
Partition Oracles from Weak Key Forgeries

Marcel Armour1 and Carlos Cid1,2

1 Royal Holloway University of London, Egham, UK
{marcel.armour.2017,carlos.cid}@rhul.ac.uk

2 Simula UiB, Bergen, Norway

Abstract. In this work, we show how weak key forgeries against polyno-
mial hash based Authenticated Encryption (AE) schemes, such as AES-
GCM, can be leveraged to launch partitioning oracle attacks. Partition-
ing oracle attacks were recently introduced by Len et al. (Usenix’21) as a
new class of decryption error oracle which, conceptually, takes a cipher-
text as input and outputs whether or not the decryption key belongs to
some known subset of keys. Partitioning oracle attacks allow an adver-
sary to query multiple keys simultaneously, leading to practical attacks
against low entropy keys (e. g. those derived from passwords).
Weak key forgeries were given a systematic treatment in the work of
Procter and Cid (FSE’13), who showed how to construct MAC forgeries
that effectively test whether the decryption key is in some (arbitrary)
set of target keys. Consequently, it would appear that weak key forgeries
naturally lend themselves to constructing partition oracles; we show that
this is indeed the case, and discuss some practical applications of such an
attack. Our attack applies in settings where AE schemes are used with
static session keys, and has the particular advantage that an attacker has
full control over the underlying plaintexts, allowing any format checks on
underlying plaintexts to be met – including those designed to mitigate
against partitioning oracle attacks.
Prior work demonstrated that key commitment is an important security
property of AE schemes, in particular settings. Our results suggest that
resistance to weak key forgeries should be considered a related design
goal. Lastly, our results reinforce the message that weak passwords should
never be used to derive encryption keys.

Keywords: Authenticated Encryption · Partitioning Oracles · Weak Key
Forgeries · Polynomial Hashing · GCM

1 Introduction

Authenticated Encryption (AE) schemes are designed to provide the core prop-
erties of confidentiality and message integrity against chosen-ciphertext attacks
(CCA). A particularly important practical class of AE schemes offer Authen-
ticated Encryption with Associated Data (AEAD); AEAD schemes are widely
standardised and implemented due to their efficiency and security. As a result
of their widespread adoption, AEAD schemes have in some cases been used

https://orcid.org/0000-0002-1231-6120
https://orcid.org/0000-0001-5761-8694

in contexts that require additional properties beyond standard CCA security.
One particular property that has attracted recent attention is key-commitment
[24,18,3], also known as robustness [21], which (informally) states that a cipher-
text will only decrypt under the key that was used to encrypt it.

A lack of key-commitment in particular AEAD schemes was exploited by
Len et al., who introduced a new class of attack they call “partitioning oracle
attacks” [31]. Conceptually, a partitioning oracle takes as input a ciphertext
and outputs whether the decryption key belongs to some known subset of keys.
Len et al. first construct so-called “splitting ciphertexts” for AES-GCM and
ChaCha20Poly1305 that decrypt under every key in a set of target keys. This
splitting ciphertext is submitted to a decryption oracle; on observing whether
the ciphertext is accepted or rejected, the adversary learns whether or not the
decryption key is in the set of target keys. As a result, the adversary is able to
query multiple keys simultaneously, speeding up a brute force attack. Combin-
ing this with low entropy keys, such as those derived from passwords, results in
practical attacks. Len et al. give a number of examples including against Shad-
owsocks [1], a censorship evasion tool, where the attack results in key recovery.

The concept of weak keys shares some similarities with that of partitioning
oracles. Whilst there is no precise definition in the literature, the concept is in-
tuitively clear; Handschuh and Preneel [25] describe a weak key as a key that
results in an algorithm behaving in an unexpected way (that can easily be de-
tected) – the idea is that a weak key can be tested for with less effort than brute
force. Procter and Cid [36] give a framework that neatly captures weak key forg-
eries (forgeries that are valid if the key is “weak”), which generalised previous
attacks against polynomial hash based message authentication codes (MACs) by
Handschuh and Preneel [25] and Saarinen [37]. Procter and Cid’s results showed
that for these cases the term is a misnomer: in fact, for a polynomial hash based
MAC, any set of keys can be considered weak using their forgery techniques.

Abstractly, weak key forgeries and splitting ciphertexts share the same struc-
ture: ciphertexts whose successful decryption is contingent on the user’s key be-
ing in a set of target keys. This suggests that weak key forgeries are a good
candidate to carry out partitioning oracle attacks; we show that this is indeed
the case. We first generalise the attack formalisation of Len et al. to allow the
adversary to act as a machine-in-the-middle, in a more realistic reflection of an
attacker’s capabilities. As a result we obtain a more abstract definition that en-
compasses weak key forgeries and splitting ciphertexts. We show how to carry
out a partitioning oracle attack using weak key forgeries, and discuss some prac-
tical applications of the attack. An advantage of our attack is the control that
an adversary obtains over underlying plaintexts, allowing for partitioning oracle
attacks in settings that are resistant to the attack of [31], in particular where
there are format requirements on underlying plaintexts – including format re-
quirements that are designed to render schemes key-committing. Our results
reinforce the conclusions of [31], especially on the danger of deriving encryp-
tion keys from user-generated passwords. Furthermore, our results suggest that
resistance to weak key forgeries should be considered a related design goal to

key-commitment, particularly in settings that are vulnerable to partitioning or-
acle attacks. Concretely, our results demonstrate – in contrast to the suggestions
of prior work – that adding structure to underlying plaintexts (e.g. packet head-
ers that prefix every plaintext message, or an appended block of all zeros) is not
a sufficient mitigation against partitioning oracle attacks.

Related Work. Bellovin and Merritt introduced partition attacks against en-
crypted key exchange: trial decryption of intercepted traffic allowed multiple
keys to be eliminated at once [11]. Other oracle attacks include padding oracles
[16,38] or other format oracles [6,4,23]; these attacks are similar to but distinct
from partitioning oracles as they recover information regarding plaintexts rather
than secret keys. Subverted decryption oracles that reveal information about
secret keys were considered in [8,9].

Structure. This paper is structured as follows. After describing our notation
below, we provide the relevant background material on polynomial hash based
schemes in Section 2. Partitioning Oracle Attacks are introduced in Section 3,
and our extension based on Weak Key Forgeries in Section 4. Section 5 describes
our experiments with Shadowsocks, as well as other protocols. We close the paper
with our conclusions in Section 6.

1.1 Notation

We refer to an element x ∈ {0, 1}∗ as a string, and denote its length by |x|; ε
denotes the empty string. The set of strings of length ℓ is denoted {0, 1}ℓ. In ad-
dition, we denote by ⊥ /∈ {0, 1}∗ a reserved special symbol. For two strings x, x′

we denote by x ∥ x′ their concatenation. A block cipher E is a family of permuta-
tions on {0, 1}n, with each permutation indexed by a key k ∈ K, where the key
space K = {0, 1}ℓ for some fixed key length ℓ. The application of a block cipher
to input x ∈ {0, 1}n using key k will be denoted by Ek(x). Arbitrary finite fields
are denoted by F, or when we specify its characteristic by Fpr , with p prime.

