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Abstract. Evaluating the side-channel resistance of a device in practice is
a problematic and arduous process. Current certification schemes require to
attack the device under test with an ever-growing number of techniques to
validate its security. In addition, the success or failure of these techniques
strongly depends on the individual implementing them, due to the fallible and
human intrinsic nature of several steps of this path.
To alleviate this problem, we propose a battery of automated attacks as a
side-channel analysis robustness assessment of an embedded device. To prove
our approach, we conduct realistic experiments on two different devices, cre-
ating a new dataset (AES RA) as a part of our contribution. Furthermore, we
propose a novel way of performing these attacks using Principal Component
Analysis, which also serves as an alternative way of selecting optimal prin-
cipal components automatically. In addition, we perform a detailed analysis
of automated attacks against masked AES implementations, comparing our
method with the state-of-the-art approaches and proposing two novel initial-
ization techniques to overcome its limitations in this scenario. We support our
claims with experiments on AES RA and a public dataset (ASCAD), showing
how our, although fully automated, approach can straightforwardly provide
state-of-the-art results.
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1 Introduction

The process of integrating and validating countermeasures against Side-channel at-
tacks (SCA) on embedded devices is known for being a complex and cumbersome
task. Current certification schemes like EMVCo [12] or Common Criteria (CC [11])
assess the security of the device under test (DUT) by applying a battery of known SCA
(e.g., differential power analysis (DPA) [26], correlation power analysis (CPA) [6], mu-
tual information analysis (MIA) [16,3], template attacks (TA) [8,46,9], and machine
learning-based attacks (ML-SCA) [20,19,30,31,35,45,37]). The evaluation approach is
to rate each attack by considering the effort required to create and apply the attack
for the first time (identification step) and once knowing the techniques developed in
the identification (exploitation step) [33]. However, the ever-growing number of pos-
sible attack techniques makes it increasingly difficult to master and correctly apply
all of them. This makes it challenging to perform this kind of evaluation in a low cost
and efficient manner. Furthermore, the success or failure of these attacks is strongly
depending on the expertise and capabilities of the attacker: He/She not only needs
to stay up to date on the state-of-the-art, but also to master aspects of very differ-
ent topics (statistics, electronics, signal processing, machine learning, cryptography,
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programming, etc.). All these issues make the estimates of the efforts needed to com-
promise the security of a device quite conditional on the person implementing the
tests. And given that humans are error-prone and knowledge is sometimes difficult to
transfer from one person to another, technicians and product developers are facing a
particularly challenging puzzle.

This problem has already been identified in the past and one of the proposed
solutions are leakage assessment tests. These tests (such as TVLA [18]) attempt to
eliminate the need to test devices against an accrescent number of attack vectors. They
commonly use statistical tests such as Welch’s t-test [57] or Pearson’s X 2-test [40], or
even Deep Learning [62] or Mutual Information [10], to distinguish whether two sets
of data (e.g. random vs fixed) are significantly different. These tests are used in other
“conformance style” schemes like ISO/IEC 17825:2016 [21]. The problem is that, as
shown in [64], assessing the SCA security of a device based on e.g., TVLA only is
usually not enough, as a false positive can occur.

In addition, there also exist works that propose the usage of simulators for leakage
assessment [39,29,53]. In a way, those works also share the same objective as ours,
since they aim to reduce the cost of the evaluation, but the solutions are very different:
evaluating the leakage before tape-out (e.g., using simulated power traces in the early
stages of the design process). The main advantage is in the ability to test a chip
before actually producing it. Conversely, the major disadvantage is that the simulators
designed are typically not generic, as they cover specific architectures only, making
them impractical. This motivates the creation of a non-hardware-specific alternative
to determine the real security of a device in a simple way, as the one proposed in this
paper.

In short, taking the aforementioned ideas into account, a comprehensive SCA
evaluation requires attacking the device exhaustively, which is highly complex and
resource-intensive. Between all types of SCA, profiling attacks (PA) are considered
the most powerful, among which template attacks (TA) and ML-SCA are the most
prevalent today [32]. In any case, these attacks can be quite complex and the human
intrinsic nature of several parts of the operation (acquisition, preprocessing, point of
interest selection, hyper-parameter tuning, etc.) utters the time and energy needed to
succeed in the attack quite subjective.

In this paper, we point toward the possibility of automated attacks serving as a
robustness test for a device and actually of its cryptographic implementation against
TA. Our goal is to mitigate the bias and human dependency in the SCA evaluation
process. For this purpose, we propose to perform automatic attacks on different cryp-
tographic implementations to have an objective measure of their robustness against an
exhaustive profiling-based attack such as TA. Note that, although DL-SCA are more
recent and are becoming a method of choice, in this work we focus on template at-
tacks as the more mature of the two, representing an established and well-understood
option for the SCA community. Nevertheless, we claim that a similar strategy can be
deployed for other PAs.

The most important contributions of this paper are the following:

1. We propose to use Estimation of Distribution Algorithms (EDA)-based PA au-
tomated attacks (as introduced in [48]), in an alternative and innovative way.
Namely, orthogonal to [48] that purely focused on EDA-based SCA attacks, we
look into another dimension by extending the method to also serve as a robustness
assessment test. Our approach advocates to measure the performance of these at-
tacks using newly (for this purpose) proposed metrics that are based on the two
best known metrics in the SCA field: Guessing Entropy and Success Rate [59]
and compare the robustness of several cryptographic implementations. Without
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claiming it being sufficient to determine the security of a device, this test can
serve as an automatic check whether it is secure against profiling attacks. We
demonstrate the suitability of our method with attacks against two distinct de-
vices (Piñata board [50] and STM32F411-Discovery board [60]). The purpose is
to perform automated attacks against the SBox of different AES [13] implemen-
tations on the same device to asses its physical security. We also make our traces
public, creating the AES RA dataset [1], as a part of our contribution.

2. We propose an alternative way of performing EDA-based PA by employing it on
Principal Component Analysis (PCA)-transformed power traces, rather than on
the “raw” traces. We compare this procedure with the “raw” procedure using
the random probability initialization for the EDA as proposed in [48] and our
two novel initialization methods. To this end, we perform a detailed analysis of
automated attacks on masking-protected AES software implementations, com-
paring the proposed alternatives with the “standard” attacks, and showing the
advantages and disadvantages of each method. Our results show that PCA can
accelerate the process when the power traces are clean, as the number of relevant
time samples in the EDA is decimated. Thus, the number of variables involved in
the EDA is also drastically reduced.

