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Abstract. A ring signature is a signature scheme that provides the au-
thenticity of a message anonymously. In this paper, we first present a
post-quantum sigma protocol for a ring that relies on the supersingular
isogeny-based interactive zero-knowledge identification scheme proposed
by De Feo, Jao, and Plût in 2014. We prove the correctness, 2-special
soundness and honest-verifier zero-knowledge properties of the proposed
protocol. Then, we construct a ring signature from the proposed sigma
protocol for a ring by applying the Fiat-Shamir transform. In order to
reduce the size of the exchanges, we use the Merkle tree and show that
the signature size increases logarithmically in the size of the ring. The
complexity analyses of the proposed protocols are also provided.

Keywords: Post-quantum cryptography · Supersingular isogeny · Ring
signatures.

1 Introduction

Rivest, Shamir, and Kalai introduced the ring signatures at ASIACRYPT [24]
in 2001. A ring signature is a digital signature scheme produced by a member
of a ring (a group of people), which does not reveal the signer’s identity. Ring
signatures are very similar to group signatures. However, they differ from group
signatures in some points, such that there are no group managers, coordination,
setup, and revocation procedures in ring signatures. A signer can select a set
of potential signers, including herself, and signs a message with her private key
and other signers’ public keys. This scenario does not require the approval of
the other signers.

Besides correctness, two main features must be satisfied in terms of security
by a ring signature: unforgeability and anonymity. A ring signature scheme is
said to have unforgeability if that scheme does not allow anyone to generate a
signature on behalf of an honest ring of signers without knowing the secret key of
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at least one member of the ring. For a given ring signature, anonymity is satisfied
if no one can distinguish which member of the ring generated the signature,
even with the information of all secret keys of the ring. Furthermore, there is no
cooperation or a group secret among the ring members in ring signature schemes.
Therefore, choosing the ring members can be done in an ad-hoc way.

Whistleblowing was the original motivation of the ring signatures [24], where
the leaking person’s identity can be hidden by choosing a ring of people who
have access to this specific leaked message while convincing the recipient about
the authenticity of the leaked message. Recently, ring signatures have found
many applications such as cryptocurrency technologies for secure and anony-
mous transactions and e-voting [20, 29]. For instance, in cryptocurrencies like
Monero, known as a fungible currency, a user issues a ring signature on the
transaction using a ring of public keys in the block-chain and generates a confi-
dential transaction. A user who uses a ring signature can hide her identity as an
actual signer among the ring of public keys by ensuring that the user’s identity
is indistinguishable from other ring members’ identities.

Since 2001, a huge number of ring signature schemes on various hardness
assumptions such as the integer factorization [6, 11, 24], discrete logarithm [1,
15, 16, 20, 21] and pairing-based [4, 23, 26, 29] have been proposed. The security
of the pairing-based ring signatures could be proven without using a random
oracle. Furthermore, efficient and short ring signatures that rely on pairing-based
cryptography are introduced in [4, 7, 29]. In [1, 16], the signature size increases
linearly in the size of the ring, and [23] gives a constant size ring signature,
while the signature size in [2, 15] is logarithmic in the number of ring members.
The ring signature size in [6, 11] based on RSA accumulators is independent
of the ring size. Most recently, ring signatures that rely on the post-quantum
assumptions like hash-based [10, 18] multivariate [12, 22] and (one-time) lattice-
based [3, 5, 13, 19, 28] are introduced.

Recently, Beullens et al. presented linkable ring signature schemes in [5],
based on logarithmic OR-proof with binary challenges for CSIDH group ac-
tion and MLWE-based group action. The CSIDH group action is adapted from
the Couveignes-Rostovtsev-Stolbunov scheme by substituting supersingular el-
liptic curves over Fp for ordinary elliptic curves to improve the efficiency of
the scheme. The CSIDH group action is commutative since the subring of Fp-
rational endomorphisms is an order in an imaginary quadratic field. The security
of the CSIDH-based linkable ring signature is based on the Group Action In-
verse Problem (GAIP) and Squaring Decisional CSIDH (sdCSIDH) Problem.
The best-known quantum algorithm to solve GAIP and its variants has subex-
ponential complexity. Nevertheless, to the best of our knowledge, there is no
ring signature scheme based on supersingular isogenies. The design of the SIDH
scheme addressed the security weakness of the isogeny-based schemes by us-
ing supersingular elliptic curves defined over Fp2 . The endomorphism rings of
these curves are non-commutative and therefore provide exponential security. It
should be emphasized that SIDH is not similar to CSIDH in security, construc-
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tion, key size, and performance. For comparison, SIDH has notable advantages
over CSIDH by providing high security and computational efficiency.

