Anonymity of NIST PQC Round-3 KEMs

Keita Xagawa'

NTT Social Informatics Laboratories, keita.xagawa.zv@hco.ntt.co. jp

Abstract. This paper investigates anonymity of all NIST PQC Round 3 KEMs: Classic McEliece, Kyber, NTRU,
Saber, BIKE, FrodoKEM, HQC, NTRU Prime (Streamlined NTRU Prime and NTRU LPRime), and SIKE. We show
the following results:

— NTRU is anonymous in the quantum random oracle model (QROM) if the underlying deterministic PKE is
strongly disjoint-simulatable. NTRU is collision-free in the QROM. A hybrid PKE scheme constructed from
NTRU as KEM and appropriate DEM is anonymous and robust. Similar results hold for BIKE, FrodoKEM,
HQC, NTRU LPRime, and SIKE.

— Classic McEliece is anonymous in the QROM if the underlying PKE is strongly disjoint-simulatable and a
hybrid PKE scheme constructed from it as KEM and appropriate DEM is anonymous.

— Streamlined NTRU Prime has an obstacle for the IND-CCA security proof as Grubbs, Maram, and Paterson
pointed out that Kyber and Saber has a gap in the current IND-CCA security proof (Cryptography ePrint
Archive 2021/708).

Those answer the open problem to investigate the anonymity and robustness of NIST PQC Round 3 KEMs posed
by Grubbs, Maram, and Paterson (Cryptography ePrint Archive 2021/708).

We use strong disjoint-simulatability of the underlying PKE of KEM and strong pseudorandomness and smooth-
ness of KEMs, which will be of independent interest.

Keywords: anonymity, robustness, post-quantum cryptography, NIST PQC standardization, KEM, PKE

1 Introduction

Public-Key Encryption (PKE) allows us to send a message confidentially to a receiver if the receiver’s public
key is available. However, a ciphertext may reveal the receiver’s public key. Roughly speaking, PKE is anony-
mous [BBDP01] if a ciphertext hides the receiver’s information. Anonymous primitive is often used in the context
of privacy-enhancing technologies.

If we use anonymous PKE, then a ciphertext indicates (computationally) no information of a receiver. Thus, once
the receiver receives a ciphertext, it should decrypt it and check the message. In this situation, a ciphertext maybe
has two (or more) recipients. Intuitively speaking, PKE is robust [ABN10] if only the intended receiver can obtain
a meaningful plaintext from a ciphertext.

Both anonymity and robustness are important and useful properties beyond the standard IND-CCA security.
Anonymous PKE is an important building primitive for anonymous credential systems [CL01], auction proto-
cols [Sak00], (weakly) anonymous AKE [BCGNP09, FSXY13, FSXY15, SSW20], and so on. Robust PKE has an
application for searchable encryption [ABC*05] and auction [Sak00].

Previous works: Mohassel [Moh10] studied anonymity and robustness of a special KEM/DEM framework, where
KEM is implemented by PKE with random plaintext. He observed that even if anonymous KEM and DEM some-
times fail to lead to an anonyous hybrid PKE.

Grubbs, Maram, and Paterson [GMP21] discussed anonymity and robustness of post-quantum KEM schemes and
KEM/DEM framework in the quantum random oracle model (QROM). They also studied anonymity and robust-
ness of the hybrid PKE based on KEM with implicit rejection. On the variants of the Fujisaki-Okamoto transfor-
mation [FO99, FO13], they showed that anonymity and collision-freeness of KEMs obtained by FO£ and FO4/’!
and they lead to anonymous, robust hybrid PKEs from appropriate assumptions. They also show anonymity and
robustness of KEM obtained by HFO*’? and it lead to anonymous, robust hybrid PKE form appropriate assump-
tions. They then examined NIST PQC Standardization finalists (Classic McEliece [ABC*20], Kyber [SAB*20],
NTRU [CDH"20], and Saber [DKR*20]). They showed the following results:

1 A variant of FO* using ‘pre-key’ technique. They wrote “a variant of the FO* transform” in their paper.
2 They modify ‘key-confirmation hash’ ¢1 = F(u) of HFO* with ¢1 = F(u, ¢o), where ¢o = Enc(ek,).

— Classic McEliece: They found that Classic McEliece is not collision-free. Since their anonymity proof in
[GMP21, Theorem 5] strongly depends on the collision-freeness of the underlying PKE, we cannot apply
their anonymity proof to Classic McEliece. They also show that the hybrid PKE fails to achieve robustness
since Classic McEliece is not collision-free.

- Kyber: They found that Kyber’s anonymity (and even IND-CCA security) has two technical barriers (‘pre-key’
and ‘nested random oracles’) in the QROM.

— NTRU: NTRU’s anonymity has another technical barrier: A key is computed as H(u) instead of H(y, ¢),
where y is a plaintext and c is a ciphertext. The robustness of the hybrid PKE with NTRU is unclear.

— Saber: They insisted they show Saber’s anonymity and IND-CCA security and the robustness of the hybrid
PKE with Saber. Unfortunately, Saber in [DKR*20] also uses both ‘pre-key’ and ‘nested random oracles’ as
Kyber and their proofs cannot be applied to Saber. 3

Grubbs et al. left several open problems: One of them is the anonymity and robustness of NTRU; the other impor-
tant one is the anonymity of Classic McEliece.

Summarizing above, unfortunately, we do not know whether all four finalists are anonymous or not, although the
much effort of Grubbs et al. and their clean and modular framework.

1.1 Our Contribution

Anonymity through pseudorandomness and smoothness: Our starting point is strong pseudorandomness in-
stead of anonymity: We say PKE/KEM/DEM is strongly pseudorandom if its ciphertext is indistinguishable from
a random string chosen by a simulator on input the security parameter. * It is easy to show strong pseudoran-
domness implies anonymity.

Using this notion, we attempt to follow the IND-CCA security proof of the KEM/DEM framework [CS02], that is,
we try to show the hybrid PKE from strongly pseudorandom KEM/DEM is also strongly pseudorandom, which
implies that the hybrid PKE is anonymous. If we directly try to prove the ANON-CCA security of the hybrid PKE,
then we will need to simulate two decryption oracles. Considering pseudorandomness allows us to treat a single
key and oracle and simplifies the security proof. Unfortunately, we face another obstacle in the security proof
when we consider KEM.

To resolve the obstacle, we define sparseness of KEM with explicit rejection and smoothness of KEM with implicit
rejection: We say KEM with explicit rejection is sparse if a ciphertext ¢ chosen by a simulator is decapsulated into
1 with overwhelming probability. We say KEM with implicit rejection is smooth if, given a ciphertext ¢ chosen
by a simulator, any efficient adversary cannot distinguish a random key from a decapsulated key. This definition
imitates the smoothness of hash proof system [CS02]. Those notions help us to prove the pseudorandomness of
the hybrid PKE. We believe that sparseness and smoothness will play important role in another place.

Pseudorandomness, smoothness, and collision-freeness of the FO variants: In order to treat the case for Classic
McEliece and NTRU, in which the underlying PKE is deterministic, we treat SXY [SXY18], variants of U [HHK17],
and variants of HU [JZM19]. Modifying the security proofs of them, we show that the obtained KEM is strongly
pseudorandom and smooth if the underlying PKE is strongly disjoint-simulatable [SXY18]. We also show that the
obtained KEM is collision-free if the underlying deterministic PKE (DPKE) is collision-free. We finally note that
our reductions enjoy tightness.

Grubbs et al. [GMP21] discussed the barrier to show anonymity of NTRU, which stems from the design choice
K = H(uw) instead of K = H(u, c¢). The former choice makes their simulation difficult. In addition, their proof
technique requires the underlying PKE to be collision-free. Since the underlying PKE of Classic McEliece lacks
collision freeness, they left the proof of anonymity of Classic McEliece as an open problem. Both barriers stem
from the fact that we need to simulate two decapsulation oracles in the proof of ANON-CCA-security. We avoid
those technical barriers by using a stronger notion, SPR-CCA security; in the proof of SPR-CCA-security, we only
need to simulate a single decapsulation oracle.

Application to NIST PQC Round-3 KEMs: By using the above techniques, we solve open problems posed by
Grubbs et al. and extend the study of finalists and alternative candidates of NIST PQC Round 3 KEMs.
We found the following (We omit the detail of the assumptions):

— Classic McEliece is anonymous, but not collision-free. The hybrid PKE is anonymous.

3 See the slides available at https://csrc.nist.gov/Presentations/2021/anonymous-robust-post-quantum-public-key-encryptio
4 if the simulator can depend on an encryption key, then we just say pseudorandom.

https://csrc.nist.gov/Presentations/2021/anonymous-robust-post-quantum-public-key-encryptio

— NTRU is anonymous and collision-free. The hybrid PKE is anonymous and robust. Similar results hold for
BIKE, HQC (HQC-128 and HQC-196), NTRU LPRime, and SIKE.
— FrodoKEM uses FO%”’. We can use the results of Grubbs et al.and FrodoKEM is anonymous and collision-free.
The hybrid PKE is anonymous and robust.
— Grubbs et al.reported that Kyber and Saber have similar obstacles for anonymity (and IND-CCA security).
We found that Streamlined NTRU Prime has also a similar obstacle.
See the summary in Table 1.

Open Problems: We leave showing anonymity of Kyber, Saber, and Streamlined NTRU Prime as an important
open problem as Gurbbs et al. posed.

Table 1. Summary of NIST PQC Round 3 KEM Candidates (finalists and alternate candi-
dates) and the hybrid PKEs using them. In the first row, SPR = Strong Pseudorandomness,
ANO = Anonymity, CF = Collision Freeness, and ROB = Robustness.

KEM PKE
Name Trans. SPR ANO CF ROB ANO ROB
Classic McEliece [ABC*20] HULPT Y Y N N Y N sectionL
Kyber [SAB*20] FOL’/ 2 ? 2?2 N ? section M
NTRU [CDH*20] SXY Y Y Y N Y Y section6
Saber [DKR*20] FOL/ ?2 2 ? N ? ? sectionN
BIKE [ABB*20] FOL Y Y Y N Y Y sectionO
FrodoKEM [NAB*20] FOL”’ Y Y Y N Y Y sectionP
HQC [AAB*20]2 HFO* Y Y Y Y Y Y sectionQ
Streamlined NTRU Prime [BBC*20] HUAPF 2 2 2 N 2 2 sectionR
NTRU LPRime [BBC*20] HFOLPT Y 'Y Y N Y Y section$
SIKE [JAC*20] FOt Y Y Y N Y Y sectionT

8 We only consider HQC-128 and HQC-192. HQC-256 is not anonymous.

Organization: section 2 reviews quantum random oracle models, definitions of primitives, and results of Grubbs et al. [GMP21].
section 3 shows that strong pseudorandomness implies anonymity. ?? studies strong pseudorandomness of KEM/DEM
framework. section 5 studies SXY’s security properties. section 6 examines anonymity and robustness of NTRU.

For contents of appendices, see table of contents.

2 Preliminaries

Notations: A security parameter is denoted by k. We use the standard O-notations. DPT, PPT, and QPT stand
for deterministic polynomial time, probabilistic polynomial time, and quantum polynomial time, respectively. A
function f (k) is said to be negligible if f (k) = k() We denote a set of negligible functions by negl(x). For a
distribution y, we often write “x « y,” which indicates that we take a sample x according to y. For a finite set
S, U(S) denotes the uniform distribution over S. We often write “x « S” instead of “x « U(S). For a set S and
a deterministic algorithm A, A(S) denotes the set {A(x) | x € S}. If inp is a string, then “out « A(inp)” denotes
the output of algorithm A when run on input inp. If A is deterministic, then out is a fixed value and we write
“out := A(inp).” We also use the notation “out := A(inp;r)” to make the randomness r explicit.

For a statement P (e.g., r € [0, 1]), we define boole(P) = 1 if P is satisfied and 0 otherwise.

For two finite sets X and Y, ¥ (X, Y) denotes a set of all mapping from X to Y.

Lemma 2.1 (Generic distinguishing problem with bounded probabilities [HKSU20, Lemma 2.9], adapted). Let
X be a finite set. Let 6 € [0,1]. Let F: X — {0, 1} be the following function: for each x € X, F1(x) = 1 with
probability 6x < § and F1(x) = 0 else. Let Z: X — {0, 1} be the zero function, that is, Z(x) = 0 for all x. If an
unbounded time quantum adversary A makes a query to F or Z at most Q times, then we have

Pr[AT) () > 1] - Pr[AZ0) () - 1]| < 8(0 +1)%.

where all oracle accesses of A can be quantum.

> HQC-256 is not anonymous

Quantum Random Oracle Model: Roughly speaking, the quantum random oracle model (QROM) is an idealized
model where a hash function is modeled as a publicly and quantumly accessible random oracle. In this paper,
we model a quantum oracle O as a mapping |x) |y) — [x) |y ® O(x)), where x € {0,1}"*, y € {0,1}", and
0: {0,1}"* — {0,1}™. See [BDF*11] for a more detailed description of the model.

Lemma 2.2 (QRO is PRF). Let £ be a positive integer. Let X and Y be finite sets. Let Hpip: M x X — Y and
Hy: X — Y be two independent random oracles. If an unbounded time quantum adversary A makes a query to H
at most Q times, then we have

Prs e Mz A Mt (529 () 1] — Pr[sAfela () = 1]| < 20/VIM,
where all oracle accesses of A can be quantum.
See [SXY18] and [JZC*18] for the proof.

Lemma 2.3 (QRO is collision-resistant [Zha15, Theorem 3.1]). There is a universal constant C such that the fol-
lowing holds: Let X and Y be finite sets. Let H: X — Y be a random oracle. If an unbounded time quantum adversary
A makes a query to H at most Q times, then we have

HP;([(x,x’) — AT x#x AHEX) = HX)] < C(0 +1)3/|1Y],

where all oracle accesses of A can be quantum.
Remark 2.1. We implicitly assume that |X| = Q(]|Y]), because of the birthday bound.

Lemma 2.4 (QRO is claw-free). There is a universal constant C such that the following holds: Let Xy and X1 and Y
be finite sets. Let No = |Xo| and N1 = |X1|. Without loss of generality, we assume No < Nj. Let Hy: Xo — Y and
Hi: X1 — Y be two random oracles.

If an unbounded time quantum adversary A makes a query to Hy and Hy at most Qo and Q1 times, then we have

Pr[(xo.x1) = AT Ho(xo) = Hi(x1)] < C(Qo + Q1+ 1D)*/|Y,
where all oracle accesses of A can be quantum.

The following proof is due to Hosoyamada [Hos20].

Proof. Let us reduce the problem to collision-finding problem as follows: We assume that Xy and X are enu-
merable. Given H: [Ny + Ni] — Y, we define Hp: Xy — Y and H;: X1 — Y by Ho(x) = H(indexo(x)) and
Hi(x) = H(index;(x) + No), where index;: X; — [N;] is an index function which returns the index of x in Xj.
Ho and H; are random since H is a randomly chosen. If A finds the claw (x¢,x1) for Hy and H; with Q¢ and Q1
queries, then we can find a collision (indexo(xp), indexj (x1) + No) for H with Q¢ + Q1 queries. Using Lemma 2.4,
we obtain the bound as we wanted. O

2.1 Public-Key Encryption (PKE)
The model for PKE schemes is summarized as follows:

Definition 2.1. A PKE scheme PKE consists of the following triple of PPT algorithms (Gen, Enc, Dec).

- Gen(1%;rg) — (ek, dk): a key-generation algorithm that on input 1%, where « is the security parameter, and
randomness rg € RGen, outputs a pair of keys (ek, dk). ek and dk are called the encryption key and decryption
key, respectively.

— Enc(ek, u;re) — c: an encryption algorithm that takes as input encryption key ek, message u € M, and
randomness re € Renc, and outputs ciphertext ¢ € C.

— Dec(dk,c) — u/L:a decryption algorithm that takes as input decryption key dk and ciphertext ¢ and outputs
message i € M or a rejection symbol L ¢ M.

We review §-correctness in Hotheinz, Hévelmanns, and Kiltz [HHK17].

Definition 2.2 (§-Correctness). Let 6 = §(k). We say PKE = (Gen, Enc, Dec) is §-correct if
EXP ¢k, dk) —Gen(1%) max Pr[c « Enc(ek, i) : Dec(dk,c) # u]| < 6.
ue

In particular, we say that PKE is perfectly correct if § = 0.
We also define a key pair’s accuracy.
Definition 2.3 (Accuracy [XY19]). We say that a key pair (ek, dk) is accurate if for any u € M,

P Dec(dk,c) = u] = 1.
C<—Enc¥ek,y)[ec(dk.c) = 4]

If a key pair is not accurate, then we call it inaccurate.

Security Notions: We review onewayness under chosen-plaintext attacks (OW-CPA), indistinguishability un-
der chosen-plaintext attacks (IND-CPA), indistinguishability under chosen-ciphertext attacks (IND-CCA) [RS92,
BDPR98], pseudorandom under chosen-ciphertext attacks (PR-CCA), and its strong version (SPR-CCA) for PKE.
We define PR-CCA with simulator S as a generalization of IND$-CCA-security in [vH04, Hop05]. We also review
anonymity (ANON-CCA) [BBDP01], robustness (WROB-CCA and SROB-CCA) [Moh10], and collision-freeness
(WCFR-CCA and SCFR-CCA) [Moh10]. We additionally define extended collision-freeness (XCFR), in which any
efficient adversary cannot find a colliding ciphertext even if the adversary is given two decryption keys.

Definition 2.4 (Security notions for PKE). Let PKE = (Gen, Enc, Dec) be a PKE scheme. Let D p4 be a distribution
over the message space M.
For any A and goal-atk € {ind-cca, pr-cca, anon-cca}, we define its goal-atk advantage against PKE as follows:

goal-atk _ goal-atk _ 11
AdVPKE[,S],ﬂ(K) = ZPr[EXptPKE[,S],&ZI(K) =1]-1|,

tgoal—atk
PKE[,S
For any A and goal-atk € {ow-cca, srob-cca, scfr-cca, wrob-cca, wefr-cea, xcfr}, we define its goal-atk advantage

against PKE as follows:

where Exp I (&) is an experiment described in Figure 1.

goal-atk o goal-atk _
AdVPKE[,DM],ﬂ(K) = Pr[EXptPKE[,DM],ﬂ(K) =1],

I-atk . . . R
where Expt%,T(aE [atZ)MJ e (k) is an experiment described in Figure 1.

For GOAL-ATK € {OW-CCA, IND-CCA, PR-CCA, ANON-CCA, SROB-CCA, SCFR-CCA, WROB-CCA, WCFR-CCA,
XCFR}, we say that PKE is GOAL-ATK-secure U‘Advﬁ?ﬁé-ﬁtzk)M’S]’ﬂ («) is negligible for any QPT adversary A. We
also say that PKE is SPR-CCA-secure if it is PR-CCA-secure and its simulator ignores ek. We also say that PKE is
GOAL-CPA-secure if it is GOAL-CCA-secure even without the decryption oracle.

Disjoint simulatability: We review disjoint simulatability defined in [SXY18].
Definition 2.5 (Disjoint simulatability [SXY18]). Let D 5 denote an efficiently sampleable distribution on a set
M. A deterministic PKE scheme PKE = (Gen, Enc, Dec) with plaintext and ciphertext spaces M and C is D p4-
disjoint-simulatable if there exists a PPT algorithm S that satisfies the followings:

— (Statistical disjointness:)

Disjpke, s (k) = Pr[c « S(1%, ek) : ¢ € Enc(ek, M)]

max
(ek,dk) eGen(1%;RGen)
is negligible.
— (Ciphertext-indistinguishability:) For any QPT adversary A,
Pr[(ek, dk) « Gen(1%), u* < D, c* = Enc(ek, u*) : A(ek,c*) — 1]
—Pr[(ek, dk) < Gen(1¥),c* « S(1¥,ek) : A(ek,c*) — 1]
Liu and Wang gave a slightly modified version of statistical disjointness in [LW21]. As they noted, their definition
below is enough to show the security proof.
Disjpkg, s (k) := Pr[(ek, dk) € Gen(1%), ¢ « S(1%, ek) : ¢ € Enc(ek, M)]
Definition 2.6 (strong disjoint-simulatability). We call PKE has strong disjoint-simulatability if S ignores ek.

Remark 2.2. We note that a deterministic PKE scheme produced by TPunc [SXY18] or Punc [HKSU20] is not
strongly disjoint-simulatable, because their simulator will output a random ciphertext Enc(ek, (1) of a special plain-
text 41, which depends on ek.

ds-ind —
AdVPKE,DM,S,.’R(K) =

Expt‘;‘l’é”E“’CZ*;M,&ZI (k) DEecy(c) DEcg (id, ¢)

(ek, dk) <« Gen(1%) ifc=a,return L ifc =a, return L
1= Dy w = Dec(dk, c) u = Dec(dk;q, c)
¢* « Enc(ek, u*) return y return y

Ml P ﬂDECC* (ek, C*)

return boole (i’ 2 Dec(dk, c*))

-
Exptind=<ca ()

Exptpr—cca (%)

anon-cca
PKE.S.A Expt ()

PKE, A

b« {0,1}

(ek, dk) « Gen(1¥)

(1o, 1, state) — AL (ek)
¢ « Enc(ek, up)

b — .7[12)“0* © (c*, state)

return boole(b = b’)

wecfr-cca (K)

Exptpge 7

b« {0,1}
(ekg, dkg) < Gen(1%)
(ek1, dkq) < Gen(1%)

b« {0,1}

(ek, dk) « Gen(1¥)

(u, state) « ﬂ?ECL(A) (ek)

cg < Enc(ek,)

]« S(1%, ek)
DEc_+ (-

’ ‘b
b« A,

return boole(b = b’)

¢* « Enc(ekp, 1)
b — ﬂ?ECC*("') (c*, state)

return boole(b = b’)

)
(¢}, state)

xcfr

scfr-cca(K) E.A (¥)

ExptPKE’ﬂ Expt

(eko, dkg) «— Gen(1%)

(eky, dk1) «— Gen(1%)

(u,b) «— APECL () (eko, eky)
¢ « Enc(ekp,)

' — Dec(dki_p,c)

return boole(u = u’ # 1)

wrob-cca (x)

Exptpe, @

(eko, dkg) «— Gen(1%)
(eky, dk1) < Gen(1%)

¢ — AP (eky, eky)
o «— Dec(dko, ¢)

uy < Dec(dky,c)

return boole(uy = 1 # L)

(eko, dkg) «— Gen(1%)
(eky, dk1) < Gen(1%)

¢ «— Aleky, dkg, eky, dk1)
o «— Dec(dko, ¢)

uy < Dec(dky,c)

return boole(uy = p1 # L)

srob-cca (x)

Exptpke, A

(eko, dkg) «— Gen(1%)

(eky, dk1) < Gen(1%)

(1, b) — AP ek, eky)
¢ « Enc(ekp,)

u’ «— Dec(dki_p,c)

return boole(u” # 1)

(eko, dkg) < Gen(1%)

(eky, dk1) < Gen(1%)

¢ AP () (eky, eky)

o < Dec(dko, c)

p1 « Dec(dky, c)

return boole(po # L A g # L)

Fig. 1. Games for PKE schemes

(u, state) «— _?IIIDECL("') (eko, ek1)

2.2 Key Encapsulation Mechanism (KEM)
The model for KEM schemes is summarized as follows:

Definition 2.7. A KEM scheme KEM consists of the following triple of polynomial-time algorithms (Gen, Enc, Dec):
- Gen(1¥) — (ek, dk): a key-generation algorithm that on input 1%, where k is the security parameter, outputs a
pair of keys (ek, dk). ek and dk are called the encapsulation key and decapsulation key, respectively.
— Enc(ek) = (c, K): an encapsulation algorithm that takes as input encapsulation key ek and outputs ciphertext
ceCandkeyK € K.
- Dec(dk,c) — K/L: a decapsulation algorithm that takes as input decapsulation key dk and ciphertext ¢ and
outputs key K or a rejection symbol L ¢ K.

Definition 2.8 (6-Correctness). Let § = 5(«). We say that KEM = (Gen, Enc, Dec) is §-correct if
Pr[(ek, dk) « Gen(1¥), (¢, K) « Enc(ek) : Dec(dk, ¢) # K] < 6().

In particular, we say that KEM is perfectly correct if § = 0.

Security: We review indistinguishability under chosen-plaintext attacks (IND-CPA), indistinguishability un-
der chosen-ciphertext attacks (IND-CCA) [RS92, BDPR98], pseudorandomness under chosen-ciphertext attacks
(PR-CCA), and its strong version (SPR-CCA) for KEM. We define PRCCA with simulator S as a generalization
of IND$-CCA-security in [vH04, Hop05]. We also review anonymity (ANON-CCA), robustness (WROB-CCA and
SROB-CCA), and collision-freeness (WCFR-CCA and SCFR-CCA) [GMP21].

We also define smoothness under chosen-ciphertext attacks (denoted by SMT-CCA) by following smoothness of
hash proof system [CS02]: Roughly speaking, we say a KEM scheme is SMT-CCA-secure if, given a random ci-
phertext c* chosen by the simulator, any efficient adversary cannot distinguish random key K;; and decapsulated
key Ki‘ = Dec(dk, ¢*).

Definition 2.9 (Security notions for KEM). Let KEM = (Gen, Enc, Dec) be a KEM scheme.
For any A and goal-atk € {ind-cca, pr-cca, smt-cca, anon-cca, srob-cca, scfr-cca}, we define its goal-atk advantage
against KEM as follows:

goal-atk _ goal-atk _ 11
AdVKEM[,S],ﬂ(K) = 2Pr[EXptKEM[,S],&ZI(K) =1]-1|,

goal-atk
KEM[,S
For any A and goal-atk € {srob-cca, scfr-cca, wrob-cca, wcfr-cca}, we define its goal-atk advantage against KEM

as follows:

where Expt ! ﬂ(K) is an experiment described in Figure 1.

Advi(;l/;?;(/() = Pr[ExptioEéﬂM?ﬁ (k) =1],

l-atk . . . R
where Expth(S\Aafﬂ (k) is an experiment described in Figure 1.

For GOAL-ATK € {IND-CCA, PR-CCA, SMT-CCA, ANON-CCA, SROB-CCA, SCFR-CCA, WROB-CCA, WCFR-CCA},
we say that KEM is GOAL-ATK-secure yfAdng(;ﬁ?f];],ﬂ(k) is negligible for any QPT adversary A. We say that

KEM is SPR-CCA-secure (or SSMT-CCA-secure) if it is PR-CCA-secure (or SMT-CCA-secure) and its simulator ig-
nores ek, respectively. We say that KEM is WANON-CCA-secure if it is ANON-CCA-secure where we modify the
input (eko, ek, c*, K*) into (eko, ek1, c*). We also say that KEM is GOAL-CPA-secure if it is GOAL-CCA-secure
even without the decapsulation oracle.

We additionally define e-sparseness.
Definition 2.10. Let S be a simulator for the PR-CCA security. We say that KEM is e-sparse if

Pr[(ek, dk) «— Gen(1¥), c* «— S(1¥, ek) : Dec(dk,c¢) #+ 1] < e.

