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Abstract. In a lockable obfuscation scheme, a party called the obfus-
cator takes as input a circuit C, a lock value y, and a message m, and
outputs an obfuscated circuit. Given the obfuscated circuit, an evaluator
can run it on an input x and learn the message if C(x) = y. For security,
we require that the obfuscation reveals no information on the circuit as
long as the lock y has high entropy even given the circuit C.
The only known constructions of lockable obfuscation schemes require
indistinguishability obfuscation (iO) or the learning with errors (LWE)
assumption. Furthermore, in terms of technique, all known constructions,
excluding iO-based, are build from provably secure variations of graph-
induced multilinear maps.
We show a generic construction of a lockable obfuscation scheme build
from a (leveled) fully homomorphic encryption scheme that is circularly
insecure. Specifically, we need a fully homomorphic encryption scheme
that is secure under chosen-plaintext attack (IND-CPA) but for which
there is an efficient cycle tester that can detect encrypted key cycles.
Our finding sheds new light on how to construct lockable obfuscation
schemes and shows why cycle tester constructions were helpful in the
design of lockable obfuscation schemes. One of the many use cases for
lockable obfuscation schemes are constructions for IND-CPA secure but
circularly insecure encryption schemes. Our work shows that there is a
connection in both ways between circular insecure encryption and lock-
able obfuscation.

1 Introduction

In program obfuscation, we want to compile a circuit C to an obscure form Ĉ
while preserving the functionality of the input circuit. For security, we require
that Ĉ reveal no information on C, except what is trivially known from in-
specting the input/output relations. We refer to this strong security property as
virtual black-box (VBB) security. Unfortunately, Barak et al. [BGI+01, BGI+12]
showed that it is impossible to achieve virtual black-box security for general
functionalities. On the other hand, it turns out that it is possible to realize
VBB security for some relaxed classes of functions. One such relatively expres-
sive class consists of compute-and-compare programs, for which Goyal, Koppula,
and Waters [GKW17a] and independently Wichs and Zirdelis [WZ17] construct
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obfuscators under the learning with errors assumption. Additionally, Wichs and
Zirdelis [WZ17] show a simple construction assuming indistinguishability obfus-
cation [BGI+01, BGI+12]. In short, we call obfuscation for such classes lockable
obfuscation as in [GKW17a].

While the functionality of lockable obfuscation is limited to evasive functions,
both works [GKW17a, WZ17] show numerous applications. For example, we can
compile encryption schemes to their anonymous versions that hide the recipients
public key, identity, or attributes, or construct a private sketch [DS05] from a
non-private one [DRS04, DORS08]. Importantly, lockable obfuscation implies
obfuscators for other important classes of functionalities like point functions
[Can97, LPS04, Wee05] or conjunctions [BR13, BVWW16, BKM+18, BW19,
BLMZ19].

Both works [GKW17a, WZ17], constructed lockable obfuscation from a vari-
ant of the graph induced multilinear maps of Gentry, Gorbunov, and Halevi
[GGH15] also known as GGH15 directed encodings. Chen, Vaikuntanathan, and
Wee [CVW18b] gave an extension of GGH15 encodings from permutation branch-
ing programs to read-once matrix branching program, and along the way, showed
a lockable obfuscator for that class of functions. Recently, Goyal et al. [GKVW20]
extended the construction from [GKW17a], to offer perfect correctness.

While all current constructions [GKW17a, WZ17, CVW18b, GKVW20] can
be proven secure assuming the hardness of the learning with errors (LWE)
problem [Reg05] with subexponential modulus-to-noise ratio, all lockable ob-
fuscators, excluding the iO based, build upon on a variant of the GGH15 en-
codings technique [GGH15]. Despite recent advancements in constructing iO
[LT17, AJL+19, Agr19, JLMS19, BHJ+19, JLS20, GJLS20, LPST16, BDGM20a,
GP20, BDGM20b, WW20], the existing constructions are heavy and require cir-
cular or subexponential security of the underlying primitives. We note that even
if iO is realizable from standard assumptions in the near future, lockable ob-
fuscation may actually be the tool of choice in many applications for efficiency
reasons or simplicity of the constructions. Nevertheless, to us, the current state
of affairs is unsatisfactory. Notably, while the GGH15-based constructions them-
selves are elegant, the used techniques do not reveal any general design pattern
from weaker primitives. Furthermore, current techniques are insufficient to in-
stantiate lockable obfuscation from other assumptions. For instance, it is not
clear how to realize lockable obfuscation from the ring version of LWE [LPR10],
approximate greatest common divisor [HG01] or NTRU-style [HPS98] assump-
tions, in a way that exploits the underlying structure of the problems to get
more efficient constructions.

1.1 Contribution.

In this paper, we show generic constructions for lockable obfuscation, assuming
the existence of a symmetric encryption scheme and a (leveled) fully homomor-
phic encryption (FHE) scheme that is indistinguishable under chosen-plaintext
attack (IND-CPA). Additionally, we assume that the FHE is circularly insecure,
in the sense that it is feasible to detect encrypted key cycles or encryptions of
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key-dependent plaintexts. We give a thorough study of our main idea and show
multiple variations and extensions of our lockable obfuscation schemes.

Base Generic Constructions. Our basic construction assumes that the symmet-
ric key encryption scheme is IND-CPA secure. We show that when we consider
cryptosystems with weak keys or, in other words, leakage resilient symmetric
encryption, then we can achieve lockable obfuscation where the lock value has
high HILL pseudo-entropy [HILL99, HLR07] or is unpredictable given the cir-
cuit. An important observation is that when the fully homomorphic encryption
scheme is itself leakage resilient for a class of leakage, then we can build the
obfuscation scheme only from the FHE scheme. In particular, for the class of
uniformly distributed lock values, we need to assume only the existence of the
circularly insecure FHE.

Then we show a slight modification that may be of interest for concrete
efficiency that assumes that the symmetric key encryption has pseudorandom
ciphertexts. That is, the ciphertexts are indistinguishable from pseudorandom
given an adaptive encryption oracle. We will call both schemes the base schemes.

Based on the analysis of the base schemes, we note that in the case where the
FHE scheme is key-dependent message insecure, i.e., there exists a cycle tester
for a key cycle of length one, then we can implement the symmetric encryption
scheme as a one time pad.

Extensions. We show how to extend both schemes to lockable obfuscation with
multi-bit messages. We note that there are generic methods to build such exten-
sions. In particular, [GKW17a, WZ17] use a method that requires providing an
obfuscated program for every bit of the message. Our method is conceptually
different and exploits the homomorphism of the underlying FHE scheme to de-
code an encrypted message. Crucially, we do not need to publish an obfuscated
circuit for every single bit of the message.

Finally, we observe that our technique to encode and decode a message in our
lockable obfuscator can be used to launch a key recovery attack. Consequently,
we show that FHE schemes that are circularly insecure and are capable of binary
decomposing an encrypted message are naturally susceptible to key recovery
attacks. We note, however, that the result does not influence the security of our
lockable obfuscation.