3. Moreover, this novel combination of EDA-based PA and PCA serves as an al-
ternative way of selecting the number of principal components (PCs) to keep.
Our technique works as a simple and automatic way of selecting not only the
number of PCs to keep but also which PCs give the best results. As “there is
no definitive answer [to the question of how many components to choose]” [23],
we claim that it is an appealing choice when employing PCA in SCA or in some
other field. We showcase the performance of our proposal with experiments on
the aforementioned AES RA and a widely used dataset in the field of SCA (AS-
CAD [4]), providing state-of-the-art results. We compare several EDA-based PAs
against “traditional” (not automated) template attacks using PCA for the Point
of Interest (POI) selection, showing the advantages of this method.

The paper is organized as follows. Sect. 2 summarizes the important background
and related works on this topic. In Sect. 3 we describe our proposed robustness assess-
ment test and the metrics employed for assessing the performance of the EDA-based
attacks. We introduce our novel AES RA dataset in Sect. 4. We specify the proce-
dure of EDA-based Robustness Assessment in Sect. 5, providing experimental results
supporting our approach (Contribution 1). In Sect. 6 we elaborate on our alternative
EDA-based attack using PCA and the proposed initialization methods when attack-
ing masked-protected AES implementations (Contributions 2 and 3). Sect. 7 contains
the experimental results supporting the alternatives proposed in the previous section.
Finally, Section 8 concludes the paper.

2 Background and Related Work

In this section, we first present previous works which are relevant for this paper.
Afterwards, we give a brief explanation of the background necessary to understand
our work.

2.1 Related Work

Here we describe some related previous works on the topics around which the contri-
bution of this paper is framed: automated SCA and the use of PCA in SCA.
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Automated SCA: To the best of our knowledge there is hardly any work that aims
to automate several of the phases of an SCA and thus mitigate human dependency.
The works closest to ours are [48,49]. In those papers, the authors propose stochastic
optimization techniques to perform and optimize several steps of a conventional profil-
ing attack (POI selection, template building, and key recovery), relaxing the need for
human interaction. However, they do not take into account some important concepts
such as the generalisation of the obtained templates [67]. In this paper, we do not only
consider these factors but we go a step further and advocate that these automated
attacks could serve as an objective way of assessing SCA resistance. Besides, we high-
light the importance of selecting a good probability initialisation method for the EDA
approach by systematically comparing the performance of different, including the two
new, proposals.

PCA: PCA is a statistical technique that computes the PCs and uses them to perform
a change of basis on the data. It is commonly used as a dimensionality reduction
technique by keeping only the first few PCs and ignoring the rest. Furthermore, in
the field of SCA, it has been used for very different purposes. The first appearance
of PCA in the field of SCA was its usage as a method to improve power attacks [5].
Later on, PCA was used as a POI selection technique for template attacks in [2].
Afterwards, it has been used for POI selection in profiling attacks in a large number
of works (e.g., [58,51,42,17,63,41,4,14]).

Other works try to enhance PCA (among other dimensionality reduction methods)
for SCA [7] or compare PCA against other POI selection techniques [44]. PCA has
also been used as a preprocessing technique to improve the correlation for the correct
key candidate [38]. In [55] the authors followed a different approach and used PCA
not as a preprocessing technique, but rather as a common side-channel distinguisher.
In any case, our approach is very different from all those papers as we use PCA to
improve the performance of the automated TAs (EDA-based PA).

Furthermore, we claim that this approach also serves as an automated way of
selecting optimal PCs. The choice of a proper number of PCs to keep is crucial for
obtaining favourable results. There exist several “traditional” ways to obtain the
number of PCs needed, as shown in [24]. Generally speaking, they rely on selecting
the largest PCs (e.g., Scree test and Cumulative Percentage of Total Variation). The
problem is that, as several related works underline [38,56], when a first few components
are selected to reduce the dimension of the data, often the first ones contain more noise
than information. This is because the first components contain the most variance,
but since PCA does not take leakage information into account, that variance can
come from leakage or be mere noise. Therefore, the task of choosing not only the
number of components but also which particular components to keep is a complex
and application-dependent task. To the best of our knowledge, there are no related
works that attempt to do this task in a simple, automated and generalized way. There
exist only a few works that propose selection methods for PCA in SCA [38,7], but
they have the same drawback as they rely on the variance of the traces and not on
its leakage. In [38], the authors propose to compute the Inverse Participation Ratio
(IPR) score and collect the PCs in decreasing order accordingly. In [7] authors suggest
a new technique (Explained Local Variance, ELV) based on the compromise between
the variance provided by each PC and the number of samples necessary to achieve
a consistent part of such variance. Both those approaches are complex and human-
dependent, unlike ours. Another strength of our method is that it can be employed
in masking-protected traces following a “Black-Box” approach (i.e., without knowing
the mask), even in high-noise environments.
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2.2 Notation

In this section we briefly define the notation used throughout the paper. We adopt the
notation introduced in [36], with some adjustments. T denotes a set of traces t. Each
power trace is composed of T time samples t = {t1, t2, t3 . . . , tT }. The total number
of power traces t in a set of traces T is denoted by |T|. We use v = f(p, k) for the
targeted intermediate value, which is related to a public variable (plaintext p) and
a cryptographic primitive (secret key k). K denotes the set of all possible keys. k∗

denotes the (correct) key used by the cryptographic algorithm and the total number
of key hypotheses is denoted by |K|. Regarding TAs, we denote each template by
h = (m,C), where m and C denote mean vector and covariance matrix, respectively.

2.3 Template attacks

Template Attacks (TAs) were proposed in [8] and represent the first form of profiling
attacks, the strongest kind of SCA nowadays. In these attacks, the general idea is to
generate a power consumption model to compare it with the actual power consump-
tion of the device and recover sensitive information (i.e., cryptographic keys). There
exist different types of profiling attacks depending on how the model is generated.
Whereas template attacks use estimation theory to model the probability distribu-
tion of the leakage [8,46], other procedures use linear regression (stochastic models
approach [52]) or machine learning [20,19,30,31], including the lately introduced ten-
dency of using deep learning techniques [4,25,44] to build the leakage model.

In practice, TAs are commonly used to recover the secret key used by the DUT
to perform cryptographic operations. In order to do so, the attacker has to capture
a big number of power traces of the DUT while it manipulates some intermediate
value v = f(p, k). This intermediate value is related to a known variable (usually the
plaintext p) and the secret key k. As the plaintext is known, guessing the intermediate
value enables the attacker to recover the secret key.

Then, in the first stage (profiling phase) a set of (Tp) profiling traces are used to
build a Gaussian multivariate model for each possible intermediate value v, creating
the so-called templates (denoted by h).

After that, in a second stage (attack phase), the attacker uses a set of (Ta) attack
traces and its input/output data (plaintext/ciphertext). This information is employed
to guess the correct secret key (k∗) by making a hypothesis about its value and com-
puting all possible intermediate values. Then, a discriminant score D (kj | ti) is calcu-
lated for each key hypothesis kj and the key hypothesis are ranked in decreasing order
of probability. Given a power trace ti, a commonly used discriminant derived from
Bayes rule is D (kj | ti) = p (ti | kj) p(kj) This discriminant is obtained by omitting
the denominator from Bayes’ rule, since is the same for each key hypothesis kj [36,9].