Expt}?g;:’c; (x) DEcy (c) DEcy (id, ¢)

b« {0,1} ifc=a,return L if ¢ = q, return L

(ek, dk) «— Gen(1¥) K :=Dec(dk,c¢) K :=Dec(dkiq, c)

(c*,K}) — Enc(ek); return K return K

K «%K

b — ﬂDECC*(-) (ek, C*, KZ)

return boole(b = b’)

Expteny s, () EXpEed 4 () ExpH S (1)
b« {0,1} b« {0,1} b« {0,1}

(ek, dk) «— Gen(1¥)
(cg. Kg) < Enc(ek);
(c],K7) «— S1¥, ek) x K

b e ﬂDECcZ (.)(ek, C*b’ KZ)

return boole(b = b’)

wefr-cca
ExptiEm.a (&)

(ek, dk) «— Gen(1¥)
(c*,Kp) « S(1%, ek) x K
K} « Dec(dk,c*)

b — ﬂDECC*(‘)(ek, c*,KZ)
return boole(b = b’)

scfr-cca
Expticem.a (K)

(eko, dky) « Gen(1%)
(eky, dky) « Gen(1%)

b AP (ekg, eky)
(c,Kp) — Dec(ekp)

Ki_p, «— Dec(dki_p., c)
return boole(Ky = K7 # L)

srob-cca (K)

Exptiem, a

(eko, dk1) < Gen(1¥)
(eky, dki) < Gen(1%)

Cc — ﬂDECL("')(eko, eky)
Ko « Dec(dkg, c)

K1 « Dec(dky,)

return boole(Ky = K1 # 1)

wrob-cca (K)

EXPticem, A

(eko, dky) « Gen(1%)
(eky, dky) — Gen(1%)

¢ — AP () (eky, eky)
Ko « Dec(dk, ¢)

K Hm(dkl,c)

return boole(Ky # L AKy # 1)

(eko, dk1) < Gen(1")
(eky, dk1) — Gen(1")

b — AP (eko, eky)
(¢, Kp) < Dec(ekp,)
Ki_pp «— Dec(dki_p, c)
return boole(K{_p # 1)

(eko, dk1) — Gen(1¥)

(ek1, dk;) — Gen(1")

(c*,K*) « Enc(ek);

b — ﬂDECC*("')(ekO, eky,c*, K*)

return boole(b = b’)

Fig. 2. Games for KEM schemes

2.3 Data Encapsulation
The model for DEM schemes is summarized as follows:

Definition 2.11. A DEM scheme DEM consists of the following triple of polynomial-time algorithms (E, D) with key
space K and message space M:
- E(K, u) — d: an encapsulation algorithm that takes as input key K and data u and outputs ciphertext d.
- D(K,d) — m/L: a decapsulation algorithm that takes as input key K and ciphertext d and outputs data p or a
rejection symbol L ¢ M.

Definition 2.12 (Correctness). We say DEM = (E, D) has perfect correctness if for any K € K and any u € M,
we have
Pr[D(K,d) =p:d «— E(K,u)] =1.

We review indistinguishability under chosen-ciphertext attacks (IND-CCA), pseudorandomness under chosen-
ciphertext attacks (PR-CCA), and pseudorandomness under one-time chosen-ciphertext attacks (PR-orCCA). Ro-
bustness of DEM (FROB and XROB) are taken from Farshim, Orlandi, and Rosi [FOR17].

Definition 2.13 (Security notions for DEM). Let DEM = (E, D) be a DEM scheme whose key space is K. Foru € M,
let C,| be a ciphertext space defined by the length of message .
For any A and goal-atk € {ind-cca, pr-cca, pr-otcca}, we define its goal-atk advantage against DEM as follows:

goal-atk

Adyeealatk (k) == ZPr[EXptDEM,:}[(K) =1]-1|,

DEM, A

tgoalfatk
DEM, A
For any A and goal-atk € {frob, xrob}, we define its goal-atk advantage against DEM as follows:

where Exp (k) is an experiment described in Figure 1.

Advgoal—atk (K) = Pr[EXptgoal—atk (x) = 1],

DEM, A DEM, A
where ExpthOEaiff; (k) is an experiment described in Figure 1.
For GOAL-ATK € {IND-CCA, PR-CCA, PR-oTCCA, FROB, XROB}, we say that DEM is GOAL-ATK-secure ifAdngoEalt‘af; (k)

is negligible for any QPT adversary A.

2.4 Review of Grubbs, Maram, and Paterson [GMP21]

Grubbs et al. studied KEM’s anonymity and hybrid PKE’s anonymity and robustness, which is an extension of
Mohassel [Moh10]. We use KEM™ and KEM* to indicated KEM with explicit rejection and implicit rejection. For
KEM with eplicit rejection, they showed the following theorem which generalizes Mohassel’s theorem [Moh10]:

Theorem 2.1 ([GMP21, Theorem 1]). Let PKEp,, = Hyb[KEM+, DEM], a hybrid PKE scheme obtained by compos-
ing KEM and DEM. (See Figure 4.)
1. If KEM* is wANON-CPA-secure, IND-CCA -secure, WROB-CCA -secure, and §-correct and DEM is INT-CTXT-
secure, then PKEhy is ANON-CCA -secure.
2. IfKEM* is SROB-CCA-secure (and WROB-CCA-secure), then PKEpy is SROB-CCA-secure (and WROB-CCA-
secure), respectively.

Grubbs et al. [GMP21] then treat KEM with implicit rejection, which is used in all NIST PQC Round 3 KEM candi-
dates except HQC. Roughly speaking, they showed that the following two theorems on robustness and anonymity
of hybrid PKE from KEM with implicit rejection:

Theorem 2.2 (Robustness of PKE,, [GMP21, Theorem 2]). Let PKEy,, = Hyb[KEM*, DEM]. IFKEM* is SCFR-CCA-
secure (and WCFR-CCA-secure) and DEM is FROB-secure (and XROB-secure), then PKEp,, is SROB-CCA-secure (and
WROB-CCA-secure), respectively.

Theorem 2.3 (Anonymity of PKEy, using FO* [GMP21, Theorem 7). Let PKEp,, = Hyb[KEM*, DEM]. If PKE
is §-correct, and y-spreading, PKE; = T[PKE, G] is WCFR-CPA-secure, KEM#£ = FO’L[PKE, G, H] is ANON-CCA-
secure and IND-CCA-secure, DEM is INT-CTXT-secure, then PKEhy is ANON-CCA -secure.

EXptnicia (¥ Enc(u)
bty d — E(K.p)
K% return d
(o, 11, state) « AENC().DECL() (1K)

DEcy (d)

d* — E(K, up)

b’ AENC().DECgx () (d*, state)

if d = a, return L

D(K
by boole(|jzo] = |pu1]) # < DK d)
return boole(b = b’ A b;) return u
Expt%‘éﬁf‘;{(@ Enc2(u) DEec2(d)
K% d—EK,u) p<D(K,d)
we L L—Lu{d} ifu#+Landd¢L,setw=T
L0 return d return u
ﬂENCZ(’),DECZ(‘)(lK)
return w

pr-cca pr-otcca
ExptDEM’ﬂ(K) EXptDEM,ﬂ(K)
b« {0,1} b« {0,1}
K —%K K%
(u, state) «— AENC(),DEc.L () (1) (u, state) « A(1Y)
dy — E(K, p) dy — E(K, p)
di‘ <—U(C|’u|) dT ‘_U(C|y|)

. e (- DEecg+ (1) , 4

b ﬂENC()-Deca; ()(dz, state) b —A %" (dy, state)
return boole(b = b’) return boole(b = b’)
Exptggtl’v\’ﬂ(/() Expt’gg}\)/"ﬂ(/()
(d, ko, k1) A1) (10, ko, Ro, k1, d1) < A(1")
Ho < D(ko, d) do < E(ko, po; Ro)
p1 < D(k1,d) H1 < D(ky,d1)

b « boole(po # L Ay # 1)
by < boole(kg # k1)
return boole(b A by)

b « boole(po # L Auy # 1)
by < boole(kg # k1)

be < boole(dy =dy # 1)
return boole(b A by A b¢)

Fig. 3. Games for DEM schemes

10

They also showed that the following theorem:

Theorem 2.4 (Anonymity of KEM* using FOX [GMP21, Theorem 5]). If PKE is wANON-CPA-secure, OW-CPA-
secure, and -correct, and PKE; = T[PKE, G] is SCFR-CPA-secure, then a KEM scheme KEM = FO*[PKE, G, H] is
ANON-CCA-secure.

In their security proof, they need to simulate both decapsulation oracles without secrets when they reduce from
WANON-CPA-security. Jiang et al. [JZC*18] used the simulation trick that replaces H(u, ¢) with Hg (Enc(ek, 1))
if ¢ = Enc(ek, u) and HZI (m, c) else, which helps the simulation of the decapsulation oracle without secrets.
Grubbs et al. extended this trick to simulate two decapsulation oracles by replacing H(u, ¢) with Hg ; (Enc(ek;, u))
if ¢ = Enc(ek;, p) and Hé] (u, c) else. Notice that this extended simulation heavily depends on the fact that H takes
u and c. If the random oracle takes yu only, their trick fails the simulation.

3 Strong Pseudorandomness Implies Anonymity

We observe that strong pseudorandomness of PKE/KEM immediately implies anonymity of PKE/KEM, which may
be folklore. For completeness, we include the proof for PKE in subsection B.1.

Theorem 3.1. IfPKE is SPR-CCA-secure, then it is ANON-CCA-secure. If KEM is SPR-CCA-secure, then it is ANON-CCA-
secure.

Formally speaking, for any A against the ANON-CCA security of PKE/KEM, there exist A1 and A1 against the
SPR-CCA security of PKE/KEM such that

AdVERE S (k) < Advir e (k) + AdviR S (k),

PKE, A PKE,S, Ao PKE,S,An
anon-cca < spr-cca spr-cca
AdVKEM,ﬂ (k) < AdVKEM,S,&ZIIO (k) + AdVKEM,S,ﬂ“ ().

4 Strong Pseudorandomness of Hybrid PKE

The hybrid PKE PKEp, = (Genpy, Ency,, Dechy) constructed from KEM = (Gen, Enc, Dec) and DEM = (E, D) is
summarized as in Figure 4

Geny,y (1) Encpy (ek, u) Decy (dk, ct = (¢, d))

(ek, dk) «— Gen(1¥) (¢,K) « Enc(ek) K’ « Dec(dk,c)
return (ek, dk) d — E(K,u) if K’ = 1L then return L
return ct := (c¢,d) u’ «— D(K’,d)
if 4’ = 1 then return L

return '

Fig. 4. PKEyy = Hyb[KEM, DEM]

We show the following two theorems on SPR-CCA security of a hybrid PKE:

Theorem 4.1. Let PKE,y, = (Genyy, Encpy, Decyy) be a hybrid encryption scheme obtained by composing a KEM
scheme KEML = (Gen, Enc, Dec) and a DEM scheme DEM = (E, D) that share key space K. IF KEM* is SPR-CCA-
secure, 6-correct with negligible 6, and e-sparse and DEM is PR-oTCCA-secure and INT-CTXT-secure, then PKEy,
is SPR-CCA-secure.

Formally speaking, for any A against the SPR-CCA security of PKEy, there exist A3 against the SPR-CCA security
of KEM*, A3y against the SPR-oTCCA security of DEM, and Ays against the INT-CTXT security of DEM such that

spr-cca spr-cca spr-otcca int-ctxt
<
AdVPKEhy,Shy,ﬂ (k) < AdVKEML,S,ﬂzg (k) + AdVDEM,ﬂ34 (k) + AdvppyT g, () + € +0.

11

Table 2. Summary of Games for the Proof of Theorem 4.1

Game c¢*and K* d* Decryption oracle justification

Game, Enc(ek) E(K*, u*) rejectif (¢,d) = (c¢*,d*)

Game; Enc(ek) at the beginning E(K*, u*) rejectif (¢,d) = (¢*,d") conceptual change
Game; Enc(ek) at the beginning E(K*, u*) rejectif (c,d) = (c*,d*);use K* if c = ¢* §-correctness of KEM*

Game; S(1%) X U (K) at the beginning E(K*, u*) reject if (¢, d) = (c*, d*); use K* if ¢ = ¢* SPR-CCA security of KEM*
Gamey S(1°) x U (K) at the beginning U (Cj,*|) reject if (¢, d) = (¢*, d*); use K™ if ¢ = ¢* SPR-oTCCA security of DEM
Games S(1°) X U (K) at the beginning U (Cj,*|) rejectif (c,d) = (¢*,d");use L™ if ¢ = ¢* INT-CTXT security of DEM
Games S(1°) x U (K) at the beginning U (Cj,*|) rejectif (¢, d) = (c*, d") €-sparseness of KEM*
Game; S(1¥) x U (K) U(Cpx)) rejectif (¢, d) = (c*, d¥) conceptual change

Theorem 4.2. Let PKEp, = (Genyy, Encpy, Decyy) be a hybrid encryption scheme obtained by composing a KEM
scheme KEM* = (Gen, Enc, Dec) and a DEM scheme DEM = (E, D) that share key space K. If KEM is SPR-CCA-
secure, SSMT-CCA-secure, and §-correct with negligible § and DEM is PR-oTCCA-secure, then PKEP1y is SPR-CCA-
secure.

Formally speaking, for any A against the SPR-CCA security of PKEyy, there exist Ay3 against the SPR-CCA security
of KEM*, A3y against the SPR-oTCCA security of DEM, and Ays against the SSMT-CCA security of KEM* such
that

spr-cca spr-cca spr-otcca ssmt-cca
< .
AdVPKEhy,Shy,ﬂ(K) < AdVKEML,S,_‘}IB (k) + AdVDEM,ﬂ34 (k) + AdeEM’L,S,ng (k) +0

4.1 Proof of Theorem 4.1

Let us consider Game; for i = 0,...,6. We summarize the games in Table 3. Let S; denote the event that the
adversary outputs b’ = 1 in Game;.

Let S be the simulator for the SPR-CCA security of KEMZ. We define Shy (1%, [£*]) = S(1%) x U(C},#|) be the
simulator for the SPR-CCA security of PKEy, .

The security proofis similar to the security proof of the IND-CCA security of KEM/DEM [CS03] for Gamey, . . . , Gamey.
We need to take care of pseudorandom ciphertexts when moving from Game4 to Game7 and require the INT-CTXT
security of DEM and the e-sparseness of KEML.

Gamey: This is the original game Expt;plz;cash A (k) with b = 0. Given u*, the target ciphertext is computed as
y><hy>
follows: e
(c*,K*) « Enc(ek);d* « E(K*, u*); return ct* = (c*,d").
We have

Pr[So] =1- Pr[Expt:};(r;iShy’ﬂ(K) =1|b=0].

Game;: In this game, cj and K are generated before invoking A with ek. This change is just conceptual and we
have

Pr[So] = Pr[Sl].

Game,: In this game, the decryption oracle uses K* if ¢ = ¢* instead of K = Dec(dk, ¢*). Game; and Game;
differ if correctly generated ciphertext ¢* with K* is decapsulated into different K # K* or L, which violates the
correctness and occurs with probability at most 6. Hence, the difference of Game; and Game; is bounded by ¢
and we have

|Pr[S1] — Pr[S2]| < 6.

This is corresponding to the event BadKeyPair in [CS03].
Games: In this game, the challenger uses random (c¢*, K*) and uses K* in DEM. The challenge ciphertext is
generated as follows:

(c*,K*) « S(1*) x U(K);d* «— E(K*, u¥); return ct* = (c*, d").

The difference is bounded by SPR-CCA security of KEM+: There is an adversary A3 whose running time is
approximately the same as that of A satisfying

_ spr-cca
|Pr[S2] — Pr[S3]]| < AdeEM‘,S,ﬂzg(K)'

We omit the detail of Ays, since it is straightforward.

12

Gamey: In this game, the challenger uses random d*. The challenge ciphertext is generated as follows:
(", K") & S(1*) x K;d* « U(C|y+)); return ct” = (c*,d").

The difference is bounded by SPR-oTCCA security of DEM: There is an adversary A34 whose running time is
approximately the same as that of A satisfying

-0t
IPr[S3] = Pr[Sa]| < Advyp 3" (k).

We omit the detail of As4 since it is straightforward.

Games: We replace the decryption oracle. If given ct = (¢*, d), the decryption oracle always return L.

Let Forge be an event that the adversary queries d # d* decrypted into some u # L under K*. Gamey and
Games are equivalent until the event Forge occurs in Gamey. There is an adversary Ays whose running time is
approximately the same as that of A satisfying

[Pr[S4] — Pr[Ss]| < Pr[Forge] < Advglé',f,‘t,x;(%(l().

We omit the detail of Ays since it is straightforward.

Gameg: We replace the decryption oracle in Games with the original one.
Let D be an event that a randomly chosen ¢* « S(1%) is decapsulated into a key K # L. Games and Gameg are
equivalent unless the event D occurs. Since KEM* is e-sparse, we have

|Pr[S5] — Pr[Ss]| < Pr[D] < e.

Gamey;: We change the timing of the generation of (c¢*, K*) as the original. This change is just conceptual and
we have

Pr[S¢] = Pr[S7].
spr-cca

PKEhy,Shy,ﬂ(K) with b = 1, thus, we have

Notice that this is the original game Expt

Pr[S;] = Pr[Expt;*;j;ijhyﬂ(K) =1|b=1].

Summarizing the (in)equalities, we obtain the bound in the statement as follows:

AdySProeea yﬂ(K) = [Pr[So] - Pr[S7]| < Z|Pr[5i] —Pr[Si1]l

PKEpy,Sh
1
spr-cca spr-otcca int-ctxt
<d+ AdVKEMl,S,ﬂzg (k) + AdVDEM,ﬂ34(K) + AdVDEM,fL,s (k) +6+e.
O
4.2 Proof of Theorem 4.2
Let us consider Game; for i = 0,...,6. We summarize the games in Table 3. Let S; denote the event that the

adversary outputs b’ = 1 in Game;.

Let S be the simulator for the SPR-CCA security of KEM£. We define Shy (1%, |1*]) = S(1%) x U(C|y+|) be the
simulator for the SPR-CCA security of PKEy,.

The security proofis similar to the security proof of the IND-CCA security of KEM/DEM [CS03] for Gamey, . . . , Gamey.
We need to take care of pseudorandom ciphertexts when moving from Gamey4 to Games and require the SSMT-CCA se-
curity of KEM£.

Gamey: This is the original game Expt;plzéica Su. A (k) with b = 0. Given u*, the target ciphertext is computed as
y><hy>
follows: e
(c*,K*) « Enc(ek);d* « E(K*, u*); return ct* = (c*,d").
We have

Pr[So] =1- Pr[Expt:};(r;iShy’ﬂ(K) =1|b=0].

13

Table 3. Summary of Games for the Proof of Theorem 4.2

Game c¢*and K* d* Decryption oracle justification

Game, Enc(ek) E(K*, u*) rejectif (¢,d) = (c¢*,d*)

Game; Enc(ek) at the beginning E(K*, u*) rejectif (¢,d) = (c¢*,d*) conceptual change
Game; Enc(ek) at the beginning E(K*, u*) rejectif (c,d) = (¢*,d*);use K* if c = ¢* §-correctness of KEM*

Games S(1¥) x U (%) at the beginning E(K*, u*) rejectif (¢, d) = (c¢*, d*); use K* if ¢ = ¢* SPR-CCA security of KEM+
Gamey S(1°) x U (K) at the beginning U (Cj,*|) reject if (¢, d) = (¢*, d*); use K™ if ¢ = ¢* SPR-oTCCA security of DEM
Games S(1°) x U (K) at the beginning U (Cj,*|) rejectif (¢, d) = (c*, d*) SSMT-CCA security of KEM%
Gameg S(1%) x U (K) U(Cpx)) rejectif (¢, d) = (c*, d¥) conceptual change

Game; : In this game, cj and K are generated before invoking A with ek. This change is just conceptual and we
have

Pr[So] = Pr[Sl].

Game;y: In this game, the decryption oracle uses K* if ¢ = ¢* instead of K = Dec(dk, ¢*). Game; and Game;
differ if correctly generated ciphertext ¢* with K* is decapsulated into different K # K* or L, which violates the
correctness and occurs with probability at most §. Hence, the difference of Game; and Game; is bounded by ¢
and we have

|Pr[S1] — Pr[S2]| < 6.
This is corresponding to the event BadKeyPair in [CS03].

Games: In this game, the challenger uses random (c¢*, K*) and uses K* in DEM. The challenge ciphertext is
generated as follows:

(c*,K*) « S(1¥) x U(K);dt «— E(K*, u¥); return ct* = (c*, d").

The difference is bounded by SPR-CCA security of KEM+: There is an adversary A3 whose running time is
approximately the same as that of A satisfying

_ spr-cca
|Pr[S2] — Pr[S3]]| < AdeEM’L,S,ﬂB(K).

We omit the detail of Ays, since it is straightforward.

Gamey: In this game, the challenger uses random d*. The challenge ciphertext is generated as follows:
(", K*) « S(1") x K;d* < U(C|y+|); return ct* = (c*,d").

The difference is bounded by SPR-oTCCA security of DEM: There is an adversary A34 whose running time is
approximately the same as that of A satisfying

-ot
IPr[S3] = Pr[Sa]| < Advyp 3" (k).

We omit the detail of As4 since it is straightforward.
Games: We replace the decryption oracle. If given ct = (c*, d), the decryption oracle uses K = Dec(dk, c*)
instead of K*.

The difference is bounded by SSMT-CCA security of KEM+: There is an adversary Ays whose running time is
approximately the same as that of A satisfying

_ ssmt-cca
|[Pr[S4] — Pr[S5]| < AdVKEMi,S,ﬂ45(K)'

We omit the detail of Ays since it is straightforward.

14

Gameg: We change the timing of the generation of (¢*, K*). This change is just conceptual and we have

Pr[S5] = PI’[S(,] .
spr-cca

PKEhy,Shy,ﬂ(K) with b = 1, thus, we have

Notice that this is the original game Expt

spr-cca

Pr[S¢] = Pr[EXptPKEhy,Shy,ﬂ(K) =1|b=1].
Summarizing the (in)equalities, we obtain the bound in the statement as follows:

Advee s, a(6) = [Pr[So] = PrSe]| < 3 [PrlSi] = Pr[Si]|

4

spr-cca spr-otcca ssmt-cca
< .
<o+ AdeEW’S,y123 (k) + AdVDEM,ﬂM (k) + AdeEM’L’S’&2145 (k) +6

5 Properties of SXY

Let us review SXY [SXY18] as known as Uﬁ with explicit re-encryption check [HHK17].
Let PKE = (Gen, Enc, Dec) be a deterministic PKE scheme. Let M, C, and K be a plaintext, ciphertext, and key
space of PKE, respectively. Let H: M — K and H¢: {0, 1}Y x C — K be hash functions modeled by random

oracles. KEM = (Gen, Enc, Dec) = SXY[PKE, H, Hprf] is defined as in Figure 5.

Gen(1¥) Enc(ek) Dec(dk, ¢), where dk = (dk, ek,)
(ek,dk) « Gen(1*) p— Dy u’ — Dec(dk, c)

s — {0,1}¢ c:=Enc(ek,u) if u’ = L orc # Enc(ek,u’)

dk = (dk, ek, 5) K :=H(uw) then return K := H,¢(s, ¢)
return (ek, k) return (c, K) else return K := H(u’)

Fig. 5. KEM = SXY[PKE, H, Hy]

5.1 SPR-CCA Security

We first show KEM is strongly pseudorandom if the underlying PKE is strongly disjoint-simulatable.

Theorem 5.1. Let PKE = T[PKEg, G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable and 5-correct with negligible 6, then KEM = SXY[PKE, H, Hp¢] is
SPR-CCA-secure.

Formally speaking, for any A against the SPR-CCA security of KEM issuing at most qpgc queries to the decap-
sulation oracle and qg, qn, and qu,,, queries to G, H, and H ¢, respectively, there exist A3y against ciphertext-
indistinguishability of PKE such that

spr-cca ds-ind ..
AdVKpEM,S,ﬂ(K) < AvaT(E}DM,S,ﬂM(K) + Disjpyg, s (k) + 46

+16(¢G + gprc + 1)°6 +16(¢G + qu + 1)°6 +4(qm, ¢ + qDec) - 2
Theorem 5.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable and 5-correct with negligible 6, then KEM = SXY[PKE, H, H,,¢] is SPR-CCA-secure.
Formally speaking, for any A against the SPR-CCA security of KEM issuing at most qpgc queries to the decap-

sulation oracle and qg, qn, and GHp queries to G, H, and Hprf, respectively, there exist As4 against ciphertext-
indistinguishability of PKE such that

/2.

spr-cca -i .. —£/2
AdvEn s () < Advg;gjg)% 8.7, (K) + Disjpe, (k) +4(gh,¢ + gDrc) - 2 2 4 45.

We here prove Theorem 5.1 because the proof of Theorem 5.2 is a special case of Theorem 5.1.

15

Table 4. Summary of Games for the Proof of Theorem 5.1. We define g(u) = Enc(ek, 1) = Enco(ek, u; G(p)).

Decryption
Game H G c* K* |valid ¢ invalid ¢ |justification
Gamey H F(M,R) Enc(ek, u*) H(u") | H(u) Hpi(s, c)
Game; H F(M,R) Enc(ek, u*) H(u*) | H(u) Hg(c) |Lemma 2.2
Gamey ;| H Fgood(M, R) Enc(ek, u*) H(p*) | H(u) Hg(c) |Lemma 2.1 + correctness
Game; 2 [Hy 08 Fpooa(M, R) Enc(ek, p*) H(u™) | H(n) Hg(c) [if key is not bad

Game; |[Hg 08 Fgood(M, R) Enc(ek, p*) H(u") | H(u) Hg(c) [ifkey is not bad

Games [Hgy 08 Fgood (M, R) Enc(ek, u*) Hy(c*)[Hg(c) Hgy(c) |conceptual

Games 1 |Hgog F(M,R) Enc(ek,u*) Hy(c*)|Hy(c) Hg(c) |Lemma 2.1 + correctness
Gamey [Hgog F(M,R) S(1%) Hg(c*)|Hg(c) Hg(c) |DS-IND

Games [Hgog F(M,R) S(1%) U(K) |Hy(c) Hg(c) |statistical disjointness
Games 1 [Hg 08 Fgood(M, R) S(1¥) U(K) |Hg(c) Hg(c) |Lemma 2.1+ correctness
Games [Hg 08 Fgood (M, R) S(1¥) U(K) |H(u) Hg(c) |conceptual

Gameg.1 [Hy 08 Fpooa(M,R) S(19) U(K) | H(u) Hg(c) |if key is not bad
Gamesz| H = Fgood(M,R) S(1¥) U(K) | H(u) Hg(c) |if key is not bad

Game; H F(M, R) S(1%) U(K) | H(u) Hg(c) |Lemma 2.1+ correctness
Gameg H F(M, R) S(1%) U(K) | H() Hys(s, ¢)|Lemma 2.2

Proof of Theorem 5.1: We use the game-hopping proof. We consider Game; fori = 0, ..., 8. We summarize the
games in Table 4. Let S; denote the event that the adversary outputs b’ = 1 in game Game;. We extend the security
proof for SXY in [LW21], which extends the security proof for SXY [SXY18, XY19] to the case that the underlying
PKE is derandomized by KC o T.

spr-cca

Gamey: This game is the original game EXPtKEM,:ﬂ

(k) with b = 0. Thus, we have

Pr[So] =1- Pr[Exptipg/_\Xf;(K) =1|b=0].
Game;: This game is the same as Gamey except that H,¢(s, ¢) in the decapsulation oracle is replace with Hg (¢)
where H; : C — %K is another random oracle. We remark that A is not given direct access to Hy.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

[Pr[So] - Pr[$1]] < 2(gn,; + gpec) - 2“2,

Definition of Fgood(M, R): We next consider a set of good random oracles G. This definition follows [HHK17,

JzC*18, HKSU20, LW21].

good

For (ek, dk) € Geng() and 1 € M, we define a set of good randomness R = {r € R : Decy(dk, Enco(ek, u;r)) =

ek, dk,u
#}, which could be empty. Let Fyo0d(M,R) be a set of functions G: M — R satisfying G(n) € REISO;}(u
for all u € M. Define 0k gk,; = |R \ Rfl(:odi #|/ |R], which is the fraction of the bad randomness. Define

6ek,dk = max, e M 6ek,dk,;1- We note that § = EXp(ek,dk)HGeng(l’() [6ek,dk]~

Gamey 1 This game is the same as Game; except that the random oracle G is chosen from Feood (M, R) instead
of F(M,R).

If we fix (ek, dk), then we have |Pr[S | (ek, dk)] — Pr[S1.1 | (ek, dk)]| < 8(gG + gDrc + 1)26ek,dk- (See [HKSU20,
Theorem 3.2] and [LW21, Claim 1] for the analysis using Lemma 2.1.) Taking the average over (ek,dk) «
Geng(1%), we obtain

Pr[S1] = Pr[S1.1]] < 8(4G + aprc + D’EXP ek, dk) —Gen, (1%) [Sek.dk] = 8(dG + gprc +1)%6.

Definition of Bad: We next define a bad event for key pairs. This definition follows [LW21]. Let us define an
event Bad that there exists 4 € M such that any r € R is bad randomness, that is,

Bad := boole (Hu eM: szf);}(’” = 0) ,

where randomness is taken over (ek, dk) « Geng(1%).
We have Pr[Bad] < ¢ ([LW21, Claim 3]). According to Lemma A.1, for any p, we also have

|Pr(S1.1] — p| < |Pr[S1.1 A —=Bad] — p| + 6.

