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Abstract. Password-based authentication is a central tool for end-user
security. As part of this, password hashing is used to ensure the security
of passwords at rest. If quantum computers become available at sufficient
size, they are able to significantly speed up the computation of preim-
ages of hash functions. Using Grover’s algorithm, at most, a square-root
speedup can be achieved, and thus it is expected that quantum pass-
word guessing also admits a square-root speedup. However, password
inputs are not uniformly distributed but highly biased. Moreover, typi-
cal password attacks do not only compromise a random user’s password
but address a large fraction of all users’ passwords within a database of
millions of users.
In this work, we study those quantum large-scale password guessing at-
tacks for the first time. In comparison to classical attacks, we still gain a
square-root speedup in the quantum setting when attacking a constant
fraction of all passwords, even considering strongly biased password dis-
tributions as they appear in real-world password breaches. We verify the
accuracy of our theoretical predictions using the LinkedIn leak and derive
specific recommendations for password hashing and password security for
a quantum computer era.
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1 Introduction

Despite its significant weaknesses, password-based authentication continues to
be widely used. An average user may have hundreds of password-protected on-
line accounts [38,51], needs to enter a password for decrypting and booting the
computer, or accessing the Wi-Fi and VPN. Reasons for the continued use of
passwords include their intuitive and simple usage and an “ecosystem” of cop-
ing strategies (such as password reuse [16,21,37] and choosing passwords with
predictable patterns [45,46,47]) to work around limitations of passwords.

Password hashing is a central building block for ensuring the security of
passwords at rest: for passwords stored in databases or hard disk encryption, it
is recommended to use a salted, iterated, and memory-hard cryptographic hash
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function [4]. Hashed passwords can be attacked by an offline guessing attack:
an attacker generates password candidates that a human user likely chooses, in
decreasing order of likelihood. Then, the attacker hashes the password candidates
and compares them against the stored password hash, revealing if the tested
password candidate matches the real password [19,34]. Considering the heavily
skewed distribution of human password choice, consumer-grade hardware such
as gaming GPUs can already pose a threat for password security [15,23], except
for very slow password hashes such as Argon2i [3].

With the availability of quantum computers, many cryptographic primitives
are at high risk [26,29,32,33,39,40]. Specifically, popular public-key cryptography
that is in use today and based on the factorization or discrete logarithm prob-
lem, such as the RSA cryptosystem, can be broken by Shor’s algorithm [43].
In symmetric cryptography, the situation is different. For many symmetric ci-
phers, it is assumed that the only impact in a quantum setting is the Grover
square-root speedup, which can be countered by doubling the key length. Sim-
ilarly, Grover’s algorithm gives a square-root speedup for finding preimages of
cryptographic hash functions. A straight-forward application of Grover’s algo-
rithm to uniformly distributed N passwords displays a similar speedup: quantum
computers can find preimages for hashed passwords faster (in

√
N steps) than

traditional computers [12]. For more realistic human-chosen passwords that are
not uniformly distributed but highly skewed, it is unknown if a square-root
speedup can also be realized.

Our Contribution. In this work, we investigate the impact of quantum comput-
ers on password guessing. To the best of our knowledge, our work is the first
to consider realistic (non-uniform) password distributions, as well as quantum
attackers guessing passwords for more than a single password hash. Our contri-
bution is three-fold:

1. We investigate how an attacker equipped with a quantum computer (of suf-
ficient size) can use Grover’s algorithm to guess non-uniformly distributed
human-chosen passwords. We realize square-root speedups in two different
attack scenarios: targeting a single (fixed) user and large-scale attacks tar-
geting a whole password database at once. Both scenarios are commonly
found in password research and password security practice.

2. As a central tool, we use a Zipf distribution to model human password
choices. We provide analytic bounds for the required number of evaluations
of the password hashing function that holds both in the classical and the
quantum world, which may be of independent interest.

3. We use the well-known LinkedIn password leak to check the accuracy of our
Zipf model, verifying the applicability of our results. We then discuss the
implications and consequences for real-world practices. Even though quan-
tum computers of the required size for our attack might not yet be available
today, we discuss the possible consequences of our results on the required
increase in password strength. Moreover, we address possible solutions based
on alternative password hash functions.
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Overall, we believe that our work allows for a better understanding of the long-
term impact of quantum computers on the security of password hashing and
provides a first step in taking appropriate steps to mitigate problems.