Finally, the attack outputs a key guessing vector g = [g1, g2, ..., g|K|], in decreasing
order of probability. We are assessing the performance of the attack by using an SCA-
specific metric (Guessing Entropy, GE [59]). The guessing entropy is the average
position of the correct key k∗ in the key guessing vector over multiple experiments.
The higher GE value, the more difficult it would be for an attacker to guess the correct
key.

To conclude, TAs are optimal from an information-theoretic point of view, but they
have several limitations in practice, namely computational complexity problems and
the need for dimensional reduction being the most critical ones [9]. The dimensionality
reduction is usually selecting a small number of time samples of the power traces (POIs
selection [46]), or using a more complex method like Principal Component Analysis
(PCA) [2,58] or Fisher’s Linear Discriminant Analysis (LDA) [22,15]). Note that, with
EDA-based PA, the POI selection is done automatically by the algorithm [48].
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2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used statistical technique usually
employed to reduce noise or dimensionality in a dataset. This technique is based on
computing Principal Components (PCs), derived as linear combinations of the original
variables. The most common way to implement this technique is the following [54]:

– Step 1: A mean vector m is calculated, which includes the mean for each of
the T dimensions (time samples per traces) of the traces T. Then, the mean is
subtracted from each of the T dimensions of each trace ti.

– Step 2: A covariance matrix Σ is constructed. In such a matrix, each (i, j)th
element is the covariance between the ith and the jth dimension of the power
traces. Thus, the covariance matrix will be a T ∗T matrix, where T is the number
of dimensions (number of samples of the power traces). It should be noted that
the computation time increases quadratically relative to the number of samples,
as the main shortcoming of this method. The covariance of two dimensions X and
Y is defined by the following formula:

C(X,Y) =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
n− 1

Where n is the number of elements in both dimensions, Xi and Yi are single
elements of X and Y respectively, and X̄ and Ȳ are the sample means of each
dimension.

– Step 3: The eigenvectors and eigenvalues of the covariance matrix are computed
by Σ = U ∗ Λ ∗ U−1, where Λ is the diagonal eigenvalue matrix and U is the
eigenvector matrix of Σ. These matrices provide information about patterns in
the power traces. The direction with the most variance coincides with the eigen-
vector corresponding to the largest eigenvalue (“first principal component”). As
T eigenvectors can be derived, there are T PCs that must be ordered from high
to low eigenvalue.

– Step 4: Then, a number of p PCs can be selected (to reduce the dimensionality
of the dataset), building a matrix with these vectors as columns (feature vector).
Note that we can also choose to select all the PCs and just transform (i.e., make
a change of basis of) the data, as we do in this paper.

– Step 5: Once this feature vector Up of length p is generated, the original data
can be transformed to retain only p dimensions (samples). In order to do so, we

can transpose the feature vector Up
′

and multiply it with the transposed mean-
adjusted data X

′
, obtaining the transformed dataset X̂:

Y = Up
′
∗X

′
= (X ∗Up)

′

X̂ = Y
′

=
(

(X ∗Up)
′
)′

= X ∗Up

2.5 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are stochastic optimization techniques
that search for likely solutions by building explicit probabilistic models of promising
candidates. Unlike other evolutionary algorithms whose immense amount of tunable
parameters makes it hard to work with (e.g., genetic algorithms), the main advantage
of EDAs is their simplicity: they involve a much smaller number of tunable parameters
as the new population of individuals is generated from a probability distribution
obtained from the best individuals of previous populations [48,34,28].
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Estimation of Distribution Algorithms in Side-Channel Analysis EDAs were
proposed in [48] in combination with template attacks as a way to perform the POI
selection step together with the profiling and key recovery steps. This provides for
automated optimisation of the attack, avoiding the need to manually perform various
types of analyses with different POI combinations. As an exhaustive enumeration of
all combinations is exponential and definitively not feasible, the approach is to use a
search strategy based on a quality measure combined with this modern and efficient
evolutionary computation algorithm. Fig. 1 shows a graphical representation of the
process.

𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝑻 𝒆𝒗𝒂𝒍

1 1     0     1              0 10

2 0     1     0              1 87

… …    …    …             …

R 1     1     1              0 44

𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝑻 𝒆𝒗𝒂𝒍

1 1     1     0              0 4

2 1     0     1              0 10

… …    …    …             …

N 1     1     0              1 26

Selection
of N<R 

individuals

Induction of the
probability model

Sampling from
𝑝𝑙(𝒙)

Selection of
N<R individuals

𝑝𝑙 𝒙 = 𝑝 𝒙|𝐷𝑙−1
𝑁

𝐷0 𝐷𝑙−1
𝑁

𝐷𝑙

Sampling of
initial

population

𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝑻 𝒆𝒗𝒂𝒍

1 0     1     1              0 1

2 0     1     0              0 3

… …    …    …             …

N 1     0     1              0 10

𝑝𝑙 𝒙

𝒙

Fig. 1. Illustration of a generic EDA-based PA

First of all, an initial population D0 of R individuals (POI selection candidates)
is generated from a specified probability distribution. To this end, a vector of binary
variables of length T (number of samples per trace) is considered:

x = {x1, x2, . . . , xn, . . . , xT } = (0, 1, 0, . . . , 0)

Each variable matches with one sample of the power traces and its probability rep-
resents the probability of that sample of being selected for the template building. As
in [48], we consider that there are no interrelations between the variables, and the
probability distribution can be learnt as:

pl(x) =

T∏
i=1

pl(xi)

This probability distribution can be initialized at random or based on some criterion,
i.e., based on the leakage correlation [48]. Then, these subset DN

l−1 of N individuals are
evaluated (R attacks are performed with the R candidates). After that, the probability
distribution p(x) of promising candidates is estimated from the marginal frequencies
of the highest quality solutions (DN

l−1):

pl(xi) =

∑T
j=1 δj(Xi = xi|DN

l−1)

T

Where:

δj(Xi = xi|DN
l−1) =

{
1, if in the j-th case of DN

l−1, Xi = xi

0, otherwise
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That is to say, the probability of each time sample of being selected as POI for building
the leakage model is recomputed based on previous results. Then, a new population
DN

l is sampled and the process is repeated in a new iteration until a stop condition
is reached. For a deeper explanation of the attack, we refer to [48].

3 Robustness assessment test

In this section, we describe our approach for the robustness assessment test and the
proposed metrics. Fig. 2 shows a schematic of the process. In a nutshell, the idea to
perform a battery of automated attacks is in using EDAs and compute the metrics
as described below. If the attacks are successful and the model is generalizable, we
conclude that the implementation is weak against PAs. We also compute a score to
quantify how weak it is compared to an unprotected implementation. The larger value
it is, the more difficult gets to recover the secret key for an attacker (see Fig. 2).