In this paper, we present a post-quantum version of the sigma protocol for
a ring that proves membership in the ring. In our sigma protocol, we apply the
OR-proof with binary challenge bits for a group action proposed in [5] to the
SIDH identification protocol given in [9], which does not follow the group action
property. We give the proof of the correctness, 2-special soundness, and honest-
verifier zero-knowledge properties of the proposed protocol. Moreover, the fast-
known quantum attacks against these assumptions are still exponential. Thus,
we present a ring signature scheme based on the post-quantum assumptions,
i.e., supersingular isogeny problems. The construction proposed in this paper
provides a ring signature scheme, where the signature size grows logarithmically
in the number of users in the ring. Also, we show that this scheme is correct,
anonymous, and existentially unforgeable under an adaptive chosen message
attack in the random oracle model.

The rest of the paper is organized as follows: In Section 2, we provide a
background information required for the proposed schemes in this study, such
as elliptic curve isogenies, supersingular isogenies, computational problems, ring
signatures, and supersingular isogeny-based zero-knowledge proof. In Section 3,
we propose the supersingular isogeny-based sigma protocol, followed by super-
singular isogeny-based ring signatures in Section 4. We present the efficiency
analyzes in Section 5 and we conclude our paper in Section 6.

2 Background

This section briefly provides some required information related to the elliptic
curve isogenies [8, 9, 27], computational problems of supersingular isogenies [9,
17, 25], ring signatures [2, 4, 20], and supersingular isogeny-based zero-knowledge
proofs [14, 17, 31].

2.1 Elliptic Curve Isogenies

We consider the elliptic curves defined over a finite field Fq of characteristic
p > 3. For an elliptic curve E : y2 = x3 + ax + b over Fq, the j-invariant of E

denoted by j(E) = 1728 4a3

4a3+27b2 . For a given j ∈ Fq with j 6= 0 and j 6= 1728,

there is an elliptic curve, y2 = x3 + 3j
1728−jx+ 2j

1728−j , whose j-invariant is j. Two

elliptic curves E and E′ are isomorphic over Fq if only if they have the same
j-invariant. Isomorphism maps between elliptic curves are invertible algebraic
maps over algebraic closure Fq and can be efficiently computed.

The n-torsion group of E, denoted by E[n], contains the set of all points
P ∈ E(Fq) such that nP = OE , where OE is the identity element. For n, with
p - n, we have E[n] ∼= Z/nZ⊕ Z/nZ.

The elliptic curves defined over a field of characteristic p can be classified
according to the structure of their p-torsion group. The elliptic curves with
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E[p] ' Z/pZ are called ordinary while the curves E[p] ' O are called supersin-
gular.

An isogeny ϕ : E → E′ is a non-constant morphism from E to E′ that pre-
serves the identity element. The degree of an isogeny is its degree as a morphism.
If ϕ is separable, then degϕ = #ker(ϕ). Two curves E and E′ are isogenous if
there is a separable isogeny between the two curves. Due to Tate’s theorem, two
curves E and E′ are isogenous over Fq if and only if #E(Fq) = #E′(Fq). The
isogeny ϕ can be explicitly obtained by using Vélu’s formulae [30]. An isogeny
of degree d is called a d-isogeny. Every isogeny of smooth degree d > 1 can be
computed as a composition of isogenies of prime degree d =

∏m
i=1 `

ei
i over Fq.

An isogeny is a group homomorphism and so can be uniquely (up to isomor-
phism) identified with its kernel. Given G ⊆ E, there exists a unique curve EG
(up to isomorphism) and a unique separable isogeny (up to automorphism of E)
ϕG : E → EG ∼= E/G such that ker(ϕG) = G. For a given prime `, there exists
exactly ` + 1 cyclic subgroups of order ` that each defines different `-isogenies.
Φ`(x, y) ∈ Z[x, y] is a symmetric modular polynomial of degree ` + 1 in both
x and y, and Φ`(j1, j2) = 0 if and only if there is an `-isogeny between two
elliptic curves with j-invariants j1 and j2. Moreover, for a given j, the roots of
the univariate equation Φ`(x, j) = 0 are the j-invariants of curves which are `-
isogenous with j. For each `-isogeny ϕ : E → E′, there is a unique dual `-isogeny
ϕ̂ : E′ → E such that ϕ̂oϕ = ϕoϕ̂ = [`] where [`] is the multiplication-by-` map.

