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Abstract. Group signatures allow group members to sign on behalf of
the group anonymously. They are therefore well suited to storing data in
a way that preserves the users’ privacy, while guaranteeing its authen-
ticity. Garms and Lehmann (PKC’19) introduced a new type of group
signatures that balance privacy with utility by allowing to selectively
link subsets of the group signatures via an oblivious entity, the con-
verter. The conversion takes a batch of group signatures and blindly
transforms signatures originating from the same user into a consistent
representation. Their scheme essentially targets a setting where the en-
tity receiving fully unlinkable signatures and the converted ones is the
same: only pseudonyms but not full signatures are converted, and the
input to the converter is assumed to be well-formed. Thus, the converted
outputs are merely linkable pseudonyms but no longer signatures.
In this work we extend and strengthen such convertibly linkable group
signatures. Conversion can now be triggered by malicious entities too,
and the converted outputs can be publicly verified. This preserves the
authentication of data during the conversion process. We define the
security of this scheme and give a provably secure instantiation. Our
scheme makes use of controlled-malleable NIZKs, which allow proofs to
be mauled in a controlled manner. This allows signatures to be blinded,
while still ensuring they can be verified during conversions.

1 Introduction

Group signatures allow members of a group to sign messages anonymously [18,
4, 7, 13, 29, 36, 8]. A valid group signature attests that it was signed by a group
member, without revealing the signer’s identity, or whether signatures stem from
the same user. They are therefore useful when data is collected that should be
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authenticated while preserving the privacy of the data sources. However, full
anonymity might be undesirable. It may be necessary to know the correlation
among some data events. For instance, several high value blood pressure mea-
surements might not be critical unless they originate from a single user.

To address the balance between privacy and utility, several linkability mech-
anisms have been introduced. Standard group signatures [18, 7, 4, 5, 8, 36] have
an opening mechanism, that allows a trusted opener to de-anonymise signatures.
Less privacy invasive forms exist, where the opener no longer fully de-anonymises
users, but merely tests whether two signatures stem from the same one [31, 32,
39, 33, 20]. Another line of work avoids the trusted entity for opening and rather
supports pseudonymous group signatures where users can choose to sign either
with a fresh, and unlinkable pseudonym or re-use an established one, making all
signatures under the same pseudonym publicly linkable [9, 14, 6, 11, 10, 24, 23].

Group Signatures with Selective Linkability. Garms and Lehmann [27] argue that
none of these schemes provides the flexibility and privacy needed in practice, as
they either require the user to decide upon the desired linkability when signatures
are computed, or the usage of the linkability gradually erodes the users’ privacy.

To overcome these limitations, they proposed a more flexible variant of link-
ability in the form of the CLS scheme [27]. While all group signatures therein are
fully unlinkable per default, i.e. each pseudonym is fresh, certain subsets can be
converted into a linked representation. The conversion is performed obliviously
by a trusted converter that blindly transforms a batch of pseudonyms, mapping
different pseudonyms stemming from the same user into the same one. To avoid
the erosion of privacy, due to a user’s signatures gradually being linked together
as a result of successive convert queries, converted pseudonyms obtained through
different queries remain unlinkable, i.e., conversions are strictly non-transitive.

Trusted Data Lakes and Data Processors. However, [27] assumes the party re-
ceiving/ verifying fully unlinkable signatures (the data lake) and the one obtain-
ing the converted linked ones (the data processor) to be the same entity, or belong
to the same trust domain. In their scheme the data lake only inputs pseudonyms
to the converter but not the actual signatures, the authenticity of data gets lost
in the conversion process. Therefore, a data processor only receives converted
pseudonyms from the converter and must trust the data lake that converted data
originates from actual user data. It also assumes inputs from the data lake to
the converter to be well-formed. The security guarantees only hold when “valid”
pseudonyms are converted for which correct group signatures exist. As the con-
verter in [27] receives blinded pseudonyms and no signatures, this assumption is
impossible to enforce other than by considering honest requests only.

For many applications, this assumption may not be realisable and security
from a malicious data lake is vital. For example, in the US the Regional Health
Information Organization (a data processor) has the role of integrating the med-
ical records of many hospitals. In practise, this data is often stored by a third
party (a data lake) that is not trusted by the hospitals or research organisations
that process the data [19]. As discussed above, correlation of data by user can
provide additional insights to the data processor in terms of medical analysis.
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However, to protect the user’s privacy, correlated data should not be revealed
to the data lake. Additionally, the data processor will want assurances that the
data processed is authentic user data. Also, Google (a data lake) has been collect-
ing anonymised location data during the COVID-19 pandemic to monitor social
distancing [1]. In this case the correlation of data by user is valuable for anal-
ysis, such as to gain insights into how behaviour changes based on restrictions.
However, this comes with a threat to the user’s privacy. Ideally, data should be
stored anonymously to preserve the users’ privacy, but data processors, such as a
governmental public health organisation, might be allowed to request to blindly
link the data, for example, to provide insight into distances travelled which is
only possible if data is correlated by user. Such data processors may not fully
trust Google as a data lake. Therefore, the data processor may want assurance
that security and privacy holds even if the data lake acts maliciously.

Our Contributions. In this work we strengthen the concept of convertibly
linkable group signatures (CLS+) to capture the scenario that the data lake and
data processor do not belong to the same trust domain. That is, we guarantee
the desired security even when conversion is triggered by malicious data lakes.
Further, we leverage the trusted converter to not only blindly transform the
pseudonyms but also blindly re-authenticate the associated messages, preserving
the authenticity of the data during conversions. We start by lifting the security
and privacy definition given in [27] to this stronger setting. Our security model
grants the adversary the power to request conversions of arbitrary and blinded
inputs. We propose a construction that provably satisfies the desired properties.

Our CLS+ Construction. In the CLS+ model, an issuer joins users to the group.
A data lake holds a set of users’ (message, pseudonym, signature) tuples. They
blind a subset of these to the converter for conversion with respect to the intended
data processor’s public key. The resulting converted (message, pseudonym, signa-
ture) tuples are output to the data processor for unblinding. After unblinding the
pseudonyms should be consistent, i.e. pseudonyms from the same conversion and
from the same user should be the same. As conversions should be non-transitive,
pseudonyms should be unlinkable by user across conversion queries.

A user’s and issuer’s key pair is that of an automorphic signature scheme [25],
a structure–preserving signature scheme [2] where the verification keys lie within
the message space. When joining the group, the issuer signs the user’s verification
key, yielding the user’s membership credential. During signing, the user encrypts
its verification key under an encryption public key held by the converter to form
the pseudonym, and proves knowledge of a valid automorphic signature on the
message with respect to this verification key, and of a valid credential for this key.
In order to blind signatures yet still allow verification during conversions, we use
zero-knowledge proofs (NIZKs) that are controlled malleable [16], which can be
realised with Groth-Sahai proofs [30]. This allows to encrypt the pseudonym and
message under an encryption public key held by the data processor (the blinding
public key), and transform the proof accordingly. Because the malleability is
controlled, this does not affect the unforgeability of the signatures.
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The converter then decrypts the pseudonyms using the converter’s encryp-
tion secret key. A nested form of ElGamal encryption allows us to remove layers
of encryption under different public keys in any order. The resulting pseudonym
is re-randomised under the blinding public key and then transformed under a
random value r. This value is chosen fresh for every conversion query to ensure
non-transitive conversions, but re-used within this query to ensure the resulting
pseudonyms are consistent. The converter signs the converted pseudonym and
message with the signing key for a standard digital signature scheme to attest
that they originate from a valid query containing verifiable signatures. As we as-
sume the converter is at most honest-but-curious, the authentication of converted
signatures is carried over from that of the blinded signatures. During unblind-
ing, the data processor decrypts the message and converted pseudonym under
the blinding secret key. The final pseudonyms will be consistent, pseudonyms
from the same conversion and authored by the same user will be the same. The
original output of the converter is included in the signature, along with a proof
of correct unblinding. This carries forward the authentication during unblinding.
We prove that our construction is secure, assuming the security of the automor-
phic signatures, standard digital signatures and the controlled malleable NIZKs,
as well as the SXDH assumption.

Other Related Work. In [34] group signatures can be converted into standard
signatures, but all of a user’s signatures are de-anonymised. In [35, 37], the power
of the opener is reduced. In [35], they avoid the need for an opener, by allowing
users to prove or deny authorship of a signature. The opener can also prove that
two signatures originate from the same user without revealing user identities.
In [37], another entity is introduced, the admitter. They have the power to
specify messages, so that only signatures on those messages can be opened.

2 Syntax and Security Model for CLS+

We define the syntax and security model for CLS+ signatures, an extension of
the CLS model [27] that no longer requires the assumption that conversion of sig-
natures is triggered by honest verifiers. Whereas CLS only converts pseudonyms,
our CLS+ scheme preserves the validity of the associated signatures.

As in CLS, our CLS+ scheme assumes an issuer I, a set of users U “ tuidiu,
and a converter C. The issuer I joins new users to the group, who can sign
pseudonymously. While signatures are fully unlinkable by default, they can
be linked in a controlled manner by the converter C, who blindly converts
pseudonym-message-signature tuples into a consistent (now) authenticated form.

In contrast to CLS, we split the verifier role into a data lake L and data
processor P. The data lake (or any verifier) can collect and verify the unlinkable
signatures w.r.t the group’s public key. Additionally, the data lake can request
conversions by blinding signatures for a particular data processor P in a con-
version request to the converter. The data processor can unblind and verify
the converted signatures output by the converter. Once unblinded, any verifier
can check the validity of the converted signature. In this way, we capture the
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setting where a data processor (in a separate trust domain from the data lake)
can verify converted group signatures, whereas, CLS assumed that unlinkable
and converted signatures are used by the same entity (or within the same trust
domain). Any verifier can take the data lake role, as there are no dedicated keys.

2.1 Syntax of CLS+

We closely follow the notation from the framework for CLS [27], but extend the
blinding, conversion and unblinding procedures to transform signatures, as well
as pseudonyms. Verification is extended to also handle transformed and linkable
signatures. More precisely, a convertibly linkable group signature scheme with
preserved verifiability CLS+ consists of the following algorithms:

Setup & Key Generation. Each central entity generates their individual key pair.

CLS+.Setupp1τ q Ñ pp: on input a security parameter, outputs the public pa-
rameters pp.

CLS+.IKGenpppq Ñ pipk, iskq: performed by the issuer I, outputs the issuer
secret key isk, and the issuer public key ipk.

CLS+.CKGenpppq Ñ pcpk, cskq: performed by the converter C, outputs the con-
verter secret key csk, and the converter public key cpk.

CLS+.BKGenpppq Ñ pbpk, bskq: performed by the data processor P, outputs
the blinding public key bpk and blinding private key bsk.

We write the group public key gpk to refer to ppp, ipk, cpkq and BK to denote
the public/private key space induced by CLS+.BKGen.

Join, Sign & Verify. A user must join the group via an interactive protocol with
the issuer, as is standard in group signatures [5]. Our construction requires that
the user already specifies the data processor’s key bpk when creating signatures,
and thus we reflect this in the syntax. While this limits the flexibility of the
data lake (it has to adhere to the choice of the user) it gives the users strong
control over the usage of their data, as only they can choose who can unblind the
converted (linkable) signatures. Signers still do not need to decide which data
should be linked, but only which data processors they trust to process their data.

To handle our setting where converted signatures can be verified too,
CLS+.Verify takes as input type “ ttier-1, tier-2u that indicates the type of sig-
nature. We denote standard, fully unlinkable signatures produced by CLS+.Sign
as tier-1 signatures, and converted ones (from processing a tier-1 signature
with CLS+.Blind ´ CLS+.Convert ´ CLS+.Unblind introduced below) as tier-2
signatures.

xCLS+.Joinpgpkq,CLS+.Issuepisk, gpkqy: an interactive protocol performed by
the joining user uid and the issuer I, who perform CLS+.Join and CLS+.Issue
respectively. If successful, CLS+.Join outputs gskruids. During the protocol,
each algorithm inputs a state and an incoming message, and outputs an
updated state, an outgoing message, and a decision cont/ accept/ reject.
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CLS+.Signpgpk, bpk,gskruids,mq Ñ pµ, σq: performed by user uid for a data
processor with key bpk, outputs pseudonym µ and signature σ. For ease of
expression we treat the pseudonym µ as a dedicated part of the signature.

CLS+.Verifyptype, gpk, bpk,m, µ, σq Ñ t0, 1u: performed by the data lake (or
any verifier), outputs 1 if σ is a valid ttier-1, tier-2u-signature.

Blind Conversion. As in the CLS model, to allow for blind conversions of signa-
tures, there are the CLS+.Blind, CLS+.Convert and CLS+.Unblind algorithms for
the data lake, converter and data processor respectively. The CLS+.Convert algo-
rithm, on input blinded unlinkable pseudonyms, outputs converted pseudonyms
that after unblinding are identical when from the same user. Now, all three of
these algorithms are extended to handle the signatures as inputs and outputs.

CLS+.Blindpgpk, bpk, pµ, σ,mqq Ñ pcµ, cσ, cq: performed by the data lake , out-
puts a blinded pseudonym, signature and message.

CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq Ñ tpcµi, cσi, ciquk: performed by
the converter, on input k blinded tuples, outputs k converted tuples.

CLS+.Unblindpbsk, pcµ, cσ, cqq Ñ pµ, σ,mq: performed by the data processor,
outputs an unblinded, converted ptier-2q tuple.

2.2 Security Properties of CLS+

We need the CLS+ model to capture (roughly) the same security properties as
the CLS model, without the assumption that conversion is triggered by honest
parties and such that converted data is verifiable. We describe the properties
that CLS+ schemes must satisfy in the table below. The first three constitute
the privacy related properties and the final three constitute the unforgeability
properties. We no longer include the join anonymity requirement from the CLS
model, which ensures the corrupted issuer and converter cannot trace signatures
to a user’s join session. As the converter is corrupted, this requirement only offers
weak privacy guarantees, and so we believe this requirement is less important
than the positives of a simple modular construction. In all experiments the key
generation stage is performed honestly, as standard for group signatures [5].

Our CLS+ schemes still rely on the converter being honest-but-curious. We
believe this is an acceptable assumption in practice, as the converter is a central
entity that can undergo more scrutiny than the many verifiers and data lakes.
In section 6, we discuss how our work could be adapted to achieve security with
respect to a fully malicious converter and why we do not take this approach.
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Requirement Corrupted Entities Overview
Anonymity Issuer, Group signatures which have not been linked through a

Data Lake, conversion request should not leak any information about
Data Processor the signer’s identity.

Non- Issuer, While conversion guarantees linkability within a batch of
Transitivity Data Lake, converted signatures, the data processor(s) should not be

Data Processor able to link the outputs of different convert queries.
Conversion Issuer, Converter, The converter should learn no information about the blinded
Blindness Data Lake messages and pseudonyms that are input to a conversion.

Traceability Converter, An adversary should not be able to create more (blinded)
Data Lake, tier-1 signatures that remain unlinkable in an (honest)

Data Processor conversion than they control corrupt users. We show in
Appendix B this implies the same for tier-1 signatures

that are not blinded.
Conversion Issuer, Data Lake, All valid tier-2 signatures should originate from an honest

Unforgeability Data Processor conversion.
Non- Issuer, An adversary should not be able to output a (blinded)

Frameability Converter, tier-1 signature that would be linked to the signature of
Data Lake, an honest user. We show in Appendix B this implies

Data Processor the same for tier-1 signatures that are not blinded.

Oracles & State. As in the CLS model, our security requirements make use
of oracles which keep joint state. We follow the notation of [4, 5] and give the
adversary oracle access to honest users, the issuer and the converter (depending
on the corruption setting in each game). All oracles have access to the following
maintained as global state: a list HUL of uids of honest users, a list CUL of
uids of corrupt users (where the issuer is honest), a list SL of requests to the
SIGN oracle, and a list UBL containing inputs to the CONVERT oracle and
the corresponding unblinded, converted pseudonyms/ messages. We provide an
overview of all oracles below.

ADDU (join of honest user & honest issuer) Creates an honest user uid,
by internally running a join protocol between the honest user and honest
issuer. As a result, the oracle stores the secret key gskruids for later use.

SNDU (Send to User) (join of honest user & corrupt issuer) Creates an
honest user uid, by running the join protocol on behalf of the honest user
with the corrupt issuer. If the join session is successful, the oracle stores the
user’s secret key gskruids for later use.

SNDI (Send to Issuer) (join of corrupt user & honest issuer) Creates a
corrupt user uid, by running the join protocol on behalf of the honest issuer
with the corrupt user.

SIGN Outputs signatures on behalf of honest users that have successfully joined
(via ADDU or SNDU, depending on whether the issuer is corrupt).

CONVERT The oracle returns a set of converted signatures. In the CLS+ model,
the CONVERT oracle is input blinded pseudonym, signature, message tuples
instead of tier-1 tuples that must be verified and honestly blinded in the
oracle. This is because we no longer assume honest inputs from the data
verifier. The adversary must input the blinding secret key, which is necessary
for our privacy-related security notions, e.g., to ensure that the adversary
does not input a re-randomisation of the challenge signature.
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Aside from the CONVERT oracle, the oracles are minor adaptations of the
oracles in the CLS model. The full description is deferred to Appendix A.1.

Helper Algorithms. In the CLS model, helper algorithms allow for notational
simplicity when defining security. Indeed, the algorithms Identify and UnLink re-
spectively test whether a signature originated from a particular user secret key
and determine whether signatures would be linked upon conversion. We adapt
the helper algorithms for the CLS+ model. These now take as input signatures,
because they make use of CLS+.Convert. Identify tests whether a blinded signa-
ture belongs to a certain user uid, by creating a second signature for gskruids
and using the converter’s secret key to test whether both signatures are linked.
This algorithm uses our second helper algorithm UnLink internally, which takes
a list of blinded pseudonym-message-signatures pairs and returns 1 only if they
are all unlinkable after being converted and unblinded. The tier-2 signatures
output as a result of the linking are also now verified. Full details are given in
Appendix A.2.

Adapting our unforgeability requirements to the CLS+ setting As well as tier-1
signatures, we now must ensure our unforgeability guarantees for tier-2 sig-
natures, as well as signatures input to and output from conversions. We in-
troduce conversion unforgeability, a new security property that ensures all valid
tier-2 signatures stem from an honest conversion. In doing so, our unforgeability
guarantees carry over to tier-2 signatures, under the assumption of an honest-
but-curious converter. Moreover, in the CLS traceability and non-frameability
requirements, the adversary outputs tier-1 signatures, which are then verified
and blinded honestly. We update these requirements for the CLS+ setting, so
that blinded tier-1 signatures are output by the adversary. In the case that
conversions are honest, the traceability and non-frameability guarantees carry
through to tier-2 signatures. When the converter is corrupted no unforgeability
guarantees hold for tier-2 signatures anyway.

