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Abstract

Fair data trading online is a challenging task when there is mistrust between data providers and data
collectors. The trust issue leads to an unsolvable situation where the data collector is unwilling to pay
until she receives the data while the data provider will not send the data unless she receives the payment.
The traditional solutions toward fair data trading rely on the trust-third party. After the emergence of
the blockchain, many researchers use a smart contract on blockchain as a trust-less third party to address
the mistrust deadlock. However, involving a smart contract in the protocol inevitably exposes some
information to the public if the smart contract is on public blockchain cryptocurrency systems. We
observe that the existing fair data trading protocols do not take privacy into account, which, for instance,
is critical when trading the sensitive data or the players simply do not want to leak any information about
the tradings on the public blockchain. In this paper, we construct a fair trading protocol based on a smart
contract that provides better privacy to the participants. We introduce new security notions for privacy-
preserving blockchain-based fair data trading protocol and prove our protocol is secure under our new
notions. Furthermore, we give a prototype implementation on Ethereum smart contract.

1 Introduction

Trading data on the internet is important for digital ecosystems, especially nowadays a large amount of
electronic data are being generated, forming a large digital resource for different usage. A lot of specific data
have economic values and being used for commercial purposes. A fair data trading means that at the end of
a trading process, either the data provider gets the payment for its data and the data collector gets the data
it expects or neither of them succeeds to receive what they want. Achieving fairness for online trading is
not an easy task since the trading might be carried out over insecure networks, adversaries might corrupt the
systems that are used by the players. In these electronic commerce scenarios, neither of the trading players
trust the other, thus the process ends up in a deadlock problem, where the data collector is unwilling to pay
until it receives the data while the data provider will not send the data unless it receives the payment.

There are various solutions to the fair data trading problem in the literature. The early solutions [ASW98,
CD00, DR03, HYWS08, KL10] are based on trusted third party (TTP) or a trusted arbiter that only shows up
to address disputes. Even though [PD99] proves that it is impossible to solve fair exchange without a TTP,
the emergence of the blockchain can replace the TTP by a trust-less smart contract that holds no secrets and
always executes the protocol honestly. Blockchain suits this role because of its decentralisation, transparency
and financial properties. Getting benefits from this observation, recent solutions [CGGN17, DEF18a, EFS20]
are based on blockchain/smart contract. These solutions are tailored to a data trading case where the data
buyer is willing to pay for some data x that satisfied a public function φ such that φ(x) = 1. For instance,
when a data provider and a data collector are trading a movie, the data collector can find the hash of the movie
from some public database beforehand and later verify the file it received is indeed the pre-image of the hash.

*This work has been co-funded by the IKTPLUSS program of the Research Council of Norway under the scope of and as
part of the outcome from the research project Reinforcing the Health Data Infrastructure in Mobility and Assurance through Data
Democratization (Health Democratization, 2019 – 2024, project number 288856).
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These protocols share the same communication model where data provider firstly sends encrypted data to
the data collector off-chain, then later data provider sends the encryption key to the blockchain and exchange
for payment. We notify that there are two challenging tasks in this model: first, proving the encrypted data
indeed is an encryption of desired data, i.e. a way to verify the validity of the encrypted data; second, proving
the key material that sent to blockchain is valid (valid means the key material can truly help with decrypting
the encrypted data), i.e. a way to check the validity of key material. The protocols proposed by [CGGN17]
use zero-knowledge proof and protocols [DEF18a, EFS20] use a technique called proof of misbehaviour to
solve the above two challenges.

While observed that all these blockchain-based solutions require to record some information about the
trading activities on the public blockchain, few of them mention the potential privacy issues it might cause.
For instance, if an adversary can identify different smart contrasts are trading the same data or they are
from the same person, it can build a wide ‘trading flow’ of a certain data provider. The linkability between
different data tradings can cause severe affects, especially, when it comes to tradings with sensitive data.
Given medical data trading as an example, from a single medical data leakage, a malicious interested entity,
such as an insurance company, identifies a specific medical record flows to other destinations where the
data collectors are targeting patients who have particular health conditions, the insurance company can make
an educated guess about the health condition of the data provider. Furthermore, the existing solutions are
targeting a limited use case where the validation of the trading data can be evaluated by a public function φ,
this function can be found before executing the fair exchange protocol. However, when comes to sensitive
data trading, such as medical data, data generated from personal IoT devices, certified emails and so on, the
validation of these data cannot be evaluated simply by a function, moreover, no public information will be
given before trading in most of the cases. Therefore, a privacy-preserving fair exchange protocol is needed
for trading sensitive data, we aim to solve the aforementioned two tasks without compromising privacy.

1.1 Overview

In this paper, we construct a novel fair data trading (FDT) protocol that provides better privacy (confidential-
ity of the trading data and unlinkability between different tradings) and the protocol is suitable for trading
sensitive data. We follow the communication model in the previous works where the data provider sends en-
crypted data to the data collector off-chain, and then sends only key materials that can be used to decrypt the
encrypted data on-chain for exchanging cryptocurrencies. While in our system, the published key materials
will not reveal any information about the traded data, and the different trading instances are indistinguishable
from each other, i.e. the public information is unlinkable, we call it public unlinkability.

We observe that in the case of trading sensitive data, it is nature to find an authority that can authorise
the truth of the data. For example, the hospital can verify the truth of a patient’s medical records; the email
server can verify the origination and destination of an email message. Therefore we build our system on the
assumption of the existence of a trusted authority. This authority can give authorisation to the truth of the
data along with its encryption. We call such authority as data manager. Note that the role of a data manager
is different from the TTP in traditional fair exchange protocols, because it is only involved in pre-trading
phase, we do not rely on it to perform any actual trading procedure with the data collector. Introducing such
a data manager trivially solve the first challenge (verify the encrypted data), however, it is not reasonable to
bother the data manager to do authorisation for every single trading. We intend to minimise the participation
of the data manager, namely, with one time authorisation, a data provider can trade for many times and still
keep fairness, confidentiality and unlinkability among those tradings.

Technically speaking, our protocol is inspired from proxy re-encryption (PRE), which provides a solution
to trade data such that the data provider can generate a re-encryption key (re-key) to let the data collector
re-fresh the original ciphertext to a ciphertext under its own secret key. This re-key is expected to not
reveal anything about the trading message. We build an extra functionality beyond PRE that allows one to
verify the validity of the re-key but without reliving any information about the original data (zero-knowledge
proof), which solves the second challenging task, that is verifying the re-key. In addition, the re-key can be
randomised in each trading, which achieves public unlinkability.
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Work Flow. Our fairing data trading protocol involves two independent phases: pre-trading and trading
phase. The pre-trading phase is done before the actual data trading phase, that is, a data provider gets her
data encrypted and authenticated by a data manager. In the trading phase, firstly, a data collector publishes a
smart contract on blockchain. The smart contract specifies the price for the data and the data collector deposit
the money. A data provider who has such type of data may register her address to receive rewards on the
smart contract and send the encrypted data (the ciphertext is authorized by data manager in the pre-trading
phase) to the data collector in a confidential channel, the data collector verify the data and confirm to start a
data trading with this data provider, the data collector in this stage also sends blind statements to the smart
contract, which is later used to verify the correctness of the rekey. In the end, the data provider submits a
re-key that allows the data collector to transfer the ciphertext that is encrypted by the data provider’s key to a
ciphertext that is encrypted by the data collector’s key. The smart contract check if the re-key is valid, if so, it
sends rewards to the data provider and records the re-key on the smart contract, afterwards the data collector
can read the re-key from the smart contract and obtain the expected data.

1.2 Contributions

Our first contribution is constructing a first-of-its-kind privacy-preserving decentralised fair data trading pro-
tocol, which provides fair exchange and privacy. Our second contribution is defining four security notions
for fair data trading protocols: message real or random indistinguishability (M-RoR), public real or random
indistinguishability (Pub-RoR), signature unforgeability (SigUF) and re-key unforgeability (RkUF). Further-
more, we define fairness, and prove if our protocol satisfies M-RoR then our protocol is fair to data subject
and if our protocol satisfies SigUF (and soundness) then our protocol is fair to data collector. Our third con-
tribution is providing a concrete construction for fair data trading protocol, our protocol is named by PFDT
and we prove the PFDT protocol achieves all security requirements we discussed above. We also give a
proof-of-concept implementation of our protocol in Ethereum and give its evaluation.

1.3 Applications of Our Protocol

Monetising Medical Data Trading. Researches [Hal19, JWCBK15] show that building economy business
models that provide incentive structures to facilitate medical data collection is beneficial. Patients who have
legal rights can monetise their medical data and get economic benefits from trading it. With blockchain and
our privacy-preserving fair data exchange protocol, various consent model sand payment for data flows can be
built without the needs for a central bank and a centralised trading platform. In this application case, the data
manager is a hospital (or any other healthcare services), data collector can be any entities (pharmaceutical
industries, government organisations, healthcare professionals or even individuals) who need personal data
for their development.