An endomorphism is an isogeny from E to itself. The set of all endomorphisms
of the elliptic curve E, including the zero map, is denoted by End(E). Moreover
it has a ring structure under point-wise addition and composition operations.
The End(E) over the algebraic closure field is isomorphic with an order in a
quadratic imaginary field or a maximal order in a quaternion algebra. An elliptic
curve whose End(E) is an order in a quadratic imaginary field is called ordinary.
The curve with End(E) as a maximal order in a quaternion algebra is called the
supersingular elliptic curve. Up to isomorphism, all supersingular elliptic curves
over the finite field Fq of characteristic p can also be defined over Fp2 . Indeed, the
motivation for using the supersingular isogenies in cryptography is based on the
hardness of computing the endomorphism of a randomly chosen supersingular
elliptic curve. The best quantum algorithm to solve this problem has O(p1/4)
running time with only a quadratic improvement over classical algorithms.

2.2 Computational Problems of Supersingular Isogenies

The security of supersingular isogeny-based crypto-systems is based on the fol-
lowing computational problems that are given below:

Endomorphism Ring Problem. Let p be a prime number. Let E be a su-
persingular elliptic curve over Fp2 , chosen uniformly at random. Computing the
endomorphism ring of E is called the endomorphism ring problem. The endo-
morphism ring problem is essential in supersingular isogeny-based cryptography.
The best-known quantum algorithm for solving this problem has O(p1/4) running
time with a quadratic improvement on the classical algorithm.



A Supersingular Isogeny-Based Ring Signature 5

Let p = `e11 `
e2
2 f ± 1 be a prime number where `1 6= `2 are small prime

numbers. Let E be a supersingular elliptic curve over Fp2 , and fix {P1, Q1} and
{P2, Q2} as bases of torsion groups E[`e11 ] and E[`e22 ], respectively. We state the
following problems that form security assumptions of the supersingular isogeny-
based protocols in [9, 17].

Computational Supersingular Isogeny (CSSI) Problem. Let m1 and m2

are randomly chosen integers modulo `e11 and not both divided by `1, and ϕ :
E → E′ be an `e11 -isogeny whose kernel generated by R = m1P1 +m2Q1. For a
given {E′, ϕ(P2), ϕ(Q2)}, CSSI problem is to compute a generator of the kernel
ϕ.

Supersingular Computational Diffie-Hellman (SSCDH) Problem. Let
ϕ : E → E′ and ψ : E → E

′′
be secret isogenies whose kernels are gen-

erated by random points R ∈ 〈P1, Q1〉 and S ∈ 〈P2, Q2〉, respectively, and
{E′, E′′

, ϕ(P2), ϕ(Q2)}, {ψ(P1), ψ(Q1)} are given. Finding the j-invariant of E/〈R,
S〉 is the SSCDH problem.

Supersingular Decision Diffie-Hellman (SSDDH) Problem. Let ϕ : E →
E′ and ψ : E → E

′′
be isogenies whose kernels are generated by random points

R ∈ E[`e11 ] = 〈P1, Q1〉 and S ∈ E[`e22 ] = 〈P2, Q2〉, respectively. One of the
following tuples is sampled with probability 1/2:

– (E′, E
′′
, {ϕ(P2), ϕ(Q2)}, {ψ(P1), ψ(Q1)}, E/〈R,S〉),

– (E′, E′′, {ϕ(P2), ϕ(Q2)}, {ψ(P1), ψ(Q1)}, E/〈T 〉) where T ∈ E[`e11 `
e2
2 ] and is

randomly chosen.

SSDDH problem is to determine from which distribution this tuple is sampled.

Decisional Supersingular Product (DSSP) Problem. Let ϕ : E → E′ be
an isogeny whose kernel is generated by a secret point R ∈ E[`e11 ] = 〈P1, Q1〉.
Suppose that E[`e22 ] = 〈P2, Q2〉 and (E,E′, P2, Q2, ϕ(P2), ϕ(Q2)) are given. Con-
sider the following distributions of (E,E′):

– (E1, E
′
1), where E1 = E/〈S〉 generated by S ∈ E[`e22 ] and E′1 = E′/〈ϕ(S)〉.

– (E1, E
′
1), where E1 is a random curve and isogenous with E, and E′1 is

generated by a random point R′ ∈ E1[`e11 ].

DSSP problem is to determine from which distribution it is sampled for a given
(E1, E

′
1) .

2.3 Ring Signatures

A ring signature scheme for given public parameters pp(λ) consists of a triple
of PPT (probabilistic polynomial-time) algorithms having (Kgen,Sig,Ver), for
generating keys, signing on a message, and verifying the ring signature respec-
tively.
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– Kgen(pp(λ), r)→ (pk, sk): Outputs a pair (pki, ski) of public and secret keys
for a given security parameter (1λ) and a random number r.

– Sig(sks,m,R)→ σ: Let R be a ring containing n signers. Sig takes a message
m, a secret signing key sks where 1 ≤ s ≤ n and a set of public keys
R = {pk1, . . . , pkn} such that pks ∈ R, and outputs a signature σ on message
m with respect with the ring R.