16

Game; »: This game is the same as Game; 1 except that the random oracle H(-) is simulated by H’q (Enc(ek, -))
where H 21 : C — K is yet another random oracle. We remark that the decapsulation oracle and the generation of
K* also use Hg (Enc(ek, -)) as H(-).
If —Bad occurs, then PKE = T[PKE, G] is perfectly correct from the definition of G and g(u) := Enc(ek, u; G(u))
is injective. Thus, Hél og: M — K is a random function and the two games Game; 1 and Gamej 3 are equivalent
if =Bad occurs. We have

Pr[S1.1 A —=Bad] = Pr[S1.2 A —Bad].

See [XY19, Lemma 4.3] and [LW21, Claim 4] for the detail.

Game;: This game is the same as Game 3 except that the random oracle H is simulated by H, o g instead of
Hg o g.

If -Bad occurs, then PKE = T[PKE, G] is perfectly correct from the definition of G. Hence, the two games Gamej 2
and Game; are equivalent, because a value of H(’I (¢) for an invalid c is not used in Gamej : that is, we have

Pr[S1.2 A =Bad] = Pr[S2 A —=Bad].

See the proof of [XY19, Lemma 4.4] and [LW21, Claim 5] for the detail.

Gamejs: This game is the same as Game; except that K* is set as Hy (c*) and the decapsulation oracle always
returns H ’q (c) as long as ¢ # ¢*. This decapsulation oracle will denoted by Dec’.

If —Bad occurs, then PKE = T[PKE, G] is perfectly correct from the definition of G. Thus, the two games Game;
and Games are equivalent and we have

Pr[S, A =Bad] = Pr[S3 A —Bad].

See the proof of [XY19, Lemma 4.5] for the detail.
According to Lemma A.1, for any p, we have

|[Pr[S3 A =Bad] — p| < |Pr[S3] — p| + 6.

Games 1: This game is the same as Games except that G is chosen from (M, R) instead of Fgo04(M, R). We
have

|Pr[S3] = Pr[S3.1]] < 8(4G +qn + 1)EXP (e, k) —Geny (1) [Ock.ak] = 8(4G +qn +1)%6.
(We note that H and the challenge ciphertext also query to G internally.)

Gamey: This game is the same as Games except that ¢* is generated by S(1%).
The difference between two games Games and Gamey is bounded by the advantage of ciphertext indistinguisha-
bility in disjoint simulatability as in [XY19, Lemma 4.7]. We have
ds-ind
[Pr(S3] = Pr[S4]| < AdVPKE,DM,S,ﬂ34 ().
Games: This game is the same as Gamey except that K* « K instead of K* < Hg(c").
In Gamey, if ¢* < S(1%) is not in Enc(ek, M), then the adversary has no information about K* = H,(c*) and

thus, K* looks uniformly at random. Hence, the difference between two games Game4 and Games is bounded by
the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8]. We have

[Pr[S4] — Pr[Ss]| < Disjpgg.s(«)-

Games ;: This game is the same as Games except that G is chosen from Fyo04(M, R) instead of F (M, R). We
have

IPr[S5] = Pr[Ss.1]1 < 8(4G + GH)*EXP (e, k) —Geny (14) [Ock k] < 8(4G +gqn +1)?6.

(We note that H and the challenge ciphertext also query to G internally.)
According to Lemma A.1, for any p, we have

|Pr[S5.1 A —=Bad] — p| < |Pr[S5.1] — pl + 6.

17

Gameg: This game is the same as Games except that the decapsulation oracle is reset as DEc. Similar to the case
for Gamey and Games, if a key pair is accurate, the two games Games and Gameg are equivalent as in the proof
of [XY19, Lemma 4.5]. We have

Pr[S5.1 A =Bad] = Pr[S¢ A —Bad].

Gameg.1: This game is the same as Gameg except that the random oracle H is simulated by H:Z o g where
H(’I: C — K is yet another random oracle as in Gamej 3. If a key pair is not bad, the two games Gameg and
Gameg 1 are equivalent as in the proof of [XY19, Lemma 4.4]. We have

Pr[S¢ A =Bad] = Pr[S¢.1 A —Bad].

Gameg »: This game is the same as Gameg_ 1 except that the random oracle H(-) is set as the original. If a key pair
is not bad, the two games Gameg 1 and Gameg 2 are equivalent as in the proof of [XY19, Lemma 4.4]. We have

Pr[S¢.1 A =Bad] = Pr[Sg.2 A —Bad].
We have, for any p,
[Pr[S6.2 A =Bad] — p| < [Pr[Se.2] — p| +6

from Lemma A.1.

Gamey: This game is the same as Gameg 2 except that the random oracle G is chosen from F (M, R) instead of
%ood (M, R)- We have,

[Pr[S6.2] — Pr[S7]] < 8(qG + qprc)*0. < 8(¢G + gpec + 1)%6.

Gameg: This game is the same as Gamey except that Hg (¢) in the decapsulation is replaced by Hp(s, ¢).
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

Pr(S7] = e[S < 2+ aosc) 2771

spr-cca

KEM’ﬂ(K) with b = 1. Thus, we have

We note that This game is the original game Expt

Pr[Ss] = Pr[Expt;PErljf;(K) =1|b=1].

Summarizing those (in)equalities, we obtain the following bound:

AdviGe 1 (1) = [Pr[So] — Pr[Ss]|

< Ad"gskisrj%m,s,ﬂu(’() + Disjpkg, s (k)
+46 +16(gG + qppc + 1)20 +16(qG + qn + 1)%5 + 4(qHy + qDec) - 2t

Proof of Theorem 5.2: The proof of Theorem 5.2 is a simplified version of that of Theorem 5.1, since it does not
require to consider G. Ignoring the transition between real G with good G, we obtain the bound as follows:

Advin s (K) = [Pr[So] — Pr[Ss]|

< 4(qH,¢ + 9Drc) - 272 445+ Ad"gsliléf%%ﬂ%s(“) + Disjpgg, s (k).

5.2 SSMT-CCA Security

Theorem 5.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = SXY[PKE, H, Hp,¢] is SSMT-CCA-secure.

Formally speaking, for any adversary A against SSMT-CCA security of KEM issuing at most gy, and qpxc queries
to Hyf and DEC, we have

Advssmt—cca

KEM,S,IR(K) < 2DiSJ‘PKE,S(K) + 4(qu,f +¢qDrc) - 27¢/2,

We note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

18

Table 5. Summary of Games for the Proof of Theorem 5.3: ‘S(1%) \ Enc(ek, M)’ implies that the challenger generates ¢* «— S(1%)
and returns L if ¢* € Enc(ek, M).

Decryption
Game |H c* K* valid ¢ invalid ¢ |justification
Gameg |H S(1%) random | H(p) Hyre(s, c)
Game; |H S(1%) \ Enc(ek, M) random | H(u) Hp(s, c) |statistical disjointness
Gamez |H S(1¢) \ Enc(ek, M) random |H(u) Hg(c) |Lemma 2.2
Gamez |H S(1¢) \ Enc(ek, M) Hg(c*) |H(u) Hg(c) [Hg(c™) ishidden
Gamey |H S(1%) \ Enc(ek, M) Hpi(s,c*) | H(pt) Hpe(s, ¢) |[Lemma 2.2
Games |H S(1%) \ Enc(ek, M) Dec(dk, c*)| H(u) Hprf (s, ¢) [re-encryption check
Gameg |H S(1%) Dec(dk, c*)| H(u) Hprf (s, ¢) |statistical disjointness

Proof Sketch: We use the game-hopping proof. We consider Game; fori = 0, ..., 6. We summarize the games in
Table 5. Let S; denote the event that the adversary outputs b’ = 1 in game Game;.

ssmt-cca
KEM,S, A

(c*,Kp) « S(1¥) x K.

Gamey: This game is the original game Expt (k) with b = 0. The challenge is generated as

We have

Pr[So] =1- Pr[ExptiSEn/\f_’ngﬂ(K) =1|b=0].
Game;: In this game, the ciphertext is set as L if ¢* is in Enc(ek, M). The difference between two games Gameg
and Game; is bounded by statistical disjointness.

|PI'[S0] —PI‘[Sl]| < DisjPKE,S(K)’

Game;: This game is the same as Game; except that H,¢(s, ¢) in the decapsulation oracle is replace with Hg (¢)
where H; : C — %K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

[Pr[$1] - Pr[S2]| < 2(qn,; + gpec) - 2“2,

Gamejs: This game is the same as Game; except that K* := Hg (c*) instead of chosen random. Since ¢* is always
outside of Enc(ek, M), A cannot obtain any information about H, (c*). Hence, the two games Game and Games
are equivalent and we have

Pr[S2] = Pr[S3].

Gamey: This game is the same as Games except that H, (+) is replaced by Hprr (s,). As in [XY19, Lemmas 4.1],
from Lemma 2.2 we have the bound

|Pr[S3] - PI[S4]| < Z(qurf + qDEC) . 2—5/2.

Games: This game is the same as Gamey except that K* := Dec(dk, ¢*) instead of Hprf (5, ¢*). Recall that ¢*
is always in outside of Enc(ek, M). Thus, we always have Dec(c*) = L or Enc(ek, Dec(c*)) # ¢* and, thus,
K* = Hp(s, c*). Hence, the two games are equivalent. We have

PI'[S4] = PI'[S5] .

Gameg: We finally replace how to compute ¢*. In this game, the ciphertext is chosen by S(1¥) as in Game,.
The difference between two games Games and Gameg is bounded by statistical disjointness.

[Pr[Ss] — Pr[Se]| < Disjpkg,s(x)-

i i 1o ssmt-cca 3 —
Moreover, this game Gamey is the original game EXptKEM,S,.ﬂ(K) with b = 1.

Pr[S¢] = Pr[Expt;SEn,jAﬁgﬁﬂ(K) =1|b=1].

Summarizing the (in)equalities, we obtain Theorem 5.3:

AdeKSEnAj‘fgjﬂ(K) = |Pr[So] — Pr[Se]|

< 2Disjpy, 5 (k) +4(qH,, + qpec) - 2772

19

5.3 SCFR-CCA Security

Theorem 5.4. IfPKE is XCFR-secure or SCFR-CCA-secure, then KEM = SXY[PKE, H, Hprf] is SCFR-CCA-secure in
the quantum random oracle model.

Proof. Suppose that an adversary outputs a ciphertext ¢ which is decapsulated into K # L by both dko and dki,
that is, Dec(dko, ¢) = Dec(dky,c) # L. Let us define u; = Dec(dk;,c) for i € {0,1}. We also define y; := yj if
c= Enc(eki,ul’.) and L otherwise.

We have five cases defined as follows:

1. Case 1 (up = p1 # L): This violates XCFR-security of SCFR-CCA-security of the underlying PKE and it is
easy to make a reduction.

2. Case 2 (L # po # p1 # L): In this case, the decapsulation algorithm outputs K = H(uo) = H(u1). Thus, we
succeed to find a collision for H, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 3 (uo = L and p1 # L1): In this case, the decapsulation algorithm outputs K = Hp¢(s0, ¢) = H(p1) and
we find a claw ((so, ¢), 1) of Hp,f and H. The probability that we find such claw is negligible for any QPT
adversary (Lemma 2.4).

4. Case 4 (uo # L and py = L1): In this case, the decapsulation algorithm outputs K = H(uo) = Hp¢(s1,¢) and
In this case, we find a claw (uo, (s1,¢)) of H and Hp,. The probability that we find such claw is negligible
for any QPT adversary (Lemma 2.4).

5. Case 5 (The other cases): In this case, we find a collision ((so, ¢), (s1, ¢)) of Hf, which is indeed collision if
50 # 51 which occurs with probability at lease 1—1/2¢. The probability that we find such collision is negligible
for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases.]

6 NTRU

We briefly review NTRU [CDH?*20] and discuss its security properties.

6.1 Review of NTRU

Preliminaries: @, denotes the polynomial x — 1 and @,, denotes (x" —1)/(x = 1) = x" 1 +x" 2 + ... + 1. We
have x" — 1 = ®1®,. R, R/3, and R/q denotes Z[x]/(P1Py), Z[x]/(3, P1Pn), and Z[x]/ (g, D1P;), respectively.
S, 8/3, and S/q denotes Z[x]/(Pn), Z[x]/ (3, Ppn), and Z[x]/(q, Pp), respectively.

We say a polynomial ternary if its coefficients are in {-1,0,+1}. S3(a) returns a canonical S/3-representative
of z € Z[x], that is, b € Z[x] of degree at most n — 2 with ternary coefficients in {-1,0,+1} such thata = b
(mod (3,®,)).Let 7 be a set of non-zero ternary polynomials of degree at most n—2, thatis, 7 = {a = er.l:_oz aixt
a#0Aa; € {-1,0,+1}}. We say a ternary polynomial v = ¥; v;x has the non-negative correlation property if
D Viviel = 0. T4 is a set of non-zero ternary polynomials of degree at most n — 2 with non-negative correlation
property. 7 (d) is a set of non-zero balanced ternary polynomials of degree at most n — 2 with Hamming weight
d, that is, {a €T :{a;:a; =1} ={a; :a; = -1} = d/2}.

The following lemma is due to Schanck [Sch20]. (See, e.g., [CDH?'20] for this design choice.)

Lemma 6.1. Suppose that (n,q) = (509, 2048), (677, 2048), (821, 4096), and (701,8192). If r € T, then r has an
inverse in S/q.

Proof. ®,, isirreducible over F if and only if n is prime and 2 is primitive element in F}} (See e.g., Cohen et al. [CFA05]).
The conditions are satisfied by all n = 509, 677, 701, and 821. Hence, Z[x]/(2, ®;) is a finite field and every poly-
nomial r in 7 has an inverse in Z[x]/(2, ®,). Such r is also invertible in S/q = Z[x]/(g,) with ¢ = 2% for
some k. One can find it using the Newton method/the Hensel lifting. O

NTRU: NTRU has two types of parameter sets, NTRU-HPS and NTRU-HRSS. The underlying DPKE of NTRU,
which we call NTRU-DPKE, is define as Figure 6. It involves four subsets Lf s Lg, Ly, L of R.Ituses Lift(m): Ly, —
R.
— NTRU-HPS: The parameters are defined as follows: Ly =7, Lo =T (q/8~-2), Ly =T, L =T (q/8 - 2),
and Lift(m) = m.

20

Gen(1%) Enc(h, (r,m) € Ly X L) Dec((f, fp, hg),c)

(f,g) « Sample_fg() u’ — Lift(m) if ¢ # 0 mod (g, ®1) then return (0,0, 1)
fq < (1/f) mod (¢, Pn) ¢ e (h-r+p’)mod (q,019,) a « (c- f) mod (g, P1Pn)

h« (3-g-fy) mod (q,P1P,) returnc m « (a- fp) mod (3,®;)

hgq < (1/h) mod (g, ®y) ' Lift(m)

fp = (1/F) mod (3, @) r e ((c— ') - hg) mod (q.®y)

ek == h,dk = (f, fp,hq) if (r,m) € L, X L,, then return (r, m,0)
return (ek, dk) else return (0,0, 1)

Fig. 6. NTRU-DPKE

- NTRU-HRSS: The parameters are defined as follows: Ly = 73, Lg = {P1-v [v € T2}, L =T, L =T,
and Lift(m) = @1 - S3(m/P1).

It uses Sample_fg() to sample f and g from Ly and L. NTRU also uses Sample_rm() to sample r and m from
Ly and Ly,.
We note that 4 = 0 (mod (g, ®1)), h is invertible in S/q, and hr + m = 0 (mod (g, ®P1)). (See [CDH' 20, Sec-
tion2.3].)
NTRU then uses SXY for IND-CCA-secure KEM as in Figure 7, where H = SHA3-256 and H,,f = SHA3-256. Since
the lengths of their input space differ, we can treat them as different random oracles.

Gen(1%) Enc(ek = h) Dec(dk = (dk,), ¢)
(ek, dk) — Gen(1¥) coins « {0, 1}?°° (r, m, fail) := Dec(dk, c)
s« {0,1)25 (r,m) « Sample_rm(coins) k1 :=H(r,m)
dk := (dk, s) ¢ = Enc(h, (r,m)) ka == Hp(s, ¢)
return (ek, d_k) K =H(r,m) if fail = 0 then return k1
return (¢, K) else return &
Fig. 7. NTRU

Rigidity: NTRU uses SXY, while its KEM version seems lack of re-encryption check. We note that NTRU implicitly
checks hr + Lift(m) = ¢ by checking if (r,m) € L, x L, in the DPKE. See [CDH*20] for the details.

6.2 NTRU is Strongly Pseudorandom, Smooth, and Collision-Free

We have known that the generalized NTRU PKE is pseudorandom [SS10] and disjointly simulatable [SXY18] if the
decisional small polynomial ratio (DSPR) assumption [LTV12] and the polynomial learning with errors (PLWE)
assumption [SSTX09, LPR10] hold. See [SXY18, Section 3.3 of the ePrint version.].

Let us adapt their arguments to NTRU. We modify the DSPR and the PLWE assumptions as follows:

Definition 6.1. Fix the parameter set. Define R’ := {c € R/q : ¢ = 0 (mod (q,®1))}, which is efficiently sam-
pleable.
— The modified DSPR assumption: It is hard to distinguish h :=3 - g - f, (mod g, ®1Dy,) fromu, where (f,g) <
Sample_fg() andu <« R’.
— The modified PLWE assumption: It is hard to distinguish (h, hr + Lift(m) (mod g, ®19;)) from (h,c) with
h,c « R’ and (r,m) < Sample_rm().

Lemma 6.2. Suppose that the modified DSPR and PLWE assumptions hold. Then, NTRU-DPKE is strongly disjoint-
simulatable with a simulator S that outputs a random polynomial chosen from R’.

21

Proof (Proof Sketch). The proof for ciphertext-indistinguishability is obtained by modifying the proof in [SXY18],
Statistical disjointness follows from the fact that |R’| = ¢! > 32" = |T X T| 2 | Lin X Ly| = [Enc(h, L X L.

Combining this strong disjoint-simulatability with previous theorems, we obtain the following theorem.

Theorem 6.1. Suppose that the modified DSPR and PLWE assumptions hold. Then, NTRU is SPR-CCA-secure and
SSMT-CCA-secure in the QROM.

Theorem 6.2. NTRU is SCFR-CCA-secure in the QROM.

Proof. We first show XCFR security of NTRU-DPKE.

Suppose that the adversary outputs ¢ on input eky = ho, dko, ek1 = h1, dki. Let us define uo = Dec(dko, ¢) and
1 = Dec(dki, ¢). Let po = 1 = (r,m,0) € Ly X L, x{0, 1}. Otherwise, that is, if ¢1o = p1 = (0, 0, 1), the output
is treated as L and the adversary loses.

We have hg - r + Lift(m) = hy - r + Lift(m) (mod g, ®19P,), which implies r(ho — k1) = 0 (mod (g, Pp)). On the
other hand, according to Lemma 6.1, forany r € £, = 7, we haver # 0 € S/q In addition, we have g = hy € S/q
with negligible probability. Thus, the probability that the adversary wins is negligible.

Applying Theorem 5.4, we conclude that NTRU is SCFR-CCA-secure in the QROM. 0

6.3 Summary

We show that NTRU-DPKE is strongly disjoint-simulatable under the modified DSPR and PLWE assumptions and
it is XCFR-secure (subsection 6.2). Those imply that NTRU is SPR-CCA-secure, SSMT-CCA-secure, and SCFR-CCA-
secure in the QROM. Thus, NTRU is ANON-CCA-secure (Theorem 3.1) and NTRU leads to ANON-CCA-secure,
SROB-CCA-secure hybrid PKE (Theorem 4.2, Theorem 3.1, and Theorem 2.2).

References

AAB'20. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Technical re-
port, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 3, 31, 34, 59, 60

ABB'20. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-Christophe Deneuville,
Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Per-
sichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, and Santosh Ghosh.
BIKE. Technical report, National Institute of Standards and Technology, 2020. available at https:
//csre.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 3, 29, 34, 55, 56, 57

ABC*05. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 205-222. Springer, Heidelberg, August 2005. 1

ABC*20. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun
Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo
Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Mar-
tin Tomlinson, and Wen Wang. Classic McEliece. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions. 1, 3, 31, 33, 34, 52

Abel0. Masayuki Abe, editor. ASIACRYPT 2010, volume 6477 of LNCS. Springer, Heidelberg, December 2010.
24,25

ABN10. Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio, editor,
TCC 2010, volume 5978 of LNCS, pages 480-497. Springer, Heidelberg, February 2010. 1

BBC*20. Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok Chuengsatiansup, Tanja Lange,
Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine van Vredendaal, and Bo-Yin Yang. NTRU
Prime. Technical report, National Institute of Standards and Technology, 2020. available at https:
//csre.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 3, 31, 34, 62, 63

22

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

BBDPO1.

BCGNPO09.

BDF*11.

BDPR98.

BHH*19.

CDH™20.

CFAO05.
CLo1.

CS02.

CS03.

DKR*20.

FNP14.

FO99.

FO13.

FOR17.

FSXY13.

FSXY15.

GMP21.

HHK17.

HKSU20.

Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key
encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566-582. Springer,
Heidelberg, December 2001. 1, 5

Colin Boyd, Yvonne Cliff, Juan Manuel Gonzalez Nieto, and Kenneth G. Paterson. One-round key
exchange in the standard model. Int. J. Appl. Cryptogr., 1(3):181-199, 2009. 1

Dan Boneh, Ozgiir Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASTACRYPT 2011,
volume 7073 of LNCS, pages 41-69. Springer, Heidelberg, December 2011. 4

Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of
security for public-key encryption schemes. In Hugo Krawczyk, editor, CRYPTO 98, volume 1462 of
LNCS, pages 26-45. Springer, Heidelberg, August 1998. 5, 7

Nina Bindel, Mike Hamburg, Kathrin Hévelmanns, Andreas Hiilsing, and Edoardo Persichetti. Tighter
proofs of CCA security in the quantum random oracle model. In Dennis Hotheinz and Alon Rosen,
editors, TCC 2019, Part II, volume 11892 of LNCS, pages 61-90. Springer, Heidelberg, December 2019.
28, 29, 31, 35, 44, 45, 48, 49

Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M. Schanck,
Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Yamakawa, and Keita Xa-
gawa. NTRU. Technical report, National Institute of Standards and Technology, 2020. available at
https://csre.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 1, 3, 20, 21, 31, 34
Handbook of Elliptic and Hyperelliptic Curve Cryptography. 2005. 20

Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 93-118. Springer, Heidelberg, May 2001. 1

Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 45-64. Springer, Heidelberg, April / May 2002. 2, 7

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167-226, 2003.
12,13, 14

Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, Jose
Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea Basso. SABER. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 1, 2, 3, 30, 34, 55

Nelly Fazio, Antonio Nicolosi, and Irippuge Milinda Perera. Broadcast steganography. In Josh Benaloh,
editor, CT-RSA 2014, volume 8366 of LNCS, pages 64—-84. Springer, Heidelberg, February 2014. 65
Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 537-554. Springer,
Heidelberg, August 1999. 1

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Journal of Cryptology, 26(1):80-101, January 2013. 1

Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric primitives under incorrect
usage of keys. IACR Trans. Symm. Cryptol., 2017(1):449-473, 2017. 9

Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In Kefei Chen,
Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13, pages 83-94. ACM
Press, May 2013. 1

Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure authen-
ticated key exchange from factoring, codes, and lattices. Des. Codes Cryptogr., 76(3):469-504, 2015.
1

Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum public key
encryption. Cryptology ePrint Archive, Report 2021/708, 2021. https://eprint.iacr.org/2021/708. 1, 2,
3,7,9,11, 30, 52, 53, 54, 55, 56, 59, 62, 63

Dennis Hotheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 341-371. Springer, Heidelberg, November 2017. 2, 4, 15, 16, 27, 28, 31, 54

Kathrin Hévelmanns, Eike Kiltz, Sven Schége, and Dominique Unruh. Generic authenticated key ex-
change in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,

23

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2021/708

Hop05.
Hos20.
1Z389.

JAC*20.

JD11.

JzCc*18.

JZM19.

KSS*20.

LPR10.

LTVi2.

Lw21.

Moh10.

MTSB13.

NAB*20.

RS92.

SAB*20.

Sak00.

Sch20.

and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 389-422. Springer, Heidel-
berg, May 2020. 3, 5, 16

Nicholas Hopper. On steganographic chosen covertext security. In Luis Caires, Giuseppe F. Italiano,
Luis Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of LNCS, pages
311-323. Springer, Heidelberg, July 2005. 5, 7

Akinori Hosoyamada. personal communication, June 2020. 4

Russell Impagliazzo and David Zuckerman. How to recycle random bits. In 30th FOCS, pages 248-253.
IEEE Computer Society Press, October / November 1989. 65

David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir
Soukharev, David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Tech-
nical report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions. 3, 29, 34, 64

David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th International Workshop,
PQCrypto 2011, pages 19-34. Springer, Heidelberg, November / December 2011. 64, 65

Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key encapsu-
lation mechanism in the quantum random oracle model, revisited. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96—125. Springer, Heidelberg,
August 2018. 4, 11, 16, 27, 31, 50

Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Key encapsulation mechanism with explicit rejection in
the quantum random oracle model. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 618—-645. Springer, Heidelberg, April 2019. 2, 28, 31, 41, 43

Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-rewind-
measure: Tighter quantum random oracle model proofs for one-way to hiding and CCA security. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 703~
728. Springer, Heidelberg, May 2020. 29, 31

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1-23. Springer, Heidel-
berg, May / June 2010. 21

Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 1219-1234. ACM Press, May 2012. 21

Xu Liu and Mingqgiang Wang. QCCA-secure generic key encapsulation mechanism with tighter se-
curity in the quantum random oracle model. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of
LNCS, pages 3-26. Springer, Heidelberg, May 2021. 5, 16, 17, 37, 41

Payman Mohassel. A closer look at anonymity and robustness in encryption schemes. In Abe [Abe10],
pages 501-518. 1, 5,9

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto. MDPC-McEliece:
New McEliece variants from moderate density parity-check codes. In Proceedings of the 2013 IEEE
International Symposium on Information Theory (ISIT), Istanbul, Turkey, July 7-12, 2013, pages 2069—
2073. IEEE, 2013. 55

Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick
Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan, and Douglas
Stebila. FrodoKEM. Technical report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions. 3, 30, 34, 58
Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433-444.
Springer, Heidelberg, August 1992. 5, 7

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Gregor Seiler, and Damien Stehlée. CRYSTALS-KYBER. Technical re-
port, National Institute of Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 1, 3, 30, 34, 54

Kazue Sako. An auction protocol which hides bids of losers. In Hideki Imai and Yuliang Zheng, editors,
PKC 2000, volume 1751 of LNCS, pages 422-432. Springer, Heidelberg, January 2000. 1

John Schanck. personal communication, June 2020. 20

24

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

SS10.

SSTX09.

SSW20.

SXY18.

TU16.

Unri14.

vHO04.

XY19.

Zhals.

Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Abe [Abe10], pages 377—
394. 21

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption
based on ideal lattices. In Mitsuru Matsui, editor, ASTACRYPT 2009, volume 5912 of LNCS, pages 617—
635. Springer, Heidelberg, December 2009. 21

Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake signa-
tures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages
1461-1480. ACM Press, November 2020. 1

Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mech-
anism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 520-551. Springer, Heidelberg, April / May
2018. 2, 4, 5, 15, 16, 21, 22, 27, 28, 31, 57

Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of
LNCS, pages 192-216. Springer, Heidelberg, October / November 2016. 31, 54

Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 129-146. Springer, Heidelberg, May
2014. 27

Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323-341. Springer, Heidelberg, May
2004. 5,7

Keita Xagawa and Takashi Yamakawa. (Tightly) QCCA-secure key-encapsulation mechanism in the
quantum random oracle model. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryp-
tography - 10th International Conference, POCrypto 2019, pages 249-268. Springer, Heidelberg, 2019. 5,
16, 17, 18, 19, 36, 37, 38, 39, 40, 41, 46, 50

Mark Zhandry. A note on the quantum collision and set equality problems. Quantum Info. Comput.,
15(7-8):557-567, May 2015. 4

25

Table of Contents

Anonymity of NISTPQC Round-3 KEMSttt i
Keita Xagawa

INrOAUCHION . ..ttt ettt ettt ettt e
Preliminarieso e
Strong Pseudorandomness Implies Anonymityt
Strong Pseudorandomness of Hybrid PKE i
Properties Of SXY ... e
NTRU ..o
Missing Lemmast
MISSINE PrOOfS ..ottt et e
Variants of the Fujisaki-Okamoto Transformationc..oiiiiiiiiiiiiiiniiinen..
Transformation in NIST PQC KEM Candidatesouuuteiiie it it iiieeannnns
ProP eIty Of T .ottt et e e
Property of Uk ..o
Property of HU L L. o e
Property of HUL L. o e
Property of H Ui ...
Property of HUA P
Property of HUL Lo
Classic MCELECEttt e e ettt e e e e e e

HOC oo

HOZOTWOZZOAT T D OTHMEHOOE > O O R wN =

LK o

A Missing Lemmas

Lemma A.1. Let A and B denote events. Suppose that we have Pr[A] < 6. For any p > 0, we have
|Pr[B] — p| < [Pr[B A=Al = p|+6 and |Pr[B A -A] - p| < |Pr[B] - p|+4.
Proof. We have
|[Pr[B] — p| = |Pr[B A A] + Pr[B A =A] — p|
< Pr[B A A] +|Pr[B A =A] — p|
< Pr[A] + |Pr[B A =A] — p|
< |Pr[B A=A] - p|+46.
We also have
|Pr[B A =A] — p| = |[Pr[B A =A] + Pr[B A A] = Pr[B A A] - p|
= |Pr[B] — p —Pr[B A A]|
Pr[B] — p| + Pr[B A A]
Pr[B] — p| + Pr[A]
Pr[B] — p|+6

INIA

IN

Those complete the proof.