We need to ensure that our traceability and non-frameability requirements
ensure the CLS definitions, meaning that our unforgeability guarantees hold for
tier-1 signatures. In Appendix B, we give reductions that show this is the case.
For traceability, we show that if an adversary can output more valid tier-1
signatures that are unlinkable after conversion than they control corrupt users
then, by blinding these tier-1 signatures, we can win in our CLS+ traceability
game. For non-frameability, we show that if an adversary can output a tier-1
signature that links to that of an honest user in a conversion then, by blinding
this signature, we can win in our CLS+ non-frameability game.

To make several of our requirements realisable, we require that the adver-
sary outputs the blinding secret key. We do this for notational simplicity, but
alternatively we could add a mechanism for the bsk to be extracted from the
bpk. Due to the fact that the adversary outputs blinded tier-1 signatures in
our traceability and non-frameability requirements, this is necessary to deter-
mine whether signatures are linked. Even if the adversary was to output tier-2
signatures, then the blinding secret key would still be necessary to enforce that
the tier-2 signatures originate from an honest conversion.
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Correctness and Consistency As in CLS, correctness consists of correctness of
sign, which ensures that signatures generated honestly will be valid, and correct-
ness of conversion, which ensures that honest blinding, conversion and unblind-
ing will result in valid and consistent messages, pseudonyms and signatures.

As in CLS, we require consistency, which for CLS+ we relabel consistency of
linking. This ensures that linking is consistent across multiple convert queries,
i.e. if after conversion cµ1 and cµ2 are linked, and after conversion cµ2 and cµ3

are linked, then cµ1 and cµ3 are also linked after conversion. We additionally
introduce consistency of verification. This is necessary as the verifiability of
signatures is now preserved throughout the conversion process. This requirement
ensures that a set of valid tier-1 signatures will result in valid tier-2 signatures
for the same set of messages after blinding, conversion and unblinding.

We give the full correctness and consistency definitions in Appendix A.3.

We now provide an overview of all CLS+ security requirements. We present
these in full in Appendix A.4.

Anonymity. This requirement ensures that an adversary that has corrupted
the issuer, data lake and data processor, while the converter remains honest,
cannot link an honest user’s signatures or trace them to their join session. The
adversary outputs two honest users uid˚0 and uid˚1 , a message m˚, and a blinding
public key bpk˚ (as this is fixed in signing), and must guess which user authored
the resulting tier-1 signature.

The adversary has access to the SNDU and SIGN oracles to create honest
users and obtain their signatures, as well as the CONVERT oracle. The CLS
notion assumed the data lake to be honest, and so the conversion oracle only
took unblinded tuples as input, allowing the oracle to check the validity of the
input, before blinding and converting them. The adversary was prevented from
submitting the challenge signature along with a signature authored by user uid˚0
or uid˚1 , which would allow them to trivially win.

Here we enable the data lake to ask for the conversion of blinded tuples. To
prevent trivial wins, we still must be able to detect whether the adversary tries to
convert the challenge signature. As signatures will be re-randomisable to satisfy
non-transitivity, we opt for an RCCA-style of definition [15]. The CONVERT
oracle checks whether any of the blinded signature-tuples would link via Identify
to either of the challenge users and match the challenge message m˚. To do so,
we require the adversary to input the blinding secret key to the oracle. This key
is used to check whether the inputs can be traced to a challenge user, but there
are no checks that enforce that the inputs are well-formed.

As in CLS, our privacy related requirements do not yield forward anonymity,
because the secret keys of honest users cannot be corrupted. It seems difficult
to achieve this whilst also ensuring the non-transitivity of conversions [27].

Non-Transitivity. Non-transitivity ensures that the outputs of separate con-
vert queries cannot be linked together across multiple queries, further than what
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is already possible due to the messages queried. Otherwise, data processor(s)
could gradually re-recover the linkability among all signatures. This must hold
when the issuer, data lake and processor can be fully corrupt.

As in the CLS model, our non-transitivity definition follows a simulation-
based approach, where the adversary must distinguish between the real and
ideal world. As the issuer is corrupted, the adversary has access to the SNDU
and SIGN oracles for honest users. In the real world, the adversary interacts with
the CONVERT oracle, which converts the blinded message-pseudonym-signature
tuples that are input. In the ideal world, they interact with the CONVSIM oracle
which, for inputs that originate from honest users, uses a simulator SIM that out-
puts converted pseudonyms/ signatures. SIM only learns which blinded messages
belong to the same honest users, without learning the pseudonyms/ signatures
input. As in CLS, the CONVSIM oracle generates converted pseudonyms/ signa-
tures for corrupt users normally via CLS+.Convert.

In contrast to the original CLS model, we now allow the data lake to trigger
conversions on blinded inputs. Similarly to the anonymity game, the adversary
must also input the blinding (secret) key with each query to the conversion
oracle. Here the key is used to internally unblind the inputs and determine
the correlation among the signatures. This is necessary to obtain a security
definition that is realisable, as the CONVSIM oracle is still expected to provide
consistently transformed outputs within a query. Further, the ideal CONVSIM
oracle first internally runs the real conversion algorithm and aborts if it fails.
This is again necessary to avoid trivial wins where the adversary might input
malformed tuples — which the simulator never gets and thus cannot verify.

Conversion Blindness. In the original CLS model, conversion blindness en-
sures that the converter learns nothing about the pseudonyms and messages it
converts. In the CLS+ model, the converter now receives and outputs signatures,
which must also be converted obliviously. This must hold when all the entities,
except for the data processor, can be fully corrupt. The adversary outputs two
pseudonym-message-signature tuples and receives a blinded version of one of
them. They must guess which tuple was blinded. We must ensure the adversary’s
outputs are valid to avoid trivial wins. In the CLS model, no oracles are required
because blinding is a public-key operation. However, CLS+.Unblind now outputs
a tier-2 signature, and so we must ensure that this does not leak anything that
might allow for the unblinding of other converted signatures. We therefore give
the adversary access to an UNBLIND oracle that blinds, converts and unblinds
signatures. We stress that this requirement only provides CPA–level security as
in CLS, because the oracle both blinds and unblinds signatures.

Conversion Unforgeability. As converted data is authenticated in the CLS+
model, we introduce the conversion unforgeability requirement. This ensures
that all valid tier-2 signatures originate from an honest conversion when all en-
tities other than the converter are corrupt. This carries over the traceability and
non-frameability guarantees for blinded tier-1 signatures, ensuring that both
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properties hold for tier-2 signatures, provided the converter remains honest-
but-curious.

We do not differentiate between honest and corrupt users in this requirement,
so the adversary only has access to the CONVERT oracle. The adversary must
output a valid tier-2 signature that does not originate from the CONVERT
oracle. In order to check whether the tier-2 signature output by the adversary
stems from an honest conversion, the adversary must input the blinding secret
key to the conversion oracle. The oracle can then unblind all converted outputs
and store tier-2 pseudonyms/ messages in the UBL list, to compare with the
adversary’s output.

Traceability. This requirement formalises that an adversary cannot output
more unlinkable signatures that the number of corrupted users, when the issuer
is honest but the converter, data lake, data processor and some users are corrupt.

As the issuer is honest, the adversary has access to the ADDU and SNDI
oracles to create honest and corrupt users respectively, and the SIGN oracle.
To lift the CLS traceability notion to the setting where malicious parties can
trigger conversions, the adversary outputs a list of blinded signatures. As we still
assume the converter to be honest-but-curious, the signatures are then honestly
converted and unblinded by the challenger. For the traceability requirement to
be achievable we must ensure that all signatures originate from the same convert
query, due to the non-transitivity property. Therefore, it is natural to require
the adversary to output a set of blinded tier-1 signatures, that are honestly
converted. The blinding secret key must then be output by the adversary to
determine whether signatures are linked.

In the CLS model, the adversary needed to output more unlinkable tier-1
signatures than the number of corrupted users. As the adversary now outputs
blinded signatures, we can no longer check if they originate from the signing
oracle. Instead, we allow the adversary to output the signatures of honest users.
However, for each honest user that could have authored a message, we increase
by 1 the number of unlinkable signatures the adversary is required to output.
The adversary wins if they output more unlinkable signatures than the number
of corrupted users plus the number of signing queries for distinct users.

Our traceability guarantee carries forward to tier-2 signatures when the
converter is honest. This is because, conversion unforgeability ensures that all
valid tier-2 signatures originate from a blinded tier-1 signature that is input
to the honest converter, even when the data processor is corrupted. With a
corrupted converter, no guarantees can be made for tier-2 signatures anyway.

Non-Frameability. This notion prevents the impersonation of an honest user,
whereby an adversary generates signatures that will link to those of this user,
when the issuer, converter, data lake and data processor are corrupt.

As the issuer is corrupt, the adversary has access to the SNDU and SIGN
oracles to create honest users and obtain their signatures. The adversary out-
puts a blinded message-pseudonym-signature tuple, along with a blinding public

11



and secret key. As in the CLS model, we use the Identify algorithm to check
whether signatures stem from an honest user. On input a blinded tier-1 signa-
ture, this creates a second blinded tier-1 signature, and converts and unblinds
both, checking if they are linked. Identify now checks the validity of the tier-2
signature which is necessary for a framing attack to occur.

When defining the non-frameability of tier-2 signatures, firstly consider that
the converter is corrupted. As the security guarantees for tier-2 signatures
depend on the converter being honest-but-curious, in this case the adversary
can trivially forge tier-2 signatures and so we can only prevent framing attacks
via blinded tier-1 signatures. If the converter remains honest, the conversion
unforgeability requirement ensures that an adversary can only impersonate an
honest user via a blinded signature that is honestly converted and unblinded.
Therefore, both cases are captured by the adversary outputting a blinded signa-
ture that is converted honestly in the experiment, as in our requirement.

The blinding secret key must be output by the adversary to determine the
linkage between signatures. Although in our requirement unblinding is honest,
the conversion unforgeability requirement ensures that all valid tier-2 signature
can be traced to a conversion assuming the converter is honest. Even if the
requirement was formulated so that tier-2 signatures were output, the blinding
secret key would still need to be output by the adversary to check that this
signature originated from an honest conversion. Therefore, the adversary must
output the blinding secret key for our definition to be realisable.

As in the CLS model, we must prevent trivial wins via the signing oracle.
Due to the re-randomisability of CLS+ signatures to allow for non-transitivity,
instead of not allowing signatures output by SIGN, we consider whether the
attached message was input to the signing oracle. As the adversary outputs a
blinded tuple, we must convert and unblind their output to obtain this message.

3 Preliminaries

We now present the building blocks required in this work.

Bilinear Maps. Let G1, G2, GT be cyclic multiplicative groups with prime order
p. A bilinear map e : G1 ˆ G2 Ñ GT must satisfy: bilinearity, i.e., epgx1 , g

y
2 q “

epg1, g2q
xy; non-degeneracy, i.e., for generators g1 P G1 and g2 P G2, epg1, g2q

generates GT ; and efficiency, i.e., there exists efficient algorithms Gp1τ q that
outputs a bilinear group pp,G1, G2, GT , e, g1, g2q and to compute epa, bq for all
a P G1, b P G2. We use type-3 pairings in this work and do not assume G1 “ G2

or an efficiently computable isomorphism between groups [26]. Type-3 pairings
benefit from the most efficient curves, when balancing the cost of pairings and
group operations, the size of the representation of an element of G2 and the
flexibility of parameter choice [26, 17].

Standard and Automorphic Signatures. We use digital signatures which satisfy
Existential Unforgeability against Chosen Message Attacks (EUF-CMA), con-
sisting of: SIG.Setup outputs the parameters ppsig, SIG.KeyGenpppsigq outputs
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the signing and verification keys psk, vkq, SIG.Signpsk,mq outputs a signature
Ω, SIG.VerpΩ, vk,mq checks the signature is valid.

An automorphic signature [25] over a bilinear group is an EUF-CMA secure
signature whose verification keys are contained in the message space. Moreover,
the messages and signatures consist of elements of G1 and G2, and the verifica-
tion predicate is a conjunction of pairing-product equations over the verification
key, the message and the signature. They consist of the following algorithms:
ASetupp1τ q outputs the parameters ppauto; AKeyGenpppautoq outputs the sign-
ing and verification keys, papk, askq; ASignpask,mq outputs a signature Ω; and
AVerifypΩ, apk,mq checks that Ω is a valid signature.

ElGamal Encryption. We use the ElGamal encryption scheme [22], which is
chosen-plaintext secure under the DDH assumption. We will use the homomor-
phic property of ElGamal, i.e., if C1 P Encppk,m1q, and C2 P Encppk,m2q, then
C1 d C2 P Encppk,m1 ¨ m2q. ElGamal ciphertexts c “ Encppk,mq are publicly
re-randomisable in the sense that a re-randomised version c1 of c looks indistin-
guishable from a fresh encryption of the plaintext m.

Proof Protocols. When referring to zero-knowledge proofs of knowledge of dis-
crete logarithms, PKtpa, b, cq : y “ gahb ^ ỹ “ g̃ah̃cu denotes a proof of knowl-
edge of integers a, b and c such that y “ gahb and ỹ “ g̃ah̃c hold, as in the
notation of [12]. SPK denotes a signature proof of knowledge, a non-interactive
transformation of a proof PK. We require the proof system to be sound and
zero-knowledge.

Controlled Malleable NIZKs. A controlled malleable proof [16] for a relation R
and transformation class T consists of three algorithms constituting a regular
non-interactive proof. CRSSetupp1τ q generates a common reference string σcrs;
Ppσcrs, x, wq: takes as input σcrs, a statement x and a witness such that px,wq P
R, and outputs a proof π; Vpσcrs, x, πq outputs 1 if π is valid for statement x.
Such a proof is called zero knowledge (NIZK) if there exists a PPT simulator
pS1, S2q such that an adversary cannot distinguish between proofs formed by
the prover and simulator, and a proof of knowledge (NIZKPoK) if there exists a
PPT extractor (E1, E2) that can produce a valid witness from any valid proof.

The fourth algorithm, specific to malleable proof systems, is: ZKEvalpσcrs, T, x,
πq: which on input σcrs, a transformation T “ pTinst, Twitq (in transformation class
T ), an instance x, and a proof π, outputs a mauled proof π1 for instance Tinstpxq.

The controlled-malleable simulation-sound extractability requirement recon-
ciles malleability with simulation-sound extractability [21, 28]. It requires that,
for any instance x, if an adversary can produce a valid proof π that x P R then
an extractor can extract from π either a witness w such that px,wq P R or a
previously proved instance x1 and transformation T P T such that x “ Tinstpx

1q.
This guarantees that any proof that the adversary produces is either generated
from scratch using a valid witness, or formed by applying a transformation from
the class T to an existing proof. We describe the full definition in Appendix C.1.

In [16] strong derivation privacy for such proofs is also defined. This ensures
simulated proofs are indistinguishable from those formed via a transformation,

13



as defined formally in Appendix C.2. Putting this together, a cm-NIZK is a proof
system that is CM-SSE, strongly derivation private, and zero knowledge.

4 Our CLS+ Construction

Our CLS+ construction uses automorphic signatures, ElGamal encryption, con-
trolled malleable NIZKs, a digital signature scheme, and a signature proof of
knowledge as building blocks. Automorphic signatures are structure-preserving
signatures, for which the verification key lies within the message space. Controlled-
malleable NIZKs allow proofs to be mauled to blind signatures, but because the
malleability is controlled the unforgeability properties are still satisfied.

High-Level Idea. We now present a high-level overview of our CLS+ construc-
tion, demonstrating how our construction differs from the CLS scheme presented
in [27]. The issuer’s key pair is that of an automorphic signature [25] as re-
called in Section 3. The converter’s key pair is an ElGamal encryption key pair
and a key pair for a signature scheme. The blinding key pair, held by the data
processor, is an ElGamal encryption key pair. Unlike [27], when joining, a user
generates a key pair of an automorphic signature as their secret and public key
pusk, upkq. The issuer signs the user’s public key to form a credential, which is
possible due to the automorphic property. An automorphic signature is used,
instead of a BBS+ signature in [27], to generate credentials, for compatibility
with the cm-NIZK proofs, which are necessary to allow signatures to be blinded.

When a user signs a message m, as in [27] they encrypt their public key upk
under the converter public key to form a pseudonym, and must prove knowledge
of a secret key relating to a valid credential. In the CLS+ scheme to do so,
they “normally” sign the message using the automorphic signature. The latter is
never revealed, but is only used to generate a cm-NIZK, which proves knowledge
of a signature of m under its public key, an issuer’s credential on its public key
and correctness of the pseudonym. To ensure that conversion queries cannot be
used to de-anonymise honest users’ signatures, we include upk1 as witness such
that epg1, upkq “ epupk1, g2q. The blinding public key must be fixed in signing,
as it must be part of the statement proved by the cm-NIZK. This allows for the
proof to be transformed in blinding, because cm-NIZKs are defined for relations
that are closed under all allowable transformations. However, this allows users
to have control when signing over the data processors that can use their data.

Blinding proceeds as in [27] for the pseudonym and message. The pseudonym
is re-randomised, and an extra layer of encryption under the blinding public key
is added. The message is encrypted under the blinding public key. In the CLS+
model, we need to use the malleability of the cm-NIZK to update the signature.
This ensures that the new traceability and non–frameability requirements are
satisfied, where the adversary outputs blinded signatures. The mauled proofs still
ensure that the user holds a valid secret key corresponding to the public key that
is encrypted in the pseudonym to provide non–frameability, and a valid credential
on this public key to provide traceability. The strong derivation privacy of the
cm-NIZK ensures that the modified conversion blindness requirement holds.
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During conversions, each blinded pseudonym, message and now signature is
verified. Like [27], the encryption is re-randomised on the message and pseudonym.
The converter decrypts the pseudonym using the converter secret key and raises
the resulting pseudonym to the power of r which is chosen afresh in every con-
vert query, but used consistently within. Unlike [27], the resulting pseudonym is
transformed to the target group to prevent anonymity attacks, and the converter
now outputs a standard signature on the converted pseudonym and message.

During unblinding, as in [27], the tier-2 pseudonyms and messages are re-
trieved, by decrypting under the blinding secret key. In the CLS+ scheme, tier-2
pseudonyms are of the form epg1, upkq

r, and so signatures can be linked by au-
thor. The final tier-2 signature is the blindly signed tuple from the converter
and a proof of correct unblinding by the data processor, which can both be pub-
licly verified. This ensures that our new requirement conversion unforgeability
is satisfied. To ensure that the converter only blindly signs messages that were
authenticated via a group signature, we use that mauled cm-NIZKs can be ver-
ified. As the converter is assumed to be honest-but-curious, this transmits the
authentication guarantees from the original group signatures to converted ones.

Additional Structural Assumptions of Automorphic Signatures. We make the fol-
lowing assumptions satisfied by our instantiation in section 5. The automorphic
signature scheme can be simplified so either messages are elements of G1 and
the verification key is an element of G2 pASetup1,AKeyGen1,ASign1,AVerify1q,
or messages are elements of G2 and the verification key is an element of G1

pASetup2,AKeyGen2,ASign2,AVerify2q. We assume our automorphic signatures
are in the type-3 setting, ASetup is input the bilinear group, and the signing key
and verification key are of the form sk P Z˚p and vk “ gskj when vk P Gj .

