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Abstract. �is paper investigates anonymity of all NIST PQC Round 3 KEMs: Classic McEliece, Kyber, NTRU,
Saber, BIKE, FrodoKEM, HQC, NTRU Prime (Streamlined NTRU Prime and NTRU LPRime), and SIKE. We show
the following results:
– NTRU is anonymous in the quantum random oracle model (QROM) if the underlying deterministic PKE is

strongly disjoint-simulatable. NTRU is collision-free in the QROM. A hybrid PKE scheme constructed from
NTRU as KEM and appropriate DEM is anonymous and robust. Similar results hold for BIKE, FrodoKEM,
HQC, NTRU LPRime, and SIKE.

– Classic McEliece is anonymous in the QROM if the underlying PKE is strongly disjoint-simulatable and a
hybrid PKE scheme constructed from it as KEM and appropriate DEM is anonymous.

– Streamlined NTRU Prime has an obstacle for the IND-CCA security proof as Grubbs, Maram, and Paterson
pointed out that Kyber and Saber has a gap in the current IND-CCA security proof (Cryptography ePrint
Archive 2021/708).

�ose answer the open problem to investigate the anonymity and robustness of NIST PQC Round 3 KEMs posed
by Grubbs, Maram, and Paterson (Cryptography ePrint Archive 2021/708).
We use strong disjoint-simulatability of the underlying PKE of KEM and strong pseudorandomness and smooth-
ness of KEMs, which will be of independent interest.
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1 Introduction

Public-Key Encryption (PKE) allows us to send a message con�dentially to a receiver if the receiver’s public
key is available. However, a ciphertext may reveal the receiver’s public key. Roughly speaking, PKE is anony-
mous [BBDP01] if a ciphertext hides the receiver’s information. Anonymous primitive is o�en used in the context
of privacy-enhancing technologies.
If we use anonymous PKE, then a ciphertext indicates (computationally) no information of a receiver. �us, once
the receiver receives a ciphertext, it should decrypt it and check the message. In this situation, a ciphertext maybe
has two (or more) recipients. Intuitively speaking, PKE is robust [ABN10] if only the intended receiver can obtain
a meaningful plaintext from a ciphertext.
Both anonymity and robustness are important and useful properties beyond the standard IND-CCA security.
Anonymous PKE is an important building primitive for anonymous credential systems [CL01], auction proto-
cols [Sak00], (weakly) anonymous AKE [BCGNP09, FSXY13, FSXY15, SSW20], and so on. Robust PKE has an
application for searchable encryption [ABC+05] and auction [Sak00].

Previous works: Mohassel [Moh10] studied anonymity and robustness of a special KEM/DEM framework, where
KEM is implemented by PKE with random plaintext. He observed that even if anonymous KEM and DEM some-
times fail to lead to an anonyous hybrid PKE.
Grubbs, Maram, and Paterson [GMP21] discussed anonymity and robustness of post-quantum KEM schemes and
KEM/DEM framework in the quantum random oracle model (QROM). �ey also studied anonymity and robust-
ness of the hybrid PKE based on KEM with implicit rejection. On the variants of the Fujisaki-Okamoto transfor-
mation [FO99, FO13], they showed that anonymity and collision-freeness of KEMs obtained by FO6⊥ and FO 6⊥′′1

and they lead to anonymous, robust hybrid PKEs from appropriate assumptions. �ey also show anonymity and
robustness of KEM obtained by HFO⊥′2 and it lead to anonymous, robust hybrid PKE form appropriate assump-
tions. �ey then examined NIST PQC Standardization �nalists (Classic McEliece [ABC+20], Kyber [SAB+20],
NTRU [CDH+20], and Saber [DKR+20]). �ey showed the following results:

1 A variant of FO6⊥ using ‘pre-key’ technique. �ey wrote “a variant of the FO6⊥ transform” in their paper.
2 �ey modify ‘key-con�rmation hash’ 21 = F(`) of HFO⊥ with 21 = F(`, 20), where 20 = Enc(ek, `).



– Classic McEliece: �ey found that Classic McEliece is not collision-free. Since their anonymity proof in
[GMP21, �eorem 5] strongly depends on the collision-freeness of the underlying PKE, we cannot apply
their anonymity proof to Classic McEliece. �ey also show that the hybrid PKE fails to achieve robustness
since Classic McEliece is not collision-free.

– Kyber: �ey found that Kyber’s anonymity (and even IND-CCA security) has two technical barriers (‘pre-key’
and ‘nested random oracles’) in the QROM.

– NTRU: NTRU’s anonymity has another technical barrier: A key is computed as H(`) instead of H(`, 2),
where ` is a plaintext and 2 is a ciphertext. �e robustness of the hybrid PKE with NTRU is unclear.

– Saber: �ey insisted they show Saber’s anonymity and IND-CCA security and the robustness of the hybrid
PKE with Saber. Unfortunately, Saber in [DKR+20] also uses both ‘pre-key’ and ‘nested random oracles’ as
Kyber and their proofs cannot be applied to Saber. 3

Grubbs et al. le� several open problems: One of them is the anonymity and robustness of NTRU; the other impor-
tant one is the anonymity of Classic McEliece.
Summarizing above, unfortunately, we do not know whether all four �nalists are anonymous or not, although the
much e�ort of Grubbs et al. and their clean and modular framework.

1.1 Our Contribution

Anonymity through pseudorandomness and smoothness: Our starting point is strong pseudorandomness in-
stead of anonymity: We say PKE/KEM/DEM is strongly pseudorandom if its ciphertext is indistinguishable from
a random string chosen by a simulator on input the security parameter. 4 It is easy to show strong pseudoran-
domness implies anonymity.
Using this notion, we a�empt to follow the IND-CCA security proof of the KEM/DEM framework [CS02], that is,
we try to show the hybrid PKE from strongly pseudorandom KEM/DEM is also strongly pseudorandom, which
implies that the hybrid PKE is anonymous. If we directly try to prove the ANON-CCA security of the hybrid PKE,
then we will need to simulate two decryption oracles. Considering pseudorandomness allows us to treat a single
key and oracle and simpli�es the security proof. Unfortunately, we face another obstacle in the security proof
when we consider KEM.
To resolve the obstacle, we de�ne sparseness of KEM with explicit rejection and smoothness of KEM with implicit
rejection: We say KEM with explicit rejection is sparse if a ciphertext 2 chosen by a simulator is decapsulated into
⊥ with overwhelming probability. We say KEM with implicit rejection is smooth if, given a ciphertext 2 chosen
by a simulator, any e�cient adversary cannot distinguish a random key from a decapsulated key. �is de�nition
imitates the smoothness of hash proof system [CS02]. �ose notions help us to prove the pseudorandomness of
the hybrid PKE. We believe that sparseness and smoothness will play important role in another place.

Pseudorandomness, smoothness, and collision-freeness of the FO variants: In order to treat the case for Classic
McEliece and NTRU, in which the underlying PKE is deterministic, we treat SXY [SXY18], variants of U [HHK17],
and variants of HU [JZM19]. Modifying the security proofs of them, we show that the obtained KEM is strongly
pseudorandom and smooth if the underlying PKE is strongly disjoint-simulatable [SXY18]. We also show that the
obtained KEM is collision-free if the underlying deterministic PKE (DPKE) is collision-free. We �nally note that
our reductions enjoy tightness.
Grubbs et al. [GMP21] discussed the barrier to show anonymity of NTRU, which stems from the design choice
 = H(`) instead of  = H(`, 2). �e former choice makes their simulation di�cult. In addition, their proof
technique requires the underlying PKE to be collision-free. Since the underlying PKE of Classic McEliece lacks
collision freeness, they le� the proof of anonymity of Classic McEliece as an open problem. Both barriers stem
from the fact that we need to simulate two decapsulation oracles in the proof of ANON-CCA-security. We avoid
those technical barriers by using a stronger notion, SPR-CCA security; in the proof of SPR-CCA-security, we only
need to simulate a single decapsulation oracle.

Application to NIST PQC Round-3 KEMs: By using the above techniques, we solve open problems posed by
Grubbs et al. and extend the study of �nalists and alternative candidates of NIST PQC Round 3 KEMs.
We found the following (We omit the detail of the assumptions):
– Classic McEliece is anonymous, but not collision-free. �e hybrid PKE is anonymous.

3 See the slides available at h�ps://csrc.nist.gov/Presentations/2021/anonymous-robust-post-quantum-public-key-encryptio
4 if the simulator can depend on an encryption key, then we just say pseudorandom.
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– NTRU is anonymous and collision-free. �e hybrid PKE is anonymous and robust. Similar results hold for
BIKE, HQC (HQC-128 and HQC-196)5, NTRU LPRime, and SIKE.

– FrodoKEM uses FO 6⊥′′. We can use the results of Grubbs et al.and FrodoKEM is anonymous and collision-free.
�e hybrid PKE is anonymous and robust.

– Grubbs et al.reported that Kyber and Saber have similar obstacles for anonymity (and IND-CCA security).
We found that Streamlined NTRU Prime has also a similar obstacle.

See the summary in Table 1.

Open Problems: We leave showing anonymity of Kyber, Saber, and Streamlined NTRU Prime as an important
open problem as Gurbbs et al. posed.

Table 1. Summary of NIST PQC Round 3 KEM Candidates (�nalists and alternate candi-
dates) and the hybrid PKEs using them. In the �rst row, SPR = Strong Pseudorandomness,
ANO = Anonymity, CF = Collision Freeness, and ROB = Robustness.

KEM PKE

Name Trans. SPR ANO CF ROB ANO ROB

Classic McEliece [ABC+20] HU6⊥,prf Y Y N N Y N section L
Kyber [SAB+20] FO6⊥′ ? ? ? N ? ? section M
NTRU [CDH+20] SXY Y Y Y N Y Y section 6
Saber [DKR+20] FO6⊥′ ? ? ? N ? ? section N

BIKE [ABB+20] FO6⊥ Y Y Y N Y Y section O
FrodoKEM [NAB+20] FO6⊥′′ Y Y Y N Y Y section P
HQC [AAB+20]a HFO⊥ Y Y Y Y Y Y section Q
Streamlined NTRU Prime [BBC+20] HU6⊥,prf ? ? ? N ? ? section R
NTRU LPRime [BBC+20] HFO 6⊥,prf Y Y Y N Y Y section S
SIKE [JAC+20] FO6⊥ Y Y Y N Y Y section T

a We only consider HQC-128 and HQC-192. HQC-256 is not anonymous.

Organization: section 2 reviews quantum random oracle models, de�nitions of primitives, and results of Grubbs et al. [GMP21].
section 3 shows that strong pseudorandomness implies anonymity.� studies strong pseudorandomness of KEM/DEM
framework. section 5 studies SXY’s security properties. section 6 examines anonymity and robustness of NTRU.
For contents of appendices, see table of contents.

2 Preliminaries

Notations: A security parameter is denoted by ^. We use the standard $-notations. DPT, PPT, and QPT stand
for deterministic polynomial time, probabilistic polynomial time, and quantum polynomial time, respectively. A
function 5 (^) is said to be negligible if 5 (^) = ^−l (1) . We denote a set of negligible functions by negl(^). For a
distribution j, we o�en write “G ← j,” which indicates that we take a sample G according to j. For a �nite set
(, * (() denotes the uniform distribution over (. We o�en write “G ← (” instead of “G ← * (().” For a set ( and
a deterministic algorithm A, A(() denotes the set {A(G) | G ∈ (}. If inp is a string, then “out ← A(inp)” denotes
the output of algorithm A when run on input inp. If A is deterministic, then out is a �xed value and we write
“out := A(inp).” We also use the notation “out := A(inp; A)” to make the randomness A explicit.
For a statement % (e.g., A ∈ [0, 1]), we de�ne boole(%) = 1 if % is satis�ed and 0 otherwise.
For two �nite sets X and Y, F (X,Y) denotes a set of all mapping from X to Y.

Lemma 2.1 (Generic distinguishing problem with bounded probabilities [HKSU20, Lemma 2.9], adapted). Let
X be a �nite set. Let X ∈ [0, 1]. Let F : X → {0, 1} be the following function: for each G ∈ X, F1 (G) = 1 with
probability XG ≤ X and F1 (G) = 0 else. Let Z : X → {0, 1} be the zero function, that is, Z(G) = 0 for all G. If an
unbounded time quantum adversary A makes a query to F or Z at most & times, then we have���Pr[AF( ·) () → 1] − Pr[AZ( ·) () → 1]

��� ≤ 8(& + 1)2X.

where all oracle accesses of A can be quantum.
5 HQC-256 is not anonymous
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�antum Random Oracle Model: Roughly speaking, the quantum random oracle model (QROM) is an idealized
model where a hash function is modeled as a publicly and quantumly accessible random oracle. In this paper,
we model a quantum oracle $ as a mapping |G〉 |H〉 ↦→ |G〉 |H ⊕ $ (G)〉, where G ∈ {0, 1}=, H ∈ {0, 1}<, and
$ : {0, 1}= → {0, 1}<. See [BDF+11] for a more detailed description of the model.

Lemma 2.2 (QRO is PRF). Let ℓ be a positive integer. Let X and Y be �nite sets. Let Hprf : M × X → Y and
H@ : X → Y be two independent random oracles. If an unbounded time quantum adversary A makes a query to H
at most & times, then we have���Pr[B←M : AHprf ,Hprf (B, ·) () → 1] − Pr[AHprf ,H@ () → 1]

��� ≤ 2&/
√
|M|,

where all oracle accesses of A can be quantum.

See [SXY18] and [JZC+18] for the proof.

Lemma 2.3 (QRO is collision-resistant [Zha15, �eorem 3.1]). �ere is a universal constant � such that the fol-
lowing holds: LetX andY be �nite sets. LetH : X → Y be a random oracle. If an unbounded time quantum adversary
A makes a query to H at most & times, then we have

Pr
H,A
[(G, G′) ← AH : G ≠ G′ ∧ H(G) = H(G′)] ≤ � (& + 1)3/|Y|,

where all oracle accesses of A can be quantum.

Remark 2.1. We implicitly assume that |X| = S( |Y|), because of the birthday bound.

Lemma 2.4 (QRO is claw-free).�ere is a universal constant � such that the following holds: Let X0 and X1 andY
be �nite sets. Let #0 = |X0 | and #1 = |X1 |. Without loss of generality, we assume #0 ≤ #1. Let H0 : X0 → Y and
H1 : X1 → Y be two random oracles.
If an unbounded time quantum adversary A makes a query to H0 and H1 at most &0 and &1 times, then we have

Pr[(G0, G1) ← AH0 ,H1 : H0 (G0) = H1 (G1)] ≤ � (&0 +&1 + 1)3/|Y|,

where all oracle accesses of A can be quantum.

�e following proof is due to Hosoyamada [Hos20].

Proof. Let us reduce the problem to collision-�nding problem as follows: We assume that X0 and X1 are enu-
merable. Given H : [#0 + #1] → Y, we de�ne H0 : X0 → Y and H1 : X1 → Y by H0 (G) = H(index0 (G)) and
H1 (G) = H(index1 (G) + #0), where index8 : X8 → [#8] is an index function which returns the index of G in X8 .
H0 and H1 are random since H is a randomly chosen. If A �nds the claw (G0, G1) for H0 and H1 with &0 and &1
queries, then we can �nd a collision (index0 (G0), index1 (G1) + #0) for H with &0 +&1 queries. Using Lemma 2.4,
we obtain the bound as we wanted. ut

2.1 Public-Key Encryption (PKE)

�e model for PKE schemes is summarized as follows:

De�nition 2.1. A PKE scheme PKE consists of the following triple of PPT algorithms (Gen, Enc,Dec).
– Gen(1^ ; A6) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, and

randomness A6 ∈ RGen, outputs a pair of keys (ek, dk). ek and dk are called the encryption key and decryption
key, respectively.

– Enc(ek, `; A4) → 2: an encryption algorithm that takes as input encryption key ek, message ` ∈ M, and
randomness A4 ∈ REnc, and outputs ciphertext 2 ∈ C.

– Dec(dk, 2) → `/⊥: a decryption algorithm that takes as input decryption key dk and ciphertext 2 and outputs
message ` ∈ M or a rejection symbol ⊥ ∉M.

We review X-correctness in Ho�einz, Hövelmanns, and Kiltz [HHK17].
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De�nition 2.2 (X-Correctness). Let X = X(^). We say PKE = (Gen, Enc,Dec) is X-correct if

Exp(ek,dk)←Gen(1^ )

[
max
`∈M

Pr[2 ← Enc(ek, `) : Dec(dk, 2) ≠ `]
]
≤ X.

In particular, we say that PKE is perfectly correct if X = 0.
We also de�ne a key pair’s accuracy.
De�nition 2.3 (Accuracy [XY19]).We say that a key pair (ek, dk) is accurate if for any ` ∈ M,

Pr
2←Enc(ek,`)

[Dec(dk, 2) = `] = 1.

If a key pair is not accurate, then we call it inaccurate.

Security Notions: We review onewayness under chosen-plaintext a�acks (OW-CPA), indistinguishability un-
der chosen-plaintext a�acks (IND-CPA), indistinguishability under chosen-ciphertext a�acks (IND-CCA) [RS92,
BDPR98], pseudorandom under chosen-ciphertext a�acks (PR-CCA), and its strong version (SPR-CCA) for PKE.
We de�ne PR-CCA with simulator S as a generalization of IND$-CCA-security in [vH04, Hop05]. We also review
anonymity (ANON-CCA) [BBDP01], robustness (WROB-CCA and SROB-CCA) [Moh10], and collision-freeness
(WCFR-CCA and SCFR-CCA) [Moh10]. We additionally de�ne extended collision-freeness (XCFR), in which any
e�cient adversary cannot �nd a colliding ciphertext even if the adversary is given two decryption keys.
De�nition 2.4 (Security notions for PKE). Let PKE = (Gen, Enc,Dec) be a PKE scheme. LetDM be a distribution
over the message spaceM.
For any A and goal-atk ∈ {ind-cca, pr-cca, anon-cca}, we de�ne its goal-atk advantage against PKE as follows:

Advgoal-atk
PKE[,S],A (^) :=

���2 Pr[Exptgoal-atk
PKE[,S],A (^) = 1] − 1

���,
where Exptgoal-atk

PKE[,S],A (^) is an experiment described in Figure 1.
For any A and goal-atk ∈ {ow-cca, srob-cca, scfr-cca,wrob-cca,wcfr-cca, xcfr}, we de�ne its goal-atk advantage
against PKE as follows:

Advgoal-atk
PKE[,DM ],A

(^) := Pr[Exptgoal-atk
PKE[,DM ],A

(^) = 1],

where Exptgoal-atk
PKE[,DM ],A

(^) is an experiment described in Figure 1.
ForGOAL-ATK ∈ {OW-CCA, IND-CCA, PR-CCA,ANON-CCA, SROB-CCA, SCFR-CCA,WROB-CCA,WCFR-CCA,
XCFR}, we say that PKE is GOAL-ATK-secure if Advgoal-atk

PKE[,DM ,S],A
(^) is negligible for any QPT adversary A. We

also say that PKE is SPR-CCA-secure if it is PR-CCA-secure and its simulator ignores ek. We also say that PKE is
GOAL-CPA-secure if it is GOAL-CCA-secure even without the decryption oracle.

Disjoint simulatability: We review disjoint simulatability de�ned in [SXY18].
De�nition 2.5 (Disjoint simulatability [SXY18]). Let DM denote an e�ciently sampleable distribution on a set
M. A deterministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and ciphertext spaces M and C is DM -
disjoint-simulatable if there exists a PPT algorithm S that satis�es the followings:
– (Statistical disjointness:)

DisjPKE,S (^) := max
(ek,dk) ∈Gen(1^ ;RGen)

Pr[2 ← S(1^ , ek) : 2 ∈ Enc(ek,M)]

is negligible.
– (Ciphertext-indistinguishability:) For any QPT adversary A,

Advds-ind
PKE,DM ,S,A (^) :=

����Pr[(ek, dk) ← Gen(1^ ), `∗ ← DM , 2∗ := Enc(ek, `∗) : A(ek, 2∗) → 1]
− Pr[(ek, dk) ← Gen(1^ ), 2∗ ← S(1^ , ek) : A(ek, 2∗) → 1]

����
Liu and Wang gave a slightly modi�ed version of statistical disjointness in [LW21]. As they noted, their de�nition
below is enough to show the security proof.

DisjPKE,S (^) := Pr[(ek, dk) ∈ Gen(1^ ), 2← S(1^ , ek) : 2 ∈ Enc(ek,M)]
De�nition 2.6 (strong disjoint-simulatability).We call PKE has strong disjoint-simulatability if S ignores ek.

Remark 2.2. We note that a deterministic PKE scheme produced by TPunc [SXY18] or Punc [HKSU20] is not
strongly disjoint-simulatable, because their simulator will output a random ciphertext Enc(ek, ˆ̀) of a special plain-
text ˆ̀, which depends on ek.
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Exptow-cca
PKE,DM ,A (^)

(ek, dk) ← Gen(1^ )
`∗ ← DM
2∗ ← Enc(ek, `∗)
`′ ← ADec2∗ (ek, 2∗)

return boole(`′ ?
= Dec(dk, 2∗))

Dec0 (2)

if 2 = 0, return ⊥
` := Dec(dk, 2)
return `

Dec0 (id, 2)

if 2 = 0, return ⊥
` := Dec(dkid , 2)
return `

Exptind-cca
PKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )

(`0, `1, state) ← ADec⊥ ( ·)
1 (ek)

2∗ ← Enc(ek, `1)

1′ ← ADec2∗ ( ·)
2 (2∗, state)

return boole(1 = 1′)

Exptpr-cca
PKE,S,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )

(`, state) ← ADec⊥ ( ·)
1 (ek)

2∗0 ← Enc(ek, `)
2∗1 ← S(1

^ , ek)

1′ ← A
Dec2∗

1
( ·)

2 (2∗
1
, state)

return boole(1 = 1′)

Exptanon-cca
PKE,A (^)

1 ← {0, 1}
(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

(`, state) ← ADec⊥ ( ·, ·)
1 (ek0, ek1)

2∗ ← Enc(ek1 , `)

1′ ← ADec2∗ ( ·, ·)
2 (2∗, state)

return boole(1 = 1′)

Exptwcfr-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

(`, 1) ← ADec⊥ ( ·, ·) (ek0, ek1)
2 ← Enc(ek1 , `)
`′ ← Dec(dk1−1 , 2)
return boole(` = `′ ≠ ⊥)

Exptscfr-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
`0 ← Dec(dk0, 2)
`1 ← Dec(dk1, 2)
return boole(`0 = `1 ≠ ⊥)

Exptxcfr
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )
2 ← A(ek0, dk0, ek1, dk1)
`0 ← Dec(dk0, 2)
`1 ← Dec(dk1, 2)
return boole(`0 = `1 ≠ ⊥)

Exptwrob-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

(`, 1) ← ADec⊥ ( ·, ·) (ek0, ek1)
2 ← Enc(ek1 , `)
`′ ← Dec(dk1−1 , 2)
return boole(`′ ≠ ⊥)

Exptsrob-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
`0 ← Dec(dk0, 2)
`1 ← Dec(dk1, 2)
return boole(`0 ≠ ⊥ ∧ `1 ≠ ⊥)

Fig. 1. Games for PKE schemes
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2.2 Key Encapsulation Me�anism (KEM)

�e model for KEM schemes is summarized as follows:

De�nition 2.7. A KEM scheme KEM consists of the following triple of polynomial-time algorithms (Gen, Enc,Dec):
– Gen(1^ ) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, outputs a

pair of keys (ek, dk). ek and dk are called the encapsulation key and decapsulation key, respectively.
– Enc(ek) → (2,  ): an encapsulation algorithm that takes as input encapsulation key ek and outputs ciphertext
2 ∈ C and key  ∈ K .

– Dec(dk, 2) →  /⊥: a decapsulation algorithm that takes as input decapsulation key dk and ciphertext 2 and
outputs key  or a rejection symbol ⊥ ∉ K .

De�nition 2.8 (X-Correctness). Let X = X(^). We say that KEM = (Gen, Enc,Dec) is X-correct if

Pr[(ek, dk) ← Gen(1^ ), (2,  ) ← Enc(ek) : Dec(dk, 2) ≠  ] ≤ X(^).

In particular, we say that KEM is perfectly correct if X = 0.

Security: We review indistinguishability under chosen-plaintext a�acks (IND-CPA), indistinguishability un-
der chosen-ciphertext a�acks (IND-CCA) [RS92, BDPR98], pseudorandomness under chosen-ciphertext a�acks
(PR-CCA), and its strong version (SPR-CCA) for KEM. We de�ne PRCCA with simulator S as a generalization
of IND$-CCA-security in [vH04, Hop05]. We also review anonymity (ANON-CCA), robustness (WROB-CCA and
SROB-CCA), and collision-freeness (WCFR-CCA and SCFR-CCA) [GMP21].
We also de�ne smoothness under chosen-ciphertext a�acks (denoted by SMT-CCA) by following smoothness of
hash proof system [CS02]: Roughly speaking, we say a KEM scheme is SMT-CCA-secure if, given a random ci-
phertext 2∗ chosen by the simulator, any e�cient adversary cannot distinguish random key  ∗0 and decapsulated
key  ∗1 = Dec(dk, 2∗).

De�nition 2.9 (Security notions for KEM). Let KEM = (Gen, Enc,Dec) be a KEM scheme.
For anyA and goal-atk ∈ {ind-cca, pr-cca, smt-cca, anon-cca, srob-cca, scfr-cca}, we de�ne its goal-atk advantage
against KEM as follows:

Advgoal-atk
KEM[,S],A (^) :=

���2 Pr[Exptgoal-atk
KEM[,S],A (^) = 1] − 1

���,
where Exptgoal-atk

KEM[,S],A (^) is an experiment described in Figure 1.
For any A and goal-atk ∈ {srob-cca, scfr-cca,wrob-cca,wcfr-cca}, we de�ne its goal-atk advantage against KEM
as follows:

Advgoal-atk
KEM,A (^) := Pr[Exptgoal-atk

KEM,A (^) = 1],

where Exptgoal-atk
KEM,A (^) is an experiment described in Figure 1.

ForGOAL-ATK ∈ {IND-CCA, PR-CCA, SMT-CCA,ANON-CCA, SROB-CCA, SCFR-CCA,WROB-CCA,WCFR-CCA},
we say that KEM is GOAL-ATK-secure if Advgoal-atk

KEM[,S],A (^) is negligible for any QPT adversary A. We say that
KEM is SPR-CCA-secure (or SSMT-CCA-secure) if it is PR-CCA-secure (or SMT-CCA-secure) and its simulator ig-
nores ek, respectively. We say that KEM is WANON-CCA-secure if it is ANON-CCA-secure where we modify the
input (ek0, ek1, 2∗,  ∗) into (ek0, ek1, 2∗). We also say that KEM is GOAL-CPA-secure if it is GOAL-CCA-secure
even without the decapsulation oracle.

We additionally de�ne n-sparseness.

De�nition 2.10. Let S be a simulator for the PR-CCA security. We say that KEM is n-sparse if

Pr[(ek, dk) ← Gen(1^ ), 2∗ ← S(1^ , ek) : Dec(dk, 2) ≠ ⊥] ≤ n .
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Exptind-cca
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗,  ∗0 ) ← Enc(ek);
 ∗1 ← K

1′ ← ADec2∗ ( ·) (ek, 2∗,  ∗
1
)

return boole(1 = 1′)

Dec0 (2)

if 2 = 0, return ⊥
 := Dec(dk, 2)
return  

Dec0 (id, 2)

if 2 = 0, return ⊥
 := Dec(dkid, 2)
return  

Exptpr-cca
KEM,S,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗0,  

∗
0 ) ← Enc(ek);

(2∗1,  
∗
1 ) ← S(1

^ , ek) × K

1′ ← ADec2∗
1
( ·) (ek, 2∗

1
,  ∗
1
)

return boole(1 = 1′)

Exptsmt-cca
KEM,S,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗,  ∗0 ) ← S(1

^ , ek) × K
 ∗1 ← Dec(dk, 2∗)

1′ ← ADec2∗ ( ·) (ek, 2∗,  ∗
1
)

return boole(1 = 1′)

Exptanon-cca
KEM,A (^)

1 ← {0, 1}
(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )
(2∗,  ∗) ← Enc(ek);

1′ ← ADec2∗ ( ·, ·) (ek0, ek1, 2
∗,  ∗)

return boole(1 = 1′)

Exptwcfr-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

1 ← ADec⊥ ( ·, ·) (ek0, ek1)
(2,  1) ← Dec(ek1)
 1−1 ← Dec(dk1−1 , 2)
return boole( 0 =  1 ≠ ⊥)

Exptscfr-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
 0 ← Dec(dk0, 2)
 1 ← Dec(dk1, 2)
return boole( 0 =  1 ≠ ⊥)

Exptsrob-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
 0 ← Dec(dk0, 2)
 1 ← Dec(dk1, 2)
return boole( 0 ≠ ⊥ ∧  1 ≠ ⊥)

Exptwrob-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

1 ← ADec⊥ ( ·, ·) (ek0, ek1)
(2,  1) ← Dec(ek1)
 1−1 ← Dec(dk1−1 , 2)
return boole( 1−1 ≠ ⊥)

Fig. 2. Games for KEM schemes
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2.3 Data Encapsulation

�e model for DEM schemes is summarized as follows:

De�nition 2.11. A DEM scheme DEM consists of the following triple of polynomial-time algorithms (E,D) with key
space K and message spaceM:
– E( , `) → 3: an encapsulation algorithm that takes as input key  and data ` and outputs ciphertext 3.
– D( , 3) → </⊥: a decapsulation algorithm that takes as input key  and ciphertext 3 and outputs data ` or a

rejection symbol ⊥ ∉M.