The lemma of the following form is a slightly generalized version of the O2H lemma taken from [SXY18, Lemma 2.1].
While there are improvements of the O2H lemma, this basic O2H lemma is enough for our cases.

Lemma A.2 (The Oneway-to-Hiding (O2H) Lemma [Unr14, HHK17, JZC*18, SXY18]). Let H : X — Y be a
quantum random oracle, and let A be an adversary issuing at most q queries to H that on input (x,y) € X X Y
outputs either 0/1. Let D x be a some distribution over X. For all (probabilistic) algorithms F whose input space is
X X Y and which do not make any hash queries to H, we have

Pr[AM (inp) — 1] x — Dyx;y « H(x)sinp « F(x, y)]
- Pr[ﬂH(inp) —1|x e« Dy;y « Y;inp « F(x,y)]

<2- \/Pr[EXTﬂ’H(inp) > x|x e« Dx;y « Y;inp « F(x,y)],

where EXT picksi < {1,...,q}, runs A (inp) until i-th query |%) to H, and returns x’ := Measure(|£)) (when A
makes fewer than i queries, EXT outputs L ¢ X).

B Missing Proofs

B.1 Proof of Theorem 3.1

Proof (Proof of Theorem 3.1). Let us define four games Game; ; for i,b € {0,1}. Let S; ;, be the event that the
adversary outputs 1 in Game; j,.

- Gamey , for b € {0, 1}: This is the original game Expt?&?’%a(@ with » = 0 and 1.

- Gamey j, for b € {0, 1}: This game is the same as Gamey ;, except that the target ciphertext is randomly taken
from S(1%) X Cpem, m|-

It is easy to see that there exist two adversaries Ao and Aj; whose running times are the same as that of A
satisfying
[Pr[So,5] = Pr[S1p]| < Advlipl(rgf; 7, (¥) and Pr[S1,0] = Pr[Sy1].

Hence, we have

Adv?,?(?:;{ca(l() = |Pr[S0,0] - Pr[S0’1]|
< |Pr[So,0] = Pr[S1,0]| + [Pr[S1,0] = Pr[S1,1]| + [Pr[S1,1] — Pr[So,1]|

spr-cca spr-cca
< AdVPKE,S,&ZIw (k) + AdVPKE,S,&ZIu ().

This completes the proof. o

C Variants of the Fujisaki-Okamoto Transformation

We review the variants of the FO transformations: Let PKE = (Gen, Enc, Dec) be a PKE, whose ciphertext space
is Cpke and message space is M. If PKE is probabilistic, then Rgnc denotes the randomness space of Enc. Let
{0, 1}%(%) be the key space of KEM.

C.1 Transformation T

Hoftheinz et al. [HHK17] decomposed the Fujisaki-Okamoto transformation FO into two transformations T and
U. In the original T in [HHK17, Section 3.1], the decryption algorithm checks the validity of ¢ by re-encryption
check. We omit this re-encryption check. Our version is summarized in Figure 8.

27

Gen’(1%) Enc’(ek, u) Dec’(dk, ¢)

(ek,dk) <« Gen(1¥) u— M ' — Dec(dk,c)
return (ek, dk) ¢ = Enc(ek, u;G(u)) return p’
return ¢

Fig. 8. PKE’ = T[PKE, G]

C.2 Variants of U

Hofheinz et al. defined U’s variants, U%, UL, U,ﬁ, and UL, [HHK17], where the superscript “4” and “1” implies im-
plicit rejection and explicit rejection, respectively, and the subscript “,” implies the computation of key K involves
a plaintext u only, while if there is no subscript, then it involves u and ciphertext c.
Saito et al. define SXY, which is essentially the same as U,{‘, [SXY18]. Bindel et al. discussed the relations of
IND-CCA-security of KEM schemes obtained by them via indifferentiable reductions [BHH"19]. In their dis-
cussion, they modify U%, which we write u-prf, They use K = Hp(s,c) for invalid ciphertext ¢ instead of
K :=H(s, ¢) as in [HHK17].
Let us review the definitions.
— UA[PKE, H]: This is defined in Figure 9.
- ULPfPKE, H, Hp:f]: The decapsulation returns K := H (s, ¢) if 4" = L or ¢ # Enc(ek, pt').
— U [PKE, H]: The decapsulation returns K := L if 4’ = 1 or ¢ # Enc(ek, u’). This variants does not require s
in dk.
- Uﬁ [PKE, H, Hpf]: The encapsulation defines K := H(y, c). The decapsulation returns K := H(x, ¢) ifu’ #1
and ¢ = Enc(ek, u’).
- UL [PKE, H]: The encapsulation defines K := H(u, ¢). The decapsulation returns K := H(y, ¢) if 4’ # L and
¢ = Enc(ek, u’). The decapsulation returns K := L if u” = 1 or ¢ # Enc(ek, u’). This variants does not require
s in dk.

Gen(1¥) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, 5)
(ek,dk) < Gen(1¥) u M u’ — Dec(dk, c)

se—M c:=Enc(ek,u) if u’ = L orc # Enc(ek,u’)

dk = (dk, ek, 5) K :=H(u,c) then return K := H(s, ¢)
return (ek, ﬁ) return (c, K) else return K := H(y', ¢)

Fig. 9. KEM = (Gen, Enc, Dec) = U# [PKE, H]

We adapt the discussions of Bindel et al. to SPR-CCA-security of KEM schemes obtained by the variants of U. See
the left hand side of Figure 10.

C.3 Variants of HU

Hofheinz et al. defined QU’s variants, QU;’;l and QU,J;l [HHK17]. In those variants a ciphertext includes ‘key-
confirmation’ hash d := F(u), where F: M — M. (For the proof, We will require M to be a subset of a finite
field.) Jiang et al. [JZM19] defined HUy, as a variant of QUy,, where F: M — H with arbitrary M and . This
allows us to make a ciphertext shorter. We define its variants H UJ,;,, H U#, HUL H U#@ and HUA-P' a5 the variants
of U. In the definition, we allow F to take ek optional.

Let us review the definitions.

- HU*[PKE, H, F]: This is defined in Figure 11.

28

SXY
[BHH*19, Thm. 3] ' Thm. L1

U === =m===--- > Uf, HU}, HUL

H T [BHH*19, Thm. 5] | Thm. J.3
|

' [BHH'19, Thm. 5] U£-P"f Thm. H.3 HUL-Prf

|

3
Ut - oo - - » UL HUL __Thm K3 s HUL

[BHH*19, Thm. 5, adapted]

Fig. 10. The relation between IND-CCA and SPR-CCA security of KEMs using the variants of U and HU. Dashed arrow implies
the implications in [BHH"19].

Gen(1¥) Enc(ek) Dec(dk, (co, c1)), where dk = (dk, ek, s)
(ek,dk) < Gen(1*) pu—M 1’ — Dec(dk, cq)
s—M co = Enc(ek, p) if u” = L orco # Enc(ek, u’) or c1 # F(u'[, ek])
dk = (dk, ek, 5) c1 = F(u[, ek]) then return K := H(s, co, ¢1)
return (ek, dk) K =H(u, co,c1) else return K = H(1', o, c1)

return ((cg, ¢1), K)

Fig. 11. KEM = (Gen, Enc, Dec) = HU4[PKE, H, F|

— HULPT[PKE, H, F, Hprf]: The decapsulation returns K := Hy¢(s, co, ¢1) if u’ = Lorco # Enc(ek,u’) or
c1 # F(u’[, ek]).

- HU*[PKE, H, F]: The decapsulation returns K := L if u’ = 1 or ¢o # Enc(ek, u’) or c1 # F(u'[, ek]). This
variants does not require s in dk.

- H Uﬁ, [PKE, H, F, Hprf] : The encapsulation defines K := H(y, ¢, ¢1). The decapsulation returns K := H(y, ¢, ¢1)
if u’ # L and ¢g = Enc(ek, p’) and c1 = F(u’[, ek]).

- HU4L [PKE, H, F]: The encapsulation defines K := H(u, co, ¢1). The decapsulation returns K := H(y, co, ¢1)
if u” # L and ¢p = Enc(ek,u’) and ¢; = F(u’[, ek]). The decapsulation returns K := L if g’ = L or
co # Enc(ek, u’) or c¢1 # F(u’[, ek]). This variants does not require s in dk.

We will adapt the discussions of Bindel et al.to SPR-CCA-security of KEM schemes obtained by the variants of U.
See the right hand side of Figure 10.

C.4 Variants of FO

Combining T and the variants of U or HU, we obtain several variants of FO as follows: Let PKE = (Gen, Enc, Dec)
be a probabilistic PKE scheme: If we combine T and UY, then we obtain FOY. If we combine T and HU?Y,, then we
obtain HFO?Y,.

D Transformation in NIST PQC KEM Candidates

In this section, we review the transformations used in NIST PQC Round 3 KEM Candidates.

D.1 FO with implicit rejection

FO* transforms a weakly-secure probabilistic PKE into IND-CCA-secure KEM. This variant can be considered
the composition of T and UL, that is, KEM = FOX[PKE,G,H] = U4[T[PKE, G], H]. This variant is used by
BIKE [ABB*20] and SIKE [JAC*20].

Let {0,1}¢(¥) be the plaintext space of PKE. Let G: {0,1}* — R, and H: {0, 1) % Coxe — {0,115 pe
hash functions modeled by the random oracles. The FO£ is summarized as Figure 12. Assuming the IND-CPA
security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM (see e.g., [KSS*20]).

29

Gen(1%) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, s)

(ek, dk) — Gen(1%) u « {0,1}((®) u’ = Dec(dk, c)

s — {0,1}{®) r := G(u) // for BIKE r’ == G(u’) // for BIKE

Tk = (dk, ek, 5) r = G(u,ek) // for SIKE r’ := G(u’, ek) // for SIKE

return (ck, 28) ¢ := Enc(ek, u;7) ¢’ == Enc(ek, u’;7")
K :=H(u,c) if ¢ = ¢/, then return K := H(u’, ¢)
return (K, ¢) else return K := H(s, ¢)

Fig. 12. KEM := FO% [PKE, G, H] for BIKE and SIKE.

Remark D.1. BIKE and SIKE do not test whole re-encryption check. Roughly speaking, their encryption algorithm
Enc is separable into two algorithms Ency and Ency. Ency takes ek and randomness r and outputs ¢ and k €
{0,1}¢(®)Enc, takes y and k and outputs ¢z = k @& u.

Using this property, BIKE omits the re-encryption check. Concretely speaking, k in BIKE’s Enc; is computed as
k := H(r), where H is a hash function modeled by the random oracle. BIKE’s Dec internally obtains 7’ and checks
the validity of 1. It then retrieves u’ := c2@®H(r’) and checks the validity of the ciphertext by checking r’ = G(u”)
or not.

SIKE’s Dec performs the test ¢/ = ¢1 but omits the test c; = ¢3. Since Dec retrieves u’ := ¢ ® k deterministically,

1
we do not need to check the equality of c3 and c.

D.2 Other FO with implicit rejection and pre-key

FO%’ is a modified version of FO£, which is used by Kyber [SAB*20, Section 1] and Saber [DKR*20, Section 8].
FOL”’ is another modified versions of FO*, which are used by FrodoKEM [NAB*20, Section 2]. The differences
from FO* are how to generate K in Enc and Dec. They first compute ‘pre-key’ K from u and H’(ek) and then
compute key K := H(K, H’(¢)) in FO%’ or H(K, ¢) in FO£”’.

Let {0,1}¢(®) be the plaintext space of PKE. Let G: {0, 1}* — {0, 1) % Repe, H: {0,1}* — {0,1}¥®) | and
H: {0, 1} x {0,1}®) — {0, 1}*(¥) be hash functions modeled by the random oracles. FOX’ and FOX"’ are
summarized as Figure 13 and Figure 14, respectively.

One might consider assuming the IND-CPA security of PKE, the obtained KEM schemes are IND-CCA-secure
in the QROM. Unfortunately, Grubbs, Maram, and Paterson [GMP21] pointed out that we cannot directly apply
the existing security proof in the QROM to those variants, because computing K requires nested applications of
random oracles G and H to m. Grubbs et al. overcome this barrier for the case of FO£”’ in [GMP21, Section 5.2].
Thus, FrodoKEM using FOX”’ can be shown IND-CCA-secure in the QROM. However, they failed to apply their
technique to the case of FOL’ which computes K = H(K, H’(c)) instead of K = H(K, c). They left the IND-CCA
security of FO4 in the QROM as an open problem [GMP21, Section 5.3].

Gen(1%) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, h, s)

(ek, dk) — Gen(1%) u « {0,1}((® u’ = Dec(dk, c)

h «— H’(ek) u=H(u) (K’,r")y =G(u', h)

s — {0,1}{® (K,7r) :=G(u,H’(ek)) ¢’ := Enc(ek,u’;7")

Tk = (dk, ek, I, 5) ¢ = Enc(ek, u;7) if ¢ = ¢/, then return K := H(K’, H’(¢))
K =H(K,H (¢)) else return K := H(s, H'(c))

return (ek, dk)

return (K, ¢)

Fig. 13. KEM := FO*'[PKE, G, H’, H] in Kyber and Saber.

30

Gen(1¥) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, h, 5)

(ek, dk) — Gen(1%) u « {0,1}((® u’ = Dec(dk, c)
h «— H’(ek) (K,r) :==G(u,H’(ek)) (K',r"):=G(u’, h)
s — {0,1}{® ¢ := Enc(ek, u;r) ¢’ == Enc(ek,u’;r")
K :=H(K,c) if ¢ = ¢/, then return K := H(K’, ¢)

dk = (dk, ek, h,)

return (ck. ﬁ() return (K, ¢) else return K := H(s, ¢)

Fig. 14. KEM := FOX”’[PKE, G, H’, H] in FrodoKEM.

D.3 FO with additional hash

HFO* and HFOZ (as known as QFOL and QFO#) [TU16, HHK17, JZC*18, JZM19] transform a weakly-secure
probabilistic PKE into IND-CCA-secure KEM like FO and add hash value of the message. HQC [AAB*20] uses
HFO*. NTRU LPRime of NTRU Prime [BBC*20] uses a variant of HFO4P'f.

Let {0,1}Y®) be the plaintext space of PKE. Let G: {0,1}* — Rgpc, F: {0, 1} % {0,1}* — {0,1}¢'(®),
H: {0,109 x (Cpke x {0,137 (0) — {0, 13509, and Hype: {0,130 x (Cpie x {0,131) — {0, 1}k
be hash functions modeled by the random oracles. HFO and HFO* is summarized as Figure 15 and Figure 16,
respectively. Assuming the IND-CPA security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM.
See e.g., [KSS*20]. For the case of explicit rejection HFOL, we need to invoke [BHH™ 19, Theorem 4].

Gen(1¥) Enc(ek) Dec(dk, ¢), where dk = (dk, ek)
(ek, dk) — Gen(1¥) p « {0,1}¢®) u’ == Dec(dk, c)
dk = (dk, ek) r = G(u) r'=G(u)
return (ek,ﬁ) co == Enc(ek, u;r) c(') = Enc(ek, u’;7’)
e = F(p) o] = F(u')
¢ :=(co,c1) ¢ = (cg,ch)
K :=H(u,c) if ¢ = ¢/, then return K := H(u’, ¢)
return (K, ¢) else return K := L

Fig. 15. KEM := HFO+[PKE, G, F, H] for HQC.

D.4 SXY

SXY transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM. This variant is employed by NTRU
(NTRU-HPS and NTRU-HRSS) [CDH*20]. See Figure 5 for the summary. Assuming disjoint-simulatability of PKE,
the obtained KEM scheme is IND-CCA-secure in the QROM [SXY18].

D.5 HU with implicit rejection

The final one is a transformation that transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM,
employed by Classic McEliece [ABC*20] and Streamlined NTRU Prime of NTRU Prime [BBC*20]. We interpret
the transformation as HU%P'f [JZM19].

Let M be the plaintext space of PKE. Let F: M — {0, W H: M x (Cpke x {0,131 ®) - {0,1}k®) and
Hpif: {0, 1}5(’() X (Cpke % {0, 1}[/(’()) — {0, l}k(K) be hash functions modeled by the random oracle. The H Ut is
summarized as Figure 17. Assuming disjoint-simulatability of PKE, the obtained KEM scheme is IND-CCA-secure
in the QROM [SXY18, ABC*20]. We note that the implementation of F, H, and Hpyf of Streamlined NTRU Prime
has a problem of nested random oracles and we cannot show it is IND-CCA-secure. See section R for the detail.

31

Gen(1%) Enc(ek) Dec(dk, ¢), where dk = (dk, ek,)

(ek, dk) — Gen(1¥) p « {0,1}¢®) i’ = Dec(dk, c)

s — {0,1}(® r:=G(u) r’=G(u)

Tk = (dk, ek, 5) co == Enc(ek, u;r) c(’) = Enc(ek, u’;7’)

return (ek, %) c1:= Flu, ek) C; = F(u', ek)
¢ :=(co,c1) ¢ = (cg,ch)
K :=H(u,c) if ¢ = ¢/, then return K := H(u’, ¢)
return (K, ¢) else return K = Hp,1 (s, ¢)

Fig. 16. KEM := HFO4P[PKE, G, F, H, Hpif] for NTRU LPRime of NTRU Prime.

Gen(1¥) Enc(ek) Dec(dk, c), where dk = (dk, ek, s) and ¢ = (co, ¢1)
(ek,dk) < Gen(1*) u M u’ = Dec(dk, co)
s — {0, l}f(K) co := Enc(ek,) if ’ = 1, then return K := Hpre (s, €)
dk := (dk, ek, s) cr:=F(w) // CM ¢g = Enc(ek, 1)
— = F(u, ek t "= ’
return (ck. d0) c1:=F(u, ek) // sntrupr ¢} = F(u') // CM
¢ = (co, 1) c1 :=F(y’, ek) // sntrupr
K :=H(u,c) ¢ = (cg, 1)
return (K, ¢) if ¢ = ¢/, then return K := H(y’, ¢)

else return K := Hp,¢(s,)

Fig.17. KEM :=H UL-P[PKE, H, F, Hprf] in Classic McEliece (CM) and Streamlined NTRU Prime (sntrupr) of NTRU Prime.

32

Remark D.2. One might wonder Dec in Classic McEliece has no explicit re-encryption check ([ABC*20, Sec.2.3.3]).
In their specification, Dec in Classic McEliece internally checks c(') = Enc(ek, u’) or not (([ABC*20, Sec.2.2.4]).

33

D.6 Hashes in the wild
Finally, we summarize how KEMs implement G, F, H, and Hprf.

Table 6. Summary of variants of FOs in NIST PQC Round 3 KEM Candidates (finalists
and alternates): Before version 4.2, BIKE’s G uses SHA384 and AES256-CTR. SHAKE256,
will outputs the first £ bits of SHAKE256. SHA3-512;- and SHA3-512; outputs the first and
second 256 bits of SHA3-512. BIKE and SIKE use L in the underlying PKE to mask a mes-
sage with masking value computed from the shared random value L(shared). BIKE uses
SHA3-38456 (1) and SIKE uses SHAKE256,,(j) as L. In FrodoKEM, SHAKE is SHAKE128
or SHAKE256 depending on the parameter sets.

Name Trans. G F
Classic McEliece [ABC* 20] HudL-prf SHAKE25625¢ (0x02, 1)
Kyber [SAB™20] FOA/ SHA3-512p- (11, SHA3-256(ek)) @ -
NTRU [CDHT20] SXY - -
Saber [DKR™ 20] FO4/ SHA3-512p- (1, SHA3-256(ek))) b-
BIKE [ABB*20] FOL SHAKE256 (1) -
FrodoKEM [NAB*20] FOA"” SHAKE (SHAKE (ek), 1) -
HQC [AABT 20] HFOL SHAKE256515 (1, 0x03) © SHAKE256515 (11, 0x4)
Streamlined NTRU Prime [BBC+20] HUA-PTT — SHA512556 (0x02, SHA512556 (0x03, 1), SHA5 12556 (0x04, €k))
NTRU LPRime [BBC*20] HFOAPTT SHAS12,56 (0x05, 1) 4 SHA512;56 (0x02, 1, SHA512354 (0x04, ek))
SIKE [JACT 20] Fot SHAKE256¢, (11, k) -
Name Trans. H Hprf
Classic McEliece [ABC™20] HuL-prf SHAKE2565¢ (0x01, 1, (¢, €1)) SHAKE25625¢ (0x00, s, (c, 1))
Kyber [SAB™20] FOL"” SHAKE256 (SHA3-512; (11, SHA3-256(ek)), SHA3-256(c)) SHAKE256x (s, SHA3-256(c))
NTRU [CDH*20] SXY SHA3-256(u) SHA3-256(s,)
Saber [DKR* 20] FOL” SHA3-256(SHA3-512; (11, SHA3-256(ek)), SHA3-256(c)) SHA3-256(s, SHA3-256(c))
BIKE [ABB*20] FoL SHA3-384556 (11,) SHA3-384256 (s, ¢)
FrodoKEM [NAB ™ 20] FOL’ SHAKE (¢, k) SHAKE (¢, s)
HQC [AAB*20] HFOL SHAKE25651 (i, ¢, 0x05) -
Streamlined NTRU Prime [BBC*20] HUA-P'T SHAS12556 (0x01, SHAS 12956 (0x03, 1),) SHA51255¢ (0x00, SHA512556 (0x03, 5),)
NTRU LPRime [BBC™20] HFOAL-Prf SHAS512)56 (0x01, i,) SHAS51295¢ (0x00, 5, ¢)
SIKE [JACT 20] Fot SHAKE256, (1,) SHAKE256 (s, ¢)
2 Kyber uses an intermediate PKE scheme with short randomness which internally uses PRF SHAKE256x (r,) for i = 1,2, . . . with appropriate length parameter

b Saber uses an intermediate PKE scheme with short randomness which internally uses XOF SHAKE128(r).
€ HQC uses an intermediate PKE scheme with short randomness which internally uses XOF SHAKE256(r, 0x02).

d NTRU LPRime uses an intermediate PKE scheme with short randomness which internally uses XOF AES256-CTR(r").

E Property of T

In this section, we show that T preserves ciphertext indistinguishability of disjoint simulatability.

Theorem E.1. Suppose that a probabilistic PKE PKE is ciphertext indistinguishable and OW-CPA-secure. Then, PKE :=
T[PKE, G] is also ciphertext indistinguishable in the QROM.

Precisely speaking, for any quantum adversary A against PKE’ issuing at most qG quantum queries to G, there exist
quantum adversaries Aoy against OW-CPA security of PKE and A against ciphertext indistinguishability of PKE

such that
ds-ind ow-cpa ds-ind
AdVpe 9,5, (K) < 24G\[Advpye 5y (0 FAdVEET | sy, (K-

Proof: Let us consider the following sequence of games, Gamey, Gamej, and Games. Let S; denote the event that
the adversary outputs b’ = 1 in Game;.

Gamey: This game is defined as follows:
(ek, dk) «— Gen(1%);m" « D ppr™ «— G(m*);c* == Enc(ek, m*;r"); b’ « AS) (ek, c*);return b’.

Game;: This game is the same as Gamey except that a randomness to generate a challenge ciphertext is freshly
generated:

(ek, dk) — Gen(1¥);m* — D pir* — Ric* == Enc(ek, m*;r*); b’ — A°C) (ek, c*);return b’.

34

F(m*,r*) &zl(()]l(ek, c*):

(ek, dk) < Gen(1¥) inp := (ek,c")

c¢* == Enc(ek,m*;r*) i« [gn]

inp = (ek,c") Run ﬂc(inp) until i-th query |X) to G

return inp if i > number of queries to G, return L

else return x” := Measure(|%))

Fig. 18. Algorithm F and adversary A1

Game;: This game is the same as Game; except that a challenge ciphertext is generated by the simulator
S(1%, ek):
(ek, dk) — Gen(1%);¢* — S(1%, ek); b’ — A (ek, c*);return b’.

This completes the descriptions of games. It is easy to see that we have

AdVgslgiEI}?Dm,S,ﬂ(K) = [Pr[So] —Pr[S2]].

We give an upperbound for this by the following lemmas.

Lemma E.1. There exists an adversary Ap1 such that

IPr[So] — Pr[S1]] < 2. /Adv(;‘lz;%% A, (©)-

Proof (Proof of Lemma E.1). Let F be an algorithm described in Figure 18. It is easy to see that Gamey can be
restated as
m* — Dp;r* — G(m*);inp = F(ek,m*;r*); b ﬂG(')(inp);return b’
and Game; can be restated as
m — Z)M;r* — R;inp = F(ek, m*;r*); b — ﬂo(')(inp);return b'.

Applying the O2H lemma (Lemma A.2) with X = M/, Y =R, Dx = Dp(, x =m*, y = r¥, and algorithms A and
F, we have

[Pr[So] ~ Pr[S1]] < 2qgy/Pr[m* — AG (ck,c*)].

* — R, and c¢* =

where “7{(()31 is an algorithm described in Figure 18, (ek,dk) « Gen(1%), m* « Dy, r
Enc(ek,m™, r").

We have Pr[m* « *7((()]1 (ek,c)] < Advg‘zgfg% Ao, (k). By combining these inequalities, the lemma is proven. O

Lemma E.2. There exists an adversary A1z such that

[Pr[S1] - Pr(S2]| < AdVR), s, (K)-

The proof is very clear and we omit it.
Combining the above two lemmas, we obtain the wanted result. O

F Property of U*

As we seen in Figure 10, U and SXY = Uﬁ, are not connected. Indeed, we face a subtle problem to apply indiffer-
entiable reduction in Bindel et al. [BHH"*19]: Suppose that we have A against SPR-CCA security of KEM obtained

by U%. In their indifferentiable reduction, they construct A,, against SPR-CCA security of KEM obtained by U;Ln,
Am given Hy, : M — K simulates H: M x C — K by

H(u, ¢) Hpm () if ¢ = Enc(ek, u)
,C) =
K H’(u,c) otherwise.

Unfortunately, this simulation makes H(s, c) different from H,¢(s, c) at the point (s,c) with ¢ = Enc(ek, s).
Hence, we directly prove the security properties.

35

Table 7. Summary of Games for the Proof of Theorem F.1. We define g(u) = Enc(ek, 1) = Enco(ek, u; G(p)).