Blockchain-based Certified Email. Certified email provides the email sender with a mailing receipt and
electronic verification that an article was delivered to the receiver. The fair exchange deadlock faced by this
service is that the receiver refuses to provide the proof of receipt until the message is delivered while the
sender refuses to send the message if there is no guarantee that the receiver will provide the proof of receipt.
In this application case, the data manager is the email server, the sender can use our protocol to get certified
email where the key materials that sent to blockchain can be consider as receipt.

1.4 Related Work

Proxy Re-Encryption (PRE). Proxy re-encryption was introduced by Blaze, Bleumer, and Strauss in
1998 [BBS98]. It is a public key encryption with an additional function such that a proxy can re-encrypt a
ciphertext under one public key to another public key. Proxy re-encryption has been studied extensively in
the past few decades.

Symmetric Key v.s. Public Key. Symmetric-key proxy re-encryption [BLMR13, CH07, SNS11] is a vari-
ant of PRE where the proxy can translate a ciphertext to a different symmetric key. However, the re-key
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generation requires both symmetric keys of the data provider and the data collector as the input, which is
not desired in our problem setting. It is not reasonable and practical for the data provider to have the data
collector’s private key. Public key proxy re-encryption [ABH09, LV11] allows the data provider generate a
re-key by only using the data collector’s public key, which is suitable in our scenario.

Ciphertext-Independent v.s. Ciphertext-Dependent. If the re-key generation is independent from ci-
phertext, we call such PRE is ciphertext-independent. If the re-key generation depends on the ciphertext to
be refreshed then the PRE is ciphertext-dependent. For ciphertext-independent PRE schemes, a single re-
key can be used to refresh all ciphertexts from a data provider to a data collector. Additionally, if a cloud is
involved in storing data, then the data provider needs to download the ciphertext before generating a re-key.
Hence, in terms of bandwidth, ciphertext-independent PRE schemes are considerably more efficient than
ciphertext-dependent PRE schemes. Most recent works [ABH09, BLMR13, CH07, LV11, SNS11] focus on
constructing ciphertext-independent proxy re-encryption schemes. However, ciphertext-independent PRE
implies a problem that if the data collector has a re-key from a data provider then it can open all potential
ciphertexts from the data provider, which is not desired in our setting. If the data collector has a re-key from
a data provider, next time it buy data from the same data provider, it can reject the payment and gain the
data by the help of the previously received re-key. In Section 6, we construct a suitable ciphertext dependent
public key PRE to solve our trading scenario.

1.5 Organization

The preliminaries of hard problems and background of signature scheme, proxy re-encryption and zero
knowledge proof are given in Section 2. In Section 3 we introduce a generic protocol for fair data trading,
the formal definition is provided in Section 5. We define our new security notions in Section 4, and prove our
concrete construction is secure under the new notions in Section 6. In Section 7 we give the implementation
and evaluation.

2 Preliminaries

Let λ be the security parameter throughout the paper.

2.1 Pairing and Hard Assumptions

Pairing. Let G1,G2, and GT be three multiplicative groups of prime order q. g1, g2 are generators of group
G1,G2, resp.. e is an efficiently computable bilinear map with the following properties:

• Bilinear: for any a, b ∈ Zq, we have that e(ga1 , g
b
2) = e(g1, g2)ab.

• Non-degenerate: e(g1, g2) 6= 1.

Next, we provide two variants of Diffie-Hellman problems. From the work of [BDZ03], we know that
Diffie-Hellman problems are equivalent to divisible Diffie-Hellman problems. We define co-divisible Diffie-
Hellman problems from co-Diffie-Hellman problems [BGLS03] as follows.

Definition 1 (co-Divisible Computation Diffie-Hellman (co-DCDH)). For i ∈ {1, 2, T}, let Gi be a cyclic
group of prime order q with generator gi. The advantage of an algorithmA solving the co-Divisible Compu-
tation Diffie-Hellman (co-DCDH) problem for (G1,G2,GT ) is

Advco-DCDH
(G1,G2,GT ),A(λ) = Pr[Expco-DCDH

(G1,G2,GT ),A = 1],

where the experiment Expco-DCDH
(G1,G2,GT ),A is given in Fig. 1 (left).
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Expco-DCDH
(G1,G2,GT ),A :

x, y
$←− Zq

Z ← A(gx1 , g
y
2)

if Z = g
x/y
1

return 1
else

return 0

Expco-DDBDH-b
(G1,G2,GT ),A :

x, y, z, w
$←− Zq

if b = 1
c← e(g1, g2)

yz
x

else
c← e(g1, g2)w

b′ ← A(gx2 , g
y
1 , g

z
2 , c)

return b′

Figure 1: co-DCDH experiment (left), co-DDBDH experiment (right).

Definition 2 (co-Divisible Decision Bilinear Diffie-Hellman (co-DDBDH)). For i ∈ {1, 2, T}, let Gi be a
cyclic group of prime order q with generator gi. The advantage of an algorithm A solving the 1-Quotient
Decision Bilinear Diffie-Hellman (co-DDBDH) problem for (G1,G2,GT ) is

Advco-DDBDH
(G1,G2,GT ),A(λ) =

∣∣∣Pr[Expco-DDBDH-1
(G1,G2,GT ),A = 1]−Pr[Expco-DDBDH-0

(G1,G2,GT ),A = 1]
∣∣∣ ,

where the experiment Expco-DDBDH
(G1,G2,GT ),A is given in Fig. 1 (right).

2.2 Signature Schemes

We define signature scheme and its unforgeability notion in this section.

Definition 3 (Signature Scheme). A signature scheme Σ consists of three algorithms: KG, Sign,Ver.

• KG(λ) −→ (S,V). On input a security parameter λ, the key generation algorithm outputs a secret
signing key S and a public verification key V.

• Sign(S,m) −→ σ: On input a secret signing key S and a message m ∈ M, the signing algorithm
outputs a signature σ.

• Ver(V,m, σ) −→ b: On input a public verification key V, a message m ∈ M and a signature σ, the
verifying algorithm outputs a bit b ∈ {0, 1}.

The correctness of a signature is defined as follows.

Definition 4 (Correctness of a Signature Scheme). Let Σ = (KG, Sign,Ver) be a signature scheme, we say Σ
is correct, if for any key pair (S,V)← KG(λ), for any messagem ∈M, we have that Pr[Ver(V,m,Sign(S,m)) =
1] = 1.

The existential unforgeability under adaptively chosen message attacks (EUF-CMA security) of a signa-
ture is defined as follows.

Definition 5 (EUF-CMA security). Let Σ = (KG, Sign,Ver) be a signature scheme, the EUF-CMA advan-
tage of an adversary A against Σ is defined as

AdvEUF-CMA
Σ,A = Pr[ExpEUF-CMA

Σ,A = 1],

where the experiment ExpEUF-CMA
Σ,A is given in Fig. 2.

2.3 Proxy Re-Encryption

We define proxy re-encryption (PRE) scheme in this section.

Definition 6 (Proxy Re-Encryption Scheme). A proxy re-encryption scheme PRE are parameterized by a
tuple of algorithms {KG,Enc,Dec,ReKG,ReEnc}.
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ExpEUF-CMA
Σ,A :

(S,V)← KG(λ)
Q ← ∅
(m∗, σ∗)← AO.Sign(V)
if m∗ 6∈ Q and Ver(V,m∗, σ∗) = 1

return 1
else

return 0

O.Sign(m):
Q ← Q∪ {m}
σ ← Sign(S,m)
return σ

Figure 2: Experiment ExpEUF-CMA
Σ,A for signature scheme Σ and adversary A.

• KG(λ) −→ (sk, pk). On input a security parameter λ, the key generation algorithm outputs a secret key
sk and a public key pk.

• Enc(pk,m) −→ c: On input a public key pk and a message m ∈ M, the encryption algorithm outputs
a ciphertext c.

• Dec(sk, c) −→ m: On input a secret key sk and a ciphertext c, the decryption algorithm outputs a
message m.

• ReKG(ski, pkj , c
∗
i ) −→ rki,j : On input a secret key ski, a public key pkj and a ciphertext ci, the re-key

generation algorithm outputs a re-key rki,j . ∗ means the ciphertext is omitted if the re-key generation
does not need the ciphertext as an input.

• ReEnc(rki,j , ci) −→ cj : On input a re-key rki,j and a ciphertext ci, the re-encryption algorithm outputs
a ciphertext cj .