We use code-based notation for probability and security experiments. We
write ← for the assignment operator (that assigns a right-hand-side value to
a left-hand-side variable). If S is a finite set, then s ←$ S denotes choosing s
uniformly at random from S. We use superscript notation to indicate when an
algorithm (typically an adversary) is given access to specific oracles. If A is a
randomised algorithm, we write y ←$ A(x) to indicate that it is invoked on
input x (and fresh random coins), and the result is assigned to variable y. An
experiment terminates with a “stop with x” instruction, where value x is under-
stood as the outcome of the experiment. We write “win” (“lose”) as shorthand for
“stop with 1” (“stop with 0”). We write “require C”, for a Boolean condition C,
shorthand for “if not C: lose”. (We use require clauses typically to abort a game
when the adversary performs some disallowed action, e.g. one that would lead
to a trivial win.) We use Iverson brackets [·] to derive bit values from Boolean
conditions: For a condition C we have [C] = 1 if C holds; otherwise we have
[C] = 0. In security games we write AO1,...,Oc ⇒ 1 to denote the event that the
adversary outputs 1 after being given access to the c oracles.

2 Background: Polynomial Hashing

MACs are a symmetric cryptographic primitive that allows two parties sharing a
secret key to communicate with the assurance that their messages have not been
tampered with. Many popular MAC schemes are constructed from universal
hash functions that are realised by polynomial evaluation; such MACs based
on polynomial hashing are discussed in Section 2.1. They are often used to
provide the authentication component for AEAD schemes, which are discussed
in Section 2.2, where we give an overview of the two most widely used polynomial
hash based AEAD constructions, McGrew and Viega’s Galois/Counter Mode
(GCM) [32] and Bernstein’s ChaCha20-Poly1305 [12].

2.1 MACs from Polynomial Hashing

A polynomial hash based authentication scheme is built on a family of universal
hash functions that are based on polynomial evaluation. It takes as input an au-
thentication key H and message M (consisting of plaintext or ciphertext blocks
depending on context). Let M = M1 ∥ · · · ∥ Mp ∥ Mp+1 with Mp+1 = len(M)
and all Mi considered as elements of a field F (typically F2n), and gM (x) be
the polynomial in F[x] defined as gM (x) =

∑p+1
i=1 Mix

p+2−i. If we also consider
H ∈ F, the polynomial hash hH(M) of M is calculated by evaluating gM (x) at
H, i.e.

hH(M) := gM (H) =
p+1∑
i=1

MiH
p+2−i ∈ F .

The hash value is usually encrypted with a pseudo-random one-time pad, to
provide the output authentication tag.

The underlying properties of polynomials are inherited by the hash function
and thus the authentication scheme; in particular, the fact that adding a zero
valued polynomial will not change the value of the hash (which gives rise to
“weak key” forgeries, discussed in Section 2.4) and the fact that it is possible to
construct a polynomial that passes through a set of given points (giving rise to
multi-key collisions, discussed in Section 2.3).

2.2 AEAD

Let AEAD = (AuthEnc, AuthDec) be an AEAD scheme, and let its key space
be the set K. Encryption takes as input a key k ∈ K, together with a tuple
of nonce, associated data and plaintext (N, D, P) and returns a ciphertext and
authentication tag. We write (C, T)← AuthEnck(N, D, P). Similarly, decryption
takes as input a key k ∈ K together with a tuple (N, D, C, T) of nonce, asso-
ciated data, ciphertext and authentication tag and returns either a message or
the error message ⊥ to indicate that the decryption was not successful. Correct-
ness requires that for all N, D, P not exceeding the scheme’s length restrictions,
AuthDeck(N, D, C, T) = P with (C, T) = AuthEnck(N, D, P).

A common paradigm for constructing AEAD schemes is to use an Encrypt-
then-MAC (EtM) construction with a stream cipher for encryption and an au-
thentication component from a polynomial based universal hash function. We
give a brief overview of the most widely adopted and standardised schemes: Mc-
Grew and Viega’s AES Galois/Counter Mode (AES-GCM) [32] and Bernstein’s
ChaCha20-Poly1305 [12,35].
AES-GCM. AES-GCM encryption takes as input: an AES key k, a nonce N ,
plaintext P = P1 ∥ · · · ∥ Pp and associated data D = D1 ∥ · · · ∥ Dd. The key is
128, 192 or 256 bits long, the nonce N should preferably be 96 bits long although
any length is supported. For each i, |Pi| = |Di| = 128 except for perhaps a partial
final block. With this input, AES-GCM returns a ciphertext C = C1 ∥ · · · ∥ Cp

(the same length as the plaintext) and an authentication tag T . From here on,
we will omit associated data for simplicity. The plaintext is encrypted using an
instance of the AES in counter mode, under key k with counter value starting
at CTR1. If the nonce is 96 bits long the initial counter value (CTR0) is N ∥ 0311,
otherwise it is a polynomial evaluation-based hash of N after zero padding (using
the hash key described below). For each i, CTRi = inc(CTRi−1), where inc(·)
increments the last 32 bits of its argument (modulo 232).

The authentication tag is computed from GHASH, a polynomial evaluation
hash (in F2128). The ciphertext C is parsed as 128-bit blocks (with partial final
blocks zero padded) and each block is interpreted as an element of F2128 . We de-
note by L an encoding of the length of the (unpadded) ciphertext and additional
data. The hash key H is derived from the AES block cipher key: H = Ek(0128).
The hash function is then computed as:

hH(C) = L ·H ⊕ C∗
p ·H2 ⊕ Cp−1 ·H3 ⊕ · · · ⊕ C2 ·Hp ⊕ C1 ·Hp+1, (1)

where all operations are in F2128 , and C∗
p denotes the zero-padded last block.

The authentication tag is given by: T = Ek(CTR0)⊕ hH(C).
ChaCha20-Poly1305. Poly1305 is similar to GHASH, and to form AEAD
schemes it is most commonly combined with the ChaCha20 stream cipher [13],
although Poly1305-AES is also an option [12]. For concreteness, we will give a
description of ChaCha20-Poly1305 and note that the differences are trivial.

ChaCha20-Poly1305 encryption takes as input: a 32-byte ChaCha20 key k, a
12-byte nonce N , plaintext P and additional data D. With this input, ChaCha20-
Poly1305 returns a ciphertext C (the same length as the plaintext) and an au-
thentication tag T of length 16 bytes. From here on, we will omit the associated
data for simplicity. First, the plaintext is divided into 64 byte blocks, except per-
haps for a partial final block, and encrypted using the ChaCha20 stream cipher,
under key k.

The authentication tag is next computed from a polynomial evaluation hash
in the finite field F2130−5. The ciphertext to be hashed is divided into 16-byte
blocks with any partial final block zero-padded to 16 bytes. We denote by L
an encoding of the (unpadded) ciphertext and additional data. Each block is
encoded as an integer modulo 2130 − 5 by first appending 0x01 to each block,
and interpreting the resulting block as a little-endian integer Xi.

The authentication tag is computed from a polynomial evaluation hash (in
F2130−5). First we derive the hashing key r and the pseudo-random one time
pad s: the first 32 bytes of H = Ek(N0 ∥ N) is divided into two 16-byte strings r̃
and s. Here N0 represents 0 encoded as a 4-btye little-endian integer.

The hashing key r is obtained from the string r̃ by setting some of the bits
to zero in a process referred to as “clamping”; we gloss over the specific details.
The hash function is then computed as

hr(C) = L · r ⊕ C∗
p · r2 ⊕ Cp−1 · r3 ⊕ · · · ⊕ C2 · rp ⊕ C1 · rp+1,

where all operations are in F2130−5, and C∗
p denotes the last zero-padded block.

The authentication tag is given by:

T = (s⊕ hr(C)) mod 2128 ,

where s and hr(C) are interpreted as elements of F2128 , and the result as an
integer modulo 2128.