Related Work. A first step towards modeling user-chosen password distributions
with Zipf’s law has been done by Malone and Maher [35]. They conclude that
Zipf’s law may not allow for an exact yet good approximation of the frequencies
in which users choose passwords. Bonneau [6] and Wang et al. [49] came to a
similar conclusion. The latter also refined accuracy by independently modeling
less and more frequent passwords. A subsequent work by Wang et al. [48] revised
the approach even further, also utilizing it to measure password dataset security.

Corrigan-Gibs et al. [12] discussed how the security of hashed passwords
changes in the presence of quantum computers. For this purpose, they assume a
10-character password that is randomly chosen from the space of all 95 printable
ASCII characters. By applying Grover’s algorithm [25], the security of such a

password reduces from 9510 ≈ 266 to only
√

9510 ≈
√

266 = 233. Hence, Corrigan-
Gibs et al. conclude that quantum computers would put hashed passwords at
risk, which are currently perceived as secure.

Moreover, the quantum scenario also allows for identity authentication proto-
cols with improved privacy and security properties [13]. However, these protocols
require all communicating parties to have quantum computer access, which is
not the scenario we are considering.

2 Password Guessing

In the following section, we provide a brief introduction to password guessing
and the real-world password datasets we are using. Moreover, we describe how
human password choice can be approximated by Zipf’s law and introduce our
overall attack setting.

2.1 Threat Model

Passwords are typically stored in salted hashed form, i. e., instead of storing the
password pwd in plain text, one stores (s, h(pwd |s) for a hash function h and a
random salt s. Due to the strong bias and the resulting low entropy of human-
chosen passwords, effective attacks against such password hashes are guessing
attacks. Here an attacker enumerates password candidates by their likelihood,
and for each candidate tests if it is the correct password. In an online guessing
attack, the attacker tests potential password candidates directly with the service
provider. These attacks can be reasonably mitigated on the server-side, e. g., by
rate-limiting. A more pronounced threat is offline guessing attacks, where the
attacker is in possession of the database with the password hashes and is thus
only limited by the available computational resources, as the correctness of the
passwords can be tested locally. This offline scenario is the threat model we
consider in the remainder of this work.
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In order to minimize the number of hashing operations for the guessing at-
tack, an attacker will try to guess the most frequent passwords first. For our
work, we consider the strongest threat model possible in form of a perfect knowl-
edge attacker that uses the actual password distribution and guesses passwords
in order of decreasing probability.
We distinguish between the following two attack scenarios:

Scenario A: Fixed User Attack. This is the simplest attack scenario, where
the attacker targets a certain fixed password hash by testing a list of common
passwords in decreasing probability. A typical example for Scenario A is when an
attacker is interested in a single user in a password file (e. g., law enforcement).
Another important use case is (software-based) hard disk encryption, where the
content of the disk is encrypted using a symmetric key. This key needs to be
stored on the hard disk as well (unless supported by specialized hardware), pro-
tected by a password. To this end, the password is the input to a key derivation
function (KDF), which typically uses hash functions (e. g., PBKDF2) or similar
cryptographic constructions to derive a cryptographic key from the password.
This key is not directly used to encrypt the hard disk but to encrypt a keystore,
which facilitates key management, e. g., to allow for changing the password or for
multiple users. Such a keystore construction enables the attacker to verify a pass-
word candidate by feeding the candidate password through the KDF, decrypting
the keystore, and testing if it has the correct form.

Scenario B: Large-Scale Attack. An often even more relevant attack sce-
nario is when an attacker tries to recover a certain fraction of all of the pass-
word hashes from a large number of accounts. A typical example for this Sce-
nario B are breached databases, like the one from LinkedIn (as described in
Section 2.2), of which 98 % of the passwords were recovered as they were hashed
using SHA-1 and no salt [23]. In order to optimize the attack, the attacker will
guess passwords based on decreasing likelihood and test each password for all
hashes before continuing with the next guess. The recovered passwords can then
be used in a variety of ways: they can be further weaponized in a credential
stuffing attack [36,37], in a targeted password guessing attack [50], they can be
monetized on black markets [17], or used for further illegal activities such as
sending spam emails. Moreover, they can be of interest for password security
research [4,16,20,35,47] or for enthusiasts that crack passwords out of fun or as
a sort of competition [14,23].

2.2 Password Datasets

When analyzing human-chosen passwords, one must consider that password
choice is contextual and influenced by many factors [2,18,38]. While it is dif-
ficult to adjust for all factors, we will analyze the impact of these influencing
factors and describe our used comparison metrics in Section 2.3.