– Ver(m,σ,R) → 1/0: Takes a signature σ, message m, and a ring R =
{pk1, . . . , pkn} as input, outputs 1 for accepting and 0 for rejecting.

A ring signature scheme is required to comply with the properties: correct-
ness, anonymity, and unforgeability.

A ring signature σ is said to satisfy the correctness condition if for every
public information pp(λ), n = poly(λ), message m, R ⊆ {pk1, pk2, . . . , pkn}
where Kgen(pp(λ), ri) = (pki, ski) for every i ∈ {1, 2, . . . , n}, the signature σ =
Sig(sks,m,R) for pks ∈ R, 1 ≤ s ≤ n always holds Pr[Ver(σ,m,R) = 1] = 1.

A ring signature σ is called anonymous if for every public parameter pp(λ),
message m and n = poly(λ), any PPT adversary A has at most negligible
advantage in the following game against a challenger: The challenger runs the
Kgen(pp(λ), ri) = (pki, ski) for every i ∈ {1, 2, . . . , n} using random coins ri,
and samples a random bit b ∈ {0, 1}. The challenger also provides pp and a
set of random coins {r1, . . . , rn} to A. A, using these random coins, has all
the secret keys in the ring. The adversary A gives a challenge (R,m, pki) where
pki0 , pki1 ∈ R and pki = pki0 or pki = pki1 . The challenger then runs the signing
algorithm Sig(skib ,m,R) and outputs σ∗ to A. A wins the game if the A’s guess
b∗ equals b.

A ring signature σ is called unforgeable under insider corruption if for every
public parameter pp(λ) and n = poly(λ), any PPT adversary A has at most a
negligible advantage in the following game against a challenger: The challenger
runs the Kgen(pp(λ), ri) = (pki, ski) for every i ∈ {1, 2, . . . , n} using random
coins ri, and gives pp and pk = {pk1, pk2, . . . , pkn} to A. A can make a polyno-
mial number of times signing. The corruption queries as follows:

– Squeri(i,m,R): the challenger verifies that pki ∈ R then gives σ correspond-
ing with (ski,m,R) to A.

– Cqueri(i): the challenger gives its corresponding random coin ri that gener-
ates (pki, ski) when A reruns the Kgen(pp(λ), ri).

A outputs (σ∗,m∗, R∗) where R∗ ⊆ pk and each pki ∈ R∗ has never requested
as a corruption query, and (.,m∗, R∗) has not been in signing query list. A wins
the game if Ver(σ∗,m∗, R∗) = 1. The advantage of A in the unforgeability game
is ξ = Pr[A wins].

2.4 Supersingular Isogeny-Based Zero-Knowledge Proof

A supersingular isogeny-based zero-knowledge proof of identity is presented in
[17]. In this protocol, Peggy (prover) wants to prove to Victor (verifier) that
she knows the secret kernel 〈S〉 of the isogeny ϕ : E → ES without revealing
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it. This protocol is computationally zero-knowledge and works as follows: Let
`p = `e11 , `v = `e22 , f be a small integer, and {p = `p`vf ± 1, E,ES , E[`v] =
〈P,Q〉, ϕ(P ), ϕ(Q)} be publicly known, S ∈ E[`p] be the secret information.
Peggy selects a random cyclic subgroup V ∈ E[`v], computes isogenies ψ : E →
EV and ψ′ : ES → ESV , whose kernels are generated by V and ϕ(V ), respec-
tively. Peggy then publishes EV and ESV as a commitment. Victor chooses a
random challenge-bit b ∈ {0, 1} and sends it to Peggy. Peggy responds with
{V, ϕ(V )} upon receiving the challenge-bit b = 0, or responds with ψ(S) for
challenge-bit b = 1. Victor accepts if the response generates the isogenies that
connect the corresponding curves. For λ-bit security, this interactive process
should be run λ times, and Peggy successfully proves her knowledge of the se-
cret kernel S if the verifier accepts the responses of all λ times of interaction.
An interactive zero-knowledge proof protocol can be transformed into a non-
interactive signature scheme as given in [14, 31].

3 A Supersingular Isogeny-Based Sigma Protocol for a
Ring

In this section, we propose a supersingular isogeny-based sigma protocol for
a ring that forms the basis of the supersingular isogeny-based ring signature
scheme given in Section 4. The proposed sigma protocol is derived from the in-
teractive zero-knowledge proof of identity proposed by De Feo, Jao, and Plût [9].
This section presents the proposed sigma protocol in detail, proves its security,
and provides a Merkle tree application for efficiency.