Implications. As our constructions are generic and as we showcase several ver-
sions targeting different settings for lockable obfuscation, we believe that the
results give us a better understanding of the primitive. Importantly we believe
that the overall design paradigm is very simple and can even be used as a class-
room example for lockable obfuscation. An important consequence of our work
is that we showcase the usefulness of IND-CPA secure but circularly insecure
encryption. Furthermore, our results, together with [GKW17a, WZ17], show a
two-way connection of such encryption with lockable obfuscation. In summary,
the works [GKW17a, WZ17] show that given a lockable obfuscation scheme and
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an IND-CPA secure encryption scheme, we can build an IND-CPA secure encryp-
tion scheme equipped with a cycle tester. We note that the encryption scheme
may be a fully homomorphic encryption scheme. For completeness we give the
construction in Appendix A. In this paper, we show that we can build a lockable
obfuscation scheme given a (leveled) fully homomorphic encryption scheme with
an efficient cycle tester. We believe that our results explain why GGH15 multilin-
ear maps or similar cascading cancellations techniques [KW16, GKW17c] devised
to build cycle testers proved to be so useful to build lockable obfuscation.

Finally, in this paper, we focus solely on the generic construction, its varia-
tions, and its extensions. While our result opens the gate to lockable obfuscation
schemes, secure under assumptions other than LWE, and may perhaps even ad-
mit concretely efficient instantiations, we leave concrete constructions of such to
future work.

1.2 Overview of our Techniques

In the following section, we informally discuss our results and techniques.

Our main idea. Let us remind again that in lockable obfuscation, a party
can evaluate an obfuscation Ĉ of the circuit C on an input x, and learn a
message msg if C(x) = lock, where lock is a lock value. We require that Ĉ
reveals no information on C, assuming that lock has large min-entropy even if
the adversary (the evaluator) would be given C and some auxiliary information
aux. Let us, for now, focus on the simplified case, where msg is always 1. In other
words, if C(x) = lock, then the lockable obfuscator returns 1, and ⊥ otherwise.

Intuitively, we can think of a lockable obfuscation Ĉ as an encryption of C that
we can evaluate and then test whether C(x) = lock or not. Note that the concept
is very similar to zero testable homomorphic encryption and multilinear maps.
However, in the case of lockable obfuscation, we allow testing an element of high
min-entropy in contrast to testing zeros.

Encrypting the Circuit and Testing Ciphertexts. To encrypt a circuit, we can use
a fully homomorphic encryption (FHE) scheme. That is an encryption scheme
in which we can evaluate any polynomial-size circuit over encrypted data. We
can also use a somewhat/leveled homomorphic encryption scheme where the
circuit’s depth is upper-bounded. Still, for simplicity, we refer to the scheme
as fully homomorphic. As usual, we require that the fully homomorphic en-
cryption scheme is indistinguishable under chosen plaintext attacks (IND-CPA).
Hence an encryption of the circuit is indistinguishable from an encryption of
zero and, in particular, reveals no information on the circuit. But to realize the
testing part of the obfuscation seems to be rather difficult. This is because,
at first glance, the IND-CPA property seems to stand in the way of testing
anything about the plaintexts. However, we observe that actually, there al-
ready exist encryption schemes that are provably IND-CPA secure but allow
to test whether a ciphertext encrypts its secret key or not. A long line of works



Lockable Obfuscation from Circularly Insecure FHE 5

[Rot13, BHW15, KRW15, KW16, AP16, GKW17c, GKW17b, GKW17a, WZ17]
showed separations between IND-CPA secure encryption and circular secure en-
cryption. Roughly speaking, an encryption scheme is said to be n-circular se-
cure if a vector of encryptions Enc(sk1, sk2), . . . , Enc(skn, sk1) is indistinguish-
able from encryptions of zero. Previous works were primarily concerned with
whether IND-CPA secure encryption is also circular secure. Fortunately, for our
work, the answer is negative. That is, there are provably IND-CPA secure en-
cryption schemes that are not circular secure, and in some drastic cases allow
to recover the secret key if given a key cycle. We exploit such distinguishing or
key recovery attacks to test whether the evaluated obfuscation of C equals the
lock or not. In particular, we use the concept of cycle testers first formalized by
Bishop, Hohenberger, and Waters [BHW15]. For instance, the folklore3 circularly
insecure encryption does satisfy our needs, as we need cycle testers that work
correctly when given a FHE ciphertext that is not necessarily a fresh ciphertext.
We note that previous work considered only cycle testers for fresh encryptions.
For simplicity, we focus on the special case of 1-cycles in this section, and show
a generalized construction in Section 3.

The Lockable Obfuscation. At first, it seems that our job is done. We set lock to
the secret key sk of the FHE scheme equipped with a cycle tester, encrypt the cir-
cuit C, and we have a lockable obfuscation of C. There is but one more problem
to overcome. Namely, we need to be able to choose the lock independently from
the FHE parameters. Let SKE be a symmetric key encryption scheme. In the final
obfuscation scheme, we give an encryption of the FHE secret key using the lock

as a secret key for SKE. Concretely, we compute ct
(lock) ← SKE.Enc(lock, sk),

ct(lock) ← FHE.Enc(sk, ct
(lock)

) and ct← FHE.Enc(sk, C). Then we set the obfus-

cated circuit as Ĉ = (ct(lock), ct). To evaluate on x, we homomorphically evaluate
the universal circuit Ux that takes a circuit f and outputs f(x). Specifically, we
evaluate Ux on ct, obtaining as a result ct(C) such that FHE.Dec(sk, ct(C)) = C(x)
with high probability. Then we homomorphically evaluate the SKE decryption
circuit on ct(lock) using the plaintext in ct(C) as the secret key. Precisely, we
compute ct(Test) ← FHE.Eval([ct(C), ct(lock)],SKE.Dec(., .)). If C(x) = lock, then

SKE.Dec(lock, ct
(lock)

) = sk and FHE.Dec(sk, ct(Test)) = sk. In other words, ct(Test)

encrypts its secret key what we can test with a cycle tester. Otherwise, with over-
whelming probability, we end up with an FHE encryption of something different
from the FHE secret key.

Proving Security. To prove security, we need to construct a simulator and show
that the real obfuscation is computationally indistinguishable from a simulated
obfuscation. The simulator gets as input only the dimensions of the circuit and
the security parameter and outputs FHE encryptions of zero of the same quantity

3 The folklore counterexample for 1-cycles is an augmented construction of any
IND-CPA secure encryption. In short, we append y ← F (sk) to the public key, where
F is a one-way function. Encryption of a message m is as in the original encryption
scheme, except we return m if F (m) = y.
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and with the same parameters as in the real obfuscation algorithm. Now we give
a hybrid argument showing that a real obfuscation is indistinguishable from a
simulated one.

Hybrid 0: This is the real obfuscation algorithm.

Hybrid 1: Instead of ct
(lock) ← SKE.Enc(lock, sk), we compute SKE.Enc(lock, 0).

Indistinguishability of the hybrids follows from IND-CPA security of the SKE
scheme.

Hybrid 2: Instead of ct(lock) ← FHE.Enc(sk, ct
(lock)

), we compute FHE.Enc(sk, 0).
Indistinguishability of the hybrids follows from the IND-CPA security of the

FHE scheme. Note that from Hybrid 1, ct
(lock)

is independent of any parame-

ter of the FHE scheme. In particular, ct
(lock)

does not depend on sk anymore.
Hence we can use IND-CPA of the FHE scheme, even if the adversary would
know/chose lock.

Hybrid 3: Instead of ct ← FHE.Enc(sk, C), we compute FHE.Enc(sk, 0). Indis-
tinguishability of the hybrids follows again from the IND-CPA security of the
FHE scheme.