De�nition 2.12 (Correctness). We say DEM = (E,D) has perfect correctness if for any  ∈ K and any ` ∈ M,
we have

Pr[D( , 3) = ` : 3 ← E( , `)] = 1.

We review indistinguishability under chosen-ciphertext a�acks (IND-CCA), pseudorandomness under chosen-
ciphertext a�acks (PR-CCA), and pseudorandomness under one-time chosen-ciphertext a�acks (PR-otCCA). Ro-
bustness of DEM (FROB and XROB) are taken from Farshim, Orlandi, and Roşi [FOR17].

De�nition 2.13 (Security notions for DEM). LetDEM = (E,D) be a DEM scheme whose key space isK . For ` ∈ M,
let C|` | be a ciphertext space de�ned by the length of message `.
For any A and goal-atk ∈ {ind-cca, pr-cca, pr-otcca}, we de�ne its goal-atk advantage against DEM as follows:

Advgoal-atk
DEM,A (^) :=

���2 Pr[Exptgoal-atk
DEM,A (^) = 1] − 1

���,
where Exptgoal-atk

DEM,A (^) is an experiment described in Figure 1.
For any A and goal-atk ∈ {frob, xrob}, we de�ne its goal-atk advantage against DEM as follows:

Advgoal-atk
DEM,A (^) := Pr[Exptgoal-atk

DEM,A (^) = 1],

where Exptgoal-atk
DEM,A (^) is an experiment described in Figure 1.

ForGOAL-ATK ∈ {IND-CCA, PR-CCA, PR-otCCA, FROB,XROB}, we say thatDEM isGOAL-ATK-secure ifAdvgoal-atk
DEM,A (^)

is negligible for any QPT adversary A.

2.4 Review of Grubbs, Maram, and Paterson [GMP21]

Grubbs et al. studied KEM’s anonymity and hybrid PKE’s anonymity and robustness, which is an extension of
Mohassel [Moh10]. We use KEM⊥ and KEM6⊥ to indicated KEM with explicit rejection and implicit rejection. For
KEM with eplicit rejection, they showed the following theorem which generalizes Mohassel’s theorem [Moh10]:

�eorem 2.1 ([GMP21, �eorem 1]). Let PKEhy = Hyb[KEM⊥,DEM], a hybrid PKE scheme obtained by compos-
ing KEM and DEM. (See Figure 4.)
1. If KEM⊥ iswANON-CPA-secure, IND-CCA-secure,WROB-CCA-secure, and X-correct andDEM is INT-CTXT-

secure, then PKEhy is ANON-CCA-secure.
2. If KEM⊥ is SROB-CCA-secure (andWROB-CCA-secure), then PKEhy is SROB-CCA-secure (andWROB-CCA-

secure), respectively.

Grubbs et al. [GMP21] then treat KEM with implicit rejection, which is used in all NIST PQC Round 3 KEM candi-
dates except HQC. Roughly speaking, they showed that the following two theorems on robustness and anonymity
of hybrid PKE from KEM with implicit rejection:

�eorem 2.2 (Robustness ofPKEhy [GMP21,�eorem2]). LetPKEhy = Hyb[KEM6⊥,DEM]. IfKEM6⊥ is SCFR-CCA-
secure (andWCFR-CCA-secure) andDEM is FROB-secure (andXROB-secure), then PKEhy is SROB-CCA-secure (and
WROB-CCA-secure), respectively.

�eorem 2.3 (Anonymity of PKEhy using FO6⊥ [GMP21, �eorem 7]). Let PKEhy = Hyb[KEM6⊥,DEM]. If PKE
is X-correct, and W-spreading, PKE1 = T[PKE,G] is WCFR-CPA-secure, KEM6⊥ = FO 6⊥ [PKE,G,H] is ANON-CCA-
secure and IND-CCA-secure, DEM is INT-CTXT-secure, then PKEhy is ANON-CCA-secure.
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Exptind-cca
DEM,A (^)

1 ← {0, 1}
 ← K

(`0, `1, state) ← AEnc( ·) ,Dec⊥ ( ·) (1^ )
3∗ ← E( , `1)

1′ ← AEnc( ·) ,Dec3∗ ( ·) (3∗, state)
1; ← boole( |`0 | = |`1 |)
return boole(1 = 1′ ∧ 1;)

Enc(`)

3 ← E( , `)
return 3

Dec0 (3)

if 3 = 0, return ⊥
`← D( , 3)
return `

Exptint-ctxt
DEM,A (^)

 ← K
F ← ⊥
! ← ∅

AEnc2( ·) ,Dec2( ·) (1^ )
return F

Enc2(`)

3 ← E( , `)
! ← ! ∪ {3}
return 3

Dec2(3)

`← D( , 3)
if ` ≠ ⊥ and 3 ∉ !, set F = >
return `

Exptpr-cca
DEM,A (^)

1 ← {0, 1}
 ← K

(`, state) ← AEnc( ·) ,Dec⊥ ( ·) (1^ )
3∗0 ← E( , `)
3∗1 ← * (C|` |)

1′ ← AEnc( ·) ,Dec3∗
1
( ·) (3∗

1
, state)

return boole(1 = 1′)

Exptpr-otcca
DEM,A (^)

1 ← {0, 1}
 ← K
(`, state) ← A(1^ )
3∗0 ← E( , `)
3∗1 ← * (C|` |)

1′ ← ADec3∗
1
( ·) (3∗

1
, state)

return boole(1 = 1′)

Exptfrob
DEM,A (^)

(3, :0, :1) ← A(1^ )
`0 ← D(:0, 3)
`1 ← D(:1, 3)
1 ← boole(`0 ≠ ⊥ ∧ `1 ≠ ⊥)
1: ← boole(:0 ≠ :1)
return boole(1 ∧ 1: )

Exptxrob
DEM,A (^)

(`0, :0, '0, :1, 31) ← A(1^ )
30 ← E(:0, `0; '0)
`1 ← D(:1, 31)
1 ← boole(`0 ≠ ⊥ ∧ `1 ≠ ⊥)
1: ← boole(:0 ≠ :1)
12 ← boole(30 = 31 ≠ ⊥)
return boole(1 ∧ 1: ∧ 12)

Fig. 3. Games for DEM schemes
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�ey also showed that the following theorem:

�eorem 2.4 (Anonymity of KEM6⊥ using FO6⊥ [GMP21,�eorem 5]). If PKE iswANON-CPA-secure,OW-CPA-
secure, and X-correct, and PKE1 = T[PKE,G] is SCFR-CPA-secure, then a KEM scheme KEM = FO6⊥ [PKE,G,H] is
ANON-CCA-secure.

In their security proof, they need to simulate both decapsulation oracles without secrets when they reduce from
wANON-CPA-security. Jiang et al. [JZC+18] used the simulation trick that replaces H(`, 2) with H@ (Enc(ek, `))
if 2 = Enc(ek, `) and H′@ (<, 2) else, which helps the simulation of the decapsulation oracle without secrets.
Grubbs et al. extended this trick to simulate two decapsulation oracles by replacing H(`, 2) with H@,8 (Enc(ek8 , `))
if 2 = Enc(ek8 , `) and H′@ (`, 2) else. Notice that this extended simulation heavily depends on the fact that H takes
` and 2. If the random oracle takes ` only, their trick fails the simulation.

3 Strong Pseudorandomness Implies Anonymity

We observe that strong pseudorandomness of PKE/KEM immediately implies anonymity of PKE/KEM, which may
be folklore. For completeness, we include the proof for PKE in subsection B.1.

�eorem 3.1. IfPKE is SPR-CCA-secure, then it isANON-CCA-secure. IfKEM is SPR-CCA-secure, then it isANON-CCA-
secure.
Formally speaking, for any A against the ANON-CCA security of PKE/KEM, there exist A10 and A11 against the
SPR-CCA security of PKE/KEM such that

Advanon-cca
PKE,A (^) ≤ Advspr-cca

PKE,S,A10
(^) + Advspr-cca

PKE,S,A11
(^),

Advanon-cca
KEM,A (^) ≤ Advspr-cca

KEM,S,A10
(^) + Advspr-cca

KEM,S,A11
(^).

4 Strong Pseudorandomness of Hybrid PKE

�e hybrid PKE PKEhy = (Genhy, Enchy,Dechy) constructed from KEM = (Gen, Enc,Dec) and DEM = (E,D) is
summarized as in Figure 4

Genhy (1^ )

(ek, dk) ← Gen(1^ )
return (ek, dk)

Enchy (ek, `)

(2,  ) ← Enc(ek)
3 ← E( , `)
return ct := (2, 3)

Dechy (dk, ct = (2, 3))

 ′ ← Dec(dk, 2)
if  ′ = ⊥ then return ⊥
`′ ← D( ′, 3)
if `′ = ⊥ then return ⊥
return `′

Fig. 4. PKEhy = Hyb[KEM,DEM]

We show the following two theorems on SPR-CCA security of a hybrid PKE:

�eorem 4.1. Let PKEhy = (Genhy, Enchy,Dechy) be a hybrid encryption scheme obtained by composing a KEM
scheme KEM⊥ = (Gen, Enc,Dec) and a DEM scheme DEM = (E,D) that share key space K . If KEM⊥ is SPR-CCA-
secure, X-correct with negligible X, and n-sparse and DEM is PR-otCCA-secure and INT-CTXT-secure, then PKEhy
is SPR-CCA-secure.
Formally speaking, for anyA against the SPR-CCA security of PKEhy, there existA23 against the SPR-CCA security
of KEM⊥,A34 against the SPR-otCCA security of DEM, andA45 against the INT-CTXT security of DEM such that

Advspr-cca
PKEhy ,Shy ,A

(^) ≤ Advspr-cca
KEM⊥ ,S,A23

(^) + Advspr-otcca
DEM,A34

(^) + Advint-ctxt
DEM,A45

(^) + n + X.
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Table 2. Summary of Games for the Proof of �eorem 4.1

Game 2∗ and  ∗ 3∗ Decryption oracle justi�cation

Game0 Enc(ek) E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗)
Game1 Enc(ek) at the beginning E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗) conceptual change
Game2 Enc(ek) at the beginning E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗) ; use  ∗ if 2 = 2∗ X-correctness of KEM⊥
Game3 S(1^ ) ×* (K) at the beginning E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗) ; use  ∗ if 2 = 2∗ SPR-CCA security of KEM⊥
Game4 S(1^ ) ×* (K) at the beginning * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) ; use  ∗ if 2 = 2∗ SPR-otCCA security of DEM
Game5 S(1^ ) ×* (K) at the beginning * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) ; use ⊥∗ if 2 = 2∗ INT-CTXT security of DEM
Game6 S(1^ ) ×* (K) at the beginning * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) n -sparseness of KEM⊥
Game7 S(1^ ) ×* (K) * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) conceptual change

�eorem 4.2. Let PKEhy = (Genhy, Enchy,Dechy) be a hybrid encryption scheme obtained by composing a KEM
scheme KEM6⊥ = (Gen, Enc,Dec) and a DEM scheme DEM = (E,D) that share key space K . If KEM is SPR-CCA-
secure, SSMT-CCA-secure, and X-correct with negligible X and DEM is PR-otCCA-secure, then PKEhy is SPR-CCA-
secure.
Formally speaking, for anyA against the SPR-CCA security of PKEhy, there existA23 against the SPR-CCA security
of KEM6⊥, A34 against the SPR-otCCA security of DEM, and A45 against the SSMT-CCA security of KEM6⊥ such
that

Advspr-cca
PKEhy ,Shy ,A

(^) ≤ Advspr-cca
KEM6⊥ ,S,A23

(^) + Advspr-otcca
DEM,A34

(^) + Advssmt-cca
KEM 6⊥ ,S,A45

(^) + X.

4.1 Proof of �eorem 4.1
Let us consider Game8 for 8 = 0, . . . , 6. We summarize the games in Table 3. Let (8 denote the event that the
adversary outputs 1′ = 1 in Game8 .
Let S be the simulator for the SPR-CCA security of KEM6⊥. We de�ne Shy (1^ , |`∗ |) := S(1^ ) ×* (C|`∗ |) be the
simulator for the SPR-CCA security of PKEhy.
�e security proof is similar to the security proof of the IND-CCA security of KEM/DEM [CS03] forGame0, . . . ,Game4.
We need to take care of pseudorandom ciphertexts when moving fromGame4 toGame7 and require the INT-CTXT
security of DEM and the n-sparseness of KEM⊥.

Game0: �is is the original game Exptspr-cca
PKEhy ,Shy ,A

(^) with 1 = 0. Given `∗, the target ciphertext is computed as
follows:

(2∗,  ∗) ← Enc(ek); 3∗ ← E( ∗, `∗); return ct∗ = (2∗, 3∗).
We have

Pr[(0] = 1 − Pr[Exptspr-cca
PKEhy ,Shy ,A

(^) = 1 | 1 = 0] .

Game1: In this game, 2∗0 and  ∗0 are generated before invokingA with ek. �is change is just conceptual and we
have

Pr[(0] = Pr[(1] .

Game2: In this game, the decryption oracle uses  ∗ if 2 = 2∗ instead of  = Dec(dk, 2∗). Game1 and Game2
di�er if correctly generated ciphertext 2∗ with  ∗ is decapsulated into di�erent  ≠  ∗ or ⊥, which violates the
correctness and occurs with probability at most X. Hence, the di�erence of Game1 and Game2 is bounded by X
and we have

|Pr[(1] − Pr[(2] | ≤ X.
�is is corresponding to the event BadKeyPair in [CS03].

Game3: In this game, the challenger uses random (2∗,  ∗) and uses  ∗ in DEM. �e challenge ciphertext is
generated as follows:

(2∗,  ∗) ← S(1^ ) ×* (K); 3+ ← E( ∗, `∗); return ct∗ = (2∗, 3+).

�e di�erence is bounded by SPR-CCA security of KEM6⊥: �ere is an adversary A23 whose running time is
approximately the same as that of A satisfying

|Pr[(2] − Pr[(3] | ≤ Advspr-cca
KEM 6⊥ ,S,A23

(^).

We omit the detail of A23, since it is straightforward.
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Game4: In this game, the challenger uses random 3∗. �e challenge ciphertext is generated as follows:

(2∗,  ∗) ← S(1^ ) × K ; 3∗ ← * (C|`∗ |); return ct∗ = (2∗, 3∗).

�e di�erence is bounded by SPR-otCCA security of DEM: �ere is an adversary A34 whose running time is
approximately the same as that of A satisfying

|Pr[(3] − Pr[(4] | ≤ Advspr-otcca
DEM,A34

(^).

We omit the detail of A34 since it is straightforward.

Game5: We replace the decryption oracle. If given ct = (2∗, 3), the decryption oracle always return ⊥.
Let Forge be an event that the adversary queries 3 ≠ 3∗ decrypted into some ` ≠ ⊥ under  ∗. Game4 and
Game5 are equivalent until the event Forge occurs in Game4. �ere is an adversary A45 whose running time is
approximately the same as that of A satisfying

|Pr[(4] − Pr[(5] | ≤ Pr[Forge] ≤ Advint-ctxt
DEM,A45

(^).

We omit the detail of A45 since it is straightforward.

Game6: We replace the decryption oracle in Game5 with the original one.
Let D be an event that a randomly chosen 2∗ ← S(1^ ) is decapsulated into a key  ≠ ⊥. Game5 and Game6 are
equivalent unless the event D occurs. Since KEM⊥ is n-sparse, we have

|Pr[(5] − Pr[(6] | ≤ Pr[D] ≤ n .

Game7: We change the timing of the generation of (2∗,  ∗) as the original. �is change is just conceptual and
we have

Pr[(6] = Pr[(7] .
Notice that this is the original game Exptspr-cca

PKEhy ,Shy ,A
(^) with 1 = 1, thus, we have

Pr[(7] = Pr[Exptspr-cca
PKEhy ,Shy ,A

(^) = 1 | 1 = 1] .

Summarizing the (in)equalities, we obtain the bound in the statement as follows:

Advspr-cca
PKEhy ,ShyA

(^) = |Pr[(0] − Pr[(7] | ≤
∑
8

|Pr[(8] − Pr[(8+1] |

≤ X + Advspr-cca
KEM⊥ ,S,A23

(^) + Advspr-otcca
DEM,A34

(^) + Advint-ctxt
DEM,A45

(^) + X + n .

ut

4.2 Proof of �eorem 4.2

Let us consider Game8 for 8 = 0, . . . , 6. We summarize the games in Table 3. Let (8 denote the event that the
adversary outputs 1′ = 1 in Game8 .
Let S be the simulator for the SPR-CCA security of KEM6⊥. We de�ne Shy (1^ , |`∗ |) := S(1^ ) ×* (C|`∗ |) be the
simulator for the SPR-CCA security of PKEhy.
�e security proof is similar to the security proof of the IND-CCA security of KEM/DEM [CS03] forGame0, . . . ,Game4.
We need to take care of pseudorandom ciphertexts when moving fromGame4 toGame5 and require the SSMT-CCA se-
curity of KEM6⊥.

Game0: �is is the original game Exptspr-cca
PKEhy ,Shy ,A

(^) with 1 = 0. Given `∗, the target ciphertext is computed as
follows:

(2∗,  ∗) ← Enc(ek); 3∗ ← E( ∗, `∗); return ct∗ = (2∗, 3∗).
We have

Pr[(0] = 1 − Pr[Exptspr-cca
PKEhy ,Shy ,A

(^) = 1 | 1 = 0] .
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Table 3. Summary of Games for the Proof of �eorem 4.2

Game 2∗ and  ∗ 3∗ Decryption oracle justi�cation

Game0 Enc(ek) E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗)
Game1 Enc(ek) at the beginning E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗) conceptual change
Game2 Enc(ek) at the beginning E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗) ; use  ∗ if 2 = 2∗ X-correctness of KEM 6⊥
Game3 S(1^ ) ×* (K) at the beginning E( ∗ , `∗) reject if (2, 3) = (2∗ , 3∗) ; use  ∗ if 2 = 2∗ SPR-CCA security of KEM6⊥
Game4 S(1^ ) ×* (K) at the beginning * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) ; use  ∗ if 2 = 2∗ SPR-otCCA security of DEM
Game5 S(1^ ) ×* (K) at the beginning * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) SSMT-CCA security of KEM 6⊥
Game6 S(1^ ) ×* (K) * (C|`∗ |) reject if (2, 3) = (2∗ , 3∗) conceptual change

Game1: In this game, 2∗0 and  ∗0 are generated before invokingA with ek. �is change is just conceptual and we
have

Pr[(0] = Pr[(1] .

Game2: In this game, the decryption oracle uses  ∗ if 2 = 2∗ instead of  = Dec(dk, 2∗). Game1 and Game2
di�er if correctly generated ciphertext 2∗ with  ∗ is decapsulated into di�erent  ≠  ∗ or ⊥, which violates the
correctness and occurs with probability at most X. Hence, the di�erence of Game1 and Game2 is bounded by X
and we have

|Pr[(1] − Pr[(2] | ≤ X.

�is is corresponding to the event BadKeyPair in [CS03].

Game3: In this game, the challenger uses random (2∗,  ∗) and uses  ∗ in DEM. �e challenge ciphertext is
generated as follows:

(2∗,  ∗) ← S(1^ ) ×* (K); 3+ ← E( ∗, `∗); return ct∗ = (2∗, 3+).

�e di�erence is bounded by SPR-CCA security of KEM6⊥: �ere is an adversary A23 whose running time is
approximately the same as that of A satisfying

|Pr[(2] − Pr[(3] | ≤ Advspr-cca
KEM 6⊥ ,S,A23

(^).

We omit the detail of A23, since it is straightforward.

Game4: In this game, the challenger uses random 3∗. �e challenge ciphertext is generated as follows:

(2∗,  ∗) ← S(1^ ) × K ; 3∗ ← * (C|`∗ |); return ct∗ = (2∗, 3∗).

�e di�erence is bounded by SPR-otCCA security of DEM: �ere is an adversary A34 whose running time is
approximately the same as that of A satisfying

|Pr[(3] − Pr[(4] | ≤ Advspr-otcca
DEM,A34

(^).

We omit the detail of A34 since it is straightforward.

Game5: We replace the decryption oracle. If given ct = (2∗, 3), the decryption oracle uses  = Dec(dk, 2∗)
instead of  ∗.
�e di�erence is bounded by SSMT-CCA security of KEM6⊥: �ere is an adversary A45 whose running time is
approximately the same as that of A satisfying

|Pr[(4] − Pr[(5] | ≤ Advssmt-cca
KEM 6⊥ ,S,A45

(^).

We omit the detail of A45 since it is straightforward.
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Game6: We change the timing of the generation of (2∗,  ∗). �is change is just conceptual and we have

Pr[(5] = Pr[(6] .

Notice that this is the original game Exptspr-cca
PKEhy ,Shy ,A

(^) with 1 = 1, thus, we have

Pr[(6] = Pr[Exptspr-cca
PKEhy ,Shy ,A

(^) = 1 | 1 = 1] .

Summarizing the (in)equalities, we obtain the bound in the statement as follows:

Advspr-cca
PKEhy ,ShyA

(^) = |Pr[(0] − Pr[(6] | ≤
∑
8

|Pr[(8] − Pr[(8+1] |

≤ X + Advspr-cca
KEM 6⊥ ,S,A23

(^) + Advspr-otcca
DEM,A34

(^) + Advssmt-cca
KEM 6⊥ ,S,A45

(^) + X.

ut

5 Properties of SXY

Let us review SXY [SXY18] as known as U6⊥< with explicit re-encryption check [HHK17].
Let PKE = (Gen, Enc,Dec) be a deterministic PKE scheme. LetM, C, and K be a plaintext, ciphertext, and key
space of PKE, respectively. Let H : M → K and Hprf : {0, 1}ℓ × C → K be hash functions modeled by random
oracles. KEM = (Gen, Enc,Dec) = SXY[PKE,H,Hprf] is de�ned as in Figure 5.

Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`← DM
2 := Enc(ek, `)
 := H(`)
return (2,  )

Dec(dk, 2), where dk = (dk, ek, B)

`′ ← Dec(dk, 2)
if `′ = ⊥ or 2 ≠ Enc(ek, `′)
then return  := Hprf (B, 2)

else return  := H(`′)

Fig. 5. KEM = SXY[PKE,H,Hprf]

5.1 SPR-CCA Security
We �rst show KEM is strongly pseudorandom if the underlying PKE is strongly disjoint-simulatable.
�eorem 5.1. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable and X-correct with negligible X, then KEM = SXY[PKE,H,Hprf] is
SPR-CCA-secure.
Formally speaking, for any A against the SPR-CCA security of KEM issuing at most @Dec queries to the decap-
sulation oracle and @G, @H, and @Hprf queries to G, H, and Hprf , respectively, there exist A34 against ciphertext-
indistinguishability of PKE such that

Advspr-cca
KEM,S,A (^) ≤ Advds-ind

PKE,DM ,S,A34
(^) + DisjPKE,S (^) + 4X

+ 16(@G + @Dec + 1)2X + 16(@G + @H + 1)2X + 4(@Hprf + @Dec) · 2
−ℓ/2.

�eorem 5.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable and X-correct with negligible X, then KEM = SXY[PKE,H,Hprf] is SPR-CCA-secure.
Formally speaking, for any A against the SPR-CCA security of KEM issuing at most @Dec queries to the decap-
sulation oracle and @G, @H, and @Hprf queries to G, H, and Hprf , respectively, there exist A34 against ciphertext-
indistinguishability of PKE such that

Advspr-cca
KEM,A,S (^) ≤ Advds-ind

PKE,DM ,S,A34
(^) + DisjPKE,S (^) + 4(@Hprf + @Dec) · 2

−ℓ/2 + 4X.

We here prove �eorem 5.1 because the proof of �eorem 5.2 is a special case of �eorem 5.1.
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Table 4. Summary of Games for the Proof of �eorem 5.1. We de�ne 6(`) = Enc(ek, `) = Enc0 (ek, `;G(`)).

Decryption
Game H G 2∗  ∗ valid 2 invalid 2 justi�cation

Game0 H F(M, R) Enc(ek, `∗) H(`∗) H(`) Hprf (B, 2)
Game1 H F(M, R) Enc(ek, `∗) H(`∗) H(`) H@ (2) Lemma 2.2
Game1.1 H Fgood (M, R) Enc(ek, `∗) H(`∗) H(`) H@ (2) Lemma 2.1 + correctness
Game1.2 H′@ ◦ 6 Fgood (M, R) Enc(ek, `∗) H(`∗) H(`) H@ (2) if key is not bad
Game2 H@ ◦ 6 Fgood (M, R) Enc(ek, `∗) H(`∗) H(`) H@ (2) if key is not bad
Game3 H@ ◦ 6 Fgood (M, R) Enc(ek, `∗) H@ (2∗) H@ (2) H@ (2) conceptual
Game3.1 H@ ◦ 6 F(M, R) Enc(ek, `∗) H@ (2∗) H@ (2) H@ (2) Lemma 2.1 + correctness
Game4 H@ ◦ 6 F(M, R) S(1^ ) H@ (2∗) H@ (2) H@ (2) DS-IND
Game5 H@ ◦ 6 F(M, R) S(1^ ) * (K) H@ (2) H@ (2) statistical disjointness
Game5.1 H@ ◦ 6 Fgood (M, R) S(1^ ) * (K) H@ (2) H@ (2) Lemma 2.1 + correctness
Game6 H@ ◦ 6 Fgood (M, R) S(1^ ) * (K) H(`) H@ (2) conceptual
Game6.1 H′@ ◦ 6 Fgood (M, R) S(1^ ) * (K) H(`) H@ (2) if key is not bad
Game6.2 H Fgood (M, R) S(1^ ) * (K) H(`) H@ (2) if key is not bad
Game7 H F(M, R) S(1^ ) * (K) H(`) H@ (2) Lemma 2.1 + correctness
Game8 H F(M, R) S(1^ ) * (K) H(`) Hprf (B, 2) Lemma 2.2

Proof of �eorem 5.1: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 8. We summarize the
games in Table 4. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 . We extend the security
proof for SXY in [LW21], which extends the security proof for SXY [SXY18, XY19] to the case that the underlying
PKE is derandomized by KC ◦ T.

Game0: �is game is the original game Exptspr-cca
KEM,A (^) with 1 = 0. �us, we have

Pr[(0] = 1 − Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 0] .

Game1: �is game is the same as Game0 except that Hprf (B, 2) in the decapsulation oracle is replace with H@ (2)
where H@ : C → K is another random oracle. We remark that A is not given direct access to H@ .
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(0] − Pr[(1] | ≤ 2(@Hprf + @Dec) · 2
−ℓ/2.

De�nition of Fgood (M,R): We next consider a set of good random oracles G. �is de�nition follows [HHK17,
JZC+18, HKSU20, LW21].
For (ek, dk) ∈ Gen0 () and ` ∈ M, we de�ne a set of good randomnessRgood

ek,dk,` := {A ∈ R : Dec0 (dk, Enc0 (ek, `; A)) =

`}, which could be empty. Let Fgood (M,R) be a set of functions G : M → R satisfying G(`) ∈ Rgood
ek,dk,`

for all ` ∈ M. De�ne Xek,dk,` =
��R \ Rgood

ek,dk,`

��/|R|, which is the fraction of the bad randomness. De�ne
Xek,dk := max`∈M Xek,dk,` . We note that X = Exp(ek,dk)←Gen0 (1^ ) [Xek,dk].

Game1.1: �is game is the same as Game1 except that the random oracle G is chosen from Fgood (M,R) instead
of F (M,R).
If we �x (ek, dk), then we have |Pr[(1 | (ek, dk)] − Pr[(1.1 | (ek, dk)] | ≤ 8(@G + @Dec + 1)2Xek,dk . (See [HKSU20,
�eorem 3.2] and [LW21, Claim 1] for the analysis using Lemma 2.1.) Taking the average over (ek, dk) ←
Gen0 (1^ ), we obtain

|Pr[(1] − Pr[(1.1] | ≤ 8(@G + @Dec + 1)2Exp(ek,dk)←Gen0 (1^ ) [Xek,dk] = 8(@G + @Dec + 1)2X.

De�nition of Bad: We next de�ne a bad event for key pairs. �is de�nition follows [LW21]. Let us de�ne an
event Bad that there exists ` ∈ M such that any A ∈ R is bad randomness, that is,

Bad := boole
(
∃` ∈ M : Rgood

ek,dk,` = ∅
)
,

where randomness is taken over (ek, dk) ← Gen0 (1^ ).
We have Pr[Bad] ≤ X ([LW21, Claim 3]). According to Lemma A.1, for any ?, we also have

|Pr[(1.1] − ? | ≤ |Pr[(1.1 ∧ ¬Bad] − ? | + X.
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Game1.2: �is game is the same as Game1.1 except that the random oracle H(·) is simulated by H′@ (Enc(ek, ·))
where H′@ : C → K is yet another random oracle. We remark that the decapsulation oracle and the generation of
 ∗ also use H′@ (Enc(ek, ·)) as H(·).
If ¬Bad occurs, then PKE = T[PKE0,G] is perfectly correct from the de�nition of G and 6(`) := Enc(ek, `;G(`))
is injective. �us, H′@ ◦ 6 : M → K is a random function and the two games Game1.1 and Game1.2 are equivalent
if ¬Bad occurs. We have

Pr[(1.1 ∧ ¬Bad] = Pr[(1.2 ∧ ¬Bad] .
See [XY19, Lemma 4.3] and [LW21, Claim 4] for the detail.