4.1 Detailed Description of CLS–CM

Setup & Key Generation. In CLS+.Setup, parameters for all building blocks are
generated. The issuing keypair is the keypair of an automorphic signature. The
converter’s keypair is an ElGamal key pair in G2 and a keypair for a signature
scheme. The blinding keypair is an ElGamal key pair in both G1 and G2.

CLS+.Setupp1τ q

pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q
ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2q, ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2q
gÐ$G1, ĝÐ$G2, σcrs Ð CRSSetupp1τ q, ppsig Ð SIG.Setupp1τ q

return ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

CLS+.IKGenpppq

pipk, iskq Ð AKeyGen2pppauto2q

return pipk, iskq

CLS+.BKGenpppq

bsk1, bsk2 Ð$Z˚p
bpk1 Ð gbsk1 , bpk2 Ð ĝbsk2

return ppbpk1, bpk2q, pbsk1, bsk2qq

CLS+.CKGenpppq

csk1 Ð$Z˚p , cpk1 Ð ĝcsk1

pcpk2, csk2q Ð SIG.KeyGenpppsigq

return ppcpk1, cpk2q, pcsk1, csk2qq

Join. We give the join protocol of our CLS–CM construction in Figure 1. When
joining, the users generate a key pair pusk, upkq for an automorphic signature and
obtain the issuer’s signature on their public key. They also compute upk1 “ gusk1 .15



U .CLS+.Joinpgpkq é I.CLS+.Issuepisk, gpkq

pupk, uskq Ð AKeyGen1pppauto1q

-upk

credÐ ASign2pisk, upkq
�cred

check that AVerify2pcred, ipk, upkq “ 1

upk1 Ð gusk1

return gskruids Ð pusk, upk, upk1, credq,

Fig. 1. Join protocol of our CLS–CM construction.

Sign & Verication of tier-1 signatures. When signing, the user’s public key is
encrypted under the converter public key to form the pseudonym µ “ pĝα, 1 P
G2, upk ¨ cpk

α
1 q. The pseudonym can also be seen as an encryption under the

blinding key with encryption randomness 0. The ciphertext encrypting m under
the blinding key with encryption randomness 0, is of the form p1 P G1,mq. This
means that blinding encryption can be added by re-randomising both ciphertexts
in CLS+.Blind, while maintaining the ability to update the associated proof.

The user then signs m with their user secret key to output Ω. The signature
Ω is never output, but instead a cm-NIZK is computed which proves that µ is an
encryption of upk, c is an “encryption” of m (with randomness 0), and knowledge
of a correct Ω. The latter comprises showing that Ω is a valid signature on m
under upk, and it knows a credential cred that is a valid signature on upk
under ipk. We also prove knowledge of upk1 such that epupk1, g2q “ epg1, upkq to
prevent attacks on anonymity via conversion queries. This is because usk can no
longer be included as a witness as in [27], as it is not a group element. Instead we
include upk1, which due to the DDH assumption in G2 and the pairing setting, is
hard to derive from upk. This prevents the following attack against anonymity:
the adversary uses the upk of an honest user uid to create a new signature
with user public key upka using a known a P Z˚p . They could then test whether
another signature belongs to this honest user uid by submitting it alongside the
signature they created to the converter. If any of the tier-2 pseudonyms are of
the form P , P a for any P , then they know the signature belongs to uid. The
final signature simply consists of the cm-NIZK.

More formally we define the relation R such that ppcpk1, bpk1, bpk2, ipk, µ, cq,

pupk1, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,mqq P R if and only if:

epg1, µ1q “ epgα1 , ĝq, epg1, µ2q “ epgβ1 , ĝq, and (1)

epg1, µ3q “ epg1, upkqepg
α
1 , cpk1qepg

β
1 , bpk2q, and (2)

AVerify1pΩ, upk,mq “ 1, AVerify2pcred, ipk, upkq “ 1, and (3)

epc1, g2q “ epg, gγ2 q, epc2, g2q “ epm, g2qepbpk1, g
γ
2 q, and (4)

epupk1, g2q “ epg1, upkq. (5)

We define the allowable set of transformations for this relation to be:
T “ tprenc1, renc2, renc3q : renc1, renc2, renc3 P Z˚pu, such that for T “ prenc1, renc2, renc3q,
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the transformation Tinstpcpk1, bpk, ipk, µ, cq “ pcpk1, bpk, ipk, pµ1ĝ
renc1 , µ2ĝ

renc2 , µ3¨

cpkrenc11 bpkrenc22 q, pc1g
renc3 , c2bpk

renc3
1 qq and Twitpupk

1, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,mq “

pupk1, upk, cred,Ω, gα1 g
renc1
1 , gβ1 g

renc2
1 , gγ2 g

renc3
2 ,mq. We show later that this relation

and transformation can be instantiated as a cm-NIZK.

In more detail, CLS+.Sign and CLS+.Verify are defined as follows:

CLS+.Signpgpk, bpk,gskruids,mq

parse gskruids “ pusk, upk, upk1, credq, αÐ$Z˚p , µÐ pĝα, 1, upk ¨ cpkα1 q

β Ð 0, γ Ð 0, cÐ p1,mq, Ω Ð ASign1pusk,mq

σ Ð cm-NIZKtpupk1, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,mq : epg1, µ1q “ epgα1 , ĝq ^ epg1, µ2q “ epgβ1 , ĝq^

epg1, µ3q “ epg1, upkqepg
α
1 , cpk1qepg

β
1 , bpk2q ^ AVerify1pΩ, upk,mq “ 1^

AVerify2pcred, ipk, upkq “ 1^ epc1, g2q “ epg, gγ2 q ^ epc2, g2q “ epm, g2qepbpk1, g
γ
2 q^

epupk1, g2q “ epg1, upkqu

return pµ, σq

CLS+.Verifyptier-1, gpk, bpk,m, µ, σq

Check µ2 “ 1,Verify σ with respect to pcpk1, bpk, ipk, µ, p1,mqq

Blind Conversions. During blinding, the pseudonym and message are encrypted
under the blinding public key, and the encryption under the converter public
key is re-randomised. The cm-NIZK is transformed with ZKEval so that it is
consistent with the blinded pseudonym, and message, which also re-randomises
the proof due to the derivation privacy.

In CLS+.Convert, blinded signatures are now input and verified, leverag-
ing the fact that even fully blinded inputs can be checked for their correct-
ness. The pseudonyms, and blinded messages are re-randomised to ensure non-
transitivity. The encryption under the converter public key is then removed
from the pseudonyms and they are converted by raising them to the power
of r and transforming them into the target group, to ensure non-transitivity.
The converted signature is simply a digital signature on the blinded converted
pseudonym and message, with respect to the converter’s verification key.

In CLS+.Unblind the converted pseudonym and ciphertext are now decrypted
under the blinding secret key. The blinded then converted pseudonym, message
and signature are output, along with a proof that the unblinding has been done
correctly. During tier-2 verification, the converter’s signature on the blinded
values and the proof of unblinding are verified.
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CLS+.Blindpgpk, bpk, pm,µ, σqq

if CLS+.Verifyptier-1, gpk, bpk,m, µ, σq “ 0 return K

α1, β1, γ1 Ð$Z˚p , cµÐ pµ1ĝ
α1 , µ2ĝ

β1 , µ3cpk
α1

1 bpk
β1

2 q

cÐ pgγ
1

,m ¨ bpkγ
1

1 q, cσ Ð ZKEvalpσcrs, pα
1, β1, γ1q, pcpk1, bpk, ipk, µ, p1,mqq, σq

return pc, cµ, cσq

CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

rÐ$Z˚p , for i “ 1, . . . k : Verify cσi with respect to cµi, ci, gpk and bpk

α1, β1, γ1 Ð$Z˚p , cµ1i Ð pcµi,1ĝ
α1 , cµi,2ĝ

β1 , cµi,3cpk
α1

1 bpk
β1

2 q, c
1
i Ð pci,1g

γ1 , ci,2bpk
γ1

1 q

cµ2i Ð pcµ1i,2, cµ
1
i,3 ¨ cµ

1´csk1
i,1 q, cµ3i,1 Ð epg1, cµ

2
i,1q

r, cµ3i,2 Ð epg1, cµ
2
i,2q

r

σ1i Ð SIG.Signpcsk2, pc
1
i, cµ

3
i , bpkqq

choose random permutation Π, for i “ 1, . . . , k : pcµi, ci, cσiq Ð pcµ3Πpiq, c
1
Πpiq, σ

1
Πpiqq

return ppcµ1, c1, cσ1qq, ..., pcµk, ck, cσkqqq

CLS+.Unblindpbsk, pcµ, cσ, cqq

µÐ cµ2 ¨ cµ
´bsk2
1 ,mÐ c2c

´bsk1
1

πub Ð SPKtpbsk1, bsk2q : µ “ cµ2 ¨ cµ
´bsk2
1 ^m “ c2c

´bsk1
1 ^ bpk1 “ gbsk1 ^ bpk2 “ ĝbsk2u

σ Ð pcµ, cσ, c, πubq return pµ,m, σq

CLS+.Verifyptier-2, gpk, bpk,m, µ, σq

parse σ “ pcµ, cσ, c, πubq,Verify πub holds for cµ, µ, c,m, bpk

if SIG.Verppcµ, c, bpkq, cpk2, cσq “ 1 return 1 else return K

4.2 Security of CLS–CM.

In Appendix D, we show that our scheme satisfies all security properties defined
in Section 2. More precisely, we show that the following theorem holds.

Theorem 1. The CLS–CM construction presented in Sec. 4.1 is a secure CLS+
as defined in Sec. 2 if: the automorphic signatures schemes are EUF-CMA se-
cure and satisfy the additional structural assumptions given in Section 4; the
cm-NIZK is zero knowledge, strongly derivation private and controlled-malleable
simulation-sound extractable (cm-SSE); the SPK is a sound zero-knowledge proof;
the DDH assumption holds in G1 and G2; and the SIG is EUF-CMA secure.

5 Concrete Instantiation of CLS–CM construction

We show the building blocks of our CLS–CM construction can be instantiated.

Automorphic Signatures and Standard Signatures. An instantiation of automor-
phic signatures that is EUF-CMA secure based on the Asymmetric Double Hid-
den SDH (ADHSDH) assumption is given in [25]. It is easy to see that this scheme
satisfies the additional structural assumptions needed for our construction. For
the digital signature scheme, we will make use of Schnorr signatures [38].
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Controlled Malleable NIZKs. We demonstrate that cm-NIZKs for the relation R,
and set of allowable transformations T defined above can be instantiated. It is
shown in Theorem 4.5 in [16] that cm-NIZKS for pR, T q can be instantiated if
pR, T q are CM-friendly, which we show in Appendix E. This instantiation makes
use of Groth Sahai proofs [30] to build malleable NIWIPOKs and structure
preserving signatures (SPS) based on the DLIN assumption. However for our
instantiation, we make use of Groth Sahai proofs [30] in the type-3 setting based
on the SXDH assumption, that the DDH assumption holds in both groups G1

and G2. We make use of a different Structure Preserving Signature scheme [3] in
the type 3 setting, with better efficiency and based on the SXDH assumption.

Instantiating the Proof of Unblinding. For transforming interactive into non-
interactive zero-knowledge proofs we rely on the Fiat-Shamir heuristic that en-
sures security in the random oracle model.

Efficiency. We compare the computational cost of our construction to that of
[27] in Table 2. We denote k exponentiations in group Gi by kexpGi , k pair-
ing operations by kpair, and k exponentiations in Z˚n2 by kexpZ˚

n2
. In Table 3,

we compare the combined sizes of pseudonyms and signatures in terms of the
amount of group elements to [27]. We denote the length required to represent
k elements in Gi as kGi, k elements in Zp as kZp and k elements in Z˚n2 as
kZ˚n2 . Our construction is significantly less efficient than that of [27], particu-
larly in terms of the signing, verification and size of tier-1 signatures. However,
we demonstrate that stronger security can be achieved and the assumption of
trusted data lakes can be avoided.

Algorithm Computational cost [27] Computational cost (this work)

Sign 16expG1
` 15expZ

n2
668expG1

` 703expG2

Verify(tier-1) 12expG1
` 11expZ

n2
` 2pair 1548pair

Verify(tier-2) - 6expG1
` 2expG2

` 2expGT
Blind 6expG1

2expG1
` 4expG2

Unblind 2expG1
3expG1

` 1expG2
` 2expGT

Convert (k pseudonyms input ) 7kexpG1
kp3expG1

` 7expG2
` 2pairq

Fig. 2. Computational costs.

tier-1 pµ, σq Blinded pcµ, cσq Converted pcµ, cσq tier-2 pµ, σq

Size [27] 5G1 7Zp 6Z˚
n2 3G1 2G1 1G1

Size (this work) 446G1 541G2 446G1 541G2 2GT 2Zp 3GT 2G1 5Zp
Fig. 3. Sizes of pseudonyms and signatures.

6 Conclusion and Future Work

We have extended the work of [27], allowing for authentication to be preserved
during convert queries, and removing the assumption that inputs to the converter
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are well formed. We have extended the CLS model to formalise this strengthened
security and given a provably secure construction in this model, making use
of automorphic signatures, ElGamal encryption, controlled malleable NIZKs, a
digital signature scheme, and a signature proof of knowledge A simple extension
of this work (and [27]) would be to provide anonymity for tier-1 signatures
with respect to the converter. An additional anonymity requirement could be
included, where the converter and issuer are corrupted but the data processor
is honest. Our construction could very simply be adapted by adding the layer
of encryption under the blinding public key during tier-1 signature generation,
instead of during blinding. We have not made this extension in this work to
avoid adding complexity to an already complex security model.

Fully Malicious Converters. Another direction would be to investigate how to
achieve security against fully malicious converters. The unforgeability guarantees
for tier-2 signatures would no longer carry over from the blinded verifiable
signatures input to the converter. This would require the converter to prove
that their outputs were computed honestly from valid blinded inputs, and also
that they have converted each input in a convert query consistently, i.e. they have
not treated one convert query as several separate convert queries. The converter
could re-randomise the blinded signatures input and output these along with
the converted pseudonyms. They would also need to include a proof that the
converted pseudonyms were computed correctly from the re-randomised blinded
pseudonyms. However, to ensure that each signature was converted consistently,
the size of the tier-2 signatures would increase with the number of inputs to
the convert query, which would lead to a significant efficiency loss. We stress
that this is not specific to our particular construction, but necessary to ensure
all inputs were converted consistently.
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ADDUpuidq

if uid P HULY CUL return K

HULÐ HULY tuidu,gskruids ÐK

decuid Ð cont, stuidJoin Ð gpk

stuidIssue Ð pisk, gpkq

pstuidJoin,MIssue,dec
uid
q Ð CLS+.JoinpstuidJoin,Kq

while decuid “ cont

pstuidIssue,MJoin,dec
uid
q Ð CLS+.IssuepstuidIssue,MIssueq

pstuidJoin,MIssue,dec
uid
q Ð CLS+.JoinpstuidJoin,MJoinq

if decuid “ accept gskruids Ð stuidJoin

return accept

SIGNpuid,m, bpkq

if uid R HUL or gskruids “K return K

pµ, σq Ð CLS+.Signpgpk, bpk,gskruids,mq

SLÐ SLY tpuid,m, bpkqu

return pσ, µq

SNDIpuid,Minq

if uid P HUL return K

if uid R CUL CULÐ CULY tuidu,decuid Ð cont

if decuid ‰ cont return K

if undefined stuidIssue Ð pisk, gpkq

pstuidIssue,Mout,dec
uid
q Ð CLS+.IssuepstuidIssue,Minq

return pMout,dec
uid
q

SNDUpuid,Minq

if uid P CUL return K

if uid R HUL HULÐ HULY tuidu

gskruids ÐK,Min ÐK,dec
uid
Ð cont

if decuid ‰ cont return K

if stuidJoin undefined stuidJoin Ð gpk

pstuidJoin,MOut,dec
uid
q Ð CLS+.JoinpstuidJoin,Minq

if decuid “ accept gskruids Ð stuidJoin

return pMOut,dec
uid
q

CONVERTppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

if pbpk, bskq R BK return K

Compute tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

Parse permutation shuffling signatures in this run of CLS+.Convert as Π

@i P r1, ks pµi, σi,miq Ð CLS+.Unblindpbsk, pcµΠpiq, cσΠpiq, cΠpiqqq,

UBLÐ UBLY tpµi,mi, ci, cµi, cσi, bpkqu

if Di P rks s.t Identifypuid˚d , ci, cµi, cσiq “ 1 for some d P t0, 1u and mi “ m˚

// Note m
˚

is the challenged message in the anonymity requirement

if Dj P rksztiu s.t. Identifypuid˚d , cj , cµj , cσjq “ 1 for some d P t0, 1u return K

else return ptpcµi, cσi, ciqukq

Fig. 4. Oracles used in our CLS+ security games

A Omitted Definitions for CLS+

A.1 Oracles in CLS+

In Figure 4, we present in full the omitted oracles in our CLS+ model.

A.2 Helper Algorithms

We now present the algorithms Identify and UnLink in full.

Identifypgpk, bpk, csk, bsk, uid, c, cµ, cσq

pµ1, σ1q Ð CLS+.Signpgpk, bpk,gskruids, 0q, pcµ1, cσ1, c1q Ð CLS+.Blindpgpk, bpk, pµ1, σ1, 0qq

if UnLinkpgpk, csk, bpk, bsk, ppcµ, cσ, cq, pcµ1, cσ1, c1qqq “ 0 return 1 else return 0

UnLinkpgpk, csk, bpk, bsk, ppcµ1, cσ1, c1q, ¨ ¨ ¨ , pcµk, cσk, ckqqq

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

@i P r1, ks pµi, σi,miq Ð CLS+.Unblindpbsk, pcµi, cσi, ciqq

if Di P r1, ks s.t CLS+.Verifyptier-2, gpk, bpk,mi, µi, σiq “ 0 return K

if Dpi, jq with i ‰ j s.t. µi “ µj return 0 else return 1
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When the keys input are clear from context, we often write:
Identifypuid, c, cµ, cσq and UnLinkppc1, cµ,cσ1q, ¨ ¨ ¨ , pck, cµk, cσkqq.

A.3 Correctness and Consistency of CLS+

The detailed definitions for correctness and consistency are given in Figure 5.

Definition 1 (Correctness). A CLS+ scheme satisfies correctness if for all
adversaries A, PrrExpcorr´sigA,CLS+ pτq “ 1s “ 0, and PrrExpcorr´convA,CLS+ pτq “ 1s ď
neglpτq.

Definition 2 (Consistency). A CLS+ scheme satisfies consistency if for all

adversaries A, PrrExpconsist´linkA,CLS+ pτq “ 1s ď neglpτq, and PrrExpconsist´verifA,CLS+ pτq “
1s ď neglpτq.

A.4 Security requirements for CLS+

We provide the CLS+ security requirements in full.

Definition 3 (CLS+ Anonymity). A CLS+ scheme satisfies anonymity if for
all ppt adversaries A the following advantage is negligible in τ :

ˇ

ˇPrrExpanon´0
A,CLS+ pτq “ 1s ´ PrrExpanon´1

A,CLS+ pτq “ 1s
ˇ

ˇ .

