
Power analysis attack on Kyber∗

Alexandre Karlov1 and Natacha Linard de Guertechin1

1Cysec SA, EPFL Innovation Park, Bâtiment D, 1015 Lausanne,
CH

Abstract

This paper describes a practical side-channel power analysis on CRYSTALS-
Kyber key-encapsulation mechanism. In particular, we analyse the poly-
nomial multiplication in the decapsulation phase to recover the secret key
in a semi-static setting. The power analysis attack was performed against
the KYBER512 implementation from pqm4 [1] running on STM32F3 M4-
cortex CPU.

Keywords: Kyber, lattice-based cryptography, side-channel attacks, correla-
tion power analysis

1 Introduction

The arrival of quantum computers will induce a problem for today’s cryptog-
raphy. Provided a quantum computer, Shor’s algorithm [2] solves the problems
of discrete logarithm, elliptic curve discrete logarithm and factorization of large
numbers on which the RSA relies in polynomial-time. In order to respond to
quantum computers, the National Institute of Standards and Technology (NIST)
launched in 2016 the Post-Quantum Cryptography Standardization program to
add post-quantum cryptography to their standards. Mid 2020, the final can-
didates were announced, including CRYSTALS-Kyber [3], a lattice-based key-
encapsulation mechanism (KEM).

Since the late 90s, lattice-based cryptography has triggered a lot of interest.
In 1997, Ajtai and Dwork [4] proposed a first lattice-based encryption scheme.
Regev [5] then improved this scheme by introducing the notion of Learning With
Errors (LWE) problem [6]. The LWE problem is the following: Given a matrix
A ∈ Rm×nq and As + e where s ∈ Rnq is a secret vector and e is a random error
vector, find s. This problem is assumed to be hard. In this paper, we focus on
a lattice-based cryptography scheme named CRYSTALS-Kyber which is on the

∗Released on September 14, 2021

1

finalists list of the NIST Standardization process. Kyber is a CCA-secure KEM
based on the hardness of module-LWE which was built from a CPA-secure PKE
scheme by applying the Fujisaki-Okamoto transform [7].

Despite the fact that post-quantum cryptosystems are resistant to theoretical at-
tacks, they will be implemented in physical devices such as microcontrollers and
will be subject to similar physical attacks as current cryptographic implementa-
tions, in particular side-channel attacks. Through side channel information such
as timing, power consumption or electromagnetic radiation, an attacker can re-
cover secret information if the cryptographic implementation does not take this
kind of attacks into consideration and does not implement any countermeasure.
In this paper, we exploit the information about power consumption to recover
a secret key —a technique known as power analysis.

1.1 Contribution

In this work, we focus on the decapsulation phase of Kyber. We introduce a
correlation power analysis [8] of the M4-Cortex implementation in the decapsu-
lation phase of Kyber to recover the secret key.

1.2 Related works

Lattice-based cryptography is quantum resistant, however some implementa-
tions have already be shown to be vulnerable to side-channel attacks.

A power analysis on the encapsulation phase using a single trace is shown in
[9]. The authors attack the message encoding in lattice-based KEMs to retrieve
the message and then to obtain an ephemeral session key using the k-mean
algorithms.

2 Preliminaries

Bytes: The notation B denotes the set of bytes. Then the set of byte array of
length k (resp. arbitrary length) is denoted by Bk (resp. by B?)

Polynomial rings: The ring Z[X]/(Xn + 1) is denoted by R and the ring
Zq[X]/(Xn + 1) by Rq

Distribution: We denote the sampling x according to the distribution D by
x← D.
We define Bη as follows: sample (a1, ..., aη, b1, ..., bη) ← {0, 1}2η and output∑η
i=1(ai − bi).

Compression and Decompression [3]: The function Compressq(x, d) takes
as input an integer x ∈ Zq and outputs an integer in Z2d−1 where d < dlog2(q)c.

2

The function Decompressq is defined such that

x′ = Decompressq(Compressq(x, d)), d)

is an element close to x.

