
Faster Key Generation of Supersingular Isogeny
Diffie-Hellman

Kaizhan Lin1, Fangguo Zhang2,3, and Chang-An Zhao1,3

1 School of Mathematics, Sun Yat-Sen university, Guangzhou 510275, P.R. China
2 The author is with School of Computer Science and Engineering, Sun Yat-sen

University, Guangzhou 510006, P.R. China
3 The authors are with Guangdong Key Laboratory of Information Security,

Guangzhou 510006, P.R. China

Abstract. Supersingular isogeny Diffie-Hellman (SIDH) is attractive for
small public key size, but it is still unsatisfactory due to its efficiency,
compared to other post-quantum proposals. In this paper, we focus on
the performance of SIDH when the starting curve is E6 : y2 = x3 +6x2 +
x, which is fixed in Round-3 SIKE implementation. We present several
tricks to accelerate key generation of SIDH by precomputing few elements
in the base field. We also point out that the main ideas of Costello et al.
and Faz-Hernández et al. to improve the ladder performance of SIDH,
of which the starting curve is E0 : y2 = x3 + x, could be still utilized
for the current SIDH protocol. Our experimental results show that our
work is more efficient than the current state-of-the-art implementation,
which is favorable when the memory resources are limited.

Keywords: SIDH · isogeny-based cryptography · post-quantum cryp-
tography · Montgomery ladder · key generation

1 Introduction

Supersingular isogeny Diffie-Hellman (SIDH) [10] has been regarded as one of
the most attractive post-quantum protocols during the last decade because of
its small public key size and high security. Up to now, supersingular isogeny key
encapsulation (SIKE), which is based on SIDH, still remains active in the NIST
post-quantum standardization process. Nonetheless, compared to other post-
quantum cryptosystems, isogeny-based protocols generally seem to be inefficient,
and so do SIDH and SIKE, for the reason why the efficient implementation of
SIDH has become a hot spot in recent years.

SIDH consists of the key generation phase and the key agreement phase.
For each of them, the three-point ladder and isogeny computation (including
isogeny construction and isogeny evaluation at points) are dominant. Although
the latter one spends longer time, the optimization of the three-point ladder is
still meaningful to improve the performance of SIDH.

Jao and De Feo [10] developed the three-point ladder when SIDH was pre-
sented in 2011. One advantage of the three-point ladder is that the x-coordinate
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of the point P +[s]Q can be computed directly by the x-coordinates of P , Q and
P −Q, where s is a secret key and P , Q are points defined on the Montgomery
curve E0 : y2 = x3 + x. The three-point ladder was first improved by Costello
et al. [5] by choosing torsion bases to execute base field operations of comput-
ing P + [s]Q as possible. Faz-Hernández et al. [8] proposed a new three-point
ladder, offering a saving of one differential addition per iteration. In addition,
they pointed out that the three-point ladder could be further improved, but it
requires large memory requirement, making it hard to be applied when the stor-
age is limited. There is no doubt that setting E0 as the starting curve brings
perfect instantiation of SIDH. Unfortunately, Costello et al. observed that the
distortion map of E0 reduces the entropy of the private and public keys [6].
Hence, the original starting curve was replaced by E6 : y2 = x3 + 6x2 + x, while
this modification restricts the techniques mentioned above, resulting in relatively
heavy computational cost of the three-point ladder.

In this paper, we mainly consider torsion bases used for public-key compres-
sion of SIDH [14]. Our contributions are as follows:

– We present Method 1 to speed up the three-point ladder for the case of Alice,
requiring an element in the base field to be stored. We also point out that
the acceleration techniques mentioned in [8] can be adapted into the current
SIDH, as we present in Method 2.

– We show that the method of computing kernel generators proposed in [5],
could be still employed to improve the current key generation of SIDH for
the case of Bob, as we present in Method 3. Besides, similar to Method 2,
we present Method 4 to further improve the performance, with a previous
knowledge of a look-up table.

The remaining of this paper is organized as follows. In Section 2 we review
basic knowledge of isogenies, the Montgomery ladder, the three-point ladder and
the SIDH protocol. In Section 3 we show how to speed up the kernel generation of
isogeny during the first phase of SIDH. Our implementation results are presented
in Section 4. Section 5 concludes our work.

2 Preliminaries

Throughout the paper, an elliptic curve in Montgomery form y2 = x3 +Ax2 +x
is denoted by EA, and p = 2e23e3 − 1 is a prime satisfying 2e2 ≈ 3e3 ≈ p

1
2 .