2.4 Zero-Knowledge Proof

A zero-knowledge proof is a protocol in which a prover wants to convince a verifier that a statement is
true without revealing any private information. A zero-knowledge proof protocol consists of three PPT
algorithms (G,P,V). These are the common reference generator G, the interactive prover P and verifier
V . Take input as 1λ, G outputs the common reference σ. The communication transcript between P and V
when interacting on inputs s and t is denoted by tr ← 〈P(s),V(t)〉. We write the output of the protocol
as 〈P(s),V(t)〉 = b. If verifier accepts, b = 0, otherwise b = 1. The language of zero-knowledge proof is
defined over a polynomial time decidable relation R ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗, given σ, w is a witness
for statement u if (σ,w, u) ∈ R. Define the language

Lσ = {x | ∃w s.t. (σ, x, w) ∈ R}

as the set of statements x that have a witness w in the relation R.

Definition 7 (Perfect Completeness). The triple (G,V,P) has perfect completeness if for all non-uniform
PPT adversary A such that

Pr

[
(σ, u, w) /∈ R
∨ 〈P(σ, u, w),V(σ, u)〉 = 1

∣∣∣∣ σ ← G(1λ)
(u,w)← A(σ)

]
= 1

Definition 8 (Computational Soundness). (G,V,P) has computational soundness if it is not possible to
prove a false statement where no witness exist, i.e. for all non-uniform polynomial time interactive adversary
A1,A2, the function negl[λ] is negligible.

Pr

[
A1(tr) = 1 (i.e. tr is accepting) ∧
(σ, u, w) /∈ R

∣∣∣∣ σ ← G(1λ)
(u,w)← A2(σ)

]
≤ negl[λ]
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Definition 9 (Computational Knowledge Soundness). (G,V,P) has computational knowledge soundness if
for all deterministic polynomial time P∗, there exists an polynomial time knowledge extractor E such that
for all non-uniform polynomial time interactive adversary A1,A2, the function negl[λ] is negligible.∣∣∣∣∣∣∣∣∣∣∣∣

Pr

[
A1(tr) = 1

∣∣∣∣ σ ← G(1λ), (u, s)← A2(σ)
tr ← 〈P∗(σ, u, s),V(σ, u)

]
−

Pr

 A1(tr) = 1∧
(tr is accepting i.e. (σ, u, w) ∈ R)

∣∣∣∣∣∣
σ ← G(1λ)
(u, s)← A2(σ)
(tr, w)← EO(σ, u)



∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl[λ]

where the oracle is given by O = 〈P∗(σ, u, s),V(σ, u)〉.

The oracle O permits rewinding to a specific point and resuming with fresh randomness for the verifier
from this point onwards. Informally, if there is an adversary that can produce an proof that satisfies the
verifier with some probability, then there exists an emulator that can extract the witness. The value s is the
internal state of P∗, including randomness. The emulator is permitted to rewind the interaction between the
prover and verifier to any move, then resuming with fresh randomness for the verifier.

Definition 10 (Perfect Special Honest-Verifier Zero-Knowledge). A triple (G,P,V) is a perfect special hon-
est verifier zero knowledge argument of knowledge for R if there exists a probabilistic polynomial time
simulator S such that for all pairs of interactive adversaries A1,A2

Pr

[
(σ, u, w) ∈ R ∧ A1(tr) = 1

∣∣∣∣ σ ← G(1λ), (u,w, ρ)← A2(σ)
tr ← 〈P∗(σ, u, w),V(σ, u; ρ)〉

]

= Pr

[
(σ, u, w) ∈ R ∧ A1(tr) = 1

∣∣∣∣ σ ← G(1λ), (u,w, ρ)← A2(σ)
tr ← S(u, ρ)

]
where ρ is the randomness used by the verifier.

Definition 11 (Zero-knowledge Proof of Knowledge). The triple (S,P,V) is a commit-and-prove zero-
knowledge argument of knowledge for a family of relations R if it satisfies the perfect completeness, perfect
special honest-verifier zero-knowledge and computational soundness or computational knowledge sound-
ness.

3 Fair Data Trading Protocol (Overview)

We introduce a generic protocol for secure fair data trading. A conceptual overview of our construction is
given in this section and the formal definition is provided in Section 5.

Entities. We define four roles in fair data trading protocol.

• Data manager: The main role of a data manager is to verify the truth of the trading data and its
encryption. It prohibits sellers to fake data for profits. For example, a data manager can be a hospital
or an IoT device provider. The data manager is reliable for keeping sellers’ privacy.

• Data subject (provider): the party from which the data was originated. It can be a data provider who
wants to sell data for profits.

• Data collector: the entity that wants to buy data. Data collector initiates the data trading process,
registers the Smart Contract and deposits rewards.

• Smart contract/Blockchain: the entity that provides a decentralised and trust-less platform to trade
data with cryptocurrencies. The smart contracts process the players’ registrations, re-key verifications
and send rewards to data providers.
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Data subject
Data manager

A

0.1 Send {tag, prk,m}

0.2 Return {c, σ}

Figure 3: Pre-trading phase. Data manager encrypts the message and signs the ciphertext.

Initialization. Before the protocol starts running, each protocol participant runs a key generation algorithm
to generate a secret signing key and a public verification key pair (S,V) ← Σ.KG(λ). Additionally, data
collectors generate their PRE key pairs as (sk, pk)← PRE.KG(λ).

Pre-Trading Phase. In our architecture, the data manager is not directly involved in the actual trading
communication, while it keeps a critical role before the data trading happens on the smart contract, i.e.
authorising the truth of the trading data along with its encryption. This is the preparation that needs to be
done in the pre-trading phase. Our protocol uses symmetric encryption scheme to encrypt data since the
trading data might be large. As a result, the data trading problem is turning into a symmetric key trading
problem, which we use proxy re-encryption scheme to address.

A conceptual overview of the pre-trading phase is given in Fig. 3. Formally, when a data manager
receives 1 a pre-trading request (pre-trading : tag, prk,m) from a data subject, where prk is the data subject’s
one time public key 2, the tag specify what m is about (for example, diabetics, blood test, antibody test, etc..
in medical sharing case), the data manager does the following.

1. Fetch the data subject’s relevant data m according to tag, validate the truth of the data.

2. Generate a one time symmetric encryption key: k $←− K, use this key to encrypt data: cm ← SKE.Enc(k,m).

3. Take the symmetric key as a plaintext and encrypt it to get a ciphertext of the key k: ck ← PRE.Enc(prk, k).

4. Compute the hash of prk, ck and cm respectively. Then compute a signature over these hashes and tag:
σ ← Σ.Sign(S, 〈H(prk),H(ck),H(cm), tag〉) where S is the signing key of the data manager.

5. Denote c← (prk, ck, cm) and send (c, σ) to the data subject.

Trading Phase. The trading phase has on-chain and off-chain processes. We use proxy re-encryption
scheme to transfer the ciphertext that is encrypted under data subject’s public key to the data collector’s
public key by the help of a re-key. The re-key is the key material on-chain and it plays the central role on fair
data trading without losing privacy. To prove the re-key is a valid key material, a re-key verification process
is involved and zero knowledge proof technique is deployed to solve this problem. A conceptual overview
of the trading phase is given in Fig. 4. Formally, the data subject DS, data collector DC and smart contract
SC follow the process:

1. DC publishes a smart contract on blockchain. The smart contract at the beginning includes: data
collector’s public key pkDC, common reference of the zero-knowledge proof: crs ← G(1λ)3, reward
amount R, smart contract balance deposit and data requirement tags {tag}tag∈T .

2. DS gets the required data tag set T from the smart contract, then it registers its address that is to
receive the reward on the smart contract. DS also initiates an inner state st :⊥ that records the chosen
randomnesses of DS during the trading phase.

1All communications between different participants are running inside a confidential secure channel, hence, data in transmission
is resistant to overhearing.

2The one time public key prk makes sure no one can identify the data subject from a random data subject, which provides the
data subject anonymity.

3The zero-knowledge proof does not need trust-setup, the common reference generator can be run on the smart contract.
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3. DS runs re-key generation algorithm to generate re-keys rk for each tag tag: parse c = (prk, ck, cm),
rk← PRE.ReKG(srk, pkDC, ck), computes auxiliary information: aux← Statement(pkDC, srk, prk, st, ck)
and sends tag related ciphertext {(tag, c, σ, aux)}tag∈T to DC off-chain. The auxiliary information:
aux is a set of parameters that is used later by DC to generate blind statements (see Section 6).

4. DC checks the identity of data manager, verifies the ciphertext and signature for each tag by comput-
ing the signature verification algorithm Σ.Ver(V, (c, σ)), If they are all valid, DC generates a blind
statement: bs ← Blind(srk, c, aux) for every tag. Then DC confirms to start the data exchanging with
DS on the smart contract and sends blinded statements {bs}tag∈T to the smart contract. Otherwise, if
any verification fails or Blind returns ⊥, DC rejects. Note that the blind statements plays a central role
to verify the correctness of the rekey, it also randomises the verification such that no information about
the ciphertext is revealed, see further discussion in Remark. 1.