Finally, after Hybrid 3, we end up with an obfuscation that is equivalent to a
simulated one.

Lock ciphertext in the Plain. Note that for the simulator to work, we need to

encrypt the ciphertext ct
(lock)

with the FHE key. In many concrete instantia-
tions, this requirement may pose a significant problem for concrete efficiency,

and especially the size of the obfuscated circuit. Technically, if ct
(lock)

would be
given in the clear, then the simulator still needs to know the lock value, and
IND-CPA security is insufficient to get rid of lock. To overcome the problem, we
need to assume that ciphertexts of the SKE scheme are indistinguishable from
uniformly random strings. We also need to redefine the simulator, to choose

ct
(lock)

uniformly at random. Then, in Hybrid 1, we choose ct
(lock)

uniformly at
random, and we set Hybrid 3 in place of Hybrid 2. That is, after we change the

obfuscation to choose ct
(lock)

uniformly in Hybrid 1, we compute FHE.Enc(sk, 0)
instead of FHE.Enc(sk, C) in Hybrid 2.

Extending the Message Space. Finally, we show an extension of both the
above obfuscation methods to the general case, where the obfuscation returns a
message msg ∈ {0, 1}ℓmsg , instead of just indicating whether C(x) = lock or not.

Previous Approaches. Similarly, as in previous work [GKW17a, WZ17], we could
encode the message by building an obfuscation for each bit of the message. To
encode a 1-bit, the obfuscation is as given by the specification. To encode a 0-bit,
the obfuscation is created as in a simulation. There are some additional problems
with the above solution that we can resolve using pseudorandom generators as
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in [GKW17a, WZ17]. The obvious problem with this repetition approach is effi-
ciency, as every single bit of the message requires publishing and evaluating an
obfuscated circuit. Additionally, Goyal, Kopppula, and Waters [GKW17a] show
an extension that is specific to their lockable obfuscation construction. In partic-
ular, it is not a generic construction. We show how to exploit the homomorphism
of the FHE scheme in the presence of a cycle tester to encode a large message.
Consequently, we obtain a generic construction that does not require publishing
an obfuscated program for every bit in the circuit. Furthermore, the evaluator
only need to perform a small constant number of homomorphic operation per
bit of the message, in contrast to evaluating an entire obfuscated circuit.

Decoding Messages via Homomorphism and Cycle Testing. The main observa-
tion is as follows. Suppose that along with the obfuscated circuit, we publish
FHE.Enc(msgi), where msgi is the ith bit of the message msg. Then assuming
the FHE scheme is multiplicatively homomorphic, we have with high probability

FHE.Dec
(
sk,FHE.Enc(sk, sk) · FHE.Enc(sk,msgi)

)
= msgi · sk.

Now, it is easy to see that if msgi = 0, then we have an encryption of zero,
and the cycle tester will output that the ciphertext does not encode the FHE
secret key. Otherwise, if msgi = 1, then the cycle tester will output 1 with high
probability. This way, we can restore all bits of msg. Security follows immediately
from our base lockable obfuscators’ security and IND-CPA security of the FHE
scheme.

Key Recovery Attack. The way we test the message as described above gave us
a simple idea of constructing a key recovery attack against a fully homomorphic
encryption scheme that has a cycle tester. The attack requires an encrypted
secret key (or key cycle) and assumes the FHE scheme is capable of binary de-
composing an encrypted message. Fully homomorphic encryption schemes with
a binary plaintext space satisfy the later requirement immediately. Then it is
easy to see that we can use the decoding technique from the previous paragraph
to decode the secret keys from the key cycle.

A consequence of this observation is that a party capable of evaluating a
lockable obfuscation to output a message may also be able to decrypt the obfus-
cated circuit. Note that this does not contradict the security notion for lockable
obfuscation. However, we note that our lockable obfuscation schemes, together
with the key recovery attack, tightly exemplify the security guarantees that a
lockable obfuscator may offer. For instance, in constructions based on the GGH15
directed encodings technique [GGH15], it is not immediately clear whether one
can easily decrypt the circuit upon successful evaluation.

1.3 Related Work and Applications

As mentioned in the introduction, all current constructions [GKW17a, WZ17,
CVW18b, GKVW20] rely on the GGH15 directed encoding technique [GGH15],
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or indistinguishability obfuscation4 [BGI+01, BGI+12] to build lockable ob-
fuscation. The original works [GKW17a, WZ17] showed the first applications
of lockable obfuscation. Both works show how to use lockable obfuscation to
build one-sided predicate encryption assuming, additionally, attribute-based en-
cryption, or anonymous broadcast encryption from non-anonymous broadcast
encryption. A similar technique can be used to build indistinguishability ob-
fuscation for evasive functions assuming, additionally, witness encryption. Fi-
nally, we can also compile a public key or identity-based encryption to their
anonymous counterparts where ciphertexts do not reveal the receiver’s public
key or its identity. An important use for lockable obfuscation is to show sep-
arations between IND-CPA security and circular security. Additionally, Goyal,
Koppula, and Waters [GKW17a] show random oracle uninstantiability results.
Wichs and Zirdelis [WZ17], show how to use lockable obfuscation to obfus-
cate affine functions and conjunctions. It is worth noting that there is only a
handful of conjunction obfuscator constructions. In particular, Brakerski and
Rothblum [BR13] show such obfuscators from multilinear maps, Brakerski et al.
[BVWW16] assume entropic LWE. Bishop et al. [BKM+18] followed by Beullens
and Wee [BW19] show conjunction obfuscators in the generic group model or
from new knowledge assumptions. Recently, Bartusek et al. [BLMZ19], building
upon [BKM+18], showed conjunction obfuscators for exponential alphabets in
the generic group model and for binary alphabets from learning parity with noise.
Notably, lockable obfuscation gives the only conjunction obfuscator for exponen-
tial alphabets from standard LWE with subexponential modulus-to-noise ratio.
Our work shows the first way of building such schemes generically. Furthermore,
lockable obfuscation trivially implies point function and hyperplane obfuscation
[Can97, LPS04, Wee05, CD08, DKL09, GKPV10, CRV10, YZ16, BS16, KY18].
Finally, [WZ17] show how to build private secure sketches [DS05] from lockable
obfuscation and non-private secure sketches [DRS04, DORS08].

As discussed, the core of our technique relies on IND-CPA secure encryp-
tion that is breakable/testable in the presence of a key cycle. We explicitly
use the terminology of cycle testers introduced by Bishop, Hohenberger, and
Waters [BHW15]. The first separations for IND-CPA secure and circular secure
encryption are due to Haitner and Holenstein [HH09] who show that there is
no black-box reduction from circular secure encryption to one-way functions,
or any cryptographic assumption if the adversary can obtain encryption of an
arbitrarily chosen function of the secret key. Acar et al. [ABBC10] and later
Cash, Green and Hohenberger [CGH12] construct encryption schemes that are
testable in the presence of a key cycle of the length of 2. Rothblum [Rot13]
showed encryption schemes that allow to recover the secret key given a key cycle
for bit encryption. Koppula, Ramchen, and Waters [KRW15] show a IND-CPA
secure encryption scheme that allows testing n-length cycles assuming indistin-

4 Specifically, Wichs and Zirdelis show a lockable obfuscator from null-iO, that is, iO
for evasive functions. However, the only known realization requires lockable obfus-
cation and witness encryption which we know how to build from iO or multilinear
maps that imply iO.
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guishability obfuscation. Later Koppula and Waters [KW16], and independently
Alamati and Peikert [AP16] achieve a similar result from LWE and ring-LWE.
Goyal, Koppula, and Waters [GKW17b] showed 1-circular insecure bit encryp-
tion from iO. Finally, [GKW17a, WZ17] used lockable obfuscation to construct
cycle testers for bit encryption of unbounded cycle length.