Denote rA = 2e2 and rB = 3e3 for simplicity. In addition, let (xP , yP ) and
(XP : YP : ZP ) denote the affine and projective coordinates of the point P ,
respectively.

2.1 Isogeny

Given two elliptic curves E and E′ defined over a finite field Fq, an isogeny
φ : E → E′ is a non-constant morphism from E(Fq) to E′(Fq) such that

φ(OE)→ OE′ ,
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where OE is the unique point at infinity of E, and OE′ is defined similarly [18].

Let deg(φ) be the degree of φ as a rational function, and ker(φ) is the kernel of
φ. The isogeny φ is called separable if it satisfies deg(φ) = #ker(φ). A separable
isogeny of degree ` is abbreviated as `-isogeny.

Two elliptic curves E and E′ are said to be `-isogenous over Fq if there
exists an isogeny φ : E → E′ defined over Fq. Deciding whether two curves are
`-isogenous [10, Problem 5.1] is considered to be a difficult problem [1, 3, 12],
which mainly guarantees the security of the SIDH/SIKE protocol. See [16] for
details of the structure of the isogeny graphs.

2.2 Montgomery ladder

The Montgomery ladder was first proposed by Montgomery [13] in 1987, aiming
to compute multiples of points for a given point. Compared to the double-and-
add algorithm [7], the Montgomery ladder can avoid side-channel analysis [11].
Furthermore, the Montgomery ladder is able to compute the x-coordinates of
multiples of points efficiently thanks to the following equations:

x[2]P =
(x2P − 1)2

4xP (x2P +AxP + 1)
,

xP−QxP+Q =
(xPxQ − 1)2

(xP − xQ)2
,

where P and Q are two points over the Montgomery curve. It is obvious that we
can also use the Montgomery point P = (XP : ZP ) to compute the Montgomery
point [k]P = (X[k]P : Z[k]P ). Typically, projective coordinates are preferred for
efficiency.

In each iteration, the Montgomery ladder executes one point doubling and
one differential addition, denoted by dadd. It costs five field multiplications
and four field squarings. Pseudocode of dadd is referred to Appendix A, and
pseudocode of the Montgomery ladder is available in Algorithm 1.

Algorithm 1 Montgomery ladder

Input: P = (XP : ZP ) ∈ EA, s = (s`−1 · · · s1s0)2 and A24 = (A + 2)/4
Output: [s]P .

1: (X1 : Z1) = [2]P , (X2 : Z2) = P , (X3 : Z3) = P
2: for j = `− 2 down to 0 do
3: if si = 0 then
4: (X2, Z2, X1, Z1) = dadd(X2, Z2, X1, Z1, X3, Z3, A24)
5: else
6: (X1, Z1, X2, Z2) = dadd(X1, Z1, X2, Z2, X3, Z3, A24)
7: end if
8: end for
9: return X2, Z2
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In the SIDH protocol, a Montgomery point of the form S = P + [s]Q on EA
is required to be computed. The Montgomery ladder can be used to compute
the x-coordinates of [s]Q and [s + 1]Q (Note that the Montgomery ladder also
computes the latter). Afterwards, one can recover the y-coordinate of [s]Q by
the Okeya-Sakurai formula [15]:

y[s]Q =

(
x[s]QxQ + 1

) (
x[s]Q + xQ + 2A

)
− 2A−

(
x[s]Q − xQ

)2
x[s+1]Q

2yQ
. (1)

Thus, we can get P + [s]Q by one differential addition.
We present Algorithm 4 in Appendix B, which is used to recover [s]Q, while

Algorithm 6 in Appendix C is pseudocode of differential addition.

2.3 Three-point ladder algorithm

Instead of the Montgomery ladder, Jao, De Feo and Plût [10] proposed a three-
point ladder to compute P +[s]Q, where P and Q are points on the Montgomery
curve. The superiority of three-point ladder is that P + [s]Q can be computed
directly. That is to say, there is no need recovering the y-coordinate of any point.
The three-point ladder was later improved in [8, Algorithm 2].