Experiment: Expanon´bA,CLS+pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

puid˚0 , uid
˚
1 ,m

˚, bpk˚, stq Ð ASNDU,SIGN,CONVERT
pchoose, gpk, iskq

if uid˚0 R HUL or gskruid˚0 s “K or uid˚1 R HUL or gskruid˚1 s “K return K

pµ˚, σ˚q Ð CLS+.Signpgpk, bpk˚,gskruid˚b s,m
˚
q

b˚ Ð ASNDU,SIGN,CONVERT
pguess, st, µ˚, σ˚q return b˚

Definition 4 (CLS+ Non-Transitivity). A CLS+ scheme satisfies
non-transitivity if for all ppt adversaries A there exists an efficient simulator
SIM such that the following advantage is negligible in τ :

ˇ

ˇPrrExpnontrans´0
A,CLS+ pτq “ 1s ´ PrrExpnontrans´1

A,CLS+ pτq “ 1s
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Experiment: Expcorr´sigA,CLS pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq,HUL, CULÐH

puid,mq Ð AADDU
pgpkq, if gskruids “K return 0

pµ, σq Ð CLS+.Signpgpk, bpk,gskruids,mq

if CLS+.Verifyptier-1, gpk, bpk,m, µ, σq “ 0 return 1 else return 0

Experiment: Expcorr´convA,CLS pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq,

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq,HUL, CULÐH

ppuid1,m0q, ..., puidk,mkqq Ð AADDU
pgpkq

if Di P r1, ks st gskruidis “K return 0

@i P r1, ks pµi, σiq Ð CLS+.Signpgpk, bpk,gskruidis,miq

@j P r1, ks pcµj , cσj , cjq Ð CLS+.Blindpgpk, bpk, pµj , σj ,mjqq

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

@j P r1, ks pµj , σj ,mjq Ð CLS+.Unblindppcµj , cσj , cjq, bskq

if Dj P r1, ks s.t CLS+.Verifyptier-2, gpk, bpk,mj , µj , σjq “ 0 return 1

if D permutation Π : r1, ks Ñ r1, ks s.t. return 0

1.@i P r1, ks mΠpiq “ mi

2.@pi, jq P r1, ks with uidi “ uidj µΠpiq “ µΠpjq

3.@pi, jq P r1, ks with uidi ‰ uidj µΠpiq ‰ µΠpjq

else return 1

Experiment: Expconsist´linkA,CLS pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq,

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq

ppc0, cµ0, cσ0q, pc1, cµ1, cσ1q, pc2, cµ2, cσ2qq Ð Apgpk, isk, csk, bskq
if UnLinkppc0, cµ0, cσ0q, pc1, cµ1, cσ1q, 0q ‰ 0 or UnLinkppc1, cµ1, cσ1q, pc2, cµ2, cσ2q, 0q ‰ 0

return 0

if UnLinkppc0, cµ0, cσ0q, pc2, cµ2, cσ2q, 0q “ 1 return 1 else return 0

Experiment: Expconsist´verifA,CLS pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

ppm0, µ0, σ0q, ¨ ¨ ¨ , pmk, µk, σkq, bpk, bskq Ð Apgpk, isk, cskq
if Dj P rks such that CLS+.Verifyptier-1, gpk, bpk,mj , µj , σjq “ 0 or pbpk, bskq R BK return 0

@i P r1, ks pcµi, cσi, ciq Ð CLS+.Blindpgpk, bpk, pµi, σi,miqq

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

@i P r1, ks pµi, σi,miq Ð CLS+.Unblindppcµi, cσi, ciq, bskq

if tmiuk ‰ tmiuk or Dj P rks such that CLS+.Verifyptier-2, gpk, bpk,mj , µj , σjq “ 0 return 1

else return 0

Fig. 5. Security games for correctness of CLS

25



Experiment: Expnontrans´bA,CLS+ pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq

pcpk, cskq Ð CLS+.CKGenpppq, gpk Ð ppp, ipk, cpkq

b˚ Ð ASNDU,SIGN,CONVX
pguess, gpk, iskq return b˚

where the oracle CONVX works as follows:

if b “ 0 (real world) then CONVX is the standard CONVERT oracle

if b “ 1 (ideal world) then CONVX is the simulated CONVSIM oracle

CONVSIMppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

if pbpk, bskq R BK or CLS+.Convertpgpk, bpk, csk, pcµ1, cσ1, c1q, . . . , pcµk, cσk, ckqq “K

return K

CLÐH,@i P r1, ks

if Duid P HUL s.t Identifypbpk, bsk, uid, ci, cµi, cσiq “ 1

if Luid does not exist, create Luid Ð tciu else set Luid Ð Luid Y tciu

else CLÐ CLY tpci, cσi, cµiqu

ptpcµi, cσi, ciqui“1,...k1q Ð CLS+.Convertpgpk, bpk, csk,CLq for k1 Ð |CL|

Let Luid1 , . . . Luidk2 be the non-empty message clusters created above

tpcµi, cσi, ciqui“k1`1,...k Ð SIMpgpk, bpk, csk, Luid1 , . . . Luidk2 q

Let tpcµ1i, cσ
1
i, c

1
iqui“1,...k be a random permutation of tpcµi, cσi, ciqui“1,...k

return ptpcµ1i, cσ
1
i, c

1
iqui“1,...kq

Definition 5 (CLS+ Conversion Blindness). A CLS+ scheme satisfies con-
version blindness if: for all polynomial time adversaries A the following advan-
tage is negligible in τ :

ˇ

ˇ

ˇ
PrrExpblind´conv´0

A,CLS+ pτq “ 1s ´ PrrExpblind´conv´1
A,CLS+ pτq “ 1s

ˇ

ˇ

ˇ
.

UNBLINDppµ1, σ1,m1q, . . . , pµk, σk,mkqq

if Di P rks s.t CLS+.Verifyptier-1, gpk, bpk,mi, µi, σiq “ 0 return K

@i P rks pcµi, cσi, ciq Ð CLS+.Blindpgpk, bpk, pµi, σi,mi; riqq

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciquk; r1q

@i P r1, ks pµi, σi,miq Ð CLS+.Unblindpbsk, pcµi, cσi, ciqq

return ptpµi, σi,miquk, tpriquk, r
1
q

Experiment: Expblind´conv´bA,CLS+ pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq

pcpk, cskq Ð CLS+.CKGenpppq, pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

pcµ˚, cσ˚, c˚q Ð CLS+.Blindpgpk, bpk, pµb, σb,mbqq

b˚ Ð AUNBLIND
pguess, st, cµ˚, cσ˚, c˚q return b˚

Definition 6 (Conversion Unforgeability). A CLS+ scheme satisfies con-
version unforgeability if for all ppt adversaries A, the advantage
PrrExpuf´convA,CLS+ pτq “ 1s is negligible in τ .
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Experiment: Expuf´convA,CLS+ pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq

pcpk, cskq Ð CLS+.CKGenpppq, gpk Ð ppp, ipk, cpkq

pµ, σ,m, bpkq Ð ACONVERT
pgpk, iskq

return 1 if all of the following conditions are satisfied:

CLS+.Verifyptier-2, gpk, bpk,m, µ, σq “ 1 and pµ,m, ¨, ¨, ¨, bpkq R UBL

Definition 7 (CLS+ Traceability). A CLS+ scheme satisfies traceability if
for all ppt adversaries A, the advantage PrrExptraceA,CLS+pτq “ 1s is negligible in τ .

Experiment: ExptraceA,CLS+pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq

pcpk, cskq Ð CLS+.CKGenpppq, gpk Ð ppp, ipk, cpkq

ptpci, cµi, cσiqui“1,¨¨¨ ,k, bpk, bskq Ð AADDU,SNDI,SIGN
pgpk, cskq

if pbpk, bskq R BK return 0

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

@i P r1, ks pµi, σi,miq Ð CLS+.Unblindpbsk, pcµi, cσi, ciqq

LÐ 0,@uid P HUL if Di P rks s.t puid,mi, bpkq P SL LÐ L` 1

return 1 if all of the following conditions are satisfied:

k ą |CUL| ` L and @pi, jq P rks s.t i ‰ j µi ‰ µj and

@i P rks CLS+.Verifyptier-2, gpk, bpk,mi, µi, σiq “ 1

Definition 8 (CLS+ Non-Frameability). A CLS+ scheme satisfies
non-frameability if for all polynomial time adversaries A, the advantage
PrrExpnonframeA,CLS+ pτq “ 1s is negligible in τ .

Experiment: ExpnonframeA,CLS+ pτq

ppÐ CLS+.Setupp1λq, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

puid, pc, cµ, cσq, bpk, bskq Ð ASNDU,SIGN
pgpk, isk, cskq

if pbpk, bskq R BK return 0

pµ, σ,mq Ð CLS+.Unblindpbsk,CLS+.Convertpgpk, bpk, csk, pc, cµ, cσqqq

return 1 if all of the following conditions are satisfied:

Identifypuid, c, cµ, cσq “ 1 where uid P HUL and ppuid,m, bpkq R SL

B Reduction of CLS unforgeability definitions to CLS+
definitions

We provide reductions that show our CLS+ unforgeability requirements imply
the CLS unforgeability requirements in our adjusted setting. We how that our
CLS+ model ensures the traceability and non-frameability requirements from the
CLS model, adjusted to our updated setting. This ensures that our unforgeability
guarantees also hold for tier-1 signatures before blinding. We now give the
adjusted CLS requirements.
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Traceability (of tier-1 signatures) We now update the traceability require-
ment from the CLS model to our new setting. This ensures that the unforgeability
guarantees hold for tier-1 signatures before blinding, when the converter, data
lake and data processor are corrupted and the issuer is honest. More precisely,
we need that an adversary should not be able to output more valid tier-1 sig-
natures that will be unlinkable upon an honest conversion than the number of
corrupted users. Unlike for CLS, as the blinding public key must be fixed in sign-
ing, this must be output by the adversary. The corresponding blinding secret key
must also be output to allow for the signatures to be unblinded after conversion.
Due to the re-randomisability of signatures to ensure non-transitivity, we cannot
simply restrict signatures obtained from the signing oracle from being output.
Instead, we allow the adversary to output the signatures of honest users. How-
ever, similarly to in the CLS+ requirement, for each honest user that could have
output a signature, we increase the number of unlinkable signatures required by
1. To match this notation, we also explicitly blind, convert and unblind signa-
tures instead of using the UnLink algorithm. This avoids checking the validity of
tier-2 signatures which should not be necessary for the adversary to win. This
ensures an attack is captured where the adversary does not corrupt any users
but still outputs a valid tier-1 signature without using the signing oracle.

Definition 9 (CLS+ tier-1 Traceability). A CLS+ scheme satisfies tier-1
traceability if for all polytime adversaries A, the advantage PrrExptrace´tier1A,CLS+ pτq “
1s is negligible in τ .

Experiment: Exptrace´tier1A,CLS+ pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

ppm1, µ1, σ1q, ..., pmk, µk, σkq, bpk, bskq Ð AADDU,SNDI,SIGN
pgpk, cskq

if pbpk, bskq R BK return 0

@i P rks pcµi, cσi, ciq Ð CLS+.Blindpgpk, bpk, pµi, σi,miqq

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

@i P rks pµi, σi,miq Ð CLS+.Unblindpbsk, pcµi, cσi, ciqq

LÐ 0,@uid P HUL if Di P rks s.t puid,mi, bpkq P SL LÐ L` 1

return 1 if all of the following conditions are satisfied:

k ą |CUL| ` L and @pi, jq P rks s.t i ‰ j µi ‰ µj and

@i P rks CLS+.Verifyptier-1, gpk, bpk,mi, µi, σiq “ 1

Non-Frameability (of tier-1 signatures). We now update the
non-frameability requirement from the CLS model to our new setting. This en-
sures that the unforgeability guarantees hold for tier-1 signatures before blind-
ing, when the converter, issuer, data lake and data processor are corrupted. More
precisely, we need that an adversary should not be able to output a valid tier-1
signatures that will identify to an honest user. Again, unlike in the CLS model,
the blinding public and secret key must be output because these are set during
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signing and Identify is now input blinded signatures. Also, we now require that
the message should not have been input to the signing oracle, due to the re-
randomisability of signatures. The Identify algorithm also now checks that the
resulting tier-2 signatures are valid.

Definition 10 (CLS+ tier-1 Non-Frameability). A CLS+ scheme satisfies
tier-1 non-frameability if for all polytime adversaries A, the advantage
PrrExpnonframe´tier1A,CLS+ pτq “ 1s is negligible in τ .

Experiment: Expnonframe´tier1A,CLS+ pτq

ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

puid,m˚, µ˚, σ˚, bpk, bskq Ð ASNDU,SIGN
pgpk, isk, cskq

if pbpk, bskq R BK return 0

return 1 if all of the following conditions are satisfied:

CLS+.Verifyptier-1, gpk, bpk,m˚, µ˚, σ˚q “ 1 and

Identifypuid,CLS+.Blindpgpk, bpk, µ˚, σ˚,m˚qq “ 1 where uid P HUL and

puid,m˚, bpkq R SL

Reduction from tier-1 Traceability to CLS+ Traceability We build an
adversary A1 that wins in the CLS+ traceability game, given A that wins in the
tier-1 traceability game. We give A1 in Figure 6, and below explain why the
simulation input to A given in Figure 6 is identically distributed to the tier-1
traceability experiment, and that A1 successfully breaks CLS+ traceability.

The inputs to the adversary in both the CLS+ and tier-1 traceability ex-
periments are the same. Therefore, the inputs to A are identical to in the tier-1
traceability game.

Reduction to CLS+ Traceability We assume A is successful. Therefore, pbpk, bskq P
BK and @pi, jq P rks s.t i ‰ j µi ‰ µj .

We need to ensure that k ą |CUL| ` L. The lists of corrupted users, honest
users and outputs from the signing oracle are the same in both games. Let
tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq and for all i P
r1, ks let pµi, σi,miq “ CLS+.Unblindpbsk, pcµi, cσi, ciqq. Due to the consistency
of conversions, tmiuk “ tmiuk. Therefore, the value of L will be the same in
both games, and so k ą |CUL| ` L.

Due to the consistency of conversions and that for all i P rks
CLS+.Verifyptier-1, gpk, bpk,mi, µi, σiq “ 1, for all i P rks
CLS+.Verifyptier-2, gpk, bpk,mi, µi, σiq “ 1.

Therefore, A1 successfully breaks CLS+ traceability.

Reduction from tier-1 Non-Frameability to CLS+ Non-Frameability
We build an adversary A1, that successfully wins in the CLS+ non-frameability
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ADDUpuidq

return ADDU1puidq

SNDIpuid,Minq

return SNDI1puid,Minq

SIGNpuid,m, bpkq

return SIGN1puid,m, bpkq

A1ADDU1,SNDI1,SIGN1
pgpk, cskq

ppm1, µ1, σ1q, ..., pmk, µk, σkq, bpk, bskq Ð AADDU,SNDI,SIGN
pgpk, cskq

@i P rks pcµi, cσi, ciq Ð CLS+.Blindpgpk, bpk, µi, σi,miq

return ptpci, cµi, cσiqui“1,¨¨¨ ,k, bpk, bskq

Fig. 6. A1 which wins in the CLS+ traceability game

game, given A that wins in the tier-1 non-frameability game. We give A1 in
Figure 7, and below explain why the simulation input to A given in Figure 7 is
identically distributed to the tier-1 non-frameability experiment, and that A1
successfully breaks CLS+ non-frameability.

SNDUpuid,Minq

return SNDU1puid,Minq

SIGNpuid,m, bpkq

return SIGN1puid,m, bpkq

A1SNDU1,SIGN1
pgpk, isk, cskq

puid,m˚, µ˚, σ˚, bpk, bskq Ð ASNDU,SIGN
pgpk, isk, cskq

pcµ, cσ, cq Ð CLS+.Blindpgpk, bpk, µ˚, σ˚,m˚q

return puid, pc, cµ, cσq, bpk, bskq

Fig. 7. A1 which wins in the CLS+ non-frameability game

The inputs to the adversary in both the CLS+ and tier-1 non-frameability
experiments are the same. Therefore, the inputs to A are identical to in the
tier-1 non-frameability game.
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Reduction to CLS+ Non-Frameability We assume A is successful. Therefore,
pbpk, bskq P BK and uid P HUL. Also, Identifypuid,CLS+.Blindpgpk, bpk, µ˚, σ˚,
m˚qq “ 1 and puid,m˚, bpkq R SL. We need to ensure that for pµ, σ,mq “
CLS+.Unblindpbsk,CLS+.Convertpgpk, bpk, csk, pc, cµ, cσqqq that puid,m, bpkq R
SL. Due to the consistency of conversions and the fact that CLS+.Verifyptier-1,
gpk, bpk,m˚, µ˚, σ˚q “ 1, m “ m˚. Therefore, A1 successfully breaks CLS+
non-frameability.

C Controlled Malleable NIZKs

C.1 Controlled Malleable Simulation Soundness Extractability

Definition 11. Let pCRSSetup,P,V,ZKEvalq be a NIZKPoK system for an ef-
ficient relation R, with a simulator pS1, S2q and an extractor pE1, E2q. Let T
be an allowable set of unary transformations for the relation R such that mem-
bership in T is efficiently testable. Let SE1 be an algorithm that, on input p1τ q,
outputs pσcrs, τs, τeq such that pσcrs, τsq is distributed identically to the output of
S1. Let A be given, and consider the following game:

– Step 1. pσcrs, τs, τeq Ð SE1p1
τ q

– Step 2. px, πq Ð AS2pσcrs,τs,¨qpσcrs, τeq
– Step 3. pw, x1, T q Ð E2pσcrs, τe, x, πq.

The proof system satisfies controlled-malleable simulation-sound extractability
(CM-SSE) with respect to T if for all PPT algorithms A there exists a negligible
function negl such that the probability (over the choices of SE1, A, and S2) that
Vpσcrs, x, πq “ 1 and px, πq R Q (where Q is the set of queried statements and
their responses) but either (1) w ‰K and px,wq R R; (2) px1, T q ‰ pK,Kq and
either x1 R Qinst (the set of queried instances), x ‰ Tinstpx

1q, or T R T ; or (3)
pw, x1, T q “ pK,K,Kq is at most neglpτq.

C.2 Strong Derivation Privacy

Definition 12. For a malleable NIZK pCRSSetup,P,V,ZKEvalq with an asso-
ciated simulator pS1, S2q, a given adversary A, and bit b, let pAb pτq be the prob-
ability of the event that b1 “ 0 in the following game:

– Step 1. pσcrs, τsq Ð S1p1
τ q.

– Step 2. pstate, x1, π1, ..., xq, πq, T q Ð Apσcrs, τsq.
– Step 3. If Vpσcrs, xi, πiq “ 0 for some i, px1, ¨ ¨ ¨ , xqq is not in the domain of
Tinst, or T R T , abort and output K. Otherwise, form

π Ð

#

S2pσcrs, τs, Tinstpx1, ¨ ¨ ¨ , xqqq, if b “ 0.

