
Faster Final Exponentiation on the KSS18 Curve

Shiping Cai1, Zhi Hu2, and�Chang-An Zhao1,3

1 School of Mathematics, Sun Yat-sen University, Guangzhou 510275, P.R. China
E-mail: zhaochan3@mail.sysu.edu.cn

2 School of Mathematics and Statistics, Central South University, P.R. China
3 Guangdong Key Laboratory of Information Security, Guangzhou 510006, P.R. China

Abstract. The final exponentiation affects the efficiency of pairing computations
especially on pairing-friendly curves with high embedding degree. We propose
an efficient method for computing the hard part of the final exponentiation on
the KSS18 curve at 192-bit security level. Implementations indicate that the
computation of the final exponentiation can be 8.74% faster than the previously
fastest result.

Keywords: Final exponentiation, pairings, KSS curves, high security levels

1 Introduction

Pairings play a crucial role in the designs of various cryptographic schemes [9]. The
efficiency of these cryptographic schemes heavily depends on the speed of pairing
computations. The implementation of pairings consists of two parts: the Miller loop
and the final exponentiation. Moreover, as the embedding degree gets large, the final
exponentiation becomes very costly compared with the Miller loop. Therefore, it is very
meaningful to speed up the final exponentiation.

In order to compute the final exponentiation efficiently, there are several methods
such as the vectorial addition (-subtraction) chain [10, 5], the latticed-based method [4],
and the method based on cyclotomic polynomials [12, 6] which is beneficial for the BLS
family. The method via cyclotomic polynomials is the latest work focus on the final
exponentiation that achieves a good performance on the BLS family. It simplifies the
process of computations at the final exponentiation step. However, it does not work well
on the KSS18 curve which is considered as one of the most efficient curve at 192-bit
security level [3, 2], and this work aims to speed up the final exponentiation on this curve.
Until now, the state-of-the-art method for the computation of the final exponentiation on
the KSS18 curve is the lattice-based method combined with a short vectorial addition-
subtraction chain, which requires 7 exponentiations by G, 53 multiplications, 6 squarings
and 35 Frobenius operations.

Our Contribution. For accelerating the computation of the final exponentiation on
the KSS18 curve, this work uses a trick to save several multiplications compared with
the previous fastest method [5]. Besides, the comparison between our new method and
the current state-of-the-art is implemented on a 64-bit personal computer, which shows
that the computation of the final exponentiation can be 8.74% faster than the previous
one.

2 Shiping Cai, Zhi Hu, and�Chang-An Zhao

Organization. An overview of the final exponentiation is introduced in Section 2.
In Section 3, we propose a new trick for speeding up the final exponentiation on the
KSS18 curve. Section 4 gives the implementation results and concludes this work.

2 Preliminaries

Let �/F? be an elliptic curve, where ? is a prime. Choose a large prime A such that
A |#� (F?) and gcd(A, ?) = 1. Let : be the embedding degree of � (F?) such that : is
the smallest integer satisfies A |?: − 1 and A2 - ?: − 1. Let c? denote the Frobenius
endomorphism over F? . We use � [A] to denote the A−torsion group on � . Here, we
choose to compute the Optimal Ate pairing [13, 11]. Therefore, we define two subgroups
G1 and G2 below:

G1= � [A]
⋂

 4A (c? − [1]), G2= � [A]
⋂

 4A (c? − [?]).

We use `A to denote the subgroup of A−th roots of unity in F∗
?: .

Choose % ∈ G1 and & ∈ G2. Assume that the length of the Miller loop is <. The
value of the Miller function 5<,& (%) is computed at the Miller loop step. Then at the
final exponentiation step, we raise 5<,& (%) to the power of 4 = (?: − 1)/A for obtaining
a unique value in `A . Here, we abbreviate 5<,& (%) to 5 .

The final exponentiation is generally divided into the easy part and the hard part
[10], which means that the exponent 4 can be written as

4 =
?: − 1
A

=
?: − 1
q: (?)

· q: (?)
A

.

The first part involves mapping 5 to 5 ′ = 5
?:−1
q: (?) ∈ Gq: (?) , where Gq: (?) denotes the

=−th cyclotomic subgroup of F∗
?: . The hard part involves raising 5 ′ to the power of

(q: (?))/A . The computation of the easy part is relatively inexpensive since it only takes
a fewmultiplications, cheap ?−power Frobenius operations and an inversion. Compared
with the easy part, the hard part is far more costly, which we need to calculate 5 ′

q: (?)
A .