2.3 Key Commitment

A committing AE scheme is one which satisfies the property of key commitment,
which (informally) states that a ciphertext will only decrypt under the key that
was used to encrypt it. Equivalently, for a committing AE scheme, it should be
infeasible to find a ciphertext that will decrypt under two different keys. Security
goals for committing AE were first formalised by Farshim et al. [21] under the
name “robustness”. Although key commitment is not part of the design goal
of AE schemes, there are natural scenarios where a lack of key commitment
results in security issues. Dodis et al. [18] and Grubbs et al. [24] show how
to exploit non-committing AE schemes in the context of abuse reporting in
Facebook Messenger. Albertini et al. [3] give some further practical examples
where a lack of key commitment leads to practical attacks, e. g. in the setting
of paywalled subscription material where a malicious publisher might prepare a
ciphertext that decrypts to different content for different users.

The partitioning oracle attack of Len et al. [31] exploits the inherent lack
of key commitment for polynomial hash based AEAD schemes. They construct
a ciphertext Ĉ that decrypts under every key in a set of target keys K∗ =
{k1, · · · , kℓ} by constructing a linear equation whose variables are the blocks of
ciphertext; Ĉ is the solution to the equation. We describe the technique using
AES-GCM for concreteness.

Given K∗ and nonce N , first derive the associated GHASH key Hi = Eki(0n)
for each ki ∈ K∗. Then construct the linear equation

T = C1 ·Hp−1
i ⊕ · · · ⊕ Cp−1 ·H2

i ⊕ L ·Hi ⊕ Eki(N ∥ 0311) ,

which is arrived at by assigning Hi to H in eq. (1) and substituting the result
into the expression for the tag T = hH(C)⊕Eki

(CTR0). The result is a system of
ℓ equations in ℓ unknowns which can be solved; this can be done more efficiently

using a clever trick (fixing T and adding one block of ciphertext as a new variable,
giving a Vandermonde matrix). We refer the reader to [31] for further detail.

Generic AE solutions, the so-called generic composition constructions such
as Encrypt-then-MAC, can provide key-commitment, as shown by Farshim et al.
[21] who suggested using a keyed hash function such as HMAC [10] for authen-
tication. However, if a key-committing scheme is required for security in some
particular setting, then performance considerations may mean that switching to
e. g. encrypt-then-HMAC is not practical. This is illustrated by the choice of
Facebook Messenger to use AES-GCM to encrypt message attachments despite
work showing that this was insecure. Albertini et al. [3] propose two generic fixes
that minimise the changes needed to add key-commitment to widely deployed,
highly efficient schemes such as AES-GCM:

1. Padding Fix. Prepend a constant string to messages before encrypting;
check for the presence of the constant string after decrypting. This fix is also
given in an early draft of an OPAQUE protocol RFC [30], and discussed
in [31]. This solution – essentially adding redundancy to the message – is
not generically secure and must be analysed per scheme. Albertini et al. [3]
perform this analysis for AES-GCM and ChaCha20-Poly1305, showing that
in both cases the resulting scheme is key-committing.

2. Generic Fix. From a given key k, derive an encryption key kenc = Fenc(k)
and a commitment to the key kcom = Fcom(k). Here Fenc and Fcom are col-
lision resistant hash functions. Ciphertexts for the resulting key-committing
scheme consist of a regular ciphertext (for the underlying AEAD scheme)
together with the commitment to the key. Albertini et al. [3] show that this
construction provides key-commitment, if the functions Fenc and Fcom used
to derive the encryption key and commitment are collision resistant pseudo-
random functions.

2.4 Weak Key Forgeries

In symmetric cryptography, a class of keys is called a weak key class if the
algorithm behaves in an unexpected way when operating under members of that
class, and this behaviour is easy to detect. In addition, identifying that a key
belongs to such a weak key class should require trying fewer than N keys by
exhaustive search (or verification queries), where N is the size of the class [25].
In the context of polynomial hash based authentication schemes, e.g. the GCM
mode, Handschuh and Preneel [25] and Saarinen [37] identified several weak
key classes. In [36], Procter and Cid proposed a generic framework to mount
forgery attacks against polynomial-based MAC schemes based on weak keys.
Their framework encompasses the previous forgery attacks from [25] and [37], as
well as the earlier Joux’s Forbidden Attack [27], and is based on a malleability
property present in polynomial-based MAC schemes.

If hH is a polynomial hash under key H and M is a message input, let
hH(M) = gM (H), where gM (x) =

∑p+1
i=1 Mix

p+2−i ∈ F[x] and H ∈ F (as

in Section 2.1). Now let q(x) =
∑p+1

i=1 qix
p+2−i ∈ F[x] be a polynomial with

constant term zero, such that q(H) = 0. Then

hH(M) = gM (H) = gM (H) + q(H) = gM+Q(H) = hH(M + Q),

where Q = q1 ∥ q2 ∥ . . . ∥ qℓ and the addition M + Q is done block-wise3. It
follows that given a polynomial q(x) satisfying these properties, it is straightfor-
ward to construct collisions for the hash function. In fact, we have that q(x) is
in the ideal ⟨x2−Hx⟩, and any polynomial in this ideal can be used to produce
collisions. On the other hand, collisions in the hash function correspond to MAC
forgeries, by substituting the original message for the one that yields a collision
in the polynomial hash. Thus this method allows an adversary to create forg-
eries when they have seen a tuple of (nonce, message, tag), by simply modifying
the message, as above. Saarinen’s cycling attacks [37] are a special case of this
attack. Forgeries for GCM and variants are presented in [36]. Later, an efficient
method for constructing forgery polynomials which have disjoint sets of roots
(i.e. keys) was proposed in [2].

3 Partitioning Oracle Attacks

Partitioning oracles, introduced by Len et al. [31] are a class of decryption error
oracles which, conceptually, take a ciphertext and return whether the decryption
key belongs to some known subset of keys. This allows an adversary to speed up
an exhaustive search by querying multiple keys at once; in effect, partitioning
the key space. The approach of [31] relies on two conditions: (1) the non-key
committing property of polynomial hash based AE schemes is exploited to craft
targeted “splitting” ciphertexts that will decrypt under multiple keys; and (2) a
decryption oracle that reveals whether decryption (with the user’s key) of such
a splitting ciphertext succeeds or not.

Abstractly, a partitioning oracle will (in the optimal case) allow a binary
search of the key space, giving a logarithmic improvement over naïve exhaustive
search. This requires being able to query half the keys in the key space. In
practice however, there is a limit to the number of keys that can be queried at
once – e. g. for AES-GCM, messages are required to be less than approx. 64GB
(239−256 bits [20]), and applications may impose further restrictions depending
on context. Nevertheless, as shown in [31], it is still possible to launch practical
attacks by combining partitioning oracles with knowledge of non-uniform key
distributions, which arise in particular when human memorable passwords are
used to derive keys, and can be estimated from password breaches [33].

We note that the conditions for a partitioning oracle attack can be satisfied
with weak key forgeries, following the work of Procter and Cid [36] (see Sec-
tion 2.4). Weak key forgeries require a valid ciphertext to construct the forgery;
a crucial difference to [31], which considers adversaries that only have access to a
decryption oracle. In practice this is a limitation of the adversary that does not
3 The shorter message is zero-padded if required.

tally with observed adversarial strategies against censorship evasion [14,39]. We
thus extend the model by allowing an adversary to obtain valid ciphertexts from
chosen plaintexts, a standard adversarial model for AE. In fact, this assumption
is stronger than required; as we later show, adversaries with only “machine-in-
the-middle” capabilities can carry out effective partitioning oracle attacks using
weak key forgeries. Known and chosen plaintext capabilities lead to more pow-
erful attacks, as we briefly describe in Section 5.1.