Algorithm 2 Three-point ladder [8]

Input: P = (XP : ZP ), Q = (XQ : ZQ), Q−P = (XQ−P : ZQ−P ), s = (s`−1 · · · s1s0)2
and A24 = (A + 2)/4
Output: P + [k]Q

1: (X1 : Z1) = Q, (X2 : Z2) = P , (X3 : Z3) = Q− P
2: for j = 0 to `− 1 do
3: if si = 0 then
4: (X1, Z1, X3, Z3) = dadd(X1, Z1, X3, Z3, X2, Z2, A24)
5: else
6: (X1, Z1, X2, Z2) = dadd(X1, Z1, X2, Z2, X3, Z3, A24)
7: end if
8: end for
9: return X2, Z2

As we can see in Algorithm 2, in each iteration the point doubling computa-
tion of Q does not depend on the secret key s. Faz-Hernández et al. [8] pointed
out that a look-up table can be precomputed to reduce the computational cost:

T (Q) =

(
x[2]Q + 1

x[2]Q − 1
,
x[4]Q + 1

x[4]Q − 1
, . . . ,

x[2`]Q + 1

x[2`]Q − 1

)
, (2)

where i = 1, · · · , ` = e2 − 3 or dlog rBe. In this case it costs only three field
multiplications and two squarings per iteration, while the size of the table is
relatively large.
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Remark 1. Similar to the Montgomery ladder, one can recover the y-coordinate
of P + [k]Q after the last iteration if [2`]Q is precomputed. See Appendix B for
more details.

2.4 SIDH protocol

In this subsection, we introduce the classical SIDH protocol briefly. Let E6 : y2 =
x3 + 6x2 + x be a supersingular elliptic curve over Fp2 = Fp[i]/〈i2 + 1〉. For two
subgroups E[rA] and E[rB ], there are two pairs of torsion points {PA, QA} and
{PB , QB} such that 〈PA, QA〉 = E[rA] and 〈PB , QB〉 = E[rB ]. All mentioned
above are considered as public domain parameters.

Alice chooses a random integer sA ∈ [0, rA − 1] as her secret to begin the
key generation phase. To prevent simple side-channel attacks, she adapts the
three-point ladder to compute SA = PA + [sA]QA of order rA. Thereafter, Alice
constructs the rA-isogeny with kernel 〈SA〉 by Vélu’s formula [19] with the help
of the smoothness of rA. Finally, Alice transmits φA(PB), φA(QB) and the image
curve EA to Bob. Similarly, Bob selects his secret key sB ∈ [0, rB−1] to compute
SB = PB + [sB ]QB , and then calculates φB(PA), φB(QA). Finally, he sends
φB(PA), φB(QA) as well as the image curve parameter B to Alice.

Once Alice receives the public key from Bob, Alice begins her key agreement
phase. In the first place she computes S′A = φB(PA) + [sA]φB(QA). Next, she
constructs the isogeny φ′A with kernel S′A and finds out the image curve EBA
of φ′A. Similar to Alice, Bob evaluates S′B = φA(PB) + [sB ]φA(QB) and the
corresponding isogeny φ′B . Note that only the image curve parameter is needed.
To end the key agreement phase, each of them evaluates the j-invariant of their
respective image curve as their shared secret.

As mentioned in Section 2.3, Alice can make full use of the x-coordinates
of PA, QA, RA = PA − QA to compute the x-coordinate of SA using the three-
point ladder. Instead of {φA(PB), φA(QB), A}, she could utilize xSA

to evaluate
{xφA(PB), xφA(QB), xφA(RB)} and transmits it to Bob . The same case is also
available for Bob. Similarly, the key agreement phase can be optimized in the
same way as well. Besides, the public keys of Alice and Bob can be further com-
pressed. For detailed techniques used in public-key compression of SIDH/SIKE,
we refer to [2, 4, 9, 14,17,20].

3 Optimization of Kernel Generator Computation

In this section, we show how to improve the kernel generation of isogeny in key
generation of SIDH. We consider the torsion bases selected in [14], which can be
utilized to speed up key generation of the compressed version of SIDH as well.

When counting field operations, we use M and S to denote the respective
costs of a multiplication and a squaring in the field Fp2 . Besides, the notations
m and s are used to represent the costs of a multiplication and a squaring in Fp.
To measure the performance of the algorithms, we estimate M ≈ 3m, S ≈ 2m
and s ≈ 0.8m.



6 Kaizhan Lin, Fangguo Zhang, and Chang-An Zhao

3.1 Case of Alice

Naehrig and Renes chose a rA-torsion basis {PA, QA} such that

[2]PA = (x, iy), [2]QA ∈ E6(Fp),

where x, y ∈ Fp, to speed up public-key compression. In fact, the features of this
basis could be used to speed up the three-point ladder as well.