Decryption
Game H G c* K~ valid ¢ invalid ¢ |justification
Gamey H F(M,R) Enc(ek, u*) H(u*, ¢*)|H(u, ¢) H(s,c)
Game; H F(M,R) Enc(ek, u*) H(u*,c*)|H(u,c) Hg(c) |Lemma 2.2

)
Game; 2 [Hy 0 g/ H" Fyooa(M, R) Enc(ek, u*) H(u", c¢*)|H(u,¢) Hg(c) |if key is not bad

Game, |[Hgog/H" Fyooa(M,R) Enc(ek, u*) H(u", c*)|H(u,c) Hy(c) |ifkey is not bad

Games |[Hgy 0 g/ H Feood(M,R) Enc(ek, u*) Hg(c*) | Hy(c) Hg(c) |conceptual

Games |Hgog/H F(M,R) Enc(ek,u*) Hgy(c*) | Hy(c) Hg(c) |Lemma 2.1 + correctness
Gamey |[Hgog/H F(M,R) S(1%) Hg(c*) | Hy(c) Hg(c) |DS-IND

Games |[Hyjog/H F(M,R) S(1%) U(K) | Hg(c) Hg(c) |statistical disjointness
Games ; [Hg 0 g / H Fgood (M, R) S(1%) U(K) | Hg(c) Hg(c) |Lemma 2.1 + correctness
Games [Hy 0g/H Fgood(M,R) S(1%) U (K) H(u) Hg(c) |conceptual

Gameg.1 [H 0 g/ H" Fpooa(M,R) S(1¥) U(K) |H(u,c) Hg(c) |if key is not bad

Gameg 2 H Feood (M, R) S(1¥) U(K) |H(u,c) Hg(c) |if key is not bad

Game; H F(M, R) S(1%) U(K) |H(u,c) Hg(c) |Lemma 2.1 + correctness
Gameg H F(M, R) S(1%) U(K) |H(u,c) H(s,c) |Lemma 2.2

u) H
M) H

Gamey H Feood (M, R) Enc(ek, u*) H(u*, c*)|H(u,c) Hg(c) |Lemma 2.1 + correctness
u) H
u)H

F.1 SPR-CCA Security

We need to show UL’s SPR-CCA-security directly. Fortunately, we can use the security proofs for SXY = U;’;l with
slight modifications. Roughly speaking, we replace H(s, ¢) with Hy (¢) and, then, apply the above indifferentiable
reduction. Doing so, we can find the situation is essentially equivalent to Game; (or Gamey) of Table 4.

Theorem F.1. Let PKE = T[PKEg, G]. Suppose that a ciphertext space C of PKE depends on the public parameter only.
IfPKE is strongly disjoint-simulatable and -correct with negligible 5, then KEM = UL [PKE, H] is SPR-CCA-secure.
Formally speaking, for any A against the SPR-CCA security of KEM issuing at most qpgc queries to the decapsulation
oracle and gg and qy queries to G and H respectively, there exist Az4 against ciphertext-indistinguishability of PKE
such that

Advfg;ff‘s’ a0 < Advgf;gj%% .71, (K) + Disjpkg, 5 (k) +46

+16(gG + gprc + 1)26 + 16(qG + g1 + 1)26 + 4(q1 + qprc) /VIM.

Theorem F.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable and §-correct with negligible §, then KEM = UL [PKE, H] is SPR-CCA-secure.

Formally speaking, for any A against the SPR-CCA security of KEM issuing at most qpgc queries to the decapsulation
oracle and qg and qy queries to G and H, respectively, there exist A3q4 against ciphertext-indistinguishability of PKE
such that

Advipggf;’ ROE Advg;g‘;)% .75, (K) + Disjpke, s (k) + 4(qH,, + IDrc) JAIM] +46.

Proof of Theorem F.1: We use the game-hopping proof. We consider Game; fori =0, ..., 8. We summarize the
games in Table 7. Let S; denote the event that the adversary outputs b’ = 1 in game Game;. Let Acc and Acc
denote the event that the key pair (ek, dk) is accurate and inaccurate, respectively.

spr-cca

KEM,:?I(K) with b = 0. Thus, we have

Gamey: This game is the original game Expt

Pr[So] =1- Pr[Exptipg/_\jf;(K) =1|b=0].

Game;: This game is the same as Gamey except that H(s, ¢) in the decapsulation oracle is replace with H, (c)

where Hg : C — K is another random oracle. We remark that A is not given direct access to Hy.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

[Pr[So] — Pr[S1]] < 2(gH + gprc) /VIMI,

where gy and gpgc denote the number of queries to H and DEc the adversary makes, respectively.

36

Gamey 1: This game is the same as Game; except that the random oracle G(-) is chosen from Fyo0q(M, R)
instead of F (M, R).

Fix (ek, dk). Then, we have |Pr[S | (ek, dk)] — Pr[S1.1 | (ek, dk)]| < 8(q¢ +6]DEC+1)25ek,dk~ Taking average over
(ek, dk) « Gen((1%), we obtain

Pr[S1] = Pr[S1.1]] < 8(4G + aprc + D’EXP ek, dk) Gen, (1#) [Sek.dk] = 8(4G + gprc +1)%6.
We have Pr[Bad] < § ([LW21, Claim 3]). According to Lemma A.1, for any p, we also have

|Pr(S1.1] — p| < |Pr[S1.1 A =Bad] — p| + 6.

Gamej : This game is the same as Game; 1 except that the random oracle H(-, -) is simulated as follows: Let
szz C - Kand H: M x C — K be random oracles. Define

H(’](Enc(ek,,u)) if ¢ = Enc(ek, p),
H’(u, ¢) otherwise.

H(u, c) ={

We remark that the decapsulation oracle and the generation of K* also use this simulation.
If —Bad occurs, then PKE = T[PKE, G] is perfectly correct from the definition of G and g(u) := Enc(ek, u; G(u))
is injective. Thus, Hc'] og: M — K is a random function and the two games Game; 1 and Game; 3 are equivalent
if Bad does not occurs. We have

Pr[S1.1 A —=Bad] = Pr[S1.2 A —Bad].

See [XY19, Lemma 4.3] and [LW21, Claim 4] for the detail.

Game,: This game is the same as Game; 2 except that the random oracle H is simulated by H; o g and H’ instead
of Hj o g and H'.

If -Bad occurs, then PKE = T[PKE, G] is perfectly correct from the definition of G. Hence, the two games Gamej 2
and Game are equivalent, because a value of H:I (¢) for an invalid ¢ is not used in Gamej »: that is, we have

Pr[S1_2 A —|Bad] = Pr[Sg A —|Bad]

See the proof of [XY19, Lemma 4.4] and [LW21, Claim 5] for the detail.

Gamejs: This game is the same as Game; except that K* is set as Hy (c*) and the decapsulation oracle always
returns Hg (¢) as long as ¢ # ¢*. This decapsulation oracle will denoted by Dec’.

If =Bad occurs, then PKE = T[PKE, G] is perfectly correct from the definition of G. , the two games Gamey and
Games are equivalent: that is, we have

Pr[S2 A —=Bad] = Pr[S3 A =Bad].

See the proof of [XY19, Lemma 4.5] for the detail.
According to Lemma A.1, for any p, we have

|[Pr[S3 A =Bad] — p| < |Pr[S3] — p| + 6.
Games 1: This game is the same as Games except that G is chosen from # (M, R) instead of Fgy0q4 (M, R).

|Pr[S3] = Pr[S3.1]] < 8(qG +qn + 1)EXP (e, k) —Geny (1) [Ock.ak] = 8(4G +qn +1)%6.
(We note that H and the challenge ciphertext also query to G internally.)

Gamey: This game is the same as Games except that ¢* is generated by S(1%).
The difference between two games Games and Gamey is bounded by the advantage of ciphertext indistinguisha-
bility in disjoint simulatability as in [XY19, Lemma 4.7]. We have

[Pr[Ss5] — Pr[S4]] < Advgfjgj%% 5.7, (-

37

Games: This game is the same as Gamey except that K* « K instead of K* « H(c").

In Gamey, if ¢* « S(1%) is not in Enc(ek, M), then the adversary has no information about K* = Hg(¢*) and
thus, K* looks uniformly at random. Hence, the difference between two games Game4 and Games is bounded by
the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8].

We have

[Pr[S4] — Pr[S5]| < Disjpgg,s(«)-
Games. 1 This game is the same as Games except that G is chosen from Faood (M, R) instead of F (M, R).

IPr[Ss] — Pr[Ss5.11] < 8(4G +41) *EXP ek, k) —Gen (1+) [Oek ak] < 8(qG +qn +1)%6.

(We note that H and the challenge ciphertext also query to G internally.)
According to Lemma A.1, for any p, we have

|Pr[S5.1 A =Bad] — p| < |Pr[S5.1] — p| + 6.

Gameg: This game is the same as Games except that the decapsulation oracle is reset as DEc. Similar to the case
for Gamey and Games, if a key pair is accurate, the two games Games and Gameg are equivalent as in the proof
of [XY19, Lemma 4.5]. We have

Pr[S5.1 A =Bad] = Pr[S¢ A —Bad].

Gameg 1: This game is the same as Gameg except that the random oracle H is simulated by Hy, o g and H’ as
in Game 3. If a key pair is not bad, the two games Gameg and Gameg_; are equivalent as in the proof of [XY19,
Lemma 4.4]. We have

Pr[S¢ A —=Bad] = Pr[Ss.1 A —Bad].

Gameg_»: This game is the same as Gameg_1 except that the random oracle H(-) is set as the original. If a key pair
is not bad, the two games Gameg 1 and Gameg_ 2 are equivalent as in the proof of [XY19, Lemma 4.4]. We have

Pr[S¢.1 A =Bad] = Pr[S¢.2 A —Bad].
We have, for any p,
[Pr[Ss.2 A =Bad] — p| < |Pr[Se.2] — p| +0

from Lemma A.1.

Gamey: This game is the same as Gameg 2 except that the random oracle G is chosen from ¥ (M, R) instead of
'}.good(M, R). We have,

[Pr[Ss.2] — Pr[S7]] < 8(qG + qprc)*6. < 8(qG + gprc + 1)%6.

Gameg: This game is the same as Gamey except that Hg (¢) in the decapsulation is replaced by H(s, c).
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

[Pr[S7] - Pr[Sg]| < 2(qn + gpec) /VIMI.

spr-cca

KEM ﬂ(/() with b = 1. Thus, we have

We note that This game is the original game Expt

Pr[Ss] = Pr[ExptipErl;f;(K) =1|b=1].

Summarizing those (in)equalities, we obtain the following bound:

AdviE o (1) = [Pr[So] — Pr[Ss]|

ds-ind ..
< Ava?(EZ)M,S,ﬂM (x) + Disjpgg s (k) + 46

+16(4G + gprc + 1)%0 + 16(qG + qu + 1)%6 + 4(gn + qpec) /VIM.

38

Table 8. Summary of Games for the Proof of Theorem F.3: ‘S(1%) \ Enc(ek, M)’ implies that the challenger generates ¢* «— S(1%)
and returns L if ¢* € Enc(ek, M).

Decryption
Game |H c* K~ valid ¢ invalid c |justification
Gamey |H S(1%) random |H(u,c) H(s,c)

Game; [H 8(1%) \ Enc(ek, M) random [H(u,c) H(s, c) |statistical disjointness
Gamey |H S(1¢) \ Enc(ek, M) random |H(u,c) Hg(c) |Lemma 2.2

Gamej |H S(1°) \ Enc(ek, M) Hg(c*) |H(pm,c) Hgy(c) [Hg(c™) is hidden
Gamey |H S(1%) \ Enc(ek, M) H(s,c*) |H(u,c) H(s,c) |Lemma 2.2

Games |H S(1%) \ Enc(ek, M) @(dk, c*)|H(u, ¢) H(s,c) |re-encryption check
Gameg |H S(1%) Dec(dk, c*) |H(u, ¢) H(s,c) |statistical disjointness

Proof of Theorem F.2: The proof of Theorem F.2 is a simplified version of that of Theorem F.1, since it does not
require to consider G. Ignoring the transition between real G with good G, we obtain the bound as follows:

AdyPreea (k) = |Pr[So] — Pr[Ss]|

KEM,S, A
ds-ind ..
< 4(qH, + gDec) /VIM| + 46 + Avaf(EDM,ﬂM,S(K) + Disjpye, s (£).

F.2 SSMT-CCA Security

We can show SSMT-CCA security of U by using the essentially same proof of that for SXY.

Theorem F.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = U* [PKE, H] is SSMT-CCA-secure.
Formally speaking, for any adversary A against SSMT-CCA security of KEM, we have

AdVEN 6 4 (&) < 2Disjpye, s (k) +4(qu + gprc) /VIMI.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof Sketch: We use the game-hopping proof. We consider Game; fori = 0,...,6. We summarize the games in
Table 8. Let S; denote the event that the adversary outputs 5’ = 1 in game Game;. Let Acc and Acc denote the
event that the key pair (ek, dk) is accurate and inaccurate, respectively.

ssmt-cca

Gamey: This game is the original game EXptKEM,S,

7 (k) with b = 0. The challenge is generated as
(c*,Kp) « S(1¥) x K.

We have

Pr[So] =1- Pr[ExpthnAf\:ig?ﬂ(K) =1|b=0].

Game;: In this game, the ciphertext is set as L if ¢* is in Enc(ek, M). The difference between two games Gameg
and Game; is bounded by statistical disjointness.

|Pr[S()] —Pr[S1]| < DiSjPKE,S(K)‘

Game;y: This game is the same as Game; except that H(s, ¢) in the decapsulation oracle is replace with H, (c)
where Hy : C — K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

[Pr[S1] = Pr[S2]] < 2(gH + gprc) /VIMI,

where g denote the number of queries to Hy, ¢ the adversary makes.

39

Gamejs: This game is the same as Game; except that K* := Hy (c*) instead of chosen random. Since ¢* is always
outside of Enc(ek, M), A cannot obtain any information about H, (c*). Hence, the two games Game and Game3
are equivalent and we have

Pr[Sz] = Pr[S3] .

Gamey: This game is the same as Gamejs except that H, (+) is replaced by H(s, -). As in [XY19, Lemmas 4.1], from
Lemma 2.2 we have the bound

[Pr[S3] — Pr[S4]] < 2(gn + gpec) /VIM.

Games: This game is the same as Gamey except that K* := Dec(dk, ¢*) instead of H(s, ¢*). Recall that ¢* is always
in outside of Enc(ek, M). Thus, we always have Dec(c*) = L or Enc(ek, Dec(c*)) # ¢* and, thus, K* = H(s, ¢*).
Hence, the two games are equivalent and we have

Pr[S4] = Pr[Ss].

Gameg: We finally replace how to compute ¢*. In this game, the ciphertext is chosen by S(1¥) as in Gamey.
The difference between two games Games and Gameg is bounded by statistical disjointness.

|PI'[S5] —PI[S6]| < DiSjPKE,S(K)’

Moreover, this game Gameg is the original game Exptfjé“l\f"céa 2 (k) with b = 1.

Pr[Ss] = Pr[Expt;SEm,jA‘fg?ﬂ(K) =1|b=1].

Summarizing the (in)equalities, we obtain Theorem F.3:
AV S 7 (k) = |Pr[So] — Pr[Ss]|

KEM, S,
< 2Disjpyg, s (k) +4(qn + gpec) /VIM|.

F.3 SCFR-CCA Security

Theorem F.4. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = Ut [PKE, H] is SCFR-CCA-secure in the
OROM.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext ¢ which is decapsulated into K # L by both dko and dki,
that is, Dec(dko,¢) = Dec(dky, ¢). Let us define u; = Dec(dki,c) for i € {0,1}. We also define y; = p! if
¢ = Enc(ek;, u7) and L otherwise.

We have five cases defined as follows:

1. Case 1 (up = p1 # L): This violates XCFR-security of SCFR-CCA-security of the underlying PKE and it is
easy to make a reduction.

2. Case 2 (L # po # u1 # L1): In this case, the decapsulation algorithm outputs K = H(uo, ¢) = H(u1, ¢). Thus,
we succeed to find a collision for H, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 3 (up = L and pg # 1): In this case, the decapsulation algorithm outputs K = H(so,c) = H(ui,c).
Notice that we can replace H(so, -) with Hy () by introducing negligible error (Lemma 2.2). After that, we
find a claw (c, (11, c)) between H, and H. The probability that we find such claw is negligible for any QPT
adversary (Lemma 2.4).

4. Case4(uo # L and uq = L):In this case, the decapsulation algorithm outputs K = H(uo, ¢) = H(s1, ¢). Again,
we can replace H(sy,-) with Hg(-) by introducing negligible error (Lemma 2.2). After that, we find a claw
((to0, ¢), c) between H and Hy. The probability that we find such claw is negligible for any QPT adversary
(Lemma 2.4).

5. Case 5 (The other cases): In this case, we find a collision ((sg, ¢), (s1,¢)) of H, which is indeed collision if
so # 51 which occurs with probability at lease 1—1/2%. The probability that we find such collision is negligible
for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. O

40

Table 9. Summary of Games for the Proof of Theorem G.1. We define g(u) = Enc(ek, i) = Enco(ek, p; G(u)).

Decryption

Game F G < cy K* K condition |justification

H
Gamey H F F(M,R) Enclek, u*) F(u*) H(u*) | H(u) ifco = Enc(ek, u) and ¢; = F(u)
Gamep ;| H F Faood(M, R) Enc(ek, u*) F(u*) H(u*) | H(u) ifco=Enc(ek, u) and ¢y = F(u) |Lemma 2.1 + correctness
Game; [Hgog Fg o8 Faood(M,R) Enc(ek, u*) Fy(cy) Hg(cg)| H(u) if co = Enc(ek, u) and ¢; = F(u) |if key is not bad
Gamey [Hgo0g Fgog Faood(M, R) Enc(ek, u*) Fy(cy) Hg(cg)|Hg(co) if co = Enc(ek, u) and ¢; = F, (o) |if key is not bad
Games |[Hg 0g Fgog Faood(M, R) Enc(ek, u*) Fy(cy) Hg(cg)|Hg(co) if e1 = Fy(co) statistical

Games j[Hy 08 Fgog F(M,R) Enc(ek, u*) Fy(cy) Hg(cg)|Hg(co) if e =Fy(co) Lemma 2.1 + correctness
Gamey [Hyog Fgog F(M,R) S(1%) Fg(cy) Hg(cg)|Hg(co) if 1 = Fy(co) DS-IND

Games [H;og Fgog F(M,R) S(1%) Fy(cox) U(K) |Hg(co) if 1 = Fy(co) statistical disjointness
Games |H;og Fgog F(M,R) S(1%) U(H) U(K) |Hg(co) if ey = Fg(co) statistical disjointness
Games z[Hy 0 g Fg o8 Fgood (M, R) S(1%) U(H) U(K) |Hg(co) if c; = F4(co) Lemma 2.1 + correctness

Games [Hyo0g Fgog Faood(M,R) S(1%) U(H) U(K) |Hq(co) if cg = Enc(ek, u) and ¢; = Fq (cp) |statistical

Game; [Hgyog Fgog Faood(M,R) S(1%) U(H) U(K) | H(u) ifco=Enc(ek, u) and ¢; = F(u) |if key is not bad
Gamey;| H F Feood(M,R) S(1¥) U(H) U(K) | H(u) ifco=Enc(ek, u) and ¢; = F(u) |if key is not bad

Gameg H F F(M, R) S(1%) U(H) U(K) | H(u) ifco=Enc(ek, u)and ¢; = F(u) |Lemma 2.1 + correctness

G Property of HU;,

Let us consider HU3, [JZM19]: Let PKE = (Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space
is M. Let C and K be a ciphertext and key space. Let H be a some finite space. Let H: M — K and F: M — H

be hash functions modeled by random oracles. Let KEM = (Gen, Enc, Dec) = HU. [PKE, H, F] is a KEM scheme
obtained by using HUZ,.

Gen(1¥) Enc(ek) Dec(dk, (co, c1)), where dk = (dk, ek)
(ek,dk) «— Gen(1*) m < M u’ — Dec(dk, cq)
dk = (dk, ek) co := Enc(ek,) if = 1L orco # Enc(ek,u’) orc1 # F(u'[, ek])
return (ek, k) c1 = F(ul, ek]) then return K := L
K :=H(u) else return K := H(u")
return ((cg,c1), K)

G.1 SPR-CCA security:

Theorem G.1. Let PKE = T[PKEo, G]. Suppose that a ciphertext space C of PKE depends on the public param-
eter only. If PKE is strongly disjoint-simulatable with simulator S and §-correct with negligible 6, then KEM =
HU;: [PKE, H, F] is SPR-CCA-secure, where we use a new simulator S’ = S x U(H).

Formally speaking, for any A against the SPR-CCA security of KEM issuing at most qpgc queries to the decapsulation
oracle and g, qG, and qy queries to F, G, and H, respectively, there exist A3y against ciphertext-indistinguishability
of PKE such that

- ds-ind .. 2
Adv;pgl\j,cg,’ﬂ(K) < AvaiE}DM,S,ﬂaq(K) + 2Disjpgg, s(k) +16(gG + gpec +1)76 + 40
+8(gG +qH +qF)*0 +8(4G + qH + F + qDxc + 1)%0

+(2¢pge + 1/IH| + gpec/ (IH| - 1)

Theorem G.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable and §-correct with negligible §, then KEM = HU,J;l[PKE, H, F] is SPR-CCA-secure.

Proof Sketch of Theorem G.1: We use the game-hopping proof. We consider Game; fori =0, . .., 8. We summa-
rize the games in Table 9. Let S; denote the event that the adversary outputs b’ = 1 in game Game;.

We mainly follow the security proof in [JZM19, XY19, LW21], while we use a new simulator 8’ = S x U(H)
instead of 8" = Enc(ek, M) X U(H).

41

ssmt-cca

K) wit = 0. The challenge is generated as
KEM 1 (K) with b The challenge is g d

Gamey: This game is the original game Expt
1 — Mg = Enc(ek, p*; G(p*));] = F(u™).

We have
Pr[So] = 1 - Pr[Exptin (k) = 1| b =0].

Gamey 1: This game is the same as Gamey except that the random oracle G is chosen from Fy04 (M, R) instead
of F (M, R). As in the proof of Theorem 5.1, we have

[Pr[So] — Pr[So.1]] < 8(qG + gprc + 1)26.

In addition, we have Pr[Bad] < ¢ and |Pr[Sy.1] — p| < |Pr[So.1 A =Bad] — p| + 6 for any p € [0, 1].

Game;: This game is the same as Gameg. 1 except that the random oracles H and F are simulated by Hy o g and
Fg o g, respectively, where Hy: C — K and F;: C — H are random oracles and g(u) := Enc(ek, p). If key is not
bad, then those games are equivalent and we have

Pr[So.1 A =Bad] = Pr[S1 A —=Bad].

Game;y: This game is the same as Game; except that the decapsulation oracle internally computes K as Hg (co)
and ¢ as Fg(co). If key is not bad, then those games are equivalent and we have

Pr[S1 A =Bad] = Pr[S2 A —=Bad].

Games: In this game the decapsulation oracle ignores whether ¢y = Enc(ek,) or not. That is, when (co, c1) #
(cp»€1), the oracle returns K = Hg (co) if ¢1 = F4(co).
Let us consider the following cases:

— If ¢o = Enc(ek, p) for some y, then the results are equal.

- If co ¢ Enc(ek, M) and c1 # F4(co), then the results are equal.

— If ¢o ¢ Enc(ek, M) and c1 = F4(co), then the results differ (L in Game; but K = Hg (c) in Games).
The difference occurs when cy is outside of Enc(ek, M) and ¢ = F4(co). Notice that the adversary cannot access
such hash values directly, since it is given F instead of F,. Therefore, any ¢ hits the value F4 (co) with probability
at most 1/|H| and we obtain the bound gpgc/|H|. (If a decapsulation query is quantum, we will get another bound
2qpc(|H[)7V/2.) We have

|[Pr[S2 A =Bad] — Pr[S3 A =Bad]| < gpgc/|H]|.

We also have for any p,
[Pr[S3 A =Bad] — p| < |Pr[S3] — p| + 6.
Games 1: This game is the same as Games except that G is chosen from ¥ (M, R). We have
[Pr[S3] — Pr[S3.1]] < 8(4G +qn +qF +qprc + 1?6

(We note that H, F, DEc, and the challenge ciphertext also query to G internally.)

Gamey: We replace cj = Enc(ek, u*; G(u*)) with ¢ < S(1%). The difference is bounded by the advantage of
ciphertext indistinguishability. We have

[Pr[S3.1] = Pr[Sall < AV, g a1, (-
Games: This game is the same as Gamey except that K* « K instead of K* < Hg(cp).
Suppose that cj is outside of Enc(ek, M) in both games: If so, the adversary cannot access to K* = H,(cp) via
H. Suppose that the adversary queries (co, c1) to DEc. If ¢g = ¢j and ¢1 = c7, then it receives L in both games. If
co = CS andcq # c*l‘, thencq # Fq(c’(;) = c’{ holds and it receives L in both games. Thus, the two games are equal
if ¢, is outside of Enc(ek, M).
Hence, the difference is bounded by the statistical disjointness in disjoint simulatability. We have

[Pr[S4] — Pr[S5]| < Disjpgg,s(«)-

42

Games_1: Here, our proof leaves the proof in [JZM19]. This game is the same as Games_; except that ¢} « U(H)
instead of] := F4(cp).
Recall that the adversary cannot access the real hash value ¢} = F4 (cp) directly if cj is the outside of Enc(ek, M).
When the adversary queries (co, c1) for co # ¢y, there is no leak on Fg(c(). Suppose that the adversary queries
(cg»c1) for DEC.
— In Games, we have] = Fy (c(’;). If c1 = ¢}, then it receives L; otherwise, that is, if c1 # CT’ it also receives L.
- In Games 1, we have ¢} « U(H).
e If ¢} = F4(cp), then this game is the same as Games.
e Suppose thatc] # Fy (c(’;). Ifc; = c], thenitreceives L; otherwise, it receives L ifand onlyif c1 # Fy (cg);
it receives K = Hy (cy) if c1 = F4(cp).
Thus, assuming that cjj is the outside of Enc(ek, M) and ¢} # F4(cp), a value ¢y hits F;(cj) with probability at
most 1/(|H| — 1). We have

[Pr[S5] = Pr[S5.1]| < Disjpgg, s («) + 1/|H| + gppc/ (IH| = 1).
Games ,: This game is the same as Games 1 except that G is chosen from Tgood(M, R). We have

[Pr[Ss.1] — Pr[Ss.2]] < 8(qG +qn +qF)%o.

We also have, for any p,
|[Pr[S5.2] — p| < |Pr[S5.2 A =Bad] — p| + 6.

Gameg: This game is the same as Games 2 except that the decapsulation algorithm checks if ¢ = Enc(ek, i) and
c1 = Fg(co).
Let us consider the following cases for a decapsulation query (co, ¢1):

— If ¢o = Enc(ek, p) for some y, then the results are equal since the key is not bad.

- If ¢o ¢ Enc(ek, M) and c1 # F4(co), then the results are equal.

— If co ¢ Enc(ek, M) and c1 = F4(co), then the results differ (L in Games but K = Hg (c) in Games 3).
The difference occurs when ¢y is outside of Enc(ek, M) and c1 = F4(co). Notice that the adversary cannot access
such hash values directly, since it is given F instead of F. Therefore, any c; hits the value Fg(co) with proba-
bility at most 1/|| and we obtain the bound gpgc/|H|. (If the query is quantum, we will get another bound
2qpec(1H])7!/%.) We have

|Pr[Ss5.2 A =Bad] — Pr[S¢ A =Bad]| < qDEC/|7"{|.

Gamey: This game is the same as Gameg except that the decapsulation oracle use H and F instead of Hy and Fg,
respectively. If the key is not bad, then this is the conceptual change and we have

Pr[S¢ A =Bad] = Pr[S7 A —Bad].

Gamey 1: This game is the same as Gamey except that H and F are modified as the original. If the key is not bad,
then this is the conceptual change and we have

Pr[S7 A =Bad] = Pr[S7.1 A —=Bad].

We also have, for any p,
[Pr[S7.1 A =Bad] — p| < [Pr[S7.1] - p| + 4.

Gameg: This game is the same as Gamey_; except that the random oracle G is chosen from F (M, R). We have
IPr[S7.1] — Pr[Ss]| < 8(¢G + qprc)?0.

We note that this game is the original game Exptipl;;c; (k) with b = 1. We have

Pr[Ss] = Pr[Expt;ngf;(K) =1]|b=1].

43

Summary: Summarizing those (in)equalities, we obtain the following bound:

AdVSKPE&Xf;(K) = |Pr[So] — Pr[Ss]|

ds-ind ..
< AvaT(EDM,S,?(M (k) + 2Disjpi s (k) +16(qG + gDec + 1)%5 + 46

+8(qG +qu +qr)*6 +8(qG + qn + gF + qprc + 1)%0
+(2gpgc + V/IH| + gpsc/(1H| - 1)

G.2 Sparseness

Theorem G.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. Let KEM = HU3 [PKE, H, F].
Let 8’ =S x U(H) be the simulator for SPR-CCA security of KEM. Then, KEM is 1/|H|-sparse.