Example: generic encryption. Consider a client and server communicating
with end-to-end encryption, using an AEAD scheme and a shared key k derived
from password pw. The client encrypts message P (together with any associated
data D), using key k and nonce N to obtain a ciphertext tag pair (C, T) ←
AuthEnck(N, D, P). The conditions for a partitioning oracle attack are met if the
server reveals whether or not decryption succeeds; it might for example output
an observable error message, or reveal the information via a side-channel.

Example: Password-authenticated Key Exchange. A Password Authenti-
cated Key Exchange (PAKE) is a cryptographic key exchange protocol in which
a client authenticates to a server using a password pw that the server has stored
(as the equivalent of a hash). Len et al. show how to launch a partitioning or-
acle attack against OPAQUE, a modern PAKE protocol currently undergoing
standardisation. OPAQUE uses an AEAD scheme as a component, and Len et
al. show the necessity of the AEAD scheme being key-committing by consider-
ing deviations from the specification in some early prototype implementations.
OPAQUE works by composing an oblivious PRF with an authenticated key ex-
change; Len et. al.’s attack relies on the fact that the server sends a ciphertext C
encrypted using the password during an execution of the protocol.

3.1 Attack Abstraction: Formal Definition of a Partitioning Oracle

Following [31], we consider settings in which an attacker targets AE and seeks
to recover a user’s key k ∈ K, where the key is deterministically derived from
secret password pw ∈ D. We write K(D) ⊆ K for the set of keys derived from
passwords and k(pw) ∈ K(D) to denote a key derived from password pw. The
attacker is given access to an interface that takes as input ciphertext C, and
outputs whether or not the ciphertext decrypts correctly (passing any format
checks) under the user’s key k(pw). The attacker is further given access to an
interface that will encrypt plaintexts of the attacker’s choosing and return the
ciphertext. This set-up represents a “partitioning oracle” if it is computationally
tractable for the adversary, given any set K ⊆ K(D), to compute a value Ĉ
that partitions K into two sets K∗ and K \K∗, with |K∗| ≤ |K \K∗|, such that
AuthDeck(Ĉ) ̸= ⊥ for all k ∈ K∗ and AuthDeck(Ĉ) = ⊥ for all k ∈ K \ K∗.
We call such a Ĉ a splitting ciphertext and refer to |K∗| as the degree of Ĉ.
We distinguish between targeted splitting ciphertexts, where the adversary can
select the secrets in K∗, and untargeted attacks.

In general, the definition can be applied to arbitrary cryptographic function-
alities by considering a Boolean function f that takes as input a string and a

key, returning 1 if some cryptographic operation succeeds and 0 otherwise. The
attacker has access to an interface that takes as input a bit string V , and uses it
plus k to output the result of some Boolean function fk : {0, 1}∗ → {0, 1}. Here
fk is an abstraction of some cryptographic operations that may succeed or fail
depending on k and V ; set fk(V) = 1 for success and fk(V) = 0 for failure. We
note that partitioning oracles may output more than two possible outputs, for
example if there are multiple distinguishable error messages, following [17].

3.2 Multi-Key Contingent Forgeries

Central to launching a partitioning oracle attack is the ability to craft splitting
ciphertexts. This is formalised in the notion of “Targeted Multi-Key Contingent
Forgeries”, which quantifies an adversary’s advantage in crafting splitting cipher-
texts against a particular AEAD scheme, with oracle access to encryption. Our
definition is a slight generalisation of the “Targeted Multi-Key Collision” notion
from [31]; their notion can be obtained from ours by removing the adversary’s
encryption oracle.4

Targeted multi-key contingent forgery resistance (TMKCR) security is de-
fined by the game given in Figure 1 (left). It is parameterised by a scheme AEAD
and a target key set K∗ ⊆ K. A possibly randomised adversary A is given input
a target set K∗ and must produce nonce N∗, associated data D∗ and cipher-
text C∗ such that AuthDeck(N∗, D∗, C∗) ̸= ⊥ for all k ∈ K∗. We define the
advantage via

Advtmk-cr
AEAD,K∗(A) = Pr

[
TMKCRA

AEAD,K∗ ⇒ 1
]

(2)

where “TMKCRA
AEAD,K∗ ⇒ 1” denotes the event that A succeeds in finding

N∗, D∗, C∗ that decrypt under all keys in K∗. The event is defined over the
coins used by A.

We can define a similar untargeted multi-key contingent forgery resistance
goal, called MKCRA

AEAD,κ. The associated security game, given in Figure 1 (right),
is the same except that the adversary gets to output a set K∗ of its choosing in
addition to the nonce N∗, associated data D∗, and ciphertext C∗. The adver-
sary wins if |K∗| ≥ κ for some parameter κ > 1 and decryption of N∗, D∗, C∗

succeeds for all k ∈ K∗. We define the advantage via

Advmk-cr
AEAD,κ(A) = Pr

[
MKCRA

AEAD,κ ⇒ 1
]

(3)

where “MKCRA
AEAD,κ ⇒ 1” denotes the event that A succeeds in finding K∗ and

N∗, D∗, C∗ that decrypt under all keys in K∗. The event is defined over the coins
used by A.
4 We hope the reader forgives our abuse of nomenclature; although we refer to both

notions as TMKCR, ours is a (slight) generalisation of Len et al.’s, and we use the
term “key contingent forgery” to encompass both.

Game TMKCRA
AEAD,K∗

00 require K∗ ⊂ K
01 k ←$ K∗,N ← ∅
02 (N∗, D∗, C∗)← AOEnc (K∗)
03 stop with [AuthDeck(N∗, D∗, C∗) ̸= ⊥]

Oracle OEnc(N, D, P)
04 require N /∈ N
05 N ∪← N
06 return AuthEnck(N, D, P)

Game MKCRA
AEAD,κ

00 K∗ ←$ A(κ); require K∗ ⊂ K and |K∗| ≥ κ
01 k ←$ K∗,N ← ∅
02 (N∗, D∗, C∗)← AOEnc (K∗)
03 stop with [AuthDeck(N∗, D∗, C∗) ̸= ⊥]

Oracle OEnc(N, D, P)
04 require N /∈ N
05 N ∪← N
06 return AuthEnck(N, D, P)

Fig. 1. Games modelling (targeted) multi-key contingent forgery resistance for an
AEAD scheme. Note that in both cases, an adversary that can produce a cipher-
text C∗ that decrypts under every key in K∗ will win the game with probability 1.
Left: Targeted Multi-Key Collision Resistance. Right: Multi-key contingent forgery
resistance, a weaker notion which lets the adversary choose the set of target keys K∗.

4 Partitioning Oracle Attacks from Weak Key Forgeries

At a high level, our attack works as follows: Construct key-contingent forgeries
from captured ciphertexts using weak-key forgery techniques and submit these
to a decryption oracle; that is, an oracle that reveals whether a ciphertext is
accepted or rejected. The weak key forgery ensures that the ciphertext will only
be accepted if the user’s key is in the set of weak keys.

More specifically: (1) In an offline phase, the adversary pre-computes a set
of ciphertext masks. Each mask corresponds to a set of passwords to be tested.
(2) In an online phase, the adversary intercepts a ciphertext and, using a cipher-
text mask, constructs a key-contingent forgery which it forwards to the parti-
tioning oracle. Observing whether or not the key-contingent forgery is accepted
reveals whether or not the user’s key is in the set of target keys corresponding to
the ciphertext mask. Our attack relies on the ability of the adversary to act as a
“machine-in-the-middle” between sender and receiver. We first give an abstract
description of a key contingent forgery consisting of ℓ ciphertext blocks which
encompasses two special cases: a targeted key-contingent forgery testing ℓ keys,
(Section 4.1); and a targeted forgery passing format requirements on underlying
plaintexts, (Section 4.2).