Hash function: We defined two hash functions H : B? → B32 and G : B? →
B32 × B32, and a key-derivation function KDF : B? → B?

3 Kyber

Kyber is a CCA-secure KEM, based on the hardness of solving the learning-
with-errors (LWE) problem over module lattices [10]. Kyber is built from an
IND-CPA secure public-key encryption scheme, called Kyber.CPAPKE by apply-
ing the Fujisaki-Okamoto transform [7].

Kyber can be used in a semi static setting. By convention the two participants
will be Alice and Bob.

Semi-static setting

In a semi-static setting, Bob generates a fixed private key skB and a correspond-
ing public key pkB which is sent to Alice. Alice then encapsulates her private
key skA, computes the shared secret K and sends to Bob her encapsulated key
and her public key. Finally, Bob decapsulates Alice’s private key in order to be
able to compute the shared secret K.

If Alice and Bob want to establish additional shared secrets K, Bob keeps his
pair of keys (skB , pkB) and Alice generates a new pair of keys each time. This
means that Bob’s private key is fixed from one execution to another. This mode
of operation is desirable because a fixed key allows a faster key exchange and
less dependency on randomness —two desirable features, especially for embed-
ded devices.

If an adversary can recover Bob’s private key, then the shared secret for all com-
munication can be recovered, performing thus a total break of confidentiality.

The goal of this paper is to show an attack to recover the secret key of Bob in
a semi-static setting.

3.1 Kyber.CPAPKE

Key Generation:

3

During the key generation, a matrix A is generated with random elements. Two
vectors s, e with small elements are generated according to the distributions Bη1
and Bη2 . The secret key is defined to be the vector s and the public key is the
pair (A, t = As + e).

Algorithm 1: Kyber.CPAPKE.KeyGen() from [3]

Output: Secret key sk
Output: Public key pk

1 Generate matrix A ∈ Rk×kq

2 Sample s ∈ Rkq from Bη1
3 Sample e ∈ Rkq from Bη2
4 pk := As + e
5 sk := s

Encryption:

Three random vectors r, e1, e2 are generated with small elements. The out-
put of the encryption algorithm is the pair (u, v) where u = AT r + e1 and
v = tT r + e2 + m.

Algorithm 2: Kyber.CPAPKE.Enc(pk,m, r) from [3]

Input: Public key pk
Input: Message m
Input: Random coins r
Output: Ciphertext c

1 Generate matrix A ∈ Rk×kq

2 Sample r ∈ Rkq from Bη1
3 Sample e1 ∈ Rkq from Bη2
4 Sample e2 ∈ Rq from Bη2
5 u := AT r + e1
6 v. = tT r + e2 + Decompressq(m, 1)

7 c := (Compressq(u, du)||Compressq(v, dv))

Decryption:

To decrypt the ciphertext c, the message m is equal to v − us. Indeed,

v − us = tT r + e2 + m− sT (AT r + e1)

= (As + e)T r + e2 + m− sT (AT r + e1)

= sTAT r + er + e2 + m− sTAT r − sT e1

= m + e′

4

where e′ is a negligible error.

Algorithm 3: Kyber.CPAPKE.Dec(sk, c) from [3]

Input: Secret key sk
Input: Ciphertext c
Output: Message m

1 u = Decompressq(c1, du)

2 v = Decompressq(c2, dv)

3 m = indcpa dec(sk,m) // m = v − skTu

4 m = Compressq(m, 1)

3.2 Kyber.CCAKEM

Kyber.CCAKEM is constructed from Kyber.CPAPKE using the Fujisaki-Okamoto
transform.

Key Generation:

First, a random vector z is generated which will serve to create a random shared
key K if the second participant tried to cheat. Then the secret key sk and the
public key pk is generated by Kyber.CPAPKE.KeyGen().