An overview of our used datasets that are described in the following is given
in Table 1. We selected the datasets to allow for easy verification and to generate
reproducible results based on publicly available data.
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Table 1: Evaluated Password Datasets

Name Service Year Policy # Accounts

LinkedIn Social Network 2012 6+ 160.8 million
RockYou Social Games 2009 5+ 32.6 million
000Webhost Web Hosting 2016 6+ [a-Z][0-9] 15.3 million

To reason about the strength of a password distribution considering a perfect
knowledge attacker, we use the partial guessing entropy (α-guesswork) Gα for
α = 0.25 as described by Bonneau [6]. Our datasets are:

– LinkedIn: The social networking website LinkedIn was hacked in June 2012.
It consists of a database dump of approx. 163 million unsalted SHA-1 hashes.
We use a 98.68 % recovered plaintext version of the leak, as we expect the bias
introduced by ignoring 1.32 % of (presumably strong) passwords to be low.
We include LinkedIn because we consider those passwords to be a reasonable
candidate for medium-strong passwords (G̃0.25 = 19 bits).

– RockYou: This is a well-established leak used extensively in previous work.
The 32 million plaintext passwords leaked from the RockYou web service in
December 2009 via an SQL injection attack. Its passwords are considered
relatively weak (G̃0.25 = 16 bits).

– 000Webhost: This leak occurred in October 2015 and contains 15 million
plaintext passwords from a free web space provider. We include this leak
because of its enforcement of a stricter password composition policy, which
results in a different password distribution containing relatively strong pass-
words (G̃0.25 = 21 bits).

2.3 Approximating Human Password Choice by a Zipf Distribution

Real-world datasets allow researchers to study human password choice, and it
has been realized that real-world distributions DPw typically follow a Zipf dis-
tribution. The Zipf distribution was originally formulated in the context of
quantitative linguistics based on the frequency of words in English text [53] but
has since been shown to be a good model for human password choice as well. It is
well documented that real-world password distributions (roughly) follow a Zipf
distribution (cf. Wang et al. [48,49], Malone and Maher [35], and Bonneau [6]).

Let P = {pwd1, . . . , pwdN} be an ordered set of N passwords, and let s ≥ 0.
We define the generalized harmonic number as

Hs(N) :=

N∑
i=1

1

is
.

Let X be a ZipfN,s-distributed random variable over P with steepness parameter
s (the larger s, the steeper). Then

pi := P[X = pwd i] =
1

Hs(N)
· 1

is
,
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where Hs(N) normalizes the distribution. Throughout the paper, we use that
partial sums of Zipf probabilities can be easily expressed as

k∑
i=1

pi =
1

Hs(N)

k∑
i=1

1

is
=

Hs(k)

Hs(N)
. (1)

Notice that for s = 0 we have H0(N) = N and pi = P[X = pwd i] = 1
N . Thus,

ZipfN,0 is the uniform distribution on all passwords. For 0 ≤ s < 1, the following
lemma shows that Hs(N) ≤ N1−s, and therefore p1 ≥ Ns−1.

For example, for steepness s = 3
4 the most likely password pwd1 has probabil-

ity p1 ≥ N−
1
4 � N−1. This already implies that on expectation we can identify

a user with password pwd1 with at most N
1
4 tries.

Lemma 1. For 0 ≤ s < 1 we have

N1−s

1− s
− 1

1− s
< Hs(N) ≤ N1−s

1− s
.

In particular, Hs(N) = Θ(N1−s).

Proof.

N1−s

1− s
− 1

1− s
=

∫ N

1

i−s di <

N∑
x=1

1

is
= Hs(N)

≤ 1 +

∫ N

1

i−s di = 1 +
N1−s

1− s
− 1

1− s
≤ N1−s

1− s
.

In order to determine typical steepness values s in practical settings, let us
provide an explicit approximation using the Zipf distribution. As a first exam-
ple, we take the LinkedIn database [23], with roughly 160 · 106 ∼ 227 users and
N ∼ 60 · 106 ∼ 226 different passwords P = {pwd1, . . . , pwdN}. We choose s so
that ZipfN,s is the best approximation of the password-distribution DPw of the
database. For this, we use the coefficient of determination R2 from Definition 1
between ZipfN,s and the password distribution of the database, and select s so
that R2 is maximized. This is the case for s ∼ 0.777 with a coefficient of deter-
mination of R2 = 0.781. A log/log-scaled plot of a ZipfN,0.777 distribution and
DPw can be seen in Figure 1a. The results of analog calculations for the RockYou
and 000Webhost leak are shown in Figure 1b and 1c. In the following, we will
use the LinkedIn leak as our main dataset, since it is by far the largest publicly
available dataset that includes medium-strong passwords (G̃0.25 = 19 bits).