Input parameters:
❑ # Iterations
❑ Population Size
❑ # Attacks/Ind
❑ # Profiling Traces
❑ # Attack Traces EDA-

Based TA
Evaluation Traceset

Unprotected AES

AES Masked Scheme N

…

INPUTS ROBUSTNESS ASSESSMENT TEST

(geS ≤ 10) 
AND 

(geG ≤ 10)?

Metrics:
SR(%)
CR(%)

Geaccavg
εGen 

geS

geG

Compute 
difference
(score)*

Weak
(FAIL)

Robust
(PASS)

OUTPUT

Yes

No

*score: Compute difference between metrics (Unprotected vs Masked Scheme N) to quantify/compare

𝐷𝑖𝑓𝑓 𝑆𝑐𝑜𝑟𝑒(%) =
𝑆𝑅𝑈 − 𝑆𝑅𝑀 + 𝐶𝑅𝑈 − 𝐶𝑅𝑀 + (𝑔𝑒𝑎𝑐𝑐𝑈 − 𝑔𝑒𝑎𝑐𝑐𝑀)/256 + ε𝐺𝑒𝑛𝑈 − ε𝐺𝑒𝑛𝑀

4

Fig. 2. Robustness assessment test scheme

3.1 Metrics

To compare the performance of different EDA-based PAs (and/or perform the ro-
bustness assessment test), we propose to compute four simple metrics. These metrics
give us information about the performance of the obtained models and how difficult
it would be for an attacker to recover the secret key. They rely on the two more es-
tablished metrics in the SCA field nowadays [59]: Guessing Entropy and Success Rate.

– Success rate [SR](%): When executing an automated attack, an important fac-
tor is how accurate the algorithm has been in executing the attacks. To determine
this, we propose a modified version of a widely used metric in the SCA field: the
success rate [59]. Generally speaking, the success rate of order “o” is the average
empirical probability that the correct key candidate is located within the first “o”
elements of the key guessing vector.
In our case, we compute a modification of the success rate of order 10, i.e. we
divide the number of successful attacks (GE ≤ 10) by the number of attacks
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performed by the EDA. This metric helps us to compare the efficiency of different
EDA-based attacks, as we clearly see how certain the EDA-based attack has been.
A high SR indicates that the proven implementation is not particularly secure as
the algorithm managed to succeed effortlessly. We compute this metric as:

SR =

(
nSuccess

nAttacks

)
× 100 (1)

Where nSuccess is the number of successful attacks and nAttacks is the total number
of attacks.

– Convergence rate [CR](%): Another relevant factor is the effort it takes the
EDA to achieve successful results. For this we define a metric to assess the number
of attacks/iterations of the EDA until the first success.
Therefore, we propose to divide the number of attacks required until a successful
attack is obtained by the total number of attacks (i.e., we measure the number
of trials needed to get one success).If we succeed in the first iteration we will see
a very high convergence rate. The more attacks it takes the less convergence rate
we get. We compute it as follows:

CR =

(
1− nTrials

nAttacks

)
× 100 (2)

Where nTrials is the number of trials before a successful attack and nAttacks is
the total number of attacks.

– Averaged cumulative final guessing entropy [geaccavg
]: This metric shares

goal with the SR, but as SR is quantitative (we take into account whether the
attacks are successful or not) we also wanted to compute a qualitative metric that
complements the previous one. Since the Guessing Entropy [59] does not quantify
whether the attack has been successful or not, but rather how close we are to the
optimal solution, it is a perfect candidate for this purpose.
We therefore propose to use a modified version of this metric that fits the partic-
ular needs of this scenario. To calculate it, we simply divide the cumulative final
guessing entropy value of the attacks by the total number of attacks:

geaccavg =

∑nAttacks

i=0 GEi

nAttacks
(3)

Where nAttacks is the total number of attacks and GEi corresponds with the final
GE value of the ith attack. This gives us an estimate of how hard it is to obtain
a correct GE value.

– Generalization Error [εGen](%): The goal of this metric is to ensure the ap-
plicability of the obtained models, and verify that they are employable in a real
attack scenario. In traditional profiling attacks, techniques to avoid overfitting
and enhance generalization are usually not contemplated. Today, thanks to the
increasingly established trend of ML-SCA, these concepts are becoming more
prevalent [67].
Hence, in this paper, we take into account the generalisation of the models by
using a specific measure. The idea is to apply the templates built by our EDA
to unseen data, and thus test their performance. To do so, we execute a battery
of N attacks over the unseen data (using the optimized model) and compute its
averaged final guessing entropy geG. We then calculate the difference between
this and the averaged final guessing entropy obtained with that model during the
searching phase geS . Finally, we compute the relative error between these two
values as:

εGen =
geS − geG
gemax

× 100 (4)
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Where gemax is the maximum (worst-case) GE. In this case, as we are targeting
8-bit values and the worst-case is 256. If the generalisation error is high it means
that, although we succeeded during the search of the model, the templates are not
applicable in practice and therefore the attack cannot be considered successful.

4 The AES RA dataset

In this section, we briefly describe our new AES RA dataset [1]. Most of the results in
relevant previous works mentioned above have been obtained using ASCAD in their
experiments. However, although we have used ASCAD too for the sake of comparison
(see Sect. 7), we also introduce an additional dataset: AES RA. The motivation is
that we wanted to tackle a more complicated problem, with noisy real-world traces
collected from an actual device on the field. In addition, AES RA fills the gap of an
extensive dataset including traces from different AES implementations on the same
DUT.

Thus, this dataset contains traces from two different embedded systems which
use microcontrollers from the same family. With each device, we acquire traces from
three AES implementations: an unprotected software AES and two different masking
schemes, resulting in six different setups. Thus, this dataset is divided into two parts:
power consumption traces from the Piñata board and capacitor EM power traces
from the STM32F411E-Discovery Board. We believe that this dataset, together with
ASCAD, allows us to validate our approach comprehensively.

4.1 AES implementations

Three different AES software implementations have been considered. There is a brief
explanation of each one of them is given in the sequel.
– Unprotected AES: typical AES-128 (in ECB mode) software implementation [27].
– Masking Scheme 1 (Weak): A modification of the previous one which matches

the same masking method as described in [36] (Masked Lookup Table). In this
implementation, the output mask of the SBox operation is removed after each
1-Byte lookup and hence we see a clear correlation of the mask in the SBox
time window (See Fig. 3 below). This makes the scheme similar to the one used in
ASCAD, as can be observed in its pseoudocode [4]. As we show in the experiments
below, the fact that the output mask is leaking during the computation of the
SBox makes this implementation very weak against TAs (and PAs in general).