Algorithm 4: Kyber.CCAKEM.KeyGen() from [3]

Output: Secret key sk
Output: Public key pk

1 z ← B32
2 (pk, sk′) :=Kyber.CPAPKE.KeyGen()

3 sk := (sk′||pk||H(pk)||z)

Key Encapsulation:

First, a random message is generated and encrypted using Kyber.CPAPKE.Enc(pk).
The shared secret is computed by KDF (K||H(c)).

Algorithm 5: Kyber.CCAKEM.Enc(pk) from [3]

Input: Public key pk
Output: Ciphertext c
Output: Shared key K

1 m← B32
2 m← H(m)

3 (K, r) := G(m||H(pk))
4 c := Kyber.CPAPKE.Enc(pk,m, r)

5 K := KDF (K||H(c))

5

Key Decapsulation:

The ciphertext is decrypted using Kyber.CPAPKE.Dec(s, c). Then the ciphertext
is recomputed to verify if the second participant tried to cheat or not. Finally,
the shared secret is computed depending on the fact whether the ciphertext is
legitimate or not.

After receiving the ciphertext c = (u||v), the message is extracted by m′ =
v− sTu, then the secret r′ is computed. The ciphertext is checked, i.e., if c′ = c

then the shared secret K = KDF (K
′||H(c)), otherwise K = KDF (z||H(c)).

Algorithm 6: Kyber.CCAKEM.Dec(sk, c) from [3]

Input: Secret key sk
Input: Ciphertext c
Output: Shared key K

1 pk := sk + 12kn/8
2 h := sk + 24kn/8 + 32
3 z := sk + 24kn/8 + 64
4 m′ :=Kyber.CPAPKE.Dec(s, c)

5 (K ′, r′) := G(m′||h)
6 c′ =Kyber.CPAPKE.Enc(pk,m′, r′)
7 if c = c′ then

8 return K := KDF (K
′||H(c))

9 else
10 return K := KDF (z||H(c))

3.3 Correlation power analysis on Kyber

Attack on Kyber

The goal of the attack is to recover the secret key during the step 3 of the key
decapsulation, specifically at the line 1 in Kyber.CPAPKE.Dec(sk, c), which is
a multiplication of two polynomials in the NTT domain. The inputs of this
function are the secret polynomial sk and a part of ciphertext c. Bob generates
a fixed pair (skB , pkB) of keys using the Algorithm 4. Then, using the Algo-
rithm 5 Alice generates a random key, computes a ciphertext and sends it to Bob.
Bob decapsulates the ciphertext with his fixed secret key using the Algorithm 6.

In a semi-static setting, Bob computes the multiplication of the secret fixed
polynomial with different ciphertexts in line 1 of Algorithm 3. Our goal is to
correlate the power traces of the polynomial multiplication that involves the
secret key with the Hamming weight of the different output of this operation

6

with all possible keys.

Correlation power analysis

A correlation power analysis (CPA) [11] is a side channel power analysis attack
based on the statistical correlation between outputs of a function and the cor-
responding power traces.

In this paper, we concentrate on a vertical CPA. A vertical CPA focuses on a
fixed secret by collecting the power traces that correspond to the execution of
an operation with the fixed secret and several different values.

In a power analysis attack, the attacker can measure the power consumption of
the target. In this case the target device computes the decapsulation algorithm
in a black-box way. The adversary listens to the communications between Bob
and Alice, i.e., the attacker has the public parameters, Bob’s public key and
Alice’s ciphertext.

The attacker then correlates the power traces and the potential outputs of the
polynomial multiplication with different possibles keys to see which one corre-
sponds the best using the Pearson’s Correlation Coefficient (PCC).

The steps of the CPA attack can be summarized as:

1. Find an operation in the attacked algorithm that involves a secret value
and a known (public) value.

2. Collect n power samples of this operation with different known inputs.

3. Take a guess on the secret values and compute the intermediate values for
all the known inputs.

4. Correlate the Hamming weight of the intermediate values and the power
traces.

5. Repeat steps 3-4 for all the possible secret values, the secret value with
the highest correlation might be the good candidate value.