Game2: �is game is the same as Game1.2 except that the random oracle H is simulated by H@ ◦ 6 instead of
H′@ ◦ 6.
If¬Bad occurs, then PKE = T[PKE,G] is perfectly correct from the de�nition of G. Hence, the two games Game1.2
and Game2 are equivalent, because a value of H′@ (2) for an invalid 2 is not used in Game1.2: that is, we have

Pr[(1.2 ∧ ¬Bad] = Pr[(2 ∧ ¬Bad] .

See the proof of [XY19, Lemma 4.4] and [LW21, Claim 5] for the detail.

Game3: �is game is the same as Game2 except that  ∗ is set as H@ (2∗) and the decapsulation oracle always
returns H′@ (2) as long as 2 ≠ 2∗. �is decapsulation oracle will denoted by Dec’.
If ¬Bad occurs, then PKE = T[PKE,G] is perfectly correct from the de�nition of G. �us, the two games Game2
and Game3 are equivalent and we have

Pr[(2 ∧ ¬Bad] = Pr[(3 ∧ ¬Bad] .

See the proof of [XY19, Lemma 4.5] for the detail.
According to Lemma A.1, for any ?, we have

|Pr[(3 ∧ ¬Bad] − ? | ≤ |Pr[(3] − ? | + X.

Game3.1: �is game is the same as Game3 except that G is chosen from F (M,R) instead of Fgood (M,R). We
have

|Pr[(3] − Pr[(3.1] | ≤ 8(@G + @H + 1)2Exp(ek,dk)←Gen0 (1^ ) [Xek,dk] = 8(@G + @H + 1)2X.
(We note that H and the challenge ciphertext also query to G internally.)

Game4: �is game is the same as Game3 except that 2∗ is generated by S(1^ ).
�e di�erence between two games Game3 and Game4 is bounded by the advantage of ciphertext indistinguisha-
bility in disjoint simulatability as in [XY19, Lemma 4.7]. We have

|Pr[(3] − Pr[(4] | ≤ Advds-ind
PKE,DM ,S,A34

(^).

Game5: �is game is the same as Game4 except that  ∗ ← K instead of  ∗ ← H@ (2∗).
In Game4, if 2∗ ← S(1^ ) is not in Enc(ek,M), then the adversary has no information about  ∗ = H@ (2∗) and
thus,  ∗ looks uniformly at random. Hence, the di�erence between two games Game4 and Game5 is bounded by
the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8]. We have

|Pr[(4] − Pr[(5] | ≤ DisjPKE,S (^).

Game5.1: �is game is the same as Game5 except that G is chosen from Fgood (M,R) instead of F (M,R). We
have

|Pr[(5] − Pr[(5.1] | ≤ 8(@G + @H)2Exp(ek,dk)←Gen0 (1^ ) [Xek,dk] ≤ 8(@G + @H + 1)2X.
(We note that H and the challenge ciphertext also query to G internally.)
According to Lemma A.1, for any ?, we have

|Pr[(5.1 ∧ ¬Bad] − ? | ≤ |Pr[(5.1] − ? | + X.
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Game6: �is game is the same as Game5 except that the decapsulation oracle is reset as Dec. Similar to the case
for Game2 and Game3, if a key pair is accurate, the two games Game5 and Game6 are equivalent as in the proof
of [XY19, Lemma 4.5]. We have

Pr[(5.1 ∧ ¬Bad] = Pr[(6 ∧ ¬Bad] .

Game6.1: �is game is the same as Game6 except that the random oracle H is simulated by H′@ ◦ 6 where
H′@ : C → K is yet another random oracle as in Game1.2. If a key pair is not bad, the two games Game6 and
Game6.1 are equivalent as in the proof of [XY19, Lemma 4.4]. We have

Pr[(6 ∧ ¬Bad] = Pr[(6.1 ∧ ¬Bad] .

Game6.2: �is game is the same as Game6.1 except that the random oracle H(·) is set as the original. If a key pair
is not bad, the two games Game6.1 and Game6.2 are equivalent as in the proof of [XY19, Lemma 4.4]. We have

Pr[(6.1 ∧ ¬Bad] = Pr[(6.2 ∧ ¬Bad] .

We have, for any ?,
|Pr[(6.2 ∧ ¬Bad] − ? | ≤ |Pr[(6.2] − ? | + X

from Lemma A.1.

Game7: �is game is the same as Game6.2 except that the random oracle G is chosen from F (M,R) instead of
Fgood (M,R). We have,

|Pr[(6.2] − Pr[(7] | ≤ 8(@G + @Dec)2X. ≤ 8(@G + @Dec + 1)2X.

Game8: �is game is the same as Game7 except that H@ (2) in the decapsulation is replaced by Hprf (B, 2).
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(7] − Pr[(8] | ≤ 2(@Hprf + @Dec) · 2
−ℓ/2.

We note that �is game is the original game Exptspr-cca
KEM,A (^) with 1 = 1. �us, we have

Pr[(8] = Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 1] .

Summarizing those (in)equalities, we obtain the following bound:

Advspr-cca
KEM,A (^) = |Pr[(0] − Pr[(8] |

≤ Advds-ind
PKE,DM ,S,A34

(^) + DisjPKE,S (^)

+ 4X + 16(@G + @Dec + 1)2X + 16(@G + @H + 1)2X + 4(@Hprf + @Dec) · 2
−ℓ/2.

Proof of�eorem 5.2: �e proof of �eorem 5.2 is a simpli�ed version of that of �eorem 5.1, since it does not
require to consider G. Ignoring the transition between real G with good G, we obtain the bound as follows:

Advspr-cca
KEM,S,A (^) = |Pr[(0] − Pr[(8] |

≤ 4(@Hprf + @Dec) · 2
−ℓ/2 + 4X + Advds-ind

PKE,DM ,A34 ,S (^) + DisjPKE,S (^).

5.2 SSMT-CCA Security

�eorem 5.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = SXY[PKE,H,Hprf] is SSMT-CCA-secure.
Formally speaking, for any adversaryA against SSMT-CCA security of KEM issuing at most @Hprf and @Dec queries
to Hprf and Dec, we have

Advssmt-cca
KEM,S,A (^) ≤ 2DisjPKE,S (^) + 4(@Hprf + @Dec) · 2

−ℓ/2.

We note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

18



Table 5. Summary of Games for the Proof of �eorem 5.3: ‘S(1^ ) \Enc(ek,M)’ implies that the challenger generates 2∗ ← S(1^ )
and returns ⊥ if 2∗ ∈ Enc(ek,M).

Decryption
Game H 2∗  ∗ valid 2 invalid 2 justi�cation

Game0 H S(1^ ) random H(`) Hprf (B, 2)
Game1 H S(1^ ) \ Enc(ek,M) random H(`) Hprf (B, 2) statistical disjointness
Game2 H S(1^ ) \ Enc(ek,M) random H(`) H@ (2) Lemma 2.2
Game3 H S(1^ ) \ Enc(ek,M) H@ (2∗) H(`) H@ (2) H@ (2∗) is hidden
Game4 H S(1^ ) \ Enc(ek,M) Hprf (B, 2∗) H(`) Hprf (B, 2) Lemma 2.2
Game5 H S(1^ ) \ Enc(ek,M) Dec(dk, 2∗) H(`) Hprf (B, 2) re-encryption check
Game6 H S(1^ ) Dec(dk, 2∗) H(`) Hprf (B, 2) statistical disjointness

Proof Sketch: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 6. We summarize the games in
Table 5. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 .

Game0: �is game is the original game Exptssmt-cca
KEM,S,A (^) with 1 = 0. �e challenge is generated as

(2∗,  ∗0 ) ← S(1
^ ) × K .

We have
Pr[(0] = 1 − Pr[Exptssmt-cca

KEM,S,A (^) = 1 | 1 = 0] .

Game1: In this game, the ciphertext is set as ⊥ if 2∗ is in Enc(ek,M). �e di�erence between two games Game0
and Game1 is bounded by statistical disjointness.

|Pr[(0] − Pr[(1] | ≤ DisjPKE,S (^).

Game2: �is game is the same as Game1 except that Hprf (B, 2) in the decapsulation oracle is replace with H@ (2)
where H@ : C → K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(1] − Pr[(2] | ≤ 2(@Hprf + @Dec) · 2
−ℓ/2.

Game3: �is game is the same as Game2 except that  ∗ := H@ (2∗) instead of chosen random. Since 2∗ is always
outside of Enc(ek,M),A cannot obtain any information about H@ (2∗). Hence, the two games Game2 and Game3
are equivalent and we have

Pr[(2] = Pr[(3] .

Game4: �is game is the same as Game3 except that H@ (·) is replaced by Hprf (B, ·). As in [XY19, Lemmas 4.1],
from Lemma 2.2 we have the bound

|Pr[(3] − Pr[(4] | ≤ 2(@Hprf + @Dec) · 2
−ℓ/2.

Game5: �is game is the same as Game4 except that  ∗ := Dec(dk, 2∗) instead of Hprf (B, 2∗). Recall that 2∗
is always in outside of Enc(ek,M). �us, we always have Dec(2∗) = ⊥ or Enc(ek,Dec(2∗)) ≠ 2∗ and, thus,
 ∗ = Hprf (B, 2∗). Hence, the two games are equivalent. We have

Pr[(4] = Pr[(5] .

Game6: We �nally replace how to compute 2∗. In this game, the ciphertext is chosen by S(1^ ) as in Game0.
�e di�erence between two games Game5 and Game6 is bounded by statistical disjointness.

|Pr[(5] − Pr[(6] | ≤ DisjPKE,S (^).
Moreover, this game Game6 is the original game Exptssmt-cca

KEM,S,A (^) with 1 = 1.

Pr[(6] = Pr[Exptssmt-cca
KEM,S,A (^) = 1 | 1 = 1] .

Summarizing the (in)equalities, we obtain �eorem 5.3:

Advssmt-cca
KEM,S,A (^) = |Pr[(0] − Pr[(6] |

≤ 2DisjPKE,S (^) + 4(@Hprf + @Dec) · 2
−ℓ/2.
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5.3 SCFR-CCA Security

�eorem 5.4. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = SXY[PKE,H,Hprf] is SCFR-CCA-secure in
the quantum random oracle model.

Proof. Suppose that an adversary outputs a ciphertext 2 which is decapsulated into  ≠ ⊥ by both dk0 and dk1,
that is, Dec(dk0, 2) = Dec(dk1, 2) ≠ ⊥. Let us de�ne `′

8
= Dec(dk8 , 2) for 8 ∈ {0, 1}. We also de�ne `8 := `′

8
if

2 = Enc(ek8 , `′8) and ⊥ otherwise.
We have �ve cases de�ned as follows:

1. Case 1 (`0 = `1 ≠ ⊥): �is violates XCFR-security of SCFR-CCA-security of the underlying PKE and it is
easy to make a reduction.

2. Case 2 (⊥ ≠ `0 ≠ `1 ≠ ⊥): In this case, the decapsulation algorithm outputs  = H(`0) = H(`1). �us, we
succeed to �nd a collision for H, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 3 (`0 = ⊥ and `1 ≠ ⊥): In this case, the decapsulation algorithm outputs  = Hprf (B0, 2) = H(`1) and
we �nd a claw ((B0, 2), `1) of Hprf and H. �e probability that we �nd such claw is negligible for any QPT
adversary (Lemma 2.4).

4. Case 4 (`0 ≠ ⊥ and `1 = ⊥): In this case, the decapsulation algorithm outputs  = H(`0) = Hprf (B1, 2) and
In this case, we �nd a claw (`0, (B1, 2)) of H and Hprf . �e probability that we �nd such claw is negligible
for any QPT adversary (Lemma 2.4).

5. Case 5 (�e other cases): In this case, we �nd a collision ((B0, 2), (B1, 2)) of Hprf , which is indeed collision if
B0 ≠ B1 which occurs with probability at lease 1−1/2ℓ . �e probability that we �nd such collision is negligible
for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut

6 NTRU

We brie�y review NTRU [CDH+20] and discuss its security properties.

6.1 Review of NTRU

Preliminaries: Q1 denotes the polynomial G − 1 and Q= denotes (G= − 1)/(G − 1) = G=−1 + G=−2 + · · · + 1. We
have G= − 1 =Q1Q=. ', '/3, and '/@ denotes Z[G]/(Q1Q=), Z[G]/(3,Q1Q=), and Z[G]/(@,Q1Q=), respectively.
(, (/3, and (/@ denotes Z[G]/(Q=), Z[G]/(3,Q=), and Z[G]/(@,Q=), respectively.
We say a polynomial ternary if its coe�cients are in {−1, 0, +1}. S3(0) returns a canonical (/3-representative
of I ∈ Z[G], that is, 1 ∈ Z[G] of degree at most = − 2 with ternary coe�cients in {−1, 0, +1} such that 0 ≡ 1
(mod (3,Q=)). LetT be a set of non-zero ternary polynomials of degree at most =−2, that is,T = {0 =

∑=−2
8=0 08G

8 :
0 ≠ 0 ∧ 08 ∈ {−1, 0, +1}}. We say a ternary polynomial E =

∑
8 E8G

8 has the non-negative correlation property if∑
8 E8E8+1 ≥ 0. T+ is a set of non-zero ternary polynomials of degree at most = − 2 with non-negative correlation

property. T (3) is a set of non-zero balanced ternary polynomials of degree at most = − 2 with Hamming weight
3, that is,

{
0 ∈ T : |{08 : 08 = 1}| = |{08 : 08 = −1}| = 3/2

}
.

�e following lemma is due to Schanck [Sch20]. (See, e.g., [CDH+20] for this design choice.)

Lemma 6.1. Suppose that (=, @) = (509, 2048), (677, 2048), (821, 4096), and (701, 8192). If A ∈ T , then A has an
inverse in (/@.

Proof. Q= is irreducible over F2 if and only if = is prime and 2 is primitive element inF×= (See e.g., Cohen et al. [CFA05]).
�e conditions are satis�ed by all = = 509, 677, 701, and 821. Hence, Z[G]/(2,Q=) is a �nite �eld and every poly-
nomial A in T has an inverse in Z[G]/(2,Q=). Such A is also invertible in (/@ = Z[G]/(@,Q=) with @ = 2: for
some : . One can �nd it using the Newton method/the Hensel li�ing. ut

NTRU: NTRU has two types of parameter sets, NTRU-HPS and NTRU-HRSS. �e underlying DPKE of NTRU,
which we call NTRU-DPKE, is de�ne as Figure 6. It involves four subsetsL 5 ,L6 ,LA ,L< of '. It uses Li�(<) : L< →
'.
– NTRU-HPS: �e parameters are de�ned as follows: L 5 = T ,L6 = T (@/8 − 2),LA = T ,L< = T (@/8 − 2),

and Li�(<) = <.
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Gen(1^ )

( 5 , 6) ← Sample fg()
5@ ← (1/ 5 ) mod (@,Q=)
ℎ← (3 · 6 · 5@) mod (@,Q1Q=)
ℎ@ ← (1/ℎ) mod (@,Q=)
5? ← (1/ 5 ) mod (3,Q=)
ek := ℎ, dk := ( 5 , 5? , ℎ@)
return (ek, dk)

Enc(ℎ, (A, <) ∈ LA × L<)

`′ ← Li�(<)
2 ← (ℎ · A + `′) mod (@,Q1Q=)
return 2

Dec(( 5 , 5? , ℎ@), 2)

if 2 . 0 mod (@,Q1) then return (0, 0, 1)
0 ← (2 · 5 ) mod (@,Q1Q=)
< ← (0 · 5?) mod (3,Q=)
`′ ← Li�(<)
A ← ((2 − `′) · ℎ@) mod (@,Q=)
if (A, <) ∈ LA × L< then return (A, <, 0)
else return (0, 0, 1)

Fig. 6. NTRU-DPKE

– NTRU-HRSS: �e parameters are de�ned as follows: L 5 = T+,L6 = {Q1 · E | E ∈ T+},LA = T ,L< = T ,
and Li�(<) =Q1 · S3(</Q1).

It uses Sample fg() to sample 5 and 6 from L 5 and L6 . NTRU also uses Sample rm() to sample A and < from
LA and L<.
We note that ℎ ≡ 0 (mod (@,Q1)), ℎ is invertible in (/@, and ℎA + < ≡ 0 (mod (@,Q1)). (See [CDH+20, Sec-
tion2.3].)
NTRU then uses SXY for IND-CCA-secure KEM as in Figure 7, where H = SHA3-256 and Hprf = SHA3-256. Since
the lengths of their input space di�er, we can treat them as di�erent random oracles.

Gen(1^ )

(ek, dk) ← Gen(1^ )
B← {0, 1}256

dk := (dk, B)

return (ek, dk)

Enc(ek = ℎ)

coins← {0, 1}256

(A, <) ← Sample rm(coins)
2 := Enc(ℎ, (A, <))
 := H(A, <)
return (2,  )

Dec(dk = (dk, B), 2)

(A, <, fail) := Dec(dk, 2)
:1 := H(A, <)
:2 := Hprf (B, 2)
if fail = 0 then return :1

else return :2

Fig. 7. NTRU

Rigidity: NTRU uses SXY, while its KEM version seems lack of re-encryption check. We note that NTRU implicitly
checks ℎA + Li�(<) = 2 by checking if (A, <) ∈ LA × LA in the DPKE. See [CDH+20] for the details.

6.2 NTRU is Strongly Pseudorandom, Smooth, and Collision-Free

We have known that the generalized NTRU PKE is pseudorandom [SS10] and disjointly simulatable [SXY18] if the
decisional small polynomial ratio (DSPR) assumption [LTV12] and the polynomial learning with errors (PLWE)
assumption [SSTX09, LPR10] hold. See [SXY18, Section 3.3 of the ePrint version.].
Let us adapt their arguments to NTRU. We modify the DSPR and the PLWE assumptions as follows:

De�nition 6.1. Fix the parameter set. De�ne '′ := {2 ∈ '/@ : 2 ≡ 0 (mod (@,Q1))}, which is e�ciently sam-
pleable.
– �e modi�ed DSPR assumption: It is hard to distinguish ℎ := 3 · 6 · 5@ (mod @,Q1Q=) from D, where ( 5 , 6) ←

Sample fg() and D ← '′.
– �e modi�ed PLWE assumption: It is hard to distinguish (ℎ, ℎA + Li�(<) (mod @,Q1Q=)) from (ℎ, 2) with
ℎ, 2← '′ and (A, <) ← Sample rm().

Lemma 6.2. Suppose that the modi�ed DSPR and PLWE assumptions hold. �en, NTRU-DPKE is strongly disjoint-
simulatable with a simulator S that outputs a random polynomial chosen from '′.
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Proof (Proof Sketch). �e proof for ciphertext-indistinguishability is obtained by modifying the proof in [SXY18],
Statistical disjointness follows from the fact that |'′ | = @=−1 � 32= = |T ×T | ≥ |L<×LA | ≥ |Enc(ℎ,L<×LA ) |.

Combining this strong disjoint-simulatability with previous theorems, we obtain the following theorem.

�eorem 6.1. Suppose that the modi�ed DSPR and PLWE assumptions hold. �en, NTRU is SPR-CCA-secure and
SSMT-CCA-secure in the QROM.

�eorem 6.2. NTRU is SCFR-CCA-secure in the QROM.

Proof. We �rst show XCFR security of NTRU-DPKE.
Suppose that the adversary outputs 2 on input ek0 = ℎ0, dk0, ek1 = ℎ1, dk1. Let us de�ne `0 = Dec(dk0, 2) and
`1 = Dec(dk1, 2). Let `0 = `1 = (A, <, 0) ∈ LA ×L< × {0, 1}. Otherwise, that is, if `0 = `1 = (0, 0, 1), the output
is treated as ⊥ and the adversary loses.
We have ℎ0 · A + Li�(<) ≡ ℎ1 · A + Li�(<) (mod @,Q1Q=), which implies A (ℎ0 − ℎ1) ≡ 0 (mod (@,Q=)). On the
other hand, according to Lemma 6.1, for any A ∈ LA = T , we have A ≠ 0 ∈ (/@ In addition, we have ℎ0 ≡ ℎ1 ∈ (/@
with negligible probability. �us, the probability that the adversary wins is negligible.
Applying �eorem 5.4, we conclude that NTRU is SCFR-CCA-secure in the QROM. ut

6.3 Summary

We show that NTRU-DPKE is strongly disjoint-simulatable under the modi�ed DSPR and PLWE assumptions and
it is XCFR-secure (subsection 6.2). �ose imply that NTRU is SPR-CCA-secure, SSMT-CCA-secure, and SCFR-CCA-
secure in the QROM. �us, NTRU is ANON-CCA-secure (�eorem 3.1) and NTRU leads to ANON-CCA-secure,
SROB-CCA-secure hybrid PKE (�eorem 4.2, �eorem 3.1, and �eorem 2.2).
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shevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical re-
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SS10. Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Abe [Abe10], pages 377–
394. 21
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A Missing Lemmas

Lemma A.1. Let A and B denote events. Suppose that we have Pr[A] ≤ X. For any ? ≥ 0, we have

|Pr[B] − ? | ≤ |Pr[B ∧ ¬A] − ? | + X and |Pr[B ∧ ¬A] − ? | ≤ |Pr[B] − ? | + X.

Proof. We have

|Pr[B] − ? | = |Pr[B ∧ A] + Pr[B ∧ ¬A] − ? |
≤ Pr[B ∧ A] + |Pr[B ∧ ¬A] − ? |
≤ Pr[A] + |Pr[B ∧ ¬A] − ? |
≤ |Pr[B ∧ ¬A] − ? | + X.

We also have

|Pr[B ∧ ¬A] − ? | = |Pr[B ∧ ¬A] + Pr[B ∧ A] − Pr[B ∧ A] − ? |
= |Pr[B] − ? − Pr[B ∧ A] |
≤ |Pr[B] − ? | + Pr[B ∧ A]
≤ |Pr[B] − ? | + Pr[A]
≤ |Pr[B] − ? | + X

�ose complete the proof. ut



�e lemma of the following form is a slightly generalized version of the O2H lemma taken from [SXY18, Lemma 2.1].
While there are improvements of the O2H lemma, this basic O2H lemma is enough for our cases.

Lemma A.2 (�e Oneway-to-Hiding (O2H) Lemma [Unr14, HHK17, JZC+18, SXY18]). Let H : X → Y be a
quantum random oracle, and let A be an adversary issuing at most @ queries to H that on input (G, H) ∈ X × Y
outputs either 0/1. Let DX be a some distribution over X. For all (probabilistic) algorithms F whose input space is
X ×Y and which do not make any hash queries to H, we have����Pr[AH (inp) → 1 | G ← DX ; H ← H(G); inp← F(G, H)]

− Pr[AH (inp) → 1 | G ← DX ; H ← Y; inp← F(G, H)]

����
≤ 2@ ·

√
Pr[EXTA,H (inp) → G | G ← DX ; H ← Y; inp← F(G, H)],

where EXT picks 8 ← {1, . . . , @}, runs AH (inp) until 8-th query |Ĝ〉 to H, and returns G′ := Measure( |Ĝ〉) (when A
makes fewer than 8 queries, EXT outputs ⊥ ∉ X).

B Missing Proofs

B.1 Proof of �eorem 3.1

Proof (Proof of �eorem 3.1). Let us de�ne four games Game8,1 for 8, 1 ∈ {0, 1}. Let (8,1 be the event that the
adversary outputs 1 in Game8,1 .

– Game0,1 for 1 ∈ {0, 1}: �is is the original game Exptanon-cca
PKE,A (^) with 1 = 0 and 1.

– Game1,1 for 1 ∈ {0, 1}: �is game is the same as Game0,1 except that the target ciphertext is randomly taken
from S(1^ ) × CDEM, |< | .

It is easy to see that there exist two adversaries A10 and A11 whose running times are the same as that of A
satisfying ��Pr[(0,1] − Pr[(1,1]

�� ≤ Advspr-cca
PKE,S,A11

(^) and Pr[(1,0] = Pr[(1,1] .

Hence, we have

Advanon-cca
PKE,A (^) =

��Pr[(0,0] − Pr[(0,1]
��

≤
��Pr[(0,0] − Pr[(1,0]

�� + ��Pr[(1,0] − Pr[(1,1]
�� + ��Pr[(1,1] − Pr[(0,1]

��
≤ Advspr-cca

PKE,S,A10
(^) + Advspr-cca

PKE,S,A11
(^).

�is completes the proof. ut

C Variants of the Fujisaki-Okamoto Transformation

We review the variants of the FO transformations: Let PKE = (Gen, Enc,Dec) be a PKE, whose ciphertext space
is CPKE and message space is M. If PKE is probabilistic, then REnc denotes the randomness space of Enc. Let
{0, 1}: (^) be the key space of KEM.

C.1 Transformation T

Ho�einz et al. [HHK17] decomposed the Fujisaki-Okamoto transformation FO into two transformations T and
U. In the original T in [HHK17, Section 3.1], the decryption algorithm checks the validity of 2 by re-encryption
check. We omit this re-encryption check. Our version is summarized in Figure 8.
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Gen′(1^ )

(ek, dk) ← Gen(1^ )

return (ek, dk)

Enc′(ek, `)

`←M
2 := Enc(ek, `;G(`))
return 2

Dec′(dk, 2)

`′ ← Dec(dk, 2)
return `′

Fig. 8. PKE′ = T[PKE,G]

C.2 Variants of U

Ho�einz et al. de�ned U’s variants, U 6⊥, U⊥, U6⊥<, and U⊥< [HHK17], where the superscript “6⊥” and “⊥” implies im-
plicit rejection and explicit rejection, respectively, and the subscript “<” implies the computation of key  involves
a plaintext ` only, while if there is no subscript, then it involves ` and ciphertext 2.
Saito et al. de�ne SXY, which is essentially the same as U 6⊥< [SXY18]. Bindel et al. discussed the relations of
IND-CCA-security of KEM schemes obtained by them via indi�erentiable reductions [BHH+19]. In their dis-
cussion, they modify U 6⊥, which we write U 6⊥,prf . �ey use  := Hprf (B, 2) for invalid ciphertext 2 instead of
 := H(B, 2) as in [HHK17].
Let us review the de�nitions.
– U 6⊥ [PKE,H]: �is is de�ned in Figure 9.
– U 6⊥,prf [PKE,H,Hprf]: �e decapsulation returns  := Hprf (B, 2) if `′ = ⊥ or 2 ≠ Enc(ek, `′).
– U⊥ [PKE,H]: �e decapsulation returns  := ⊥ if `′ = ⊥ or 2 ≠ Enc(ek, `′). �is variants does not require B

in dk.
– U 6⊥< [PKE,H,Hprf]: �e encapsulation de�nes  := H(`, 2). �e decapsulation returns  := H(`, 2) if `′ ≠ ⊥

and 2 = Enc(ek, `′).
– U⊥< [PKE,H]: �e encapsulation de�nes  := H(`, 2). �e decapsulation returns  := H(`, 2) if `′ ≠ ⊥ and
2 = Enc(ek, `′). �e decapsulation returns  := ⊥ if `′ = ⊥ or 2 ≠ Enc(ek, `′). �is variants does not require
B in dk.

Gen(1^ )

(ek, dk) ← Gen(1^ )
B←M

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`←M
2 := Enc(ek, `)
 := H(`, 2)
return (2,  )

Dec(dk, 2), where dk = (dk, ek, B)

`′ ← Dec(dk, 2)
if `′ = ⊥ or 2 ≠ Enc(ek, `′)
then return  := H(B, 2)

else return  := H(`′, 2)

Fig. 9. KEM = (Gen, Enc,Dec) = U 6⊥ [PKE,H]

We adapt the discussions of Bindel et al. to SPR-CCA-security of KEM schemes obtained by the variants of U. See
the le� hand side of Figure 10.

C.3 Variants of HU

Ho�einz et al. de�ned QU’s variants, QU6⊥< and QU⊥< [HHK17]. In those variants a ciphertext includes ‘key-
con�rmation’ hash 3 := F(`), where F : M → M. (For the proof, We will requireM to be a subset of a �nite
�eld.) Jiang et al. [JZM19] de�ned HU⊥< as a variant of QU⊥<, where F : M → H with arbitraryM and H . �is
allows us to make a ciphertext shorter. We de�ne its variants HU⊥<, HU6⊥<, HU⊥, HU6⊥<, and HU 6⊥,prf as the variants
of U. In the de�nition, we allow F to take ek optional.
Let us review the de�nitions.
– HU6⊥ [PKE,H, F]: �is is de�ned in Figure 11.
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HU⊥< HU 6⊥<

HU 6⊥,prf

HU⊥ HU6⊥

�m. H.3
�m. J.3

�m. I.1

�m. K.3

U⊥< U 6⊥<

SXY

U 6⊥,prf

U⊥ U6⊥

[BHH+19, �m. 5]
[BHH+19, �m. 5]

[BHH+19, �m. 3]

[BHH+19, �m. 5, adapted]

Fig. 10. �e relation between IND-CCA and SPR-CCA security of KEMs using the variants of U and HU. Dashed arrow implies
the implications in [BHH+19].