5. After seeing the confirmation and blind statements on the smart contract, DS generates a proof π for its
re-key: π ← RkProve(rk, srk, st), and then computes the re-key verification algorithm RkVerify(rk, bs, π)
(see Remark. 1) to make sure the smart cotract will accept the re-key and proof. Next, DS sends re-keys
and proofs {rk, π}tag∈T to the smart contract.

6. Smart contract verifies if re-keys are valid by RkVerify(rk, bs, π). Send rewards to DS and record
re-keys {rk}tag∈T if and only if the verifications are successful for all tags in T .

7. DC can re-encrypt the ciphertext ck to a ciphertext under DC’s private key, by using the re-key rk:
parse c = (prk, ck, cm), c′ ← PRE.ReEnc(rk, ck). Key skDC can be used to decrypt ciphertext c′:
k ← PRE.Dec(skDC, c

′), then this key k can be used to get the data that DC wants from DS: m ←
SKE.Dec(k, cm).

Data subject

Data collector Smart contract

A

1. Register the smart contract, deposit the rewards

4. Confirm the exchanging with DS, provide blind statements

6. Read re-keys {rk}tag∈T on the smart contract

2. Registe
r

5. Send re-keys

6.Send rew
ards

3.Send tag related data

{tag, c, σ, aux}
tag∈T

Figure 4: Trading phase. After step 3, the data collector verifies the validity of the data {tag, c, σ, aux}tag∈T
by checking data manager’s signature. Only if the signatures are valid, it confirms the data exchanging and
sends blind statements to the smart contract in step 4. In step 5, the data subject pre-check if the smart
contract will accept its re-key, sends the re-key to the smart contract if and only if all the verification can
pass. In step 6, the smart contract run the re-key verification and sends reward to the data subject if the
verification is successful. Eventually, in step 6, the data collector rotates the ciphertext it received in step 3
to ciphertext under its own key and read the original message.

4 Security Notions

In this section, we provide a communication model and security notions for fair data trading protocol. We
define the security notions use game-based method and follow the syntax from prior works [BCP02, BM08].
Furthermore, we define fairness and show that our security notions implies it.
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4.1 Communication Model

In this section, we give a communication model for our fair data trading protocol.

Protocol Participants, Long-Term Keys and Instance Oracles. A participant V in the protocol can be
a data manager DM, a data subject DS, a data collector DC, or a smart contract SC. Each participant
holds a long-term signing key S, each data collector DC additionally holds a long-term secret key sk, the
corresponding verification key V and public key pk of all V are known to all. Protocol participants have
several instances called oracles, denoted

∏α
V for α ∈ N. Each oracle

∏α
V is associated with the variables

stateαV, roleαV, pidαV, sidαV, mα
V, rkαV, bsαV and παV as follows:

• stateαV takes a value from {unused, ready, processing, accepted, rejected}.

• roleαV takes a value from: DM,SC,DS,DC.

• pidαV contains a set of participants, which are partners.

• sidαV contains a string defined by the protocol.

• mα
V the agreed message.

• rkαV the session re-key.

• bsαV the (blinded) statement.

• παV the proof.

Each session is identified by a unique, publicly-known session identifier, denoted sid. The partner iden-
tifier, denoted pid, contains the identities of all participants in a session. There are two types of sessions, one
for pre-trading phase and another for trading phase. Sessions in the pre-trading phase are running between
data manager and data subject. Sessions in the trading phase are running among data subject, data collector
and smart contract.

Each oracle
∏α

V stays unused until it is initialised be a data manager, smart contract, a data subject or
a data collector along with the corresponding long-term key. It then begins with stateαV = ready and roleαV,
pidαV, sidαV, mα

V, rkαV, bsαV and παV are all set to⊥. After the protocol starts, each oracle
∏α

V learns its partner’s
identifier pidαV (and possibly sidαV) and turns into a processing state, where it sends, receives and processes
messages. If the protocol at oracle

∏α
V fails, for example if a certain verification fails, then the oracle

terminates and sets its state to rejected. Otherwise, after computing mα
V (or sending out rkαV or sending

out reward) oracle
∏α

V changes its state to accepted and no longer responds to protocol messages. More
precisely, oracles in the pre-trading phase accepts after computing session message. In the trading phase,
data collector oracles accepts after computing session message, data subject oracles accept after sending out
re-keys and smart contract oracles accept after sending out reward.

Correctness. Correctness is defined to make sure that an honest run of the protocol, all partners will agree
with a traded message. We say a FDT protocol has correctness if for all DC,DS, SC, α, β, γ, such that
pidαDC = pidβDS = pidγSC, sidαDC = sidβDS = sidγSC, stateαDC = stateβDS = stateγSC = accepted and mα

DC =

mβ
DS 6= ∅.

Soundness. Soundness ensures that if the verification of the key material is accepted, the data collector
can get the desired message with the help of this key material. We define a FDT protocol has soundness
if for all DC,DS, α, β, and correctly 4 generated statement bsβDC, if RkVerify(rkαDS, bs

β
DC, π

α
DS) = 1 then

mα
DC = mβ

DS 6= ∅.
4We specify that an honest data collector does not have incentive to compute an incorrect statement to make the re-key verification

fails, because the verification failure will result to the data collector receiving nothing. In addition, the honest data collector wishes
to get valid re-keys, which can be checked by correct statements.
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4.2 Security Notions

Adversarial Model. Suppose the adversary A have complete control on communications in the network,
determining which instances run and obtaining access to some useful information. Informally, the adversary
can adaptively corrupt keys (except for corrupting partners in the challenge query), obtain public values on
smart contract (including re-keys) and transcripts. Formally, It can interact with protocol participants by
asking for queries to their oracles as follows.

• Execute(S): Executes the protocol among a set of unused oracles S and outputs the transcript of this
execution. If the data subject sends the same data to the same data collector, it will be noticed by the
data collector and the data collector will reject paying for the same data, we restricts such execution
on honest data subjects. This restriction is required in the Pub-RoRChall query as well.

• Send(
∏α

V, trans): Sends transcript trans to oracle
∏α

V and outputs the reply (if any) by the oracle.

• Corrupt(V): Outputs the long-term privite key of participant V.

• M-RoRChall(
∏α

V): This query can only be asked once by A in the trading phase. If oracle
∏α

V has
status accepted, holding a session message mα

V, then this query outputs the session message mα
V if

b = 1, or a random string from the session message space if b = 0.

• Pub-RoRChall(S): Input a set of unused oracles S . All oracles in S execute an honest run of the
protocol with respect to a real ciphertext if b = 1. All oracles in S execute an honest run of the
protocol with respect to a random ciphertext if b = 0. Record public values on the smart contract.

• SigUFChall(
∏α

DC, trans): This query can only be asked once by A and executed as follows, sends
transcript trans to oracle

∏α
DC. If there is no reject happens, the data manager DM who signed the

corresponding signature is not corrupted and this signature has never been generated before, outputs
1. Otherwise, outputs 0.

• RkUFChall(
∏α

SC, rk): This query can only be asked once by A and executed as follows, sends re-key
rk to smart contract

∏α
SC. If there is no reject happens and no data subject in pidαSC is corrupted,

outputs 1. Otherwise, outputs 0.

Initialization. Before any game starts, each participant V runs the key generation algorithm to generate
long-term key pairs. The private keys are only known to the principal, while public keys are revealed to
every participant and the adversary.

Real or Random Indistinguishability. There are two types of real or random indistinguishability: mes-
sage real or random indistinguishability (M-RoR) and public real or random indistinguishability (Pub-RoR).
M-RoR guarantees that fresh session messages are random looking, therefore the adversary cannot see any
information about the traded message unless the adversary has the knowledge of both the corresponding
re-key and a data collector’s secret key at the same time. It indicates that the public cannot infer the corre-
sponding message from the re-key, it also ensures the data collector cannot learn the expected message until
it pays for the re-key. Pub-RoR makes sure the real public values on the smart contract are indistinguiahable
from public values generated from a random ciphertext, which breaks the link among different sessions,
therefore, Pub-RoR implies public unlinkability.

Freshness. Freshness is defined to prevent trivial wins. In the M-RoR game, if any data subject or data
manager partner is corrupted then the underlying message is learnt by the adversary. If any data collector
partner is corrupted and the re-key is known to the adversary then the underlying message can be computed
by the adversary. In the M-RoR game, an oracle

∏α
V is fresh if no DS,DM ∈ pidαV is ever corrupted and

the following condition does not happens at the same time: DC ∈ pidαV is ever corrupted and re-key rkαV is
revealed. In the Pub-RoR game, if any partner is corrupted then the original ciphertext (which is used in the
re-key generation) is learnt by the adversary. Hence, the adversary can potentially identify the real re-key
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from a randomly generated re-key. In the Pub-RoR game, an oracle
∏α

V is fresh if no player in pidαV
5 is ever

corrupted. Formally, we define M-RoR and Pub-RoR notions as follows.