– Masking Scheme 2 (Robust): A modification of the previous one, but this
time the output mask is removed after the MixColumns operation. This means
that, unlike in the previous scheme, the output mask does not leak during the
SBox computation, making the scheme much more robust against TAs as we will
see below.

For the pseudocode of both masking schemes and more information about the dataset
organization, please see the AES RA GitHub [1].

4.2 Piñata Board

Piñata is a development board created by Riscure based on an ARM Cortex-M4F
core working at a 168 MHz clock speed [50]. It has been physically modified and
programmed to be a training target for SCA and Fault Injection. We measure the
power consumption of the board during the AES encryption with a Tektronix CT1
current probe attached to a 20 GS/s digital oscilloscope (LeCroy Waverunner 9104)
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triggered by the microcontroller, which rises a GPIO signal when the internal com-
putation starts. Each power trace consists of 1 260 samples (1 500 and 1 800 for the
masked implementations 1 and 2 respectively) taken at 1 GHz with 8-bit resolution,
corresponding to the first SBox operation.

4.3 STM32F411E-DISCO Board

The STM32F411E-DISCO is a development board with an STM32F411VE [61] high-
performance Arm® Cortex®-M4 32-bit RISC microcontroller working at 100 MHz.
This board (STM32F411E-DISCO) is similar to Piñata (microcontrollers are from the
same family), and uses exactly the same code. We measure the power consumption
of the board during the AES encryptions with a Langer EM probe over a decoupling
capacitor (C38) attached to the oscilloscope (LeCroy Waverunner 9104), wich again
is GPIO-triggered by the microcontroller. Each power trace consists of 1 225 samples
(1 500 and 1 800 for the masked implementations 1 and 2 respectively).

5 Robustness Assessment test on AES RA

In this section, we show how the aforementioned attacks could be employed as a ro-
bustness assessment test to evaluate the robustness of a device against profiling attacks
(template attacks more specifically). Hence, following the scheme from Fig. 2, we per-
form three EDA-based attacks over three distinct AES implementations: unprotected
software AES, AES with masking scheme 1 (Weak), and AES with masking scheme
2 (Robust). As mentioned in Sect. 4, the main difference between masking schemes 1
and 2 is that, due to their implementations, on the former we see a clear correlation
with the mask in the targeted time window (SBox) whereas in the latter not. A graph-
ical representation of this fact can be observed in Fig. 3. We repeat this robustness
assessment approach two times with two different boards (Piñata and Discovery) and
different probes/measures (current and capacitor EM probes respectively).

“RAW” Power Trace

Leakage Correlation (Sbox(p^k)^m))

Leakage Correlation (m)

“RAW” Power Trace

Leakage Correlation (Sbox(p^k)^m))

Leakage Correlation (m)

Fig. 3. Piñata board: Leakage of Masking Scheme 1 (left) vs Masking Scheme 2 (right). For
all graphics, X-axis: Time (×100ns), Y -axis: Voltage (×10mV )/Correlation
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5.1 Experimental Results on Riscure Piñata board

We perform three different EDA-based attacks over the three implementations and
compute the metrics. The results of the robustness assessment test on the SBox of
the three different AES implementations are shown in Table 1. Each row represents
a metric (SR, CR, geaccavg and εGen), except for the last two rows, which are the
averaged final guessing entropy of the best model over known data geS and unseen
data geG (employed to compute εGen). For the EDA parameters, we are using 30
iterations and 50 individuals per population. If all the attacks of one iteration are
successful, we stop the EDA process. Since we are evaluating the leakage, we are
following a “White-Box” initialization (as explained in Sect. 6.2). Regarding the TA,
we are using 20 000 profiling traces (50 000 profiling traces for masking scheme 2 for
being a more challenging attack) and 2 000 attack traces.

Metric Unprotected AES AES masking scheme 1 AES masking scheme 2

SR (%) 100% 100% 29.63%
CR (%) 100% 100% 52.5%
geaccavg 1 1.18 52.28
εGen (%) 0% 0% 38.11%

geS 1 1 1
geG 1 1 84

Test Results Weak (Fail) Robust (Pass)

Diff Score 0.02% 44.00%
Table 1. Robustness assessment: Piñata

From this test, we can conclude that the masking scheme 1 does not provide
any security to the SBox as the results of the attacks are almost the same as the
unprotected implementation: we succeed in all the attacks since the first one (SR and
CR are in their maximum values and geaccavg is almost 1) and the generalization of the
models is perfect (εGen = 0). In the AES masking scheme 2 there is no clear leakage of
the output mask (in the time window we are targeting), and hence the model has an
especially poor generalization (we do not succeed in this attack, geG = 84). This makes
sense since, as stated in [32], when the mask value is unknown to the attacker during
the profiling step, the leakages associated with a key follow a multimodal distribution.
This leads to assumption errors whether the adversary exploits Gaussian template
attacks. Nevertheless, as highlighted in [69], when the mask leakage is included in the
observation time window, the templates are able to relate the dependence between the
mask and the masked variable leakage. This explains why we succeed with Masking
Scheme 1 but not with Masking Scheme 2 (large generalization error). However, we
claim that the fact that we succeed in the searching process shows that there is still
some leakage, which may be better exploited in the future. To conclude, note that
these two masking implementations are susceptible to a second-order attack, which
combines the leakage of two bytes of the key at a time when the mask is removed [36].

5.2 Experimental Results on STM32F4 Discovery board

As we show later in Sect. 7, the traces from STM32F4 have much more noise from
the environment than the previous ones with Piñata (due to the acquisition method).
Nevertheless, the leakage is still present, as can be observed in Fig. 4, where the
difference in the leakage between the two masking schemes in this board is shown.
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“RAW” Power Trace

Leakage Correlation (Sbox(p^k)^m))

PCA-Transformed Trace

Leakage Correlation (Sbox(p^k)^m))

Leakage Correlation (m) Leakage Correlation (m)

Fig. 4. STM32F411 board: Leakage of Masking Scheme 1 (left) vs Masking Scheme 2 (right).
For all graphics, X-axis: Time (µs), Y -axys: Voltage (×100µV )/Correlation

.

Table 2 shows the results of the robustness assessment test over the three AES
implementations. We are using the same EDA parameters as in the previous case.
Regarding the TA, we are using 50 000 profiling traces (100 000 profiling traces for
Masking Scheme 2 for being a more challenging attack) and 2 000 attack traces.