Proof. Let us consider (¢, c1) < S(1%) x U(H). If ¢ is decrypted into u” # L, then ¢1 = F(u) with probability
at most 1/|H|. Thus, KEM is 1/|H|-sparse. m}

H Property of HU*

In this section, we consider a variant of HU with explicit rejection, HU+*. Let PKE = (Gen, Enc, Dec) be a de-
terministic PKE scheme whose plaintext space is M. Let C and K be a ciphertext and key space. Let H be a
some finite space. Let H: M x C x H — K and F: M — H be hash functions modeled by random oracles.
KEM = (Gen, Enc, Dec) = HUL[PKE, H, F] is defined as follows:

Gen(1%) Enc(ek) Dec(dk, (co, c1)), where dk = (dk, ek)
(ek,dk) «— Gen(1¥) m < M '« Dec(dk, cq)
dk = (dk, ek) co == Enc(ek,) if u’ = L or co # Enc(ek, u”) or c1 # F(u'[, ek])
return (ek, d_k) c1 = F(ul, ek]) then return K := L
K :=H(u,cg,c1) else return K := H(u’, cg, c1)
return ((co, c1),K)

H.1 SPR-CCA security:

Theorem H.1. Let PKE = T[PKEy, G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable with simulator S, then KEM = HUL[PKE, H, F] is SPR-CCA-secure,
where we use the new simulator 8" = S x U(H).

Theorem H.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU [PKE, H, F] is SPR-CCA-secure.

In order to show those proof, we consider the following theorem for indifferentiable reduction, which is obtained
by mimicking that for U}, <> U* in [BHH"19, Theorem 5].

Theorem H.3 (HUi, < HU<L:). Let PKE be a deterministic PKE. Let KEM,, = HU3 [PKE, Hy,, F] and KEM =
HU[PKE, H, F].

1. IfKEM,; is SPR-CCA-secure, then KEM is SPR-CCA-secure also.

2. IfKEM is SPR-CCA-secure, then KEMy,, is SPR-CCA-secure also.

Proof (The first part). Suppose that we have an adversary A against SPR-CCA-security of KEM. We construct an
adversary A, against SPR-CCA-security of KEM,,, with random oracle H,,: M — K as follows: A,;, samples a
fresh random oracle H” « Func(M x C X H,K) and set

Hpm (1) if co = Enc(ek, u) and ¢1 = F(p)
H’(u, co,c1) otherwise.

H(/J? €o, Cl) = {

The simulation is perfect. O

44

Proof (The second part). Suppose that we have an adversary Ay, against SPR-CCA-security of KEM,,,. We construct
an adversary A against SPR-CCA-security of KEM with random oracle H: M x (C x H) — K as follows: A
define

Hp (1) := H(u, Enc(ek,), F()).

This simulation is perfect. O

H.2 Sparseness
KEM = HUL[PKE, H, F] is 1/|#|-sparse as HU;,.

Theorem H.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. Let KEM = HUL[PKE, H, F].
Let S’ = S X U(H) be the simulator for SPR-CCA security of KEM. Then, KEM is 1/|H |-sparse.

Proof. Let us consider (¢, c1) « S(1%) x U(H). If ¢ is decrypted into u” # L, then ¢1 = F(u) with probability
at most 1/|H|. Thus, KEM is 1/|H|-sparse. m}

I Property of HU,’(,',

Let us review H Uﬁl. Let PKE = (Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space is M. Let C
and K be a ciphertext and key space. Let H be a some finite space. Let H: M — K, Hp,: {0, M xCxH - K,

and F: M — H be hash functions modeled by random oracles. KEM = (Gen,E_nc, D_ec) = HU#1 [PKE,H,F, Hprf]
is defined as follows:

Gen(1¥) Enc(ek) Dec(dk, (co, 1)), where dk = (dk, ek, s)
(ek, dk) < Gen(1¥) m— M u’ — Dec(dk, cq)
s « {0, 1}[¢o = Enc(ek, m) if = 1L orco # Enc(ek,u’) or ¢y # F(u'[, ek])
Tk = (dk, ek, 5) c1 = F(ul, ek]) then return K := Hp,¢ (s, (co, 1))
— K :=H = 4
return (ck, dk) (1) else return K := H(u")
return ((cg, c1), K)

I.1 SPR-CCA Security

Bindel et al. showed that if KEM* = Uz [PKE, H] is IND-CCA-secure then KEME = Uf‘n[PKE, H, Hprf] is also
IND-CCA-secure [BHH" 19, Theorem 3] by overwriting L from the decapsulation query ¢ with the PRF value
Hpif (s, ¢). The same indifferentiable reduction can be applied to SPR-CCAsecurity and the case for HU;: and

H U,’fl and obtain the following theorem.

Theorem 1.1 (HU;, — HU#). Let PKE be a deterministic PKE. Let KEMY = HU; [PKE, H,F] and KEMt =
HU,’fl [PKE, H, F, Hpf]. IfKEM< is SPR-CCA-secure, then KEMZ is also SPR-CCA-secure.

Proof. Suppose that we have an adversary A against SPR-CCA-security of KEM. We construct an adversary A’
against SPR-CCA-security of KEM™ as follows: Given an encapsulation key ek, a target ciphertext (cj, ¢7), and a
key K}, A" samples a fresh seed s <~ M. It runs A on input ek, (cj, ¢}), and K. If A queries a ciphertext (co, ¢1)
to the decapsulation oracle, then A’ queries the ciphertext (cg, ¢1) and receives K. If K # L, then it returns K to
A; Otherwise, it queries (s, (co, c1)) to the random oracle Hprf, receives IE', and returns K to A. If A outputs b’
and halts, then A’ also outputs b” and halts.

This simulation is clearly perfect and the theorem follows.]

Apply the above indifferentiable reduction with Theorem 1.2 and Theorem 1.3, we obtain the following theorems:
Theorem 1.2. Let PKE = T[PKEy, G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable with simulator S, then KEM = HU;&,[PKE, H, F, Hpif] is SPR-CCA-
secure, where we use the new simulator S’ = S x U(H).

Theorem 1.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly

disjoint-simulatable, then KEM = HU;‘;l[PKE, H, F, Hprf] is SPR-CCA-secure, where we use the new simulator S’ =
S X U(H).

45

Table 10. Summary of Games for the Proof of Theorem L4: Enc’(ek, M) = {(co, c1) = (Enc(ek,m),F(u) | m € M}. ‘S(1%) x
U(H) \ Enc’(ek, M)’ implies that the challenger generates c; < S(1%), ¢} < H and returns L if (¢, ¢]) € Enc’(ek, M).

Decryption
Game |H F cy ¢y K* valid (o, ¢1) invalid (co, ¢1) |justification
Gameg |H F S(1) U(H) U (%) H(p) Hprf (s, co, €1)
Game; [H F S(1%) \ Enc(ek, M) U (‘H) U(K) H(u) Hprf (s, co, 1) |statistical disjointness
Gamey [H F S(1%) \ Enc(ek, M) U (‘H) U (K) H(w) Hg (co,c1) |Lemma 2.2
Games |H F S(1¥) \ Enc(ek, M) U (‘H) Hy (cg, ct) H(w) Hg (co,c1) |Hg(cg, cy) is hidden
Gamey |H F S(1%) \ Enc(ek, M) U(H) Hpi(s, ¢y, 1) H(u) Hprf (5, o, €1) |Lemma 2.2
Games |H F S(1%) \ Enc(ek, M) U (H) Dec(dk, (c5-¢1)) H(w) Hpi (s, co, 1) |re-encryption check
Gameg|H F S(1%) U (H) Dec(dk, (c5-c1)) H(w) Hpif (5, co, 1) |statistical disjointness

.2 SSMT-CCA Security

Theorem 1.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly

disjoint-simulatable, then KEM = HU;Ln[PKE, H, F, Hprf] is SSMT-CCA -secure.
Formally speaking, for any A, we have

A dvssmt-cca

KEM, A (K) < 2DiSjPKE,S(K) + 4(qurf + qDEC) : 27'5/2~

The security proof is essentially same as that for SXY (Theorem 5.3). Note that this security proof is irrelevant to
PKE is deterministic PKE or one derandomized by T.

Gamey: This game is the original game ExptsKSE“,\f"’C;‘(K) with b = 0. The challenge is generated as

(cg. c7. Kg) — S(1*) x U(H) x K.
We have
Pr[So]l =1- Pr[Exptisén,\f"i;?(K) =1|b=0].

Game;: In this game, the ciphertext is set as L if ¢ is in Enc(ek, M).
The difference between two games Gamey and Game; is bounded by statistical disjointness.

[Pr[So] — Pr[S1]| < Disjpkg,s(k)-

Game;: This game is the same as Game; except that Hpif (s, ¢, d) in the decapsulation oracle is replace with
Hg (co,c1) where Hy: C x H — K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

Pr[$1] - Pr[S2]| < 2(qn,,; +qpec) - 2%,

where g ¢ denote the number of queries to H,,f the adversary makes.

Gamejs: This game is the same as Game; except that K* := H,(cg, ¢]) instead of chosen random. Since cj is
always outside of Enc(ek, M), A cannot obtain any information about Hy (cg, ¢]) via the decapsulation oracle.
Hence, the two games Gamey and Games are equivalent and we have

Pr[S,] = Pr[Ss].

Gamey: This game is the same as Games except that Hg (-, -) is replaced by Hpre(s, -, +). As in [XY19, Lemmas 4.1],
from Lemma 2.2 we have the bound

|Pr[S3] = Pr[Sa]| < 2(qh,; + qpsc) - 2772

Games: This game is the same as Gamey except that K* = Dec(dk, (cgs €1)) instead of Hy,i¢(s, ¢y, ¢7). Recall
that cj) is always in outside of Enc(ek, M). Thus, we always have Dec(cy) = L or Enc(ek, Dec(cy)) # c; and, thus,
K* = Hprf(S, CS’ c’{). Hence, the two games are equivalent. We have

PI[S4] = Pr[S5] .

46

Gameg: We finally replace how to compute (cj, ¢7). In this game, the ciphertext is chosen by S(1¥) x U(H) as
in Gameyg.
The difference between two games Games and Gameg is bounded by statistical disjointness.

[Pr[Ss] — Pr[S]| < Disjpkg, (k).

Moreover, this game Gameg is the original game Exptfénl\f\"c;?(l() with b = 1.

Pr[S¢] = Pr[ExptSnglAf\:f;;*(K) =1|b=1].

Summarizing the (in)equalities, we obtain Theorem I.4:
AdVRER 5 (k) = [Pr[So] = Pr[Se]|

< 2DisjPKE’3(K) + 4(qurf + ¢Dgc) * 2712,

I.3 SCFR-CCA Security

Theorem L.5. IfPKE is XCFR-secure or SCFR-CCA-secure, then KEM = H Uﬁ [PKE, H, F, Hyyf] is SCFR-CCA-secure
in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext ¢ = (co, c1) which is decapsulated into K # L by dko and
dk1, that is, Dec(dko, ¢) = Dec(dki, c). Let us define u; = Dec(dk;, co) for i € {0,1}. We also define y; = p if
co = Enc(ek;, p7) and ¢1 = F(p7), and L otherwise.
We have five cases defined as follows:
1. Case 1 (up = pg # L): This violates XCFR-security or SCFR-CCA-security of the underlying PKE.
2. Case 2 (L # po # p1 # L): In this case, the decapsulation algorithm outputs K = H(ug) = H(u1) and we
succeed to find a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).
3. Case3 (uo = L and u1 # L): In this case, the decapsulation algorithms output K = H¢(s0, co, ¢1) and H(u1)
and we find a claw ((so, co, ¢1), #1) of Hprf and H. The probability that we find such claw is negligible for
any QPT adversary (Lemma 2.4).
4. Case 4 (uo # L and py = L1): In this case, the decapsulation algorithms output K = H(uo) = Hpif(s1, co, c1)
and we find a claw (go, (51, co, 1)) of H and Hp,¢. The probability that we find such claw is negligible for
any QPT adversary (Lemma 2.4).
5. Case 5 (The other cases): In this case, the decapsulation algorithms output K = Hprf(so, cp,C1) = Hprf(S1, cp,C1)
and we find a collision ((sg, co, c1), (51, o, 1)) of Hprf if 5o # s1. The probability that we find such collision
is negligible for any QPT adversary (Lemma 2.3).
We conclude that the advantage of the adversary is negligible in any cases. O

If we add ek to F’s input, we can reduce the assumption on PKE.

Theorem 1.6. Let Colgen be the event that when generating two keys (ek;, dk;) <« Gen(1¥) fori € {0,1}, they
collides, that is, ekg = ekj. If Pr[Colgen] is negligible, then KEM = HU;i‘,[PKE, H, F, Hpif] with c1 = F(u, ek) is
SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext ¢ = (co, ¢1) which is decapsulated into K # L by dko and
dks, that is, Dec(dko, ¢) = Dec(dki, c). Let us define u; = Dec(dk;, co) for i € {0,1}. We also define y; = p] if
co = Enc(ek;, pj) and ¢1 = F(p/, ek;), and L otherwise.
We consider six cases defined as follows:
1. Case 1-1 (1o = 1 # L and ekg = ekq): This case rarely occurs since Pr[Colgen] is negligible.
2. Case 1-2 (o = p1 # L and eky # eki): In this case, we have d = F(u, eko) = F(u1, ek1) with (ug, eko) #
(u7, ek1) and we succeed to find a collision for F, which is negligible for any QPT adversary (Lemma 2.3).
3. Case 2 (L # po # 1 # L): In this case, the decapsulation algorithm outputs K = H(uo) = H(u1) and we
succeed to find a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).

47

4. Case3(uo = Land py # L):Inthis case, the decapsulation algorithms output K = Hp (0, co, c1) and H(u1)
and we find a claw ((so, co, ¢1), 1) of Hp¢ and H. The probability that we find such claw is negligible for
any QPT adversary (Lemma 2.4).

5. Case 4 (4o # L and py = L): In this case, the decapsulation algorithms output K = H(po) = Hp(s1, co, ¢1)
and we find a claw (o, (s1, co, ¢1)) of H and H,s. The probability that we find such claw is negligible for
any QPT adversary (Lemma 2.4).

6. Case 5 (The other cases): In this case, the decapsulation algorithms output K = Hprf(so, cp,C1) = Hprf(31, cp,C1)
and we find a collision ((sg, co, 1), (51,0, 1)) of Hprf if so # s1, which occurs with probability at least
1 —1/2%. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. O

J Property of HUAP'f

Next, we consider a variant of HU with implicit rejection, H U’L’prf, which is used in Classic McEliece. Let PKE =
(Gen, Enc, Dec) be a deterministic PKE scheme whose plaintext space is M. Let C and K be a ciphertext and key
space. Let H be a some finite space. Let H, Hpr: M X C x H — K and F: M — H be hash functions modeled

by random oracles. KEM = (Gen, Enc, Dec) = HU*L’prf[PKE, H, F, Hpf] is defined as follows:

Gen(1%) Enc(ek) Dec(dk, (o, c1)), where dk = (dk, ek, 5)
(ek,dk) — Gen(1*) pue M u’ — Dec(dk, co)
se—M co = Enc(ek,) if = L or ¢ # Enc(ek, u’) or c1 # F(u’[, ek])
dk = (dk, ek, 5) c1 = F(ul, ek]) then return K := H,¢(s, co, ¢1)
return (ek, dk) K ==H(u, co, c1) else return K := H(u’, g, c1)

return ((co, c1), K)

J.1 SPR-CCA Security

Theorem J.1. Let PKE = T[PKEg, G]. Suppose that a ciphertext space C of PKE depends on the public parameter only.
IfPKE is strongly disjoint-simulatable with simulator S, then KEM = HUL-P[PKE, H, F, Hpif] is SPR-CCA-secure,
where we use the new simulator 8’ = S x U(H).

Theorem J.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU*L’prf[PKE, H, F, Hprf] is SPR-CCA-secure, where we use the new simulator
S =S xU(H).

In order to show those theorems, we want to invoke the following theorem for indifferentiable reduction, which
is obtained by mimicking that for U,’f1 & U4Prf in [BHH* 19, Theorem 5], and apply it to Theorem 1.2 and Theo-
rem L.3.

Theorem J.3 (HUA: < HUAP™Y). Let PKE be a deterministic PKE. Let KEM,, = HUﬁ,[PKE,Hm,F,Hprf] and

KEM = HULPT[PKE, H, F, H).
1. IfKEM,y is SPR-CCA-secure, then KEM is SPR-CCA-secure also.
2. IfKEM is SPR-CCA-secure, then KEMy,, is SPR-CCA-secure also.

The proof is the same as that of Theorem H.3 and we omit it.

J.2 SSMT-CCA Security

Theorem J.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU*L’prf[PKE, H, F, Hprf] is SSMT-CCA-secure.
Formally speaking, for any A, we have

AdviEm st (k) < 2Disjpye, s (K) +4(qH,,; + gDec) - 2702,

The security proof is the same as that for H U;ﬁ (Theorem 1.4) and we omit it.

48

J.3 SCFR-CCA Security

Theorem J.5. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = HUL-P[PKE, H, F, Hpif] is SCFR-CCA-
secure in the quantum random oracle model.

Theorem J.6. Let Colgen be the event that when generating two keys (ek;, dk;) «— Gen(1¥) fori € {0, 1}, they
collides, that is, eko = eky. If Pr[Colgen] is negligible, then KEM = HU4-Pf[PKE, H, F, Hprf] with c1 = F(u, ek) is
SCFR-CCA-secure in the quantum random oracle model.

The security proofs are the same as those for HUA-P' (Theorem 1.5 and Theorem 1.6) and we omit them.

K Property of HU*

Next, we consider another variant of HU with implicit rejection, HUZ. Let PKE = (Gen, Enc, Dec) be a deter-
ministic PKE scheme whose plaintext space is M. Let C and K be a ciphertext and key space. Let H be a
some finite space. Let H: M x C x H — K and F: M — H be hash functions modeled by random oracles.
KEM = (Gen, Enc, Dec) = HU% [PKE, H, F] is defined as follows:

Gen(1¥) Enc(ek) Dec(dk, (co, c1)), where dk = (dk, ek, s)
(ek,dk) <« Gen(1*) u—M '« Dec(dk,)
s M co = Enc(ek,) if u’ = L orco # Enc(ek, u’) or c1 # F(u'[, ek])
= (dk, ek, s) c1 = F(ul, ek]) then return K := H(s, cg, c1)
return (ek,ﬁc) K :=H(u,cp,c1) else return K := H(u', co, c1)
return ((cg, ¢1), K)

K.1 SPR-CCA security:

Theorem K.1. Let PKE = T[PKEq, G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable with simulator S, then KEM = HU#[PKE, H, F] is SPR-CCA-secure,
where we use the new simulator 8’ = S X U(H).

Theorem K.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU* [PKE, H, F] is SPR-CCA-secure.

Hence, we use [BHH*19, Theorem 3] here.

Theorem K.3 (HUL — HU#). Let PKE be a deterministic PKE. Let KEML = HUL[PKE, H, F] and KEM% =
HUL [PKE, H, F]. IFKEM* is SPR-CCA-secure, then KEM£ is also SPR-CCA-secure.

Proof. Suppose that we have an adversary A against SPR-CCA-security of KEM%. We construct an adversary A’
against SPR-CCA-security of KEM™ as follows: Given an encapsulation key ek, a target ciphertext (cy, ¢7), and a
key K}, A" samples a fresh seed s < M. It runs A on input ek, (cj, ¢]), and K. If A queries a c1phertext (co,c1)
to the decapsulation oracle, then A’ queries the ciphertext (cg, ¢1) and recelves K.If K # 1, then it returns K to
A; Otherwise, it queries (s, co, ¢1) to the random oracle H, receives K, and returns K to A. If A outputs b’ and
halts, then A’ also outputs b’ and halts.

This simulation is clearly perfect and the theorem follows. O

K.2 SSMT-CCA Security

Theorem K.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU+ [PKE, H, F] is SSMT-CCA-secure.
Formally speaking, for any A, we have

Adv ??ARC;?(K) < 2Disjpgg, s (k) +4(qH + gprc) /VIMI.

The security proof is essentially same as that for SXY (Theorem 5.3). Note that this security proof is irrelevant to
PKE is deterministic PKE or one derandomized by T.

49

Table 11. Summary of Games for the Proof of Theorem K.4: ‘S(1%) \ Enc(ek, M)’ implies that the challenger generates ¢y «
S(1%), CT «— H and returns L if CS € Enc(ek, M).

Decryption

Game |H F cy ¢y K* valid (co, ¢1) invalid (¢, ¢1) ‘justiﬁcation
Gamey|H F S(1%) U (H) U (K) H(u, co,c1) H(s,co,c1)
Game;|H F S(1%) U (H) U (K) H(u, co,c1) Hg(co,c1) |Lemma2.2
Game; |H F S(1¥) \ Enc(ek, M) U (H) U (K) H(u, co,c1) Hg(co,c1) |statistical disjointness
Games [H F S(1¥) \ Enc(ek, M) U (‘H) Hy (cg 1) H(u, co,c1) Hg(co,c1) [Hg(cg,cl) is hidden
Gamey|H F S(1%) \ Enc(ek, M) U(H) H(s,cg,¢y) H(u, co, c1) H(s,co,c1) |Lemma 2.2
Games |H F S(1%) \ Enc(ek, M) U (H) Dec(dk, (cg-¢1)) | H(u, co,c1) H(s,co,c1) |re-encryption check

H

Gameg|H F S(1%) U (‘H) Dec(dk, (cg-¢1)) | H(u, co,c1) H(s,co,c1) |statistical disjointness

Gamey: This game is the original game EXptSKS?,\;\:C‘%i(K) with b = 0. The challenge is generated as

(cprc1, Kp) — S(1*) x U(H) x K.
We have
Pr[So] =1- Pr[Exptisén,\f"’C;i(K) =1|b=0].

Gamej: This game is the same as Gamey except that H(s, ¢g,c1) in the decapsulation oracle is replace with
Hg (co, ¢1) where Hy : CxH — % is another random oracle. As in[JZC*18, Theorem 1] and [XY19, Lemmas 4.1],
from Lemma 2.2 we have the bound

[Pr[S1] = Pr[S2]] < 2(gH + gprc) /VIMI,

where g denote the number of queries to H the adversary makes.

Game;: In this game, the ciphertext is set as L if ¢ is in Enc(ek, M).
The difference between two games Game; and Game; is bounded by statistical disjointness.

[Pr[S1] — Pr[S2]| < Disjpgg,s(«)-

Gamej: This game is the same as Game; except that K* := Hg(cg, ¢]) instead of chosen random. Since ¢} is
always outside of Enc(ek, M), A cannot obtain any information about Hy(cg, ¢]) via the decapsulation oracle.
Hence, the two games Game; and Games are equivalent and we have

Pr[S,] = Pr[Ss].

Gamey: This game is the same as Games except that Hy (-, -) is replaced by Hpe (s, -,). Asin [JZC*18, Theorem 1]
and [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

[Pr[S3] — Pr[S4]| < 2(qH + gDrc)/VIMI,

Games: This game is the same as Gamey except that K* := Dec(dk, (cg»c7)) instead of H(s, cj, ¢]). Recall that
¢y is always in outside of Enc(ek, M). Thus, we always have Dec(cj) = L or Enc(ek, Dec(cy)) # c; and, thus,
K* = H(s, c(’;, CT) Hence, the two games are equivalent. We have

PI'[S4] = PI'[Ss] .

Gameg: We finally replace how to compute (cg, ¢]). In this game, the ciphertext is chosen by S(1¢) x U(H) as
in Gamey.
The difference between two games Games and Gameg is bounded by statistical disjointness.

[Pr[S5] — Pr[Se]| < Disjpkg.s(x)-

Moreover, this game Gameg is the original game EXptf(SEnAE‘ﬁ;?(K) with b = 1.

Pr[S¢] = Pr[Exptf(sglAf"C;?(K) =1|b=1].
Summarizing the (in)equalities, we obtain Theorem K.4:
Advisén,\f‘_’c;[a(K) = |Pr[So] — Pr[Se]|

< 2Disjpke, s (k) +4(gn + gpec) /VIMI.

50

K.3 SCFR-CCA Security

Theorem K.5. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = HUﬁ1 [PKE, H, F] is SCFR-CCA-secure in
the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext ¢ = (co, ¢1) which is decapsulated into K # L by dko and
dk, that is, Dec(dko, ¢) = Dec(dki, c). Let us define u; = Dec(dk;, co) for i € {0,1}. We also define y; = p] if
co = Enc(ek;, u7) and ¢1 = F(u]), and L otherwise.

We have five cases defined as follows:

1. Case 1 (up = p1 # L1): This violates XCFR-security or SCFR-CCA-security of the underlying PKE.

2. Case2(L # po # u1 # L): Inthis case, the decapsulation algorithm outputs K = H(uo, co, c1) = H(u1, co, ¢1)
and we succeed to find a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 3 (uo = L and g1 # 1): In this case, the decapsulation algorithms output K = H(so, co,c1) and
H(u1, co, c1). As in the proof of Theorem F.3, we can replace H(so, -, -) with Hg (-, -) by introducing negligible
error (Lemma 2.2). After that, we find a claw ((co, c1), (i1, co, c1)) between H, and H. The probability that
we find such claw is negligible for any QPT adversary (Lemma 2.4).

4. Case 4 (o # L and pg = L): In this case, the decapsulation algorithms output K = H(uo, co,c1) =
H(s1, co, c1). This follows as Case 3.

5. Case 5 (The other cases): In this case, the decapsulation algorithms output K = H(s¢, co, c1) = Hprf(Sl, co,C1)
and we find a collision ((so, co, c1), (51, co, c1)) of Hif 59 # 51, which occurs with overwhelming probability
1 — 1/| M|. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. O

If we add ek to F’s input, we can reduce the assumption on PKE.

Theorem K.6. Let Colgen be the event that when generating two keys (ek;, dk;) < Gen(1¥) fori € {0, 1}, they
collides, that is, eky = eki. If Pr[Colgen] is negligible, then KEM = HU’L[PKE, H, F, Hprf] with ¢1 = F(u, ek) is
SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext ¢ = (co, ¢1) which is decapsulated into K # L by dko and
dk1, that is, Dec(a'ko ¢) = Dec(dky, ¢). Let us define u; = Dec(dk;,co) for i € {0,1}. We also define u; = p if
co = Enc(ek;, u}) and ¢1 = F(u!, ek;), and L otherwise.

We consider six cases defined as follows:

1. Case 1-1 (1o = u1 # L and ekg = ekq): This case rarely occurs since Pr[Colgen] is negligible.

2. Case 1-2 (o = p1 # L and eky # eki): In this case, we have d = F(u, eko) = F(uj, ek1) with (ug, eko) #
(u7, ekq) and we succeed to find a collision for F, which is negligible for any QPT adversary (Lemma 2.3).

3. Case2(L # uo # p1 # L): Inthis case, the decapsulation algorithm outputs K = H(uo, co, ¢1) = H(u1, co, 1)
and we succeed to find a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).

4. Case 3 (o = L and pug # L1): In this case, the decapsulation algorithms output K = H(so, co,c1) and
H(u1, co, ¢1). As in the proof of Theorem F.3, we can replace H(so, -, -) with Hg (-, -) by introducing negligible
error (Lemma 2.2). After that, we find a claw ((co, c1), (i1, co, c1)) between Hy and H. The probability that
we find such claw is negligible for any QPT adversary (Lemma 2.4).

5. Case 4 (o # L and 3 = L): In this case, the decapsulation algorithms output K = H(uo,co,c1) =
H(s1, co, ¢1). This follows as Case 3.

6. Case 5 (The other cases): In this case, the decapsulation algorithms output K = H(so, co,c1) = H(s1, co, 1)
and we find a collision ((so, co, c1), (51, o, c1)) of H if 59 # s1, which occurs with overwhelming probability
1 — 1/| M|. The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. O

51

Table 12. Parameter sets of Classic McEliece in Round 3. Note that ¢ = 2" and k = n — mt. (We omit the semi-systematic forms.)

parameter sets m n t k

kem/mceliece348864 |12 3488 64 2720
kem/mceliece460896 |13 4608 96 3360
kem/mceliece6688128|13 6688 128 5024
kem/mceliece6960119|13 6960 119 5413
kem/mceliece8192128|13 8192 128 6528

L Classic McEliece

Review of Classic McEliece: Classic McEliece [ABC*20] is based on the Niederreiter PKE, in which a public key
is a scrambled parity-check matrix, a plaintext is an error vector, and a ciphertext is a syndrome. See Table 12 for
concrete parameter values (we omit semi-systematic ones).
Define S = {e € F} : HW(e) = t}, which is a plaintext space. Let I,,_4 be an identity matrix of dimension
n— k. The underlying PKE of Classic McEliece, which we call CM-DPKE, is summarized as follows, where we only
consider the systematic form and omit the details for the semi-systematic form:
- Gen(1¥): Choose a monic irreducible polynomial g in Fy[x] of degree ¢ and distinct ay,...,a, < Fy.
Compute a parity-check matrix H € Fng of the Goppa code generated by g and a1, . . ., @,. Reduce H to

systematic form [[,,_g | T]. (If this fails, return L). Output ek := T € Fg”_k)Xk and dk = (T,TI'), where
I == (g,@1,...,@,). We note that using I, one can correct an error of the codeword up to ¢, because the
minimum distance of the Goppa code is at least 2¢ + 1 by design.