We note that the idea of exploiting circular insecure encryption to build
useful cryptographic algorithms is borrowed from a very recent paper by Klucz-
niak [Klu20], who shows a witness encryption scheme from a variant of fully
homomorphic encryption with a cycle tester.

Other Applications. Chen et al. [CVW+18a] used lockable obfuscation to build
traitor tracing schemes. Badrinarayanan et al. [BKSW18] showed separations
for encryption secure under chosen ciphertext attack and Functional Encryption
compatible encryption using lockable obfuscation. Chen et al. [CVW+18a] use
lockable obfuscation to build mixed functional encryption [GKW18]. Lockable
obfuscation was also used by Bitansky, Khurana, and Paneth [BKP19] to con-
struct zero-knowledge arguments with low round complexity. Recently Ananth
and La Placa [AL20], and Bitansky and Shmueli [BS20] constructed constant-
round post-quantum secure zero-knowledge arguments using lockable obfusca-
tion.

2 Preliminaries

Notation. We denote as [i]ni=1 the vector [1, 2 . . . , n]. For brevity, we denote
as [n] the vector [i]ni=1 and as [n,m] the vector [n, n + 1, . . . ,m]. We sample a
variable a from a distribution S as a ←D S. We sample a variable a from the
uniform distribution over S as a←R S. By default, we sample from the uniform
distribution unless said otherwise. We denote as x ← AO(.)(y) an execution of
the algorithm A on input y that gets access to an oracle O and treats it as its
subroutine. In general, we mark unassigned variables when calling an algorithm
with a “.”.

We denote any positive polynomial as poly(.). Finally, we denote as negl(.)
any negligible function. That is, for any positive polynomial poly(.) there exists
c ∈ N such that for all λ ≥ c we have |negl(λ)| ≤ 1

poly(λ) .

Entropy. The min-entropy of a random variable A is defined as H∞(A) =
− log(maxa Pr[A = a]). Let E denote the expectation of a random variable.
The average conditional min-entropy of a random variable X conditioned on a
possibly correlated variable Y is defined as

H̃∞(X|Y ) = − log

(
Ey←Y

[
2−H∞(X|Y=y)

])
.

Definition 1 (Conditional (HILL) Pseudo-Entropy [HILL99, HLR07]).
Let λ be a security parameter. Let X = {Xλ}, Y = {Yλ} be ensembles of jointly
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distributed random variables. We define the conditional pseudo-entropy of X
conditioned on Y to be at least α(λ), denoted HHILL(X|Y ) ≥ α(λ) if there exist

some X ′ = {X ′λ} possibly jointly distributed with Y such that H̃∞(X ′λ|Yλ) ≥
α(λ), and for all PPT adversaries we have∣∣Pr[A(X,Y ) = 1]− Pr[A(X ′, Y ) = 0]

∣∣ = negl(λ).

Symmetric Encryption. Below we give a generalized definition of symmetric
key encryption. Our correctness definition states explicitly that decryption with
a wrong key should result in an incorrect message with high probability. We
define indistinguishability under chosen-plaintext attack and pseudorandom ci-
phertexts of symmetric-key ciphers. We define the security properties for secret
keys sampled from a given class of distributions. Later we recall popular classes
of distributions from the literature, but we stress that our results are shown
generically, without relying on any particular class.

Definition 2 (Symmetric Key Encryption). An encryption scheme SKE =
(Enc, Dec) consists of an encryption algorithm Enc and decryption algorithm Dec

with the following syntax.

Enc(λ, sk,msg): Takes as input a security parameter λ, a secret key sk ∈ {0, 1}ℓsk
and a message msg ∈ {0, 1}ℓmsg where ℓsk, ℓmsg = poly(λ), and outputs a
ciphertext ct ∈ {0, 1}ℓct where ℓct = poly(λ).

Dec(sk, ct): This deterministic algorithm takes as input a secret key sk ∈ {0, 1}ℓsk
and a ciphertext ct ∈ {0, 1}ℓct , and outputs msg ∈ {0, 1}ℓmsg .

Correctness: We say that SKE = (Enc, Dec) is correct, if for all security pa-
rameters λ ∈ N, sk ∈ {0, 1}ℓsk and msg ∈ {0, 1}ℓmsg , where ℓsk, ℓmsg = poly(λ)
we have

Dec(sk, Enc(λ, sk,msg)) = msg,

and for all sk
′ ∈ {0, 1}ℓsk such that sk

′ ̸= sk we have

Pr
[
Dec

(
sk
′
, Enc(λ, sk,msg)

)
̸= msg

]
= ErrcorrSKE(λ),

where ErrcorrSKE(λ) = negl(λ).

D-Indistinguishability Under Chosen Plaintext Attack: Let λ ∈ N be a
security parameter and A = (A0,A1) be a PPT adversary. Let D be a class
of distribution ensembles {Dk}k∈N that sample (sk, aux) ←D Dk with sk ∈
{0, 1}ℓsk where ℓsk = poly(k). We define the advantage of the adversary A
against a SKE = (Enc, Dec) encryption scheme in the D-IND-CPA game as

AdvIND-CPA
A,SKE (λ) = Pr

A1(ctb, st) = b:

(sk, aux)←D Dλ,

(st,msg0,msg1)← A
O(sk,.)
0 (λ, aux),

b←R {0, 1},
ctb ← Enc(λ, sk,msgb)

 ,
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where the oracle O on input a message msg outputs ct← Enc(λ, sk,msg).
We say that SKE = (Enc, Dec) is D-IND-CPA-secure if for all PPT adver-
saries A = (A0,A1) we have AdvD-IND-CPA

A,SKE (λ) = negl(λ).
We say that a cryptosystem SKE = (Enc, Dec) is D-semantically secure if
the above holds but A has no access to the oracle O.

D-Pseudorandom Ciphertexts: Let λ ∈ N be a security parameter and A =
(A0,A1) be a PPT adversary. Let D be a class of distribution ensembles
{Dk}k∈N that sample (sk, aux)←D Dk with sk ∈ {0, 1}ℓsk where ℓsk = poly(k).
We define the advantage of A against a SKE = (Enc, Dec) encryption scheme
in the pseudorandom ciphertexts game as

AdvRandCtA,SKE (λ) = Pr

A1(ctb, st) = b:

(sk, aux)←D Dλ,

(st,msg)← A
O(sk,.)
0 (λ, aux),

b←R {0, 1},
ct0 ← Enc(λ, sk,msg), ct1 ←R {0, 1}ℓct

 ,

where the oracle O on input a message msg outputs ct← Enc(λ, sk,msg).
We say that SKE = (Enc, Dec) has D-pseudorandom ciphertexts if for all
PPT adversaries A = (A0,A1) we have AdvD-RandCt

A,SKE (λ) = negl(λ).
Analogously to semantic security, we say that a cryptosystem SKE = (Enc,
Dec) has weakly D-pseudorandom ciphertexts if the above holds but A has no
access to the oracle O.