Metric Unprotected AES AES masking scheme 1 AES masking scheme 2

SR (%) 64% 66% 31.14%
CR (%) 98.8% 96.8% 49.43%
geaccavg 13.48 25.20 43.17
εGen (%) 0% 0% 52.89%

geS 1 1 1
geG 1 1.33 136.4

Test Results Weak (Fail) Robust (Pass)

Diff Score 2.14% 36.68%
Table 2. Robustness assessment: STM32F4

From this test, we can obtain similar conclusions to the previous one, which is
not unexpected given that the same AES implementations are being used. Again,
Masking Scheme 1 does not provide any security against TA since we are achieving
nearly the same result as attacking the implementation without countermeasures. In
contrast, Masking Scheme 2 does provide a high level of protection: not only obtaining
a model that works on the search set is much more difficult, but the generalization
of the model, in this case, is even worse than in the previous one (we obtain a geG of
136.4).

6 EDA-based attacks on masked AES implementations

In this section, we go into more detail about performing automated attacks on masked
implementations using EDAs. In other words, this section describes our second and
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third contributions: our alternative way of using EDA-based PA combined with PCA
and our proposed EDA’s probability distribution initialization methods.

6.1 Combining EDA-based PA with PCA

In order to accelerate the EDA-based PA process, in this paper we propose to prepro-
cess the traces using PCA before launching the EDA-based PA. Although this implies
a higher degree of complexity (as PCA is computationally expensive), this has several
advantages that can justify its usage in some applications. The reason is that, if PCA
behaves correctly, all the relevant information will be gathered on the first PCs. This
can be used to reduce the number of varaiables (time samples) in the EDA-based PA.

An example of how PCA behaves in practice can be observed in Fig. 5. On the left
side of the figure (“Raw” power traces), we can observe that the leakage correlation
of the mask and the masked intermediate value appears on two distinct zones. Note
that in this dataset (ASCAD [4], as explained below) each power trace has 1 400 time
samples. Thus, if we follow the approach of [48] and use a uniform initialization of
probabilities, it will take time for the EDA to find the right time samples as each
one of the 1 400 samples has the same probability of being selected (see Sect. 7.1).
Conversely, if we observe the right side of Fig. 5 (PCA-Transformed traces), we can
see how the relevant leakage information is congregated on the first PCs. This allow
us to accelerate the search, as we can consider only a number of first PCs for the
EDA-based PA, and hence reduce the complexity of the probabilistic model of the
EDA (i.e., number of variables involved). Therefore, the EDA will find proper POIs
(PCs in this case) more efficiently, as we show in Sect. 7.

In addition, this approach serves as an automated alternative for selecting not only
the number of PCs to keep but also which ones in particular. As shown below, in the
experiments, there usually exist some PCs that not only do not provide any relevant
information to the model, but their inclusion negatively affects its performance. In
addition, there is usually a tipping point beyond which the results worsen if we add
more PCs. This appropriate number of relevant PCs is complex to find manually in
practice (especially for the less experienced). It should be noticed that, as mentioned
in Sect. 2 there exist other methods for selecting the number of PCs to keep. The
problem is that the success or failure of these techniques depends significantly on the
application and the technician implementing them. In contrast, we claim that our
approach can find optimal PCs effortlessly. Nevertheless, for the sake of comparison,
a “traditional” TA has been conducted (i.e., without the usage of the EDA-based PA
approach). As in a number of related works [4,25,69], we perform the POI selection
by using PCA and selecting different numbers of PCs to accomplish the attack.

6.2 EDA’s probability distribution initialization

As mentioned in Sect. 2.5, when performing a EDA-based PA, different strategies
can be followed for setting the initial probability distribution (i.e., probabilities of
each time sample of being selected). As we show in experimental results, how we
initialize the probabilities of the EDA has a strong impact on the attack results. Thus,
apart from comparing the “raw” and “PCA” approaches, we also consider different
initializations for each one. In this work, we consider the random initialization method
proposed in [48] and two novel approaches. Table 3 summarizes the details of each
one of them.

In a nutshell, given the limitations of the initialisation method proposed in [48]
(Random Uniform in Table 3) when attacking masking implementations, we propose
two alternatives for this case. As explained before, this approach is not optimal for
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“RAW” Power Trace

Leakage Correlation

PCA-Transformed Trace

Leakage Correlation

Fig. 5. ASCAD: Raw power traces (left), PCA-transformed traces (right) and leakage cor-
relation. X-axis: Time Samples (×10) Y -axis: Voltage (×10µV )/Correlation

Acronym Initialization method Type Description

Rndm Random uniform Black-Box Each sample has the same probability of
being selected initially.

Dec Decreasing probabilities Black-Box Used with the EDA+PCA approach. First
samples have a higher probability of being
selected. The further away they are from
the first PC, the less probability they have.

wPOI Using leakage information White-Box “Leakage correlation” graphics (POI) are
used to initialize the probabilities and
guide the EDA to the areas where the leak-
age is located.

Table 3. Considered initialization methods for EDA’s initial probability distribution

this use case as we do not give any information to the EDA about where the leakage is
located and it will take time for the EDA to find the leaking time samples. Thus, we
propose two alternatives: Decreasing Probabilities (for PCA-Transformed traces only)
and a “White-Box” approach in which we initialize the probabilities using the corre-
lation of the unmasked intermediate value SBox(p⊕ k)⊕m. Note that this approach
was used in [48], but only with unprotected implementations, as masking randomizes
the intermediate values making the correlation with the intermediate values null. In
this work we propose to employ this approach also with masked implementations. We
consider this a “White-Box” approach as, contrary to the other two cases, we need to
know the mask m to compute the unmasked intermediate value SBox(p⊕ k)⊕m.

7 Experimental results on masked AES implementations

In this section, we compare the performance of different EDA-based attacks on dif-
ferent datasets, including the modifications proposed in the previous section. We first
perform various attacks over a public dataset to demonstrate that our approach can
provide state-of-the-art results without human intervention. Then, we conduct the
same analysis over our novel AES RA dataset [1]. Finally, we draw some conclusions
about the experiments.

7.1 Results on a public dataset

For demonstrating our approach, apart from our own dataset, we have employed
a widely used dataset in the SCA field: ASCAD (Variable Key). We first perform a
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“regular” TA using PCA for the POI selection. Then, we perform different automated
attacks, with the settings explained in the previous section.

The ASCAD dataset ASCAD [4] was the first open database for DL-SCA and
includes electromagnetic emanation traces of an 8-bit AVR microcontroller (AT-
mega8515), implementing a masked AES-128 implementation (see [4]). The dataset
is divided into two parts: fixed key and variable key. Although many related works
use the fixed key version for being an easier problem [25,69,68,65], for this work we
are using the variable key version. This allows us to perform a more realistic use case,
as we can use random keys for the profiling step and a fixed key for the key recov-
ery step, as an attacker would do in practice. The data set provides 300 000 traces
where 200 000 are used for profiling (variable key) and 100 000 are used for the attack
(fixed key). These traces contain a window of 1 400 relevant raw samples per trace,
representing the third byte of the first round masked S-Box operation (See Fig. 5).
For a deeper explanation of the ASCAD dataset, we refer to [4]. As the sensitive

intermediate value we use an S-box output: Y (i) (k∗) = SBox[P
(i)
3 ⊕ k∗].