— Enc(ek,e € S): Define H := [I,,_; | T] € an—k)xn. Compute ¢ := He € IF’Z“k. Output c.

- Dec(dk, c): Extend ¢ to v := (c,0,...,0) € F}. Find the unique codeword ¢ in the Goppa code defined by I"
that satisfies HW(¢ —v) < t.Sete := v + ¢. If HW(e) =t and ¢ = He, then return e. Otherwise, return L.
Classic McEliece applies H U£-Pf to CM-DPKE, where H(y, co, 1) = SHAKE256256(0x01, lcollc1) Hpre (s, co, 1) =

SHAKE256256(0x00, s||collc1) F(e) = SHAKE256256(0x02, €):

Gen(1%) Enc(ek) Dec(dk = (dk.s). (co. 1))

(ek, dk) < Gen(1¥) e « FixedWeight() e := Dec(dk, co)

s —F} co = Enc(ek, e) if e = 1 then return K := H¢(s, co, ¢1)

ek =T, dk := (dk,s) ¢1:=F(e) if c1 # F(e) then return K := Hp(s, co, 1)
return (ek, dk) K =H(e,co,c1)) else return K := H(e, cg, c1)

return ((co, ¢1), K)

L.1 Classic McEliece is not collision-free

Let efixeq = (11,0"7") and cfigeq = (17,0"%7%). We have 1 < mt = n — k for all parameter sets of Classic
McEliece. Grubbs et al. observed that for any public key T, cfieq := (1,07 %=1} is a valid ciphertext of plaintext
efixed = (11,0™77), because H - efixed = [In—k | T] " €fixed = €fixed = Cfixed- Hence, Classic McEliece is not collision
free.

Salvaging Collision-Freeness of Classic McEliece: Let us consider Grubbs et al. [GMP21, Section 5.1] suggested
a variant of HU with implicit rejection, in which F takes u and ek as input, but they did not recommend it since
ek = T of Classic McEliece is relatively large. (We can show its security as Theorem K.6.) Instead, we can use a
variant of HU with implicit rejection, in which F takes u and Hash(ek) as input. We can show its strong collision-
freeness assuming that the probability that two independent encryption keys collide is negligible.

Theorem L.1 (SCFR-CCA-security of modified Classic McEliece). The modified Classic McEliece is SCFR-CCA-
secure in the QROM.

52

Theorem L.2. Let Colgen be the event that when generating two keys (ek;, dk;) < Gen(1%) fori € {0, 1}, they
collides, that is, ekg = eky. IfPr[Colgen] is negligible, then the modified Classic McEliece is SCFR-CCA-secure in the
OROM.

Proof. Suppose that an adversary outputs a ciphertext ¢ = (¢, ¢1) which is decapsulated into K # L by dko and
dky, that is, Dec(dko, ¢) = Dec(dky, ¢). Let us define el = Dec(dk;, co) for i € {0,1}. We also define ¢; = e if
co = Enc(ek;, ¢]) and c¢1 = F(e], Hash(ek;)), and L otherwise.

We consider seven cases defined as follows:

1. Case 1-1 (eg = €1 # L and eky = ekj): This case rarely occurs since Pr[Colgen] is negligible.

2. Case1-2(eg = e1 # L, eko # ek1, and Hash(eky) = Hash(ekq)): In this case, we have Hash(eky) = Hash(ekq)
with eky # ek; and we succeed to find a collision for Hash, which is negligible for any QPT adversary
(Lemma 2.3).

3. Case 1-3 (eg = e1 # L, eko # eky, and Hash(eky) # Hash(eky)): In this case, we have d = F(eg, Hash(ekp)) =
F(e1,Hash(eky)) with (eg, Hash(ekg)) # (e1, Hash(ek;)) and we succeed to find a collision for F, which is
negligible for any QPT adversary (Lemma 2.3).

4. Case 2 (L # eg # €1 # L): In this case, the decapsulation algorithm outputs K = H(ep) = H(e1) and we
succeed to find a collision for H or F, which is negligible for any QPT adversary (Lemma 2.3).

5. Case 3 (eo = L and e; # L): In this case, the decapsulation algorithms output K = H¢(so0, co, c1) and
H(e1, co, ¢1) and we find a claw ((s¢, co, 1), (e1,cg,c1)) of Hpr and H. The probability that we find such
claw is negligible for any QPT adversary (Lemma 2.4).

6. Case 4 (o # L and e; = 1): In this case, the decapsulation algorithms output K = H(eq,cp,c1) =
Hprf(S1, ¢o,c1) and we find a claw ((eg, ¢g, c1), (51, co, 1)) of H and Hpf. The probability that we find such
claw is negligible for any QPT adversary (Lemma 2.4).

7. Case 5 (The other cases): In this case, the decapsulation algorithms output K = Hy, (0, co, ¢1) = Hpif(s1, €0, 1)
and we find a collision ((sg, co, 1), (51,0, c1)) of Hprf if so # s1, which occurs with probability at least
1 —1/2". The probability that we find such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. O

L.2 Security

Assumption:

Definition L.1. Fix the parameter set. We define a random key-generation algorithm RandGen(pp) as follows: Choose
H— U(IFE’XI‘), reduce H to systematic form [L,_i | T] (if this fails, resample), outputs T € an_k)Xk
~ The modified PR-Key assumption: It is hard to distinguish T and T, where (T, sk) « Gen(1%) and T «
RandGen(pp).
— The modified Decisional Syndrome Decoding assumption: It is hard to distinguish (T, [Li_x | T1-¢) from (T, u)
withT « RandGen(pp), e « FixedWeight(), and u « U(Fg_k).

Security: Assuming the modified PR-Key assumption and the modified Decisional Syndrome Decoding assump-
tion, it is easy to show that CM-DPKE is ciphertext-indistinguishable in the sense of disjoint simulatability. Since
2" = [F§| > (}) = IS| = [Enc(ek, M)|, it has statistical disjoitness. Thus, CM-DPKE is strongly disjoint-
simulatable. Applying our theorem for H U£-P' we can conclude that Classic McEliece is strongly pseudorandom

and smooth under those assumptions.

L.3 Summary

We show that
— CM-DPKE is strongly disjoint-simulatable under the modified PR-Key assumption and the modified Deci-
sional Syndrome Decoding assumption.
— Thus, Classic McEliece is SPR-CCA-secure and SSMT-CCA-secure in the QROM. (Theorem K.2, Theorem K.4)
— Classic McEliece is ANON-CCA-secure. (Theorem 3.1)
- Classic McEliece leads to ANON-CCA-secure hybrid PKE. (Theorem 4.2, Theorem 3.1)
If we use modified Classic McEliece, then it is SCFR-CCA-secure in the QROM. This implies that the modified
Classic McEliece leads to SROB-CCA-secure PKE (Theorem 2.2).
Grubbs et al. [GMP21] discussed the barrier to show anonymity of hybrid encryption based on Classic McEliece,
since Classic McEliece is not collision free. We avoid this barrier by using SPR-CCAsecurity.

53

M Kyber

Review of Kyber in Round 3: Kyber [SAB*20] is a KEM scheme based on the Module LWE problem. We briefly
review the underlying PKE scheme of Kyber. See Table 13 for concrete parameter sets.

Table 13. Parameter sets of Kyber in Round 3.

parameter sets| n k qgn n2dy dy

Kyber512 256 23329 3 2 10 4
Kyber768 256 33329 2 2 10 4
Kyber1024 256 43329 2 2 11 5

Define R = Z[x]/(x"" + 1) and Ry = Z4[x]/(x" + 1). For a positive integer 17, we define a central-binomial
distribution ¥y, as (a1, b1,...,ay, by) < {0, 1}2" and return Z? (@i = b;). For a polynomial P € R, P < ¥
implies each coefficient of the polynomial is chosen from ¥;; independently.

For x € Z, we define two functions: comp,, (x,d) = [(Zd/q) -xJ mod* 29 and decomp,, (x,d) = |—(q/2d) ~xJ.

For x = (x1,...,Xx) € 7% with some k, we define compq(x, d) = (compq(xl,d),...,compq(xk,d)) and
decompq(x, d) = (decompq(xl,d), ..., decomp, (xg,d))

We have |(x — decomp,, (comp,, (x, d), d)) mod* q’ < [q/Zd"'lJ, We also note that comp, (x,1) = 1if [x mod*

q| < [q/4] and 0 otherwise.
The underlying PKE scheme of Kyber, Kyber-PKE, is summarized as follows:
- Gen(pp): A « RSX" and (dk,d) « (‘P,];l)z. Compute B := A - dk + d. Output ek := (A, B) and dk.
— Enc(ek, p): Sample t «— ‘I’,];l, e — ‘P,’;z, and f « ¥,. Compute (U, V) := (tA+e,tB+f+[q/2]-n) € ‘Rgxﬂq.
Output (U, V’) = (comp, (U, dy), comp, (V,dy)).
- Dec(dk, (U’,V’)): Compute (U, V) := (decompq(U', dy), decomp,, (V’,dy)). Output u” == comp, (V-U -
dk, 1).
We next c)onsider an intermediate PKE scheme PKEy = (Geny, Encg, Decy) where the encryption algorithm uses
pseudorandomness, which we call Kyber-PKE-PRG:
= Geng(pp) = Gen(pp):

— Enco(ek, u;r): Use p; = SHAKE256x (r,i) for i = 0,1,..., to sample t « Y’,];I, e — 5”,];2, and f « ¥,

where X = 211 or 2n,. Compute (U,V) = (tA+e,tB+ f+[q/2] - n) € Rg X Ry. Output (U, V') :=
(comp, (U, dy), comp, (V,dy)).
— Deco(dk, (U, V)) = Dec(dk, (U, V)):
Kyber applies FO%’ to Kyber-PKE-PRG, where H’ = SHA3-256, G(u, h) = SHA3-512, and H = SHAKE256x with
unspecified output bits X:

Gen(1¥) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, h, 5)
(ek, dk) — Geng(1¥) u « {0,1}{™) u’ = Deco(dk, c)
h « H’(ek) w=H(u) (K',r") = G(u", h)
s — {0,1}{® (K,7r) :=G(u,H'(ek)) ¢’ :=Encq(ek,u’;r")
Tk = (dk, ek, I, 5) ¢ = Enco(ek, u;r) if ¢ = ¢/, then return K := H(K’, H’(¢))
— K =H(K,H (¢ 1 t K :=H(s,H (¢
return (¢k,) (() else return (s,H"(¢))
return (¢, K)

Security: Grubbs et al. [GMP21] pointed out there are technical barriers. At first, a pre-key K and a random-
ness r is generated by G(u, H’(ek)). We can treat is as K = Go(u, H’(ek)) and r = Gi(u, H’(ek)), where
Go(x) and Gi(x) are defined as the first and last 256-bits of GSHA3-512. Using this notion, we compute K =
H(Go(u, H’(ek)), H’(c)). See Table 6. Grubbs et al. solved the problem on nested random oracles on u by letting
Gy (1) = Go(u, H'(ek)) : {0,1}2°° — {0,1}?°¢ and simulating G, by a random polynomial over GF(2%3¢) of
degree 2¢¢ + 1 as in [TU16, HHK17]. Grubbs et al. succeeded to show its IND-CCA-security if K was computed
as H(G (u), ¢) as in FOX”. Unfortunately, they left showing FO+’’s IND-CCA-security as open problem. We also
left it here.

54

N Saber

Review of Saber: Saber [DKR*20] is a KEM scheme based on the Module LWR problem. Saber has three parameter
sets LightSaber (Iv.1), Saber (Iv.3), and FireSaber (lv.5). See Table 14 for concrete parameter values.

Table 14. Parameter sets of Saber in Round 3.

parameter sets‘ nk q p T pu

LightSaber [256 2 8192 1024 8 10
Saber 256 3 8192 1024 16 8
FireSaber 256 4 8192 1024 64 6

Define R = Z[x]/(x" + 1) and Ry = Zg [x]/(x" +1) fora = q, p, T, 2. Let ¢4 =1g(q), €p =1g(p), and er =1g(T).
For an even positive integer u, we define a central-binomial distribution 8, as (a1, b1, .. ., aufzs bu,) « {0, 1+
H/2
i=1
polynomial is chosen from g, independently. For a positive integer x, we define shiftright(x, d) as |x/ 24|, the
result of d bit shift of x to right. We define h; := Z;’:_ol 26— €p~lyl ¢ Ry, ha = er.‘z_ol (2€p72 — 2€p—er—1 4
2%~)xl € Ry, and h = (hy,..., 1) € RE.
The underlying PKE scheme of Saber, which we call Saber-PKE, is summarized as follows:
- Gen(pp): A — RE* and dk — B&. Compute B := shiftright(A - dk+h, €, — €,)) Output ek := (A, B) and dk.
— Enc(ek, u): Sample ¢t «— ,Bﬁ. Output (U, V) := (shiftright(rA + h, €5 — €p), shiftright(¢ - B+ hy — 2~ 1y mod
p.€p —€r)) € 7%5 X Rr.
- Dec(dk, (U, V)): Return p’ := shiftright(U - dk — 2627 -V + hy mod p,€p — 1) € Ra.
We next consider an intermediate PKE scheme PKE(= (Geng, Encg, Decy) where the encryption algorithm uses
pseudorandomness, which we call Saber-PKE-PRG:
= Geng(pp) = Gen(pp):
— Enco(ek, u;r): Use p = SHAKE128x (r) to sample ¢t « ﬁz. Output (U,V) := (shiftright(tA + h,e; —
€p), shiftright(r - B+ hy — 22~y mod p, €, — er)) € Rf, X R .
— Decy(dk, (U’,V’)) = Dec(dk, (U,V)):
Saber applies FO%’ to Saber-PKE-PRG, where H’ = SHA3-256, G(y, h) = SHA3-512, and H = SHA3-256.

and return ;' "(a; — b;) € [-u/2,1/2]. For a polynomial P € R, P « (3, implies each coefficient of the

Gen(1%) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, h, 5)
(ek, dk) — Geng(1¥) u « {0,1}¢® i’ = Deco(dk, c)
h — H’(ek) = H' () (K',r") =G, h)
s — {0,1}(®) (K,r) :=G(u,H’(ek)) ¢’ :=Encq(ek,u’;r’)
ak = (dk, ek, h,) ¢ := Encq(ek, u;r) if ¢ = ¢, then return K := H(K’, H’(¢))
— K =H(K,H 1 t K :=H(s,H’
return (ek. 4F) (() else return (s,H"(¢))
return (¢, K)

Security: Grubbs et al. [GMP21] wrote Saber uses FOL" as defined in [DKR*20, Section 2.5]. However, the
specification uses FO+’ [DKR*20, Section 8.5]. Thus, Saber lacks IND-CCA-security proof as Kyber.

O BIKE

Review of BIKE: BIKE in round 3 [ABB*20] is a KEM scheme based on QC-MDPC [MTSB13], which is a variant
of the McEliece PKE upon a code with quasi-cyclic (QC) moderate density parity-check (MDPC) matrix. BIKE can
be considered as the Niederreiter PKE scheme upon a code with the QC-MDPC matrix. Let R := F[x]/(x" —1). Let
H,y = {(hg, h1) € R% | HW(ho) = HW(e1) = w/2}. Let & = {(eg, e1) € R? | HW(eg, e1) = t}. For concrete
values of , w, and ¢, see Table 15.

The underlying CPA-secure PKE scheme of BIKE, which we call BIKE-PKE, is summarized as follows:

55

Table 15. Parameter sets of BIKE in Round 3.

parameter sets rw t
BIKE-1 12,323 142 134
BIKE-3 24,659 206 199
BIKE-5 40,973 274 264

- Gen(pp): dk := (ho, h1) < Hyy. Output ek = h := hy - hal € R and dk.
— Enc(ek, u € {0,1}%5%;r): Sample (eq, e1) < E;(r). Compute u := eg + e1h € R and v := u & L(eg, e1) and
output ¢ == (u, v).
- Dec(dk, (u,v)): Compute (eg, e1) « decode(uhg, (ho, h1)). Output u’ :=v & L(eo, €1).
Notice that uhg = egho + e1h1, which is the syndrome of (eg, e1) with the parity-check matrix spanned by /g and
hi. They also define L = SHA3-38456.
BIKE applies FO£ to BIKE-PKE PKE, where G = SHAKE256 and H = SHA3-38425¢.

Gen(1%) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, 5)
(ek, dk) — Gen(1¥) u « {0,1}{(®) u’ = Dec(dk, c)
s — {0,130 ri=G(u) =Gy
Tk = (dk, ek,) c:=Enc(ek,u;r) ¢’ :=Enc(ek,u’;r")
K :=H(u,c) if ¢ = ¢/, then return K := H(y', ¢)

return (ek, ﬁ)

return (c, K) else return K := H(s, ¢)

Assumption: For b € {0, 1}, define the finite set 7, := {h € R : HW(h) = b (mod 2)}, that is, a set of all binary
vectors of length r and parity b. We suppose that w is even and w/2 is odd, which hold for all parameter sets of
BIKE.

Definition 0.1 (The 2-Decisional Quasi-Cyclic Code-Finding (2-DQCCF) assumption [ABB*20]). For any (Q)PPT
adversary, it is hard to distinguish the following two distributions:

- h:="hy- ho_l, where (ho, h1) <« H,y.

- h«— %1.

Definition 0.2 (The 2-Computational Quasi-Cyclic Syndrome Decoding (2-CQCSD) assumption [ABB*20]).
For any (Q)PPT adversary, given (h,u = hej +eq), where h < 1 and (e, e1) < &, it is hard to find (eé, ei) €&
withu = he{ +e].

Definition 0.3 (The 2-Decisional Quasi-Cyclic Syndrome Decoding (2-DQCSD) assumption [ABB*20]). For
any (Q)PPT adversary, it is hard to distinguish the following two distributions:

— (h,u := hey + eg), where h «— F1 and (eg, e1) « &y.

— (h,u), where h — F1 andu — F; pod 2-

Security: Although we can invoke theorems on FOL by Grubbs et al. [GMP21] to show BIKE’s anonymity and
collision-freeness, we can show BIKE’s anonymity through another pass.
Before showing the security, we consider the following deterministic PKE scheme, which we call BIKE-Simple:
- Gen(pp): dk := (ho, h1) <« Hyy. Output ek = h := hy - hgl € R and dk.
— Enc(ek, (eg, e1) € E;): Compute u := eg + e1h € R and output u.
— Dec(dk, u): Output (eq, 1) <« decode(uhg, (hg, h1)).

The proposers showed that this scheme is OW-CPA-secure using appropriate assumptions as follows:

Lemma O.1 ([ABB*20, Theorem 1]). If the 2-DQCCF and 2-CQCSD assumptions hold, then BIKE-Simple is OW-CPA-
secure.

56

Remark O.1. Tt is easy to show BIKE-Simple’s disjoint simulatability: Let 77 be a ciphertext space. We define the
simulator as sampling u « U(¥7). Statistical disjointness follows from the fact that |#1| =~ 27 /2 > (2[}”) =& =
|[Enc(ek, &;)|. We can show ciphertext indistinguishability by using the 2-DQCCF and 2-DQCSD assumptions.
Applying SXY, we can obtain a tightly CCA-secure KEM scheme with shorter ciphertext, which leads to anony-
mous, robust hybrid PKE.

We next show that BIKE-PKE is ciphertext-indistinguishable in the QROM with a simulator that outputs u «
Ft mod 2 and v «— IF§56.

Lemma O.2. Assume that the 2-DQCCF and 2-DQCSD assumptions hold. Then, BIKE-PKE PKE is ciphertext-indistinguishable
in the QROM.

Proof (Proof Sketch). We consider four games Gameg, Gamej, Gamey, and Games:
— Gamey: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: (hg, h1) < H,, and h := hy - hal.
e Encryption: u «— Fg%, (eg,e1) < &;; compute u = eg + hejand v := u @ L(eg, 1); return ¢ = (u, v).
— Gamej: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: (hg, h1) «— H,, and h := hy - hal.
e Encryption: (eg, e1) < &;; compute u = eg + heq; v IF%%; return ¢ = (u, v).
Gamey: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: h « #7.
e Encryption: (eg, e1) < &;; compute u = eg + hey; v «—]Fg%; return ¢ = (u,v).
Games: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: h « 7.
e Encryption: u < F; pod 25 V < Fg%; return ¢ = (u, v).
— Gamey: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: (hg, h1) < H,, and h := hy - hal.

e Encryption: u < F; mod 2; vV < F§56; return ¢ = (u, v).
Gamej and Game; are equivalent, since u in Gameg and v in Game; is chosen uniformly at random. Game;
and Gamey are computationally indistinguishable because of the 2-DQCCF assumption. Gamez and Games are
computationally indistinguishable because of the 2-DQCSD assumption. Games and Gamey are computationally
indistinguishable because of the 2-DQCCF assumption. O

We next consider BIKE-PKE is IND-CPA-secure in the QROM. The proposers showed the security in the ROM as
follows:

Lemma 0.3 ([ABB*20, Theorem 2]). If the 2-DQCCF and 2-CQCSD assumptions hold, then BIKE-PKE is IND-CPA-
secure in the ROM.

Unfortunately, applying their idea directly to the QROM setting, the security proof becomes loose since it will
involve the O2H lemma (Lemma A.2). We here show the IND-CPA security of BIKE-PKE in the QROM tightly
using the idea of [SXY18].

Lemma O.4. Assume that the 2-DQCCF and 2-DQCSD assumptions hold and PKE is 6-correct. Then, BIKE-PKE PKE
is IND-CPA-secure (and OW-CPA-secure) in the QROM.

Proof (Proof Sketch). We consider Game; j, for b € {0,1} andi =0, ..., 4 defined as follows:
— Gamey p: In this game, a public key and a target ciphertext is computed as follows:
e Key generation: (hg, h1) <« H,, and h := hy - hal.
e Encryption given po and p1: (eg,e1) « &r; compute u = eg + hey, k := L(eg,e1), and v := pp @ k;
return ¢ = (u,v).
— Gamey ,: In this game, we use Ly : R — {0, 1}2%% and define L(eg, e1) = Ly (heg + e1). a public key and a
target ciphertext is computed as follows:
e Key generation: (hg, h1) «— Hy, and h := hy - hal.
e Encryption given po and p1: (e, e1) < &;; compute u = eq + heq, k == Ly (u), and v := up, @ k; return
c=(u,v).
- Gamey ,: In this game, we use random /. A public key and a target ciphertext is computed as follows:
o Key generation: h « 7.

57

e Encryption given po and u1: (eo, e1) < &;; compute u := eq + hey, k := Ly (u), and v := y, ® k; return
c=(u,v).
— Games p: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: h < 7.
e Encryption given p and u1: u < F; 104 2; compute k := Ly (1), and v := up, @ k; return ¢ = (u, v).
— Gamey p: In this game, a public key and a target ciphertext is computed as follows:

o Key generation: h < 7.

e Encryption given uo and u1: u < F mod 2, k < {0, 1}2%; compute v := p, @ k; return ¢ = (u, v).
Game ;, and Game; j, are equivalent if the mapping (eo, e1) > heg + e1 is injective, which is satisfied if a key
pair of PKE is correct. Game; ;, and Game; ;, are computationally indistinguishable because of the 2-DQCCF
assumption. Game; j, and Games ;, are computationally indistinguishable because of the 2-DQCSD assumption.
Games ;, and Gamey j, are equivalent if u is in outside of the image of the mapping (eg, e1) — e + e1h, which
occurs with overwhelming probability. Gamey o and Gamey,; are equivalent since k is uniformly at random. O

Remark O.2. We can replace the term § with the probability that the mapping (eo, e1) — e + e1/ is injective for
random h « ¥7.

We then consider PKE’ = T[PKE, G], which we call BIKE-DPKE.

Lemma O.5. Assume that the 2-DQCCF and 2-DQCSD assumptions hold. Then, BIKE-DPKE PKE’ := T[PKE, G] is
disjointly-simulatable.

Proof. Statistical disjointess follows from the fact that [S(1¥)| ~ 27 /2 - 2™ and |Enc’(ek, M)| < 2¥. Cipher-
text indistinguishability follows from Theorem E.1 that states that T preserves the ciphertext indistinguishability
(Lemma O.2) and onewayness (Lemma O.4) loosely. O

We next consider BIKE-DPKE’s XCFR-security:

Lemma O.6. Let €, be a probability that hy — hy ¢ R* holds for two randomly generated keys hy and hy. Let €
be a probability that an efficient adversary finds p such that e; = 0 where (eq, e1) := E;(G(u)). Suppose that and
€ := €, + € is negligible. Then, PKE’ := T[PKEy, G] is XCFR-secure.

Proof (Proof sketch:). Let us consider ek; = h; and dk; = (ho, h1) for i € zo. If the adversary outputs ¢ = (u, v), it
should be decrypted into u by using dko and dk;, respectively. Let (eq, e1) = E:(G(u)). We have u = eg + e1ho =
eo + e1hy in the re-encryption check. This implies (hg — h1) - e1 =0 € R. If e; # 0 and g — hy € R”, then this
leads a contradiction. Thus, the lemma holds. O

Recall that FOZ is U% o T. Applying U* to PKE’ = T[PKE, G], we obtain KEM = U% [PKE, H]. After applying our
theorems, we summarize the security properties of BIKE as follows:

It is XCFR-secure if € is negligible (Lemma O.6).

Thus, BIKE is SPR-CCA-secure, SSMT-CCA-secure, and SCFR-CCA-secure in the QROM.
BIKE is ANON-CCA-secure.

BIKE leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

P FrodoKEM

Review of FrodoKEM: FrodoKEM [NAB*20] is an LWE-based KEM scheme in the alternates,
Let g = 2D for some D < 16. For a positive integer B < D, m, and 7, they use encode: {0, 1}3”7’f‘ — ZZ’Xf‘
and decode: {0, 1} — {0,1}B7_(Roughly speaking, they compute ec: k € [0,28) — k- ¢/28 € Z4 and
dc: KeZyw {KZB/qJ mod 25 and arrange the result.) Let £ = Britfi be a message length. They use a distribution
xs that is a centered symmetric distribution whose support is {—s, —(s—1),...,s—1, s}. (See [NAB*20, Sect.2.2.4
and Table 3] for the concrete distribution.) For concrete values, see Table 16.
The underlying PKE scheme of FrodoKEM, which we call FrodoKEM-PKE, is summarized as follows:
- Gen(pp): Choose A « ZJ*", S «— x"" and E « x"*"". Compute B := AS + E. Output ek := (A, B) and
dk :=S.
- Enc(ek, u): Choose §”, E’ « y™ M and E"" « y™ " Outputc = (U,V) := (S’A+E’, S’B+E" +encode(u)).
- Dec(dk=S,(U,V)): Compute M :=V — U - S and output u’ := decode(M).

58

BIKE-DPKE PKE’ is strongly disjointly-simulatable if the 2-DQCCF and 2-DQCSD assumptions hold (Lemma O.5).

Table 16. Parameter sets of FrodoKEM in Round 3.

parameter sets n qg o sBmn

Frodo-640 640 21° 2812 2 88
Frodo-976 976 2162310 3 88
Frodo-1344 |134421°14 6 4 838

Table 17. Parameter sets of HQC in Round 3.

parameter sets‘ rnikydi naky dy w we wy
hgc-128 17,669 46 16 31 384 8 192 66 75 75
hqgc-192 35,851 56 24 32 640 8 320 100 114 114
hqc-256 57,637 90 32 59 640 8 320 131 149 149

We next consider an intermediate PKE scheme PKEy = (Geng, Encg, Deco) where the encryption algorithm uses
pseudorandomness, which we call FrodoKEM-PKE-PRG:

- Geng(pp) = Gen(pp):

— Enco(ek, u;r): Use p = SHAKE128x (0x96||r) to sample S’, E’/, E”’. Output ¢ = (U,V) = (S’A+E’,S'B +

E’” + encode(u)).