On the construction of pairing-friendly curves, ?(G), C (G), A (G) are polynomials in
Q[G], where G ∈ Z and C denotes the trace of c? . One generally needs to choose a

fixed integer G0 such that both ?(G0) and A (G0) are prime. Let 3 =
q: (?)
A

. We usually
represent the polynomial 3 (G) in base ?(G). Then, 5 3 can be efficiently computed by
some inexpensive cost of the Frobenius operationswith a vectorial addition (-subtraction)
chain [10, 5]. The shortest vectorial addition chain can guide implementers to compute
the final exponentiation quickly. Another method to find the shortest vectorial addition
chain is called as the latticed-based method [4]. This method computes 5 3′ instead
of 5 3 , where 3 ′ = < · 3 such that A - 3 ′, which makes the hard part be cheaper
than the previous one. Hence, there exists a matrix " which contains some linear
combinations of polynomials 3 (G), G3 (G), · · · , Gdeg(?)−13 (G). The application of the
LLL algorithm [8] for " can help implementers get an integer basis of " which has
small entries. In addition, there is a method we use to compute the hard part of the final

Faster Final Exponentiation on the KSS18 Curve 3

exponentiation via cyclotomic polynomials [12]. Recently, Hayashida et al. [6] defined
homogeneous cyclotomic polynomials which avoid expanding 3 (G) by ?(G) and achieve
a good performance on the BLS families. Unfortunately, this method can not contribute
to the final exponentiation on the KSS18 curve.

3 Faster Final Exponentiation for the KSS18 Curve

In thiswork, the embedding degree : = 18, thenwe only need to calculate 5 (?9−1)(?3+1)→ 5

in the easy part due to q18 (?) = ?6 − ?3 + 1 [7], which requires a multiplication, an
inversion, a conjugation and three ?3−power Frobenius operations. The state-of-the-art
method for computing the hard part of the final exponentiation on the KSS18 curve
is proposed by Juan E. et al. [5], which requires 7 exponentiations by G, 35 Frobenius
operations, 53 multiplications and 6 squarings. Our method is based on their work.

Note that i(18) = 6 and deg(?) = 8. After the application of the latticed-based
method, we have

3 ′(G) =
5∑
8=0

_8 (G)?(G)8 ,

where _8 (G) =
∑7

9=0 _8 9G
8 , _8 9 ∈ Z. We use i(·) to denote the Euler Totient function.

The explicit formulae of _8 (G) are shown as follows.

_0 = 147G + 108G2 + 21G3 + 7G4 + 5G5 + G6,
_1 = −686 − 505G − 98G2 − 35G3 − 25G4 − 5G5,
_2 = 6 − 133G2 − 98G3 − 19G4 − 7G5 − 5G6 − G7,
_3 = 245G + 181G2 + 35G3 + 14G4 + 10G5 + 2G6,
_4 = −343 − 254G − 49G2 − 21G3 − 15G4 − 3G5,
_5 = 3 + 7G2 + 5G3 + G4.

Instead of finding the shortest vectorial addition-subtraction chain, we explore the rela-
tionship among the polynomials _8 (G).

Firstly, We start with the polynomial _6 (G) = G2+5G+7. Then the other polynomials
_8 (G) (8 = 0, 1,· · ·, 5) can be given below.

_5 = G
2_6 + 3,

_4 = −3G · _5 − 49_6,
_3 = 2G2 · _5 + 35G · _6,
_1 = 2_4 + G · _5,
_0 = 2_3 + G · _4,
_2 = −G · _0 + 2_5.

4 Shiping Cai, Zhi Hu, and�Chang-An Zhao

Hence, we require 37 factors to compute the final exponentiation, including

5 2, 5 3, 5 5, 5 7, 5 G→ 5 G+5→ 5 G
2+5G→ 5 G

2+5G+7= 5 _6 ,

5 2_6→ 5 3_6→ 5 6_6→ 5 7_6 , 5 14_6 ,

5 G_6 , 5 G
2_6 , 5 G

2_6+3= 5 _5 , 5 G_5 , 5 G
2_5 ,

5 2G_6→ 5 3G_6→ 5 6G_6→ 5 7G_6 , 5 14G_6 , 5 21G_6 ,

5 G_5+14_6→ 5 2(G_5+14_6)→ 5 3(G_5+14_6) ,

5
3G_5+49_6

= 5 _4 , 5 2_4 , 5 2_4+G_5 = 5 _1 ,

5 G
2_5+14G_6 , 5 2(G

2_5+14G_6) , 5 G
2_5+35G_6 = 5 _3 ,

5 G
2_5+21G_6 = 5 _0 , 5

G_0
, 5 2_5 , 5 −G_0+2_5 = 5 _2 .

Here, We denote the conjugation of 5 by 5 . Finally, the value of 5 3′ can be computed
by

5 _0 · (5 _1) ? · (5 _2 · (5 _3) ?) ?2 · (5 _4 · (5 _5) ?) ?4 .
The detailed algorithm is shown in Algorithm 1.

Algorithm 1 Faster Final Exponentiation for KSS Curve with : = 18
INPUT: 5 ∈ GΦ18 (?) , G ∈ Z

OUTPUT: 5
Φ: (?)