Classes of Distributions. Let us recall popular classes of distributions. The
following classes were also considered by Wichs, and Zirdelis [WZ17] for their
lockable obfuscation scheme.

Uniform: The variable x is chosen uniformly at random. This is the standard
definition of IND-CPA.

Unpredictable: Informally, it is hard to predict x given aux. Formally, a class
D is unpredictable if for all PPT adversaries A, security parameters λ ∈ N,
and distribution ensembles {Dk}k∈N ∈ D we have

Pr[x← A(aux) : (x, aux)←D Dλ] = negl(λ).

Pseudo-Entropy: For a function α(λ) in the security parameter λ the class
of α-pseudo-entropy distributions consists of ensembles {Dk}k∈N such that
(x, aux)←D Dλ satisfies HHILL(x|aux) ≥ α(λ).

Symmetric or public-key encryption schemes secure for the class of unpre-
dictable distribution can be constructed from learning parity with noise [DKL09],
decisional Diffie-Hellman and learning with errors [DGK+10] assumptions and
from point function obfuscators satisfying some special properties [CKVW10].
For the class of pseudo-entropy distributions we know constructions from learn-
ing with errors [AGV09, GKPV10] hash proof systems [NS09, ADN+10], as-
sumptions in bilinear groups [DHLW10], computational Diffie-Hellman and sub-
group indistinguishability assumptions [BG10, BLSV18]. It is worth mentioning
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that we might realize leakage resilient encryption from pseudorandom functions
with weak seeds [Pie09, AKPW13] and encryption schemes with semantic secu-
rity and weakly pseudorandom ciphertexts from leakage resilient pseudorandom
generators [DP08, Zha16].

Fully Homomorphic Encryption. We recall the definition of fully homo-
morphic encryption [RAD+78, Gen09]. In the definition, the Setup algorithm
takes as input a depth of the circuit reflecting leveled/somewhat homomorphic
schemes capable of evaluating the circuit of the given depth. We note, however,
that our results apply to unbounded fully homomorphic encryption schemes as
well. For brevity, we will omit “leveled/somewhat” and refer to the schemes as
fully homomorphic. Additionally, we note that usually, we define a public key or
an evaluation key in fully homomorphic encryption schemes. In this paper, we do
not use such keys explicitly. Therefore, we assume that such a public/evaluation
key is part of the secret key or ciphertext.

Definition 3 (Fully Homomorphic Encryption). A fully homomorphic en-
cryption FHE consists of algorithms (Setup, Enc, Eval, Dec) with the following
syntax.

Setup(λ, δ): This PPT algorithm takes as input a security parameter λ and
bound on the circuit depth δ. The algorithm outputs a secret key sk. Some-
times we omit the circuit depth in the input when it is not needed in the
given context.

Enc(sk,msg): This PPT algorithm takes as input a secret key sk, and a message
msg, and returns a ciphertext ct.

Eval([cti]
κ
i=1, C): Given as input a set of ciphertexts [cti]

κ
i=1, and a circuit C,

the algorithm outputs a ciphertext ct.
Dec(sk, ct): This deterministic algorithm given a secret key sk and a ciphertext

ct, outputs a message msg.

Correctness: We say that FHE = (Setup, Enc, Eval, Dec) is correct, if for all
security parameters λ ∈ N, circuits C : Mκ 7→ M over the message space
M of depth δ = poly(λ), and messages [msgi ∈M]κi=1 we have

Pr

Dec(sk, ctout) = C([msgi]
κ
i=1):

sk← Setup(λ, δ),
[cti ← Enc(sk,msgi)]

κ
i=1

ctout ← Eval([cti]
κ
i=1, C)

 = 1− ErrcorrEval(λ),

where ErrcorrEval(λ) = negl(λ). We call ErrcorrEval(λ) the correctness error.

The distribution of evaluated ciphertexts and fresh ciphertexts may differ. In
our correctness analysis, we need conveniently denote to what message a given
ciphertext decrypts. Therefore, we denote as ctout ≈ Enc(sk,msg) the fact that
Dec(sk, ctout) = msg with some correctness error ErrcorrEval(λ).

Efficiency: We require that Setup, Enc and Dec run in poly(λ, δ) time, and
Eval runs in poly(λ, |C|) time.
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Indistinguishability Under Chosen Plaintext Attack: We define indistin-
guishability under chosen plaintext attack as in Definition 2, with the ex-
ception that the Setup algorithm generates the secret key. Furthermore, we
note that, while it is possible to define fully homomorphic encryption with
weak keys, it does not play a special role in our paper. Therefore, we consider
the secret keys’ distribution to be uniform (the Setup algorithm works on
a uniformly random seed), and we use IND-CPA as the acronym instead of
D-IND-CPA.

We use the concept of cycle testers introduced by Bishop, Hohenberger, and
Waters [BHW15]. However, we use the definition by Kluczniak [Klu20], as it is
easier to use for our purposes5. We give the construction from [GKW17a] of a
fully homomorphic encryption with a cycle tester in Appendix A. Furthermore,
we note that the the scheme can be instantiated from LWE with subexponential
modulus-to-noise ratio.

Definition 4 (Cycle Testing). We define an additional algorithm Test with
the following syntax.

Test([cti,j ]
n,m
i=1,j=1): The algorithm on input a vector of ciphertexts [cti,j ]

n,m
i=1,j=1

outputs a bit b ∈ {0, 1}.

Efficiency: We require that Test runs in time poly(λ).

Correctness: Let FHE = (Setup, Enc, Eval, Dec, Test) be a fully homomorphic
encryption scheme with an n-cycle tester Test for functions Fj : S 7→ M,
whereM is the message space and S is the secret key space and j ∈ [m]. We
say that the cycle tester is correct if for all security parameters λ ∈ N, and
all executions

[
ski ← Setup(λ)

]n
i=1

, we have ErrcorrTest(λ) = negl(λ), where

Pr
[
Test([cti,j ]

n,m
i=1,j=1) ̸= 1

]
≤ ErrcorrTest(λ)

given that [Fj(sk(i mod n)+1)]
n,m
i=1,j=1 = [Dec(ski, cti,j)]

n,m
i=1,j=1, and

Pr
[
Test([cti,j ]

n,m
i=1,j=1) ̸= 0

]
≤ ErrcorrTest(λ)

given that [Fj(sk(i mod n)+1)]
n,m
i=1,j=1 ̸= [Dec(ski, cti,j)]

n,m
i=1,j=1.

Lockable Obfuscation. Now we recall lockable obfuscation introduced by
Goyal, Koppula, and Waters [GKW17a], and independently by Wichs and Zird-
elis [WZ17].

Definition 5 (Lockable Obfuscation). A lockable obfuscation scheme LObf
= (Obf, Eval) consists of an obfuscation algorithm Obf and an evaluation algo-
rithm Eval with the following syntax.

5 As pointed by Kluczniak [Klu20], the definition by Bishop, Hohenberger, and Waters
[BHW15] does not make a distinction between a cycle tester and an encryption
scheme with an efficient zero tester.
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Obf(λ,C, lock,msg): This algorithm takes as input a security parameter λ ∈ N,
a circuit C : {0, 1}κ 7→ {0, 1}η, a lock string lock ∈ {0, 1}η, and a message

msg ∈ {0, 1}ℓmsg . The algorithm outputs an obfuscated circuit Ĉ.