3.1 A Sigma Protocol for a Ring

Let R be a ring chosen by Peggy with n members and t be an integer with
1 ≤ t ≤ n. Peggy wants to convince Victor that she knows a secret key 〈St〉 that
generates one of the public keys (i.e., ESt

) in R, without revealing the secret key
and the certain public key in the ring R. An interactive zero-knowledge proof
takes over the ring R as follows:
Setup: For a security parameter λ, the initialization is as follows: Let the public
parameters be a prime number p = `p`vf±1 where `p ≈ `v are smooth numbers,
a supersingular curve E(Fp2), two points P and Q that are the generators of the
`v-torsion group E[`v].
Key Generation: This step generates a pair of public and secret keys for a
given security parameter λ and public parameters for each user. Everyone in the
system has public and secret keys for a given security parameter λ. For the ith

user, Si is her secret key and (ESi , Pi, Qi) is her public key where Si ∈ E[`p],
generating the kernel of a secret `p-isogeny αSi

: E → ESi
, and Pi = αSi

(P ),
Qi = αSi

(Q) as the images of public generators E[`v] = 〈P , Q〉. Peggy picks a
ring R = {(ES1

, P1, Q1), (ES2
, P2, Q2), . . . , (ESn

, Pn, Qn)} of n public keys.
Commitment: Peggy chooses a random secret integer ω ∈ Z/`vZ and computes
V = P + ωQ ∈ E[`v] and αSi(V ) = Pi + wQi defining the kernels of the
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isogenies given in Fig. 1. In this scheme, β : E → E/〈V 〉 = EV and βi : ESi
→

ESi
/〈αSi

(V )〉 = ESiV are `v-isogenies defined by V and αSi
(V ), respectively.

E ES1
...

...ES1V

ESt
...

...EStV

ESn

ESnVEV

Fig. 1. Commitment isogenies.

Peggy then applies the permutation on
[
j(EV ), j(ES1V ), . . . , j(ESnV )

]
and ob-

tains X =
{
ji1 , ji2 , . . . , jin+1

}
then sends the commitment X to Victor.

Challenge-bit: Victor sends a challenge-bit ch ∈ {0, 1} to Peggy.
Response: Peggy reveals the response resp, based on the challenge-bit. If ch = 1
then, resp = ω. If ch = 0 then resp = (EV , β(St)) where 〈β(St)〉 is the kernel of
the isogeny α′ : EV → EV /〈β(St)〉 = EStV .
Accept/Reject: If ch = 1, Victor verifies whether resp = ω generates the ellip-
tic curve points of order `v that define the kernels for the isogenies E → EV ′ , and
ESi
→ ESiV ′ , for 1 ≤ i ≤ n, respectively. Victor sets Y =

[
j(EV ′), j(ES1V ′), . . . ,

j(ESnV ′)
]

and accepts if Y = X, otherwise he rejects. If ch = 0, Victor checks
whether β(St) has order `p and generates the isogeny EV → EV /〈β(St)〉 = ES′

tV

and then accepts if j(EV ), j(EStV ) ∈ X. He rejects otherwise. Note that ESV '
E/〈S, V 〉 ' E/〈S〉/〈αS(V )〉 ' E/〈V 〉/〈β(S)〉.

Remark 1. The sigma protocol does not leak any information about (ESt , t).
The prover uses a permutation map, which hides the index of the elements in
the commitment. Moreover, when the verifier sends ch = 1, the prover’s response
allows the verifier to compute all the commitments, and therefore, there is no
leak of anonymity. When the verifier sends the challenge-bit ch = 0, the prover’s
answer is an isogeny between two curves (EV , ESV ) in the commitment. Since the
verifier does not know the isogeny that connects these two curves to public curves
in the ring R, the response of this challenge is independent of the knowledge of
(ESt

, t).

Theorem 1. The sigma protocol for a ring R is complete, honest-verifier zero-
knowledge (HVZK), and it satisfies 2-special soundness if the supersingular
isogeny problems — DSSP and CSSI problems — are computationally hard.

Proof. It is trivial to check the completeness. We shall prove that the scheme is
HVZK, which means that one can simulate a real execution of the identification
protocol for a given public key and a challenge-bit without the knowledge of
the secret key. To see this, consider the algorithm Sim(R, ch)→ (com, ch, resp).
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For a given R and a challenge-bit ch, Sim works as follows: If ch = 1, choose
a random integer ω′ ∈ Z/`vZ and compute the corresponding isogeny maps of
degree `v from the public keys in the ring R. Y stores the j-invariant of the
image curves. The Sim outputs the transcript (com, ch, resp) = (Y, 1, ω′). In this
case, the output transcript is simulated correctly. If ch = 0, choose a curve E′