Gen(1^ )

(ek, dk) ← Gen(1^ )
B←M

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`←M
20 := Enc(ek, `)
21 := F(`[, ek])
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek, B)

`′ ← Dec(dk, 20)
if `′ = ⊥ or 20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek])
then return  := H(B, 20, 21)

else return  := H(`′, 20, 21)

Fig. 11. KEM = (Gen, Enc,Dec) = HU 6⊥ [PKE,H, F]

– HU6⊥,prf [PKE,H, F,Hprf]: �e decapsulation returns  := Hprf (B, 20, 21) if `′ = ⊥ or 20 ≠ Enc(ek, `′) or
21 ≠ F(`′[, ek]).

– HU⊥ [PKE,H, F]: �e decapsulation returns  := ⊥ if `′ = ⊥ or 20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek]). �is
variants does not require B in dk.

– HU6⊥< [PKE,H, F,Hprf]: �e encapsulation de�nes := H(`, 20, 21). �e decapsulation returns := H(`, 20, 21)
if `′ ≠ ⊥ and 20 = Enc(ek, `′) and 21 = F(`′[, ek]).

– HU⊥< [PKE,H, F]: �e encapsulation de�nes  := H(`, 20, 21). �e decapsulation returns  := H(`, 20, 21)
if `′ ≠ ⊥ and 20 = Enc(ek, `′) and 21 = F(`′[, ek]). �e decapsulation returns  := ⊥ if `′ = ⊥ or
20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek]). �is variants does not require B in dk.

We will adapt the discussions of Bindel et al.to SPR-CCA-security of KEM schemes obtained by the variants of U.
See the right hand side of Figure 10.

C.4 Variants of FO

Combining T and the variants of U or HU, we obtain several variants of FO as follows: Let PKE = (Gen, Enc,Dec)
be a probabilistic PKE scheme: If we combine T and UHG , then we obtain FOHG . If we combine T and HUHG , then we
obtain HFOHG .

D Transformation in NIST PQC KEM Candidates

In this section, we review the transformations used in NIST PQC Round 3 KEM Candidates.

D.1 FO with implicit rejection

FO6⊥ transforms a weakly-secure probabilistic PKE into IND-CCA-secure KEM. �is variant can be considered
the composition of T and U 6⊥, that is, KEM = FO6⊥ [PKE,G,H] = U 6⊥ [T[PKE,G],H]. �is variant is used by
BIKE [ABB+20] and SIKE [JAC+20].
Let {0, 1}ℓ (^) be the plaintext space of PKE. Let G : {0, 1}∗ → REnc and H : {0, 1}ℓ (^) × CPKE → {0, 1}: (^) be
hash functions modeled by the random oracles. �e FO6⊥ is summarized as Figure 12. Assuming the IND-CPA
security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM (see e.g., [KSS+20]).
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Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ (^)

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

A := G(`) // for BIKE
A := G(`, ek) // for SIKE
2 := Enc(ek, `; A)
 := H(`, 2)
return ( , 2)

Dec(dk, 2), where dk = (dk, ek, B)

`′ := Dec(dk, 2)
A ′ := G(`′) // for BIKE
A ′ := G(`′, ek) // for SIKE
2′ := Enc(ek, `′; A ′)
if 2 = 2′, then return  := H(`′, 2)
else return  := H(B, 2)

Fig. 12. KEM := FO6⊥ [PKE,G,H] for BIKE and SIKE.

Remark D.1. BIKE and SIKE do not test whole re-encryption check. Roughly speaking, their encryption algorithm
Enc is separable into two algorithms Enc1 and Enc2. Enc1 takes ek and randomness A and outputs 21 and : ∈
{0, 1}ℓ (^) . Enc2 takes ` and : and outputs 22 := : ⊕ `.
Using this property, BIKE omits the re-encryption check. Concretely speaking, : in BIKE’s Enc1 is computed as
: := H(A), where H is a hash function modeled by the random oracle. BIKE’s Dec internally obtains A ′ and checks
the validity of 21. It then retrieves `′ := 22⊕H(A ′) and checks the validity of the ciphertext by checking A ′ = G(`′)
or not.
SIKE’s Dec performs the test 2′1 = 21 but omits the test 2′2 = 22. Since Dec retrieves `′ := 22 ⊕ : deterministically,
we do not need to check the equality of 22 and 2′2.

D.2 Other FO with implicit rejection and pre-key

FO 6⊥′ is a modi�ed version of FO6⊥, which is used by Kyber [SAB+20, Section 1] and Saber [DKR+20, Section 8].
FO 6⊥′′ is another modi�ed versions of FO6⊥, which are used by FrodoKEM [NAB+20, Section 2]. �e di�erences
from FO6⊥ are how to generate  in Enc and Dec. �ey �rst compute ‘pre-key’  ̄ from ` and H′(ek) and then
compute key  := H( ̄,H′(2)) in FO6⊥′ or H( ̄, 2) in FO6⊥′′.
Let {0, 1}ℓ (^) be the plaintext space of PKE. Let G : {0, 1}∗ → {0, 1}ℓ (^) × REnc, H′ : {0, 1}∗ → {0, 1}ℓ (^) , and
H : {0, 1}ℓ (^) × {0, 1}ℓ (^) → {0, 1}: (^) be hash functions modeled by the random oracles. FO6⊥′ and FO6⊥′′ are
summarized as Figure 13 and Figure 14, respectively.
One might consider assuming the IND-CPA security of PKE, the obtained KEM schemes are IND-CCA-secure
in the QROM. Unfortunately, Grubbs, Maram, and Paterson [GMP21] pointed out that we cannot directly apply
the existing security proof in the QROM to those variants, because computing  requires nested applications of
random oracles G and H to <. Grubbs et al. overcome this barrier for the case of FO6⊥′′ in [GMP21, Section 5.2].
�us, FrodoKEM using FO6⊥′′ can be shown IND-CCA-secure in the QROM. However, they failed to apply their
technique to the case of FO6⊥′ which computes  = H( ̄,H′(2)) instead of  = H( ̄, 2). �ey le� the IND-CCA
security of FO6⊥′ in the QROM as an open problem [GMP21, Section 5.3].

Gen(1^ )

(ek, dk) ← Gen(1^ )
ℎ← H′(ek)

B← {0, 1}ℓ (^)

dk := (dk, ek, ℎ, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

` := H′(`)
( ̄, A) := G(`,H′(ek))
2 := Enc(ek, `; A)
 := H( ̄,H′(2))
return ( , 2)

Dec(dk, 2), where dk = (dk, ek, ℎ, B)

`′ := Dec(dk, 2)
( ̄ ′, A ′) := G(`′, ℎ)
2′ := Enc(ek, `′; A ′)
if 2 = 2′, then return  := H( ̄ ′,H′(2))
else return  := H(B,H′(2))

Fig. 13. KEM := FO6⊥′[PKE,G,H′,H] in Kyber and Saber.
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Gen(1^ )

(ek, dk) ← Gen(1^ )
ℎ← H′(ek)

B← {0, 1}ℓ (^)

dk := (dk, ek, ℎ, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

( ̄, A) := G(`,H′(ek))
2 := Enc(ek, `; A)
 := H( ̄, 2)
return ( , 2)

Dec(dk, 2), where dk = (dk, ek, ℎ, B)

`′ := Dec(dk, 2)
( ̄ ′, A ′) := G(`′, ℎ)
2′ := Enc(ek, `′; A ′)
if 2 = 2′, then return  := H( ̄ ′, 2)
else return  := H(B, 2)

Fig. 14. KEM := FO6⊥′′[PKE,G,H′,H] in FrodoKEM.

D.3 FO with additional hash

HFO⊥ and HFO 6⊥ (as known as QFO⊥ and QFO6⊥) [TU16, HHK17, JZC+18, JZM19] transform a weakly-secure
probabilistic PKE into IND-CCA-secure KEM like FO and add hash value of the message. HQC [AAB+20] uses
HFO⊥. NTRU LPRime of NTRU Prime [BBC+20] uses a variant of HFO 6⊥,prf .
Let {0, 1}ℓ (^) be the plaintext space of PKE. Let G : {0, 1}∗ → REnc, F : {0, 1}ℓ (^) × {0, 1}∗ → {0, 1}ℓ′ (^) ,
H : {0, 1}ℓ (^) × (CPKE × {0, 1}ℓ

′ (^) ) → {0, 1}: (^) , and Hprf : {0, 1}ℓ (^) × (CPKE × {0, 1}ℓ
′ (^) ) → {0, 1}: (^)

be hash functions modeled by the random oracles. HFO⊥ and HFO6⊥ is summarized as Figure 15 and Figure 16,
respectively. Assuming the IND-CPA security of PKE, the obtained KEM scheme is IND-CCA-secure in the QROM.
See e.g., [KSS+20]. For the case of explicit rejection HFO⊥, we need to invoke [BHH+19, �eorem 4].

Gen(1^ )

(ek, dk) ← Gen(1^ )

dk := (dk, ek)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

A := G(`)
20 := Enc(ek, `; A)
21 := F(`)
2 := (20, 21)
 := H(`, 2)
return ( , 2)

Dec(dk, 2), where dk = (dk, ek)

`′ := Dec(dk, 2)
A ′ := G(`′)
2′0 := Enc(ek, `′; A ′)
2′1 := F(`′)
2′ := (2′0, 2

′
1)

if 2 = 2′, then return  := H(`′, 2)
else return  := ⊥

Fig. 15. KEM := HFO⊥ [PKE,G, F,H] for HQC.

D.4 SXY

SXY transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM. �is variant is employed by NTRU
(NTRU-HPS and NTRU-HRSS) [CDH+20]. See Figure 5 for the summary. Assuming disjoint-simulatability of PKE,
the obtained KEM scheme is IND-CCA-secure in the QROM [SXY18].

D.5 HU with implicit rejection

�e �nal one is a transformation that transforms a weakly-secure deterministic PKE into IND-CCA-secure KEM,
employed by Classic McEliece [ABC+20] and Streamlined NTRU Prime of NTRU Prime [BBC+20]. We interpret
the transformation as HU 6⊥,prf [JZM19].
LetM be the plaintext space of PKE. Let F : M → {0, 1}ℓ′ (^) , H : M × (CPKE × {0, 1}ℓ

′ (^) ) → {0, 1}: (^) , and
Hprf : {0, 1}ℓ (^) × (CPKE× {0, 1}ℓ

′ (^) ) → {0, 1}: (^) be hash functions modeled by the random oracle. �e HU 6⊥ is
summarized as Figure 17. Assuming disjoint-simulatability of PKE, the obtained KEM scheme is IND-CCA-secure
in the QROM [SXY18, ABC+20]. We note that the implementation of F, H, and Hprf of Streamlined NTRU Prime
has a problem of nested random oracles and we cannot show it is IND-CCA-secure. See section R for the detail.
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Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ (^)

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

A := G(`)
20 := Enc(ek, `; A)
21 := F(`, ek)
2 := (20, 21)
 := H(`, 2)
return ( , 2)

Dec(dk, 2), where dk = (dk, ek, B)

`′ := Dec(dk, 2)
A ′ := G(`′)
2′0 := Enc(ek, `′; A ′)
2′1 := F(`′, ek)
2′ := (2′0, 2

′
1)

if 2 = 2′, then return  := H(`′, 2)
else return  := Hprf (B, 2)

Fig. 16. KEM := HFO6⊥,prf [PKE,G, F,H,Hprf] for NTRU LPRime of NTRU Prime.

Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ (^)

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`←M
20 := Enc(ek, `)
21 := F(`) // CM
21 := F(`, ek) // sntrupr
2 := (20, 21)
 := H(`, 2)
return ( , 2)

Dec(dk, 2), where dk = (dk, ek, B) and 2 = (20, 21)

`′ := Dec(dk, 20)
if `′ = ⊥, then return  := Hprf (B, 2)
2′0 := Enc(ek, `′)
2′1 := F(`′) // CM
2′1 := F(`′, ek) // sntrupr
2 := (2′0, 2

′
1)

if 2 = 2′, then return  := H(`′, 2)
else return  := Hprf (B, 2)

Fig. 17. KEM := HU 6⊥,prf [PKE,H, F,Hprf] in Classic McEliece (CM) and Streamlined NTRU Prime (sntrupr) of NTRU Prime.
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Remark D.2. One might wonderDec in Classic McEliece has no explicit re-encryption check ([ABC+20, Sec.2.3.3]).
In their speci�cation, Dec in Classic McEliece internally checks 2′0 = Enc(ek, `′) or not ([ABC+20, Sec.2.2.4]).
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D.6 Hashes in the wild

Finally, we summarize how KEMs implement G, F, H, and Hprf .

Table 6. Summary of variants of FOs in NIST PQC Round 3 KEM Candidates (�nalists
and alternates): Before version 4.2, BIKE’s G uses SHA384 and AES256-CTR. SHAKE256ℓ
will outputs the �rst ℓ bits of SHAKE256. SHA3-512A and SHA3-512; outputs the �rst and
second 256 bits of SHA3-512. BIKE and SIKE use L in the underlying PKE to mask a mes-
sage with masking value computed from the shared random value L(shared). BIKE uses
SHA3-384256 (A) and SIKE uses SHAKE256= ( 9) as L. In FrodoKEM, SHAKE is SHAKE128
or SHAKE256 depending on the parameter sets.
Name Trans. G F

Classic McEliece [ABC+20] HU 6⊥,prf – SHAKE256256 (0x02, `)
Kyber [SAB+20] FO 6⊥′ SHA3-512A (`, SHA3-256(ek) ) a –
NTRU [CDH+20] SXY – –
Saber [DKR+20] FO 6⊥′ SHA3-512A (`, SHA3-256(ek) )

) b–

BIKE [ABB+20] FO 6⊥ SHAKE256(`) –
FrodoKEM [NAB+20] FO 6⊥′′ SHAKE (SHAKE (ek) , `) –
HQC [AAB+20] HFO⊥ SHAKE256512 (`, 0x03) c SHAKE256512 (`, 0x04)
Streamlined NTRU Prime [BBC+20] HU 6⊥,prf – SHA512256

(
0x02, SHA512256 (0x03, `) , SHA512256 (0x04, ek)

)
NTRU LPRime [BBC+20] HFO6⊥,prf SHA512256 (0x05, `) d SHA512256

(
0x02, `, SHA512256 (0x04, ek)

)
SIKE [JAC+20] FO 6⊥ SHAKE25642 (`, ek) –

Name Trans. H Hprf

Classic McEliece [ABC+20] HU 6⊥,prf SHAKE256256 (0x01, `, (20 , 21 ) ) SHAKE256256 (0x00, B, (20 , 21 ) )
Kyber [SAB+20] FO 6⊥′′ SHAKE256-

(
SHA3-512; (`, SHA3-256(ek) ) , SHA3-256(2)

)
SHAKE256-

(
B, SHA3-256(2)

)
NTRU [CDH+20] SXY SHA3-256(`) SHA3-256(B, 2)
Saber [DKR+20] FO 6⊥′′ SHA3-256

(
SHA3-512; (`, SHA3-256(ek) ) , SHA3-256(2)

)
SHA3-256

(
B, SHA3-256(2)

)
BIKE [ABB+20] FO 6⊥ SHA3-384256 (`, 2) SHA3-384256 (B, 2)
FrodoKEM [NAB+20] FO 6⊥′ SHAKE (2, :) SHAKE (2, B)
HQC [AAB+20] HFO⊥ SHAKE256512 (`, 2, 0x05) –
Streamlined NTRU Prime [BBC+20] HU 6⊥,prf SHA512256

(
0x01, SHA512256 (0x03, `) , 2

)
SHA512256

(
0x00, SHA512256 (0x03, B) , 2

)
NTRU LPRime [BBC+20] HFO6⊥,prf SHA512256 (0x01, `, 2) SHA512256 (0x00, B, 2)
SIKE [JAC+20] FO 6⊥ SHAKE256: (`, 2) SHAKE256: (B, 2)
a Kyber uses an intermediate PKE scheme with short randomness which internally uses PRF SHAKE256- (A, 8) for 8 = 1, 2, . . . with appropriate length parameter
- .

b Saber uses an intermediate PKE scheme with short randomness which internally uses XOF SHAKE128(A ) .
c HQC uses an intermediate PKE scheme with short randomness which internally uses XOF SHAKE256(A, 0x02) .
d NTRU LPRime uses an intermediate PKE scheme with short randomness which internally uses XOF AES256-CTR(A ) .

E Property of T

In this section, we show that T preserves ciphertext indistinguishability of disjoint simulatability.

�eorem E.1. Suppose that a probabilistic PKEPKE is ciphertext indistinguishable andOW-CPA-secure.�en,PKE′ :=
T[PKE,G] is also ciphertext indistinguishable in the QROM.
Precisely speaking, for any quantum adversaryA against PKE′ issuing at most @G quantum queries to G, there exist
quantum adversaries A01 against OW-CPA security of PKE and A12 against ciphertext indistinguishability of PKE
such that

Advds-ind
PKE′,DM ,S,A (^) ≤ 2@G

√
Advow-cpa

PKE,DM ,A01
(^) + Advds-ind

PKE,DM ,S,A12
(^).

Proof: Let us consider the following sequence of games, Game0, Game1, and Game2. Let (8 denote the event that
the adversary outputs 1′ = 1 in Game8 .

Game0: �is game is de�ned as follows:

(ek, dk) ← Gen(1^ );<∗ ← DM ; A∗ ← G(<∗); 2∗ := Enc(ek, <∗; A∗); 1′ ← AG( ·) (ek, 2∗); return 1′.

Game1: �is game is the same as Game0 except that a randomness to generate a challenge ciphertext is freshly
generated:

(ek, dk) ← Gen(1^ );<∗ ← DM ; A∗ ← R; 2∗ := Enc(ek, <∗; A∗); 1′ ← AG( ·) (ek, 2∗); return 1′.
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F(<∗, A∗)

(ek, dk) ← Gen(1^ )
2∗ := Enc(ek, <∗; A∗)
inp := (ek, 2∗)
return inp

AG
01 (ek, 2

∗) :

inp := (ek, 2∗)
8 ← [@H]
Run AG (inp) until 8-th query |Ĝ〉 to G

if 8 > number of queries to G, return ⊥
else return G′ := Measure( |Ĝ〉)

Fig. 18. Algorithm F and adversary A01

Game2: �is game is the same as Game1 except that a challenge ciphertext is generated by the simulator
S(1^ , ek):

(ek, dk) ← Gen(1^ ); 2∗ ← S(1^ , ek); 1′ ← AG( ·) (ek, 2∗); return 1′.
�is completes the descriptions of games. It is easy to see that we have

Advds-ind
PKE′,DM ,S,A (^) = |Pr[(0] − Pr[(2] |.

We give an upperbound for this by the following lemmas.

Lemma E.1. �ere exists an adversary A01 such that

|Pr[(0] − Pr[(1] | ≤ 2@G
√
Advow-cpa

PKE,DM ,A01
(^).

Proof (Proof of Lemma E.1). Let F be an algorithm described in Figure 18. It is easy to see that Game0 can be
restated as

<∗ ← DM ; A∗ ← G(<∗); inp := F(ek, <∗; A∗); 1′ ← AG( ·) (inp); return 1′.
and Game1 can be restated as

<∗ ← DM ; A∗ ← R; inp := F(ek, <∗; A∗); 1′ ← AG( ·) (inp); return 1′.

Applying the O2H lemma (Lemma A.2) with X =M ′,Y = R,DX = DM , G = <∗, H = A∗, and algorithmsA and
F, we have

|Pr[(0] − Pr[(1] | ≤ 2@G
√

Pr[<∗ ← AG
01 (ek, 2∗)] .

where AG
01 is an algorithm described in Figure 18, (ek, dk) ← Gen(1^ ), <∗ ← DM , A∗ ← R, and 2∗ :=

Enc(ek, <∗, A∗).
We have Pr[<∗ ← AG

01 (ek, 2
∗)] ≤ Advow-cpa

PKE,DM ,A01
(^). By combining these inequalities, the lemma is proven. ut

Lemma E.2. �ere exists an adversary A12 such that

|Pr[(1] − Pr[(2] | ≤ Advds-ind
PKE,DM ,S,A12

(^).

�e proof is very clear and we omit it.
Combining the above two lemmas, we obtain the wanted result. ut

F Property of U 6⊥

As we seen in Figure 10, U 6⊥ and SXY = U 6⊥< are not connected. Indeed, we face a subtle problem to apply indi�er-
entiable reduction in Bindel et al. [BHH+19]: Suppose that we haveA against SPR-CCA security of KEM obtained
by U 6⊥. In their indi�erentiable reduction, they constructA< against SPR-CCA security of KEM obtained by U6⊥<.
A< given H< : M → K simulates H : M × C → K by

H(`, 2) =
{
H< (`) if 2 = Enc(ek, `)
H′(`, 2) otherwise.

Unfortunately, this simulation makes H(B, 2) di�erent from Hprf (B, 2) at the point (B, 2) with 2 = Enc(ek, B).
Hence, we directly prove the security properties.
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Table 7. Summary of Games for the Proof of �eorem F.1. We de�ne 6(`) = Enc(ek, `) = Enc0 (ek, `;G(`)).

Decryption
Game H G 2∗  ∗ valid 2 invalid 2 justi�cation

Game0 H F(M, R) Enc(ek, `∗) H(`∗ , 2∗) H(`, 2) H(B, 2)
Game1 H F(M, R) Enc(ek, `∗) H(`∗ , 2∗) H(`, 2) H@ (2) Lemma 2.2
Game1.1 H Fgood (M, R) Enc(ek, `∗) H(`∗ , 2∗) H(`, 2) H@ (2) Lemma 2.1 + correctness
Game1.2 H′@ ◦ 6 / H′ Fgood (M, R) Enc(ek, `∗) H(`∗ , 2∗) H(`, 2) H@ (2) if key is not bad
Game2 H@ ◦ 6 / H′ Fgood (M, R) Enc(ek, `∗) H(`∗ , 2∗) H(`, 2) H@ (2) if key is not bad
Game3 H@ ◦ 6 / H′ Fgood (M, R) Enc(ek, `∗) H@ (2∗) H@ (2) H@ (2) conceptual
Game3.1 H@ ◦ 6 / H′ F(M, R) Enc(ek, `∗) H@ (2∗) H@ (2) H@ (2) Lemma 2.1 + correctness
Game4 H@ ◦ 6 / H′ F(M, R) S(1^ ) H@ (2∗) H@ (2) H@ (2) DS-IND
Game5 H@ ◦ 6 / H′ F(M, R) S(1^ ) * (K) H@ (2) H@ (2) statistical disjointness
Game5.1 H@ ◦ 6 / H′ Fgood (M, R) S(1^ ) * (K) H@ (2) H@ (2) Lemma 2.1 + correctness
Game6 H@ ◦ 6 / H′ Fgood (M, R) S(1^ ) * (K) H(`) H@ (2) conceptual
Game6.1 H′@ ◦ 6 / H′ Fgood (M, R) S(1^ ) * (K) H(`, 2) H@ (2) if key is not bad
Game6.2 H Fgood (M, R) S(1^ ) * (K) H(`, 2) H@ (2) if key is not bad
Game7 H F(M, R) S(1^ ) * (K) H(`, 2) H@ (2) Lemma 2.1 + correctness
Game8 H F(M, R) S(1^ ) * (K) H(`, 2) H(B, 2) Lemma 2.2

F.1 SPR-CCA Security

We need to show U6⊥’s SPR-CCA-security directly. Fortunately, we can use the security proofs for SXY = U 6⊥< with
slight modi�cations. Roughly speaking, we replace H(B, 2) with H@ (2) and, then, apply the above indi�erentiable
reduction. Doing so, we can �nd the situation is essentially equivalent to Game1 (or Game7) of Table 4.

�eorem F.1. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public parameter only.
If PKE is strongly disjoint-simulatable and X-correct with negligible X, then KEM = U 6⊥ [PKE,H] is SPR-CCA-secure.
Formally speaking, for anyA against the SPR-CCA security ofKEM issuing at most @Dec queries to the decapsulation
oracle and @G and @H queries to G and H respectively, there existA34 against ciphertext-indistinguishability of PKE
such that

Advspr-cca
KEM,S,A (^) ≤ Advds-ind

PKE,DM ,S,A34
(^) + DisjPKE,S (^) + 4X

+ 16(@G + @Dec + 1)2X + 16(@G + @H + 1)2X + 4(@H + @Dec)/
√
|M|.

�eorem F.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable and X-correct with negligible X, then KEM = U 6⊥ [PKE,H] is SPR-CCA-secure.
Formally speaking, for anyA against the SPR-CCA security ofKEM issuing at most @Dec queries to the decapsulation
oracle and @G and @H queries to G and H, respectively, there existA34 against ciphertext-indistinguishability of PKE
such that

Advspr-cca
KEM,A,S (^) ≤ Advds-ind

PKE,DM ,S,A34
(^) + DisjPKE,S (^) + 4(@Hprf + @Dec)/

√
|M| + 4X.

Proof of �eorem F.1: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 8. We summarize the
games in Table 7. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 . Let Acc and Acc
denote the event that the key pair (ek, dk) is accurate and inaccurate, respectively.

Game0: �is game is the original game Exptspr-cca
KEM,A (^) with 1 = 0. �us, we have

Pr[(0] = 1 − Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 0] .

Game1: �is game is the same as Game0 except that H(B, 2) in the decapsulation oracle is replace with H@ (2)
where H@ : C → K is another random oracle. We remark that A is not given direct access to H@ .
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(0] − Pr[(1] | ≤ 2(@H + @Dec)/
√
|M|,

where @H and @Dec denote the number of queries to H and Dec the adversary makes, respectively.
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Game1.1: �is game is the same as Game1 except that the random oracle G(·) is chosen from Fgood (M,R)
instead of F (M,R).
Fix (ek, dk). �en, we have |Pr[(1 | (ek, dk)] − Pr[(1.1 | (ek, dk)] | ≤ 8(@G+@Dec+1)2Xek,dk . Taking average over
(ek, dk) ← Gen0 (1^ ), we obtain

|Pr[(1] − Pr[(1.1] | ≤ 8(@G + @Dec + 1)2Exp(ek,dk)←Gen0 (1^ ) [Xek,dk] = 8(@G + @Dec + 1)2X.

We have Pr[Bad] ≤ X ([LW21, Claim 3]). According to Lemma A.1, for any ?, we also have

|Pr[(1.1] − ? | ≤ |Pr[(1.1 ∧ ¬Bad] − ? | + X.

Game1.2: �is game is the same as Game1.1 except that the random oracle H(·, ·) is simulated as follows: Let
H′@ : C → K and H′ : M × C → K be random oracles. De�ne

H(`, 2) =
{
H′@ (Enc(ek, `)) if 2 = Enc(ek, `),
H′(`, 2) otherwise.

We remark that the decapsulation oracle and the generation of  ∗ also use this simulation.
If ¬Bad occurs, then PKE = T[PKE0,G] is perfectly correct from the de�nition of G and 6(`) := Enc(ek, `;G(`))
is injective. �us, H′@ ◦ 6 : M → K is a random function and the two games Game1.1 and Game1.2 are equivalent
if Bad does not occurs. We have

Pr[(1.1 ∧ ¬Bad] = Pr[(1.2 ∧ ¬Bad] .
See [XY19, Lemma 4.3] and [LW21, Claim 4] for the detail.

Game2: �is game is the same as Game1.2 except that the random oracle H is simulated by H@ ◦6 and H′ instead
of H′@ ◦ 6 and H′.
If¬Bad occurs, then PKE = T[PKE,G] is perfectly correct from the de�nition of G. Hence, the two games Game1.2
and Game2 are equivalent, because a value of H′@ (2) for an invalid 2 is not used in Game1.2: that is, we have

Pr[(1.2 ∧ ¬Bad] = Pr[(2 ∧ ¬Bad]

See the proof of [XY19, Lemma 4.4] and [LW21, Claim 5] for the detail.

Game3: �is game is the same as Game2 except that  ∗ is set as H@ (2∗) and the decapsulation oracle always
returns H@ (2) as long as 2 ≠ 2∗. �is decapsulation oracle will denoted by Dec’.
If ¬Bad occurs, then PKE = T[PKE,G] is perfectly correct from the de�nition of G. , the two games Game2 and
Game3 are equivalent: that is, we have

Pr[(2 ∧ ¬Bad] = Pr[(3 ∧ ¬Bad] .

See the proof of [XY19, Lemma 4.5] for the detail.
According to Lemma A.1, for any ?, we have

|Pr[(3 ∧ ¬Bad] − ? | ≤ |Pr[(3] − ? | + X.

Game3.1: �is game is the same as Game3 except that G is chosen from F (M,R) instead of Fgood (M,R).

|Pr[(3] − Pr[(3.1] | ≤ 8(@G + @H + 1)2Exp(ek,dk)←Gen0 (1^ ) [Xek,dk] = 8(@G + @H + 1)2X.
(We note that H and the challenge ciphertext also query to G internally.)