A ∈ F?:

1: C0 = 5 G ;
2: C1 = 5 2;
3: C4 = 5 · C1;
4: C2 = C1 · C4;
5: C1 = C1 · C2;
6: C2 = (C0 · C2)G ;
7: 2 = C1 · C2;
8: C0 = 27;
9: C1 = C20 ;
10: C3 = 2G ;
11: 2 = C3G · C4;
12: C2 = 2G ;
13: C4 = C2;
14: C1 = (C4 · C1)3 · C0;

15: C2 = C2G ;
16: C0 = C1;
17: C1 = (C02 · C4)? ;
18: C4 = C1 · (2? · C0)?

4 ;
19: C3 = C3

7;
20: C1 = C32;
21: C0 = (C1 · C2)2 · C3;
22: C3 = C1 · C3;
23: C1 = C2 · C3;
24: C4 = C1 · C4;
25: C1 = C1G ;
26: C2 = 22;
27: C1 = C1 · C2;
28: C0 = (C0 ? · C1)?

2 ;
29: 2 = C4 · C0;
30: return 2

4 Comparison and Conclusion

We draw comparisons between the original state-of-the-art method [5] and the new
method for computing the final exponentiation on the KSS18 curve. Both methods are

Faster Final Exponentiation on the KSS18 Curve 5

implemented by the C programming language which compiled with the GCC version
7.4.0. The code is tested within the RELIC library [1], and we use the Intel Core
i7-8550U CPU processor at 1.80 GHz that runs on a 64-bit Linux.

The related parameters of the 676-bit KSS18 curve can be found in [3]. We neglect
the inversions in Gq18 (?) since it only takes 9 negations. To get a steady result, the value
of timings are the average of 104 runs. Here " , � and � are the cost of a multiplication,
an inversion and a conjugation in F?18 , respectively. The cost of the ?- power Frobenius
operation and an exponentiation by G is denoted by � and � , respectively. Note that in
the subgroup Gq18 (?) , the squaring operation, which we denote by (̃, is cheaper than a
squaring in F?18 . We remark from the results in Table 1 that at 192-bit security level,

Table 1. Operations and timings comparison for the final exponentiation on the KSS18 curve

Cost Method
Method in [5] This work

Operations �+ "+ 9�+ �
7�+ 53"+ 6(̃+ 35�

�+ "+ 9�+ �
7�+ 24"+ 11(̃+ 9�

Clock Cycle (×103) 12, 982 11, 849
Time (ms) 6.52 5.95

our method is 8.74% faster than the previous record for the computation of the final
exponentiation on the KSS18 curve.

Acknowledgments

The work of Chang-An Zhao is partially supported by theMajor Program of Guangdong
Basic and Applied Research under Grant No. 2019B030302008 and NSFC under Grant
No. 61972428. The work of Zhi Hu is supported by the National Natural Science
Foundation ofChina (GrantNo. 61972420,No. 61602526) andHunanProvincialNatural
Science Foundation of China (2020JJ3050, 2019JJ50827).

References
1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.

https://github.com/relic-toolkit/relic
2. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodríguez-Henríquez, F.:

Implementing pairings at the 192-bit security level. In: Abdalla, M., Lange, T. (eds.) Pairing-
Based Cryptography – Pairing 2012. pp. 177–195. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2013)

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal of Cryp-
tology 32(1), 1–39 (2018)

4. Fuentes-Castañeda, L., Knapp, E., Rodríguez-Henríquez, F.: Faster hashing toG2. In:Miri, A.,
Vaudenay, S. (eds.) SelectedAreas inCryptography. pp. 412–430. Springer BerlinHeidelberg,
Berlin, Heidelberg (2012)

6 Shiping Cai, Zhi Hu, and�Chang-An Zhao

5. Guzmán-Trampe, J.E., Cruz-Cortés, N., Dominguez Perez, L.J., Ortiz-Arroyo, D., Rodríguez-
Henríquez, F.: Low-cost addition–subtraction sequences for the final exponentiation in pair-
ings. Finite Fields and Their Applications 29, 1–17 (2014)

6. Hayashida, D., Hayasaka, K., Teruya, T.: Efficient final exponentiation via cyclotomic struc-
ture for pairings over families of elliptic curves. Cryptology ePrint Archive, Report 2020/875
(2020), https://eprint.iacr.org/2020/875

7. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P.
(ed.) Cryptography and Coding. pp. 13–36. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005)

8. Lenstra, H.W. jr., L.A.L.L.: Factoring polynomials with rational coefficients. Mathematische
Annalen 261, 515–534 (1982)

9. Paterson, K.G.: Cryptography from Pairings - Advances in Elliptic Curve Cryptography.
Cambridge University Press (2005)

10. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final
exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H., Waters,
B. (eds.) Pairing-Based Cryptography – Pairing 2009. pp. 78–88. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

11. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory 56(1), 455–461
(2010)

12. Zhang, X., Lin, D.: Analysis of optimumpairing products at high security levels. In: Galbraith,
S., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012. pp. 412–430. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

13. Zhao, C.A., Zhang, F.G., Huang, J.W.: All pairings are in a group. IEICE Transactions
91-A(10), 3084–3087 (2008)