ZKEvalpσcrs, T, txi, πiuiPrqsq, if b “ 1.

– Step 4. b1 Ð Apstate, πq.
The proof system is strongly derivation private if for all PPT algorithms A there
exists a negligible function negl such that |pA0 pτq ´ p

A
1 pkq| ă neglpτq.
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D Proofs of Security

We now prove that our CLS–CM construction satisfies the Correctness, Consis-
tency, Anonymity, Non-Transitivity, Conversion Blindness, Conversion Unforge-
ability, Non-Frameability and Traceability requirements given in Section 2, i.e
Lemmas 1, 2, 3, 4, 5, 6 are satisfied.

D.1 Correctness

Correctness of sign is clearly satisfied, due to the correctness of the cm-NIZKs
used.

Let upki be the user public key for the user with identifier uidi. @i P k,
µi, cµi, ci are honestly generated and blinded and so for ai, a

1
i, a

2
i chosen ran-

domly, µi “ pĝ
ai , 1, cpkai1 upkiq, cµi “ pĝ

ai`a
1
i , ĝa

2
i , cpk

ai`a
1
i

1 bpk
a2i
2 upkiq. In

CLS+.Convert the encryption on the pseudonyms is re-randomised. For r1i, r
2
i

Ð$ t0, 1u˚, cµ1i “ pĝai`a
1
i`r

1
i , ĝa

2
i`r

2
i , cpk

ai`a
1
i`r

1
i

1 bpk
a2i`r

2
i

2 upkiq. The decryption
under the converter public key is then removed:

cµ2i “ pĝ
a2i`r

2
i , cpk

ai`a
1
i`r

1
i

1 bpk
a2i`r

2
i

2 upki¨ĝ
´csk1pai`a

1
i`r

1
iqq “ pĝa

2
i`r

2
i , bpk

a2i`r
2
i

2 upkiq.

pepg1, ĝ
a2Πpiq`r

2
Πpiqqr, epg1, bpk

a2Πpiq`r
2
Πpiq

2 upkΠpiqq
rq, will be the pseudonym out-

put by convert, and epg1, bpk
a2Πpiq`r

2
Πpiq

2 upkΠpiqq
r ¨ epg1, ĝ

a2Πpiq`r
2
Πpiqq´rbsk2 “

epg1, upkΠpiqq
r will be the pseudonym output by CLS+.Unblind. Therefore µΠpiq “

µΠpjq if and only if upki “ upkj and therefore uidi “ uidj .
@i P r1, ks, for α chosen randomly, ci “ pg

α,mibpk
α
1 q, for r3i chosen randomly,

cΠpiq “ pg
α`r3i ,mibpk

α`r3i
1 q, therefore mΠpiq “ mi. CLS+.Convert will not fail,

due to the correctness of the cm-NIZKs used. Therefore, due to the correctness
of the SPK and the digital signature used, the signature σ output will be valid.
Therefore, the construction satisfies correctness of conversion.

D.2 Consistency

Assume UnLinkpgpk, csk, ppcµ0, c0, cσ0q, pcµ1, c1, cσ1qqq “ 0 and
UnLinkpgpk, csk, ppcµ1, c1, cσ1q, pcµ2, c2, cσ2qqq “ 0. This ensures that cσ0, cσ1, cσ2
are all valid cm-NIZKs as otherwise UnLink would output K. Therefore cµi “
pĝαi , ĝβi , cpkαi1 bpkβi2 upkiq for some αi, βi P Z˚p , upki P G2.

Due to the above argument for correctness of conversions, letting r1, r2 be the
randomness chosen in convert, epg1, upk0q

r1 “ epg1, upk1q
r1 and epg1, upk1q

r2 “

epg1, upk2q
r2 . Therefore, epg1, upk0q “ epg1, upk1q “ epg1, upk2q. However, if

UnLinkpgpk, csk, ppcµ0, c0, cσ0q, pcµ2, c2, cσ2qqq “ 1, then epg1, upk0q
r3 ‰

epg1, upk2q
r3 , where r3 was chosen during Convert. This is a contradiction. There-

fore, the construction satisfies consistency of linking.
In the consistency of verification game, all signatures returned are valid,

and so they contain valid cm-NIZKs. Due to the strong derivation privacy of the
cm-NIZK, valid cm-NIZKs will be returned after blinding. Therefore, CLS+.Convert
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will not fail and mi will be a shuffle of the original messages, due to the above
argument in correctness of conversion. As conversion does not fail, the tier-2
signature will consist of a digital signature on the pseudonym and ciphertext
output by CLS+.Convert and a proof SPK that these were correctly unblinded.
Due to the correctness of the digital signature scheme and the SPK, the tier-2
signatures will be valid.

D.3 Anonymity

Lemma 1. The CLS–CM construction satisfies anonymity if the DDH as-
sumption holds in G2, and the cm-NIZK is zero knowledge, and cm-SSE.

We assume that an adversary A exists, that makes q queries to the SNDU
oracle for distinct user identifiers, and qconv queries to the CLS+.Convert oracle,
that guesses b correctly in the anonymity game and wins with probability ε`1{2.

We define Game (0,0) to be the anonymity experiment, with b chosen ran-
domly at the beginning, using the CLS–CM construction. Let S0,0 be the event
that an adversary A correctly guesses b after Game (0,0).

Game p0, jq is identical to Game (0,0) except during the first j queries to
the CONVERT oracle, when c, cµ, cσ is queried to the CONVERT, such that c
unblinds to m, Identifypuid˚d , c, cµ, cσq “ 1 and m “ m˚. We give the new convert
oracle used for the first j queries of Game p0, jq in Figure 8. Let S0,j be the event
that the adversary A correctly guesses b after Game p0, jq.

CONVERTppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

if pbpk, bskq R BK return K

if Di˚ P rks, d P t0, 1u s.t Identifypuid˚d , ci˚ , cµi˚ , cσi˚q “ 1

and ci˚,2c
´bsk1
i˚,1

“ m˚ and bpk “ bpk˚

if Di P rkszti˚u s.t. Identifypuid˚d , ci, cµi, cσiq “ 1 for d P t0, 1u return K

ptpcµi, cσi, ciquk´1q Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciq : i P rkszti˚uuq

if ptpcµi, cσi, ciquk´1q “K return K

a1 Ð$Z˚p , ck Ð pci˚,1g
a1 , ci˚,2bpk

a1
1 q

upk˚ Ð$G2, a2 Ð$Z˚p , cµk Ð pepg1, ĝ
a2q, epg1, upk

˚bpka22 qq

cσk Ð SIG.Signpcsk2, pck, cµk, bpkqq

choose random permutation Π, for i “ 1, . . . , k :

pcµi, ci, cσiq Ð pcµΠpiq, cΠpiq, cσΠpiqq

else compute tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

return ptpcµi, cσi, ciqukq

Fig. 8. Convert oracle used during first j queries of Game p0, jq

We show that Game (0,j) and Game (0, j+1) are indistinguishable assuming
the DDH assumption. We give a distinguishing algorithm Dj in Figures 9 and 10,

33



and below explain why Dj simulates inputs to A that are distributed identically
to in Game p0, jq if a DDH tuple is input, and Dj simulates inputs to A that
are distributed identically to in Game p0, j ` 1q if a DDH tuple is not input.

CONVERTppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

if pbpk, bskq R BK return K

sÐ s` 1 if s ď j perform CONVERT given in Figure 12

if s ą j ` 1 perform CONVERT given in anonymity experiment

If Di P rks s.t cσi is not valid with respect to cµi, ci, gpk and bpk return K

if Di˚ P rks, d P t0, 1u s.t cµi˚,3cµ
´csk1
i˚,1

cµ´bsk2
i˚,1

“ upkuid˚
d

and ci˚,2c
´bsk1
i˚,1

“ m˚

and bpk “ bpk˚

if uid˚d ‰ uid1 abort Dj
if Di P rkszti˚u, d P t0, 1u s.t. cµi,3cµ

´csk1
i,1 cµ´bsk2i,1 “ upkuid˚

d
return K

for i “ rkszti˚u :

if Duid P HULztuid1u s.t Identifypuid, ci, cµi, cσiq “ 1, upk1i Ð g
uskuid
1

else pupk1i, ¨ ¨ ¨ q Ð E2,cm-NIZKpσcrs, τe, pcpk1, bpk, ipk, cµi, ciq, cσiq

if upk1i “K return K

a1, a2 Ð$Z˚p , ci Ð pci,1g
a2 , ci,2bpk

a2
1 q, cµi Ð pepupk1i, ĝ

a1q, epupk1i, D3bpk
a1
2 qq

cσi Ð SIG.Signpcsk2, pci, cµi, bpkqq

b1, b2 Ð$Z˚p , µi˚ Ð D4, cµi˚ Ð pepg1, ĝ
b1q, epg1, bpk

b1
2 µi˚qq

ci˚ Ð pci˚,1g
b2 , ci˚,2bpk

b2
1 q, cσi˚ Ð SIG.Signpcsk2, pci˚ , cµi˚ , bpkqq

choose random permutation Π, for i “ 1, . . . , k :

pcµi, ci, cσiq Ð pcµΠpiq, cΠpiq, cσΠpiqq

else compute tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

return ptpcµi, cσi, ciqukq

Fig. 9. Dj a distinguishing algorithm for the DDH problem

The values gpk, csk, isk are distributed identically to in the anonymity game,
as everything but g2, σcrs are chosen in the same way. SE1,cm-NIZK outputs a σcrs
that is identically distributed to in CRSSetup.

Simulating the SNDU Oracle The SNDU oracle only differs from the oracle in
the anonymity experiment when uid1 is input. In this case upk is distributed
identically, and the CLS+.Join protocol can be simulated without knowledge of
usk. Therefore, outputs are distributed identically. usk, upk1 are set to K, but
we will show these are not used later.

Simulating the SIGN Oracle The SIGN oracle is identical to the oracle in the
anonymity experiment, when uid ‰ uid1 is queried. When uid1 is queried, then
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SNDUpuid,Minq

if uid P CUL return K

if uid R HUL

HULÐ HULY tuidu, lÐ l ` 1,gskruids ÐK,decuid Ð cont

if l “ q˚ uid1 Ð uid, upkuid Ð D2 return pupkuid, contq

if uid “ uid1

continue from line 4 of oracle in anonymity experiment but set upk1 “K

else Continue from line 4 of oracle in anonymity experiment

SIGNpuid,m, bpkq

if uid ‰ uid1 perform SIGN oracle from anonymity experiment

if uid “ uid1

if decuid ‰ accept return K

αÐ$Z˚p , µÐ pĝα, 1, upkuidcpk
α
1 q, β Ð 0, γ Ð 0, cÐ p1,mq

σ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, µ, cqq return pµ, σq

SLÐ SLY tpuid,m, bpkqu

return pσ, µq

DjpD1, D2, D3, D4q

s, lÐ 0, q˚ Ð$ r1, qs, bÐ$ t0, 1u, g1 Ð$G1, g2 Ð D1

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq
gÐ$G1, ĝÐ$G2, pσcrs, τs, τeq Ð SE1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pisk, ipkq Ð CLS+.IKGenpppq, pcsk, cpkq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

puid˚0 , uid
˚
1 ,m

˚, bpk˚, stq Ð ASNDU,SIGN,CONVERT
pchoose, gpk, iskq

if uid˚0 R HUL or decuid
˚
0 ‰ accept or uid˚1 R HUL or decuid

˚
1 ‰ accept return K

pµ˚, σ˚q Ð SIGNpuid˚b ,m
˚, bpk˚q

b˚ Ð ASNDU,SIGN,CONVERT
pguess, st, µ˚, σ˚q

if b˚ “ b return 1

Fig. 10. Dj a distinguishing algorithm for the DDH problem
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µ, c can be computed as normal and S2,cm-NIZK can be used to simulate the
cm-NIZK σ. This will be identically distributed, due to the zero knowledge of
cm-NIZK. Therefore, the outputs of SIGN are distributed identically to in the
anonymity experiment.

Simulating the CONVERT Oracle Other than the pj`1qth query, the CONVERT
oracle is identical to in both Games p0, jq and p0, j ` 1q.

For the pj`1qth query, if the input to Dj is a DDH tuple, then outputs from
the CONVERT oracle are identically distributed to in the anonymity game. This
is because, if c, cµ, cσ is not queried to the CONVERT, such that c will decrypt
to m, Identifypuid˚d , c, cµ, cσq “ 1 for d P t0, 1u and m “ m˚ and bpk “ bpk˚,
the oracle behaves identically to in the anonymity game, as in both games. If
an invalid blinded signature is input, the oracle will abort, as in the original
anonymity game.

If this is queried, we show the simulation is correctly distributed. Firstly ci
and cσi are generated identically to in CLS+.Convert.

As we do not have access to gskruid1s, we cannot perform Identify on input
uid1, therefore instead we decrypt the pseudonym and check whether it matches
upkuid1 . Only one signature identifies to uid˚d otherwise the oracle will abort as
in the anonymity game. We assume uid˚d “ uid1 which happens with probability
1{q, therefore extraction of the upk1i is always successful, because cµi does not
decrypt to the user public key of uid1. This is because E2,cm-NIZK will either suc-
cessfully extract upk1i, or instead will extract a transformation T and statement
pcpk1, bpk, ipk, cµ

1
i, c
1iq such that pcpk1, bpk, ipk, cµi, ciq “ Tinstpcpk1, bpk, ipk, cµ

1
i,

c1iq. If it outputs the latter pcµ1i, c
1
iq was input to S2,cm-NIZK, and pcµ1i, c

1
iq is a re-

randomisation of pcµi, ciq. This is not possible as S2,cm-NIZK is only used in the
signing oracle for uid1.

Letting r1 “ logD1
pD3q, and upk1i “ guski1 , upki “ guski2 , then cµi “

pepupk1i, ĝ
a1q, epupk1i, D3bpk

a1
2 qq “ pepg1, ĝ

a1quski , epg1, D3bpk
a1
2 q

uskiq

“ pepg1, ĝ
a1uskiq, epg1, D

uski
3 bpka1uski2 qq “ pepg1, ĝ

a1uskiq, epg1, upk
r1

i bpk
a1uski
2 qq

“ pepg1, ĝ
a1uskir

1´1

qr
1

, epg1, upkibpk
a1uskir

1´1

2 qr
1

q, which is correctly distributed
as a1 is chosen randomly and independently. Also cµi˚ “

pepg1, ĝ
b1q, epg1, bpk

b1
2 D4qq “ pepg1, ĝ

b1r
1´1

qr
1

, epg1, bpk
b1r

1´1

2 upkqr
1

q where upk “
upkuid1 . These are distributed identically, due to the fact that b1 is chosen ran-
domly and independently. The cµi are then shuffled with a random permutation.
Therefore, the outputs of CONVERT are distributed identically to the CONVERT
oracle in the anonymity game, and so Game p0, jq.

Simulating pµ˚, σ˚q. pµ˚, σ˚q input to A in the guessing stage is distributed
identically to in the anonymity game, due to outputs of the SIGN oracle being
distributed identically to the anonymity game.

Reduction to the DDH problem If the input to Dj is not a DDH tuple, then
outputs of the CONVERT oracle are identically distributed to in Figure 8. This
is because if c, cµ, cσ is not queried to the CONVERT oracle, such that c decrypts
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to m, Identifypuid˚d , c, cµ, cσq “ 1 and m “ m˚ for d P t0, 1u and bpk “ bpk˚,
then the oracle behaves identically to both games. If this is the case, as D4 is
now chosen randomly and independently, c˚i , cµ

˚
i , cσ

˚
i are now chosen identically

to in Figure 8. Therefore, if the input to Dj is not a DDH tuple, then the outputs
to A are identically distributed to Game p0, j ` 1q

Dj only aborts early if if c, cµ, cσ is queried to the CONVERT oracle, such
that c decrypts to m, Identifypuid˚d , c, cµ, cσq “ 1 and m “ m˚, for d P t0, 1u
and uid1 ‰ uid˚d . This occurs with probability at most q ´ 1{q. Therefore, the
probability that Dj outputs 1 given a DDH tuple was input is PrrS0,js{q. The
probability that Dj outputs 1 given a DDH tuple was not input is PrrS0,j`1s{q.
The advantage of Dj is then |PrrS0,js ´ PrrS0,j`1s|{q, therefore |PrrS0,js ´

PrrS0,j`1s| “ qεDDH.
We define Game 1 to be Game p0, qconvq, where qconv is the number of queries

to the CONVERT oracle. Let S1 be the event that an adversary A correctly
guesses b after Game 1. As |PrrS0,js ´ PrrS0,j`1s| “ qεDDH, then |PrrS0,0s ´

PrrS1s| ď qconvqεDDH.

Next, we show that |PrrS1s ´ 1{2| ď εDDH. We build an adversary A1 that
distinguishes DDH tuples, given A that guesses successfully in Game 1 with
PrrS1s. We give A1 in Figure 11, and below explain why the simulation input
to A given in Figure 11 is identically distributed to Game 1 given a DDH tuple
is input, and that A1 successfully distinguishes DDH tuples.

The values gpk, isk are distributed identically to in the anonymity game, as
everything but ĝ, cpk1, σcrs are chosen in the same way. SE1,cm-NIZK outputs a σcrs
that is identically distributed to in CRSSetup. ĝ, cpk1 are distributed identically.
The SNDU, and SIGN oracles are identical to the anonymity experiment. If a
DDH tuple is input, µ˚ is distributed identically to Game 1, because letting
α “ logD1

pD3q, then µ˚ “ pĝα, 1, cpkα1 upkuid˚b
q which is identically distributed.

Simulating the CONVERT oracle The CONVERT oracle can no longer use Identify,
without csk1. However, if Di˚ P rks s.t Identifypuid˚d , ci˚ , cµi˚ , cσi˚q “ 1 for d P

t0, 1u and ci˚,2c
´bsk1
i˚,1 “ m˚ and bpk “ bsk˚, then clearly either upki˚ “K or

upki˚ “ upkuidd s.t d P t0, 1u and mi˚ “ m˚. If there does not exist i˚ P
rks s.t Identifypuid˚d , ci˚ , cµi˚ , cσi˚q “ 1 for d P t0, 1u and ci˚,2c

´bsk1
i˚,1 “ m˚,

there clearly there does not exist i˚ P rks s.t upki˚ “ upkuidd s.t d P t0, 1u and
mi˚ “ m˚. If upki˚ “K, then the extraction algorithm outputs a statement x1,
and a transformation T , where x1 “ pcpk1, bpk

˚, ipk, µ˚, c˚q as this is the only
statement for which a simulation is generated, and x “ Txpx

1q and T is a valid
transform. This means that cµi˚ , and ci˚ , are re-randomisations of µ˚, c˚, and
so ci˚ is an encryption of m˚, cµi˚ is an encryption of upkuid˚b

, and bpk “ bpk˚.