Eval(Ĉ, x) : This deterministic algorithm takes as input an obfuscated circuit Ĉ
and input x ∈ {0, 1}κ, and outputs msg or ⊥.

Efficiency: We say that the lockable obfuscation scheme is polynomially effi-
cient, if Obf and Eval run in time poly(λ, |C|).

Correctness: We say that a lockable obfuscator LObf = (Obf, Eval) is correct
if for all λ ∈ N, C : {0, 1}κ 7→ {0, 1}η, msg ∈ {0, 1}ℓmsg , lock ∈ {0, 1}η, and
x ∈ {0, 1}κ, given that Ĉ ← Obf(λ,C, lock,msg) and C(x) = lock, we have

Pr[Eval(Ĉ, x) ̸= msg] ≤ ErrcorrLObf.Eval(λ),

and given that C(x) ̸= lock we have that

Pr[Eval(Ĉ, x) ̸= ⊥] ≤ ErrcorrLObf.Eval(λ),

where ErrcorrLObf.Eval(λ) = negl(λ) and the probability is over random coins of
the obfuscation algorithm Obf.

We consider also a limited version, where the lockable obfuscation has the
message set to msg = 1 for C(x) = lock and outputs 0 instead of ⊥. In particular,
our first construction given in Section 3 follows the limited functionality. Later
in Section 4.2, we show how to extend the scheme to handle any polynomial-size
messages.

Distributional Virtual Black-Box (D-DVBB) Security: Let Ck = {Cκ,η,υ}
be the set of all circuits with κ input variables, η output variables and size υ,
where κ, η, υ = poly(k). Let D be a class of distribution ensembles {Dk}k∈N
that sample (lock, aux)←D Dk with lock ∈ {0, 1}η.
We say that the lockable obfuscation is distributional virtual black-box secure
for the distribution class D if for all PPT adversaries A = (A1,A2), there
exists a PPT simulator Sim, such that AdvD-DVBB

A,LObf (λ) = negl(λ), where

AdvD-DVBB
A,LObf (λ) =

∣∣∣∣∣Pr
A2(Ĉb, st) = b :

(lock, aux)←D Dλ,
b←R {0, 1},

(C,msg, st)← A1(λ, aux),
msg ∈ {0, 1}ℓmsg , C ∈ Cλ

Ĉ0 ← Obf(λ,C, lock,msg),

Ĉ1 ← Sim(λ, κ, η, υ, ℓmsg)

−
1

2

∣∣∣∣∣,

We call AdvD-DVBB
A,LObf (λ) the advantage of the adversary A against DVBB se-

curity.
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3 Lockable Obfuscation from Circular Insecure FHE

In this section, we show the basic construction of lockable obfuscation from fully
homomorphic encryption with an efficient cycle tester. The lockable obfuscation
returns a single bit that is set to 1 when the outcome of the obfuscated function
is equal to the lock, and ⊥ otherwise.

Construction 1 (Our Lockable Obfuscation Construction) Let FHE =
(Setup, Enc, Dec, Test) be a fully homomorphic encryption scheme with a cycle
tester detecting n-length key cycles for Fj where j ∈ [m]. Let SKE = (Enc, Dec)
be a symmetric encryption scheme with secret key space {0, 1}η and message
space {0, 1}ℓsk . Denote as Ux(.) the universal circuit that on input a circuit C :
{0, 1}κ 7→ {0, 1}η, outputs C(x), where x ∈ {0, 1}κ. Let δ ∈ N be the depth of the
circuit SKE.Dec(Ux(.), .). We define the lockable obfuscation LObf = (Obf, Eval)
as follows.

Obf(λ,C, lock): Takes as input a security parameter λ, a circuit C : {0, 1}κ 7→
{0, 1}η, and a lock string lock ∈ {0, 1}η.
1. For i ∈ [n] do

– Run ski ← FHE.Setup(λ, δ).
– Run cti ← FHE.Enc(ski, C).
– For j ∈ [m] do

• Run ct
(lock)
i,j ← SKE.Enc

(
λ, lock,Fj(sk(i mod n)+1)

)
.

• Run ct
(lock)
i,j ← FHE.Enc(ski, ct

(lock)
i,j ).

2. Return Ĉ ←
(
[cti]

n
i=1, [ct

(lock)
i,j ]n,mi=1,j=1

)
.

Eval(Ĉ, x): Takes as input an obfuscated circuit Ĉ =
(
[cti]

n
i=1, [ct

(lock)
i,j ]n,mi=1,j=1

)
,

and an input x ∈ {0, 1}κ.
1. For i ∈ [n] do

– Compute ct
(C)
i ← FHE.Eval(cti, Ux).

– For j ∈ [m] compute

ct
(Test)
i,j ← FHE.Eval

(
[ct

(C)
i , ct

(lock)
i,j ],SKE.Dec(., .)

)
.

2. If FHE.Test([ct
(Test)
i,j ]n,mi=1,j=1) = 1, then output 1, and output ⊥ otherwise.

Theorem 1 (Correctness). For all λ, C : {0, 1}κ 7→ {0, 1}η, all lock ∈ {0, 1}η,
LObf as given by Construction 1 is a polynomially efficient and correct lockable
obfuscation with correctness error

ErrcorrLObf(λ) ≤ n ·m · ErrcorrFHE.Eval(λ, δ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Proof. Polynomial efficiency follows directly from the efficiency of the underlying
encryption schemes. Thus we focus on analyzing the correctness. From correct-

ness of the FHE scheme we have ct
(C)
i = FHE.Eval(cti, Ux) ≈ FHE.Enc(ski, C(x))

and

ct
(Test)
i,j = FHE.Eval

(
[ct

(C)
i , ct

(lock)
i,j ],SKE.Dec(., .)

)
≈ FHE.Enc

(
ski,SKE.Dec(C(x), ct

(lock)
i,j )

)
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with probability of failure bounded by ErrcorrFHE.Eval(λ, δ) for each i ∈ [n] and
j ∈ [m].

If C(x) = lock we have ct
(Test)
i,j ≈ FHE.Enc

(
ski,Fj(sk(i mod n)+1)

)
. Then we

have Test([ct
(Test
i,j )]n,mi=1,j=1) = 1 with probability failure bounded by ErrcorrFHE.Test(λ).

If C(x) ̸= lock, then we have ct
(Test)
i,j ≈ FHE.Enc(ski, m̃sgi,j), where the plain-

text is m̃sgi,j = SKE.Dec(C(x), ct
(lock)
i,j ). From correctness of the SKE scheme we

have that there exists i ∈ [n] and all j ∈ [m] such that m̃sgi,j ̸= Fj(sk(i mod n)+1)

with probability at least 1 − ErrcorrSKE(λ). Therefore, the ciphertexts ct
(Test)
i,j does

not encode a proper cycle. Consequently, we have Test([ct
(Test)
i,j ]n,mi=1,j=1) = 0 with

probability of failure bounded by ErrcorrFHE.Test(λ).
To summarize we have the probability of failure of the lockable obfuscation

ErrcorrLObf(λ) ≤ n ·m · ErrcorrFHE.Eval(λ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Theorem 2 (Security). Let D be a class of distribution ensembles {Dλ}λ∈N
that sample (lock, C) ←D Dλ, with C : {0, 1}κ 7→ {0, 1}η, lock ∈ {0, 1}η and
κ, η = poly(λ). Let SKE be a D-IND-CPA secure symmetric key encryption
scheme, and FHE be a IND-CPA secure fully homomorphic encryption scheme.
Then, LObf given by Construction 1, is D-DVBB secure.