Definition 1 (Coefficient of Determination (R2)). We define the coeffi-
cient of determination between two datasets D = {y1, . . . , yn} and D̂ = {ŷ1, . . . , ŷn}
as

R2 = 1−
∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − y)

2 ,

where y = 1
n

∑n
i=1 yi is the mean of the dataset D.
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(a) LinkedIn Dataset (s = 0.777)
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(b) RockYou Dataset (s = 0.790)
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(c) 000Webhost Dataset (s = 0.680)

Fig. 1: Approximation of password leaks by the Zipf distribution.

In the following, we show that the complexity of password guessing attacks
in the fixed user case can be described by a random variable X distributed
according to some Zipf distribution. Therefore, we are interested in the expec-
tation of X. The following Lemma 2 shows that the expectation is linear in the
number N of passwords.

Lemma 2. Let X be a ZipfN,s distributed random variable with 0 ≤ s < 1.
Then

E[X] =
1− s
2− s

·N (1± o (1)) .

Proof. By definition of expectation, we have

E[X] =

N∑
i=1

i ·P[X = pwd i] =

N∑
i=1

i · 1

Hs(N)
· 1

is
=

1

Hs(N)

N∑
i=1

1

is−1
=
Hs−1(N)

Hs(N)
.

Using Lemma 1, we show the upper and lower bound for E[X], starting with the
upper bound.

E[X] =
Hs−1(N)

Hs(N)
≤

N2−s

2−s
N1−s

1−s −
1

1−s
=

1− s
2− s

·N ·
(

N1−s

N1−s − 1

)
=

1− s
2− s

·N ·
(

1 +
1

N1−s − 1

)
=

1− s
2− s

·N · (1 + o (1)) .
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Analogously, we derive the lower bound

E[X] =
Hs−1(N)

Hs(N)
≥

N2−s

2−s −
1

2−s
N1−s

1−s
=

1− s
2− s

·N ·
(
N1−s − 1

N1−s

)
=

1− s
2− s

·N ·
(

1− 1

N1−s

)
=

1− s
2− s

·N · (1− o (1)) .

2.4 Password Guessing Scenario

Let U = {u1, . . . , uw} be a set of w users and P = {pwd1, . . . , pwdN} a set of N
passwords. We denote by g : U 7→ {1, . . . , N} a function that maps each u ∈ U
to its password index, i. e., u has password pwdg(u). Further, we define for each
user u a random salt su.

We denote by L a leaked database of |U | triples (u, su, h(pwdg(u)|su)), where
h is a cryptographic hash function. In other words, the leaked database L reveals
for each user u its salt su and a salted hash of its password.

As in the previous Section 2.3, the set of password follows a ZipfN,s distri-
bution. Hence, a uniformly random user u ∈ U has pwd i ∈ P with probability

pi := Pu∈U [g(u) = i] =
1

Hs(N)
· 1

is
.

Let us define a password verification function V : L× P 7→ {0, 1} as

Vu,su,h(pwdg(u)|su)(pwd) :=

{
1 if h(pwdg(u)|su) = h(pwd |su),

0 else
. (2)

By the definition of V , a password guess pwd is correctly linked to user u with
entry (u, su, h(pwdf(u)|su)) ∈ L if pwd has the correct salted hash value. We call
every user for which our guesser finds a correctly linked password compromised.

We check the correctness of our password guesses via function evaluation
of V . Notice that each evaluation requires a hash evaluation of h, which is our
unit cost measure. Thus, we define the average cost of password guessing as

C :=
#Evaluations of h

#Compromised Users
. (3)

Notice that our cost measure is independent of the underlying hash function.
In Section 6.2, we discuss the effects of taking the run time of hash function
evaluations into account.

In the following, we show that for both scenarios described in Section 2.1
(i. e., attacking a fixed user or large-scale attacks), the average cost of a quantum
attacker is only the square-root of the average cost of a classical attacker.
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2.5 Quantum Password Guessing

While previous applications of quantum algorithms to the problem of password
guessing considered uniform password distribution [12], we generalize to a Zipf
distribution, which more accurately captures real-world password distributions.
As in previous work [12], we consider error-free quantum computations [1,10,31].

When attacking a fixed user u (Scenario A), the key advantage of quantum
computations is that we check the correctness of all passwords on u in a parallel
superposition. In the large-scale Scenario B, first studied quantumly in our work,
the key advantage of quantum computation is that we can check the correctness
of a single password on all users in parallel.

Grover’s Algorithm. The key to many square-root speedups in quantum com-
putation is Grover’s algorithm [25] and its generalizations [7,8].