Experimental Results on ASCAD Table 4 summarizes the parameters of the
automated attacks. As mentioned before, the selection of a proper number is not so
straightforward. Figure 6 (left) shows the results of several attacks using a different
number of PCs. Generally speaking, adding more PCs has a good effect on the results
until we reach a point (around 25 PCs) in which the addition of more makes the attack
not feasible. It should be noticed that, if we follow the Scree Test approach (classical
PC selection method [24]), and we plot the eigenvalues to manually inspect where the
curve changes from a steep line to a straight line (elbow), the relevant information
is supposed to be on the 15 first PCs. Nevertheless, we obtain better results with 25
PCs. If we observe Fig. 5 (right) we can understand why. Although the biggest part
of the leakage of m is concentrated around the 15th PC, the leakage of the unmasked
intermediate value SBox(p⊕ k)⊕m spreads around the first 200 PCs.

Parameter # Profiling Traces # Attack Traces # Attacks/Ind # Iterations Pop. Size

Setting 20 000 1 000 4 10 50

Table 4. Parameters of the attack (ASCAD)
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Fig. 6. Attacks on ASCAD: regular PCA + TA (left) and EDA-based TAs (right)
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At this point we compare two types of attacks using EDAs, one over “raw” traces
(EDA in figures) and one over “PCA-Transformed” traces (EDA PCA in figures),
using different initialization approaches (see Table 3). Fig. 6 (right) show the results
of the best candidate of the first and last iteration of each approach.

If we observe the results of the metrics defined above (Table 5), the improvement of
using the EDA+PCA approach in this dataset can be observed. In general, the attacks
using EDA+PCA are more efficient and achieve better results than using EDA only.
The improvement in the SR and CR shows that with EDA+PCA the procedure is
more efficient (we succeed earlier and in more attacks). The same happens in terms
of guessing entropy, geaccavg is lower in the EDA+PCA case, as we succeed in more
attacks. If we observe Fig. 6 (right), we can see that the attacks using EDA+PCA have
a very good performance, with its guessing entropy converging around 200 traces. The
EDA attack using the “White-Box” initialization has a very good performance too,
but the attack with random initialization is less effective. Nevertheless, all attacks are
successful and show a good generalization ability. In addition, our approach is able to
reduce the number of traces needed for the secret disclosure from 400 to 200, when
compared to the PCA+TA approach. In the best case, we manage to recover the key
with around 100 traces, a state-of-the-art result in this dataset (ASCAD with random
keys), when comparing with other related works [43,66,47].

Metric EDA(Rndm) EDA(wPOI) EDA+PCA(Rndm) EDA+PCA(Dec) EDA+PCA(wPOI)

SR (%) 12,0% 71,0% 72,0% 94,6% 98,2%
CR (%) 91,4% 99,6% 94,2% 99,8% 99,6%
geaccavg 65,57 17,61 21,53 3,01 1,76
εGen (%) 1,33% 0,74% 0,27% 0,00% 0,39%

geS 1,32 1,00 1,00 1,00 1,00
geG 4,72 2,89 1,69 1,00 1,99

Table 5. “RAW EDA” approach vs “PCA+EDA” approach (ASCAD Variable)

7.2 Results on AES RA

To test the performance of our approach in a noisier environment, we use AES RA. To
this end, we repeat the same analysis as with ASCAD. Note that, for this experiment,
we are using traces from STM32F4 with Masking Scheme 1 (Weak). Besides, we also
employ a time window of 100 samples corresponding to the first byte of the masked
SBox lookup (See Fig. 8) instead of using the full window of 16 lookups. This makes
this experiment similar to the previous one with ASCAD. Table 6 summarizes the
parameters of the attacks.

Parameter # Profiling Traces # Attack Traces # Attacks/Ind # Iterations Pop. Size

Setting 50 000 2 000 4 10 50

Table 6. Parameters of the attack (STM32F4)

As in the previous experiment, Fig. 7 (left) shows the results of performing a
“traditional” TA using a different number of PCs. As before, there is an inflexion
point (20PC) after which the results worsen if we use more PCs to generate the
model. Again, the Scree Test does not provide a good number of PCs to keep (50).
In this case, although the masked AES implementation is similar to the one used in
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Fig. 7. Attacks on STM32F4: regular PCA + TA (left) and EDA-based TAs (right)

ASCAD, the attack is more difficult due to the amount of measurement noise included
in the traces. This makes PCA less effective as apart from the variation produced by
the leakage there is a lot of variation in the power traces due to environmental noise
captured by the capacitor EM probe.

“RAW” Power Trace

Leakage Correlation

PCA-Transformed Trace

Leakage Correlation

Fig. 8. STM32F4: Raw power traces (left), PCA-transformed traces (right) and leakage
correlation. X-axis: Time (×100ns), Y -axis: Voltage (×100µV )/Correlation

.

Again, we compare the “raw” EDA-based attack and the attack on the “PCA-
Transformed” traces (Fig. 7 (right)). Please note that the results are shown in the
same manner as in the previous use case. This time the results are slightly different.
Although we succeed with all approaches, EDA+PCA does not improve the results so
much in this case. In terms of Guessing Entropy, the best performing methods are the
“White-Box” approaches (EDA wPOI and EDA PCA wPOI). Note that EDA Rndm
and EDA PCA Dec also provide relatively good results.

Table 7 shows the results of our metrics. Generally speaking, the results are worse
than in the previous use case (due to noise), but they are in line with the results
shown in Fig. 7 (right). In this case, not only all metrics are not better while using
the PCA+EDA approach, but they are worse in general. About generalization, all
methods show a small generalization error except EDA+PCA(Dec), which do not
succeed in the attack on unseen data. The main reason for this, as can be observed in
Fig. 8, is that the leakage is not concentrated on the first PCs. Thus, we are including
PCs that do not contain leakage information and hence worsen the model. This makes
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both the approach of performing “traditional” attacks and using the EDA+PCA(Dec)
not the most optimal for this case.

Metric EDA(Rndm) EDA(wPOI) EDA+PCA(Rndm) EDA+PCA(Dec) EDA+PCA(wPOI)

SR (%) 86,00% 75,40% 68,20% 27,20% 74,60%
CR (%) 99,60% 99,80% 97,20% 77,40% 97,60%
geaccavg 8,46 9,88 19,08 37,74 13,63
εGen (%) 0,00% 0,00% 0,00% 8,92% 0,00%

geS 1 1 1 1 1
geG 1 1 1 23,83 1

Table 7. “RAW EDA” approach vs “PCA+EDA” approach (STM32F4)

The challenge of EM Capacitor Probe traces As shown in the previous experi-
ments, although the masking implementation 1 (Weak) is similar to the one employed
in ASCAD, obtaining good results is more complicated. The main reason for that is
the acquisition method: STM32F4 power traces were obtained using a EM capacitor
probe (Langer probe). This allows a less invasive acquisition (as there are not removed
capacitors and the board is not modified at all) but the leakage of the traces is weaker
as it is merged with the variation caused by the environmental noise.