Proof. Let us first describe the simulator. The simulator Sim takes as input λ,
κ, η, υ and ℓmsg. Then Sim runs ski ← FHE.Setup(λ, δ) as in the real scheme,

and computes Ĉ ←
(
[cti]

n
i=1, [ct

(lock)
i,j ]n,mi=1,j=1

)
, where cti ← FHE.Enc(ski, 0) and

ct
(lock)
i,j ← FHE.Enc(ski, 0), for all i ∈ [n] and j ∈ [m].
Via the following hybrid argument, we show that a simulated program is

computationally indistinguishable from an obfuscated program. We denote as
Hj the event that an adversary guesses the bit b in Hybrid j.

Hybrid 0: This is the DVBB game with the bit b = 0. That is we compute
Ĉb ← Obf(λ,C, lock,msg). We have AdvDVBBA,LObf = |Pr[H0]− 1

2 |.

Hybrid (i− 1) ·m+ j: For i ∈ [n] and j ∈ [m] we compute the ciphertext

ct
(lock)
i,j ← SKE.Enc(λ, lock, 0) instead of the ciphertext ct

(lock)
i,j ← SKE.Enc

(
λ,

lock, Fj(sk(i mod n)+1)
)
.

Claim. If an adversary A distinguishes between Hybrid (i − 1) ·m + j and
Hybrid (i− 1) ·m+ j− 1, then there exists a distinguisher D, that uses A to
break D-IND-CPA security of SKE. We have∣∣Pr[H(i−1)·m+j ]− Pr[H(i−1)·m+j−1]

∣∣ = AdvD-IND-CPA
D,SKE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme. For
i′ ∈ [n] and j′ ∈ [m] such that (i′ − 1) ·m + j′ < (i − 1) ·m + j the solver

queries the O for ct
(lock)
i′,j′ ← O(lock, 0). For (i′ − 1) ·m+ j′ > (i− 1) ·m+ j,

the solver queries ct
(lock)
i′,j′ ← O(lock,Fj′(sk(i′ mod n)+1). Finally, the solver

submitsmsg0 = Fj(sk(i mod n)+1) andmsg1 = 0 as the challenge, and obtains
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ct
(lock)
i,j . The rest of the obfuscated program is computed as given by the

specification. Then if the adversary outputs that it is Hybrid (i−1)·m+j−1,
then the solver answers that the encrypted message is msg0. Otherwise, the
solver answers that the message is msg1.

Hybrid n ·m+ (i− 1) ·m+ j: For i ∈ [n] and j ∈ [m] we compute ct
(lock)
i,j ←

FHE.Enc(ski, 0) instead of ct
(lock)
i,j ← FHE.Enc(ski, ct

(lock)
i,j ).

Claim. If an adversary A distinguishes between Hybrid n ·m+(i−1) ·m+ j
and Hybrid n ·m + (i − 1) ·m + j − 1, then there exists a distinguisher D,
that uses A to break IND-CPA security of FHE.

We have∣∣Pr[Hn·m+(i−1)·m+j ]− Pr[Hn·m+(i−1)·m+j−1]
∣∣ = AdvIND-CPA

D,FHE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme except
ski. For all i′ ∈ [n] such that i′ ̸= i and all j′ ∈ [m], the solver generates

ct
(lock)
i′,j and cti′ as in the previous hybrid. To obtain cti the solver queries

O(ski, .) on input C. To obtain ct
(lock)
i,j′ the solver submits 0 for all j′ < j,

and ct
(lock)
i,j′ for j′ > j. Finally, to obtain ct

(lock)
i,j the solver sets the challenge

query as msg0 = ct
(lock)
i,j′ and msg1 = 0.

If the adversary outputs that it is Hybrid n ·m + (i − 1) ·m + j − 1, then
the solver answers that the encrypted message is msg0. Otherwise, the solver
answers that the message is msg1.

Hybrid 2 · n ·m+ i: For i ∈ [n] we compute cti ← FHE.Enc(ski, 0) instead of
cti ← FHE.Enc(ski, C).

Claim. If an adversary A distinguishes between Hybrid 2·n·m+i and Hybrid
2 · n · m + i − 1, then there exists a distinguisher D, that uses A to break
IND-CPA security of FHE.

We have ∣∣Pr[H2·n·m+i]− Pr[H2·n·m+i−1]
∣∣ = AdvIND-CPA

D,FHE (λ).

Proof. The proof is a standard reduction to IND-CPA of the FHE scheme
analogous to the proof of Hybrids n · m + (i − 1) · m + j for i ∈ [n] and
j ∈ [m].

In Hybrid 2 · n ·m + n the obfuscated program is equivalent to a simulated
program. In particular all encryptions that constitute the obfuscated program
are encryptions of 0. To summarize, we have that the advantage to distinguish
between Hybrid 0 and Hybrid 2 ·n ·m+n is AdvDVBBA,LObf ≤ n ·m ·AdvD-IND-CPA

D,SKE (λ)+

(n ·m+ n) · AdvIND-CPA
D,FHE (λ).
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4 Extensions and Variants of the Lockable Obfuscation
Scheme

In this section, we show a variant of the lockable obfuscation scheme and an
extension that allows the obfuscator to output polynomial-size messages.

4.1 Lock Ciphertext in the Plain

We show a slight modification of Construction 1, where instead of encrypting the

lock ciphertexts [ct
(lock)
i,j ]n,mi=1,j=1, with the FHE encyption algorithm, we include

these ciphertexts into the obfuscated program. However, for the security proof
to work, we need to assume that SKE has pseudorandom ciphertexts. To not
restate the construction from Section 3, we only give the changes.

Construction 2 (Lock Ciphertexts in the Plain) Let LObf be as in Con-

struction 1, except we do not compute ct
(lock)
i,j , and Obf returns the obfuscated

circuit Ĉ =
(
[(cti]

n
i=1, [ct

(lock)
i,j ]n,mi=1,j=1

)
. Furthermore, in the Eval algorithm we

compute ct
(Test)
i,j ← FHE.Eval

(
ct

(C)
i , SKE.Dec(., ct

(lock)
i,j )

)
.

Theorem 3 (Correctness). For all λ, C : {0, 1}κ 7→ {0, 1}η, all lock ∈ {0, 1}η,
LObf as given by Construction 2 is a polynomially efficient and correct lockable
obfuscation with correctness error

ErrcorrLObf(λ) ≤ n ·m · ErrcorrFHE.Eval(λ, δ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Proof. From correctness of the FHE scheme we have ct
(C)
i = FHE.Eval(cti, Ux) ≈

FHE.Enc(ski, C(x)) and

ct
(Test)
i,j = FHE.Eval

(
ct

(C)
i ,SKE.Dec(., ct

(lock)
i,j )

)
≈ FHE.Enc

(
ski,SKE.Dec(C(x), ct

(lock)
i,j )

)
with probability of failure bounded by ErrcorrFHE.Eval(λ) for each i ∈ [n] and j ∈ [m].

If C(x) = lock, then we have ct
(Test)
i,j ≈ FHE.Enc

(
ski,Fj(sk(i mod n)+1)

)
and

Test([ct
(Test)
i,j ]n,mi=1,j=1) = 1 with probability failure bounded by ErrcorrFHE.Test(λ).