(isogenous to E) and a random point S′ ∈ E′[`p] where E
′′

= E′/〈S′〉. Y holds
the j-invariants of E′, E′′, and n − 1 randomly chosen curves isogenous to E.
The Sim outputs transcript (com, ch, resp) = (Y, 0, (E′, S′)). Although, in this
case, Y is not distributed as a real execution, the computational assumption of
DSSP implies it is computationally hard to distinguish whether it is a simulated
transcript or the transcript of the real execution. Therefore the scheme has
computational zero-knowledge. 2-Special soundness follows from the following
observation: For given two valid transcripts (X, ch = 1, resp = ω) and (X, ch =
0, resp = (E′, S′)) with respect to R, it is possible to extract the secret key. Let
β : E → E′ = E/〈V 〉 be the isogeny generated by the kernel V = P + ωQ and
α′ : E′ → E

′′
= E′/〈S′〉 be the isogeny generated by S′. From the knowledge

of two transcripts, one can compute β̂(S′) that generates a secret kernel for one
of the curves in the ring R. Suppose that A is an adversary that can correctly
respond both challenges ch = 0 and ch = 1 corresponding with X. It means that
A can solve an instance of CSSI problem.

3.2 Reducing the Size of Commitment Using Merkle Tree

The size of the commitment in Section 3.1 is large. Hence, to reduce the size of the
commitment, we apply the Merkle tree to the commitment setX in each iteration
of the sigma protocol for the ring R. We set a Merkle tree on commitment
X =

{
ji1 , ji2 , . . . , jin+1

}
whose leaf nodes are

{
H(ji1), H(ji2), . . . ,H(jin+1

)
}

where H is a hash function. Internal nodes further up in the tree are hash values
of a concatenation of two hashes (their two children). The root of the Merkle
tree (the top hash) contains the hash of the entire tree. In order to prove that
H(ji) is a leaf node of the Merkle tree for a given Root(X), an ordered path that
contains a sibling node of H(ji) and other internal nodes to compute the given
root are needed. This path has a logarithmic size in the number of leaf nodes.
As an example, Fig. 2 illustrates the construction of a Merkle tree where X =
{ji1 , ji2 , . . . , ji8} is the permuted j-invariants of the curves {j(EV ), j(ES1V ), . . .
, j(ES7V )}. One can obtain the Path of a single node by following the short-
est path from the Root node to the specific node. For instance, Path(ji6) =
(H5, H78, H1234).

We slightly modify the sigma protocol for R in such a way that the prover
only reveals a Merkle tree root of X as a commitment. The changes in each
step of the sigma protocol are as follows: Peggy applies each operation of the
commitment step given in Section 3.1, and computes a Merkle tree root of X ={
ji1 , ji2 , . . . , jin+1

}
and sends Root(X) to Victor. Victor sends a challenge-bit

ch ∈ {0, 1} to Peggy. If challenge-bit is ch = 1, Peggy reveals the response resp =
w. If ch = 0, the response is modified as resp = (Path(j(ESt

)), EV , β(St)).
Victor reconstructs the Merkle tree root Y = {j(E′V ), j(E′S1V

), . . . , j(E′SnV
)}
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generated by resp = ω and accepts if Root(Y ) = Root(X) in the case that
ch = 1. If ch = 0, Victor first computes ESt

from the knowledge (EV , β(St))
and the given Path(j(ESt)). Then, the leaf node H(j(ESt)) recovers Root(Y ).
Victor accepts it if Root(Y ) = Root(X).

Fig. 2. Constructing a Merkle tree for 8 j-invariants.

4 A Supersingular Isogeny-Based Ring Signature

In this section, we describe a supersingular isogeny-based ring signature which
is obtained by applying Fiat-Shamir transform to the sigma protocol given in
Section 3.

Let p = `p`vf ± 1 be a prime number for a given security parameter λ, E be
a supersingular elliptic curve defined over Fp2 , and H be a hash function whose
output size is q = O(λ). The points P and Q are on the curve E(Fp2) such that
E[`v] = 〈P,Q〉. The public parameters of the signature are p,E, P,Q, and H.

Let R = {(ES1 , P1, Q1), . . . , (ESn , Pn, Qn)} be the public keys of a ring with
n users. (ESi

, Pi, Qi) is the public key of the ith ring member where ESi
is

the image curve of an `p-degree secret isogeny αi : E → ESi
, Pi = αi(P ) and

Qi = αi(Q) for 1 ≤ i ≤ n. Consider t as a ring member who selects the ring
R and computes the ring signature. The signer t generates the ring signature
by running the sigma protocol for R. Let q be the number of iterations, the kth

iteration of the protocol is as follows:

– Select a random integer ωk ∈ Z/`vZ, compute Vk = P + ωkQ and the
corresponding `v-isogeny βk : E → EVk

.
– By using the public keys pki = (ESi

, Pi, Qi) in R, compute the isogenies
β′k1, β

′
k2, . . . , β

′
kn where β′ki : ESi

→ EVkSi
is generated by αSi

(Vk) = Pi +
ωkQi of degree `v.