This is a contradiction and so the statements are equivalent.
The condition Di P rkszti˚u s.t Identifypuid˚d , ci, cµi, cσiq “ 1 for d P t0, 1u, is

equivalent to Di P rkszti˚u s.t. upki “K or upkuid˚d
for d P t0, 1u by the same

reasoning.
Finally the only difference, is that cµ2i Ð pĝa1 , upkibpk

a1
2 q is used in

CLS+.Convert. Clearly due to the above conditions, upki has been extracted
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SNDUpuid,Minq

Identical to the anonymity experiment.

SIGNpuid,m, bpkq

Identical to the anonymity experiment.

CONVERTppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

if Di P r1, ks s.t cσi is not valid with respect to cµi, ci, gpk and bpk or pbpk, bskq R BK
return K

@i P rks pp¨, upki, ¨, ¨, ¨, ¨, ¨, ¨q, ¨, ¨q Ð E2,cm-NIZKpσcrs, τe, pcpk1, bpk, ipk, cµi, ciq, cσiq

a1 Ð$Z˚p , cµ2i Ð pĝa1 , upkibpk
a1
2 q,mi Ð ci,2c

´bsk1
i,1

if Di˚ P rks s.t upki˚ “K

or upki˚ “ upkuidd s.t d P t0, 1u and mi˚ “ m˚ and bpk “ bpk˚

if Di P rkszti˚u s.t. upki “K or upkuid˚
d

for d P t0, 1u

return K

Using the cµ2i computed above instead of using csk1 compute

ptpcµi, cσi, ciquk´1q Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciq : i P rkszti˚uuq

if ptpcµi, cσi, ciquk´1q “K return K

b1, b2 Ð$Z˚p , ck Ð pci˚,1g
b2 , ci˚,2bpk

b2
1 q, upk

˚
Ð$G2, cµk Ð pepg1, ĝ

b1q, epg1, upk
˚bpkb12 qq

cσk Ð SIG.Signpcsk2, pck, cµk, bpkqq

choose random permutation Π, for i “ 1, . . . , k :

pcµi, ci, cσiq Ð pcµΠpiq, cΠpiq, cσΠpiqq

else Using the cµ2i computed above instead of using csk1 compute

tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq

return ptpcµi, cσi, ciqukq

A1pD1, D2, D3, D4q

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q
ppauto1 Ð ASetup1p1

τ
q, ppauto2 Ð ASetup2p1

τ
q

gÐ$G1, ĝ Ð D1, pσcrs, τs, τeq Ð SE1,cm-NIZKp1
τ
q, ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pisk, ipkq Ð CLS+.IKGenpppq, pcpk2, csk2q Ð SIG.KeyGenp1τ q, cpk Ð pD2, cpk2q

gpk Ð ppp, ipk, cpkq

puid˚0 , uid
˚
1 ,m

˚, bpk˚, stq Ð ASNDU,SIGN,CONVERT
pchoose, gpk, iskq

if uid˚0 , uid
˚
1 R HUL or gskruid˚0 s,gskruid

˚
1 s “K return K

µ˚ Ð pD3, 1, D4upkuid˚
b
q, c˚ Ð p1,m˚q

σ˚ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk
˚, ipk, µ˚, c˚qq

b˚ Ð ASNDU,SIGN,CONVERT
pguess, st, µ˚, σ˚q

if b˚ “ b return 1 else return 0

Fig. 11. A1 which distinguishes DDH tuples
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successfully. Then, cµ2i is distributed identically to the value computed in
CLS+.Convert because this is a re-randomised encryption of upki. Therefore,
this oracle is distributed identically to Figure 8.

Reduction to the DDH assumption If a DDH tuple is not input, D4 was cho-
sen randomly, and so the input to A is independent of b. Therefore A guesses
correctly with probability 1{2.

If a DDH tuple is input, the inputs to A are distributed identically to in Game
1, and they will guess correctly with probability S1. Therefore |PrrS1s ´ 1{2| ď
εDDH.

Therefore |PrrS0,0s ´ 1{2| ď εDDH ` qconvqεDDH. As this is negligible, our con-
struction satisfies anonymity.

D.4 Non-Transitivity

Lemma 2. The CLS–CM construction satisfies non-transitivity if the DDH
assumption holds in G2, and the cm-NIZK is zero knowledge, and cm-SSE.

For proving non-transitivity, we have to show that there exists an efficient
simulator SIM that makes the real and simulated game indistinguishable. We
start by describing the simulator and then explain why the real and simulated
conversion oracles CONVERT and CONVSIM are indistinguishable.

SIMpgpk, bpk, csk, Luid1 , . . . Luidk1 q

lÐ 0,@j P r1, k1s

µ1 Ð$G2;@c P Luidj

lÐ l ` 1, b1, b2 Ð$Z˚p , cµl Ð pepg1, ĝ
b1q, epg1, µ

1bpkb12 qq, cl Ð pgb2c1, bpk
b2
1 c2q

cσl Ð SIG.Signpcsk2, pcµl, cl, bpkqq

return ppcµ1, c1, cσ1q, . . . pcµl, cl, cσlqq

We assume that an adversary A exists, that makes q queries to the SNDU
oracle for distinct user identifiers, and qconv queries to the CONVX oracle, that
guesses b correctly in the non-transitivity game with SIM given above and wins
with probability ε` 1{2.

We will stepwise make the real-world (b=0) and the simulated world (b=1)
equivalent, using a sequence of Games Hj for j “ 0, . . . , q. The idea is that
in Game Hj we will not use simulated conversions for all users uid1, . . . , uidj
in order of when they were queried to SNDU. More precisely, we define Game
Hj to be as given in Figure 12 with all other oracles identical to in the non-
transitivity experiment. Let Sj be the event that A guesses b correctly in Game
Hj , with the simulator given above. Game Hj keeps track of the queries to
SNDU, adding the first j queries of uid to a set UL. Then during queries to
CONVSIM, if a signature of a user in UL is queried, these are treated in the same
way as pseudonyms for corrupted users, i.e., they are normally converted using
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the CLS+.Convert algorithm. If a signature of an honest user that is not in UL
is queried, we add this user to NUL. These conversions are simulated as usual.

Game H0 is identical to the non-transitivity game, because UL is empty.
Therefore, PrrS0s “ ε ` 1{2. In Game Hq, UL contains all honest users, and so
the CONVSIM oracle is now identical to the CONVERT oracle, and inputs to the
adversary are now independent of b , therefore PrrSqs “ 1{2.

Game Hj

tÐ 0, bÐ$ t0, 1u, ppÐ CLS+.Setupp1τ q, pipk, iskq Ð CLS+.IKGenpppq

pcpk, cskq Ð CLS+.CKGenpppq, gpk Ð ppp, ipk, cpkq

return ASNDU,SIGN,CONVX
pguess, gpk, iskq

SNDUpuid,Minq

if uid R HUL, tÐ t` 1, if t ď j ULÐ ULY tuidu

Continue from line 5 of standard SNDU oracle

CONVSIMppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

if pbpk, bskq R BK return K

if CLS+.Convertpgpk, bpk, csk, pcµ1, cσ1, c1q, . . . , pcµk, cσk, ckqq “K return K

Set CLÐH

@i P r1, ks

if Duid P HUL s.t Identifypuid, ci, cµi, cσiq “ 1

if Luid does not exist, create Luid Ð tciu,CLuid Ð tpci, cσi, cµiqu

else set Luid Ð Luid Y tciu,CLuid Ð CLuid Y tpci, cσi, cµiqu

else CLÐ CLY tpci, cσi, cµiqu

ptpcµi, cσi, ciqui“1,...k1q Ð CLS+.Convertpgpk, bpk, csk,CLY
ď

uidPUL

CLuidqq

for k1 Ð |CLY
ď

uidPUL

CLuid|

Let Luid1 , . . . Luidk2 be the non-empty message clusters created above

Let NULÐ tuid1, . . . uidk2uzUL

tpcµi, cσi, ciqui“k1`1,...k Ð SIMpgpk, bpk, csk,
ď

uidPNUL

Luidq

Let tpcµ1i, cσ
1
i, c

1
iqui“1,...k be a random permutation of tpcµi, cσi, ciqui“1,...k

return ptpcµ1i, cσ
1
i, c

1
iqui“1,...kq

Fig. 12. Description of Game Hj and the changes to the SNDU and CONVSIM oracles.

We now show that if an adversary can distinguish Games Hj and Hj`1, we
can turn this into a distinguisher Dj that can break the DDH assumption in G2.
We describe the reduction and the additional simulation that is needed therein
in Figures 13 and 14.
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DjpD11, D12, D13, D14q

Expand D11, D
1
2, D

1
3, D

1
4 into D1, D2, tD3,i, D4,i : i P rqconvsu using DDH random self-reduction [40]

s, tÐ 0, g1 Ð$G1, g2 Ð D1

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq
gÐ$G1, ĝÐ$G2, pσcrs, τs, τeq Ð SE1,cm-NIZKp1

τ
q, ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pisk, ipkq Ð CLS+.IKGenpppq

pcsk, cpkq Ð CLS+.CKGenpppq, gpk Ð ppp, ipk, cpkq

return ASNDU,SIGN,CONVX
pgpk, csk, iskq

SNDUpuid,Minq

if uid P CUL return K

if uid R HUL, tÐ t` 1, if t ď j ULÐ ULY tuidu

HULÐ HULY tuidu,gskruids ÐK,decuid Ð cont

if t “ j ` 1 uid1 Ð uid, upkuid Ð D2, return pupkuid, contq

if uid “ uid1

Continue from line 4 of standard SNDU oracle but set upk1 “K

else Continue from line 4 of standard SNDU oracle

SIGNpuid,m, bpkq

if uid ‰ uid1 perform SIGN oracle from non-transitivity experiment

if uid “ uid1

if decuid ‰ accept return K

αÐ$Z˚p , µÐ pĝα, 1, upkuidcpk
α
1 q, β Ð 0, γ Ð 0, cÐ p1,mq

σ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, µ, cqq return pµ, σq

SLÐ SLY tpuid,m, bpkqu

return pσ, µq

Fig. 13. Dj our distinguishing algorithm for the DDH problem. The CONVERT oracle
remains unchanged, and the CONVSIM oracle using the DDH challenge is given in
Figure 13.

We now argue that when a DDH tuple pD11, D
1
2, D

1
3, D

1
4q is input to Dj , the

inputs to A are distributed identically to in Game Hj`1; when a DDH tuple is
not input, the inputs to A are distributed identically to in Game Hj . That is for
D11 “ h,D12 “ ha, D13 “ hb, D14 “ hc, the oracles provided by Dj will be exactly
as in Hj`1 when c “ ab, and as in Hj otherwise.

We first note that due to the DDH random self-reduction given in [40], if a
DDH tuple is input to Dj , then for all i P rqconvs, D1, D2, D3,i, D4,i is a DDH tu-
ple. If a DDH tuple is not input to Dj , thenD1, D2, D3,1, D4,1, ¨ ¨ ¨ , D3,qconv , D4,qconv

are randomly and independently distributed.
The values gpk, csk, isk are distributed identically to in the non-transitivity

game, as everything but g2, σcrs are chosen in the same way. SE1,cm-NIZK and
CRSSetup outputs identically distributed σcrs.

Simulating the SNDU Oracle The SNDU oracle only differs from the oracle in
the non-transitivity experiment during the pj` 1q-th query by embedding D2 of
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the DDH challenger into the user’s “public key” upk. Clearly, upk is distributed
identically as when computed normally. Note that usk, upk1 are not defined for
this user, but this is not output to A, or used in the next stage of the protocol.

Simulating the SIGN Oracle The SIGN oracle is identical to the oracle in the
non-transitivity experiment, when uid ‰ uid1 is queried. When uid1 is queried,
then µ, c can be computed as normal and S2,cm-NIZK can be used to simulate
the cm-NIZK σ. This will be identically distributed, due to the zero knowledge
of cm-NIZK. Therefore the outputs of SIGN are distributed identically to in the
non-transitivity experiment.

Simulating the CONVSIM Oracle What remains to be shown is that the CONVSIM
oracle created by Dj either behaves identically to the CONVSIM oracle in Game
Hj or as in Hj`1, depending on whether its input was a DDH tuple or not. upk1

is only extracted if ci, cµi, cσi does not identify to any honest user, and therefore
this will be successful. This is because otherwise E2,cm-NIZK will extract a transfor-
mation T and statement pcpk1, bpk, ipk, cµ

1, c1q such that pcpk1, bpk, ipk, cµi, ciq “
Tinstpcpk1, bpk, ipk, cµ

1, c1q. In this case pcµ1, c1q was input to S2,cm-NIZK, and so
cµ1 is an encryption of upkuid1 . Therefore, cµi is also an encryption of upkuid1

and so would have identified to an honest user. Although in the case of uid1,
uskruid1s is not defined, as uid1 R UL then CLuid1 will never be used. c, cσ are
computed in the same way as in CLS+.Convert. We know that D3,s “ gr̃2 for
some r̃ , and upk1 “ gusk1 for some usk, and thus it must hold that cµ “

pepupk1, ĝa1q, epupk1, D3,sbpk
a1
2 qq “ pepg1, ĝ

a1qusk, epg1, g
r̃
2bpk

a1
2 q

uskq “

pepg1, ĝ
a1uskr̃

´1

qr̃, epg1, upkbpk
a1uskr̃

´1

2 qr̃q. This is distributed identically, as a1 is
chosen randomly and independently.

If pD11, D
1
2, D

1
3, D

1
4q is a DDH tuple, then D4,s “ Dr̃

2. Therefore as upkuid1 “
D2, and as pepg1, ĝ

a1q, epg1, D4,sbpk
a1
2 qq “ pepg1, ĝ

a1q, epg1, upk
r̃
uid1bpk

a1
2 qq “

pepg1, ĝ
a1r̃

´1

qr̃, epg1, upkuid1bpk
a1r̃

´1

2 qr̃q the inputs to A are also distributed iden-
tically to in Game Hj`1. Whereas if pD11, D

1
2, D

1
3, D

1
4q is not a DDH tuple, then

D4,s, is distributed identically to µ1, which was chosen randomly and indepen-
dently. Therefore the inputs to A are distributed identically to in Game Hj .

Reduction to the DDH problem Therefore the probability that Dj outputs 1 if it
was given a valid DDH tuple as input is PrrSj`1s, and PrrSjs is the probability
that Dj outputs 1 when the input was not a DDH tuple. The advantage of Dj
is then |PrrSjs ´ PrrSj`1s|, therefore |PrrSjs ´ PrrSj`1s| “ εDDH.

Overall, for our sequence of games H0 to Hq it holds that |PrrS0s´PrrSqs| ď
qεDDH and thus ε ď qεDDH is negligible. This concludes our proof that the
CLS–CM construction satisfies non-transitivity.

D.5 Conversion Blindness

Lemma 3. The CLS–CM construction satisfies conversion blindness if the
DDH assumption holds in G1 and G2, the cm-NIZK is zero knowledge, and
strongly derivation private and the SPK is Zero Knowledge.
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CONVSIMppcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

sÐ s` 1, if pbpk, bskq R BK return K

if CLS+.Convertpgpk, bpk, csk, pcµ1, cσ1, c1q, . . . , pcµk, cσk, ckqq “K return K

Set CLÐH

@i P r1, ks

if Duid P HUL s.t cµi,3cµ
´bsk2
i,2 cµ´csk1i,1 “ upkuid

if Luid does not exist Luid Ð tciu,CLuid Ð tpci, g
uskruids
1 qu

else Luid Ð Luid Y tciu,CLuid Ð CLuid Y tpci, g
uskruids
1 qu

else pupk1i, ¨, ¨, ¨, ¨....q Ð E2,cm-NIZKpσcrs, τe, pcpk1, bpk, ipk, cµi, ciq, cσiq

CLÐ CLY tpci, upk
1
iqu

nÐ 0; @pc, upk1q P CLY
ď

uidPUL

CLuid

nÐ n` 1, a1, a2 Ð$Z˚p , cµn Ð pepupk1, ĝa1q, epupk1, D3,sbpk
a1
2 qq

cn Ð pc1g
a2 , c2bpk

a2
1 q, cσn Ð Sigpcsk2, pcµn, cn, bpkqq

if Luid1 exists @c P Luid1

nÐ n` 1, a1, a2 Ð$Z˚p , cµn Ð pepg1, ĝ
a1q, epg1, D4,sbpk

a1
2 qq

cn Ð pc1g
a2 , c2bpk

a2
1 q, cσn Ð Sigpcsk, pcµn, cn, bpkqq

let Luid1 , . . . Luidk2 be the non-empty message clusters created above

Let NULÐ tuid1, . . . uidk2uzUL

tpcµi, ci, cσiqui“n`1,...k Ð SIMpgpk, bpk, csk
ď

uidPNUL,uid‰uid1

Luidq

Let tpcµ1i, cσ
1
i, c

1
iqui“1,...k be a random permutation of tpcµi, cσi, ciqui“1,...k

return ptpcµ1i, cσ
1
i, c

1
iqui“1,...kq

Fig. 14. The CONVSIM oracle used by distinguisher Dj given in Figure 14. To avoid
confusion, we write uid1 to refer to the j` 1-th user that has joined the group (and for
which Dj embedded the DDH challenge).

We define Game 0 be the conversion blindness experiment for the CLS–CM
construction. Let P0 be the event that an adversary A correctly guesses b after
Game 0.

We define Game 1 to be identical to Game 0, except that σcrs is generated
by S1,cm-NIZK instead of CRSSetup, and a simulation trapdoor is also generated.
As outputs of S1,cm-NIZK and CRSSetup are identically distributed, letting P1 be
the event that the adversary A correctly guesses b after Game 1, then PrrP0s “

PrrP1s.

We define Game 2 to be identical to Game 1, except during blinding instead
of transforming the proof with ZKEval, instead the proof is simulated. We give
Game 2 in full below. Let P2 be the event that the adversary A correctly guesses
b after Game 2.
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UNBLINDppµ1, σ1,m1q, . . . , pµk, σk,mkqq

As in Blindness experiment

Game 2

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, gÐ$G1, ĝÐ$G2

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq, pσcrs, τsq Ð S1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

α, β, γ Ð$ t0, 1u˚, cµ˚ Ð pµb,1ĝ
α, µb,2ĝ

β , µb,3cpk
α
1 bpk

β
2 q,

c˚ Ð pgγ ,mbbpk
γ
1 q, cσ

˚
Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, cµ

˚, c˚qq

b˚ Ð AUNBLIND
pguess, st, cµ˚, cσ˚, c˚q if b˚ “ b return 1 else return 0

We show that Game 1 and Game 2 are indistinguishable assuming the
cm-NIZK proof is strongly derivation private. We give a distinguishing algorithm
D1 in Figure 15, that aims to guess b1 in the strongly derivation private security
game.

We now show that when b1 “ 1 inputs to A are identical to Game 1, and
when b1 “ 0 inputs to A are identical to Game 2.

The gpk, bpk, isk, csk input to A are identical to the input in both Game 1
and Game 2. The UNBLIND oracle is also identical. cµ˚ and c˚ are re-randomisations
of µb and p1,mbq which is identical to in the CLS+.Blind algorithm, and therefore
identical to in both Game 1 and Game 2.

