In ASIACCS, pages 1–9, 2011.

[30] Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest vector
problem. In SAC, pages 29–47, 2013.

12