When implementing the three-point ladder (Algorithm 2) to compute the
point PA+[sA]QA, all the operations are in Fp2 , for the reason that both PA and
QA are defined on E6(Fp2)\E6(Fp). However, after executing the t-th iteration,
[2t]QA = (X1 : Z1) always satisfies the following relation:

X1

Z1
∈ Fp.

This is because the x-coordinate of [2t]QA is in Fp, where t = 1, · · · , e2 − 1.
Therefore, Alice can precompute x[2]QA

(which is an element in Fp) to speed
up the computation of kernel generators. After the first iteration of the three-
point ladder, she could substitute (x[2]Q : 1) for the values of (X1 : Z1) such that
the subsequent operations related to X1 and Z1 could be executed in the base
field Fp as possible.

In general, Alice can use her secret key sA to compute PA+[sA]QA as follows:

Method 1:

– Execute dadd once to attain the coordinates (X1, Z1, X2, Z2, X3, Z3) of the
tuple {[2]QA, PA +QA, QA − PA} or {[2]QA, PA, [2]QA − PA}, with respect
to the last bit of the binary representation;

– Replace (X1 : Z1) with (x[2]Q : 1);
– Continue executing the three-point ladder as usual.

As mentioned in Section 2.3, Alice could further optimize the implementation
by storing a look-up table T (Q).

Method 2:

– For each iteration (except the last two), execute a differential addition with
the help of the look-up table T (Q);

– Set (X1 : Z1) = (1 : 1), and then execute a differential addition;
– Set (X1 : Z1) = (0 : 1), and then execute a differential addition.

Since [2]QA ∈ E(Fp), this optimization requires additional storage, but it is
unbearable for storage constrained environments. Furthermore, this method is
not as efficient as the method mentioned in [8, Section 3.2.2] because there is no
obvious way to perform the three-point ladder in the base field.

Remark 2. There does not exist a point of order rA on E6(Fp) because E6(Fp)[rA]
is isomorphic to Z/2e2−1Z × Z/2Z. Hence, it is impossible to find a rA-torsion
basis such that one of the torsion points belongs to E6(Fp).
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To sum up, the estimates given in Table 1 show the computational cost for
each iteration. The table shows that Methods 1 and 2 are able to improve the
three-point ladder, and the implementation of the latter method performs better,
but it requires large storage.

Table 1. Cost estimates for each iteration of the three-point ladder during the key
generation phase of Alice.

Method Cost estimates

Current SIDH [2] 6M+4S ≈ (6×3 + 4×2) m = 26m
Method 1 3M+2S+5m+2s ≈ (3×3+2×2+5+2×0.8) m = 19.6m
Method 2 2M+2S+2m ≈ (2×3+2×2+2) m = 12m

3.2 Case of Bob

To compress public keys faster, Naehrig and Renes selected the rB-torsion basis
{P3, Q3} on E0 such that

P3 = (x, y), Q3 = ψ(P3) = (−x, iy),

where x, y ∈ Fp. Then they set {φ2(P3), φ2(Q3)} as the rB-torsion basis of E6,
where φ2 is the 2-isogeny with kernel 〈(i, 0)〉:

φ2 : E0 → E6,

(x, y) 7→
(
ix2 − x
x− i

, y
ix2 + 2x+ i

(x− i)2

)
.

Instead of PB+[sB ]QB , we consider [sB ]PB+QB as the kernel of the isogeny.
Similar to the ideas proposed in [5], Bob can use his secret key sB to compute
[sB ]PB +QB as follows:

Method 3:

– Use the Montgomery ladder to compute theX-coordinates and Z-coordinates
of [sB ]P3 and [sB + 1]P3, respectively;

– Utilize the Okeya-Sakurai formula (1) to recover the projective coordinates
of [sB ]P3;

– Compute [sB ]P3 +Q3;
– Complete the evaluation of the isogeny φ2 at [sB ]P3 +Q3.

It is obvious that

SB = φ2([sB ]P3 +Q3) = [sB ]φ2(P3) + φ2(Q3) = [sB ]PB +QB .
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Since the order of QB is rB and gcd(2, rB) = 1, the order of the point SB is
exactly rB . In this case, only the point P3 in affine coordinates should be stored
(Q3 could be recovered by ψ(P3)).

The reason why Bob executes the Montgomery ladder is that Q3 ∈ E0(Fp),
i.e., all the operations are implemented in the base field. Therefore, Bob could
compute the point SB much more efficient than before. It is worth noting that
the modification of the kernel form of the isogeny does not reduce the size of key
space because PB is also a point of order rB .