If b1 “ 0, D1 is returned with the simulation of a proof for the statement
T pcpk1, bpk, ipk, µb, p1,mbqq “ pcpk1, bpk, ipk, cµ

˚, c˚q, which is identical to in
Game 2.

If b1 “ 1, D1 is returned with the transformation of the proof under the trans-
formation defined by pα, β, γq, which are used to re-randomise µb and p1,mbq.
This is identical to in Game 1.

Therefore |PrrP1s ´ PrrP2s| ď εsdp, where εsdp is the advantage in breaking
the strong derivation privacy of the cm-NIZK.

We define Game 3 to be identical to Game 2, except cµ˚ is chosen randomly.
We give Game 3 in full below. Let P3 be the event that the adversary A correctly
guesses b after Game 3.
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UNBLINDppµ1, σ1,m1q, . . . , pµk, σk,mkqq

As in Blindness experiment

D1pσcrsq

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, gÐ$G1, ĝÐ$G2

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq, pσcrs, τsq Ð S1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

α, β, γ Ð$ t0, 1u˚

return pst, pcpk1, bpk, ipk, µb, p1,mbqq, σb, pα, β, γqq

D1pst, π
˚
q

cµ˚1 Ð µb,1ĝ
α, cµ˚2 Ð µb,2ĝ

β , cµ˚3 Ð µb,3cpk
α
1 bpk

β
2

c˚1 Ð gγ , c˚2 Ð mbbpk
γ
1

b˚ Ð Apguess, st, cupk, c˚, cµ˚, π˚q, if b˚ “ b return 1

Fig. 15. D1 that distinguishes between Game 1 and Game 2
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UNBLINDppµ1, σ1,m1q, . . . , pµk, σk,mkqq

As in Blindness experiment

Game 3

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, gÐ$G1, ĝÐ$G2

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq, pσcrs, τsq Ð S1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

γ Ð$ t0, 1u˚, cµ˚ Ð$G3
2, c

˚
1 Ð gγ , c˚2 Ð mbbpk

γ
1

cσ˚ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, cµ
˚, c˚qq

b˚ Ð AUNBLIND
pguess, st, cµ˚, cσ˚, c˚q if b˚ “ b return 1 return 0

We define Game 4 to be identical to Game 3, except c˚ is chosen randomly.
We give Game 4 in full below. Let P4 be the event that the adversary A correctly
guesses b after Game 4.

UNBLINDppµ1, σ1,m1q, . . . , pµk, σk,mkqq

As in Blindness experiment

Game 4

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, gÐ$G1, ĝÐ$G2

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq, pσcrs, τsq Ð S1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

pbpk, bskq Ð CLS+.BKGenpppq, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

γ Ð$ t0, 1u˚, cµ˚ Ð$G3
2, c

˚
Ð$G2

1

cσ˚ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, cµ
˚, c˚qq

b˚ Ð AUNBLIND
pguess, st, cµ˚, cσ˚, c˚q if b˚ “ b return 1 return 0

We show that Game 2 and Game 3 are indistinguishable assuming the DDH
assumption in G2. We give a distinguishing algorithm D2 in Figure 16.
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UNBLINDpµ1, σ1,m1q, . . . , pµk, σk,mkqq

if Di P rks s.t CLS+.Verifyptier-1, gpk, bpk,mi, µi, σiq “ 0 return K

rÐ$Z˚p ,@i P r1, ks

r1i,1r
1
i,2, r

1
i,3 Ð$Z˚p , cµi Ð pµi,1ĝ

r1i,1 , µi,2ĝ
r1i,2 , µi,3cpk

r1i,1
1 bpk

r1i,2
2 q

ci Ð pgr
1
i,3 ,mi ¨ bpk

r1i,3
1 q

r2i,1, r
2
i,2, r

2
i,3 Ð$Z˚p , ci Ð pci,1g

r2i,3 , ci,2bpk
r2i,3
1 q

µi Ð epg1, µi,3µ
´csk1
i,1 q

r

cµi Ð pepg1, ĝ
r1i,2`r

2
i,2q

r, epg1, bpk
r1i,2`r

2
i,2

2 µi,3µ
´csk1
i,1 q

r
q

cσ Ð SIG.Signpcsk2, pci, cµi, bpkqq

Simulate πi with µi, cµi,mi, ci

σi Ð pcµi, cσi, ci, πiq

choose random permutation Π, for i “ 1, . . . , k : pµi, σi,miq Ð pµΠpiq, σΠpiq,mΠpiqq

return ptpµi, σi,miquk, tr
1
i,1, r

1
i,2, r

1
i,3uk, tr

2
i,1, r

2
i,2, r

2
i,3uk, r,Πq

D2pD1, D2, D3, D4q

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, gÐ$G1, ĝ Ð D1

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq, pσcrs, τsq Ð S1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

bsk1 Ð$Z˚p , bpk1 Ð gbsk1 , bpk2 Ð D2, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

γ, βÐ$Z˚p , cµ˚ Ð pµb,1ĝ
β , D3, µb,3D4cpk

β
1 q, c

˚
1 Ð gγ , c˚2 Ð mbbpk

γ
1

cσ˚ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, cµ
˚, c˚qq

b˚ Ð AUNBLIND
pguess, st, cµ˚, cσ˚, c˚q if b˚ “ b return 1 return 0

Fig. 16. D2 that distinguishes between Game 2 and Game 3
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If D2 is input a DDH tuple, all inputs to A are distributed identically to in
Game 2. This is because, letting α “ logĝD3, then D4 “ bpkα2 , and therefore
cµ˚ is distributed identically to in Game 2.

If D2 is not input a DDH tuple, all inputs to A are distributed identically
to in Game 3. This is because, β,D3, D4 are now chosen independently and
randomly.

Simulating the UNBLIND oracle. Other than this all inputs are generated iden-
tically, except for the UNBLIND oracle, which must be simulated as bsk2 is not
known. This is distributed correctly because: cµi, ci, cµi, ci, are distributed iden-
tically to in CLS+.Blind, CLS+.Convert with randomness r1i,1, r

1
i,2, r

1
i,3 and

pr2i,1, r
2
i,2, r

2
i,3q, r respectively. cσi is computed identically to in CLS+.Convert.

The unblinded pseudonym µi “ epg1, µi,3µ
´csk1
i,1 qr “ cµi,2 ¨ cµi,1

´bsk2 , and so is
distributed correctly. mi “ mi due to the correctness of the ElGamal encryp-
tion scheme. Finally, πi can be simulated due to the zero knowledge property of
the SPK. Therefore all outputs of UNBLIND are distributed identically to in the
experiment.

Therefore |PrrP2s ´ PrrP3s ď εDDH , where εDDH is the DDH advantage,
and therefore negligible.

We show that Game 3 and Game 4 are indistinguishable assuming the DDH
assumption in G1. We give a distinguishing algorithm D3 in Figure 17.

If D3 is input a DDH tuple, all inputs to A are distributed identically to
in Game 3. This is because, letting γ “ loggD3, then D4 “ bpkγ1 , and so c˚ is
distributed identically to Game 3.

If D3 is not input a DDH tuple, all inputs to A are distributed identically to
in Game 4. This is because c˚1 , c

˚
2 are now chosen independently and randomly.

Simulating the UNBLIND oracle. Other than this all inputs are generated iden-
tically, except for the UNBLIND oracle, which must be simulated as bsk1 is not
known. This is done identically to in the previous distinguisher D2.

Therefore |PrrP3s ´ PrrP4s ď εDDH and therefore |PrrP0s ´ PrrP4s| ď

2εDDH`εsdp, and so |PrrP0s´1{2| ď 2εDDH`εsdp. Therefore assuming the DDH
assumption and the strong derivation privacy of the cm-NIZK, the advantage
of any polynomial time adversary in the conversion blindness game with the
CLS–CM construction is negligible

D.6 Conversion Unforgeability

Lemma 4. The CLS–CM construction satisfies conversion unforgeability if
the signature scheme is EUF-CMA secure, and the SPK is sound.

We build an adversary A1, that successfully wins the EUF-CMA game for a
digital signature scheme, given A that wins the conversion unforgeability game
for the CLS–CM construction with non-negligible probability ε. We give A1 in
Figure 18, and below explain why the simulation input to A given in Figure
18 is identically distributed to the conversion unforgeability experiment for the
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UNBLINDpµ1, σ1,m1q, . . . , pµk, σk,mkqq

if Di P rks s.t CLS+.Verifyptier-1, gpk, bpk,mi, µi, σiq “ 0 return K

rÐ$Z˚p ,@i P r1, ks

r1i,1r
1
i,2, r

1
i,3 Ð$Z˚p , cµi Ð pµi,1ĝ

r1i,1 , µi,2ĝ
r1i,2 , µi,3cpk

r1i,1
1 bpk

r1i,2
2 q

ci Ð pgr
1
i,3 ,mi ¨ bpk

r1i,3
1 q

r2i,1, r
2
i,2, r

2
i,3 Ð$Z˚p , ci Ð pci,1g

r2i,3 , ci,2bpk
r2i,3
1 q

µi Ð epg1, µi,3µ
´csk1
i,1 q

r

cµi Ð pepg1, ĝ
r1i,2`r

2
i,2q

r, epg1, bpk
r1i,2`r

2
i,2

2 µi,3µ
´csk1
i,1 q

r
q

cσ Ð SIG.Signpcsk2, pci, cµi, bpkqq

Simulate πi with µi, cµi,mi, ci

σi Ð pcµi, cσi, ci, πiq

choose random permutation Π, for i “ 1, . . . , k : pµi, σi,miq Ð pµΠpiq, σΠpiq,mΠpiqq

return ptpµi, σi,miquk, tr
1
i,1, r

1
i,2, r

1
i,3uk, tr

2
i,1, r

2
i,2, r

2
i,3uk, r,Πq

D2pD1, D2, D3, D4q

bÐ$ t0, 1u, pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, gÐ$D1, ĝ Ð G1

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2qq, pσcrs, τsq Ð S1,cm-NIZKp1

τ
q

ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

bsk2 Ð$Z˚p , bpk2 Ð ĝbsk2 , bpk1 Ð D2, gpk Ð ppp, ipk, cpkq

pst, pµ0, σ0,m0q, pµ1, σ1,m1qq Ð AUNBLIND
pchoose, gpk, bpk, isk, cskq

if Dd P t0, 1u s.t CLS+.Verifyptier-1, gpk, bpk,md, µd, σdq “ 0 return 0

cµ˚ Ð$G3
2, c

˚
1 Ð D3, c

˚
2 Ð mbD4

cσ˚ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, cµ
˚, c˚qq

b˚ Ð AUNBLIND
pguess, st, cµ˚, cσ˚, c˚q if b˚ “ b return 1 return 0

Fig. 17. D3 that distinguishes between Game 3 and Game 4
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CLS–CM construction, and that A1 successfully breaks the EUF-CMA security
of the digital signature scheme.

CONVERTpcµ1, cσ1, c1q, . . . , pcµk, cσk, ckq, bpk, bskq

As normal but instead of σ1i Ð SIG.Signpcsk2, pc
1
i, cµ

3
i , bpkqq use SIG oracle

A1SIGpppsig, pksigq

pp,G1,G2,GT , e, g1, g2q Ð Gp1τ q, ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2q,
ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2q
gÐ$G1, ĝÐ$G2, σcrs Ð CRSSetupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq

csk1 Ð$Z˚p , cpk1 Ð ĝcsk1 , cpk2 Ð pksig, cpk Ð pcpk1, cpk2q

gpk Ð ppp, ipk, cpkq

pµ, σ,m, bpkq Ð ACONVERT
pgpk, iskq

Parse σ “ pcµ, cσ, c, πubq

return pcµ, c, bpkq, cσ

Fig. 18. A1 which breaks the EUF-CMA security of a digital signature scheme using
A

pgpk, iskq are computed identically to in the conversion unforgeability game,
except cpk2 and ppsig are the public key and parameters input to A1 and so
distributed identically. The CONVERT oracle is identical to in the conversion
unforgeability game, except as csk2 is not known, the signing oracle is used
instead to generate signatures.

Reduction to the EUF-CMA security of the digital signature scheme We assume
A is successful, then CLS+.Verifyptier-2, gpk, bpk,m, µ, σq “ 1. Therefore, cσ is
a valid signature on pcµ, c, bpkq. We now need to show that pcµ, c, bpkq was not
input to SIG. We have that pµ,m, ¨, ¨, ¨, bpkq R UBL. If pcµ, c, bpkq was input to
SIG, then due to the soundness of the SPK, the same µ,m would have been gen-
erated in the CLS+.Convert oracle and so saved in UBL. This is a contradiction.

Therefore A1 successfully breaks the EUF-CMA of the digital signature scheme
with probability ε. Therefore, assuming the EUF-CMA security of the digital sig-
nature scheme, the CLS–CM construction satisfies conversion unforgeability.

D.7 Non-Frameability

Lemma 5. The CLS–CM construction satisfies non-frameability if the auto-
morphic signatures are EUF-CMA secure, and the cm-NIZK is zero knowledge,
and cm-SSE.
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We build an adversary A1, that breaks the EUF-CMA security of the auto-
morphic signature scheme with non-negligible probability, given A that wins the
non-frameability game for the CLS–CM construction with non-negligible prob-
ability ε and makes q queries to the SNDU oracle for distinct users. We give
A1 in Figure 19, and below explain why the simulation input to A given in
Figure 19 is identically distributed to the non-frameability experiment for the
CLS–CM construction, and that A1 successfully breaks the EUF-CMA security
of the automorphic signature scheme.

pgpk, iskq are computed identically to in the non–frameability game, except
that ppauto1 are the automorphic signature scheme parameters input to A1 and
so distributed identically.

Simulating the SNDU oracles: When uid ‰ uid˚, the SNDU oracle is identical
to in the non-frameability experiment. When uid “ uid˚, upkuid˚ is set to apk,
which is distributed identically to in CLS+.Join. uskruids, upk1 are set to K but
these are not used later.

Simulating the SIGN oracle: In the case of uid ‰ uid˚, this is identical to in the
non-frameability experiment. When uid “ uid˚, µ, c are generated identically
to in CLS+.Sign. σ can be simulated due to the zero knowledge property of the
cm-NIZK proofs used.

Reduction to EUF-CMA security of automorphic signatures. We assume A is
successful. We now argue that A1 successfully breaks the EUF-CMA security of
the automorphic signature scheme.

We assume with probability 1{q that A1 guesses correctly and uid “ uid˚.
First, we need to show that A1 will successfully extract apk,Ω,m. cσ is a valid
cm-NIZK as otherwise Identify would not be successful. As Identifypuid˚, c, cµ, cσq “
1, then cµ is an encryption of upkuid˚ “ apk. E2,cm-NIZK will either extract a valid
witness, which would ensure that AVerify1pΩ, apk,mq “ 1; or E2,cm-NIZK will ex-
tract a statement x1 and transformation T such that x “ Tinstpx

1q, where x is
the statement output, T P T and x1 P Q. Therefore a proof must have been
simulated during signing for a statement x1 “ pcpk1, bpk

˚, ipk, cµ1, c1q such that
cµ is a re-randomisation of cµ1 and c is a re-randomisation of c1. Therefore cµ1

must be an encryption of upkuid˚ and c1 must be an encryption of m, and so
puid˚,m, bpkq was queried to the SIGN oracle. This is a contradiction given that
A is successful.

In order for A1 to win, pm,Ωq must be a valid under apk, which is true as the
extraction was successful. The signing oracle SIGNauto is not used, and therefore
A1 wins with probability ε{q.

Therefore A1 succesfully breaks the EUF-CMA security of the automorphic
signature scheme with probability ε{q. Therefore, assuming the EUF-CMA se-
curity of the automorphic signature scheme, the CLS–CM construction satisfies
non-frameability.
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SNDUpuid,Minq

if uid P CUL return K

if uid R HUL

HULÐ HULY tuidu, QÐ Q` 1,gskruids ÐK,decuid Ð cont

if Q “ k uid˚ Ð uid, upkuid Ð apk return pupkuid, contq

if uid “ uid˚

Continue from line 4 of oracle in non-frameability experiment but set upk1 “K

Continue from line 4 of oracle in non-frameability experiment

SIGNpuid,m, bpkq

if uid “ uid˚

if decuid ‰ accept return K

αÐ$Z˚p , µÐ pĝα, 1, upkuidcpk
α
1 q, cÐ p1,mq

σ Ð S2,cm-NIZKpσcrs, τs, pcpk1, bpk, ipk, µ, cqq

SLÐ SLY tpuid,m, bpkqu

return pµ, σq

else Identical to non-frameability experiment

A1SIGNautoppp,G1,G2,GT , e, g1, g2q, ppauto, apkq

QÐ 0, kÐ$ rqs, ppauto1 Ð ppauto, ppauto2 Ð ASetup2pp,G1,G2,GT , e, g1, g2q
gÐ$G1, ĝÐ$G2, pσcrs, τs, τeq Ð SE1,cm-NIZKp1

τ
q, ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

pipk, iskq Ð CLS+.IKGenpppq, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

puid, pc, cµ, cσq, bpk, bskq Ð ASNDU,SIGN
pgpk, isk, cskq

if pbpk, bskq R BK return 0

pp¨, upk, ¨, Ω, ¨, ¨, ¨,mq, ¨, ¨q Ð E2,cm-NIZKpσcrs, τe, pcpk1, bpk, ipk, cµ, cq, cσq

if upk “ apk return pm,Ωq else return K

Fig. 19. A1 which breaks the EUF-CMA security of the automorphic signature scheme
using A which breaks the non-frameability of the CLS–CM construction.
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D.8 Traceability

Lemma 6. The CLS–CM construction satisfies traceability if the automorphic
signatures are EUF-CMA secure, and the cm-NIZK is zero knowledge, and cm-
SSE.

We build an adversary A1, that breaks the EUF-CMA security of the auto-
morphic signature scheme with non-negligible probability, given A that wins the
traceability game for the CLS–CM construction with non-negligible probability
ε. We give A1 in Figure 20, and below explain why the simulation input to A
given in Figure 20 is identically distributed to the traceability experiment for the
CLS–CM construction, and that A1 successfully breaks the EUF-CMA security
of the automorphic signature scheme.

ADDUpuidq

Identical to traceability experiment except credÐ SIGNautopupkq

SNDIpuid,Minq

Identical to traceability experiment except credÐ SIGNautopupkq

SIGNpuid,m, bpkq

Identical to in traceability experiment

A1SIGNautoppp,G1,G2,GT , e, g1, g2q, ppauto, apkq

ppauto1 Ð ASetup1pp,G1,G2,GT , e, g1, g2qq, ppauto2 Ð ppauto

gÐ$G1, ĝÐ$G2, pσcrs, τs, τeq Ð SE1,cm-NIZKp1
τ
q, ppsig Ð SIG.Setupp1τ q

ppÐ ppp,G1,G2,GT , e, g1, g2q, ppauto1, ppauto2, g, ĝ, σcrs, ppsigq

ipk Ð apk, pcpk, cskq Ð CLS+.CKGenpppq

gpk Ð ppp, ipk, cpkq

ppc1, cµ1, cσ1q, ..., pck, cµk, cσkq, bpk, bskq Ð AADDU,SNDI,SIGN
pgpk, cskq

if pbpk, bskq R BK return K

if Di P r1, ks s.t @uid P CULY HUL cµi,3cµ
´csk1
i,1 cµ´bsk2i,2 ‰ upkuid

pp¨, upk, cred, ¨, ¨, ¨, ¨, ¨q, ¨, ¨q Ð E2,cm-NIZKpσcrs, τe, pcpk1, bpk, ipk, cµi, ciq, cσiq

return pupk, credq

else return K

Fig. 20. A1 which breaks the EUF-CMA security of the automorphic signature scheme
using A which breaks the traceability of the CLS–CM construction.