Theorem 1 (Grover [7,8,25]). Let Ω be a finite search space with solutions
T ⊆ Ω. Let f : Ω 7→ {0, 1} be an efficiently computable target function with
f(x) = 1 iff x ∈ T .

1. In the single solution case |T | ≤ 1, Grover’s algorithm computes the unique

solution x ∈ T with c ·
√
|Ω| f -queries, where c = π

4 ·
(

1 + o
(
|T |
|Ω|

))
∼ 0.785,

or outputs FAIL if |T | = 0.
2. In the general case, Grover’s algorithm computes a random solution x ∈ T

after O
(√

|Ω|
|T |

)
f -queries, or outputs FAIL if |T | = 0.

For illustrative purposes, let us first consider the case of uniformly distributed
passwords.

Fixed User Attack. Let L be our database with entries `u = (u, su, h(pwdf(u)|su)).
Consider some fixed `u, and take our password verification function
V : L× P → {0, 1} from Equation (2). We define the Grover target function

f`u : P → {0, 1}, pwd 7→ V (`u, pwd). (4)

Since a unique password pwd ∈ P verifies correctly for user u (unless we find
collisions in h), we are in the single solution case |T | = 1 of Theorem 1. Thus,
Grover’s algorithm recovers the correct password with c ·

√
|P | ∼ 0.785 ·

√
N

hash evaluations.

Large-Scale Attack. We check for all users in U = {u1, . . . uw} the correctness of
a single fixed password pwd . To this end, define the Grover function

fpwd : U → {0, 1}, u→ V (`u, pwd). (5)

Since many users may use the same password pwd , we are in the general case of
Theorem 1. Let T ⊆ U be the number of users that share pwd . Then Grover’s

algorithm recovers a random user u ∈ T within O(
√
|U |
|T | ) hash evaluations. In the

following sections, we also take the effects of our Zipf distribution into account.
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3 Scenario A: Fixed User Attack

Classical. First, we study how the Zipf distribution affects an optimal classical
attacker targeting a fixed user u with leaked data `u = (u, su, h(pwdf(u)|su)) ∈ L.

A classical attacker’s optimal strategy is to try passwords pwd1, pwd2, . . . in
order of decreasing probability. Let X be a random variable for the number of
hash evaluation. Then the attacker succeeds with a single hash evaluation with
probability P[X = 1] = p1 = P[u has password pwd1]. In general, X is ZipfN,s-
distributed. By Lemma 2 and neglecting low order terms, the expected number
of hash evaluations is

E[X] =

N∑
i=1

i · pi =
1− s
2− s

·N. (6)

This implies that for the uniform distribution with s = 0, we need to test on
expectation half of the passwords. For the typical value of s = 3

4 from Figures 1a
and 1b, on expectation it suffices to try only 1

5N passwords.

Quantum. In the quantum setting, we use Grover’s theorem (Theorem 1) with
target function f`u : P → {0, 1}, f`u(pwd) := V (`, pwd) from Equation (4).
Moreover, we split our search space P at the mean µ := E[X] of our ZipfN,s
distribution from Equation (6). Our quantum attack first checks whether our
desired password is in P1 = {pwd1, . . . , pwdµ}. By Theorem 1, this first check
can be performed with c

√
µ hash evaluations and succeeds with probability

p1 + . . .+ pµ =
1

Hs(N)

µ∑
i=1

1

is
=

Hs(µ)

Hs(N)
.

Using Lemma 2, we have to perform the second check on the remaining search

space P \ P1 with probability at most 1− Hs(µ)
Hs(N) ≤

√
1− s. In total the number

of hash evaluations is upper bounded by

c
(√

µ+
√

1− s ·
√
N − µ

)
= 2c

√
E[X].

Thus, up to a factor of at most 2c ≤ 1.6 our quantum algorithm achieves the
square-root cost of the optimal classical cost from Equation (6).

Remark 1. A result of similar quality can be achieved by using the Amplitude
Amplification technique of Brassard et al. [8]. However, our Grover-based ap-
proach benefits from its simplicity, since in Amplitude Amplification, we have to
create a superposition over all passwords weighted by their ZipfN,s-distribution.
This creates some technical difficulties and unnecessary overhead.

4 Scenario B: Large-Scale Attack

Let us now look at the scenario where an attacker wants to compromise just a
single user with a weak password. In some attack scenarios, this may already
provide an attacker access to an infrastructure, e. g., in a company.
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4.1 Scenario B.1: Attacking a Single (and All) Weakest User(s)

Classical. To identify a single weakest user, the optimal classical approach is
to try the most likely password pwd1 with success probability p1 on random
users. This takes expected running time 1

p1
. If our passwords followed a uniform

distribution, then this attack still takes expected time 1
p1

= N . However, in the
more general case of a ZipfN,s distribution by Lemma 1 we have

1

p1
= Hs(N) ≤ N1−s

1− s
.