1. Offline phase. The attack takes a set of target keys K∗ = {K1, . . . , Kℓ−1}
as input and outputs a ciphertext mask. We note that one key is lost per
ciphertext block that is not a free variable.
(a) First derive the associated authentication (GHASH) keys by setting

H∗ = {Ek(0128)|k ∈ K∗}.

(b) Set q(x) =
ℓ∑

i=1
qi · xℓ+1−i = x ·

∏
H∈H∗

(x⊕H) .

2. Online phase. The online phase takes as further input a valid nonce, cipher-
text, tag tuple (N, C, T) and outputs a key-contingent forgery consisting of

tuple (N, Ĉ, T). The key-contingent forgery is forwarded to the partitioning
oracle. In what follows, we assume that ℓ− 1 ≥ p = ⌈len(C/128)⌉
(a) First parse the captured ciphertext as C = C1 ∥ · · · ∥ C∗

p , i. e., as blocks
of the appropriate length. Let α = len(C)⊕ len(Ĉ) and β be constants.
Now set q′(x) =

∑ℓ+1
i=1 q′

i · xℓ+2−i = (a⊕ bx) · q(x), with

a = α · q−1
ℓ and b = β · q−1

2 ⊕ α · q1 · q−1
2 · q−1

ℓ . (4)

Set Q′ = q′
1 ∥ · · · ∥ q′

ℓ. Note that q′
ℓ+1 = qℓ·a = α and q′

1 = a·q1⊕b·q2 = β.
This step can take place offline if len(C) is known in advance.

(b) Let Ĉ = C∗ ⊕ Q′, where C∗ = 0128 ∥ · · · ∥ 0128 ∥ C1 ∥ · · · ∥ C∗
p denotes

the ciphertext C padded (pre-pended) with blocks of zeros to match the
length of Q′. As ℓ ≥ p + 1, at least one block of padding is pre-pended.
Note that if the user key k ∈ K∗ ∪ {Kℓ} ∪ {0}, where Kℓ = a · b−1, then
for H = Ek(0128),

hH(Ĉ) = len(Ĉ) ·H ⊕ Ĉ∗
ℓ ·H2 ⊕ Ĉℓ−1 ·H3 ⊕ · · · ⊕ Ĉ1 ·Hℓ+1

= (α⊕ len(C)) ·H ⊕
(
C∗

p ⊕ q′
ℓ

)
·H2 ⊕ · · · ⊕ (0128 ⊕ q′

1) ·Hℓ+1

= q′(H)⊕ hH(C).

Consequently, the tag is a valid forgery and AuthEnck(N, ε, Ĉ) ̸= ⊥.

4.1 Targeted Key Contingent Forgery Testing ℓ keys

We first consider key contingent ciphertext forgeries that test ℓ keys with no
restrictions on the format of the underlying plaintext. Setting β = a · q2 ·H−1

ℓ ⊕
a · q1 in eq. (4) for Hℓ = EKℓ

(0128) gives a = b ·Hℓ. Thus,

q′(x) = b · (x + Hℓ) · x ·
∏

H∈H∗

(x⊕H) = b · x ·
∏

H∈H∗∪{Hℓ}

(x⊕H) .

The ciphertext forgery Ĉ is a valid forgery if k ∈ K∗ ∪Kℓ ∪{0}. Thus, we are in
effect able to test target key sets of size |K∗|+ 1 = ℓ.

Performance. The attack description above is for a fixed set of target keys
K∗; in practice, an attacker would prepare a collection of ciphertext masks cor-
responding to disjoint target key sets {K∗

i }i∈I , such that pi+1 ≥ pi for all i,
where pi denotes the aggregate success probability of target key set K∗

i . Given
n = |K∗| hashing keys, the coefficients of the polynomial q(x) can be computed
using O(n2) time and O(n) space. We note that the offline phase need only oc-
cur once, allowing the adversary to amortise the upfront cost of pre-computation
over multiple targets. This is especially useful in cases where generating target
keys from passwords is particularly slow.

In the online phase, splitting ciphertexts are then submitted in order until
a query is successful; we note that a negative result is returned immediately.
For a successful query, we know that the key k ∈ K∗

i for some particular i.

As our result relies on pre-computation to be practical, in order to perform a
binary search on K∗

i appropriate forgery masks would have to be pre-computed
– this would require O(n log n) space. In most cases it is probably more efficient,
once an adversary knows that k ∈ K∗

i , to perform the first few iterations of
a binary search (having precomputed the necessary values) before switching to
trial decryption of C with each key in K∗

i . We assume that the cost of querying
a ciphertext is low and that either (1) there is a steady supply of ciphertexts to
intercept or (2) it is possible to reuse the same nonce – the server may or may
not enforce unique nonces depending on context. Regarding point (1), we note
that a common adversarial model introduced by the BEAST attack [19] gives
an attacker the ability to inject arbitrary plaintexts via client-side JavaScript in
some window in the user’s browser (see e. g. [5,6,15]).

Our attack is limited to scenarios where keys are deterministically derived
from passwords; that is, if passwords are salted (using randomly generated salts)
then pre-computation is no longer feasible. This highlights the fact that whilst
salts are not secret values, they should be unpredictable when used to derive en-
cryption keys from passwords, in a direct analogue to password storage. Better
security in any case is obtained by using password authenticated key exchange
protocols such as [26], rather than deriving session keys statically from pass-
words.

4.2 Targeted Key Contingent Forgery Passing Format Checks

The targeted multi-key contingent forgery attack from the previous section re-
sults in ciphertexts that decrypt under the user’s key to plaintexts that are
“garbage”. This is a problem in cases where plaintexts are required to meet
some format check. The most common form of format check will be a header
field containing (for example) protocol data, sender and receiver addresses, serial
numbers or integrity check values. The weak key forgery method of [36] allows
full control over the underlying plaintext, with the caveat that the ciphertext
forgery represents an (untargeted) multi-key contingent forgery – for every block
of underlying plaintext that is part of the format check, the number of targeted
keys being tested will decrease by one, with one extra untargeted key gained.
In practice this will not make much difference: usually, the prefix is designed
to be as short as possible, which means one or at most two blocks. We would
typically expect splitting ciphertexts of degree ≈500 so that losing one or two
blocks represents only a small fraction of the total.

Let us assume that the captured nonce, ciphertext, tag tuple (N, C, T) corre-
sponds to some underlying plaintext matching the (known) required format. For
concreteness, assume that the first block of plaintext (respectively, ciphertext)
corresponds to the format to be checked. This means that we need to leave the
first block of plaintext unchanged. We thus set β = C1⊕0 in eq. (4) and note that
the method may easily be adapted to “flip bits” in the underlying plaintext by
using a suitable value of β = C1⊕ δ; furthermore, it is straightforward to extend
the method to deal with multiple blocks. By construction, Ĉ1 = q′

1 = β, which
gives Ĉ = C1 ∥ Ĉ2 ∥ · · · ∥ Ĉℓ, i. e., a ciphertext forgery Ĉ with the same first

block of ciphertext (and thus underlying plaintext) as the original intercepted
ciphertext C. Note that we gain Kℓ = a · b−1 as an untargeted key.