First note that all inputs that A1 provides to A are distributed identically to
in the traceability experiment. This is because SE1,cm-NIZK outputs a σcrs that is
identical to in CRSSetup, and ipk and ppauto2 are distributed identically.
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Simulating the oracles: The ADDU and SNDI oracles are only different to in the
traceability experiment, when cred is generated. As the signing oracle in the
EUF-CMA experiment outputs a valid signature under isk, this is distributed
identically.

The SIGN oracle is identical to in the traceability experiment.

Reduction to EUF-CMA security of automorphic signatures. Assume A is suc-
cessful. We first show that A1 can find i P r1, ks s.t @uid P CULY HUL
cµi,3cµ

´csk1
i,1 cµ´bsk2i,2 ‰ upkuid.

Let L1 “ |ti P rks : cµi,3cµ
´csk1
i,1 cµ´bsk2i,2 “ upkuid and uid P HULu|

Let C 1 “ |ti P rks : cµi,3cµ
´csk1
i,1 cµ´bsk2i,2 “ upkuid and uid P CULu|.

Let tpcµi, cσi, ciquk Ð CLS+.Convertpgpk, bpk, csk, tpcµi, cσi, ciqukq and for
all i P r1, ks let pµi, σi,miq “ CLS+.Unblindpbsk, pcµi, cσi, ciqq.

If A1 aborts then k ď C 1`L1. However if A is successful, then k ą CUL`L,
where L “ |tuid P HUL : Di s.t puid,mi, bpkq P SLu|.

Therefore, either C 1 ą CUL or L1 ą L.

If C 1 ą CUL, two signatures both decrypt to the same corrupted user. There-
fore for some pi, jq P rks2 , cµi,3cµ

´csk1
i,1 cµ´bsk2i,2 “ cµj,3cµ

´csk1
j,1 cµ´bsk2j,2 .

However as the two signatures are unlinked we have for β11, β
1
2Ð$Z˚p ,

epg1, cµi,3bpk
β11
2 cµ´csk1i,1 qrepg1, cµi,2ĝ

β11q´rbsk2

‰ epg1, cµj,3bpk
β12
2 cµ´csk1j,1 qrepg1, cµj,2ĝ

β12q´rbsk2 ,

Therefore, epg1, cµi,3cµ
´bsk2
i,2 cµ´csk1i,1 qr ‰ epg1, cµj,3cµ

´bsk2
j,2 cµ´csk1j,1 qr, which is

a contradiction.

If L1 ą L, let L2 “ |tuid P HUL : Di P rks s.t cµi,3cµ
´csk1
i,1 cµ´bsk2i,2 “ upkuidu|,

as no two signatures will decrypt to the same honest user, due to the above
argument, L1 “ L2, and so L2 ą L.

Therefore there exists an honest user uid˚ and i P rks such that
cµi,3cµ

´csk1
i,1 cµ´bsk2i,2 “ upkuid˚ , but puid,mi, bpkq R SL. Clearly then pcµi, cσi, ciq

would identify to uid˚, because cσi is a valid cm-NIZK (otherwise CLS+.Convert
would fail) and decrypts to upkuid˚ under csk1 and bsk2. This is not possible
as we have already proven our CLS–CM construction satisfies non-frameability.
Therefore, A1 aborts with negligible probability.

All signatures output by A are valid cm-NIZKs because they do not cause
CLS+.Convert to fail. We have not used S1,cm-NIZK to obtain simulations of the
cm-NIZK proofs used, therefore E2,cm-NIZK will extract a valid witness, with 1´
neglpnq probability. This ensures that AVerify2pcred, ipk, upkq “ 1. As upk is
not the public key of any corrupted or honest users, upk was not queried to
SIGNauto by ADDU or SNDI. Therefore cred is a valid forgery under apk, and A1
is successful.
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E Instantiation of the cm-NIZK

It is shown in Theorem 4.5 in [16] that cm-NIZKS for pR, T q can be instantiated
assuming DLIN holds if pR, T q are CM-friendly which they define fully in Section
C.1.

More formally we define the relation R such that ppcpk1, bpk1, bpk2, ipk, cµ, cq,

pupk1, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,mqq P R if and only if epg1, µ1q “ epgα1 , ĝq, epg1, µ2q “

epgβ1 , ĝq and epg1, µ3q “ epg1, upkqepg
α
1 , cpk1qepg

β
1 , bpk2q; , AVerify1pΩ, upk,mq “

1, AVerify2pcred, ipk, upkq “ 1 and
epc1, g2q “ epg, gγ2 q, epc2, g2q “ epm, g2qepbpk1, g

γ
2 q, and epupk1, g2q “ epg1, upkq.

We define the allowable set of transformation T “ tprenc1, renc2, renc3q :
renc1, renc2, renc3 P Z˚pu, such that for T “ prenc1, renc2, renc3q, the transformation
Tinstpcpk1, bpk, ipk, µ, cq “ pcpk1, bpk, ipk, pµ1ĝ

renc1 , µ2ĝ
renc2 , µ3cpk

renc1
1 bpkrenc22 q,

pc1g
renc3 , c2bpk

renc3
1 qq, Twitpupk

1, upk, cred,Ω, gα1 , g
β
1 , g

γ
2 ,mq “ pupk1, upk, cred,Ω,

gα1 g
renc1
1 , gβ1 g

renc2
1 , gγ2 g

renc3
2 ,mq.

We now show that pR, T q is CM-Friendly which means 6 conditions are
satisfied.

1. Representable statements: any instance and witness of R can be represented
as a set of group elements
Verification keys, messages and signatures of autormorphic signatures are
all group elements and so ipk, upk, cred,Ω,m are all group elements. upk1 “
gusk1 and so is a group element.
cpk1, bpk1, bpk2, cµ “ pcµ1, cµ2, cµ3q, c “ pc1, c2q can all clearly be repre-
sented by group elements due to the elgamal encryption used. Represent
encryption randomness α, β, γ with pgα1 , g

β
1 , g

γ
2 q.

2. Representable transformations: any transformation in T can be represented
as a set of group elements
Represent randomness renc1, renc2, renc3 with pgrenc11 , ĝrenc1 , cpkrenc11 , grenc21 , ĝrenc2 ,
bpkrenc22 , grenc32 ,
grenc3 , bpkrenc31 q.

3. Provable statements: we can prove the statement px,wq P R (using the above
representation for x and w) using pairing product equations.
AVerify1pΩ, upk,mq “ 1, and AVerify2pcred, ipk, upkq “ 1 can be written as a
conjuction of pairing product equations over upk,m,Ω, cred, ipk due to the
properties of automorphic signatures.
All other equations are already in the form of pairing product equations,
using the representation given above.

4. Provable transformations: we can prove the statement “Tinstpxq “ x1 for T P
T ” (using the above representations for x and T) using a pairing product
equation.
Given x “ pcpk1, bpk1, bpk2, ipk, pcµ1, cµ2, cµ3q, pc1, c2qq, x

1 “ pcpk11, bpk
1
1,

bpk12, ipk
1, pcµ11, cµ

1
2, cµ

1
3q, pc

1
1, c

1
2qq, T “ pR1, R

1
1, R

2
1, R2, R

1
2, R

2
2, R3, R

1
3, R

2
3q,

then Tinstpxq “ x1 and T P T iff:
epg1, cpk1q “ epg1, cpk

1
1q,epbpk1, g2q “ epbpk11, g2q, epg1, bpk2q “ epg1, bpk

1
2q,

epipk, g2q “ epipk1, g2q and
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epc12, g2q “ epbpk1, R3qepc2, g2q, epc
1
1, g2q “ epg,R3qepc1, g2q, and

epg1, cµ
1
3q “ epR1, cpk1qepR2, bpkqepg1, cµ3q, epg1, cµ

1
1q “ epR1, ĝqepg1, cµ1q,

epg1, cµ
1
2q “ epR2, ĝqepg1, cµ2q.

5. Transformable statements: for any T P T , there is a valid transformation
spT q that takes the statement “px,wq P R” (phrased using pairing products
as above) and produces the statement “pTinstpxq, Twitpwqq P R.
We transform the pairing product equations for an instance pcpk1, bpk1, bpk2,
ipk, pcµ1, cµ2, cµ3q, pc1, c2qq into mauled equations for an instance

pcpk1, bpk1, bpk2, ipk, pcµ1ĝ
α1 , cµ2ĝ

β1 , cµ3cpk
α1

1 bpk
β1

2 q, pc1g
γ1 , c2bpk

γ1

1 qq as fol-
lows:
First of all we re-randomise cµ.

– Add(eq1 :“ epg1, ĝ
α1q´1epgα

1

1 , ĝq “ 1)

Add(eq2 :“ epg1, ĝ
β1q´1epgβ

1

1 , ĝq “ 1)

Add(eq3 : epg1, cpk
α1

1 bpk
β1

2 q
´1epgα

1

1 , cpk1qepg
β1

1 , bpk2q “ 1)
– MergeEq(eq1, epg1, cµ1q

´1epgα1 , ĝq “ 1 ) to create equation eq4.

MergeEq(eq2, epg1, cµ2q
´1epgβ1 , ĝq “ 1) to create equation eq5.

MergeEq(eq3, epg1, cµ3q
´1epgα1 , cpk1qepg

β
1 , bpk2qepg1, upkq “ 1 ) to create

equation eq6.
– MergeVarpcµ1, ĝ

α1 , ˆcµ1, tg1uq, will create equation
epg1, cµ1ĝ

α1qepg1, ˆcµ1q
´1 “ 1.

MergeEq(epg1, cµ1ĝ
α1qepg1, ˆcµ1q

´1 “ 1,eq4q to create equation eq7.
MergeVarpcµ2, ĝ

β1 , ˆcµ2, tg1uq, will create equation
epg1, cµ2ĝ

β1 , qepg1, ˆcµ2q
´1 “ 1.

MergeEq(epg1, cµ2ĝ
β1 , qepg1, ˆcµ2q

´1 “ 1,eq5 ) to create equation eq8.

MergeVarpcµ3, cpk
α1

1 bpk
β1

2 , ˆcµ3, tg1uq, will create equation

epg1, cµ3cpk
α1

1 bpk
β1

2 qepg1, ˆcµ3q
´1 “ 1.

MergeEq(epg1, cµ3cpk
α1

1 bpk
β1

2 qepg1, ˆcµ3q
´1 “ 1,eq6) to create equation

eq9.
– MergeVarpgα

1

1 , g
α
1 , g

α̃
1 , tĝ, cpk1uq, will create equations

epgα
1

1 g
α
1 , ĝq

´1epgα̃1 , ĝq “ 1 and
epgα

1

1 g
α
1 , cpk1q

´1epgα̃1 , cpk1q “ 1.
MergeEq(epgα

1

1 g
α
1 , ĝq

´1epgα̃1 , ĝq “ 1,eq7 ).

MergeVarpgβ
1

1 , g
β
1 , g

β̃
1 , tĝ, bpk2uq, will create equations

epgβ
1

1 g
β
1 , ĝq

´1epgβ̃1 , ĝq “ 1 and

epgβ
1

1 g
β
1 , bpk2q

´1epgβ̃1 , bpk2q “ 1.

MergeEq(epgβ
1

1 g
β
1 , ĝq

´1epgβ̃1 , ĝq “ 1,eq8 ).

MergeEq(epgα
1

1 g
α
1 , cpk1q

´1epgα̃1 , cpk1q “ 1,epgβ
1

1 g
β
1 , bpk2q

´1epgβ̃1 , bpk2q “
1) to create equation eq10 .
MergeEq(eq9, eq10 ).
Remove obsolete equations and variables with RemoveEq and RemoveVar.

We now re-randomise c.

– Add(eq11 :“ epgγ
1

, g2q
´1epg, gγ

1

2 q “ 1)

Add(eq12 :“ epbpkγ
1

1 , g2q
´1epbpk1, g

γ1

2 q “ 1)
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– MergeEq(eq11,epc1, g2q
´1epg, gγ2 q “ 1 ) to create equation eq13.

MergeEq(eq12, epc2, g2q
´1epbpk1, g

γ
2 qepm, g2q “ 1 ) to create equation

eq14.
– MergeVarpc1, g

γ1 , ĉ1, tg2uq, will create equation
epc1g

γ1 , g2qepĉ1, g2q
´1 “ 1.

MergeEq(epc1g
γ1 , g2qepĉ1, g2q

´1 “ 1, eq13 ) to create eq15.

MergeVarpc2, bpk
γ1

1 , ĉ2, tg2uq, will create equation

epc2bpk
γ1

1 , g2qepĉ2, g2q
´1 “ 1.

MergeEq(epc2bpk
γ1

1 , g2qepĉ2, g2q
´1 “ 1,eq14) to create eq16.

– MergeVarpgγ2 , g
γ1

2 , g
γ̃
2 , tbpk1, guq, will create equations

epg, gγ2 g
γ1

2 q
´1epg, gγ̃2 q “ 1 and

epbpk1, g
γ
2 g

γ1

2 q
´1epbpk1, g

γ̃
2 q “ 1.

MergeEq(epg, gγ2 g
γ1

2 q
´1epg, gγ̃2 q “ 1, eq15 ).

MergeEq(epbpk1, g
γ
2 g

γ1

2 q
´1epbpk1, g

γ̃
2 q “ 1,eq16 ).

Finally remove obsolete equations and variables with RemoveEq and Remove-
Var.
(6) Transformable transformations: for any T, T 1 P T there is a valid trans-
formation tpT q that takes the statement “Tinstpx

1q “ x for T P T ” (phrased
using pairing products as above) and produces the statement “T 1inst˝Tinstpx

1q “

T 1instpxq for T 1 ˝T P T ” and that preserves the variables in x1 (does not per-
form RemoveVar on variables in x1).
We transform the pairing product equations defined in (4) for proving knowl-
edge of a transformation from instance pcpk1, bpk, ipk, cµ

1, c1q to
pcpk1, bpk, ipk, cµ, cq, into mauled equations for proving knowledge of a trans-
formation from instance pcpk1, bpk, ipk, cµ

1, c1qto

pcpk1, bpk, ipk, pcµ1ĝ
α, cµ2ĝ

β , cµ3bpk
β
2 cpk

α
1 q, pc1g

γ , c2bpk
γ
1 qq we can use the

same strategy (and the same constant equations) as for transforming state-
ments.

– MergeVarpc1, g
γ , ĉ1, tg2uq, will create equation epc1g

γ , g2qepĉ1, g2q
´1 “ 1.

MergeEq(epc1, g2q
´1epg,R3qepc

1
1, g2q, epc1g

γ , g2qepĉ1, g2q
´1 “ 1).

MergeVarpR3, g
γ
2 , R̂3, tg, bpk1uq, will create equations

epg,R3g
γ
2 q
´1epg, R̂3q “ 1 and

epbpk1, R3g
γ
2 q
´1epbpk1, R̂3q “ 1.

MergeEq(epĉ1, g2q
´1epg,R3qepg, g

γ
2 qepc

1
1, g2q, epg,R3g

γ
2 q
´1epg, R̂3q “ 1).

MergeVarpc2, bpk
γ
1 , ĉ2, tg2uq, will create equation

epc2bpk
γ
1 , g2qepĉ2, g2q

´1 “ 1.
MergeEq(epc2, g2q

´1epbpk1, R3qepc
1
2, g2q “ 1, epc2bpk

γ
1 , g2qepĉ2, g2q

´1 “

1).
MergeEq(epĉ2, g2q

´1epbpk1, R3g
γ
2 qepc

1
2, g2q “ 1, epbpk1, R3g

γ
2 q
´1

epbpk1, R̂3q “ 1 ).
– MergeVarpcµ1, ĝ

α, ˆcµ1, tg1uq, will create equation
epg1, cµ1ĝ

αqepg1, ˆcµ1q
´1 “ 1.

MergeEq(epg1, cµ1q
´1epR1, ĝqepg1, cµ

1
1q “ 1, epg1, cµ1ĝ

αqepg1, ˆcµ1q
´1 “

1).
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MergeVarpR1, g
α
1 , R̂1, tĝ, cpk1uq, will create equations

epR1g
α
1 , ĝq

´1epR̂1, ĝq “ 1 and
epR1g

α
1 , cpk1q

´1epR̂1, cpk1q “ 1.
MergeEq(epg1, ˆcµ1q

´1epR1, ĝqepg
α
1 , ĝqepg1, cµ

1
1q “ 1, epR1g

α
1 , ĝq

´1

epR̂1, ĝq “ 1).
MergeVarpcµ2, ĝ

β , ˆcµ2, tg1uq, will create equation
epg1, cµ2ĝ

βqepg1, ˆcµ2q
´1 “ 1.

MergeEq(epg1, cµ2q
´1epR2, ĝqepg1, cµ

1
2q “ 1, epg1, cµ2ĝ

βqepg1, ˆcµ2q
´1 “

1).

MergeVarpR2, g
β
1 , R̂2, tĝ, bpk2uq, will create equations

epR2g
β
1 , ĝq

´1epR̂2, ĝq “ 1 and

epR2g
β
1 , bpk2q

´1epR̂2, bpk2q “ 1.

MergeEq(epg1, ˆcµ2q
´1epR2, ĝqepg

β
1 , ĝqepg1, cµ

1
2q “ 1,

epR2g
β
1 , ĝq

´1epR̂2, ĝq “ 1).

MergeVarpcµ3, cpk
α
1 bpk

β
2 , ˆcµ3, tg1uq, will create equation

epg1, cµ3cpk
α
1 bpk

β
2 qepg1, ˆcµ3q

´1 “ 1.
MergeEq(epg1, cµ3q

´1epR1, cpk1qepR2, bpk2qepg1, cµ
1
3q “ 1,

epg1, cµ3cpk
α
1 bpk

β
2 qepg1, ˆcµ3q

´1 “ 1).

MergeEq(epg1, ˆcµ3q
´1epR1, cpk1qepg

α
1 , cpk1qepR2, bpk2qepg

β
1 , bpk2q

epg1, cµ
1
3q “ 1, epR1g

α
1 , cpk1q

´1epR̂1, cpk1q “ 1 ).

MergeEq(epg1, ˆcµ3q
´1epR̂1, cpk1qepR2, bpk2qepg

β
1 , bpk2qepg1, cµ

1
3q “ 1,

epR2g
β
1 , bpk2q

´1epR̂2, bpk2q “ 1 ).

Finally remove obsolete equations and variables with RemoveEq and Remove-
Var, pcµ1, c1q will be unaffected by RemoveVar.
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