This implies, for our typical value s = 3
4 from Figures 1a and 1b, that an attacker

finds a user with a weakest password in time with at most 4N
1
4 hash evaluations.

Quantum. In the quantum setting, we use Grover’s algorithm over a superposi-
tion of all users to identify a user with password pwd1.

Let U = {u1, . . . , uw} be the user set, and L be a our leaked database
with entry `u for user u. We use the Grover function fpwd1

: U → {0, 1},
u→ V (`u, pwd1), as defined in Equation (5).

Let T be the set of users with weakest password pwd1. Then on expectation
|T | = p1|U |. An application of Theorem 1 shows that we find a random user
from T in time

O

(√
|U |
|T |

)
= O

(√
1

p1

)
= O(

√
Hs(N)) = O(N

1−s
2 ).

For s = 3
4 , this implies that we quantumly compromise a user with the

weakest password within only O(N
1
8 ) hash function evaluations.

Using our cost function from Equation (3), we obtain average classical cost

O(N1−s) respectively quantum cost O(N
1−s
2 ) for compromising a single user

with weakest password. In the following, we show that with the same average
cost per user, we can also compromise all users with password pwd1.

All Weakest Users. Classically, we simply test for all |U | users the validity of
password pwd1, resulting in expected |T | = p1|U | compromised users. This im-

plies average cost C = |U |
p1|U | = Hs(N) = O(N1−s).

Quantumly, we use the aforementioned Grover algorithm until we find |T | =
p1|U | different users with password pwd1. Using coupon collector, this takes
|T | · ln |T | runs of the above algorithm. Omitting the low order ln |T |-term, we
obtain average cost

|T | · O
(√

|U |
|T |

)
|T |

= O
(√

1

p1

)
= O(N

1−s
2 ),

giving us again the desired square-root speedup.
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4.2 Scenario B.2: Attacking a Constant Fraction of all Users

Finally, we want to generalize the techniques from the previous Section 4.1 to
large-scale adversaries that try to recover a constant fraction c of all users. As
an illustrating example, we use c = 10 % respectively c = 50 % of the users.
In a nutshell, in both the classical and quantum setting an attacker recovers
those users that use the k weakest passwords pwd1, . . . , pwdk with probabili-
ties p1, . . . , pk. We set k such that we obtain the desired c-fraction of all users.
Using Equation (1) and Lemma 1 we obtain

k∑
i=1

pi =
Hs(k)

Hs(N)
≈
(
k

N

)1−s
!
= c,

where ≈ suppresses an (1 + o(1))-factor. This means we can solve the above
relation in k by setting

k = c
1

1−sN. (7)

Classical. Consider an attacker that in a first pass tries on all |U | users password
pwd1, thereby recovering p1|U | users. In a second pass, the attacker tries on all
remaining |U |−p1|U | users pwd2, recovering p2|U | users, etc. The attacker stops
on identifying at least c|U | many user passwords.

The amount of hash function evaluations per pass is clearly upper bounded
by |U |, and lower bounded by (1 − c)|U | = Ω(|U |). Thus, the attacker recovers

c|U | passwords in total time k ·Θ(|U |) = Θ(c
1

1−sN |U |). This gives us an average
cost per password of

C =
Θ(c

1
1−sN |U |)
c|U |

= Θ
(
c

s
1−sN

)
. (8)

Let us briefly ignore the small constant hidden in the Θ-notion. For the
uniform distribution with s = 0, the average cost per password is N , as one
would expect. For the typical value s = 3

4 , we obtain the average cost c3N . This
means that ZipfN, 34 gives us a speedup of factor c−3 per compromised password.
Thus, for c = 0.5 we obtain a speedup of 8, and for c = 0.1 we even obtain a
speedup factor of 1000 over the uniform distribution.

Quantum. From Section 4.1 we know that we can quantumly recover all pi|U |
users with password pwd i in time O(pi|U | ·

√
|U |
pi|U | ) = O(

√
pi|U |). Hence, for all

k passwords pwd1, . . . , pwdk we need a total time of

O

(
k∑
i=1

√
pi|U |

)
= O

(
1

Hs(N)

k∑
i=1

i−
s
2 |U |

)
= O

(
N

s−1
2 · k1− s

2 · |U |
)

= O
(
N

s−1
2 · (c

1
1−sN)1−

s
2 · |U |

)
= O

(
c1+

s
2(1−s)N

1
2 · |U |

)
.
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Since we recover c|U | passwords, this implies an average cost per password of

O
(√

c
s

1−sN
)
,

i. e., the square-root of the classical cost from Equation (8).