This is especially problematic when we use a wider window. If we repeat the
previous experiment with a window of 1 800 time samples corresponding to the 16
lookups, the results are extremely defective (See Fig. 9 and Table 8). With the full
window, we cannot succeed with a “traditional” TA using PCA for POI selection
(Fig. 9 (left)). Regarding EDA-based attacks, only attacks without PCA provide
particularly good results (Fig. 9 (right)). To understand this, one should take a look
at Figures 10 and 11.
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Fig. 9. Attacks on STM32F4 (Full Window): regular PCA + TA (left) and EDA-based TAs
(right)

Fig. 10 shows “raw” power traces, PCA-transformed traces and their respective
leakage graphics for the STM32F4 board (Full Window). Fig. 11 shows the same
graphics for the same implementation in Piñata board (clean traces taken with a
current probe). With Piñata, the traces are clean from enviromental noise. This allows
PCA to perform successfully as all leakage is gathered on the largests PCs. In this
case, the attack is extremely easy, as shown previously in Sec. 5.1.
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“RAW” Power Trace
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Leakage Correlation (m) Leakage Correlation (m)

Fig. 10. STM32F4 (Full Window): Raw power traces (left), PCA-transformed traces (right)
and leakage correlation. X-axis: Time (µs), Y -axis: Voltage (×100µV )/Correlation.
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Fig. 11. Pinata (Full Window): Raw power traces (left), PCA-transformed traces (right)
and leakage correlation. X-Axys: Time (×100ns), Y-Axys: Voltage (×10mV )/Correlation

Conversely, in our traces from SM32F4, instead of collecting all the leakage in a
few PCs, PCA mixes this leakage with the variation produced by the environmental
noise, causing the leakage to be attenuated and distributed over the entire PCA-
transformed trace. Indeed, there is almost no leakage in the first 100 PCs (See Fig. 10).
Moreover, the magnitude of the leakage has decreased substantially. This explains why
the “traditional” TA+PCA does not work in this setup (Fig. 9, left). Regarding the
Scree Test, it suggests using 550 PCs, which is completely impractical. On the one
hand, this number is too large to build templates, especially taking into account that
the purpose of using PCA in this case is to reduce the dimensionality of the traces. On
the other hand, as shown in the previous use case, building templates with PCs that
do not contain leakage information but rather noise variation, worsens the model.
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For all these reasons, as can be seen in Table 8, PCA not only performs worse in
this case but does not work at all if we do not select the appropriate PCs, which is ex-
tremely tedious to do manually. Among the attacks using PCA, only EDA PCA Rndm
and EDA PCA wPOI manage to find a model which works in the set of traces used
for the search, but they have very bad generalization. On the other hand, the at-
tacks EDA Rndm and EDA wPOI perform quite good and have a small and tolerable
generalization error.

Metric EDA(Rndm) EDA(wPOI) EDA+PCA(Rndm) EDA+PCA(Dec) EDA+PCA(wPOI)

SR (%) 58,60% 66,00% 2,40% Null 3,40%
CR (%) 98,00% 96,80% 65,20% Null 56,80%
geaccavg 38,32 25,20 77,62 Null 71,90
εGen (%) 0,13% 0,13% 18,46% Null 35,87%

geS 1 1 2,75 Null 2
geG 1,333 1,333 50 Null 93,83

Table 8. “RAW EDA” approach vs “PCA+EDA” approach (STM32F4 - Full Window)

7.3 Summary

We can draw the following conclusions from the experiments above:

– Using PCA-Transformed traces accelerates the EDA-based PA process when the
traces are clean (clean EM measurements/current probe and no capacitors). This
is the best option when seeking to optimize a model, provided that the nature of
the traces allows it: they must be free of, or with little, ambient noise.

– Another limitation could be the number of traces and time points per trace.
Since the computation time grows exponentially with these two factors, it may
be prevented for very large datasets or very wide attack windows.

– However, our approach has shown an excellent performance as a PC selection
method, being able to automatically identify the best components even in the
more challenging use cases. This makes it an engaging option when working with
PCA in SCA, or in some other field.

– Nevertheless, although they require knowing the maskm, “White-Box” approaches
work properly in both situations (with and without PCA), being the best approach
from an evaluation perspective. In our experiments, these approaches have sub-
stantially improved the performance of “traditional” attacks, with the additional
benefit of being done automatically and with no user intervention.

8 Conclusions and Future Work

Our results show the suitability of automated TAs working as a robustness assessment
test of an embedded device’s physical security. It allows the evaluator to determine
whether protected AES implementations are secure (while comparing them to an
unprotected AES implementation) without user intervention.

We have shown that masking schemes like Masking Scheme 1 or the one used in
ASCAD are especially weak. As a consequence, the SBox’s output mask should be
removed from the state matrix out of the time window of the SBox to make them more
robust against PAs. Nevertheless, we were able to find models that work in some sets
of traces with Masking Scheme 2, and we claim that AES RA can serve as a relevant
candidate to further study PAs on masking-protected AES implementations.
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We claim that this approach is not limited only to software AES implementations,
although we have chosen this realistic use case for demonstrating our approach. Hard-
ware AES implementations, different ciphers, or even other kinds of profiling attacks
are potential future work candidates.

We have also shown that using PCA-transformed traces can hasten the EDA-based
PA in some scenarios, achieving superior results. Furthermore, we have demonstrated
how this approach can be used as an automated way of selecting optimal principal
components, obtaining state-of-the-art results without manual intervention even some
more troublesome cases (very noisy traces).

Finally, as an open research question, we would like to mention the common gap
between security evaluation in academia and in commercial labs. As mentioned above,
concepts like generalization were “traditionally” not considered when working with
TAs. Indeed, current evaluation schemes specify which types of tests (attacks) to
undertake, but without much detail on how to conduct them. This makes it relatively
easy for false negatives/positives to occur. As we have seen in the experimental results
with the Masking Scheme 2, finding a model that works on a finite set of traces is
relatively simple. Conversely, getting one that is generalizable and can perform an
actual attack is much more complex. Unless we take this into account, we might
think that the implementation is weak as we have succeeded in the attack, however,
this model is not applicable in the real world by an attacker. Therefore, we believe
that a more comprehensive common framework on SCA resistance assurance could
be interesting. This, together with the application of artificial intelligence to mitigate
the human dependency, could make life much easier for cybersecurity evaluators and
product developers.
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