Set Q′3 = (1,
√

2) ∈ E(Fp) (Note that 2 is a square in Fp because p ≡
7(mod 8)). Analogous to Alice, Bob could store the table

T (P ′3) =

(
x[2]P ′

3
+ 1

x[2]P ′
3
− 1

,
x[4]P ′

3
+ 1

x[4]P ′
3
− 1

, · · · ,
x[2`]P ′

3
+ 1

x[2`]P ′
3
− 1

)
,

where ` = dlog rBe and P ′3 = P3−Q′3 ∈ E0(Fp), to speed up the implementation
of the three-point ladder. In addition, Bob needs to precompute

√
2 and P ′3 to

execute the three-point ladder in the base field. Moreover, [2dlog rBe+2]P3 is also
needed to recover the Y -coordinate of [4sB ]P3. In this light, large memory is
required. The main procedure is as follows:

Method 4:

– Use the three-point ladder to compute the X-coordinates and Z-coordinates
of [sB ]P3 +Q′3 and [2dlog rBe − sB ]P3 +Q′3, respectively;

– Compute [4]([sB ]P3 + Q′3) = [4sB ]P3 and [4]([2dlog rBe − sB ]P3 + Q′3) =
[2dlog rBe+2 − 4sB ]P3;

– Utilize Algorithm (5) to recover [4sB ]P3 in projective coordinates;
– Compute [4sB ]P3 +Q3;
– Complete the evaluation of the isogeny φ2 at [4sB ]P3 +Q3.

Remark 3. This modification of the kernel of the isogeny does not change the
size of key space since gcd(rB , 4) = 1.

We estimate the cost of each iteration of the ladder by utilizing the methods
mentioned above, and draw a comparison between the cost of the methods and
that of the previous. We can predict that Method 3 improves the performance
obviously, and so Method 4 does. However, based on Method 3, the acceleration
effect of Method 4 may be not so significant.

4 Implementation

In this section we present the implementation of key generation of SIDH by
utilizing our techniques, and then give a comparison in efficiency.

In Tables 1 and 2 we give cost estimates for each iteration of the ladder.
Indeed, the cost of the ladder dominates the cost of the kernel generation of
isogenies, so its performance depends on the implementation of the ladder.
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Table 2. Cost estimates for each iteration of the ladder during the key generation
phase of Bob.

Method Cost estimates

Current SIDH [2] 6M+4S ≈ (6×3 + 4×2) m = 26m
Method 3 5m+4s ≈ (5 + 4×0.8) m = 8.2m
Method 4 3m+2s ≈ (3 + 2×0.8) m = 4.6m

Our implementation makes use of the SIDH C library4. The following exper-
imental results have been obtained by utilizing an 11th Gen Intel(R) Core(TM)
i7-1185G7 @ 3.00GHz on 64-bit Linux. We benchmarked our code and observed
the performance of key generation of SIDH by using different methods in com-
parison with the current SIDH. The results are reported in Table 3.

Table 3. Performance comparison of key generation of SIDH by using different meth-
ods. All timings are present in millions of clock cycles.

Setting
Alice’s key generation Bob’s key generation

Current SIDH[2]Method 1 Method 2 Current SIDH[2]Method 3 Method 4

SIKEp434 3.25 3.05 2.92 3.61 3.25 3.17
SIKEp503 4.63 4.32 4.13 5.12 4.50 4.45
SIKEp610 9.52 8.87 8.51 9.55 8.27 8.21
SIKEp751 13.87 12.93 12.46 15.79 14.02 13.85

As can be seen in Table 3, when the storage is constrained, the performance
of ours is 6.56%∼ 7.35% faster than the current SIDH for the case of Alice,
and 11.08%∼ 15.48% faster for the case of Bob. When the storage permits, it
performs better with a previous knowledge of a look-up table, especially for the
case of Alice.

In Table 4 we report the storage requirements for Methods 2 and 4 that
require to store a precomputed table in the SIDH settings. It shows that large
memory is necessary for applying the methods. Therefore, we suppose that Meth-
ods 1 and 3 would be more suitable for memory constrained environments.