Game4: �is game is the same as Game3 except that 2∗ is generated by S(1^ ).
�e di�erence between two games Game3 and Game4 is bounded by the advantage of ciphertext indistinguisha-
bility in disjoint simulatability as in [XY19, Lemma 4.7]. We have

|Pr[(3] − Pr[(4] | ≤ Advds-ind
PKE,DM ,S,A34

(^).
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Game5: �is game is the same as Game4 except that  ∗ ← K instead of  ∗ ← H@ (2∗).
In Game4, if 2∗ ← S(1^ ) is not in Enc(ek,M), then the adversary has no information about  ∗ = H@ (2∗) and
thus,  ∗ looks uniformly at random. Hence, the di�erence between two games Game4 and Game5 is bounded by
the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8].
We have

|Pr[(4] − Pr[(5] | ≤ DisjPKE,S (^).

Game5.1: �is game is the same as Game5 except that G is chosen from Fgood (M,R) instead of F (M,R).

|Pr[(5] − Pr[(5.1] | ≤ 8(@G + @H)2Exp(ek,dk)←Gen0 (1^ ) [Xek,dk] ≤ 8(@G + @H + 1)2X.
(We note that H and the challenge ciphertext also query to G internally.)
According to Lemma A.1, for any ?, we have

|Pr[(5.1 ∧ ¬Bad] − ? | ≤ |Pr[(5.1] − ? | + X.

Game6: �is game is the same as Game5 except that the decapsulation oracle is reset as Dec. Similar to the case
for Game2 and Game3, if a key pair is accurate, the two games Game5 and Game6 are equivalent as in the proof
of [XY19, Lemma 4.5]. We have

Pr[(5.1 ∧ ¬Bad] = Pr[(6 ∧ ¬Bad] .

Game6.1: �is game is the same as Game6 except that the random oracle H is simulated by H′@ ◦ 6 and H′ as
in Game1.2. If a key pair is not bad, the two games Game6 and Game6.1 are equivalent as in the proof of [XY19,
Lemma 4.4]. We have

Pr[(6 ∧ ¬Bad] = Pr[(6.1 ∧ ¬Bad] .

Game6.2: �is game is the same as Game6.1 except that the random oracle H(·) is set as the original. If a key pair
is not bad, the two games Game6.1 and Game6.2 are equivalent as in the proof of [XY19, Lemma 4.4]. We have

Pr[(6.1 ∧ ¬Bad] = Pr[(6.2 ∧ ¬Bad] .

We have, for any ?,
|Pr[(6.2 ∧ ¬Bad] − ? | ≤ |Pr[(6.2] − ? | + X

from Lemma A.1.

Game7: �is game is the same as Game6.2 except that the random oracle G is chosen from F (M,R) instead of
Fgood (M,R). We have,

|Pr[(6.2] − Pr[(7] | ≤ 8(@G + @Dec)2X. ≤ 8(@G + @Dec + 1)2X.

Game8: �is game is the same as Game7 except that H@ (2) in the decapsulation is replaced by H(B, 2).
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(7] − Pr[(8] | ≤ 2(@H + @Dec)/
√
|M|.

We note that �is game is the original game Exptspr-cca
KEM,A (^) with 1 = 1. �us, we have

Pr[(8] = Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 1] .

Summarizing those (in)equalities, we obtain the following bound:

Advspr-cca
KEM,A (^) = |Pr[(0] − Pr[(8] |

≤ Advds-ind
PKE,DM ,S,A34

(^) + DisjPKE,S (^) + 4X

+ 16(@G + @Dec + 1)2X + 16(@G + @H + 1)2X + 4(@H + @Dec)/
√
|M|.
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Table 8. Summary of Games for the Proof of �eorem F.3: ‘S(1^ ) \Enc(ek,M)’ implies that the challenger generates 2∗ ← S(1^ )
and returns ⊥ if 2∗ ∈ Enc(ek,M).

Decryption
Game H 2∗  ∗ valid 2 invalid 2 justi�cation

Game0 H S(1^ ) random H(`, 2) H(B, 2)
Game1 H S(1^ ) \ Enc(ek,M) random H(`, 2) H(B, 2) statistical disjointness
Game2 H S(1^ ) \ Enc(ek,M) random H(`, 2) H@ (2) Lemma 2.2
Game3 H S(1^ ) \ Enc(ek,M) H@ (2∗) H(`, 2) H@ (2) H@ (2∗) is hidden
Game4 H S(1^ ) \ Enc(ek,M) H(B, 2∗) H(`, 2) H(B, 2) Lemma 2.2
Game5 H S(1^ ) \ Enc(ek,M) Dec(dk, 2∗) H(`, 2) H(B, 2) re-encryption check
Game6 H S(1^ ) Dec(dk, 2∗) H(`, 2) H(B, 2) statistical disjointness

Proof of�eorem F.2: �e proof of �eorem F.2 is a simpli�ed version of that of �eorem F.1, since it does not
require to consider G. Ignoring the transition between real G with good G, we obtain the bound as follows:

Advspr-cca
KEM,S,A (^) = |Pr[(0] − Pr[(8] |

≤ 4(@Hprf + @Dec)/
√
|M| + 4X + Advds-ind

PKE,DM ,A34 ,S (^) + DisjPKE,S (^).

F.2 SSMT-CCA Security

We can show SSMT-CCA security of U 6⊥ by using the essentially same proof of that for SXY.

�eorem F.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = U 6⊥ [PKE,H] is SSMT-CCA-secure.
Formally speaking, for any adversary A against SSMT-CCA security of KEM, we have

Advssmt-cca
KEM,S,A (^) ≤ 2DisjPKE,S (^) + 4(@H + @Dec)/

√
|M|.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof Sketch: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 6. We summarize the games in
Table 8. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 . Let Acc and Acc denote the
event that the key pair (ek, dk) is accurate and inaccurate, respectively.

Game0: �is game is the original game Exptssmt-cca
KEM,S,A (^) with 1 = 0. �e challenge is generated as

(2∗,  ∗0 ) ← S(1
^ ) × K .

We have
Pr[(0] = 1 − Pr[Exptssmt-cca

KEM,S,A (^) = 1 | 1 = 0] .

Game1: In this game, the ciphertext is set as ⊥ if 2∗ is in Enc(ek,M). �e di�erence between two games Game0
and Game1 is bounded by statistical disjointness.

|Pr[(0] − Pr[(1] | ≤ DisjPKE,S (^).

Game2: �is game is the same as Game1 except that H(B, 2) in the decapsulation oracle is replace with H@ (2)
where H@ : C → K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(1] − Pr[(2] | ≤ 2(@H + @Dec)/
√
|M|,

where @H denote the number of queries to Hprf the adversary makes.
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Game3: �is game is the same as Game2 except that  ∗ := H@ (2∗) instead of chosen random. Since 2∗ is always
outside of Enc(ek,M),A cannot obtain any information about H@ (2∗). Hence, the two games Game2 and Game3
are equivalent and we have

Pr[(2] = Pr[(3] .

Game4: �is game is the same as Game3 except that H@ (·) is replaced by H(B, ·). As in [XY19, Lemmas 4.1], from
Lemma 2.2 we have the bound

|Pr[(3] − Pr[(4] | ≤ 2(@H + @Dec)/
√
|M|.

Game5: �is game is the same asGame4 except that ∗ := Dec(dk, 2∗) instead ofH(B, 2∗). Recall that 2∗ is always
in outside of Enc(ek,M). �us, we always have Dec(2∗) = ⊥ or Enc(ek,Dec(2∗)) ≠ 2∗ and, thus,  ∗ = H(B, 2∗).
Hence, the two games are equivalent and we have

Pr[(4] = Pr[(5] .

Game6: We �nally replace how to compute 2∗. In this game, the ciphertext is chosen by S(1^ ) as in Game0.
�e di�erence between two games Game5 and Game6 is bounded by statistical disjointness.

|Pr[(5] − Pr[(6] | ≤ DisjPKE,S (^).

Moreover, this game Game6 is the original game Exptssmt-cca
KEM,S,A (^) with 1 = 1.

Pr[(6] = Pr[Exptssmt-cca
KEM,S,A (^) = 1 | 1 = 1] .

Summarizing the (in)equalities, we obtain �eorem F.3:

Advssmt-cca
KEM,S,A (^) = |Pr[(0] − Pr[(6] |

≤ 2DisjPKE,S (^) + 4(@H + @Dec)/
√
|M|.

F.3 SCFR-CCA Security

�eorem F.4. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = U 6⊥ [PKE,H] is SCFR-CCA-secure in the
QROM.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext 2 which is decapsulated into  ≠ ⊥ by both dk0 and dk1,
that is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne `′

8
= Dec(dk8 , 2) for 8 ∈ {0, 1}. We also de�ne `8 := `′

8
if

2 = Enc(ek8 , `′8) and ⊥ otherwise.
We have �ve cases de�ned as follows:

1. Case 1 (`0 = `1 ≠ ⊥): �is violates XCFR-security of SCFR-CCA-security of the underlying PKE and it is
easy to make a reduction.

2. Case 2 (⊥ ≠ `0 ≠ `1 ≠ ⊥): In this case, the decapsulation algorithm outputs  = H(`0, 2) = H(`1, 2). �us,
we succeed to �nd a collision for H, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 3 (`0 = ⊥ and `1 ≠ ⊥): In this case, the decapsulation algorithm outputs  = H(B0, 2) = H(`1, 2).
Notice that we can replace H(B0, ·) with H@ (·) by introducing negligible error (Lemma 2.2). A�er that, we
�nd a claw (2, (`1, 2)) between H@ and H. �e probability that we �nd such claw is negligible for any QPT
adversary (Lemma 2.4).

4. Case 4 (`0 ≠ ⊥ and `1 = ⊥): In this case, the decapsulation algorithm outputs = H(`0, 2) = H(B1, 2). Again,
we can replace H(B1, ·) with H@ (·) by introducing negligible error (Lemma 2.2). A�er that, we �nd a claw
((`0, 2), 2) between H and H@ . �e probability that we �nd such claw is negligible for any QPT adversary
(Lemma 2.4).

5. Case 5 (�e other cases): In this case, we �nd a collision ((B0, 2), (B1, 2)) of H, which is indeed collision if
B0 ≠ B1 which occurs with probability at lease 1−1/2ℓ . �e probability that we �nd such collision is negligible
for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut
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Table 9. Summary of Games for the Proof of �eorem G.1. We de�ne 6(`) = Enc(ek, `) = Enc0 (ek, `;G(`)).

Decryption
Game H F G 2∗0 2∗1  ∗  condition justi�cation

Game0 H F F(M, R) Enc(ek, `∗) F(`∗) H(`∗) H(`) if 20 = Enc(ek, `) and 21 = F(`)
Game0.1 H F Fgood (M, R) Enc(ek, `∗) F(`∗) H(`∗) H(`) if 20 = Enc(ek, `) and 21 = F(`) Lemma 2.1 + correctness
Game1 H@ ◦ 6 F@ ◦ 6 Fgood (M, R) Enc(ek, `∗) F@ (2∗0 ) H@ (2∗0 ) H(`) if 20 = Enc(ek, `) and 21 = F(`) if key is not bad
Game2 H@ ◦ 6 F@ ◦ 6 Fgood (M, R) Enc(ek, `∗) F@ (2∗0 ) H@ (2∗0 ) H@ (20) if 20 = Enc(ek, `) and 21 = F@ (20) if key is not bad
Game3 H@ ◦ 6 F@ ◦ 6 Fgood (M, R) Enc(ek, `∗) F@ (2∗0 ) H@ (2∗0 ) H@ (20) if 21 = F@ (20) statistical
Game3.1 H@ ◦ 6 F@ ◦ 6 F(M, R) Enc(ek, `∗) F@ (2∗0 ) H@ (2∗0 ) H@ (20) if 21 = F@ (20) Lemma 2.1 + correctness
Game4 H@ ◦ 6 F@ ◦ 6 F(M, R) S(1^ ) F@ (2∗0 ) H@ (2∗0 ) H@ (20) if 21 = F@ (20) DS-IND
Game5 H@ ◦ 6 F@ ◦ 6 F(M, R) S(1^ ) F@ (20∗) * (K) H@ (20) if 21 = F@ (20) statistical disjointness
Game5.1 H@ ◦ 6 F@ ◦ 6 F(M, R) S(1^ ) * (H) * (K) H@ (20) if 21 = F@ (20) statistical disjointness
Game5.2 H@ ◦ 6 F@ ◦ 6 Fgood (M, R) S(1^ ) * (H) * (K) H@ (20) if 21 = F@ (20) Lemma 2.1 + correctness
Game6 H@ ◦ 6 F@ ◦ 6 Fgood (M, R) S(1^ ) * (H) * (K) H@ (20) if 20 = Enc(ek, `) and 21 = F@ (20) statistical
Game7 H@ ◦ 6 F@ ◦ 6 Fgood (M, R) S(1^ ) * (H) * (K) H(`) if 20 = Enc(ek, `) and 21 = F(`) if key is not bad
Game7.1 H F Fgood (M, R) S(1^ ) * (H) * (K) H(`) if 20 = Enc(ek, `) and 21 = F(`) if key is not bad
Game8 H F F(M, R) S(1^ ) * (H) * (K) H(`) if 20 = Enc(ek, `) and 21 = F(`) Lemma 2.1 + correctness

G Property of HU⊥
m

Let us consider HU⊥< [JZM19]: Let PKE = (Gen, Enc,Dec) be a deterministic PKE scheme whose plaintext space
isM. Let C and K be a ciphertext and key space. LetH be a some �nite space. Let H : M → K and F : M →H
be hash functions modeled by random oracles. Let KEM = (Gen, Enc,Dec) = HU⊥< [PKE,H, F] is a KEM scheme
obtained by using HU⊥<.

Gen(1^ )

(ek, dk) ← Gen(1^ )

dk := (dk, ek)

return (ek, dk)

Enc(ek)

< ←M
20 := Enc(ek, `)
21 := F(`[, ek])
 := H(`)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek)

`′ ← Dec(dk, 20)
if `′ = ⊥ or 20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek])
then return  := ⊥

else return  := H(`′)

G.1 SPR-CCA security:

�eorem G.1. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public param-
eter only. If PKE is strongly disjoint-simulatable with simulator S and X-correct with negligible X, then KEM =

HU⊥< [PKE,H, F] is SPR-CCA-secure, where we use a new simulator S′ = S ×* (H).
Formally speaking, for anyA against the SPR-CCA security ofKEM issuing at most @Dec queries to the decapsulation
oracle and @F, @G, and @H queries to F, G, and H, respectively, there existA34 against ciphertext-indistinguishability
of PKE such that

Advspr-cca
KEM,S′,A (^) ≤ Advds-ind

PKE,DM ,S,A34
(^) + 2DisjPKE,S (^) + 16(@G + @Dec + 1)2X + 4X

+ 8(@G + @H + @F)2X + 8(@G + @H + @F + @Dec + 1)2X
+ (2@Dec + 1)/|H | + @Dec/(|H | − 1)

�eorem G.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable and X-correct with negligible X, then KEM = HU⊥< [PKE,H, F] is SPR-CCA-secure.

Proof Sketch of �eorem G.1: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 8. We summa-
rize the games in Table 9. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 .
We mainly follow the security proof in [JZM19, XY19, LW21], while we use a new simulator S′ = S × * (H)
instead of S′ = Enc(ek,M) ×* (H).
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Game0: �is game is the original game Exptssmt-cca
KEM,A (^) with 1 = 0. �e challenge is generated as

`∗ ←M; 2∗0 := Enc(ek, `∗;G(`∗)); 2∗1 := F(`∗).

We have
Pr[(0] = 1 − Pr[Exptssmt-cca

KEM,A (^) = 1 | 1 = 0] .

Game0.1: �is game is the same as Game0 except that the random oracle G is chosen from Fgood (M,R) instead
of F (M,R). As in the proof of �eorem 5.1, we have

|Pr[(0] − Pr[(0.1] | ≤ 8(@G + @Dec + 1)2X.

In addition, we have Pr[Bad] ≤ X and |Pr[(0.1] − ? | ≤ |Pr[(0.1 ∧ ¬Bad] − ? | + X for any ? ∈ [0, 1].

Game1: �is game is the same as Game0.1 except that the random oracles H and F are simulated by H@ ◦ 6 and
F@ ◦ 6, respectively, where H@ : C → K and F@ : C → H are random oracles and 6(`) := Enc(ek, `). If key is not
bad, then those games are equivalent and we have

Pr[(0.1 ∧ ¬Bad] = Pr[(1 ∧ ¬Bad] .

Game2: �is game is the same as Game1 except that the decapsulation oracle internally computes  as H@ (20)
and 21 as F@ (20). If key is not bad, then those games are equivalent and we have

Pr[(1 ∧ ¬Bad] = Pr[(2 ∧ ¬Bad] .

Game3: In this game the decapsulation oracle ignores whether 20 = Enc(ek, `) or not. �at is, when (20, 21) ≠
(2∗0, 2

∗
1), the oracle returns  = H@ (20) if 21 = F@ (20).

Let us consider the following cases:
– If 20 = Enc(ek, `) for some `, then the results are equal.
– If 20 ∉ Enc(ek,M) and 21 ≠ F@ (20), then the results are equal.
– If 20 ∉ Enc(ek,M) and 21 = F@ (20), then the results di�er (⊥ in Game2 but  = H@ (2) in Game3).

�e di�erence occurs when 20 is outside of Enc(ek,M) and 21 = F@ (20). Notice that the adversary cannot access
such hash values directly, since it is given F instead of F@ . �erefore, any 21 hits the value F@ (20) with probability
at most 1/|H | and we obtain the bound @Dec/|H |. (If a decapsulation query is quantum, we will get another bound
2@Dec ( |H |)−1/2. ) We have

|Pr[(2 ∧ ¬Bad] − Pr[(3 ∧ ¬Bad] | ≤ @Dec/|H |.
We also have for any ?,

|Pr[(3 ∧ ¬Bad] − ? | ≤ |Pr[(3] − ? | + X.

Game3.1: �is game is the same as Game3 except that G is chosen from F (M,R). We have

|Pr[(3] − Pr[(3.1] | ≤ 8(@G + @H + @F + @Dec + 1)2X.

(We note that H, F, Dec, and the challenge ciphertext also query to G internally.)

Game4: We replace 2∗0 := Enc(ek, `∗;G(`∗)) with 2∗0 ← S(1
^ ). �e di�erence is bounded by the advantage of

ciphertext indistinguishability. We have

|Pr[(3.1] − Pr[(4] | ≤ Advds-ind
PKE,DM ,S,A34

(^).

Game5: �is game is the same as Game4 except that  ∗ ← K instead of  ∗ ← H@ (2∗0).
Suppose that 2∗0 is outside of Enc(ek,M) in both games: If so, the adversary cannot access to  ∗ = H@ (2∗0) via
H. Suppose that the adversary queries (20, 21) to Dec. If 20 = 2∗0 and 21 = 2∗1, then it receives ⊥ in both games. If
20 = 2∗0 and 21 ≠ 2∗1, then 21 ≠ F@ (2∗0) = 2

∗
1 holds and it receives ⊥ in both games. �us, the two games are equal

if 2∗0 is outside of Enc(ek,M).
Hence, the di�erence is bounded by the statistical disjointness in disjoint simulatability. We have

|Pr[(4] − Pr[(5] | ≤ DisjPKE,S (^).
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Game5.1: Here, our proof leaves the proof in [JZM19]. �is game is the same as Game5.1 except that 2∗1 ← * (H)
instead of 2∗1 := F@ (2∗0).
Recall that the adversary cannot access the real hash value 2∗1 = F@ (2∗0) directly if 2∗0 is the outside of Enc(ek,M).
When the adversary queries (20, 21) for 20 ≠ 2∗0, there is no leak on F@ (2∗0). Suppose that the adversary queries
(2∗0, 21) for Dec.
– In Game5, we have 2∗1 = F@ (2∗0). If 21 = 2∗1, then it receives ⊥; otherwise, that is, if 21 ≠ 2∗1, it also receives ⊥.
– In Game5.1, we have 2∗1 ← * (H).
• If 2∗1 = F@ (2∗0), then this game is the same as Game5.
• Suppose that 2∗1 ≠ F@ (2∗0). If 21 = 2∗1, then it receives⊥; otherwise, it receives⊥ if and only if 21 ≠ F@ (2∗0);

it receives  = H@ (2∗0) if 21 = F@ (2∗0).
�us, assuming that 2∗0 is the outside of Enc(ek,M) and 2∗1 ≠ F@ (2∗0), a value 21 hits F@ (2∗0) with probability at
most 1/(|H | − 1). We have

|Pr[(5] − Pr[(5.1] | ≤ DisjPKE,S (^) + 1/|H | + @Dec/(|H | − 1).

Game5.2: �is game is the same as Game5.1 except that G is chosen from Fgood (M,R). We have

|Pr[(5.1] − Pr[(5.2] | ≤ 8(@G + @H + @F)2X.

We also have, for any ?,
|Pr[(5.2] − ? | ≤ |Pr[(5.2 ∧ ¬Bad] − ? | + X.

Game6: �is game is the same as Game5.2 except that the decapsulation algorithm checks if 20 = Enc(ek, `) and
21 = F@ (20).
Let us consider the following cases for a decapsulation query (20, 21):
– If 20 = Enc(ek, `) for some `, then the results are equal since the key is not bad.
– If 20 ∉ Enc(ek,M) and 21 ≠ F@ (20), then the results are equal.
– If 20 ∉ Enc(ek,M) and 21 = F@ (20), then the results di�er (⊥ in Game6 but  = H@ (2) in Game5.2).

�e di�erence occurs when 20 is outside of Enc(ek,M) and 21 = F@ (20). Notice that the adversary cannot access
such hash values directly, since it is given F instead of F@ . �erefore, any 21 hits the value F@ (20) with proba-
bility at most 1/|H | and we obtain the bound @Dec/|H |. (If the query is quantum, we will get another bound
2@Dec ( |H |)−1/2. ) We have

|Pr[(5.2 ∧ ¬Bad] − Pr[(6 ∧ ¬Bad] | ≤ @Dec/|H |.

Game7: �is game is the same as Game6 except that the decapsulation oracle use H and F instead of H@ and F@ ,
respectively. If the key is not bad, then this is the conceptual change and we have

Pr[(6 ∧ ¬Bad] = Pr[(7 ∧ ¬Bad] .

Game7.1: �is game is the same as Game7 except that H and F are modi�ed as the original. If the key is not bad,
then this is the conceptual change and we have

Pr[(7 ∧ ¬Bad] = Pr[(7.1 ∧ ¬Bad] .

We also have, for any ?,
|Pr[(7.1 ∧ ¬Bad] − ? | ≤ |Pr[(7.1] − ? | + X.

Game8: �is game is the same as Game7.1 except that the random oracle G is chosen from F (M,R). We have

|Pr[(7.1] − Pr[(8] | ≤ 8(@G + @Dec)2X.

We note that this game is the original game Exptspr-cca
KEM,A (^) with 1 = 1. We have

Pr[(8] = Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 1] .
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Summary: Summarizing those (in)equalities, we obtain the following bound:

Advspr-cca
KEM,A (^) = |Pr[(0] − Pr[(8] |

≤ Advds-ind
PKE,DM ,S,A34

(^) + 2DisjPKE,S (^) + 16(@G + @Dec + 1)2X + 4X

+ 8(@G + @H + @F)2X + 8(@G + @H + @F + @Dec + 1)2X
+ (2@Dec + 1)/|H | + @Dec/(|H | − 1)

G.2 Sparseness

�eorem G.3. Suppose that a ciphertext spaceC ofPKE depends on the public parameter only. LetKEM = HU⊥< [PKE,H, F].
Let S′ = S ×* (H) be the simulator for SPR-CCA security of KEM. �en, KEM is 1/|H |-sparse.

Proof. Let us consider (20, 21) ← S(1^ ) ×* (H). If 20 is decrypted into `′ ≠ ⊥, then 21 = F(`′) with probability
at most 1/|H |. �us, KEM is 1/|H |-sparse. ut

H Property of HU⊥

In this section, we consider a variant of HU with explicit rejection, HU⊥. Let PKE = (Gen, Enc,Dec) be a de-
terministic PKE scheme whose plaintext space is M. Let C and K be a ciphertext and key space. Let H be a
some �nite space. Let H : M × C × H → K and F : M → H be hash functions modeled by random oracles.
KEM = (Gen, Enc,Dec) = HU⊥ [PKE,H, F] is de�ned as follows:

Gen(1^ )

(ek, dk) ← Gen(1^ )

dk := (dk, ek)

return (ek, dk)

Enc(ek)

< ←M
20 := Enc(ek, `)
21 := F(`[, ek])
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek)

`′ ← Dec(dk, 20)
if `′ = ⊥ or 20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek])
then return  := ⊥

else return  := H(`′, 20, 21)

H.1 SPR-CCA security:

�eorem H.1. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable with simulator S, then KEM = HU⊥ [PKE,H, F] is SPR-CCA-secure,
where we use the new simulator S′ = S ×* (H).

�eorem H.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU⊥ [PKE,H, F] is SPR-CCA-secure.

In order to show those proof, we consider the following theorem for indi�erentiable reduction, which is obtained
by mimicking that for UG< ↔ UG in [BHH+19, �eorem 5].

�eorem H.3 (HU⊥< ↔ HU⊥:). Let PKE be a deterministic PKE. Let KEM< = HU⊥< [PKE,H<, F] and KEM =

HU⊥ [PKE,H, F].
1. If KEM< is SPR-CCA-secure, then KEM is SPR-CCA-secure also.
2. If KEM is SPR-CCA-secure, then KEM< is SPR-CCA-secure also.

Proof (�e �rst part). Suppose that we have an adversary A against SPR-CCA-security of KEM. We construct an
adversaryA< against SPR-CCA-security of KEM< with random oracle H< : M → K as follows:A< samples a
fresh random oracle H′ ← Func(M × C ×H ,K) and set

H(`, 20, 21) =
{
H< (`) if 20 = Enc(ek, `) and 21 = F(`)
H′(`, 20, 21) otherwise.

�e simulation is perfect. ut
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Proof (�e second part). Suppose that we have an adversaryA< against SPR-CCA-security ofKEM<. We construct
an adversary A against SPR-CCA-security of KEM with random oracle H : M × (C × H) → K as follows: A
de�ne

H< (`) := H
(
`, Enc(ek, `), F(`)

)
.

�is simulation is perfect. ut

H.2 Sparseness

KEM = HU⊥ [PKE,H, F] is 1/|H |-sparse as HU⊥<.
�eorem H.4. Suppose that a ciphertext spaceC ofPKE depends on the public parameter only. LetKEM = HU⊥ [PKE,H, F].
Let S′ = S ×* (H) be the simulator for SPR-CCA security of KEM. �en, KEM is 1/|H |-sparse.
Proof. Let us consider (20, 21) ← S(1^ ) ×* (H). If 20 is decrypted into `′ ≠ ⊥, then 21 = F(`′) with probability
at most 1/|H |. �us, KEM is 1/|H |-sparse. ut

I Property of HU6⊥
m

Let us review HU 6⊥<. Let PKE = (Gen, Enc,Dec) be a deterministic PKE scheme whose plaintext space isM. Let C
andK be a ciphertext and key space. LetH be a some �nite space. Let H : M → K , Hprf : {0, 1}ℓ × C ×H → K ,
and F : M →H be hash functions modeled by random oracles. KEM = (Gen, Enc,Dec) = HU 6⊥< [PKE,H, F,Hprf]
is de�ned as follows:

Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

< ←M
20 := Enc(ek, <)
21 := F(`[, ek])
 := H(`)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek, B)

`′ ← Dec(dk, 20)
if `′ = ⊥ or 20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek])
then return  := Hprf (B, (20, 21))

else return  := H(`′)

I.1 SPR-CCA Security

Bindel et al. showed that if KEM⊥ = U⊥< [PKE,H] is IND-CCA-secure then KEM6⊥ = U 6⊥< [PKE,H,Hprf] is also
IND-CCA-secure [BHH+19, �eorem 3] by overwriting ⊥ from the decapsulation query 2 with the PRF value
Hprf (B, 2). �e same indi�erentiable reduction can be applied to SPR-CCAsecurity and the case for HU⊥< and
HU 6⊥< and obtain the following theorem.
�eorem I.1 (HU⊥< → HU 6⊥<). Let PKE be a deterministic PKE. Let KEM⊥ = HU⊥< [PKE,H, F] and KEM6⊥ =

HU 6⊥< [PKE,H, F,Hprf]. If KEM⊥ is SPR-CCA-secure, then KEM6⊥ is also SPR-CCA-secure.