Len et al. [31] show how to craft (untargeted) multi-key collisions to pass
format checks with fixed prefixes, however their method is impractical for prefixes
longer than a couple of bytes; in contrast, our method can easily be applied to
arbitary prefixes and is targeted. Lastly, we observe that this method circumvents
the key committing “padding fix” discussed in Section 2.3, i. e., to prepend a
constant string to messages before encrypting. The ability to control underlying
plaintexts in this way allows an attacker to apply partitioning oracle attacks
using weak key forgeries where attacks based on exploiting non-committment
are infeasible.

5 Partitioning Oracle Attacks against Shadowsocks

Originally written by a pseudonymous developer, Shadowsocks [1] is an en-
crypted proxy for TCP and UDP traffic, based on SOCKS5. Shadowsocks was
first built to help evade censorship in China, and it underlies other tools such
as Jigsaw’s Outline VPN. To use Shadowsocks, a user first deploys the Shadow-
socks proxy server on a remote machine, provisions it with a static password and
chooses an encryption scheme to use for all connections. The most up-to-date
implementations only support AEAD schemes for encryption, with the options
consisting of AES-GCM (128-bit or 256-bit) or ChaCha20/Poly1305. Next the
user configures the Shadowsocks client on their local machine, and can then for-
ward TCP or UDP traffic from their machine to the Shadowsocks proxy server.

Len et al. [31] showed how to build a practical partitioning oracle attack
against Shadowsocks proxy servers. At a high level, their attack exploited the
non-key committing property of the AEAD schemes used, making it possible to
craft ciphertexts which decrypt correctly under a set of target keys. Furthermore,
the attack exploits the fact that the proxy server opens an ephemeral UDP port
in response to a valid request (and otherwise does not) which reveals whether
a ciphertext has been accepted or rejected. The attack depends on a particular
configuration: password derived keys and UDP traffic. As a response to [31],
users are advised to mitigate against the attack by generating good quality
passwords and disabling UDP mode [7]. In this section, we first describe the
Shadowsocks protocol and the partitioning oracle attack of Len et al., before
going on to describe how weak key forgeries can be used to launch a partitioning
oracle attack. We note that whilst our attack is rendered impractical by the per-
message salt used in the Shadowsocks protocol, a description of a hypothetical
attack still offers a useful case study, which we describe below.

The Shadowsocks Protocol. The client starts by hashing the user pass-
word pw to obtain a key k = h(pw). The client then samples a random sixteen-
byte salt s and computes a session key ks ← HKDF(k, s, info) using HKDF [29],
where info is the string ss-subkey. A new salt and session key are generated
for every message. The client encrypts its plaintext payload P by computing
C ← AuthEncks(Z, ε, flag ∥ ip ∥ port ∥ payload) where Z denotes a nonce set to a

string of zero bytes (12 for AES-GCM); the value ε empty associated data; and
flag is a one-byte header indicating the format of ip with the following conven-
tion: flag = 01 indicates that ip is a 4-byte IPv4 address, flag = 03 indicates that
ip consists of a one byte length and then hostname, and flag = 04 indicates that
ip is a 16-byte IPv6 address. The port field port is two bytes long. The client
sends (s, C) to the server via UDP. If the client is using TCP, the process is the
same except that the ciphertext is prefixed with a two-byte encrypted length
(and authentication tag) before being sent to the server via TCP.

When the Shadowsocks server receives (s, C), it extracts the salt and uses it
together with pw to re-derive the session key ks. It decrypts the remainder of the
ciphertext with ks. If decryption fails, no error message is sent back to the client.
If decryption succeeds, the plaintext’s format is checked by verifying that its first
byte is equal to a valid flag value. If that check passes, the next bytes are inter-
preted as an appropriately encoded address ip, and two-byte port number port.
Finally, the rest of the payload is sent to the remote server identified by ip and
port. The proxy then listens on an ephemeral source UDP port assigned by the
kernel networking stack for a reply from the remote server. When Shadowsocks
receives a reply on the ephemeral port, the server generates a random salt and
uses it with pw to generate a new session key. It then encrypts the response, and
sends the resulting salt and ciphertext back to the client. The same encryption
algorithm is used in both directions.

The Attack of Len et al. The proxy server opens an ephemeral UDP port in
repsonse to a valid request (and otherwise not). One can view this as a remotely
observable logical side-channel that reveals whether decryption succeeds. The
attacker starts with knowledge of a password dictionary D and an estimate p̂
of the probability distribution over keys in the dictionary. The attack has two
steps, a pre-computation phase and an active querying phase.

In the pre-computation phase, the attacker chooses an arbitrary salt s and
derives a set of session keys K = K(D) by ki

s ← HKDF(h(pwi), s, ss-subkey)
for all pwi ∈ D; the nonce is set as a string of all zeroes. The adversary then
outputs a ciphertext Ĉ of length 4093 (to meet the length restriction imposed
by Shadowsocks servers) and a set K∗ of 4091 keys such that Ĉ decrypts under
every key in S to give a plaintext with first byte 01. We gloss over the details of
how Ĉ is constructed and refer the reader to [31]; we note that the construction
is not a targeted multi-key collision.

In the querying phase, the attacker then submits (s∗, C∗) to the proxy server.
Should the user’s key be in the set of target keys, k(pw) ∈ K∗, the server will
interpret the decrypted plaintext as a 01 byte followed by a random IPv4 address,
destination port, and payload. The IPv4 and destination port will be accepted
by the server’s network protocol stack with high probability, and so the server
will send the payload as a UDP packet and open a UDP source port to listen
for a response, which the attacker can observe by port scanning.

5.1 Partitioning Oracles from Weak Key Forgeries.

We now describe how to launch a partitioning oracle attack using weak key
forgeries against Shadowsocks (in the same configuration as the attack of Len
et al. described above). As noted above, our attack is impractical as session
keys are salted on a per-message basis in the Shadowsocks protocol, making pre-
computation of forgery masks infeasible. Nevertheless, a weak key forgery parti-
tioning oracle attack against Shadowsocks is an instructive case study, demon-
strating the feasibility of the approach and allowing us to point out some interest-
ing features; in particular, we are able to construct targeted multi-key contingent
forgeries that meet arbitrary format requirements as we explain below.

Basic version. We separate the attack into two steps, a computation phase
and an active querying phase. The attacker starts with knowledge of a password
dictionary D and an estimate p̂ of the probability distribution over keys in the
dictionary and then intercepts a salt, ciphertext tuple (s, C).

In the computation phase, the attacker first chooses a set of passwords D∗

with |D∗| = 4092, such that the set has the maximum aggregate probability
according to p̂. The attacker then derives a set of session keys K∗ from the
salt s and set of passwords D∗ by ki

s ← HKDF(h(pwi), s, ss-subkey); the nonce
is set as a string of all zeroes. Using the weak key forgery method described
in Section 4.2, the attacker outputs a ciphertext Ĉ of length 4093 (to meet
the length restriction imposed by Shadowsocks servers) such that Ĉ decrypts
under the users key k if k ∈ K∗. Furthermore, the underlying plaintext P ←
AuthDeck(Ĉ) passes the format check.

In the querying phase, the attacker then submits (s, C∗) to the proxy server.
Should the user’s key be in the set of target keys, the server will interpret the
decrypted plaintext as flag ∥ ip ∥ port ∥ payload; that is, an IP address, destina-
tion port and payload. Note that these are unchanged from the original plaintext
that was sent by the user, so will be accepted by the server’s network protocol
stack. The server will send the payload as a UDP packet and open a UDP source
port to listen for a response, which the attacker can observe by port scanning.