CPA on Kyber

In this section, we explain our CPA on Kyber. In the decapsulation Algorithm 6,
the multiplication between a part of the secret key and a part of ciphertext are
done k · n times, independently. The goal of the CPA on KYBER is to recover
Bob secret key. The operation basemul in Algorithm 9 is the lowest operation
that involves a part of the key and a part of the known ciphertext. The oper-
ation basemul is used for the multiplication of polynomials. In our attack on
Kyber, we measure the power consumption of the operation basemul for each

7

iteration. We can remark that each basemul is independent and can be com-
puted separately. Bob’s secret key is partitioned in 2k · n8 bytes parts and each
part will be used in the operation basemul.

We focus on the first basemul operation. For other subsequent operations, the
same idea is applied. The basemul takes as input two arrays of 2x2 bytes and
outputs the multiplication of these two arrays. In a semi-static setting, the at-
tacker intercepts N Alice’s ciphertexts and measures the power consumption for
the basemul operation. Then he computes the results of the basemul with all
the possible parts of the key (i.e., 216 possibilities). The guessed part of the key
with the highest correlation between the Hamming weight of the intermediate
results and the power traces is the one which is kept.

Algorithm 7: indcpa dec(sk, c) from [1]

Input: Secret key sk
Input: Ciphertext c
Output: Message m

1 mp = polynomial multiplication(c[0], sk[0])
// sk is a vector of polynomials, sk[i] is the ith polynomial in sk, same

for c

2 for i = 1 to k do
3 bp = polynomial multiplication(c[i], sk[i])
4 bp = mp + bp

5 v = polynomial decompress(v, c)
6 mp = v −mp
7 m = polynomial tomessage(mp);

Algorithm 8: polynomial multiplication(a, b) from [1]

Input: Secret polynomial a
Input: Polynomial part of the ciphertext b
Output: Polynomial m

1 for i = 1 to n
4 do

2 m[4 · i : 4 · i + 4] =
doublebasemul(b[4 · i : 4 · i + 4], a[4 · i : 4 · i + 4], zetas[i])

Algorithm 9: doublebasemul(a, b) from [1]

Input: Array of 4x2 bytes a
Input: Array of 4x2 bytes b
Input: Constant zeta
Output: Array of 4x2 bytes c

1 c[0 : 2] =basemul(a[0 : 2], b[0 : 2],zeta)
2 c[2 : 4] =basemul(a[2 : 4], b[2 : 4],−zeta)

8

4 Experimental Results

We implemented the key recovery attack on a STM32F3 board as target which
runs an unprotected instance of KYBER512 from the library pqm4 [1].

4.1 Setup

The ChipWhisperer Pro toolkit [12] was used for the attack. The toolkit in-
cludes:

• A STM32F3 board with an ARM Cortex-M4 micro-controller

• The ChipWhisperer-Pro with CW308 UFO target

The implementation used is a KYBER512 implementation adapted to Cortex-M4
from pqm4 [1]. The only modification done is the addition of a trigger before
and after the doublebasemul operations to help the alignement of traces.

Moreover, we attacked Kyber with the lowest security parameter but the attack
works even for the highest security parameter. The only difference between
them is that there are more basemul operations to do.

The leakage model is the leakage in Hamming Weight, which means that the
power consumption of the instructions of the microcontroller is expected to
be proportional to the results of the processed operations. Indeed, the power
consumption is linked to the number of bits updated in a register.

4.2 Traces collections

We recorded 200 power traces of 1000 points with the corresponding inputs for
each doublebasemul.

To collect the traces, the attacker does the following steps:

1. Bob’s pair keys is generated using Algorithm 4 on our personal computer
and Bob’s secret key is sent to the target board.

2. On the computer, Alice generates N ciphertexts using Algorithm 5 and
Bob’s public key.

3. When a ciphertext is sent, the target decaps the ciphertext using the
Algorithm 6 and the oscilloscope collects the power traces of each basemul

in Algorithm 7 operations.