Proof. Suppose that we have an adversaryA against SPR-CCA-security of KEM6⊥. We construct an adversaryA ′
against SPR-CCA-security of KEM⊥ as follows: Given an encapsulation key ek, a target ciphertext (2∗0, 2

∗
1), and a

key  ∗
1

,A ′ samples a fresh seed B←M. It runsA on input ek, (2∗0, 2
∗
1), and  ∗

1
. IfA queries a ciphertext (20, 21)

to the decapsulation oracle, thenA ′ queries the ciphertext (20, 21) and receives  . If  ≠ ⊥, then it returns  to
A; Otherwise, it queries (B, (20, 21)) to the random oracle Hprf , receives  ̃ , and returns  ̃ to A. If A outputs 1′
and halts, then A ′ also outputs 1′ and halts.
�is simulation is clearly perfect and the theorem follows. ut
Apply the above indi�erentiable reduction with �eorem I.2 and �eorem I.3, we obtain the following theorems:
�eorem I.2. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable with simulator S, then KEM = HU6⊥< [PKE,H, F,Hprf] is SPR-CCA-
secure, where we use the new simulator S′ = S ×* (H).
�eorem I.3. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU6⊥< [PKE,H, F,Hprf] is SPR-CCA-secure, where we use the new simulator S′ =
S ×* (H).
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Table 10. Summary of Games for the Proof of �eorem I.4: Enc′(ek,M) = {(20, 21) = (Enc(ek, <), F(`) | < ∈ M}. ‘S(1^ ) ×
* (H) \ Enc′(ek,M)’ implies that the challenger generates 2∗0 ← S(1

^ ), 2∗1 ←H and returns ⊥ if (2∗0, 2
∗
1) ∈ Enc

′(ek,M).

Decryption
Game H F 2∗0 2∗1  ∗ valid (20 , 21) invalid (20 , 21) justi�cation

Game0 H F S(1^ ) * (H) * (K) H(`) Hprf (B, 20 , 21)
Game1 H F S(1^ ) \ Enc(ek,M) * (H) * (K) H(`) Hprf (B, 20 , 21) statistical disjointness
Game2 H F S(1^ ) \ Enc(ek,M) * (H) * (K) H(`) H@ (20 , 21) Lemma 2.2
Game3 H F S(1^ ) \ Enc(ek,M) * (H) H@ (2∗0 , 2∗1 ) H(`) H@ (20 , 21) H@ (2∗0 , 2∗1 ) is hidden
Game4 H F S(1^ ) \ Enc(ek,M) * (H) Hprf (B, 2∗0 , 2∗1 ) H(`) Hprf (B, 20 , 21) Lemma 2.2
Game5 H F S(1^ ) \ Enc(ek,M) * (H) Dec(dk, (2∗0 , 2∗1 )) H(`) Hprf (B, 20 , 21) re-encryption check
Game6 H F S(1^ ) * (H) Dec(dk, (2∗0 , 2∗1 )) H(`) Hprf (B, 20 , 21) statistical disjointness

I.2 SSMT-CCA Security

�eorem I.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU 6⊥< [PKE,H, F,Hprf] is SSMT-CCA-secure.
Formally speaking, for any A, we have

Advssmt-cca
KEM,A (^) ≤ 2DisjPKE,S (^) + 4(@Hprf + @Dec) · 2

−ℓ/2.

�e security proof is essentially same as that for SXY (�eorem 5.3). Note that this security proof is irrelevant to
PKE is deterministic PKE or one derandomized by T.

Game0: �is game is the original game Exptssmt-cca
KEM,A (^) with 1 = 0. �e challenge is generated as

(2∗0, 2
∗
1,  
∗
0 ) ← S(1

^ ) ×* (H) × K .

We have
Pr[(0] = 1 − Pr[Exptssmt-cca

KEM,A (^) = 1 | 1 = 0] .

Game1: In this game, the ciphertext is set as ⊥ if 2∗0 is in Enc(ek,M).
�e di�erence between two games Game0 and Game1 is bounded by statistical disjointness.

|Pr[(0] − Pr[(1] | ≤ DisjPKE,S (^).

Game2: �is game is the same as Game1 except that Hprf (B, 2, 3) in the decapsulation oracle is replace with
H@ (20, 21) where H@ : C ×H → K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(1] − Pr[(2] | ≤ 2(@Hprf + @Dec) · 2
−ℓ/2,

where @Hprf denote the number of queries to Hprf the adversary makes.

Game3: �is game is the same as Game2 except that  ∗ := H@ (2∗0, 2
∗
1) instead of chosen random. Since 2∗0 is

always outside of Enc(ek,M), A cannot obtain any information about H@ (2∗0, 2
∗
1) via the decapsulation oracle.

Hence, the two games Game2 and Game3 are equivalent and we have

Pr[(2] = Pr[(3] .

Game4: �is game is the same as Game3 except that H@ (·, ·) is replaced by Hprf (B, ·, ·). As in [XY19, Lemmas 4.1],
from Lemma 2.2 we have the bound

|Pr[(3] − Pr[(4] | ≤ 2(@Hprf + @Dec) · 2
−ℓ/2.

Game5: �is game is the same as Game4 except that  ∗ := Dec(dk, (2∗0, 2
∗
1)) instead of Hprf (B, 2∗0, 2

∗
1). Recall

that 2∗0 is always in outside of Enc(ek,M). �us, we always have Dec(2∗0) = ⊥ or Enc(ek,Dec(2∗0)) ≠ 2
∗
0 and, thus,

 ∗ = Hprf (B, 2∗0, 2
∗
1). Hence, the two games are equivalent. We have

Pr[(4] = Pr[(5] .
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Game6: We �nally replace how to compute (2∗0, 2
∗
1). In this game, the ciphertext is chosen by S(1^ ) ×* (H) as

in Game0.
�e di�erence between two games Game5 and Game6 is bounded by statistical disjointness.

|Pr[(5] − Pr[(6] | ≤ DisjPKE,S (^).

Moreover, this game Game6 is the original game Exptssmt-cca
KEM,A (^) with 1 = 1.

Pr[(6] = Pr[Exptssmt-cca
KEM,A (^) = 1 | 1 = 1] .

Summarizing the (in)equalities, we obtain �eorem I.4:

Advssmt-cca
KEM,A (^) = |Pr[(0] − Pr[(6] |

≤ 2DisjPKE,S (^) + 4(@Hprf + @Dec) · 2
−ℓ/2.

I.3 SCFR-CCA Security

�eorem I.5. If PKE isXCFR-secure or SCFR-CCA-secure, then KEM = HU6⊥< [PKE,H, F,Hprf] is SCFR-CCA-secure
in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext 2 = (20, 21) which is decapsulated into  ≠ ⊥ by dk0 and
dk1, that is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne `′

8
= Dec(dk8 , 20) for 8 ∈ {0, 1}. We also de�ne `8 = `′

8
if

20 = Enc(ek8 , `′8) and 21 = F(`′
8
), and ⊥ otherwise.

We have �ve cases de�ned as follows:
1. Case 1 (`0 = `1 ≠ ⊥): �is violates XCFR-security or SCFR-CCA-security of the underlying PKE.
2. Case 2 (⊥ ≠ `0 ≠ `1 ≠ ⊥): In this case, the decapsulation algorithm outputs  = H(`0) = H(`1) and we

succeed to �nd a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).
3. Case 3 (`0 = ⊥ and `1 ≠ ⊥): In this case, the decapsulation algorithms output  = Hprf (B0, 20, 21) and H(`1)

and we �nd a claw ((B0, 20, 21), `1) of Hprf and H. �e probability that we �nd such claw is negligible for
any QPT adversary (Lemma 2.4).

4. Case 4 (`0 ≠ ⊥ and `1 = ⊥): In this case, the decapsulation algorithms output  = H(`0) = Hprf (B1, 20, 21)
and we �nd a claw (`0, (B1, 20, 21)) of H and Hprf . �e probability that we �nd such claw is negligible for
any QPT adversary (Lemma 2.4).

5. Case 5 (�e other cases): In this case, the decapsulation algorithms output = Hprf (B0, 20, 21) = Hprf (B1, 20, 21)
and we �nd a collision ((B0, 20, 21), (B1, 20, 21)) of Hprf if B0 ≠ B1. �e probability that we �nd such collision
is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut

If we add ek to F’s input, we can reduce the assumption on PKE.

�eorem I.6. Let ColGen be the event that when generating two keys (ek8 , dk8) ← Gen(1^ ) for 8 ∈ {0, 1}, they
collides, that is, ek0 = ek1. If Pr[ColGen] is negligible, then KEM = HU 6⊥< [PKE,H, F,Hprf] with 21 = F(`, ek) is
SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext 2 = (20, 21) which is decapsulated into  ≠ ⊥ by dk0 and
dk1, that is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne `′

8
= Dec(dk8 , 20) for 8 ∈ {0, 1}. We also de�ne `8 = `′

8
if

20 = Enc(ek8 , `′8) and 21 = F(`′
8
, ek8), and ⊥ otherwise.

We consider six cases de�ned as follows:
1. Case 1-1 (`0 = `1 ≠ ⊥ and ek0 = ek1): �is case rarely occurs since Pr[ColGen] is negligible.
2. Case 1-2 (`0 = `1 ≠ ⊥ and ek0 ≠ ek1): In this case, we have 3 = F(`′0, ek0) = F(`′1, ek1) with (`′0, ek0) ≠
(`′1, ek1) and we succeed to �nd a collision for F, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 2 (⊥ ≠ `0 ≠ `1 ≠ ⊥): In this case, the decapsulation algorithm outputs  = H(`0) = H(`1) and we
succeed to �nd a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).
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4. Case 3 (`0 = ⊥ and `1 ≠ ⊥): In this case, the decapsulation algorithms output  = Hprf (B0, 20, 21) and H(`1)
and we �nd a claw ((B0, 20, 21), `1) of Hprf and H. �e probability that we �nd such claw is negligible for
any QPT adversary (Lemma 2.4).

5. Case 4 (`0 ≠ ⊥ and `1 = ⊥): In this case, the decapsulation algorithms output  = H(`0) = Hprf (B1, 20, 21)
and we �nd a claw (`0, (B1, 20, 21)) of H and Hprf . �e probability that we �nd such claw is negligible for
any QPT adversary (Lemma 2.4).

6. Case 5 (�e other cases): In this case, the decapsulation algorithms output = Hprf (B0, 20, 21) = Hprf (B1, 20, 21)
and we �nd a collision ((B0, 20, 21), (B1, 20, 21)) of Hprf if B0 ≠ B1, which occurs with probability at least
1 − 1/2ℓ . �e probability that we �nd such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut

J Property of HU6⊥,prf

Next, we consider a variant of HU with implicit rejection, HU 6⊥,prf , which is used in Classic McEliece. Let PKE =

(Gen, Enc,Dec) be a deterministic PKE scheme whose plaintext space isM. Let C andK be a ciphertext and key
space. LetH be a some �nite space. Let H,Hprf : M × C ×H → K and F : M → H be hash functions modeled
by random oracles. KEM = (Gen, Enc,Dec) = HU6⊥,prf [PKE,H, F,Hprf] is de�ned as follows:

Gen(1^ )

(ek, dk) ← Gen(1^ )
B←M

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`←M
20 := Enc(ek, `)
21 := F(`[, ek])
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek, B)

`′ ← Dec(dk, 20)
if `′ = ⊥ or 2 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek])
then return  := Hprf (B, 20, 21)

else return  := H(`′, 20, 21)

J.1 SPR-CCA Security

�eorem J.1. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public parameter only.
If PKE is strongly disjoint-simulatable with simulator S, then KEM = HU6⊥,prf [PKE,H, F,Hprf] is SPR-CCA-secure,
where we use the new simulator S′ = S ×* (H).

�eorem J.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU 6⊥,prf [PKE,H, F,Hprf] is SPR-CCA-secure, where we use the new simulator
S′ = S ×* (H).

In order to show those theorems, we want to invoke the following theorem for indi�erentiable reduction, which
is obtained by mimicking that for U 6⊥< ↔ U 6⊥,prf in [BHH+19, �eorem 5], and apply it to �eorem I.2 and �eo-
rem I.3.
�eorem J.3 (HU 6⊥< ↔ HU 6⊥,prf :). Let PKE be a deterministic PKE. Let KEM< = HU 6⊥< [PKE,H<, F,Hprf] and
KEM = HU6⊥,prf [PKE,H, F,Hprf].
1. If KEM< is SPR-CCA-secure, then KEM is SPR-CCA-secure also.
2. If KEM is SPR-CCA-secure, then KEM< is SPR-CCA-secure also.

�e proof is the same as that of �eorem H.3 and we omit it.

J.2 SSMT-CCA Security

�eorem J.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU6⊥,prf [PKE,H, F,Hprf] is SSMT-CCA-secure.
Formally speaking, for any A, we have

Advssmt-cca
KEM,A (^) ≤ 2DisjPKE,S (^) + 4(@Hprf + @Dec) · 2

−ℓ/2.

�e security proof is the same as that for HU6⊥< (�eorem I.4) and we omit it.
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J.3 SCFR-CCA Security

�eorem J.5. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = HU 6⊥,prf [PKE,H, F,Hprf] is SCFR-CCA-
secure in the quantum random oracle model.

�eorem J.6. Let ColGen be the event that when generating two keys (ek8 , dk8) ← Gen(1^ ) for 8 ∈ {0, 1}, they
collides, that is, ek0 = ek1. If Pr[ColGen] is negligible, then KEM = HU 6⊥,prf [PKE,H, F,Hprf] with 21 = F(`, ek) is
SCFR-CCA-secure in the quantum random oracle model.

�e security proofs are the same as those for HU6⊥,prf (�eorem I.5 and �eorem I.6) and we omit them.

K Property of HU 6⊥

Next, we consider another variant of HU with implicit rejection, HU 6⊥. Let PKE = (Gen, Enc,Dec) be a deter-
ministic PKE scheme whose plaintext space is M. Let C and K be a ciphertext and key space. Let H be a
some �nite space. Let H : M × C × H → K and F : M → H be hash functions modeled by random oracles.
KEM = (Gen, Enc,Dec) = HU 6⊥ [PKE,H, F] is de�ned as follows:

Gen(1^ )

(ek, dk) ← Gen(1^ )
B←M

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`←M
20 := Enc(ek, `)
21 := F(`[, ek])
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek, B)

`′ ← Dec(dk, 2)
if `′ = ⊥ or 20 ≠ Enc(ek, `′) or 21 ≠ F(`′[, ek])
then return  := H(B, 20, 21)

else return  := H(`′, 20, 21)

K.1 SPR-CCA security:

�eorem K.1. Let PKE = T[PKE0,G]. Suppose that a ciphertext space C of PKE depends on the public parameter
only. If PKE is strongly disjoint-simulatable with simulator S, then KEM = HU6⊥ [PKE,H, F] is SPR-CCA-secure,
where we use the new simulator S′ = S ×* (H).

�eorem K.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU⊥ [PKE,H, F] is SPR-CCA-secure.

Hence, we use [BHH+19, �eorem 3] here.
�eorem K.3 (HU⊥ → HU6⊥). Let PKE be a deterministic PKE. Let KEM⊥ = HU⊥ [PKE,H, F] and KEM6⊥ =

HU 6⊥ [PKE,H, F]. If KEM⊥ is SPR-CCA-secure, then KEM6⊥ is also SPR-CCA-secure.

Proof. Suppose that we have an adversaryA against SPR-CCA-security of KEM6⊥. We construct an adversaryA ′
against SPR-CCA-security of KEM⊥ as follows: Given an encapsulation key ek, a target ciphertext (2∗0, 2

∗
1), and a

key  ∗
1

,A ′ samples a fresh seed B←M. It runsA on input ek, (2∗0, 2
∗
1), and  ∗

1
. IfA queries a ciphertext (20, 21)

to the decapsulation oracle, thenA ′ queries the ciphertext (20, 21) and receives  . If  ≠ ⊥, then it returns  to
A; Otherwise, it queries (B, 20, 21) to the random oracle H, receives  ̃ , and returns  ̃ to A. If A outputs 1′ and
halts, then A ′ also outputs 1′ and halts.
�is simulation is clearly perfect and the theorem follows. ut

K.2 SSMT-CCA Security

�eorem K.4. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then KEM = HU 6⊥ [PKE,H, F] is SSMT-CCA-secure.
Formally speaking, for any A, we have

Advssmt-cca
KEM,A (^) ≤ 2DisjPKE,S (^) + 4(@H + @Dec)/

√
|M|.

�e security proof is essentially same as that for SXY (�eorem 5.3). Note that this security proof is irrelevant to
PKE is deterministic PKE or one derandomized by T.
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Table 11. Summary of Games for the Proof of �eorem K.4: ‘S(1^ ) \ Enc(ek,M)’ implies that the challenger generates 2∗0 ←
S(1^ ), 2∗1 ←H and returns ⊥ if 2∗0 ∈ Enc(ek,M).

Decryption
Game H F 2∗0 2∗1  ∗ valid (20 , 21) invalid (20 , 21) justi�cation

Game0 H F S(1^ ) * (H) * (K) H(`, 20 , 21) H(B, 20 , 21)
Game1 H F S(1^ ) * (H) * (K) H(`, 20 , 21) H@ (20 , 21) Lemma 2.2
Game2 H F S(1^ ) \ Enc(ek,M) * (H) * (K) H(`, 20 , 21) H@ (20 , 21) statistical disjointness
Game3 H F S(1^ ) \ Enc(ek,M) * (H) H@ (2∗0 , 2∗1 ) H(`, 20 , 21) H@ (20 , 21) H@ (2∗0 , 2∗1 ) is hidden
Game4 H F S(1^ ) \ Enc(ek,M) * (H) H(B, 2∗0 , 2∗1 ) H(`, 20 , 21) H(B, 20 , 21) Lemma 2.2
Game5 H F S(1^ ) \ Enc(ek,M) * (H) Dec(dk, (2∗0 , 2∗1 )) H(`, 20 , 21) H(B, 20 , 21) re-encryption check
Game6 H F S(1^ ) * (H) Dec(dk, (2∗0 , 2∗1 )) H(`, 20 , 21) H(B, 20 , 21) statistical disjointness

Game0: �is game is the original game Exptssmt-cca
KEM,A (^) with 1 = 0. �e challenge is generated as

(2∗0, 2
∗
1,  
∗
0 ) ← S(1

^ ) ×* (H) × K .

We have
Pr[(0] = 1 − Pr[Exptssmt-cca

KEM,A (^) = 1 | 1 = 0] .

Game1: �is game is the same as Game0 except that H(B, 20, 21) in the decapsulation oracle is replace with
H@ (20, 21) where H@ : C×H → K is another random oracle. As in[JZC+18, �eorem 1] and [XY19, Lemmas 4.1],
from Lemma 2.2 we have the bound

|Pr[(1] − Pr[(2] | ≤ 2(@H + @Dec)/
√
|M|,

where @H denote the number of queries to H the adversary makes.

Game2: In this game, the ciphertext is set as ⊥ if 2∗0 is in Enc(ek,M).
�e di�erence between two games Game1 and Game2 is bounded by statistical disjointness.

|Pr[(1] − Pr[(2] | ≤ DisjPKE,S (^).

Game3: �is game is the same as Game2 except that  ∗ := H@ (2∗0, 2
∗
1) instead of chosen random. Since 2∗0 is

always outside of Enc(ek,M), A cannot obtain any information about H@ (2∗0, 2
∗
1) via the decapsulation oracle.

Hence, the two games Game2 and Game3 are equivalent and we have

Pr[(2] = Pr[(3] .

Game4: �is game is the same asGame3 except thatH@ (·, ·) is replaced byHprf (B, ·, ·). As in [JZC+18, �eorem 1]
and [XY19, Lemmas 4.1], from Lemma 2.2 we have the bound

|Pr[(3] − Pr[(4] | ≤ 2(@H + @Dec)/
√
|M|,

Game5: �is game is the same as Game4 except that  ∗ := Dec(dk, (2∗0, 2
∗
1)) instead of H(B, 2∗0, 2

∗
1). Recall that

2∗0 is always in outside of Enc(ek,M). �us, we always have Dec(2∗0) = ⊥ or Enc(ek,Dec(2∗0)) ≠ 2∗0 and, thus,
 ∗ = H(B, 2∗0, 2

∗
1). Hence, the two games are equivalent. We have

Pr[(4] = Pr[(5] .

Game6: We �nally replace how to compute (2∗0, 2
∗
1). In this game, the ciphertext is chosen by S(1^ ) ×* (H) as

in Game0.
�e di�erence between two games Game5 and Game6 is bounded by statistical disjointness.

|Pr[(5] − Pr[(6] | ≤ DisjPKE,S (^).
Moreover, this game Game6 is the original game Exptssmt-cca

KEM,A (^) with 1 = 1.

Pr[(6] = Pr[Exptssmt-cca
KEM,A (^) = 1 | 1 = 1] .

Summarizing the (in)equalities, we obtain �eorem K.4:

Advssmt-cca
KEM,A (^) = |Pr[(0] − Pr[(6] |

≤ 2DisjPKE,S (^) + 4(@H + @Dec)/
√
|M|.
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K.3 SCFR-CCA Security

�eorem K.5. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM = HU6⊥< [PKE,H, F] is SCFR-CCA-secure in
the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext 2 = (20, 21) which is decapsulated into  ≠ ⊥ by dk0 and
dk1, that is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne `′

8
= Dec(dk8 , 20) for 8 ∈ {0, 1}. We also de�ne `8 = `′

8
if

20 = Enc(ek8 , `′8) and 21 = F(`′
8
), and ⊥ otherwise.

We have �ve cases de�ned as follows:
1. Case 1 (`0 = `1 ≠ ⊥): �is violates XCFR-security or SCFR-CCA-security of the underlying PKE.
2. Case 2 (⊥ ≠ `0 ≠ `1 ≠ ⊥): In this case, the decapsulation algorithm outputs = H(`0, 20, 21) = H(`1, 20, 21)

and we succeed to �nd a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).
3. Case 3 (`0 = ⊥ and `1 ≠ ⊥): In this case, the decapsulation algorithms output  = H(B0, 20, 21) and

H(`1, 20, 21). As in the proof of �eorem F.3, we can replace H(B0, ·, ·) with H@ (·, ·) by introducing negligible
error (Lemma 2.2). A�er that, we �nd a claw ((20, 21), (`1, 20, 21)) between H@ and H. �e probability that
we �nd such claw is negligible for any QPT adversary (Lemma 2.4).

4. Case 4 (`0 ≠ ⊥ and `1 = ⊥): In this case, the decapsulation algorithms output  = H(`0, 20, 21) =

H(B1, 20, 21). �is follows as Case 3.
5. Case 5 (�e other cases): In this case, the decapsulation algorithms output  = H(B0, 20, 21) = Hprf (B1, 20, 21)

and we �nd a collision ((B0, 20, 21), (B1, 20, 21)) of H if B0 ≠ B1, which occurs with overwhelming probability
1 − 1/|M|. �e probability that we �nd such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut

If we add ek to F’s input, we can reduce the assumption on PKE.

�eorem K.6. Let ColGen be the event that when generating two keys (ek8 , dk8) ← Gen(1^ ) for 8 ∈ {0, 1}, they
collides, that is, ek0 = ek1. If Pr[ColGen] is negligible, then KEM = HU 6⊥ [PKE,H, F,Hprf] with 21 = F(`, ek) is
SCFR-CCA-secure in the quantum random oracle model.

Note that this security proof is irrelevant to PKE is deterministic PKE or one derandomized by T.

Proof. Suppose that an adversary outputs a ciphertext 2 = (20, 21) which is decapsulated into  ≠ ⊥ by dk0 and
dk1, that is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne `′

8
= Dec(dk8 , 20) for 8 ∈ {0, 1}. We also de�ne `8 = `′

8
if

20 = Enc(ek8 , `′8) and 21 = F(`′
8
, ek8), and ⊥ otherwise.

We consider six cases de�ned as follows:
1. Case 1-1 (`0 = `1 ≠ ⊥ and ek0 = ek1): �is case rarely occurs since Pr[ColGen] is negligible.
2. Case 1-2 (`0 = `1 ≠ ⊥ and ek0 ≠ ek1): In this case, we have 3 = F(`′0, ek0) = F(`′1, ek1) with (`′0, ek0) ≠
(`′1, ek1) and we succeed to �nd a collision for F, which is negligible for any QPT adversary (Lemma 2.3).

3. Case 2 (⊥ ≠ `0 ≠ `1 ≠ ⊥): In this case, the decapsulation algorithm outputs = H(`0, 20, 21) = H(`1, 20, 21)
and we succeed to �nd a collision for H and F, which is negligible for any QPT adversary (Lemma 2.3).

4. Case 3 (`0 = ⊥ and `1 ≠ ⊥): In this case, the decapsulation algorithms output  = H(B0, 20, 21) and
H(`1, 20, 21). As in the proof of �eorem F.3, we can replace H(B0, ·, ·) with H@ (·, ·) by introducing negligible
error (Lemma 2.2). A�er that, we �nd a claw ((20, 21), (`1, 20, 21)) between H@ and H. �e probability that
we �nd such claw is negligible for any QPT adversary (Lemma 2.4).

5. Case 4 (`0 ≠ ⊥ and `1 = ⊥): In this case, the decapsulation algorithms output  = H(`0, 20, 21) =

H(B1, 20, 21). �is follows as Case 3.
6. Case 5 (�e other cases): In this case, the decapsulation algorithms output  = H(B0, 20, 21) = H(B1, 20, 21)

and we �nd a collision ((B0, 20, 21), (B1, 20, 21)) of H if B0 ≠ B1, which occurs with overwhelming probability
1 − 1/|M|. �e probability that we �nd such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut
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Table 12. Parameter sets of Classic McEliece in Round 3. Note that @ = 2< and : = = −<C. (We omit the semi-systematic forms.)

parameter sets < = C :

kem/mceliece348864 12 3488 64 2720
kem/mceliece460896 13 4608 96 3360
kem/mceliece6688128 13 6688 128 5024
kem/mceliece6960119 13 6960 119 5413
kem/mceliece8192128 13 8192 128 6528

L Classic McEliece

Review of Classic McEliece: Classic McEliece [ABC+20] is based on the Niederreiter PKE, in which a public key
is a scrambled parity-check matrix, a plaintext is an error vector, and a ciphertext is a syndrome. See Table 12 for
concrete parameter values (we omit semi-systematic ones).
De�ne S = {4 ∈ F=2 : HW(4) = C}, which is a plaintext space. Let �=−: be an identity matrix of dimension
=− : . �e underlying PKE of Classic McEliece, which we call CM-DPKE, is summarized as follows, where we only
consider the systematic form and omit the details for the semi-systematic form:
– Gen(1^ ): Choose a monic irreducible polynomial 6 in F@ [G] of degree C and distinct U1, . . . , U= ← F@ .

Compute a parity-check matrix �̂ ∈ F=×:2 of the Goppa code generated by 6 and U1, . . . , U=. Reduce �̂ to
systematic form [�=−: | )]. (If this fails, return ⊥). Output ek := ) ∈ F(=−:)×:2 and dk := (), �), where
� := (6, U1, . . . , U=). We note that using �, one can correct an error of the codeword up to C, because the
minimum distance of the Goppa code is at least 2C + 1 by design.

– Enc(ek, 4 ∈ S): De�ne � := [�=−: | )] ∈ F(=−:)×=2 . Compute 2 := �4 ∈ F=−:2 . Output 2.
– Dec(dk, 2): Extend 2 to E := (2, 0, . . . , 0) ∈ F=2 . Find the unique codeword 2̃ in the Goppa code de�ned by �

that satis�es HW(2̃ − E) ≤ C. Set 4 := E + 2̃. If HW(4) = C and 2 = �4, then return 4. Otherwise, return ⊥.
Classic McEliece appliesHU 6⊥,prf to CM-DPKE, whereH(`, 20, 21) = SHAKE256256 (0x01, `‖20‖21)Hprf (B, 20, 21) =
SHAKE256256 (0x00, B‖20‖21) F(4) = SHAKE256256 (0x02, 4):

Gen(1^ )

(ek, dk) ← Gen(1^ )
B← F=2
ek := ), dk := (dk, B)

return (ek, dk)

Enc(ek)

4 ← FixedWeight()
20 := Enc(ek, 4)
21 := F(4)
 := H(4, 20, 21))
return ((20, 21),  )

Dec(dk = (dk, B), (20, 21))

4 := Dec(dk, 20)
if 4 = ⊥ then return  := Hprf (B, 20, 21)
if 21 ≠ F(4) then return  := Hprf (B, 20, 21)
else return  := H(4, 20, 21)

L.1 Classic McEliece is not collision-free

Let 4fixed := (1C , 0=−C ) and 2fixed := (1C , 0=−:−C ). We have C ≤ <C = = − : for all parameter sets of Classic
McEliece. Grubbs et al. observed that for any public key ) , 2fixed := (1C , 0=−:−C ) is a valid ciphertext of plaintext
4fixed := (1C , 0=−C ), because � · 4fixed = [�=−: | )] · 4fixed = 4fixed = 2fixed. Hence, Classic McEliece is not collision
free.

Salvaging Collision-Freeness of Classic McEliece: Let us consider Grubbs et al. [GMP21, Section 5.1] suggested
a variant of HU with implicit rejection, in which F takes ` and ek as input, but they did not recommend it since
ek = ) of Classic McEliece is relatively large. (We can show its security as �eorem K.6.) Instead, we can use a
variant of HU with implicit rejection, in which F takes ` and Hash(ek) as input. We can show its strong collision-
freeness assuming that the probability that two independent encryption keys collide is negligible.