Definition 12. Let FDT be a correct FDT protocol. The xx advantage of any adversary A against FDT is

Advxx
FDT, A(λ) =

∣∣Pr[Expxx-1
FDT, A = 1]−Pr[Expxx-0

FDT, A = 1]
∣∣ ,

where xx∈{M-ROR,Pub-RoR} and the experiment Expxx-b
FDT, A is given as follows:

• Queries. After initialization, the adversaryA is allowed to ask for Execute, Send, Corrupt and xxChall
queries. The xxChall query should keep fresh until the end of this phase.

• Guessing. A outputs its guess b′, which is the output of this experiment.

Unforgeability. There are two types of forgeries: signature forgery and re-key forgery. A valid signature
forgery is a valid signature which is not generated before by any data manager. The signature unforgeabil-
ity notion is to measure the possibility of a data subject providing a valid signature forgery itself. Re-key
unforgeability prevents data collector have successful data trading by using traded data. More precisely, if
a data collector can create a valid re-key forgery for traded data, then this data collector can re-sell data
by trading the received data and self-created re-key to other data collector. Formally, we define SigUF and
RkUF notions as follows.

Definition 13. Let FDT be a correct FDT protocol. The xx advantage of any adversary A against FDT is

Advxx
FDT, A(λ) = Pr[Expxx

FDT, A = 1],

where xx ∈ {SigUF,RkUF} the experiment Expxx
FDT, A is given as follows:

• Queries. After initialization, the adversaryA is allowed to ask for Execute, Send and Corrupt queries.

• Forgery. A provides a forgery to a xxChall query, the output of xxChall query is the output of this
experiment.

4.3 Fairness

We follow the syntax from prior work [DEF18b] and define fairness in general. Moreover, we show that our
security notions indicates fairness for our FDT protocol.

Definition 14. We say a data trading protocol has data subject fairness if: an honest data subject DS is
guaranteed that the data collector DC only learns the desired data iff it pays the reward. We say a data
trading protocol has data collector fairness if: an honest data collector DC is ensured that it only pays the
reward iff it gets the desired data.

Theorem 1. If a FDT protocol has M-ROR security, then it has data subject fairness. If a FDT protocol has
soundness and signature unforgeability, then it has data collector fairness.

Proof. Due to M-ROR security, the data collector cannot learn the desired data if he does not have the
corresponding re-key. By the design of our protocol in step 5 and 6 (see page 9), an honest data subject DS
sends out the re-key iff the re-key verification is correct, which implies the payment of reward. Hence, FDT
protocol has data subject fairness.

Signature unforgeability prohibits forgery, that is, if the signature verification is successful, the data is
truly generated from a trusted data manager. Re-key verification make sure the data collector can obtain a
valid re-key when the reward is paid. Due to soundness, the valid re-key makes sure the data collector can
get the desired data. Hence, FDT protocol has data collector fairness.

5We extend this partner id when the data subject later trades the same data to different data collectors, this extended partner id is
only used for checking if the challenge oracle is fresh.
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4.4 Desired Functionalities

We summarise the following functionalities that a FDT protocol desires. Desired functionalities for data
subjects are:

1. Message real or random indistinguishability M-ROR, which ensures traded message will not be re-
vealed without re-key. It implies fairness to data subjects, see Theorem 1.

2. Public real or random indistinguishability Pub-RoR, public values in different trading periods are
independent and random from each other, which implies public unlinkability. In other words, no
one (except the trading partners) can identify the relations among different trading values, it is not
noticeable even the data subject is trading the same data multiple times.

3. Re-key unforgeability RkUF, which implies data cannot be re-sold by the data collector, only the data
subject can be a data provider.

4. Data subject anonymity, see footnote on page 8.

Desired functionalities for data collectors are:

1. Signature unforgeability SigUF. Signature unforgeability makes sure that no one can deploy this sys-
tem to forge new valid data to gain profit.

2. Soundness. Together with signature unforgeability, it implies fairness to data collector. As a result,
data collectors will get the desired data if they paid the reward.

3. Original data is unchanged, the benefit to data collector is that data collectors can notice if they buy
the same data again.

5 Fair Data Trading Protocol (Formal)

In this section, we formally define the generic construction of our fair data trading (FDT) protocol using the
communication model described in Section 4. FDT is a PRE with additional functions such that anyone can
verify if the re-encryption key can truly update a ciphertext under one public key to another public key and
if the original ciphertext is a valid one from some trust data manager.

Definition 15 (FDT). A fair data trading protocol FDT is defined in Fig. 5 and Fig. 6 and is parameterized
by the following components.

• a signature scheme Σ,

• a SKE scheme SKE,

• a PRE scheme PRE,

• the re-key verification process consists

– a statement generation algorithm Statement,

– a blind statement algorithm Blind,

– a re-key prove algorithm RkProve

– a re-key verification algorithm RkVerify.

Remark 1. The blind statement algorithm Blind is defined to generate a blinded statement, which can be used
to prove the validity of a re-key without reveal anything about the original ciphertext. A re-key verification
algorithm RkVerify is defined to check the validity of a re-key, it outputs a bit that is either 0 or 1 on input a
re-key, a blinded statement and a proof.
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DS running oracle
∏α

DS on input tag:

1. (srk, prk)
$←−PRE.KG(λ)

2. Send† (tag, prk,m) to DM

DM running oracle
∏β

DM on
message (tag, prk,m) from DS:
3. Authenticate† DS, check validity of

(tag,m)

4. k $←−K
5. cm←SKE.Enc(k,m)
6. ck←PRE.Enc(prk, k)
7. σ←Σ.Sign(S, 〈H(prk),H(ck),H(cm), tag〉)
8. Send (DM, tag, prk, ck, cm, σ) to DS

DS running oracle
∏α

DS on input
(DM, tag, prk, ck, cm, σ):
9. Verify that σ is DM’s signature on
(tag, prk, ck, cm)
10. k←PRE.Dec(srki, ck)
11. mα

DS←SKE.Dec(k, cm)
12. Store {srk,DM, tag, prk, ck, cm, σ}

Figure 5: Roles in the pre-trading phase. Note that the line numbering indicates the order of a protocol
execution. †: we omit the details of the signing and verifying processes between DS and DM.

SC running oracle
∏ω

SC on input
(pkDC, crs,R, deposit, {tag}tag∈T ) from DC:
1. Register (pkDC, crs,R, deposit, {tag}tag∈T )

on the smart contract

SC running oracle
∏ω

SC on input
address from DS:
2. Register address on the smart contract

DS running oracle
∏γ

DS on input
{tag}tag∈T :
3. Find {srk,DM, tag, prk, ck, cm, σ}tag∈T
4. rk← PRE.ReKG(srk, pkDC, ck)
5. aux← Statement(pkDC, srk, prk, st, ck)
6. Send {(DM, tag, prk, ck, cm, σ, aux)}tag∈T

to DC

DC running oracle
∏υ

DC on message
{(DM, tag, prk, ck, cm, σ, aux)}tag∈T from DS:
7. Verify that σ is DM’s signature on

(tag, prk, ck, cm) for each tag ∈ T
8. If the above verification failed then

send reject to SC
else

for tag∈T do
compute bs← Blind(srk, c, aux)

send confirm and {bs}tag∈T to SC

SC running oracle
∏ω

SC on input
decision and {bs}tag∈T from DC:
9. Record the decision on address
10. Record {bs}tag∈T on SC

DS running oracle
∏γ

DS by reading
the decision and {bs}tag∈T on SC:
11. If decision is confirm then

For tag ∈ T do
π ← RkProve(rk, srk, st)
Compute RkVerify(rk, bs, π)

If all above outputs are 1 then
send {rk, π}tag∈T to SC

else
send reject to SC

SC running oracle
∏ω

SC on input
{rk, π}tag∈T from DS:
12. Record {rk}tag∈T on SC
13. For tag ∈ T do

If RkVerify(rk, bs, π) 6= 1 then
reject

send reward R to DS

DC running oracle
∏υ

DC

by reading {rk}tag∈T on SC:
14. For tag ∈ T do

c← PRE.ReEnc(rk, ck)
k← PRE.Dec(skDC, c)
m← SKE.Dec(k, cm)

Figure 6: Roles in the trading phase. Note that the line numbering indicates the order of a protocol execution.
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6 Constructing a Fair Data Trading Protocol

We construct a concrete instantiation of a fair data trading protocol using a pairing based PRE scheme
PRE (see Section 6.1), blind algorithm Blind and re-key verification algorithm RkVerify (see Section 6.3),
the pairing based FDT protocol is denoted by PFDT. We show that our PFDT protocol has correctness,
soundness, real or random indistinguishability, unforgeability in Section 6.4. Hence, by Theorem 1, PFDT
has fairness to both data subject and data collector.