5 Real-World Impact

Let us now check the accuracy of our theoretical predictions for the Zipf dis-
tribution from Sections 3 and 4, when applied to a real-world password leak
distribution DPw. As described in Section 2.2, we take the LinkedIn database
for this purpose because it is a good example for a medium-strong real-world
distribution.
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Fig. 2: The best approximation of the LinkedIn password leak by a Zipf dis-
tribution (s = 0.777). The dotted lines correspond to a fraction of 10 %, 25 %,
50 %, and 75 % of all users.

Notice that we only take the distribution from LinkedIn, see also Figure 2,
but otherwise stay in our attack model with salted hashes (which is not the case
for the LinkedIn dataset).

Scenario A: Fixed User Attack. Table 2 provides an overview of our results
of the real-world Scenario A. We see that ZipfN,0.777 quite accurately approx-
imates the number of required hash evaluations for the real-world distribution
DPw – within a factor of 1.3 classically and 1.15 ≈

√
1.3 quantumly.
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Table 2: Scenario A: Fixed User Attack. Required hash evaluations for finding a
fixed user’s password (using the approaches of Section 3 and Grover with c = 1).

Distribution Required Hash Evaluations

Classical Quantum

Uniform ∼ ZipfN,0 30 000 000 7 750
ZipfN,0.777 11 100 000 5 560

LinkedIn DPw 14 600 000 6 430

Compared to a quantum attacker for the uniform distribution (ZipfN,0), our
new quantum attacker with knowledge of the human-chosen password distribu-
tion (DPw) only requires 83 % of the hash evaluations.

It is also worth stressing the absolute numbers for DPw. While the classical
attacker needs almost 15 million hash evaluations, the quantum attacker succeeds
with roughly 6400 hash evaluations.

Table 3: Attack Scenario B: Large-Scale Attack. Required number of hash eval-
uations per user for compromising a constant fraction of all users (using the
approaches of Section 4 and Grover with c = 1).

Setting Distribution Required Hash Evaluations per User
10% 25% 50% 75% 100%

Classical
Uniform ∼ ZipfN,0 57 100 000 52 600 000 45 100 000 37 500 000 30 000 000

ZipfN,0.777 33 300 473 000 3 430 000 8 800 000 11 100 000
LinkedIn DPw 38 700 482 000 6 820 000 14 300 000 14 600 000

Quantum
Uniform ∼ ZipfN,0 7 750 7 750 7 750 7 750 7 750

ZipfN,0.777 158 613 1 880 3 710 6 030
LinkedIn DPw 181 622 2 520 4 640 6 380

Scenario B: Large-Scale Attack. Table 3 provides an overview of our results
for large-scale attackers, when compromising a total user fraction of 10 %, 25 %,
50 %, 75 %, and 100 %.

The values predicted by the ZipfN,0.777 distribution differ only by a factor
of at most 2 from the values for the LinkedIn distribution DPw, again validating
the accuracy of Zipf.

Notice that in comparison to Scenario A, the reduction of the absolute num-
bers through the quantum square-root speedup is even more significant in this
large-scale scenario. Within the weakest 10 % of the users, we require only about
180 hash evaluations per user on average. When attacking 50 % of the users, we
still require just 2500 evaluations per user. Only if we address the full database,
the average grows to 6400, matching the analysis from Scenario A.
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Let us put the 10 % weakest user scenario into perspective. Assume that,
both classically and quantumly, a hash evaluation takes about 1 second [3].
Then quantumly we would require only 180 seconds, i.e. 3 minutes, whereas a
classical attacker would need, on average, about 10 hours per user.

6 Discussion

In light of our new results for the quantum setting, we now discuss recommen-
dations for increasing password security in a post-quantum world.

6.1 Password Strength

A square-root speedup seems moderate from a cryptographic perspective and
merely means doubling the cryptographic keys’ length to achieve the same se-
curity level. However, from a user’s perspective, this is much more dramatic. To
bring this into perspective, let us consider an 8 character password randomly
chosen from the alphabet of all 95 printable ASCII characters (lowercase, up-
percase, digits, symbols) as the minimal level of security. If we want to achieve
the same security in the quantum setting, users would need to remember 16
instead of 8 characters due to the square-root speedup-up from Grover’s algo-
rithm. While assigning random passwords to users is not recommendable from a
usability perspective, studies showed that users are potentially able to remember
random 8 character passwords [28,52,54]. Increasing this to 16 random charac-
ters crosses a threshold where we cannot expect users to be able to memorize
such a password. This is the situation for randomly chosen passwords; let us now
focus on human password choice.