�eorem L.1 (SCFR-CCA-security of modi�ed Classic McEliece). �e modi�ed Classic McEliece is SCFR-CCA-
secure in the QROM.
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�eorem L.2. Let ColGen be the event that when generating two keys (ek8 , dk8) ← Gen(1^ ) for 8 ∈ {0, 1}, they
collides, that is, ek0 = ek1. If Pr[ColGen] is negligible, then the modi�ed Classic McEliece is SCFR-CCA-secure in the
QROM.

Proof. Suppose that an adversary outputs a ciphertext 2 = (20, 21) which is decapsulated into  ≠ ⊥ by dk0 and
dk1, that is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne 4′

8
= Dec(dk8 , 20) for 8 ∈ {0, 1}. We also de�ne 48 = 4′

8
if

20 = Enc(ek8 , 4′8) and 21 = F(4′
8
,Hash(ek8)), and ⊥ otherwise.

We consider seven cases de�ned as follows:
1. Case 1-1 (40 = 41 ≠ ⊥ and ek0 = ek1): �is case rarely occurs since Pr[ColGen] is negligible.
2. Case 1-2 (40 = 41 ≠ ⊥, ek0 ≠ ek1, and Hash(ek0) = Hash(ek1)): In this case, we have Hash(ek0) = Hash(ek1)

with ek0 ≠ ek1 and we succeed to �nd a collision for Hash, which is negligible for any QPT adversary
(Lemma 2.3).

3. Case 1-3 (40 = 41 ≠ ⊥, ek0 ≠ ek1, and Hash(ek0) ≠ Hash(ek1)): In this case, we have 3 = F(40,Hash(ek0)) =
F(41,Hash(ek1)) with (40,Hash(ek0)) ≠ (41,Hash(ek1)) and we succeed to �nd a collision for F, which is
negligible for any QPT adversary (Lemma 2.3).

4. Case 2 (⊥ ≠ 40 ≠ 41 ≠ ⊥): In this case, the decapsulation algorithm outputs  = H(40) = H(41) and we
succeed to �nd a collision for H or F, which is negligible for any QPT adversary (Lemma 2.3).

5. Case 3 (40 = ⊥ and 41 ≠ ⊥): In this case, the decapsulation algorithms output  = Hprf (B0, 20, 21) and
H(41, 20, 21) and we �nd a claw ((B0, 20, 21), (41, 20, 21)) of Hprf and H. �e probability that we �nd such
claw is negligible for any QPT adversary (Lemma 2.4).

6. Case 4 (40 ≠ ⊥ and 41 = ⊥): In this case, the decapsulation algorithms output  = H(40, 20, 21) =

Hprf (B1, 20, 21) and we �nd a claw ((40, 20, 21), (B1, 20, 21)) of H and Hprf . �e probability that we �nd such
claw is negligible for any QPT adversary (Lemma 2.4).

7. Case 5 (�e other cases): In this case, the decapsulation algorithms output = Hprf (B0, 20, 21) = Hprf (B1, 20, 21)
and we �nd a collision ((B0, 20, 21), (B1, 20, 21)) of Hprf if B0 ≠ B1, which occurs with probability at least
1 − 1/2=. �e probability that we �nd such collision is negligible for any QPT adversary (Lemma 2.3).

We conclude that the advantage of the adversary is negligible in any cases. ut

L.2 Security

Assumption:

De�nition L.1. Fix the parameter set.We de�ne a random key-generation algorithmRandGen(pp) as follows: Choose
�̂ ← * (F=×:2 ), reduce �̂ to systematic form [�=−: | )] (if this fails, resample), outputs )̂ ∈ F(=−:)×:2
– �e modi�ed PR-Key assumption: It is hard to distinguish ) and )̂ , where (), sk) ← Gen(1^ ) and )̂ ←

RandGen(pp).
– �e modi�ed Decisional Syndrome Decoding assumption: It is hard to distinguish ()̂ , [�=−: | )̂] · 4) from ()̂ , D)

with )̂ ← RandGen(pp), 4 ← FixedWeight(), and D ← * (F=−:2 ).

Security: Assuming the modi�ed PR-Key assumption and the modi�ed Decisional Syndrome Decoding assump-
tion, it is easy to show that CM-DPKE is ciphertext-indistinguishable in the sense of disjoint simulatability. Since
2= = |F=2 | �

(=
C

)
= |S| ≥ |Enc(ek,M)|, it has statistical disjoitness. �us, CM-DPKE is strongly disjoint-

simulatable. Applying our theorem for HU6⊥,prf , we can conclude that Classic McEliece is strongly pseudorandom
and smooth under those assumptions.

L.3 Summary

We show that
– CM-DPKE is strongly disjoint-simulatable under the modi�ed PR-Key assumption and the modi�ed Deci-

sional Syndrome Decoding assumption.
– �us, Classic McEliece is SPR-CCA-secure and SSMT-CCA-secure in the QROM. (�eorem K.2, �eorem K.4)
– Classic McEliece is ANON-CCA-secure. (�eorem 3.1)
– Classic McEliece leads to ANON-CCA-secure hybrid PKE. (�eorem 4.2, �eorem 3.1)

If we use modi�ed Classic McEliece, then it is SCFR-CCA-secure in the QROM. �is implies that the modi�ed
Classic McEliece leads to SROB-CCA-secure PKE (�eorem 2.2).
Grubbs et al. [GMP21] discussed the barrier to show anonymity of hybrid encryption based on Classic McEliece,
since Classic McEliece is not collision free. We avoid this barrier by using SPR-CCAsecurity.
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M Kyber
Review of Kyber in Round 3: Kyber [SAB+20] is a KEM scheme based on the Module LWE problem. We brie�y
review the underlying PKE scheme of Kyber. See Table 13 for concrete parameter sets.

Table 13. Parameter sets of Kyber in Round 3.

parameter sets = : @ [1 [2 3* 3+

Kyber512 256 2 3329 3 2 10 4
Kyber768 256 3 3329 2 2 10 4
Kyber1024 256 4 3329 2 2 11 5

De�ne R = Z[G]/(G= + 1) and R@ = Z@ [G]/(G= + 1). For a positive integer [, we de�ne a central-binomial
distributionR[ as (01, 11, . . . , 0[ , 1[) ← {0, 1}2[ and return

∑[

8=1 (08 − 18). For a polynomial % ∈ R, % ←R[
implies each coe�cient of the polynomial is chosen fromR[ independently.
For G ∈ Z, we de�ne two functions: comp@ (G, 3) :=

⌈
(23/@) · G

⌋
mod± 23 and decomp@ (G, 3) :=

⌈
(@/23) · G

⌋
.

For G = (G1, . . . , G: ) ∈ Z: with some : , we de�ne comp@ (G, 3) := (comp@ (G1, 3), . . . , comp@ (G: , 3)) and
decomp@ (G, 3) := (decomp@ (G1, 3), . . . , decomp@ (G: , 3))
We have

��� (G − decomp@ (comp@ (G, 3), 3)
)

mod± @
��� ≤ ⌈

@/23+1
⌋
. We also note that comp@ (G, 1) = 1 if |G mod±

@ | ≤ d@/4c and 0 otherwise.
�e underlying PKE scheme of Kyber, Kyber-PKE, is summarized as follows:
– Gen(pp): �← R:×:@ and (dk, 3) ← (R :[1 )

2. Compute � := � · dk + 3. Output ek := (�, �) and dk.
– Enc(ek, `): Sample C ←R :[1 , 4 ←R :[2 , and 5 ←R[2 . Compute (*,+) := (C�+4, C�+ 5 +d@/2c ·`) ∈ R:@×R@ .

Output (* ′, + ′) := (comp@ (*, 3* ), comp@ (+, 3+ )).
– Dec(dk, (* ′, + ′)): Compute (*,+) := (decomp@ (* ′, 3* ), decomp@ (+ ′, 3+ )). Output `′ := comp@ (+ −* ·

dk, 1).
We next consider an intermediate PKE scheme PKE0 = (Gen0, Enc0,Dec0) where the encryption algorithm uses
pseudorandomness, which we call Kyber-PKE-PRG:
– Gen0 (pp) = Gen(pp):
– Enc0 (ek, `; A): Use d8 = SHAKE256- (A, 8) for 8 = 0, 1, . . . , to sample C ← R :[1 , 4 ← R :[2 , and 5 ← R[2 ,

where - = 2[1 or 2[2. Compute (*,+) := (C� + 4, C� + 5 + d@/2c · `) ∈ R:@ × R@ . Output (* ′, + ′) :=
(comp@ (*, 3* ), comp@ (+, 3+ )).

– Dec0 (dk, (*,+)) = Dec(dk, (*,+)):
Kyber applies FO6⊥′ to Kyber-PKE-PRG, where H′ = SHA3-256, G(`, ℎ) = SHA3-512, and H = SHAKE256- with
unspeci�ed output bits - :

Gen(1^ )

(ek, dk) ← Gen0 (1^ )
ℎ← H′(ek)

B← {0, 1}ℓ (^)

dk := (dk, ek, ℎ, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

` := H′(`)
( ̄, A) := G(`,H′(ek))
2 := Enc0 (ek, `; A)
 := H( ̄,H′(2))
return (2,  )

Dec(dk, 2), where dk = (dk, ek, ℎ, B)

`′ := Dec0 (dk, 2)
( ̄ ′, A ′) := G(`′, ℎ)
2′ := Enc0 (ek, `′; A ′)
if 2 = 2′, then return  := H( ̄ ′,H′(2))
else return  := H(B,H′(2))

Security: Grubbs et al. [GMP21] pointed out there are technical barriers. At �rst, a pre-key  ̄ and a random-
ness A is generated by G(`,H′(ek)). We can treat is as  ̄ = G0 (`,H′(ek)) and A = G1 (`,H′(ek)), where
G0 (G) and G1 (G) are de�ned as the �rst and last 256-bits of GSHA3-512. Using this notion, we compute  =

H(G0 (`,H′(ek)),H′(2)). See Table 6. Grubbs et al. solved the problem on nested random oracles on ` by le�ing
GA (`) := G0 (`,H′(ek)) : {0, 1}256 → {0, 1}256 and simulating GA by a random polynomial over GF(2256) of
degree 2@G + 1 as in [TU16, HHK17]. Grubbs et al. succeeded to show its IND-CCA-security if  was computed
as H(GA (`), 2) as in FO6⊥′′. Unfortunately, they le� showing FO6⊥′’s IND-CCA-security as open problem. We also
le� it here.
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N Saber

Review of Saber: Saber [DKR+20] is a KEM scheme based on the Module LWR problem. Saber has three parameter
sets LightSaber (lv.1), Saber (lv.3), and FireSaber (lv.5). See Table 14 for concrete parameter values.

Table 14. Parameter sets of Saber in Round 3.

parameter sets = : @ ? ) `

LightSaber 256 2 8192 1024 8 10
Saber 256 3 8192 1024 16 8
FireSaber 256 4 8192 1024 64 6

De�ne R = Z[G]/(G= + 1) and R0 = Z0 [G]/(G= + 1) for 0 = @, ?, ), 2. Let n@ = lg(@), n? = lg(?), and n) = lg()).
For an even positive integer `, we de�ne a central-binomial distribution V[ as (01, 11, . . . , 0`/2, 1`2 ) ← {0, 1}`

and return
∑`/2
8=1 (08 − 18) ∈ [−`/2, `/2]. For a polynomial % ∈ R, % ← V` implies each coe�cient of the

polynomial is chosen from V` independently. For a positive integer G, we de�ne shi�right(G, 3) as bG/23c, the
result of 3 bit shi� of G to right. We de�ne ℎ1 :=

∑=−1
8=0 2n@−n?−1G8 ∈ R@ , ℎ2 :=

∑=−1
8=0 (2

n?−2 − 2n?−n) −1 +
2n@−n?−1)G8 ∈ R@ , and ℎ := (ℎ1, . . . , ℎ1) ∈ R:@ .
�e underlying PKE scheme of Saber, which we call Saber-PKE, is summarized as follows:
– Gen(pp): �← R:×:@ and dk ← V:` . Compute � := shi�right(� · dk + ℎ, n@ − n?) Output ek := (�, �) and dk.
– Enc(ek, `): Sample C ← V:` . Output (*,+) :=

(
shi�right(C� + ℎ, n@ − n?), shi�right(C · � + ℎ1 − 2n?−1` mod

?, n? − n) )
)
∈ R:? × R) .

– Dec(dk, (*,+)): Return `′ := shi�right
(
* · dk − 2n?−n) · + + ℎ2 mod ?, n? − 1

)
∈ R2.

We next consider an intermediate PKE scheme PKE0 = (Gen0, Enc0,Dec0) where the encryption algorithm uses
pseudorandomness, which we call Saber-PKE-PRG:
– Gen0 (pp) = Gen(pp):
– Enc0 (ek, `; A): Use d = SHAKE128- (A) to sample C ← V:` . Output (*,+) :=

(
shi�right(C� + ℎ, n@ −

n?), shi�right(C · � + ℎ1 − 2n?−1` mod ?, n? − n) )
)
∈ R:? × R) .

– Dec0 (dk, (* ′, + ′)) = Dec(dk, (*,+)):
Saber applies FO6⊥′ to Saber-PKE-PRG, where H′ = SHA3-256, G(`, ℎ) = SHA3-512, and H = SHA3-256.

Gen(1^ )

(ek, dk) ← Gen0 (1^ )
ℎ← H′(ek)

B← {0, 1}ℓ (^)

dk := (dk, ek, ℎ, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

` := H′(`)
( ̄, A) := G(`,H′(ek))
2 := Enc0 (ek, `; A)
 := H( ̄,H′(2))
return (2,  )

Dec(dk, 2), where dk = (dk, ek, ℎ, B)

`′ := Dec0 (dk, 2)
( ̄ ′, A ′) := G(`′, ℎ)
2′ := Enc0 (ek, `′; A ′)
if 2 = 2′, then return  := H( ̄ ′,H′(2))
else return  := H(B,H′(2))

Security: Grubbs et al. [GMP21] wrote Saber uses FO6⊥′′ as de�ned in [DKR+20, Section 2.5]. However, the
speci�cation uses FO6⊥′ [DKR+20, Section 8.5]. �us, Saber lacks IND-CCA-security proof as Kyber.

O BIKE

Review of BIKE: BIKE in round 3 [ABB+20] is a KEM scheme based on QC-MDPC [MTSB13], which is a variant
of the McEliece PKE upon a code with quasi-cyclic (QC) moderate density parity-check (MDPC) matrix. BIKE can
be considered as the Niederreiter PKE scheme upon a code with the QC-MDPC matrix. Let R := F[G]/(GA −1). Let
HF := {(ℎ0, ℎ1) ∈ R2 | HW(ℎ0) = HW(41) = F/2}. Let EC := {(40, 41) ∈ R2 | HW(40, 41) = C}. For concrete
values of A , F, and C, see Table 15.
�e underlying CPA-secure PKE scheme of BIKE, which we call BIKE-PKE, is summarized as follows:
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Table 15. Parameter sets of BIKE in Round 3.

parameter sets A F C

BIKE-1 12, 323 142 134
BIKE-3 24, 659 206 199
BIKE-5 40, 973 274 264

– Gen(pp): dk := (ℎ0, ℎ1) ← HF . Output ek = ℎ := ℎ1 · ℎ−1
0 ∈ R and dk.

– Enc(ek, ` ∈ {0, 1}256; A): Sample (40, 41) ← EC (A). Compute D := 40 + 41ℎ ∈ R and E := ` ⊕ L(40, 41) and
output 2 := (D, E).

– Dec(dk, (D, E)): Compute (40, 41) ← decode(Dℎ0, (ℎ0, ℎ1)). Output `′ := E ⊕ L(40, 41).
Notice that Dℎ0 = 40ℎ0 + 41ℎ1, which is the syndrome of (40, 41) with the parity-check matrix spanned by ℎ0 and
ℎ1. �ey also de�ne L = SHA3-384256.
BIKE applies FO6⊥ to BIKE-PKE PKE, where G = SHAKE256 and H = SHA3-384256.

Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ (^)

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

A := G(`)
2 := Enc(ek, `; A)
 := H(`, 2)
return (2,  )

Dec(dk, 2), where dk = (dk, ek, B)

`′ := Dec(dk, 2)
A ′ := G(`′)
2′ := Enc(ek, `′; A ′)
if 2 = 2′, then return  := H(`′, 2)
else return  := H(B, 2)

Assumption: For 1 ∈ {0, 1}, de�ne the �nite set F1 := {ℎ ∈ R : HW(ℎ) ≡ 1 (mod 2)}, that is, a set of all binary
vectors of length A and parity 1. We suppose that F is even and F/2 is odd, which hold for all parameter sets of
BIKE.

De�nition O.1 (�e 2-Decisional�asi-Cyclic Code-Finding (2-DQCCF) assumption [ABB+20]). For any (Q)PPT
adversary, it is hard to distinguish the following two distributions:
– ℎ := ℎ1 · ℎ−1

0 , where (ℎ0, ℎ1) ← HF .
– ℎ← F1.

De�nition O.2 (�e 2-Computational �asi-Cyclic Syndrome Decoding (2-CQCSD) assumption [ABB+20]).
For any (Q)PPT adversary, given (ℎ, D := ℎ41 + 40), where ℎ← F1 and (40, 41) ← EC , it is hard to �nd (4′0, 4

′
1) ∈ EC

with D = ℎ4′1 + 4
′
0.

De�nition O.3 (�e 2-Decisional �asi-Cyclic Syndrome Decoding (2-DQCSD) assumption [ABB+20]). For
any (Q)PPT adversary, it is hard to distinguish the following two distributions:
– (ℎ, D := ℎ41 + 40), where ℎ← F1 and (40, 41) ← EC .
– (ℎ, D), where ℎ← F1 and D ← FC mod 2.

Security: Although we can invoke theorems on FO 6⊥ by Grubbs et al. [GMP21] to show BIKE’s anonymity and
collision-freeness, we can show BIKE’s anonymity through another pass.
Before showing the security, we consider the following deterministic PKE scheme, which we call BIKE-Simple:
– Gen(pp): dk := (ℎ0, ℎ1) ← HF . Output ek = ℎ := ℎ1 · ℎ−1

0 ∈ R and dk.
– Enc(ek, (40, 41) ∈ EC ): Compute D := 40 + 41ℎ ∈ R and output D.
– Dec(dk, D): Output (40, 41) ← decode(Dℎ0, (ℎ0, ℎ1)).

�e proposers showed that this scheme is OW-CPA-secure using appropriate assumptions as follows:

Lemma O.1 ([ABB+20,�eorem1]). If the 2-DQCCF and 2-CQCSD assumptions hold, then BIKE-Simple isOW-CPA-
secure.
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Remark O.1. It is easy to show BIKE-Simple’s disjoint simulatability: Let F1 be a ciphertext space. We de�ne the
simulator as sampling D ← * (F1). Statistical disjointness follows from the fact that |F1 | ≈ 2A /2 �

(2A
C

)
= |EC | ≥

|Enc(ek, EC ) |. We can show ciphertext indistinguishability by using the 2-DQCCF and 2-DQCSD assumptions.
Applying SXY, we can obtain a tightly CCA-secure KEM scheme with shorter ciphertext, which leads to anony-
mous, robust hybrid PKE.

We next show that BIKE-PKE is ciphertext-indistinguishable in the QROM with a simulator that outputs D ←
FC mod 2 and E ← F256

2 .

Lemma O.2. Assume that the 2-DQCCF and 2-DQCSD assumptions hold.�en, BIKE-PKEPKE is ciphertext-indistinguishable
in the QROM.

Proof (Proof Sketch). We consider four games Game0, Game1, Game2, and Game3:
– Game0: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: (ℎ0, ℎ1) ← HF and ℎ := ℎ1 · ℎ−1

0 .
• Encryption: `← F256

2 , (40, 41) ← EC ; compute D := 40 + ℎ41and E := ` ⊕ L(40, 41); return 2 = (D, E).
– Game1: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: (ℎ0, ℎ1) ← HF and ℎ := ℎ1 · ℎ−1

0 .
• Encryption: (40, 41) ← EC ; compute D := 40 + ℎ41; E ← F256

2 ; return 2 = (D, E).
– Game2: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ← F1.
• Encryption: (40, 41) ← EC ; compute D := 40 + ℎ41; E ← F256

2 ; return 2 = (D, E).
– Game3: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ← F1.
• Encryption: D ← FC mod 2; E ← F256

2 ; return 2 = (D, E).
– Game4: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: (ℎ0, ℎ1) ← HF and ℎ := ℎ1 · ℎ−1

0 .
• Encryption: D ← FC mod 2; E ← F256

2 ; return 2 = (D, E).
Game0 and Game1 are equivalent, since ` in Game0 and E in Game1 is chosen uniformly at random. Game1
and Game2 are computationally indistinguishable because of the 2-DQCCF assumption. Game2 and Game3 are
computationally indistinguishable because of the 2-DQCSD assumption. Game3 and Game4 are computationally
indistinguishable because of the 2-DQCCF assumption. ut

We next consider BIKE-PKE is IND-CPA-secure in the QROM. �e proposers showed the security in the ROM as
follows:

Lemma O.3 ([ABB+20,�eorem 2]). If the 2-DQCCF and 2-CQCSD assumptions hold, then BIKE-PKE is IND-CPA-
secure in the ROM.

Unfortunately, applying their idea directly to the QROM se�ing, the security proof becomes loose since it will
involve the O2H lemma (Lemma A.2). We here show the IND-CPA security of BIKE-PKE in the QROM tightly
using the idea of [SXY18].

Lemma O.4. Assume that the 2-DQCCF and 2-DQCSD assumptions hold and PKE is X-correct. �en, BIKE-PKE PKE
is IND-CPA-secure (and OW-CPA-secure) in the QROM.

Proof (Proof Sketch). We consider Game8,1 for 1 ∈ {0, 1} and 8 = 0, . . . , 4 de�ned as follows:
– Game0,1 : In this game, a public key and a target ciphertext is computed as follows:
• Key generation: (ℎ0, ℎ1) ← HF and ℎ := ℎ1 · ℎ−1

0 .
• Encryption given `0 and `1: (40, 41) ← EC ; compute D := 40 + ℎ41, : := L(40, 41), and E := `1 ⊕ : ;

return 2 = (D, E).
– Game1,1 : In this game, we use L@ : R → {0, 1}256 and de�ne L(40, 41) = L@ (ℎ40 + 41). a public key and a

target ciphertext is computed as follows:
• Key generation: (ℎ0, ℎ1) ← HF and ℎ := ℎ1 · ℎ−1

0 .
• Encryption given `0 and `1: (40, 41) ← EC ; compute D := 40 + ℎ41, : := L@ (D), and E := `1 ⊕ : ; return
2 = (D, E).

– Game2,1 : In this game, we use random ℎ. A public key and a target ciphertext is computed as follows:
• Key generation: ℎ← F1.
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• Encryption given `0 and `1: (40, 41) ← EC ; compute D := 40 + ℎ41, : := L@ (D), and E := `1 ⊕ : ; return
2 = (D, E).

– Game3,1 : In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ← F1.
• Encryption given `0 and `1: D ← FC mod 2; compute : := L@ (D), and E := `1 ⊕ : ; return 2 = (D, E).

– Game4,1 : In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ← F1.
• Encryption given `0 and `1: D ← FC mod 2, : ← {0, 1}256; compute E := `1 ⊕ : ; return 2 = (D, E).

Game0,1 and Game1,1 are equivalent if the mapping (40, 41) ↦→ ℎ40 + 41 is injective, which is satis�ed if a key
pair of PKE is correct. Game1,1 and Game2,1 are computationally indistinguishable because of the 2-DQCCF
assumption. Game2,1 and Game3,1 are computationally indistinguishable because of the 2-DQCSD assumption.
Game3,1 and Game4,1 are equivalent if D is in outside of the image of the mapping (40, 41) ↦→ 40 + 41ℎ, which
occurs with overwhelming probability. Game4,0 and Game4,1 are equivalent since : is uniformly at random. ut

Remark O.2. We can replace the term X with the probability that the mapping (40, 41) ↦→ 40 + 41ℎ is injective for
random ℎ← F1.

We then consider PKE′ = T[PKE,G], which we call BIKE-DPKE.

Lemma O.5. Assume that the 2-DQCCF and 2-DQCSD assumptions hold. �en, BIKE-DPKE PKE′ := T[PKE,G] is
disjointly-simulatable.

Proof. Statistical disjointess follows from the fact that |S(1^ ) | ≈ 2A /2 · 2=1=2 and |Enc′(ek,M)| ≤ 2: . Cipher-
text indistinguishability follows from �eorem E.1 that states that T preserves the ciphertext indistinguishability
(Lemma O.2) and onewayness (Lemma O.4) loosely. ut

We next consider BIKE-DPKE’s XCFR-security:

Lemma O.6. Let nD be a probability that ℎ0 − ℎ1 ∉ R∗ holds for two randomly generated keys ℎ0 and ℎ1. Let n0
be a probability that an e�cient adversary �nds ` such that 41 = 0 where (40, 41) := EC (G(`)). Suppose that and
n := nD + n0 is negligible. �en, PKE′ := T[PKE0,G] is XCFR-secure.

Proof (Proof sketch:). Let us consider ek8 = ℎ8 and dk8 = (ℎ0, ℎ1) for 8 ∈ I>. If the adversary outputs 2 = (D, E), it
should be decrypted into ` by using dk0 and dk1, respectively. Let (40, 41) = EC (G(`)). We have D = 40 + 41ℎ0 =

40 + 41ℎ1 in the re-encryption check. �is implies (ℎ0 − ℎ1) · 41 = 0 ∈ R. If 41 ≠ 0 and ℎ0 − ℎ1 ∈ R∗, then this
leads a contradiction. �us, the lemma holds. ut

Recall that FO6⊥ is U6⊥ ◦ T. Applying U 6⊥ to PKE′ = T[PKE,G], we obtain KEM = U6⊥ [PKE,H]. A�er applying our
theorems, we summarize the security properties of BIKE as follows:
– BIKE-DPKEPKE′ is strongly disjointly-simulatable if the 2-DQCCF and 2-DQCSD assumptions hold (Lemma O.5).

It is XCFR-secure if n is negligible (Lemma O.6).
– �us, BIKE is SPR-CCA-secure, SSMT-CCA-secure, and SCFR-CCA-secure in the QROM.
– BIKE is ANON-CCA-secure.
– BIKE leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

P FrodoKEM

Review of FrodoKEM: FrodoKEM [NAB+20] is an LWE-based KEM scheme in the alternates,
Let @ = 2� for some � ≤ 16. For a positive integer � < �, <̄, and =̄, they use encode : {0, 1}�<̄=̄ → Z<̄×=̄@

and decode : {0, 1}�<̄=̄ → {0, 1}�<̄=̄. (Roughly speaking, they compute ec : : ∈ [0, 2�) ↦→ : · @/2� ∈ Z@ and
dc :  ∈ Z@ ↦→

⌈
 2�/@

⌋
mod 2� and arrange the result.) Let ℓ = �<̄=̄ be a message length. �ey use a distribution

jB that is a centered symmetric distribution whose support is {−B,−(B−1), . . . , B−1, B}. (See [NAB+20, Sect.2.2.4
and Table 3] for the concrete distribution.) For concrete values, see Table 16.
�e underlying PKE scheme of FrodoKEM, which we call FrodoKEM-PKE, is summarized as follows:
– Gen(pp): Choose � ← Z=×=@ , ( ← j=×=̄ and � ← j=×=̄. Compute � := �( + � . Output ek := (�, �) and

dk := (.
– Enc(ek, `): Choose (′, � ′ ← j<̄×= and � ′′ ← j<̄×=̄. Output 2 = (*,+) := ((′�+� ′, (′�+� ′′+encode(`)).
– Dec(dk = (, (*,+)): Compute " := + −* · ( and output `′ := decode(").
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Table 16. Parameter sets of FrodoKEM in Round 3.

parameter sets = @ f B � <̄ =̄

Frodo-640 640 215 2.8 12 2 8 8
Frodo-976 976 216 2.3 10 3 8 8
Frodo-1344 1344 216 1.4 6 4 8 8

Table 17. Parameter sets of HQC in Round 3.

parameter sets A =1 :1 31 =2 :2 32 F F4 FA

hqc-128 17, 669 46 16 31 384 8 192 66 75 75
hqc-192 35, 851 56 24 32 640 8 320 100 114 114
hqc-256 57, 637 90 32 59 640 8 320 131 149 149

We next consider an intermediate PKE scheme PKE0 = (Gen0, Enc0,Dec0) where the encryption algorithm uses
pseudorandomness, which we call FrodoKEM-PKE-PRG:
– Gen0 (pp) = Gen(pp):
– Enc0 (ek, `; A): Use d = SHAKE128- (0x96‖A) to sample (′, � ′, � ′′. Output 2 = (*,+) := ((′� + � ′, (′� +
� ′′ + encode(`)).

– Dec0 (dk, (*,+)) = Dec(dk, (*,+)):
FrodoKEM applies FO6⊥′′ to ForodoKEM-PKE-PRG, where H′ = SHAKE, G = SHAKE, and H = SHAKE: We can
treat them as di�erent random oracles because their input length di�er.