6.1 Constructing a PRE Scheme

A pairing based PRE scheme PRE is defined in Fig. 7.

KG(λ,G1) :

sk
$←− Zq

pk← gsk1
return (sk, pk)

KG(λ,G2) :

srk
$←− Zq

prk← gsrk2

return (srk, prk)

Enc(prk, k) :

r1, r2
$←− Zq

c1 ← gr11

c2 ← prk
r2
r1

c3 ← e(g1, g2)r2 · k
ck ← (c1, c2, c3)
return ck

Dec(sk†, ck) :
parse ck = (c1, c2, c3)
k← c3

e(c1,c2)
1
sk

return k

ReKG(srki, pkj , ck) :

parse ck = (c1, c2, c3)

t
$←− Zq

rk1 ← c
1

srki
1 g−t1

rk2 ← pktj
return (rk1, rk2)

ReEnc(rki,j , ck) :

parse rki,j = (rk1, rk2)
parse ck = (c1, c2, c3)
c′3 ← c3

e(rk1,c2)

c′k ← (rk2, c2, c
′
3)

return c′k

Figure 7: PRE scheme. In our PFDT protocol, data collector oracles run KG(λ,G1) to generate long-term
key pair (sk, pk) and data subject oracles run KG(λ,G2) to generate one time key pair (srk, prk). †: srk can
be the decryption key as well, srk is the decryption key for encrypted ciphertext and sk is the decryption key
for re-encrypted ciphertext.

Correctness of PRE. We prove the correctness of PRE by proving the correctness of decryption algorithm
on both the original cipehrtext and the re-encrypted cipehrtext. Let ck = (c1, c2, c3) = (gr11 , prk

r2
r1 , e(g1, g2)r2 ·

k) be an original ciphertext, the corresponding re-key is rki,j = (rk1, rk2) = (c
1

srki
1 g−t1 , pktj), the re-encrypted

ciphertext is ReEnc(rki,j , ck) = (c′1, c
′
2, c
′
3) = (rk2, c2,

c3
e(rk1,c2)) = (pktj , prk

r2
r1
i , e(g1, g2)

srkitr2
r1 · k). Then we

have

• Dec(srk, ck) = c3

e(c1,c2)
1
srk

= e(g1,g2)r2 ·k

e(gr1 ,prk
r2
r1 )

1
srk

= k

• Dec(skj ,ReEnc(rki,j , ck)) =
c′3

e(c′1,c
′
2)

1
skj

= e(g1,g2)
srkitr2

r1 ·k

e(pktj ,prk

r2
r1
i )

1
skj

= k

6.2 Constructing Commit-and-Prove Zero-knowledge Proofs

In this section we construct two zero-knowledge proofs, their goal is to ensure the rekey of the PRE scheme
(rk1, rk2) is generated correctly. Precisely, the inner product of the exponents of rk1 and prki has a linear
relation with the exponent of c1 and prkti, that is

(
r1

srki
− t)︸ ︷︷ ︸

exponent of rk1

·srki = r1︸︷︷︸
c1

− srkit︸︷︷︸
prkti
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L1 = {g, h, ca, cb, c | ∃t s.t. c = cacbh
t}

ZK1_Prove(g, h, t) :

P : α
$←− Zq

d← hα

P → V : A
V : x

$←− Zq
P : θ = α− xt

π ← (d, x, θ)
P → V : π

ZK1_Verify(g, h, ca, cb, c, π) :
V : parse π = (d, x, θ)

if ( c
cacb

)xhθ = d then
return 1

else
return 0

L2 = {g, h, ca, cb, c | ∃a, b, ra, rb, t s.t.
ca = gahra , cb = gbhrb , c = gabht}

ZK2_Prove(g, h, a, b, ra, rb, t) :

P : α, β, r1, r2, s0, s1
$←− Zq

d1 ← gαhr1 , d2 ← gβhr2 ,
c0 = gαb+βahs0 , c1 = gαβhs1

P → V : (d1, d2, c0, c1)

V : x
$←− Zq

P : θa = α− ax, θb = β − bx,
θ1 = r1 − rax, θ2 = r2 − rbx
θab = x2t− xs0 + s1

π ← (d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab)
P → V : π

ZK2_Verify(g, h, ca, cb, c, π) :
V :
parse π = (d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab)

if cxagθahθ1 = d1 and
cxb g

θbhθ2 = d2 and
gθaθbhθabcx0 = cx

2
c1 then

return 1
else

return 0

Figure 8: Zero-knowledge proof ZK1 and ZK2.

We use Pedersen commitment scheme to hide relevant values on smart contract, and build two interac-
tive zero-knowledge proofs: an addition proof (ZK1) an and an inner product proof (ZK2) that intended to
prove the above relation among commitments. These zero-knowledge proofs can can be transferred to non-
interactive zero-knowledge proofs NIZK1,NIZK2 respectively by using Fiat-Shamir heuristic [BR95]. The
construction is in Fig.8. The security properties of ZK1,ZK2 are claimed in Theorem 2 and its proof is given
in Appendix A.1

Theorem 2. The commit-and-proof zero-knowledge proofs ZK1 and ZK2 have perfect completeness, com-
putational soundness and perfect special honest-verifier zero-knowledge.

6.3 Re-key Verification

The statement generation algorithm Statement, blind statement algorithm Blind, re-key prove and verifica-
tion algorithm RkProve, RkVerify are defined in Fig. 9. Statement and RkProve are run by data subject;
Blind is run by the data collector; RkVerify is run by smart contract. The output of the blind algorithm is
submitted to the smart contract by the data collector. It is worthwhile to give some technical design intentions
about the algorithms: (1) We use zero-knowledge proof instead of pairing to verify the correction of the rekey
because the unlinkability between different verification instances follows trivially from the zero-knowledge
property. (2) We move all the computation on the smart contract to be in group G1 instead of G1,G2, since
the computation on G1 is more efficient than G2 in the elliptic curves used by the current blockchain.

6.4 Properties

We show our PFDT protocol has correctness and soundness in Theorem 3, and give their proofs in Ap-
pendix A. Furthermore, we prove our PFDT protocol satisfies real or random indistinguishability and un-
forgeability (recall the definitions in Section 4.2). Full proofs for Theorems 4, 5, 6 and 7, are given in
Appendix A. Since proof techniques are similar, we give a proof sketch only for Theorem 4.

Theorem 3 (Correctness and Soundness). PFDT has soundness and correctness if the underlying signature
scheme Σ, SKE scheme SKE are correct.
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Statement(pkj , prki, srki, c1, r1) :

t
$←− Zq

τ1 ← pktj
τ2 ← prkti

s1
$←− Zq

s2
$←− Zq

τ3 ← gr1−srkit1 hs11

τ4 ← gsrki1

π1 ← NIZK1_Prove(g1, h1, t)
aux← (τ1, τ2, τ3, τ4, s2, π1)
return aux

RkProve(g1, h1, rk1, srki, t, s1, s2) :
a← r1

srki
− t

π2 ← NIZK2_Prove(g1, h1, a, srki, 0, s2, s1)
return rk1, π2

Blind(skj , ci, aux) :

parse ci = (prki, ck, cm)
parse ck = (c1, c2, c3)
parse aux = (τ1, τ2, τ3, τ4, s2, π1)
if e(pk, τ2) = e(τ1, prk) and

e(τ4, g2) = e(g1, prk) and
NIZK1_Verify(g1, h1, c1, τ2, τ3, π1) then
bs1 ← τ3

bs2 ← τ4h
s2
1

bs← (bs1, bs2)
return bs, τ1

else
return ⊥

RkVerify(rk1, rk2, bs, τ1, π2) :
parse bs = (bs1, bs2)
if NIZK2_Verify(g1, h1, rk1, bs2, bs1, π2) and
τ1 = rk2 then
return 1

else
return 0

Figure 9: The blind algorithm Blind and the re-key verification algorithm RkVerify.

6.4.1 Real or Random Indistinguishability.

Theorem 4. For any M-RoR adversary A against PFDT running with n data subjects, having at most s
sessions in the trading phase, then there exist adversaries B1, B2 and B3, such that

AdvM-ROR
PFDT, A(λ) ≤ sn(AdvPub-RoR

PFDT, B1(λ) + Advco-DDBDH
(G1,G2,GT ),B2 + AdvIND-CPA

SKE,B3 (λ)).