– Compute Xk =
[
j(EVk

), j(ES1Vk
), j(ES2Vk

), . . . , j(ESnVk
)
]

and after apply-
ing a permutation set σk = Root(Xk).

After collecting all σk values for k = 1, . . . , q, the signer then computes
h = H(m,σ1, σ2, . . . , σq) where m ∈ {0, 1}∗ is the message and h ∈ {0, 1}q is the
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output of the hash function H which are the challenge-bits of the ring signature.
Let zk be the kth bit of verification key, for k = 1, . . . , q, if hk = 1, the signer
sets zk = ωk, otherwise zk = (Path(EVkSt), j(EVk

), βk(St)). The signature is
σ = (R, h, z).

A verifier can recover each σk by using the information given by zk for 1 ≤
k ≤ q. For instance, since zk = ωk when hk = 1, the `v-isogeny βi : E → EVk

generated by the kernel 〈Vk〉 = 〈P + ωkQ〉 and a set of {β′ki : ESi → ESiVk
}ni=1

where each β′ki generated by the kernel 〈αi(Vk)〉 = 〈Pi+ωkQi〉 can be computed.
Then, applying the given permutation (order), Yk = {ji1 , ji2 , . . . , jin+1

} leads
to recompute σk = Root(Yk). In the case hk = 0, zk contains a kernel of an
`p-isogeny to compute EStVk

from (EVk
, βk(St)). Also, the Merkle tree path is

required to compute σk, which the verifier already has Path(EStVk
), since zk

contains it. The verifier computes h′ = H(m,R, σ1, σ2, . . . , σq) by using the
recovered σk’s. The verifier then accepts the signature σ if h = h′, otherwise he
rejects.

Theorem 2. The ring signature scheme defined in this section is correct, anony-
mous, and existentially unforgeable under an adaptive chosen message attack in
the random oracle model if the problems CSSI and DSSP are computationally
hard, and the sigma-protocol for a ring given in Section 3 is correct, 2-special
sound, and honest-verifier zero-knowledge.

Proof. We provide a sketch of proof here. The correctness of the ring signature
produced by a signer who knows a secret key in the ring R follows from the
correctness of the sigma protocol for a ring since we run it in q parallel times.
The commitments are reconstructed from the verification keys of the signature.
We prove the anonymity by showing that there exists a simulator Sim that
outputs signatures indistinguishable from signatures generated by a signer. Let
the adversary challenge be (m,R, S0, S1) where the ring R contains two public
keys corresponding with the secret keys S0 and S1. Using the zero-knowledge
simulator Sim, the challenger simulates a signature in the random oracle (where
the output challenge-bits are well adjusted with the responses given by Sim)
without the knowledge of secret keys S0 and S1. Hence, the zero-knowledge
property of the ring signature is independent of the knowledge of the secret keys,
which preserves the anonymity of the proposed scheme even against the full key
exposure. The unforgeability of the supersingular isogeny-based ring signature
is shown with the assumption that the adversary A succeeds in generating a
forgery with advantage ξ. Let B be an algorithm that runsA for given public keys
and parameters. B uses the Sim to generate the queried signatures as explained
above. If A outputs a forged signature (σ∗,m∗, R∗) where (.,m∗, R∗) have never
been queried before. B rewinds A and reruns it by refreshing the randomness
of random oracle to obtain another proof for a particular query of the random
oracle that before was made by (σ∗,m∗, R∗). In this case, if A succeeds, then B
either will find a collision or two transcripts (com, ch, resp) and (com, ch′, resp′),
which results a secret key in the ring R.
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5 Efficiency

This section provides a more detailed explanation about the key and signature
sizes of the schemes introduced in Section 3 and 4. Note that the method given
in Lemma 2. of [14] is used for the following analyses.

The best known classical and quantum attacks of supersingular isogeny as-
sumptions of smooth degree `p ≈ `v have roughly O(

√
`p) and O( 3

√
`p) heuristic

running times, respectively. Thus, for a given security parameter λ, we have
log2(`p) = 2λ for the classical security and log2(`p) = 3λ for the quantum secu-
rity.

We assume that H is a secure hash function with the output {0, 1}q where q =
O(λ) and the ring R consists of n public keys. Each pki = (j(Ei), x(Pi), x(Qi)) ∈
R is the public key of a ring member where j(Ei), x(Pi), x(Qi) ∈ Fp2 . The signing
secret key ski is an integer in Z/`pZ, which is relatively prime to the smooth
base (i.e., if `p = 2a then gcd(ski, 2) = 1).