Extension 1: Redirection (known plaintext attack). If the attacker knows
the first 7 bytes of an underlying plaintext, which we write as prefix, then they
can use the weak key forgery technique to redirect the user’s payload to ar-
bitrary destinations. In particular, the first 7 bytes can be modified to give
01 ∥ ip′ ∥ port′, with ip′ a four-byte IPv4 address, and port′ a two-byte desti-
nation port. This is the idea behind Peng’s “redirect attack” [22,34], discovered
in February 2020, which exploited the use of stream ciphers without integrity
protection in the Shadowsocks protocol. Obtaining plaintexts with known prefix
is relatively easy in the server to client direction, as many common server proto-
cols start with the same bytes (e. g. HTTP/1. for HTTP). In the client to server
direction, underlying plaintexts will be in the format [destination][payload], so
that the adversary needs to know the target address (and its encoding), per-
haps through injecting plaintexts via client-side JavaScript in some window in
the user’s browser [5,6,15,19]. Note that if an adversary is able to launch cho-

sen plaintext attacks, they could target the TCP configuration of Shadowsocks
(the recommended option) by crafting plaintexts with the maximum length to
overcome the fact that for TCP the length is sent encrypted together with the
encrypted payload.

The adversary intercepts a ciphertext C from server to client, and using weak
key forgery techniques modifies C to give a splitting ciphertext Ĉ whose under-
lying plaintext begins with prefix′ = 01 ∥ ip′ ∥ port′, i. e., an address that the ad-
versary controls. The splitting ciphertext is then sent to the Shadowsocks server:
if the splitting ciphertext is accepted, the payload is sent to the adversary, reveal-
ing that the user’s key is in the set of target keys associated to Ĉ. To produce Ĉ,
we modify the basic attack above as follows: when it comes to constructing the
weak key forgery mask, following the technique outlined in Section 4.2, we use
a non-zero value of β in Equation (4); specifically, β = prefix⊕ (01 ∥ ip′ ∥ port′),
interpreted as an element of F2128 . The effect is to flip some bits in the 7-byte
prefix prefix, so that we obtain the attacker’s address prefix′.

We note that this attack allows the adversary to efficiently and reliably de-
termine whether the ciphertext has been accepted; it is no longer necessary to
scan the server for open ports, which is time consuming and not necessarily com-
pletely reliable. Furthermore, if the splitting ciphertext is accepted, the adver-
sary receives the payload payload which means that it can efficiently test target
keys against the ciphertext by encrypting one block of plaintext and checking
whether it matches. Without this, the adversary would need to calculate the
authentication tag of the captured ciphertext for each target key.

Extension 2: Bypassing the padding fix. As discussed in Section 2.3, prior
work on non-key committing AEAD schemes showed that applying a “padding
fix”, that is prepending a fixed constant string to underlying plaintexts, trans-
forms the scheme to be key-committing. Applying a padding fix is recommended
by Len et al. as a way to mitigate against partitioning oracle attacks; however, a
partitioning oracle attack using weak key forgeries will still be successful despite
that mitigation. To see this, we simply modify the description of the “basic at-
tack version” in the previous subsection to leave one further block unaltered, at
the cost of testing one less key per ciphertext Ĉ. We note that the reason that
our attack impractical is due to the salting of passwords to derive per-message
ephemeral keys, rather than because of the non-key committing property of the
AEAD scheme used.

5.2 Other Proxy Servers (VPNs)

Virtual Private Networks (VPNs) are often used to achieve similar objectives to
Shadowsocks (allowing a user to access the internet via a proxy server), although
Shadowsocks was designed specifically to circumvent internet censorship, which
is not part of the threat model for VPNs. VPNs allow users to interact with what
appears to be a private network, despite the interaction taking place over a public
network (typically, the internet). This is achieved by encrypting packets in transit
so that the contents are hidden from the public network. VPNs have a number

of applications, including enabling users to remotely access local resources, or
allowing individuals to improve their anonymity and privacy online (by masking
their IP and hiding their traffic). Users connect to a proxy server via an encrypted
tunnel, and the proxy server acts as an intermediary for the client and the
internet (or a portion thereof). The most widely used protocols for VPNs are
TLS and the IPsec protocol

At a high level, IPsec works as follows: the user first composes a TLS packet
that will be sent to the end destination. This is encapsulated in an IPsec Encap-
sulating Security Payload (ESP) packet in tunnelling mode, which essentially
adds a header and encrypts the whole packet to give a ciphertext C. This en-
crypted packet C is sent to the proxy server, where it is decrypted to recover the
underlying TLS packet. The proxy server now forwards the TLS packet to its
intended destination. There are many configuration options for how the user and
proxy server authenticate and/or encrypt the ESP packets, including to provi-
sion the user and proxy server with static keys [28]. This is known as “manual
management”, and is suited to small static environments. However, the standard
does not allow AES-GCM (or ChaCha20-Poly1305) with manual keys, although
they are available in other configurations, due to concerns over the brittleness
when a nonce/key combination is reused. AES with HMAC is preferred, which
happens to be both key-committing and not vulnerable to weak key forgeries.
Similarly, OpenVPN disallows AEAD cipher mode with static keys to avoid the
insecurity of potential nonce/key reuse. We have thus not been able to find any
vulnerable applications “in the wild”, but note that partitioning oracle attacks
are theoretically possible against implementations incorrectly deviating from the
specification.

6 Conclusions

Prior work demonstrated that key commitment is an important security property
of AEAD schemes. Our results suggest that resistance to weak key forgeries
should be considered a related design goal to key-commitment, particularly in
settings that are vulnerable to partitioning oracle attacks. Concretely, our results
demonstrate – in contrast to the suggestions of prior work – that structured
underlying plaintexts (e.g. packet headers that prefix every plaintext message, or
an appended block of all zeros) is not a sufficient mitigation against partitioning
oracle attacks. Lastly, our results reinforce the message that weak passwords
should never be used to derive encryption keys.

Acknowledgements

This research was supported by the EPSRC and the UK government as part of
the Centre for Doctoral Training in Cyber Security at Royal Holloway, University
of London (EP/P009301/1).

The authors would like to thank Kenny Paterson for the discussion and
feedback on an early draft, as well as the anonymous reviewers.

References

1. Shadowsocks - a fast tunnel proxy that helps you bypass firewalls. https://
shadowsocks.org, retrieved May 2021.

2. Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted poly-
nomials and forgery attacks on GCM. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology – EUROCRYPT 2015, Part I. Lecture Notes in
Computer Science, vol. 9056, pp. 762–786. Springer, Heidelberg (Apr 2015).
https://doi.org/10.1007/978-3-662-46800-5_29

3. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. Cryptology
ePrint Archive, Report 2020/1456 (2020), https://eprint.iacr.org/2020/1456

4. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: A timing attack on amazon’s
s2n implementation of TLS. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryp-
tology – EUROCRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 9665,
pp. 622–643. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-3-662-
49890-3_24

5. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: King, S.T. (ed.) USENIX Security 2013: 22nd
USENIX Security Symposium. pp. 305–320. USENIX Association (Aug 2013)

6. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy. pp. 526–540.
IEEE Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.42

7. Anonymous, Anonymous, Anonymous, Fifield, D., Houmansadr, A.: A practical
guide to defend against the GFW’s latest active probing. https://gfw.report/
blog/ss_advise/en/ (2021), retrieved May 2021.