Proof Sketch. The proof of this theorem consists a sequence of games. In the first game, we guess which
session in the trading phase the adversary is going to issue the M-RoRChall query for and which data subject
is involved in this session. The game returns a random bit for b′ if the guess is wrong. The security lose is
upper bounded by sn.

In the second game, if the adversary issues a corruption query that would make the challenge session
non-fresh the game returns a random bit for b′. The advantage of any adversary wins the second game is
unchanged.

In the third game, we change all the public values involved in this session to be public values generated
from a random ciphertext. The advantage of noticing this modification is upper bounded by the Pub-RoR
advantage for PFDT.

In the fourth game, we replace the ck values of the involved data subject to random ciphertexts, the
advantage of distinguishing this change is upper bounded by the co-DDBDH advantage.

In the end, we change the cm term to random ciphertexts, the advantage of identifying this change is
upper bounded by the IND-CPA advantage for SKE. Now, all values relate to the M-RoRChall query are
random. So the advantage of winning the last game is 0.

Theorem 5. For any Pub-RoR adversary A against PFDT, AdvPub-RoR
PFDT,A (λ)=0.

6.4.2 Unforgeability

Theorem 6. For any SigUF adversary A against PFDT running with m data managers, then there exists an
adversary B, such that

AdvSigUF
PFDT, A(λ) ≤ mAdvEUF-CMA

Σ,B .
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Theorem 7. For any RkUF adversary A against PFDT running with n data subjects, having at most s
sessions in the trading phase, then there exist adversaries B1 and B2, such that

AdvRkUF
PFDT, A(λ) ≤ sn(Advco-DDBDH

(G1,G2,GT ),B1(λ) + Advco-DCDH
(G1,G2,GT ),B2(λ)).

7 PFDT Evaluation and Fees

Function Cost in gas Transaction size (byte)
Deploy Smart Contract 2915663 26168
Data Subject Register 51072 10

Data Collector Confirm 137862 330
Re-key Verification 133154 1034

Table 1: Evaluation of PFDT

In this section we discuss our implementation and evaluation on the PFDT protocol. The on-chain part:
trading procedures that need smart contract are evaluated on Ethereum Ropsten testnet. We use the elliptic
curve BN-128 [bn1] to implement the algorithm, since Ethereum supports pre-compiled contract for this
elliptic curve. Compared to using other elliptic curve library contracts and implementing them directly,
using precompiled contracts can reduce cost. Table 1 shows the gas cost for different function calls.

8 Further Discussion

The most financial cost in our system is the verification algorithm on the smart contract. Depending on
the underlying cryptocurrencies, the price for verification varies a lot. With current Ethereum blockchain,
one may not desire to do a data trading with at least around 6 dollars (simplest transaction cost) extra cost
for a blockchain transaction, but it can be possible for other cheaper blockchain based cryptocurrencies.
In addition, in some use cases the smart contract can be run on a permission/private blockchain. In our
PFDT protocol, We require the smart contract compute the re-key verification algorithm for each tag related
information. It is possible to design a method that aggregate multiple re-key verification into one, this can
be done based on the updatability of PRE: data subject first updates multiple ck into ciphertexts that are
encrypted by the same public key, and then trade only one re-key with the data collector.
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A Proofs of Theorems

A.1 Proof of Theorem 2

The proof for ZK1

Proof. The perfect completeness follows by the protocol. To prove the soundness, we rewind the prover til
it generates d, and run the protocol again but with a different challenger x′, we two accepting transcripts
(d, x, θ), (d, x′, θ′).

(
c

cacb
)xhθ = (

c

cacb
)x

′
hθ

′
= d

Assume c = gzht, the above equation implies gz−a−bht(x−x
′)hθ−θ

′
= 1, hence, if z 6= a+ b one can get

a non-trial relation between g, h. To prove the perfect special honest-verifier zero-knowledge, the simulator
randomly chooses θ and a randomly chooses a challenge x, compute d = ( c

cacb
)xhθ, then the simulator

simulates a valid transcript (d, x, θ) which has the identical distribution with the real proof.
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The proof for ZK2

Proof. The perfect completeness follows by the protocol.
Soundness. By rewinding the prover til it generates the commitment da, d2, c0, c1, the extractor X gets

two valid transcripts that have the same commitments:
(d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab), (d1, d2, c0, c1, x

′, θ′a, θ
′
b, θ
′
1, θ
′
2, θ
′
ab)

from the verification, we get equations

cxag
θahθ1 = d1 cx

′
a g

θ′ahθ
′
1 = d1

By the binding property of Pedersen commitment, This implies a = θ′a−θa
x−x′ , by the same technique, X can

compute b =
θ′b−θb
x−x′ and α, β.

Next, assume c is a commitment that committed to z, we will prove z = ab. Assume c0 = guhrc0 , c1 =
gvhrc1 , observe that gθaθbhθabcx0 = cx

2
c1, it implies

gabx
2−(aβ+bα)x+αβ+uxhθab+xrc0 = gzx

2+vhrcx
2+rc1

Since a, b, α, β, u, v are all predefine value, either X can extract non-trivial relation between g, h or
u = αb+ βa and the extractor can extract z = ab =

θaθb−θ′aθ′b+(αb+βa)(x−x′)
x2−x′2

Perfect special honest-verifier zero-knowledge. The simulator randomly chooses θ1, θ2, θa, θb, θab, u, r ←
Zp and randomly chooses a challenge x← Zp, it computes d1 = cxag

θahθ1 , d2 = cxb g
θbhθ2 , c0 = guhr, c1 =

gθaθbhθabcx0/c
x2 . Thus the simulator produces a valid transcript (d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab) that has

the identical probability distributions with the real proof.

A.2 Proof of Theorem 3

Proof. We prove PFDT has soundness first. When we have RkVerify(rk, bs, π) = 1, according to the
soundness of zero-knowlege proof ZK2 (Theorem 2), we get relation

{rk1, bs1, bs2|∃a, b, z, rb, rz s.t. ab = z, rk1 = ga1 , bs1 = gz1h
rz
1 , bs2 = gb1h

rb}

Since DC computes algorithm Blind honestly, from the equations e(τ4, g2) = e(g1, prk), e(pk, τ2) = e(τ1, prk),
we get τ4 = gsrk1 and τ2 = prkt, τ1 = pkt.
According to the soundness of zero-knowledge proof ZK1, we get relation

{c1, prk
t, bs1|∃r1, z s.t. r1 − srkt = z, c1 = gr11 }

bs2 = τ4h
s2
1 = gsrk1 hs21 , this implies a = r1

srk + t, therefore rk1 = g
r1
srk

+t

1 , rk2 = τ1 = pkt, which are correct
re-keys for the PRE scheme.

Next, we prove correctness. Correctness of PRE is proved in Section 6.1. Soundness of our protocol
ensures that if the re-key verification algorithm outputs 1, then the data collector and data subject will agree
on the same message. For any honestly generated blind statement bs = (bs1, bs2) = (gr1−srkit1 , prkih

s2
1 )

and corresponding re-key rk1 = c
1

srki
1 g−t = g

r1
srki
−t

1 , they satisfy the inner product relation ( r1
srki
− t) · srki =

r1− srkit, thus its proof will be accepted by NIZK2_Verify, which means after an honest run of our protocol,
the re-key verification algorithm will output 1.

A.3 Proof of Theorem 4

Proof. The proof of this theorem consists a sequence of games. For b ∈ {0, 1},

Game 0

The first game Gb
0 is ExpM-ROR-b

FDT, A , which is given in Def. 12, we have

AdvM-ROR
PFDT, A(λ) =

∣∣∣Pr[G1
0 = 1]−Pr[G0

0 = 1]
∣∣∣.
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Game 1

This game is the same as Gb
0 , except for it guesses which session in the trading phase the adversary is going

to issue the M-RoRChall query for and which data subject is involved in this session. The game returns a
random bit for b′ if the guess is wrong.

We claim that the security lose is upper bounded by sn. Let E1 be the event that the guessed values
are correct. Notice that if any guessed value is incorrect, the game returns a random bit, which means
Pr[Gb

1 = 1 | ¬E1] = 1
2 . In addition, if the guessed values are correct, then Gb

1 is Gb
0 . We have

∣∣∣Pr[G1
1 =1]−Pr[G0

1 =1]
∣∣∣= ∣∣∣Pr[G1

1 =1 |E1]−Pr[G0
1 =1 |E1]

∣∣∣ ·Pr[E1]

+
∣∣∣Pr[G1

1 =1 |¬E1]−Pr[G0
1 =1 |¬E1]

∣∣∣ ·Pr[¬E1]

=
∣∣∣Pr[G1

1 =1 |E1]−Pr[G0
1 =1 |E1]

∣∣∣ ·Pr[E1]

=
∣∣∣Pr[G1

0 = 1]−Pr[G0
0 = 1]

∣∣∣ · 1

sn
.