— Deco(dk, (U,V)) = Dec(dk, (U,V)):
FrodoKEM applies FOL”" to ForodoKEM-PKE-PRG, where H’ = SHAKE, G = SHAKE, and H = SHAKE: We can
treat them as different random oracles because their input length differ.

Gen(1¥) Enc(ek) Dec(dk, ¢), where dk = (dk, ek, h, 5)
(ek, dk) — Geng(1¥) u « {0,1}¢® u’ = Decq(dk, c)

h «— H’(ek) (K,r) =G(u,H'(ek)) (K',r") =G(u’, h)

s — {0,1}{® ¢ = Enco(ek, u;r) ¢’ == Enco(ek, u’;7")

Tk = (dk, ek, I, 5) K =H(K,¢c) if ¢ = ¢/, then return K := H(K’, ¢)
return (ck. Wc) return (c, K) else return K := H(s, ¢)

Security: Grubbs et al. [GMP21] fortunately show the security of FOX”. Thus, we can apply their result to
FrodoKEM.

Q HOQC

Review of HQC: HQC [AAB*20] is another code-based KEM scheme in the alternate candidates.
Let R := Fy[x]/(x" — 1). Let C be a decodable [ning, k] code generated by G € Flgxnlnz, where niny < r. Let
decode be a decoder algorithm which corrects an error up to 6. Let Sy, := {x € R | HW(x) = w}. For a polynomial
A=Y, a;x' € R, we define trunc(A,) = (ag,...,a;_1) € Flz For concrete values, see Table 17.
The underlying PKE scheme of HQC, which we call HQC-PKE, is summarized as follows:

- Gen(pp): ho « R. (x,y) « SZ,. Compute h; := x + hoy. Output dk := (x, y) and ek := (ho, hy).

— Enc(ek,u € Fé‘; (e, f,1) € Sy, X Sw, X Sw,): Output

¢ = (u,v) = (hot + f,trunc(hit + e,n1nz) ® uG) € R x Fglnz.
— Dec(dk, (u,v)): Compute a := v @ trunc(uy, ninz) € IF";“"2 and output decode(a).

We next consider an intermediate PKE scheme PKEy = (Geng, Encg, Decy) where the encryption algorithm uses
pseudorandomness, which we call HQC-PKE-PRG:

- Geno(pp) = Gen(pp):

59

- Enco(ek, u;7): Use p = SHAKE256(r,0x02) to sample (e, f,1) € Sy, X Sy, X Sy,. Output (u,v) :=
Enc(ek, u; (e, f,1)).
— Deco(dk, (u,v)) = Dec(dk, (u,v)):
HQC applies HFO* to HQC-PKE-PRG PKE, where G(u) = SHAKE256512 (i, @x03), F(u) = SHAKE256512 (1, 0x04).
and H(y, (co,c1)) = SHAKE256512 (1, 9x05). We can treat them as different random oracles because their input
length differ.

Gen(1%) Enc(ek) Dec(dk, (co, 1)), where dk = (dk, ek)

(ek, dk) — Geng(1¥) p — {0,1}((®) u’ = Deco(dk, co)

dk = (dk, ek) r:=G(p) r’ = G(u')

return (ek,ﬁ) co == Enco(ek, u;r) c(') := Enco(ek, u’;r")
e1 = F(u) ¢} = F(u)
K :=H(u, cg,c1) if (co,c1) = (cg,c]), thenreturn K := H(y’, co, 1)
return ((cg,c1),K) elsereturn K := L

Assumptions: For b € {0, 1}, define the finite set 7, := {h € R : h(1) = b (mod 2)}, that is, a set of all binary
vectors of length r and parity b. Similarly, for b, by, b1 € {0, 1}, we define the sets

Fp?={H=[1,h] e R*: h € Fp}

Touibn = {H: [(1)(1)23] €R2X3:ho€ﬂﬂ/\h1e7—;ﬁ},

Definition Q.1 (The 2-Decisional Quasi-Cyclic Syndrome Decoding (2-DQCSD) assumption [AAB*20]). Fix
b € {0,1}, w, and b’ := w + bw mod 2. For any (Q)PPT adversary, it is hard to distinguish the following two
distributions:

- (H,H - (x,y)), where H «— Tbl’z and (x1,x2) « S2,.

- (H,z), where H «— '}'bl’Z andy «— Fp.
Definition Q.2 (The 3-Decisional Quasi-Cyclic Syndrome Decoding (3-DQCSD) assumption [AAB*20]). Fix
bo,b1 € {0,1}, w. Let by := w + bow mod 2 and b} := w + byw mod 2. For any (Q)PPT adversary, it is hard to

distinguish the following two distributions:
- (H,H - (x0,x1,x2)), where H «— '77172(;3171 and (xo,x1,x2) — S3,.

2,3
- (H,(z0,z1)), where H «— ﬁ?o,bl’ 70 «— 7‘},6, and 71 < 7‘—;,3.

For collision-freeness, we define the following new assumption:

Definition Q.3 (The 3-Computational Quasi-Cyclic Codeword Finding (3-CQCCF) assumption). For any (Q)PPT
adversary, given (1, h, h") where h, h’ « R, it is hard to find a non-zero codeword (f,t,t") whose Hamming weight
is at most 4w-.

Security: Using those assumptions, the proposers show the IND-CPA security of HQC-PKE:

Lemma Q.1 ([AAB*20, Theorem 5.1], adapted). Assume that the 2-DQCSD and 3-DQCSD assumptions hold. Then,
the underlying PKE PKE is IND-CPA-secure (and OW-CPA -secure).

By mimicking their proof, we can show that it is ciphertext-indistinguishable with a simulator that outputs u «
Fb, and v « Fglnz, where bg := (1+ ho(1))w, mod 2.

Lemma Q.2. Assume that the 2-DQCSD and 3-DQCSD assumptions hold. Then, the underlying PKE PKE is ciphertext-
indistinguishable.

Proof (Proof Sketch). We consider four games Gameg, Game;, Gamey, and Games:
In what follows, we define the parity of i as b := (1+ho(1))w mod 2, the parity of u as by := (1+ho(1))w, mod 2,
and the parity of v as by := we + bw, mod 2:

60

Gamey: In this game, a public key and a target ciphertext is computed as follows:
e Key generation: hy «— R, x,y < Syy, and h; = x + hgy.
e Encryption: y « Fé‘, e — Sy, t, f « Sw,,and compute u := hot+ f and v := trunc(hit+e, n1nz) ®uG.
— Gamej: In this game, a public key and a target ciphertext is computed as follows:
e Key generation: sy < R, h'l" — Fp.
e Encryption: y « IFk, e «— Sy, t, f < Sy, ,and compute u := hot+ f and v := trunc(h]“t+e, ning)duG.
— Gamey: In this game, a public key and a target ciphertext is computed as follows:
e Key generation: iy < R, h] < .
e Encryption: yu « Fé‘, e — Fw,.t, f < F,,and compute u := hot+f and v := trunc(hft+e,n1ng)€BpG.
Games: In this game, a public key and a target ciphertext is computed as follows:
e Key generation: hg < R, hf < T3 p,.
e Encryption: u «— ¥, and v «— F;'".
Gamey: In this game, a public key and a target ciphertext is computed as follows:
o Key generation: hy < R, x,y < Syy, and h1 = x + hoy.
e Encryption: u < ¥, and v « 2,
Gameg and Game; are computationally indistinguishable because of the 2-DQCSD assumption. Game; and Gamey
are computationally indistinguishable because of the 3-DQCSD assumption. Gamey and Games are statistically

indistinguishable, because trunc truncates » — niny bits of y := h]“t + ¢ in Gamey and thus, trunc(y, ning)’s
distribution is statistically close to the uniform distribution over]F;”"z. Games and Gamey are computationally
indistinguishable because of the 2-DQCSD assumption.]

Let us compute the parity of hy, b = (1 + ho(1))w mod 2 and the parity of u, by := (1 + ho(1))w, mod 2.
According to Table 17, we obtain that the parity b of &1 is 0, 0, 1 — ho(1) and the parity by of u is 1, 0, ho(1), for
HQC-128/192/256, respectively. We can say that HQC-128 and HQC-192 are SPR-CPA secure, while HQC-256 is not
strong. Indeed, the parity of u leaks the information of /¢ of the encryption key.

We next consider HQC-PKE-PRG PKE(, whose encryption algorithm uses a PRG SHAKE256(-, 9x02) instead of
true randomness. The IND-CPA security and ciphertext indistinguishability of PKE(follows from PRG’s quantum
security tightly.

Lemma Q.3. Assume that the 2-DQCSD and 3-DQCSD assumptions hold and SHAKE256(-, 0x02) is quantumly-
secure PRG. Then, HOQC-PKE-PRG PKEy is ciphertext-indistinguishable and IND-CPA-secure (and OW-CPA -secure).

We then consider PKE’ = T[PKEg, G], which we call HQC-DPKE.

Lemma Q.4. Assume that the 2-DQCSD and 3-DQCSD assumptions hold and SHAKE256(-, 0x02) is quantumly-
secure PRG. Then, PKE’ := T[PKE, G] is disjointly-simulatable.

Proof. Statistical disjointess follows from the fact that [S(1¥)| ~ 2" /2 - 2" and |Enc’(ek, M)| < 2¥. Cipher-
text indistinguishability follows from Theorem E.1 that states that T preserves ciphertext indistinguishability and
onewayness of PKEy (Lemma Q.3). o

We finally consider HQC’s SROB-CCA-security:
Lemma Q.5. Suppose that the 3-CQCCF assumption holds. Then, HQC is SROB-CCA-secure.

Proof (Proof sketch:). Given (1, ho,o, h1,0) With hoo, h1,0 < R, we generate decryption keys and encryption keys
ek; = (h;,h;1) and dk; = (x;,y;) for i € zo. We give them to an adversary against SROB-CCA security of
KEM. Suppose that the adversary outputs ¢ = (u,v) and the adversary wins. If so, it should be decapsulated
into Ko # L and Ky # L. Thus, ¢ should be decrypted into po and pq by using dko and dk;, respectively. In re-
encryption check, we have (eo, fo, %) = SHAKE256(G(u0), 9x02) and (e1, fi,11) = SHAKE256(G(u1), 0x02),
and u = ho,oto + fo = h1,0t1 + f1. This implies (1, ho,o, hi1,0) - (fo+ f1,t0,11) = 0 and (fo + f1, to, 11) is the solution
of the 3-CQCCEF problem. O

Recall that HFO+ is HU o T. Applying HUL to PKE’ = T[PKEy, G], we obtain KEM = HU*[PKE, H]. After
applying our theorems, we summarize the security properties of HQC as follows:
- HQC-DPKE PKE’ is disjointly-simulatable if the 2-DQCSD and 3-DQCSD assumptions hold (Lemma Q.4).
HQC-DPKE for HQC-128 and HQC-192 are strongly disjointly-simulatable.
Thus, HQC-128 and HQC-192 are SPR-CCA-secure and 1/2°!%-sparse in the QROM.
— HQC is SCFR-CCA-secure if the 3-CQCCF assumption holds.
HQC-128 and HQC-192 are ANON-CCA-secure.
HQC-128 and HQC-192 lead to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

61

R Streamlined NTRU Prime
Streamlined NTRU Prime is one of two KEMs in NTRU Prime [?].

Review of Streamlined NTRU Prime: Streamlined NTRU Prime (sntrupr) has parameter sets p, ¢, and w. p and
q are prime numbers and w is a positive integer. We note that 2p > 3w and ¢ > 16w + 1. They choose g = 6¢” + 1
for some q’. For concrete values, see Table 18.

Table 18. Parameter sets of sntrupr of NTRU Prime

parameter sets‘ p q w

sntrupr653 653 4621 288
sntrupr761 761 4591 286
sntrupr857 857 5167 322
sntrupr953 953 6343 396
sntrupr1013 |1013 7177 448
sntrupr1277 (1277 7879 492

Let R := Z[x]/(xP —x — 1) and R, = (Z/a)[x]/(xP —x — 1) fora = 3,q.Let S := {a = Zf:_ol aix' eR | a; €
{—1,0,+1}}, a set of ternary polynomials. Let S := {a = Zf:_ol aix' € R | a; € {~1,0,+1}, HW(a) = w}, a set of
“short” polynomials. For a € [-(g — 1)/2, (g — 1)/2], define Round(a) = 3 - [a/3].°
The underlying CPA-secure PKE scheme’ works as follows:
~ Gen(pp): Choose g « S that satisfies ¢ € R} at random. Compute 1/¢g € R3. Choose f « S. Compute
h:=g/(3f) € Rg. Output ek := h and dk := (f,1/g).
- Enc(ek,r € S): Compute hr € R4 and output ¢ := Round (hr mod* g).
- Dec(dk = (f,v),c): Compute e := (3fc mod* g) mod* 3. Compute r’ := ev mod* 3. Output r’ if
HW(r’) = w. Otherwise, output ri’nvahd =(1,1,...,1,0,...,0) with HW(ri’nva“d) =w.
Due to rounding, we have a ‘short’ error m such that ¢ = hr + m.
Streamlined NTRU Prime [BBC*20] used HU%-P'f, where H(u,c) = SHA512256(0x0@1, SHA512256(0x03, 1), €)
Hpre (5,) = SHA512;56 (0x00, SHA5 12256 (003, 5), ¢) F(, ek) = SHA512556 (0x02, SHA5 12256 (0x03, 1), SHA512256 (004, ek)).

Gen(1%) Enc(ek) Dec(dk, (co, 1)), where dk = (dk, ek, 5)
(ek,dk) «— Gen(1¥) u— M u’ == Dec(dk, cg)

s — {0, 1} co = Enc(ek,) if 4’ = 1, then return K := Hp,¢(s, co, ¢1)
dk = (dk, ek, 5) c1:=Flu, ek) ¢ = Enc(ek, i)

K :=H(u, co,c1) ch = F(y', ek)

return (ek, dk)
return ((co,¢1),K) if (co,c1) = (¢}, c}), thenreturn K := H(u', co, ¢1)

else return K := Hprf(S, C0,C1)

Security: We found that Streamlined NTRU Prime has a problem of ‘pre-key’, as Kyber, Saber, and FrodoKEM [GMP21].
For simplicity, let H; (x) = SHA512256(0x@1]|x) as in [BBC*20]. Using this notation, we have

= H(u,) = Hi(H3()llc)

- Hprf(sv c) = HO(H3(S)”C)

- F(u. ek) = Ha (H3(1)[[H4(ek)).

® When g = 6¢’ + 1, Round([~(¢ - 1)/2, (¢ = 1)/2]) € [-(¢ - 1)/2, (¢ - 1)/2].
7 ‘Streamlined NTRU Prime Core’ in the specification.

62

We can assume H; as random oracles. If Hs is length-preserving, we could use the technique by Grubbs et al. [GMP21].
Unfortunately, i is longer than 256-bits and this is not length-preserving.

If F is not nested on y, we can prove the security as follows: We first consider HUf’n‘” [PKE, H3, F], which is
SPR-CCA-secure if PKE is strongly disjoint-simulatable. We then consider an indifferentiable reduction defined
as follows: if K # L, then we rewrite the decapsulation result as H1 (K||c); if K = L, then we rewrite the decapsu-
lation result as Ho(Hs(s)||c). It is easy to see HU%-P[PKE, H, F, Hpif] is SPR-CCA-secure if HU%”’ [PKE, Hs, F]

is SPR-CCA-secure.

We leave to prove IND-CCA security of Streamlined NTRU Prime as an open problem.

S NTRU LPRime
NTRU LPRime is the other KEM in NTRU Prime [BBC*20].

Review of NTRU LPRime: NTRU LPRime has parameter sets p, ¢, w, 6, 7o, 71, T2, and 73. We note that g = 6¢” +1
for some ¢’ and g > 16w + 26 + 3. For concrete values, see Table 19.

Table 19. Parameter sets of ntrulpr of NTRU Prime

parameter sets| p g w 6 T T1 T2 T3

ntrulpr653 653 4621 252 289 2175 113 2031 290
ntrulpr761 761 4591 250 292 2156 114 2007 287
ntrulpr857 857 5167 281 329 2433 101 2265 324
ntrulpr953 953 6343 345 404 2997 82 2798 400
ntrulpr1@13 |1013 7177 392 450 3367 73 3143 449
ntrulpri277 |1277 7879 429 502 3724 66 3469 496

LetR := Z[x]/(xP —x—1) and Ry := Zg [x]/(xP —x—1).Let S := {a = Z{:Ol aix! € R | a; € {-1,0,+1}, HW(a) =
w}, a set of “short” polynomials.
Fora € [-(g — 1)/2, (g — 1)/2], define Round(a) = 3 - [a/3].® For a polynomial A = ¥; a;x’ € Ry, we define
trunc(A,1) = (ao,...,a;_1) € Zé. For C € [0, g), define Top(C) = | (11(C + 10) + 2'4)/2'%). For T € [0, 16),
define Right(T) = 73T — 12 € Zy. For a € Z, define Sign(a) = 1if a < 0, 0 otherwise.
The underlying CPA-secure PKE scheme’ PKE works as follows:

- Gen(pp): Generate A < R, and dk « S. Compute B := Round(A - dk). Output ek := (A, B) and dk.

— Enc(ek, u € {0,1}?36): Choose t « S and output

(U,V) := (Round(z - A), Top(trunc(z - B, 256) + u(q — 1)/2)).

- Dec(dk, (U,V)): Compute r := Right(V) — trunc(dk - U,256) + (4w + 1) - 1256 € Z2°¢ and outputs u :=
Sign(r mod* q).

We next consider an intermediate PKE scheme PKEy = (Geng, Encg, Decy) where the encryption algorithm uses
pseudorandomness, which is called as “NTRU LPRime Expand”:

- Geno(pp) = Gen(pp):

— Enco(ek, y;r): Use p = AES256-CTR(r) to sample ¢ « S. Output (U, V) := Enc(ek, y;1).

— Decy(dk, (U,V)) = Dec(dk, (U,V)):
NTRU LPRime applies HFO .t to NTRU LPRime Expand PKEo, where G(u) = SHA512256(0x05, u), H(y, ¢) =
SHA512256 (001, 1, ¢), Hp (5, ¢) = SHA512256(0x00, 5,), F (i1, ek) = SHAS512256 (0x02, i1, SHA512256 (0x04, ek)):

¥ When ¢ = 6¢” + 1, Round([~(¢ — 1)/2, (¢ — 1)/2]) € [~(q ~ 1)/2, (¢ — 1)/2].
9 ‘NTRU LPRime Core’ in the specification.

63

Gen(1¥) Enc(ek) Dec(dk, (co, 1)), where dk = (dk, ek, s)

(ek, dk) — Geng(1¥) p « {0,1}(™®) w’ = Deco(dk, co)

s — {0,1}(® r:=G(u) r’=G(u')

ak = (dk, ek.) co == Enco(ek, u;r) cg = Enco(ek, u’;r’)
c1 = F(u, ek) cj = F(u', k)

return (ek, ﬁ)
K :=H(u,co,c1) if (co, c1) = (¢g,¢]), thenreturn K := H(y’, ¢, ¢1)

return ((co, c1),K) else return K := Hy,¢(s, co, c1)

Security: We directly assume that PKE’ := T[PKEy, G] is strongly disjoint-simulatable. Recall that HFO ¢ is
HULP o T. Applying HUAP' to PKE” = T[PKE(, G], we obtain KEM = HUL-PT[PKE’, H, F]. After applying our
theorems, we summarize the security properties of SIKE as follows:
— Assume that the underlying DPKE of NTRU LPRime PKE’ is strongly disjointly-simulatable with simulator
that samples a < R, computes U := Round(a), samples V « (Z/16Z)%¢, and outputs (U, V).
— Then, NTRU LPRime is SPR-CCA-secure and SSMT-CCA-secure in the QROM.
— NTRU LPRime is SCFR-CCA-secure if the colliding probability of ek is negligible since F takes u and ek as
input.
— NTRU LPRime is ANON-CCA-secure.
— NTRU LPRime leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

T SIKE

Brief Review of SIKE: SIKE [JAC"20] is KEM scheme based on SIDH [JD11, ?]. For a survey of isogeny-based
cryptography, we recommend reading [?].

Let p = 2923 — 1. Let E be a supersingular elliptic curve over Fpz. Let P2, Q2 € E[2°2] and Ps3,Q3 € E[3%]
linearly independent points of order 2°2 and 3° respectively. Let {0, 1}"" be a message space and let L : Fz —
{0, 1} be a random oracle, instantiated by SHAKE256,,(+).

Roughly speaking, the underlying PKE scheme [JAC*20, Algorithm 1], which we call SIKE-PKE, is summarized
as follows (for the details, see the specification):

- isogen,(dke) with (m, £) = (2,3) or (3,2): On input dky € [0,£°¢), compute S := Pp + [dkg]Qp, compute
isogeny ¢: E — E/(S), and compute E;, := E/(S) = ¢¢(E). Compute P}, := ¢¢(Pp,) and O}, = ¢¢(Qm).
Output ekp == (E/,, Phy, Q). 1°

— isoexg (ek, dkg) with (m,€) = (2,3) or (3,2): On input ek,, = (EZ,,PQ,,Q;,) and dky € [0,(¢), compute
S = P}, + [dk¢]Q} and compute E;' := E,/(S) = E;[{¢m(P¢ + [dk¢]Q¢)). Compute j¢ as the j-invariant
of EJ/.

- Gengpp): Choose dk3 < [0,3%) and ek3 := isogens(dk3). Output eks and dks.

— Enc(eks, u): Choose dky « [0,2¢) and ¢y := isogen,(dkz). Compute j := isoexz(eks, dkz). Compute z :=
L(j) & u. Output (c2, 2).

— Dec(dks, (c2,z)): Compute j’ := isoexs(c2, dk3) and output p’ := z & L(j”).

SIKE uses FO£ for IND-CCA-secure KEM, where G = SHAKE256,, and H = SHAKE256:

Gen(1%) Enc(ek) Dec(dk, (c2, 7)), where dk = (dk, ek,)

(ek, dk) < Gen(1) u « {0,1}" u’ = Dec(dk, (c2,2))

s« {0,1}" r == G(u, ek) r’=G(u’, ek)

dk = (dk, ek, s) (c2,2) = Enc(ek, pu;7) ¢} = isogen,(r’)

return (ek, dk) K :=H(u,c2,2) if ¢z = ¢}, thenreturn K := H(u’, ¢2, 2)
return ((c2,z), K) else return K := H(s, ¢z, 2)

Remark T.1. SIKE’s Dec performs the test c; = c7 but omits the test z = z’. Since Dec retrieves u’ = z @ k
deterministically, we do not need to check the equality of z and z’.

10 Correctly speaking, this algorithm outputs (P}, Q/,, R}, == P!, — Q) and omits E/,. We can reconstruct E/,, from P/, Q/,,
and R;,.

64

Assumptions:

Definition T.1 (Supersingular Computational Diffie-Hellman (SSCDH) Assumption [JD11], adapted). Let ¢3: E —
E; be an isogeny whose kernel is equal to (P3 + [dk3]Q3), where dk3 « [0,3). Let ¢p2: E — E; be an isogeny
whose kernel is equal to (P + [dk2]Q2), where dky « [0, 2°2).

For any QPT adversary, given the curves E; and E; and the points ¢3(P3), $3(Q2), ¢2(P3), and $2(Q3), finding the
J-invariant of E [(P3 + [dk3]Q3, P2 + [dk2]Q2) is hard.

Definition T.2 (Supersingular Decisional Diffie-Hellman (SSDDH) Assumption [JD11], adapted). For any QPT
adversary, given a tuple, it is hard to determine which distribution of the following two distributions generates the

tuple:

~ (Ej, ¢3(P2), ¢3(Q2), E3, $2(P3), $2(Q3), E23), where EJ, $3(P2), $3(Q2), E5, 2(P3), $2(Q3) are as in the
SSCDH assumption and

E23 = E[(P3 + [dks3]Q3, P2 + [dk2]Q2).
= (Ej, ¢3(P2), ¢3(Q2), E3, $2(P3), $2(Q3), Ec), where EJ, ¢3(P2), $3(Q2), E5, $2(P3), $2(Q3) are asin the SS-
CDH assumption and
¢ = E[(P3+[dk}]03, P2 + [dk3]02),
where dk «— [0,3%) and dkj < [0, 2°?).

Security: One can show the IND-CPA security of the underlying PKE of SIKE by assuming the SSDDH assumption
and the entropy-smoothing property of L !! as that in [JD11].

Lemma T.1. Assume that the SSDDH assumption holds and L is entropy-smoothing. Then, SIKE-PKE PKE isIND-CPA -
secure (and OW-CPA-secure).

For ciphertext indistinguishablity, we construct a simulator S as follows: 1) sample dk « [0, 2¢?) and compute
c2 = (E3, P, Q%) = isogen, (dky); 2) sample z « {0, 1}"; 3) output (cz, 2).

Lemma T.2. SIKE-PKE PKE is ciphertext indistinguishable.

Notice that we can remove the assumption on L’s property.

Proof (Proof Sketch). We consider two games Gamey and Game;.
— Gamey: In this game the challenge ciphertext is computes as

p— {0,137 dky « [0,292); ¢y = isogen, (dkz); j < isoexz(eks, dkz);z := L(j) ® u; return (c2,2).
- Gameyj: In this game the challenge ciphertext is computes as
dky «— [0,2%%); ¢y == isogen, (dkz); z « {0, 1}%°; return (c2, 2).
Gamey and Game; are equivalent since p in Gameg and z in Game; are uniformly at random.]

We next consider PKE” = T[PKE, G], which we call SIKE-DPKE.

Lemma T.3. Assume that the SSDDH assumption holds and L is entropy-smoothing. Then, PKE’ := T[PKE, G] is
disjointly-simulatable.

Proof (Proof sketch:). Statistical disjointess follows from the fact that |S(1¥)| ~ 2¢ - 2" and |Enc’(ek, M)| <
2", Ciphertext indistinguishability follows from Theorem E.1 that states that T preserves SIKE-PKE’s ciphertext
indistinguishability (Lemma T.2) and its OW-CPA security (Lemma T.1).]

We next consider SIKE-DPKE’s collision-freeness. If we consider XCFR-security, the adversary, given two en-
cryption keys ekg and ek% with their decryption keys dkg and dk%, should find yu such that dkg = G(u, ekg),
dk; = G(u, eké), and z = u ® L(j%) = p @ L(j1), where j' « isoexz(ek, dk;). If jO # j1, then it finds the
collision for L, which should be hard (Lemma 2.3). For j® = j!, it seems hard to find dkg and dk; such that
isoexz(ekg, dkg) = isoexy (eké, dk;). Thus, we just assume the XCFR-security of SIKE-DPKE.
Recall that FO% is U£ o T. Applying U% to PKE’ = T[PKE, G], we obtain KEM = U4 [PKE’, H]. After applying our
theorems, we summarize the security properties of SIKE as follows:

— SIKE-DPKE PKE’ is strongly disjointly-simulatable if the SSDDH assumption holds and L is entropy-smoothing.

— Thus, SIKE is SPR-CCA-secure and SSMT-CCA-secure in the QROM.

— SIKE is SCFR-CCA-secure if the underlying PKE PKE’ = T[PKE, G] is SCFR-CCA-secure or XCFR-secure.
SIKE is ANON-CCA-secure.
SIKE leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

11 We borrow the notation from [FNP14]. We say a family of hash functions $ = {H: X — Y} is entropy smoothing [1Z89] if for
any (Q)PPT adversary, it is hard to distinguish (H, H(x)) with (H,y), where H « $,x «— X,and y « Y.

65

	 Anonymity of NIST PQC Round-3 KEMs
	Introduction
	Preliminaries
	Strong Pseudorandomness Implies Anonymity
	Strong Pseudorandomness of Hybrid PKE
	Properties of SXY
	NTRU
	Missing Lemmas
	Missing Proofs
	Variants of the Fujisaki-Okamoto Transformation
	Transformation in NIST PQC KEM Candidates
	Property of T
	Property of U
	Property of HUm
	Property of HU
	Property of HUm
	Property of HU,prf
	Property of HU
	Classic McEliece
	Kyber
	Saber
	BIKE
	FrodoKEM
	HQC
	Streamlined NTRU Prime
	NTRU LPRime
	SIKE