Let T ij denote the ith point of the jth trace and Ti be the vector such that

Ti = [T 1
i , ..., T

200
i]

In our scenario, we used 200 different ciphertexts. But we will see later that the
attack works with less ciphertexts being intercepted.

9

4.3 Attack procedure

We performed a vertical CPA on each basemul operations in 7. Each basemul

operation takes as input 2 × 4 bytes of Bob’s secret key. For each iteration of
the loop, we make a guess for the last 4 bytes, hence 48 possibilities.

In Kyber from pqm4, the function doublebsemul is a function written in as-
sembly which computes the two basemul. It takes as inputs a part of the
key kk′ = k0k1k2k3 k′0k

′
1k
′
2k
′
3 (2 × 4 bytes) and a part of the ciphertext cc′ =

c0c1c2c3 c
′
0c
′
1c
′
2c
′
3 (2×4 bytes), and computes basemul(k, c, zeta) and basemul(k, c,−zeta).

We focus on the computation of basemul(k, c, zeta) which is computed from the
line 25 of doublebasemul asm in Algorithm 1. We want to guess the 4 bytes of
k = k0k1k2k3.
The steps of the attack are the following:

1. Make a guess for k2k3 (216 possibilities) and compute the result rst =
[rst0, ..., rst200] where rsti is the Hamming weight of the operation smultt

on line 25 of doublebasemul using the ith ciphertext.

2. Compute Pearson correlation coefficient between Ti and rst for all i and
keep the biggest value in absolute PCCk2k3 .

3. Repeat step 1-2 for all possibilities of k2k3 and keep a sample S = {k2k3
such that PCCk2k3 > x}. For example, x = 0.6,

4. Fix k2k3 ∈ S, make a guess for k0k1 and compute the result rst′ of pkhtb
for all of the ciphertexts. Then compute Pearson correlation between rst′

and the power traces, keep the largest value in absolute PCCk0k1k2k3 .

5. Redo step 4 for all the k0k1 ∈ S.

6. The part of the key k0k1k2k3 with the largest PCCk0k1k2k3 is the correct
guess.

At the step 3, it may be that the right part of the key does not have the largest
correlation but it is in the largest ones. For example, the Figure 1 shows the
PCC of the first operation using the good part of key (in blue) and in a false
one (in red). Then we will compute the step 4 for those two possibilities. The
Figure 2 shows that the good 2× 4 bytes will have a large correlation (in blue)
but the wrong key will not have this strong correlation even if the correlation
at step 3 was the biggest.

The same procedure can be done to recover the other 4 bytes of the keys used
in doublebasemul as well as all the bytes of Bob’s secret key. On our PC,
the time to recover 2 × 4 bytes is about 30 minutes. The attack takes few
days to recover all the bytes of the key. The inputs of each doublebasemul are
independent. A speedup through parallelization can be done to improve the
complete key recovery. We have managed to recover the secret key in 2 hours
thanks to parallelization.

10

Figure 1: CPA on smultt operation

4.4 Minimal number of required traces

In our case we performed 200 ciphertext captures which was sufficient. The
goal of this section is to find the minimum required number of ciphertexts to
get 100% accurate recovery of the key.um of traces required We focused on first
operations and did the follow steps:

1. Generate N random ciphertexts.

2. Collect the power traces during the first basemul in the decaps phase for
the N ciphertexts.

3. Repeat the steps 1-2 20 times and count how many times the right part
of the key is found.

We take N ∈ {200, 150, 100, 85, 80, 75, 50, 40}.
The graph on Figure 3 shows that if we have less than 80-100 traces, the

11

Figure 2: CPA on pkhtb operation

chances of finding the right part of the key is lower.

5 Countermeasure

One simple and straightforward countermeasure consists in avoiding using Ky-
ber in a semi-static setting. Another countermeasure is to regenerate Bob’s key
every x communication where x < 50.