5 Conclusion

In this paper, we review the improvement for the ladder in SIDH when the start-
ing curve is E0, and show that these techniques can still be used to speed up key
generation of the current SIDH. Compared to the methods which require large
storage, we utilize several tricks to make SIDH faster by storing few elements

4 https://github.com/Microsoft/PQCrypto-SIDH

https://github.com/Microsoft/PQCrypto-SIDH
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Table 4. Storage requirements (in KiB) for Method 2 and Method 4

Setting SIKEp434 SIKEp503 SIKEp610 SIKEp751

Alice 29.3 39.4 58.6 87.5
Bob 30.6 40.9 59.9 90.8

Total 59.9 80.3 118.5 178.2

in the base field. Our new idea may make SIDH/SIKE more attractive in the
condition of shortage of memory.
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Algorithm 3 dadd: doubling and differential addition

Input:(XP : ZP ), (XQ : ZQ), (XP−Q : ZP−Q) and A24 = (A + 2)/4
Output: (X[2]P : Z[2]P ) and (XP+Q, ZP+Q)

1: t0 ← XP + ZP

2: t1 ← XP − ZP

3: XP ← t20
4: t2 ← XQ − ZQ

5: XQ ← XQ + ZQ

6: t0 ← t0 · t2
7: ZP ← t21

8: t1 ← t1 ·XQ

9: t2 ← XP − ZP

10: XP ← XP · ZP

11: XQ ← A24 · t2
12: ZQ ← t0 − t1
13: ZP ← ZP + XQ

14: XQ ← t0 + t1

15: ZP ← t2 · ZP

16: ZQ ← Z2
Q

17: XQ ← X2
Q

18: ZQ ← XP−Q · ZQ

19: XQ ← ZP−Q ·XQ

B Recovering the Y -coordinate

B.1 The case of the Montgomery ladder

Algorithm 4 Recovering the Y -coordinate after executing the Montgomery
ladder
Input:(xQ, yQ), (X[s]Q : Z[s]Q), (X[s+1]Q : Z[s+1]Q) and A
Output: (X[s]Q : Y[s]Q : Z[s]Q)

1: t0 ← xQ · Z[s]Q

2: t1 ← t0 + X[s]Q

3: t2 ← X[s]Q − t0
4: t2 ← t22
5: t2 ← t2 ·X[s+1]Q

6: t0 ← Z[s]Q + Z[s]Q

7: t0 ← A · t0

8: t1 ← t0 + t1
9: t3 ← xQ ·X[s]Q

10: t3 ← t3 + Z[s]Q

11: t1 ← t1 · t3
12: t0 ← t0 · Z[s]Q

13: t1 ← t1 − t0
14: t1 ← t1 · Z[s+1]Q

15: Y[s]Q ← t1 − t2
16: t0 ← yQ + yQ
17: t0 ← t0 · Z[s]Q

18: t0 ← t0 · Z[s+1]Q

19: X[s]Q ← t0 ·X[s]Q

20: Z[s]Q ← t0 · Z[s]Q

B.2 The case of the three-point ladder

After the t-th iteration of the three-point ladder, Bob can utilize [2t]Q = (X0 :
Z0), P + [s]Q = (X1 : Z1), [2t − s]Q − P = (X2 : Z2) to compute P + [2t +
s]Q = (X3 : Z3), and then recover [4sB ]P3 +Q3 in projective coordinates by the
following algorithm:
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Algorithm 5 Recovering the Y -coordinate after the t-th iteration of the three-
point ladder

Input:[2t]Q = (X0 : Z0), P + [s]Q = (X1 : Z1), [2t − s]Q− P = (X2 : Z2) to compute
P + [2t + s]Q = (X3 : Z3)
Output: P + [s]Q = (X1 : Y1 : Z1)

1: t0 ← X2 · Z3

2: t1 ← X3 · Z2

3: t0 ← t0 − t1
4: t1 ← X0 · Z1

5: t1 ← X1 − t1

6: t1 ← t21
7: Y1 ← t0 · t1
8: t0 ← Y0 + Y0

9: t0 ← t0 + t0
10: t0 ← t0 · Z1

11: t0 ← t0 · Z2

12: t0 ← t0 · Z3

13: X1 ← t0 ·X1

14: Z1 ← t0 · Z1

C Point Addition

Algorithm 6 is used to add a point P represented in affine coordinates to a point
Q represented in projective coordinates, and output the result P +Q = (XP+Q :
ZP+Q).

Algorithm 6 Point differential addition

Input:(XP : YP : ZP ) and (xQ, yQ)
Output: (XP+Q : ZP+Q)

1: t0 ← xQ · ZP

2: t1 ← XP − t0
3: t1 ← t21
4: ZP+Q ← ZP · t1

5: t0 ← XP + t0
6: t1 ← t0 · t1
7: t0 ← yQ · ZP

8: t0 ← YP − t0

9: t0 ← t20
10: t0 ← t0 · ZP

11: XP+Q ← t0 − t1
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