Game 2

We modify the game so that if the adversary issues a corruption query that would make the challenge session
non-fresh the game returns a random bit for b′.

We prove that the advantage of Gb
2 is the same advantage as Gb

1 . Let E2 be the event that any partner of
the challenge session is corrupted. If E2 does not happen, Gb

2 is Gb
1 . If E2 happens, the adversary will always

lose Gb
1 , that is, Pr[Gb

1 = 1 | E2] = 1
2 . Additionally, we have Pr[Gb

2 = 1 | E2] = 1
2 by the definition of Gb

2 .
Then we have

Pr[Gb
2 = 1] = Pr[Gb

1 = 1].

Game 3

In this game, we modify the actions in the data collector oracle (which has a partner as the guessed challenge
data subject), instead of computing the session message, it simply output the one outputted by the data
subject oracle if all the verification are correct. Then we have

Pr[Gb
3 = 1] = Pr[Gb

2 = 1].

Game 4

We change all the public values involved in the guessed challenge session to be public values generated from
a random ciphertext. The advantage is upper bounded by the Pub-RoR advantage for PFDT. That is∣∣∣Pr[Gb

4 = 1]−Pr[Gb
3 = 1]

∣∣∣ ≤ AdvPub-RoR
PFDT, B1(λ).

Game 5

The next modification we make is to replace the ciphertext term ck with respect to the guessed data subject
to random ciphertexts.

Suppose that A2 is an adversary attempting to distinguish Gb
5 from Gb

4 . We construct a reduction B2

playing the co-DDBDH game and will simulate the responses of queries made by adversary A2.
Initially, B2 obtains (X,Y, Z,W ) = (gx2 , g

y
1 , g

z
2 , e(g1, g2)w) from its co-DDBDH challenger. To simulate

the encryptions ck and public values for the guessed data subject, B2 does following.

• Randomly generates a symmetric key k
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• Generates three random numbers s, r1, r2
$←− Zq

• Computes prk← Xs, c1 ← Y r1 , c2 ← Z
sr2
r1 , c3 ←W r2 · k, and set ck ← (c1, c2, c3).

• Computes public values as G4 specifies. Since the adversary is not allowed to corrupt both data collec-
tor and re-key involved in the same oracle, it will not notice whether the public values are generated
from the ciphertext ck or not.

Eventually, A2 submits a guess. If A2 guesses it is Gb
4 then B2 guesses 1 (real co-DDBDH tuple) to its

co-DDBDH challenger. Otherwise, B2 guesses 0 (random co-DDBDH tuple) to its co-DDBDH challenger.
If (X,Y, Z,W ) = (gx2 , g

y
1 , g

z
2 , e(g1, g2)

yz
x ) is a real co-DDBDH tuple, then the reduction simulated

ciphertext (c1, c2, c3) = (gyr11 , g

(xs)(
yzr2
x )

(yr1)

2 , e(g1, g2)
yzr2
x · k) is valid ciphertext encrypted under public key

prk = gxs2 . Hence, B2 perfectly simulates the environment of A2 in Gb
4 . If (X,Y, Z,W ) is a random

co-DDBDH tuple, then ck is simulated as a random ciphertext, B2 perfectly simulates the environment ofA2

in Gb
5 . Then ∣∣∣Pr[Gb

5 = 1]−Pr[Gb
4 = 1]

∣∣∣ ≤ Advco-DDBDH
(G1,G2,GT ),B2(λ).

Game 6

We change the challenge ciphertext term cm to random ciphertexts. We have that the probability of any
adversary notice this change is upper bounded by the IND-CPA advantage for SKE. Hence,∣∣∣Pr[Gb

6 = 1]−Pr[Gb
5 = 1]

∣∣∣ ≤ AdvIND-CPA
SKE,B3 (λ).

Now, all values relate to the M-RoRChall query are random. So∣∣∣Pr[G1
6 = 1]−Pr[Pr[G0

6 = 1]
∣∣∣ = 0.

A.4 Proof of Theorem 5

The proof is similar to the proof of Theorem 4. For b ∈ {0, 1},

Game 0

The first game Gb
0 is ExpPub-RoR-b

FDT, A , which is given in Def. 12, we have

AdvPub-RoR
PFDT, A(λ) =

∣∣∣Pr[G1
0 = 1]−Pr[G0

0 = 1]
∣∣∣.

Game 1

This game is the same as Gb
0 , except for it guesses which session in the trading phase the adversary is going

to issue the Pub-RoRChall query for and which data collector is involved in this session. The game returns
a random bit for b′ if the guess is wrong. The security lose is upper bounded by sl. That is∣∣∣Pr[G1

1 = 1]−Pr[G0
1 = 1]

∣∣∣ =
∣∣∣Pr[G1

0 = 1]−Pr[G0
0 = 1]

∣∣∣ · 1

sl

Game 2

We modify the game so that if the adversary issues a corruption query that would make the challenge session
non-fresh the game returns a random bit for b′. Then

Pr[Gb
2 = 1] = Pr[Gb

1 = 1]
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Game 3

In this game, we modify the actions of participants in the challenge session: all session oracles directly output
1 for each verification, and instead of computing the session message, the data collector simply output the
one output by the data subject oracle. Then we have

Pr[Gb
3 = 1] = Pr[Gb

2 = 1].

Game 4

We replace the zero-knowledge proof that is submitted by data subject in the verification algorithm to be
simulated proof. From the perfect special honest-verifier zero-knowledge property, we have

Pr[Gb
3 = 1] = Pr[Gb

4 = 1].

Game 5

We replace the statements that are submitted by data collector to be Pedersen commitments that are commit-
ted to random value, since the hiding property of the Pedersen commitment, the adversary cannot distinguish
the differences. Therefore, in this game, the published values on the blockchain are all generated indepen-
dently from the data subject’s ciphertext, we have∣∣∣Pr[Gb

4 = 1]−Pr[Gb
5 = 1]

∣∣∣ = 0.

AdvPub-RoR
PFDT, A(λ) =

∣∣∣Pr[G1
5 = 1]−Pr[G0

5 = 1]
∣∣∣ = 0.

A.5 Proof of Theorem 6

Game 0

The first game is the SigUF game given in Def. 13, we have

AdvSigUF
PFDT, A(λ) = Pr[G0 = 1].

Game 1

This game is the same as G0, except for it guesses which data manager is involved in the challenge query
SigUFChall. The game returns a random bit for b′ if the guess is wrong. The security lose is upper bounded
by m. That is

Pr[G1 = 1] = Pr[G0 = 1] · 1

m

Game 2

We modify the game so that if the adversary issues a corruption query on the guessed data manager the game
returns 0. Then

Pr[G2 = 1] = Pr[G1 = 1]
∣∣∣

Suppose thatA is an adversary attempting to win G2. We construct a reduction B playing the EUF-CMA
game and will simulate the responses of queries made by adversary A. During the game B sends all signing
computations of the guess data manager to the EUF-CMA challenger. Eventually, A submits a forgery, B
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forwards this forgery to the EUF-CMA challenger. If A provides a valid forgery, then B wins the EUF-CMA
game. Then

Pr[G2 = 1] = AdvEUF-CMA
Σ,B

A.6 Proof of Theorem 7

Game 0

The first game is the RkUF game given in Def. 13, we have

AdvRkUF
PFDT, A(λ) = Pr[G0 = 1].

Game 1

This game is the same as G0, except for it guesses which session in the trading phase the adversary is going
to issue the RkUFChall query for and which data subject is involved in this session. The game returns a
random bit for b′ if the guess is wrong. Then

Pr[G1 = 1] = Pr[G0 = 1] · 1

sn

Game 2

The same as G2 in the proof of Theorem 4.

Game 3

The same as G3 in the proof of Theorem 4.

Game 4

The same as G5 in the proof of Theorem 4. Then we have∣∣∣Pr[G4 = 1]−Pr[G1 = 1]
∣∣∣ ≤ Advco-DDBDH

(G1,G2,GT )(λ).

In the end, we prove that if there exists an adversaryA winning G4 with probability p, then there exists a
reduction B2 breaking co-DCDH with probability p. We construct a reduction B2 that takes input (X,Y ) =

(gx1 , g
y
2), the reduction simulates ciphertexts as ck = (Xr1 , Y r2 , gr3T ) for random values r1, r2, r3

$←− Zq.
Suppose the adversary ask for challenge query in a session with rk = (rk1, rk2). The reduction returns

(rk1 · rk1/skDC
2 )

r2
r1 to its co-DCDH challenger. If the adversary A creates a valid forgery for rk, then (rk1 ·

rk
1/skDC
2 )

r2
r1 = g

x/y
1 . Which means B2 outputs a valid co-DCDH output to its co-DCDH challenger.
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