As described earlier, users struggle and often fail to create secure passwords,
resulting in a highly skewed distribution. This worsens the situation because
we demonstrated in Section 5 that an attacker with knowledge of the password
distribution is much more effective in guessing the passwords. Hence, if we want
to achieve the security level as described above, users would need to increase
the length of their password beyond 16 characters. While increasing the pass-
word length is recommended by current best practice policies, among others,
NIST [24], they do not require more than 16 characters. This limit ensures that
the created passwords are not only secure but also memorable [41,42,44]. Hence,
we argue that for both random and user-chosen passwords, we are going to face
the problem that we as humans simply can no longer memorize the passwords
for all our accounts.

If we insist on solving the problem by increasing the password length, this
seems only possible with password managers. Using them is already recom-
mended nowadays, but their advantage of generating and storing a long, random
string for each and every account becomes even more apparent in the quantum
setting. Nevertheless, considering their low adoption rates and the goal in mind
not to burden users, it is important to look at alternative solutions.
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6.2 Password Hash Functions

So far, our cost measure used the number of hash function evaluations but ig-
nored their individual run times. We did this to provide results independently
from actual implementations. Still, for recommendations that tend to increase
security, we remark on the importance of choosing suitable and future-proof
password hashing functions. Currently widely deployed hash functions such as
bcrypt, PBKDF2, or iterated versions of SHA-256 and SHA-512 [9,22], are based
on the idea that the computing power of an adversary is limited. This also holds
for attackers in the quantum setting.

Currently, the biggest limitations of quantum computers are the number of
qubits that can be implemented as well as the time span they can keep their en-
tangled states, i. e., their information. As of June 2021, the technology scales up
to around 65 qubits [11], with predictions of multiple hundred in the foreseeable
future. Thus, a short-term solution could be the use of an unusually long salt
that does not add complexity but exploits the shortage of available qubits in a
quantum computer. However, a far better approach is memory-hard password
hashes [3,5], which require large amounts of memory to be efficiently computed.
While memory-hard password hashes were originally intended to counter the
massive computing power of ASICs, FPGAs, and GPUs, we believe that they
are also effective in countering quantum computer-based attacks. Still, further
research is necessary to focus on the quantum-hardness of memory-hard pass-
word hash functions.

6.3 Encrypted Passwords and Secret Salts

As an additional layer of protection NIST [24] recommends that service operators
should “perform an additional iteration of a KDF using a salt value that is secret
and known only to the verifier.” This secret salt, sometimes also called pepper,
needs to be stored separately from the password hashes and should ideally re-
side in a hardware security module (HSM) or similar protected device. Likewise,
passwords could also be encrypted using a quantum-resistant authenticated en-
cryption scheme like NTRU [27]. In both cases, the attacker would need to obtain
or attack (using Grover’s algorithm) the secret salt/encryption key first. Thus,
these protection mechanisms are only applicable to scenarios where a remote
device or rate-limited hardware component like a trusted platform module could
be utilized to store the required high entropy key material.

In cases where an HSM is not available, one could use a different notion of
a secret salt in the form of a random value that is not stored but needs to be
rediscovered every time it is needed [30]. However, since the server itself has to
brute-force this value for every authentication attempt, it has to be chosen from
a smaller set than a stored salt. Hence, this countermeasure is only effective
against a large-scale attacker that targets multiple hashes because the slowdown
becomes significant if the individual but negligible brute-force attempts add up.
Finally, a randomly chosen salt only gives a probabilistic guarantee, whereas
iterated hash functions, as described in Section 6.2, ensure a fixed slowdown.
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7 Conclusion

Motivated by the recent advancements in the field of quantum computers, we
analyzed the potential impact of quantum computing on securely stored human-
chosen passwords. We showed how a quantum computer-equipped attacker can
take advantage of the bias in real-world password distributions and still gains a
square-root speedup in the quantum world. We validated our theoretical Zipf
modeling with a real-world distribution from LinkedIn. Our quantum speedup
on real-world data leads to an already small number of 6400 hash evaluations
for attacking a fixed user (Scenario A) and to a frightening number of less than
200 hash evaluations per user among the 10 % users with weakest passwords
(Scenario B). Our results underline the necessity of new password protection
mechanisms in a quantum world.
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