Now we present the efficiency analysis of supersingular isogeny-based sigma
protocol for a ring. R consists of n public keys pki = (j(Ei), x(Pi), x(Qi)), where
one of these public keys corresponds with the prover’s secret key sk. The size
of the ring R is |R| = 6n log2(p), where the size of a public key is |pki| =
6 log2(p) since j(Ei), x(Pi), x(Qi) ∈ Fp2 . The secret key size |sk| = 1

2 log2(p),
providing that the generators of the torsion group E[`p] are given as public
information. The prover sends a commitment com = {ji1 , ji2 , . . . , jin+1

} con-
sists of j-invariants of n + 1 curves that are computed using the `v-isogeny
maps from E and the curves in R. In this case, the size of the commitment is
|com| = 2(n + 1) log2(p) where ji ∈ Fp2 . By applying the Merkle tree, the size
of the commitment can be decreased to a Merkle tree hash root of size q. The
prover’s response is either resp = ω or resp = (EV , β(S)) based on challenge-bit
ch = 1 and ch = 0, respectively. On average, the size of the response |resp| =
1
2 ( 1

2 log2(p)+[2 log2(p)+ 1
2 log2(p)]) where |ω| = 1

2 log2(p), |β(S)| = 1
2 log2(p) and

|EV | = 2 log2(p). By applying the Merkle tree, the size of the prover’s response
can be changed to |resp| = 1

2 ( 1
2 log2(p) + [q log2(n) + 5

2 log2(p)]) where q log2(n)
is the Merkle tree path size from a leaf node to root. The computation of the
supersingular isogeny map is the main operation in the proposed sigma protocol.
In the commitment phase, the prover computes n + 1 isogenies to generate the
commitment. In the verification phase, the verifier computes n + 1 isogenies if
ch = 1 and one isogeny if ch = 0.

Efficiency analysis of the supersingular isogeny-based ring signature can be
explained as follows: A public key (j(Ei), x(Pi), x(Qi)) ∈ R where j(Ei), x(Pi),
x(Qi) ∈ Fp2 requires |pki| = 6 log2(p) bits. The secret key requires |ski| =
1
2 log2(p) bits. The signature σ = (R, h, z) contains the ring R of n public keys
and |R| = 6n log2(p). A hash function H with output h of size q bits where the
number of hi = 0 and hi = 1 of the output are roughly equal. So, the size of z
is calculated as follows: In the case that hi = 1, |zi| = 1

2 log2(p) and in the case
that hi = 0, |zi| = 5

2 log2(p) + q log(n), where 5
2 log2(p) = |j(EV ) + |β(S)| and

|Path(ESV )| = q log(n). Consequently, |z| = q
2

(
1
2 log2(p)+

(
5
2 log2(p)+q log(n)

))
.

When we put them all together, we come up with the size of the signature
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on average: |σ| = 6n log2(p) + q + q
2

[
1
2 log2(p) +

(
5
2 log2(p) + q log2(n)

)]
.In the

proposed ring signature, the signer computes q(n+ 1) isogenies to generate the
signature, and the verifier computes q

2 (n+ 1) isogenies on average to verify the
signature.

In the case that we have an ordered set of public keys, instead of including
a ring of public keys as a part of the signature, which increases the total size
of signature 6n log2(p), the signer can provide a seed and an integer as part of
the signature. The seed generates n random integers. The signer then finds an
integer such that the addition of the random numbers and integer modulo n will
generate the indices of n public keys, including the signer public key from the
ordered public key list. This optimization saves approximately 6n log2(p) bits in
the signature size.

6 Conclusion

In this paper, we have presented a post-quantum sigma protocol for a ring based
on supersingular isogenies. We have proved the correctness, 2-special soundness,
and honest-verifier zero-knowledge properties of this supersingular isogeny-based
sigma protocol for a ring. We have also proposed a supersingular isogeny-based
ring signature obtained by applying Fiat-Shamir transform to the supersingu-
lar isogeny-based sigma protocol for a ring. The correctness, anonymity, and
existential unforgeability properties of this ring signature scheme have been pro-
vided. Furthermore, we have applied the Merkle tree to our constructions in
order to improve the efficiency of the proposed protocols. Finally, we have pro-
vided the efficiency analyses of the sigma protocol and ring signature proposed
in this paper. In the proposed ring signature, the signature size grows logarith-
mically in the size of the ring where Merkle tree paths or roots have formed a
part of the verification keys. In the future work, we expect to expand our vision
to develop a linkable version of the supersingular isogeny-based ring signatures.
Linkability offers the property to determine if the same signer has issued two
signatures, which could prevent the issues such as double-spending attacks and
double-voting for crypto-currencies and e-voting protocols.
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