6 Conclusion

In this paper, we proposed a successful and practical correlation power analysis
attack on KYBER512 implementation from pqm4 to recover the secret key in the
decapsulation phase. With a sufficient number of traces, the attack is > 99%

12

Figure 3: Minimum of traces required

successful and accurate. We recommend to use Kyber only in ephemeral setting
to protect the confidentiality of the secret key. In the future works we may think
of finding other countermeasures or figuring out if it is possible to adapt this
attack to a correlation power analysis using only a single trace.

Acknowledgement

We would like to thank Dr. Andres Upegui from University of Applied Sciences
Western Switzerland, HEPIA for his help, especially in providing the equipment
to permit this attack implementation.

13

7 Appendix information

Listing 1: doublebasemul asm function from [1]

doublebasemul_asm:

push {r4-r11 , lr}

rptr .req r0

aptr .req r1

bptr .req r2

zeta .req r3

poly0 .req r4

poly1 .req r6

poly2 .req r5

poly3 .req r7

q .req r8

qinv .req r8

tmp .req r9

tmp2 .req r10

tmp3 .req r11

movw q, #3329

movt qinv , #3327

ldrd poly0 , poly2 , [aptr], #8

ldrd poly1 , poly3 , [bptr], #8

// basemul(r->coeffs + 4 * i, a->coeffs + 4 * i, b->coeffs + 4 * i, zetas [64 + i]);

smultt tmp , poly0 , poly1

montgomery q, qinv , tmp , tmp2

smultb tmp2 , tmp2 , zeta

smlabb tmp2 , poly0 , poly1 , tmp2

montgomery q, qinv , tmp2 , tmp

// r[0] in upper half of tmp

smuadx tmp2 , poly0 , poly1

montgomery q, qinv , tmp2 , tmp3

// r[1] in upper half of tmp3

pkhtb tmp , tmp3 , tmp , asr #16

str tmp , [rptr], #4

neg zeta , zeta

// basemul(r->coeffs + 4 * i + 2, a->coeffs + 4 * i + 2, b->coeffs + 4 * i + 2, - zetas [64 + i]);

smultt tmp , poly2 , poly3

montgomery q, qinv , tmp , tmp2

smultb tmp2 , tmp2 , zeta

smlabb tmp2 , poly2 , poly3 , tmp2

montgomery q, qinv , tmp2 , tmp

// r[0] in upper half of tmp

smuadx tmp2 , poly2 , poly3

montgomery q, qinv , tmp2 , tmp3

// r[1] in upper half of tmp3

pkhtb tmp , tmp3 , tmp , asr #16

str tmp , [rptr], #4

14

pop {r4-r11 , pc}

15

References

[1] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stof-
felen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[2] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Review, 41(2):303–332,
1999.

[3] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Crystals-Kyber algorithm specifications and supporting
documentation. NIST PQC Round, 2:4, 2017.

[4] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 284–293, 1997.

[5] Oded Regev. New lattice-based cryptographic constructions. Journal of
the ACM (JACM), 51(6):899–942, 2004.

[6] Oded Regev. The learning with errors problem. Invited survey in CCC,
7(30):11, 2010.

[7] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Annual International Cryptology
Conference, pages 537–554. Springer, 1999.

[8] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Annual international cryptology conference, pages 388–397. Springer,
1999.

[9] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Tae-Ho Lee, Jaeseung
Han, Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. Single-trace attacks on
message encoding in lattice-based KEMs. IEEE Access, 8:183175–183191,
2020.

[10] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

[11] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In International workshop on cryptographic
hardware and embedded systems, pages 16–29. Springer, 2004.

[12] NewAE Technology Inc. CHIPWHISPERER — NewAE Technology, 2021.
https://www.newae.com/chipwhisperer.

16

https://github.com/mupq/pqm4
https://www.newae.com/chipwhisperer

	Introduction
	Contribution
	Related works

	Preliminaries
	Kyber
	Kyber.CPAPKE
	Kyber.CCAKEM
	Correlation power analysis on Kyber

	Experimental Results
	Setup
	Traces collections
	Attack procedure
	Minimal number of required traces

	Countermeasure
	Conclusion
	Appendix information