8. Armour, M., Poettering, B.: Substitution attacks against message authentica-
tion. IACR Transactions on Symmetric Cryptology 2019(3), 152–168 (2019).
https://doi.org/10.13154/tosc.v2019.i3.152-168

9. Armour, M., Poettering, B.: Subverting decryption in AEAD. In: Albrecht, M.
(ed.) 17th IMA International Conference on Cryptography and Coding. Lecture
Notes in Computer Science, vol. 11929, pp. 22–41. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-35199-1_2

10. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message au-
thentication. In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96. Lecture
Notes in Computer Science, vol. 1109, pp. 1–15. Springer, Heidelberg (Aug 1996).
https://doi.org/10.1007/3-540-68697-5_1

11. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based pro-
tocols secure against dictionary attacks. In: 1992 IEEE Symposium on Se-
curity and Privacy. pp. 72–84. IEEE Computer Society Press (May 1992).
https://doi.org/10.1109/RISP.1992.213269

12. Bernstein, D.J.: The poly1305-AES message-authentication code. In: Gilbert,
H., Handschuh, H. (eds.) Fast Software Encryption – FSE 2005. Lecture Notes
in Computer Science, vol. 3557, pp. 32–49. Springer, Heidelberg (Feb 2005).
https://doi.org/10.1007/11502760_3

13. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop record of SASC. vol. 8,
pp. 3–5 (2008)

14. Beznazwy, J., Houmansadr, A.: How China detects and blocks shadowsocks. In:
Proceedings of the ACM Internet Measurement Conference. pp. 111–124 (2020)

https://shadowsocks.org
https://shadowsocks.org
https://doi.org/10.1007/978-3-662-46800-5_29
https://eprint.iacr.org/2020/1456
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1007/978-3-662-49890-3_24
https://doi.org/10.1109/SP.2013.42
https://gfw.report/blog/ss_advise/en/
https://gfw.report/blog/ss_advise/en/
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.1007/978-3-030-35199-1_2
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1109/RISP.1992.213269
https://doi.org/10.1007/11502760_3

15. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ciphers:
Collision attacks on HTTP over TLS and OpenVPN. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Con-
ference on Computer and Communications Security. pp. 456–467. ACM Press (Oct
2016). https://doi.org/10.1145/2976749.2978423

16. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) Advances in Cryptology –
CRYPTO’98. Lecture Notes in Computer Science, vol. 1462, pp. 1–12. Springer,
Heidelberg (Aug 1998). https://doi.org/10.1007/BFb0055716

17. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryp-
tion with distinguishable decryption failures. In: Moriai, S. (ed.) Fast Software En-
cryption – FSE 2013. Lecture Notes in Computer Science, vol. 8424, pp. 367–390.
Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-662-43933-3_19

18. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking:
From invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A.
(eds.) Advances in Cryptology – CRYPTO 2018, Part I. Lecture Notes in
Computer Science, vol. 10991, pp. 155–186. Springer, Heidelberg (Aug 2018).
https://doi.org/10.1007/978-3-319-96884-1_6

19. Duong, T., Rizzo, J.: Here come the ⊕ ninjas. Unpublished manuscript, https:
//tlseminar.github.io/docs/beast.pdf, retrieved May 2021.

20. Dworkin, M.J.: SP 800-38D. recommendation for block cipher modes of operation:
Galois/counter mode (GCM) and GMAC. Tech. rep. (2007)

21. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Transactions on Symmetric Cryptology 2017(1), 449–473
(2017). https://doi.org/10.13154/tosc.v2017.i1.449-473

22. Fifield, D.: Decryption vulnerability in shadowsocks stream ciphers. https://
github.com/net4people/bbs/issues/24, retrieved May 2021.

23. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the lip
of the volcano: Chosen ciphertext attacks on apple iMessage. In: Holz, T., Savage,
S. (eds.) USENIX Security 2016: 25th USENIX Security Symposium. pp. 655–672.
USENIX Association (Aug 2016)

24. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology –
CRYPTO 2017, Part III. Lecture Notes in Computer Science, vol. 10403, pp. 66–97.
Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-63697-9_3

25. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) Advances in Cryptology – CRYPTO 2008.
Lecture Notes in Computer Science, vol. 5157, pp. 144–161. Springer, Heidelberg
(Aug 2008). https://doi.org/10.1007/978-3-540-85174-5_9

26. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol se-
cure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2018, Part III. Lecture Notes in Com-
puter Science, vol. 10822, pp. 456–486. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78372-7_15

27. Joux, A.: Authentication failures in NIST version of GCM. Tech. rep. (2006)
28. Kent, S., Seo, K.: Security architecture for the internet protocol. RFC 4301, RFC

Editor (December 2005), https://tools.ietf.org/html/rfc4301
29. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.

In: Rabin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture Notes
in Computer Science, vol. 6223, pp. 631–648. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7_34

https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-319-96884-1_6
https://tlseminar.github.io/docs/beast.pdf
https://tlseminar.github.io/docs/beast.pdf
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://github.com/net4people/bbs/issues/24
https://github.com/net4people/bbs/issues/24
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-319-78372-7_15
https://tools.ietf.org/html/rfc4301
https://doi.org/10.1007/978-3-642-14623-7_34

30. Krawczyk, H.: The opaque asymmetric PAKE protocol (draft). Tech. rep. (2018),
https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque-02

31. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: 30th
USENIX Security Symposium (USENIX Security 21). pp. 195–212. USENIX As-
sociation (Aug 2021), https://www.usenix.org/conference/usenixsecurity21/
presentation/len

32. McGrew, D., Viega, J.: The galois/counter mode of operation (GCM).
Tech. rep. (2004), http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/gcm/gcm-revised-spec.pdf

33. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing:
Password similarity models using neural networks. In: 2019 IEEE Symposium on
Security and Privacy. pp. 417–434. IEEE Computer Society Press (May 2019).
https://doi.org/10.1109/SP.2019.00056

34. Peng, Z.: Redirect attack on shadowsocks stream ciphers. https://github.com/
edwardz246003/shadowsocks, retrieved May 2020.

35. Procter, G.: A security analysis of the composition of ChaCha20 and Poly1305.
Cryptology ePrint Archive, Report 2014/613 (2014), https://eprint.iacr.org/
2014/613

36. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) Fast Software Encryption – FSE 2013. Lecture
Notes in Computer Science, vol. 8424, pp. 287–304. Springer, Heidelberg (Mar
2014). https://doi.org/10.1007/978-3-662-43933-3_15

37. Saarinen, M.J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) Fast Software Encryption – FSE 2012. Lecture
Notes in Computer Science, vol. 7549, pp. 216–225. Springer, Heidelberg (Mar
2012). https://doi.org/10.1007/978-3-642-34047-5_13

38. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) Advances in Cryptology – EURO-
CRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 534–546. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_35

39. Winter, P., Lindskog, S.: How the great firewall of China is blocking Tor.
In: Dingledine, R., Wright, J. (eds.) 2nd USENIX Workshop on Free and
Open Communications on the Internet, FOCI ’12, Bellevue, WA, USA, Au-
gust 6, 2012. USENIX Association (2012), https://www.usenix.org/conference/
foci12/workshop-program/presentation/winter

https://datatracker.ietf.org/doc/html/draft-krawczyk-cfrg-opaque-02
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://www.usenix.org/conference/usenixsecurity21/presentation/len
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
https://doi.org/10.1109/SP.2019.00056
https://github.com/edwardz246003/shadowsocks
https://github.com/edwardz246003/shadowsocks
https://eprint.iacr.org/2014/613
https://eprint.iacr.org/2014/613
https://doi.org/10.1007/978-3-662-43933-3_15
https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1007/3-540-46035-7_35
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter

	Partition Oracles from Weak Key Forgeries