Gen(1^ )

(ek, dk) ← Gen0 (1^ )
ℎ← H′(ek)

B← {0, 1}ℓ (^)

dk := (dk, ek, ℎ, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

( ̄, A) := G(`,H′(ek))
2 := Enc0 (ek, `; A)
 := H( ̄, 2)
return (2,  )

Dec(dk, 2), where dk = (dk, ek, ℎ, B)

`′ := Dec0 (dk, 2)
( ̄ ′, A ′) := G(`′, ℎ)
2′ := Enc0 (ek, `′; A ′)
if 2 = 2′, then return  := H( ̄ ′, 2)
else return  := H(B, 2)

Security: Grubbs et al. [GMP21] fortunately show the security of FO 6⊥′′. �us, we can apply their result to
FrodoKEM.

Q HQC

Review of HQC: HQC [AAB+20] is another code-based KEM scheme in the alternate candidates.
Let R := F2 [G]/(GA − 1). Let C be a decodable [=1=2, :] code generated by � ∈ F:×=1=2

2 , where =1=2 ≤ A . Let
decode be a decoder algorithm which corrects an error up to X. LetSF := {G ∈ R | HW(G) = F}. For a polynomial
� =

∑
8 08G

8 ∈ R, we de�ne trunc(�, ;) = (00, . . . , 0;−1) ∈ F;2. For concrete values, see Table 17.
�e underlying PKE scheme of HQC, which we call HQC-PKE, is summarized as follows:
– Gen(pp): ℎ0 ← R. (G, H) ← S2

F . Compute ℎ1 := G + ℎ0H. Output dk := (G, H) and ek := (ℎ0, ℎ1).
– Enc(ek, ` ∈ F:2 ; (4, 5 , C) ∈ SF4 × SFA × SFA ): Output

2 = (D, E) := (ℎ0C + 5 , trunc(ℎ1C + 4, =1=2) ⊕ `�) ∈ R × F=1=2
2 .

– Dec(dk, (D, E)): Compute 0 := E ⊕ trunc(DH, =1=2) ∈ F=1=2
2 and output decode(0).

We next consider an intermediate PKE scheme PKE0 = (Gen0, Enc0,Dec0) where the encryption algorithm uses
pseudorandomness, which we call HQC-PKE-PRG:
– Gen0 (pp) = Gen(pp):
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– Enc0 (ek, `; A): Use d = SHAKE256(A, 0x02) to sample (4, 5 , C) ∈ SF4 × SFA × SFA . Output (D, E) :=
Enc(ek, `; (4, 5 , C)).

– Dec0 (dk, (D, E)) = Dec(dk, (D, E)):
HQC appliesHFO⊥ to HQC-PKE-PRGPKE0, whereG(`) = SHAKE256512 (`, 0x03), F(`) = SHAKE256512 (`, 0x04).
and H(`, (20, 21)) = SHAKE256512 (`, 0x05). We can treat them as di�erent random oracles because their input
length di�er.

Gen(1^ )

(ek, dk) ← Gen0 (1^ )

dk := (dk, ek)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

A := G(`)
20 := Enc0 (ek, `; A)
21 := F(`)
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek)

`′ := Dec0 (dk, 20)
A ′ := G(`′)
2′0 := Enc0 (ek, `′; A ′)
2′1 := F(`′)
if (20, 21) = (2′0, 2

′
1), then return  := H(`′, 20, 21)

else return  := ⊥

Assumptions: For 1 ∈ {0, 1}, de�ne the �nite set F1 := {ℎ ∈ R : ℎ(1) ≡ 1 (mod 2)}, that is, a set of all binary
vectors of length A and parity 1. Similarly, for 1, 10, 11 ∈ {0, 1}, we de�ne the sets

F 1,2
1

:= {� = [1, ℎ] ∈ R2 : ℎ ∈ F1}

F 2,3
10 ,11

:=
{
� =

[
1 0 ℎ0
0 1 ℎ1

]
∈ R2×3 : ℎ0 ∈ F10 ∧ ℎ1 ∈ F11

}
.

De�nition Q.1 (�e 2-Decisional �asi-Cyclic Syndrome Decoding (2-DQCSD) assumption [AAB+20]). Fix
1 ∈ {0, 1}, F, and 1′ := F + 1F mod 2. For any (Q)PPT adversary, it is hard to distinguish the following two
distributions:
– (�, � · (G, H)), where � ← F 1,2

1
and (G1, G2) ← S2

F .
– (�, I), where � ← F 1,2

1
and H ← F1′ .

De�nition Q.2 (�e 3-Decisional �asi-Cyclic Syndrome Decoding (3-DQCSD) assumption [AAB+20]). Fix
10, 11 ∈ {0, 1}, F. Let 1′0 := F + 10F mod 2 and 1′1 := F + 11F mod 2. For any (Q)PPT adversary, it is hard to
distinguish the following two distributions:
– (�, � · (G0, G1, G2)), where � ← F 2,3

10 ,11
and (G0, G1, G2) ← S3

F .

– (�, (I0, I1)), where � ← F 2,3
10 ,11

, I0 ← F1′0 , and I1 ← F1′1 .

For collision-freeness, we de�ne the following new assumption:

De�nition Q.3 (�e 3-Computational�asi-Cyclic Codeword Finding (3-CQCCF) assumption). For any (Q)PPT
adversary, given (1, ℎ, ℎ′) where ℎ, ℎ′ ← R, it is hard to �nd a non-zero codeword ( 5 , C, C ′) whose Hamming weight
is at most 4FA .

Security: Using those assumptions, the proposers show the IND-CPA security of HQC-PKE:

Lemma Q.1 ([AAB+20,�eorem 5.1], adapted). Assume that the 2-DQCSD and 3-DQCSD assumptions hold. �en,
the underlying PKE PKE is IND-CPA-secure (and OW-CPA-secure).

By mimicking their proof, we can show that it is ciphertext-indistinguishable with a simulator that outputs D ←
F10 and E ← F=1=2

2 , where 10 := (1 + ℎ0 (1))FA mod 2.

Lemma Q.2. Assume that the 2-DQCSD and 3-DQCSD assumptions hold.�en, the underlying PKE PKE is ciphertext-
indistinguishable.

Proof (Proof Sketch). We consider four games Game0, Game1, Game2, and Game3:
In what follows, we de�ne the parity of ℎ1 as 1 := (1+ℎ0 (1))F mod 2, the parity of D as 10 := (1+ℎ0 (1))FA mod 2,
and the parity of Ẽ as 11 := F4 + 1FA mod 2:
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– Game0: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ0 ← R, G, H ← SF , and ℎ1 := G + ℎ0H.
• Encryption: `← F:2 , 4 ← SF4 , C, 5 ← SFA , and compute D := ℎ0C+ 5 and E := trunc(ℎ1C+4, =1=2)⊕`� .

– Game1: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ0 ← R, ℎ+1 ← F1 .
• Encryption: `← F:2 , 4 ← SF4 , C, 5 ← SFA , and compute D := ℎ0C+ 5 and E := trunc(ℎ+1 C+4, =1=2)⊕`� .

– Game2: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ0 ← R, ℎ+1 ← F1 .
• Encryption: `← F:2 , 4 ← FF4 , C, 5 ← FFA , and compute D := ℎ0C+ 5 and E := trunc(ℎ+1 C+4, =1=2)⊕`� .

– Game3: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ0 ← R, ℎ+1 ← F2,1 .
• Encryption: D ← F10 and E ← F=1=2

2 .
– Game4: In this game, a public key and a target ciphertext is computed as follows:
• Key generation: ℎ0 ← R, G, H ← SF , and ℎ1 := G + ℎ0H.
• Encryption: D ← F10 and E ← F=1=2

2 .
Game0 andGame1 are computationally indistinguishable because of the 2-DQCSD assumption.Game1 andGame2
are computationally indistinguishable because of the 3-DQCSD assumption. Game2 and Game3 are statistically
indistinguishable, because trunc truncates A − =1=2 bits of H̃ := ℎ+1 C + 4 in Game2 and thus, trunc( H̃, =1=2)’s
distribution is statistically close to the uniform distribution over F=1=2

2 . Game3 and Game4 are computationally
indistinguishable because of the 2-DQCSD assumption. ut

Let us compute the parity of ℎ1, 1 := (1 + ℎ0 (1))F mod 2 and the parity of D, 10 := (1 + ℎ0 (1))FA mod 2.
According to Table 17, we obtain that the parity 1 of ℎ1 is 0, 0, 1 − ℎ0 (1) and the parity 10 of D is 1, 0, ℎ0 (1), for
HQC-128/192/256, respectively. We can say that HQC-128 and HQC-192 are SPR-CPA secure, while HQC-256 is not
strong. Indeed, the parity of D leaks the information of ℎ0 of the encryption key.
We next consider HQC-PKE-PRG PKE0, whose encryption algorithm uses a PRG SHAKE256(·, 0x02) instead of
true randomness. �e IND-CPA security and ciphertext indistinguishability of PKE0 follows from PRG’s quantum
security tightly.

Lemma Q.3. Assume that the 2-DQCSD and 3-DQCSD assumptions hold and SHAKE256(·, 0x02) is quantumly-
secure PRG. �en, HQC-PKE-PRG PKE0 is ciphertext-indistinguishable and IND-CPA-secure (and OW-CPA-secure).

We then consider PKE′ = T[PKE0,G], which we call HQC-DPKE.

Lemma Q.4. Assume that the 2-DQCSD and 3-DQCSD assumptions hold and SHAKE256(·, 0x02) is quantumly-
secure PRG. �en, PKE′ := T[PKE0,G] is disjointly-simulatable.

Proof. Statistical disjointess follows from the fact that |S(1^ ) | ≈ 2A /2 · 2=1=2 and |Enc′(ek,M)| ≤ 2: . Cipher-
text indistinguishability follows from �eorem E.1 that states that T preserves ciphertext indistinguishability and
onewayness of PKE0 (Lemma Q.3). ut

We �nally consider HQC’s SROB-CCA-security:

Lemma Q.5. Suppose that the 3-CQCCF assumption holds. �en, HQC is SROB-CCA-secure.

Proof (Proof sketch:). Given (1, ℎ0,0, ℎ1,0) with ℎ0,0, ℎ1,0 ← R, we generate decryption keys and encryption keys
ek8 = (ℎ8,0, ℎ8,1) and dk8 = (G8 , H8) for 8 ∈ I>. We give them to an adversary against SROB-CCA security of
KEM. Suppose that the adversary outputs 2 = (D, E) and the adversary wins. If so, it should be decapsulated
into  0 ≠ ⊥ and  1 ≠ ⊥. �us, 2 should be decrypted into `0 and `1 by using dk0 and dk1, respectively. In re-
encryption check, we have (40, 50, C0) := SHAKE256(G(`0), 0x02) and (41, 51, C1) := SHAKE256(G(`1), 0x02),
and D = ℎ0,0C0 + 50 = ℎ1,0C1 + 51. �is implies (1, ℎ0,0, ℎ1,0) · ( 50 + 51, C0, C1) = 0 and ( 50 + 51, C0, C1) is the solution
of the 3-CQCCF problem. ut

Recall that HFO⊥ is HU⊥ ◦ T. Applying HU⊥ to PKE′ = T[PKE0,G], we obtain KEM = HU⊥ [PKE0,H]. A�er
applying our theorems, we summarize the security properties of HQC as follows:
– HQC-DPKE PKE′ is disjointly-simulatable if the 2-DQCSD and 3-DQCSD assumptions hold (Lemma Q.4).

HQC-DPKE for HQC-128 and HQC-192 are strongly disjointly-simulatable.
– �us, HQC-128 and HQC-192 are SPR-CCA-secure and 1/2512-sparse in the QROM.
– HQC is SCFR-CCA-secure if the 3-CQCCF assumption holds.
– HQC-128 and HQC-192 are ANON-CCA-secure.
– HQC-128 and HQC-192 lead to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.
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R Streamlined NTRU Prime

Streamlined NTRU Prime is one of two KEMs in NTRU Prime [?].

Review of Streamlined NTRU Prime: Streamlined NTRU Prime (sntrupr) has parameter sets ?, @, and F. ? and
@ are prime numbers and F is a positive integer. We note that 2? ≥ 3F and @ ≥ 16F + 1. �ey choose @ = 6@′ + 1
for some @′. For concrete values, see Table 18.

Table 18. Parameter sets of sntrupr of NTRU Prime

parameter sets ? @ F

sntrupr653 653 4621 288
sntrupr761 761 4591 286
sntrupr857 857 5167 322
sntrupr953 953 6343 396
sntrupr1013 1013 7177 448
sntrupr1277 1277 7879 492

Let R := Z[G]/(G? − G − 1) and R0 := (Z/0) [G]/(G? − G − 1) for 0 = 3, @. Let S := {0 =
∑?−1
8=0 08G

8 ∈ R | 08 ∈
{−1, 0, +1}}, a set of ternary polynomials. Let S := {0 =

∑?−1
8=0 08G

8 ∈ R | 08 ∈ {−1, 0, +1},HW(0) = F}, a set of
“short” polynomials. For 0 ∈ [−(@ − 1)/2, (@ − 1)/2], de�ne Round(0) = 3 · b0/3e.6
�e underlying CPA-secure PKE scheme7 works as follows:
– Gen(pp): Choose 6 ← S that satis�es 6 ∈ R×3 at random. Compute 1/6 ∈ R3. Choose 5 ← S. Compute
ℎ := 6/(3 5 ) ∈ R@ . Output ek := ℎ and dk := ( 5 , 1/6).

– Enc(ek, A ∈ S): Compute ℎA ∈ R@ and output 2 := Round(ℎA mod± @).
– Dec(dk = ( 5 , E), 2): Compute 4 := (3 5 2 mod± @) mod± 3. Compute A ′ := 4E mod± 3. Output A ′ if

HW(A ′) = F. Otherwise, output A ′invalid := (1, 1, . . . , 1, 0, . . . , 0) with HW(A ′invalid) = F.
Due to rounding, we have a ‘short’ error < such that 2 = ℎA + <.
Streamlined NTRU Prime [BBC+20] used HU6⊥,prf , where H(`, 2) = SHA512256

(
0x01, SHA512256 (0x03, `), 2

)
Hprf (B, 2) = SHA512256

(
0x00, SHA512256 (0x03, B), 2

)
F(`, ek) = SHA512256

(
0x02, SHA512256 (0x03, `), SHA512256 (0x04, ek)

)
.

Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1};

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`←M
20 := Enc(ek, `)
21 := F(`, ek)
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek, B)

`′ := Dec(dk, 20)
if `′ = ⊥, then return  := Hprf (B, 20, 21)
2′0 := Enc(ek, `′)
2′1 := F(`′, ek)
if (20, 21) = (2′0, 2

′
1), then return  := H(`′, 20, 21)

else return  := Hprf (B, 20, 21)

Security: We found that Streamlined NTRU Prime has a problem of ‘pre-key’, as Kyber, Saber, and FrodoKEM [GMP21].
For simplicity, let H8 (G) = SHA512256 (0x0i‖G) as in [BBC+20]. Using this notation, we have
– H(`, 2) = H1

(
H3 (`)‖2

)
– Hprf (B, 2) = H0

(
H3 (B)‖2

)
– F(`, ek) = H2

(
H3 (`)‖H4 (ek)

)
.

6 When @ = 6@′ + 1, Round( [−(@ − 1)/2, (@ − 1)/2]) ∈ [−(@ − 1)/2, (@ − 1)/2].
7 ‘Streamlined NTRU Prime Core’ in the speci�cation.
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We can assumeH8 as random oracles. IfH3 is length-preserving, we could use the technique by Grubbs et al. [GMP21].
Unfortunately, ` is longer than 256-bits and this is not length-preserving.
If F is not nested on `, we can prove the security as follows: We �rst consider HU1>C< [PKE,H3, F], which is
SPR-CCA-secure if PKE is strongly disjoint-simulatable. We then consider an indi�erentiable reduction de�ned
as follows: if  ≠ ⊥, then we rewrite the decapsulation result as H1 ( ‖2); if  = ⊥, then we rewrite the decapsu-
lation result as H0 (H3 (B)‖2). It is easy to see HU6⊥,prf [PKE,H, F,Hprf] is SPR-CCA-secure if HU1>C< [PKE,H3, F]
is SPR-CCA-secure.
We leave to prove IND-CCA security of Streamlined NTRU Prime as an open problem.

S NTRU LPRime

NTRU LPRime is the other KEM in NTRU Prime [BBC+20].

Review of NTRU LPRime: NTRU LPRime has parameter sets ?, @, F, X, g0, g1, g2, and g3. We note that @ = 6@′+1
for some @′ and @ ≥ 16F + 2X + 3. For concrete values, see Table 19.

Table 19. Parameter sets of ntrulpr of NTRU Prime

parameter sets ? @ F X g0 g1 g2 g3

ntrulpr653 653 4621 252 289 2175 113 2031 290
ntrulpr761 761 4591 250 292 2156 114 2007 287
ntrulpr857 857 5167 281 329 2433 101 2265 324
ntrulpr953 953 6343 345 404 2997 82 2798 400
ntrulpr1013 1013 7177 392 450 3367 73 3143 449
ntrulpr1277 1277 7879 429 502 3724 66 3469 496

LetR := Z[G]/(G?−G−1) andR@ := Z@ [G]/(G?−G−1). LetS := {0 =
∑?−1
8=0 08G

8 ∈ R | 08 ∈ {−1, 0, +1},HW(0) =
F}, a set of “short” polynomials.
For 0 ∈ [−(@ − 1)/2, (@ − 1)/2], de�ne Round(0) = 3 · d0/3c.8 For a polynomial � =

∑
8 08G

8 ∈ R@ , we de�ne
trunc(�, ;) = (00, . . . , 0;−1) ∈ Z;@ . For � ∈ [0, @), de�ne Top(�) = b(g1 (� + g0) + 214)/215c. For ) ∈ [0, 16),
de�ne Right()) = g3) − g2 ∈ Z@ . For 0 ∈ Z, de�ne Sign(0) = 1 if 0 < 0, 0 otherwise.
�e underlying CPA-secure PKE scheme9 PKE works as follows:
– Gen(pp): Generate �← R@ and dk ← S. Compute � := Round(� · dk). Output ek := (�, �) and dk.
– Enc(ek, ` ∈ {0, 1}256): Choose C ← S and output

(*,+) :=
(
Round(C · �), Top(trunc(C · �, 256) + `(@ − 1)/2)

)
.

– Dec(dk, (*,+)): Compute A := Right(+) − trunc(dk · *, 256) + (4F + 1) · 1256 ∈ Z256 and outputs ` :=
Sign(A mod± @).

We next consider an intermediate PKE scheme PKE0 = (Gen0, Enc0,Dec0) where the encryption algorithm uses
pseudorandomness, which is called as “NTRU LPRime Expand”:
– Gen0 (pp) = Gen(pp):
– Enc0 (ek, `; A): Use d = AES256-CTR(A) to sample C ← S. Output (*,+) := Enc(ek, `; C).
– Dec0 (dk, (*,+)) = Dec(dk, (*,+)):

NTRU LPRime applies HFO 6⊥,prf to NTRU LPRime Expand PKE0, where G(`) = SHA512256 (0x05, `), H(`, 2) =
SHA512256 (0x01, `, 2),Hprf (B, 2) = SHA512256 (0x00, B, 2), F(`, ek) = SHA512256

(
0x02, `, SHA512256 (0x04, ek)

)
:

8 When @ = 6@′ + 1, Round( [−(@ − 1)/2, (@ − 1)/2]) ∈ [−(@ − 1)/2, (@ − 1)/2].
9 ‘NTRU LPRime Core’ in the speci�cation.
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Gen(1^ )

(ek, dk) ← Gen0 (1^ )

B← {0, 1}ℓ (^)

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`← {0, 1}ℓ (^)

A := G(`)
20 := Enc0 (ek, `; A)
21 := F(`, ek)
 := H(`, 20, 21)
return ((20, 21),  )

Dec(dk, (20, 21)), where dk = (dk, ek, B)

`′ := Dec0 (dk, 20)
A ′ := G(`′)
2′0 := Enc0 (ek, `′; A ′)
2′1 := F(`′, ek)
if (20, 21) = (2′0, 2

′
1), then return  := H(`′, 20, 21)

else return  := Hprf (B, 20, 21)

Security: We directly assume that PKE′ := T[PKE0,G] is strongly disjoint-simulatable. Recall that HFO 6⊥,prf is
HU 6⊥,prf ◦T. Applying HU 6⊥,prf to PKE′ = T[PKE0,G], we obtain KEM = HU6⊥,prf [PKE′,H, F]. A�er applying our
theorems, we summarize the security properties of SIKE as follows:
– Assume that the underlying DPKE of NTRU LPRime PKE′ is strongly disjointly-simulatable with simulator

that samples 0 ← R, computes* := Round(0), samples + ← (Z/16Z)256, and outputs (*,+).
– �en, NTRU LPRime is SPR-CCA-secure and SSMT-CCA-secure in the QROM.
– NTRU LPRime is SCFR-CCA-secure if the colliding probability of ek is negligible since F takes ` and ek as

input.
– NTRU LPRime is ANON-CCA-secure.
– NTRU LPRime leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

T SIKE

Brief Review of SIKE: SIKE [JAC+20] is KEM scheme based on SIDH [JD11, ?]. For a survey of isogeny-based
cryptography, we recommend reading [?].
Let ? = 242 343 − 1. Let � be a supersingular elliptic curve over F?2 . Let %2, &2 ∈ � [242 ] and %3, &3 ∈ � [343 ]
linearly independent points of order 242 and 343 respectively. Let {0, 1}= be a message space and let L : F?2 →
{0, 1}= be a random oracle, instantiated by SHAKE256= (·).
Roughly speaking, the underlying PKE scheme [JAC+20, Algorithm 1], which we call SIKE-PKE, is summarized
as follows (for the details, see the speci�cation):
– isogenℓ (dkℓ ) with (<, ℓ) = (2, 3) or (3, 2): On input dkℓ ∈ [0, ℓ4ℓ ), compute ( := %ℓ + [dkℓ ]&ℓ , compute

isogeny qℓ : � → �/〈(〉, and compute � ′< := �/〈(〉 = qℓ (�). Compute %′< := qℓ (%<) and &′< := qℓ (&<).
Output ekℓ := (� ′<, %′<, &′<).10

– isoexℓ (ek<, dkℓ ) with (<, ℓ) = (2, 3) or (3, 2): On input ek< = (� ′
ℓ
, %′
ℓ
, &′
ℓ
) and dkℓ ∈ [0, ℓ4ℓ ), compute

( := %′
ℓ
+ [dkℓ ]&′ℓ and compute � ′′

ℓ
:= � ′

ℓ
/〈(〉 = � ′

ℓ
/〈q< (%ℓ + [dkℓ ]&ℓ )〉. Compute 9ℓ as the 9-invariant

of � ′′
ℓ

.
– Gen(pp): Choose dk3 ← [0, 343 ) and ek3 := isogen3 (dk3). Output ek3 and dk3.
– Enc(ek3, `): Choose dk2 ← [0, 242 ) and 22 := isogen2 (dk2). Compute 9 := isoex2 (ek3, dk2). Compute I :=

L( 9) ⊕ `. Output (22, I).
– Dec(dk3, (22, I)): Compute 9 ′ := isoex3 (22, dk3) and output `′ := I ⊕ L( 9 ′).

SIKE uses FO6⊥ for IND-CCA-secure KEM, where G = SHAKE25642 and H = SHAKE256: :

Gen(1^ )

(ek, dk) ← Gen(1^ )
B← {0, 1}=

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

`← {0, 1}=

A := G(`, ek)
(22, I) := Enc(ek, `; A)
 := H(`, 22, I)
return ((22, I),  )

Dec(dk, (22, I)), where dk = (dk, ek, B)

`′ := Dec(dk, (22, I))
A ′ := G(`′, ek)
2′2 := isogen2 (A ′)
if 22 = 2′2, then return  := H(`′, 22, I)
else return  := H(B, 22, I)

Remark T.1. SIKE’s Dec performs the test 22 = 2′2 but omits the test I = I′. Since Dec retrieves `′ := I ⊕ :
deterministically, we do not need to check the equality of I and I′.

10 Correctly speaking, this algorithm outputs (%′<, &′<, '′< := %′< − &′<) and omits � ′<. We can reconstruct � ′< from %′<, &′<,
and '′<.
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Assumptions:
De�nition T.1 (Supersingular Computational Di�e-Hellman (SSCDH)Assumption [JD11], adapted). Let q3 : � →
� ′2 be an isogeny whose kernel is equal to 〈%3 + [dk3]&3〉, where dk3 ← [0, 343 ). Let q2 : � → � ′3 be an isogeny
whose kernel is equal to 〈%2 + [dk2]&2〉, where dk2 ← [0, 242 ).
For any QPT adversary, given the curves � ′2 and �

′
3 and the points q3 (%2), q3 (&2), q2 (%3), and q2 (&3), �nding the

9-invariant of �/〈%3 + [dk3]&3, %2 + [dk2]&2〉 is hard.
De�nition T.2 (Supersingular Decisional Di�e-Hellman (SSDDH) Assumption [JD11], adapted). For any QPT
adversary, given a tuple, it is hard to determine which distribution of the following two distributions generates the
tuple:
– (� ′2, q3 (%2), q3 (&2), � ′3, q2 (%3), q2 (&3), �23), where � ′2, q3 (%2), q3 (&2), � ′3, q2 (%3), q2 (&3) are as in the

SSCDH assumption and
�23 ' �/〈%3 + [dk3]&3, %2 + [dk2]&2〉.

– (� ′2, q3 (%2), q3 (&2), � ′3, q2 (%3), q2 (&3), �2), where � ′2, q3 (%2), q3 (&2), � ′3, q2 (%3), q2 (&3) are as in the SS-
CDH assumption and

�2 ' �/〈%3 + [dk′3]&3, %2 + [dk′2]&2〉,
where dk′3 ← [0, 343 ) and dk′2 ← [0, 242 ).

Security: One can show the IND-CPA security of the underlying PKE of SIKE by assuming the SSDDH assumption
and the entropy-smoothing property of L 11 as that in [JD11].
Lemma T.1. Assume that the SSDDHassumption holds and L is entropy-smoothing.�en, SIKE-PKEPKE is IND-CPA-
secure (and OW-CPA-secure).
For ciphertext indistinguishablity, we construct a simulator S as follows: 1) sample dk2 ← [0, 242 ) and compute
22 = (� ′3, %

′
3, &
′
3) := isogen2 (dk2); 2) sample I ← {0, 1}=; 3) output (22, I).

Lemma T.2. SIKE-PKE PKE is ciphertext indistinguishable.

Notice that we can remove the assumption on L’s property.
Proof (Proof Sketch). We consider two games Game0 and Game1.
– Game0: In this game the challenge ciphertext is computes as

`← {0, 1}256; dk2 ← [0, 242 ); 22 := isogen2 (dk2); 9 ← isoex2 (ek3, dk2); I := L( 9) ⊕ `; return (22, I).
– Game1: In this game the challenge ciphertext is computes as

dk2 ← [0, 242 ); 22 := isogen2 (dk2); I ← {0, 1}256; return (22, I).
Game0 and Game1 are equivalent since ` in Game0 and I in Game1 are uniformly at random. ut
We next consider PKE′ = T[PKE,G], which we call SIKE-DPKE.
Lemma T.3. Assume that the SSDDH assumption holds and L is entropy-smoothing. �en, PKE′ := T[PKE,G] is
disjointly-simulatable.

Proof (Proof sketch:). Statistical disjointess follows from the fact that |S(1^ ) | ≈ 242 · 2= and |Enc′(ek,M)| ≤
2=. Ciphertext indistinguishability follows from �eorem E.1 that states that T preserves SIKE-PKE’s ciphertext
indistinguishability (Lemma T.2) and its OW-CPA security (Lemma T.1). ut
We next consider SIKE-DPKE’s collision-freeness. If we consider XCFR-security, the adversary, given two en-
cryption keys ek0

3 and ek1
3 with their decryption keys dk0

3 and dk1
3, should �nd ` such that dk0

2 = G(`, ek0
3),

dk1
2 = G(`, ek1

3), and I = ` ⊕ L( 90) = ` ⊕ L( 91), where 9 8 ← isoex2 (ek83, dk
8
2). If 90 ≠ 91, then it �nds the

collision for L, which should be hard (Lemma 2.3). For 90 = 91, it seems hard to �nd dk0
2 and dk1

2 such that
isoex2 (ek0

3, dk
0
2) = isoex2 (ek1

3, dk
1
2). �us, we just assume the XCFR-security of SIKE-DPKE.

Recall that FO6⊥ is U6⊥ ◦T. Applying U 6⊥ to PKE′ = T[PKE,G], we obtain KEM = U 6⊥ [PKE′,H]. A�er applying our
theorems, we summarize the security properties of SIKE as follows:
– SIKE-DPKEPKE′ is strongly disjointly-simulatable if the SSDDH assumption holds and L is entropy-smoothing.
– �us, SIKE is SPR-CCA-secure and SSMT-CCA-secure in the QROM.
– SIKE is SCFR-CCA-secure if the underlying PKE PKE′ = T[PKE,G] is SCFR-CCA-secure or XCFR-secure.
– SIKE is ANON-CCA-secure.
– SIKE leads to ANON-CCA-secure, SROB-CCA-secure hybrid PKE.

11 We borrow the notation from [FNP14]. We say a family of hash functions ℌ = {� : - → . } is entropy smoothing [IZ89] if for
any (Q)PPT adversary, it is hard to distinguish (�, � (G)) with (�, H), where � ← ℌ, G ← - , and H ← . .
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