If C(x) ̸= lock, then we have ct
(Test)
i,j ≈ FHE.Enc(ski, m̃sgi,j), where the plain-

text is m̃sgi,j = SKE.Dec(C(x), ct
lock
i,j ). From correctness of the SKE scheme we

have that there exists i ∈ [n] and all j ∈ [m] such that m̃sgi,j ̸= Fj(sk(i mod n)+1)

with probability at least 1−ErrcorrSKE(λ). Consequently, we have Test([ct
Test
i,j ]n,mi=1,j=1)

= 0 with probability of failure bounded by ErrcorrFHE.Test(λ).
To summarize we have the probability of failure from the lockable obfuscation

ErrcorrLObf(λ) ≤ n ·m · ErrcorrFHE.Eval(λ) + ErrcorrSKE(λ) + ErrcorrFHE.Test(λ).

Theorem 4 (Security). Let D be a class of distribution ensembles {Dλ}λ∈N
that sample (lock, C) ←D Dλ, with C : {0, 1}κ 7→ {0, 1}η, lock ∈ {0, 1}η and
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κ, η = poly(λ). Let SKE be a D-RandCt secure symmetric key encryption scheme,
and FHE be a IND-CPA secure fully homomorphic encryption scheme. Then,
LObf given by Construction 2, is D-DVBB secure.

Proof. To prove security, we define the simulator to compute the FHE ciphertexts
as encryptions of 0, and choose the SKE ciphertexts uniformly at random. Note
that the simulator requires only the circuit’s dimensions and the size of the lock
key.

The hybrid argument is the same as in the proof of Theorem 2, except with
the following changes. The hybrids (i − 1) ·m + j for i ∈ [n] and j ∈ [m] is as
we define below. After hybrid n ·m come hybrids n ·m + i for i ∈ [n] that are
the same as the hybrids 2 · n ·m + i in the proof of Theorem 2. Note that the
hybrids n ·m + (i − 1) ·m + j from the proof of Theorem 2, are missing as we
no longer use those encryptions.

Now the hybrids (i− 1) ·m+ j that we need to redefine are as follows.

Hybrid (i− 1) ·m+ j: For i ∈ [n] and j ∈ [m] we choose the ciphertext

ct
(lock)
i,j ←R {0, 1}ℓsk from the uniform distribution instead of computing it

as ct
(lock)
i,j ← SKE.Enc

(
λ, lock,Fj(sk(i mod n)+1)

)
.

Claim. If an adversary A distinguishes between Hybrid (i − 1) ·m + j and
Hybrid (i− 1) ·m+ j− 1, then there exists a distinguisher D, that uses A to
break D-RandCt security of SKE. We have∣∣Pr[H(i−1)·m+j ]− Pr[H(i−1)·m+j−1]

∣∣ = AdvD-RandCt
D,SKE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme. For
i′ ∈ [n] and j′ ∈ [m] such that (i′−1)·m+j′ < (i−1)·m+j the solver chooses

ct
(lock)
i′,j′ ←R {0, 1}ℓsk uniformly at random. For (i′−1) ·m+j′ > (i−1) ·m+j,

the solver queries ct
(lock)
i′,j′ ← O(lock,Fj′(sk(i′ mod n)+1). Finally, the solver

submits msg = Fj(sk(i mod n)+1) as the challenge, and obtains ct
(lock)
i,j . The

rest of the obfuscated program is computed as given by the specification.
Then if the adversary outputs that it is in Hybrid (i − 1) ·m + j − 1, then
the solver answers that the encrypted message is msg. Otherwise, the solver
answers that the ciphertext is uniformly random.

In summary we have that the advantage to distinguish between Hybrid 0 and
Hybrid n ·m+ n is AdvDVBBA,LObf ≤ n ·m · AdvD-RandCt

D,SKE (λ) + n · AdvIND-CPA
D,FHE (λ).

Remark 1 (Relaxing the Security Requirement on the SKE Scheme). From the
proof of Hybrids [1, n ·m] in the proofs of Theorem 2 and Theorem 4, we observe
that we need D-IND-CPA (resp. D-RandCt) because we need to encrypt multiple
FHE secret keys using the same lock key. Note that in the special case of key
dependent message insecure fully homomorphic encryption where n = 1 and
m = 1, we can relax the requirement on SKE to D-semantic security (resp. weak
D-pseudorandom ciphertext). Furthermore, for D being the class of uniform
distributions, we can efficiently implement SKE as a one-time pad.
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4.2 Extending to Multi-Bit Messages

In this section, we show variants of our lockable obfuscation scheme capable of
returning larger messages instead of only a single bit. We show that it is enough
to publish encryptions of the bits of the message, and then use the multiplicative
homomorphism and the cycle tester to test which bit is encrypted. We extend
the idea and show that circular insecure, fully homomorphic encryption schemes
are naturally susceptible to key recovery attacks. Finally, we note that we can
exploit a full key recovery attack to reduce further the number of ciphertexts
that constitute the obfuscated program.

Construction 3 (Multibit Lockable Obfuscation) Let LObf = (Obf,
Eval) be the lockable obfuscation as given by Construction 1 or Construction 2.

Let C : {0, 1}κ 7→ {0, 1}η be a circuit and let Ĉ ← LObf.Setup(λ,C, lock) for
lock ∈ {0, 1}η. Denote as msg[l] ∈ {0, 1} for l ∈ [ℓmsg] the lth bit of a mes-
sage msg. For the message msg ∈ {0, 1}ℓmsg where ℓmsg = poly(λ), we extend the
obfuscated circuit as follows.

– The Obf algorithm additionally computes ct
(msg)
i,l ← FHE.Enc(ski,msg[l]) for

all i ∈ [n] and l ∈ [ℓmsg]. The extended program is

• Ĉ =
(
[cti]

n
i=1, [ct

(msg)
i,l ]

n,ℓmsg

i=1,l=1, [ct
(lock)
i,j ]n,mi=1,j=1

)
for base Construction 1,

and
• Ĉ =

(
[cti]

n
i=1, [ct

(msg)
i,l ]

n,ℓmsg

i=1,l=1, [ct
(lock)
i,j ]n,mi=1,j=1

)
for base Construction 2.

– The Eval algorithm upon computing ct
(Test)
i,j as in Construction 1 or Con-

struction 2, restores the message msg as follows.

1. If FHE.Test([ct
(Test)
i,j ]n,mi=1,j=1) = 0, then return ⊥.

2. For all l ∈ [ℓmsg] do
• For i ∈ [n] and j ∈ [m] compute

ct
(Test,msg)
i,j,l ← FHE.Eval

(
[ct

(Test)
i,j , ct

(msg)
i,l ], Mul(., .)

)
.

• Set msg[l] = FHE.Test
(
[ct

(Test,msg)
i,j,l ]n,mi=1,j=1

)
.

Theorem 5 (Correctness). For all λ ∈ N, all C : {0, 1}κ 7→ {0, 1}η, all lock ∈
{0, 1}η and msg ∈ {0, 1}ℓmsg , LObf given by Construction 3 is a polynomially
efficient and correct lockable obfuscation with correctness error

ErrcorrLObf(λ) ≤ n ·m · ℓmsg · ErrcorrFHE.Eval(λ, δ) + ℓmsg · ErrcorrFHE.Test(λ) + ErrcorrSKE(λ).

Proof. Again, polynomial efficiency follows from polynomial efficiency of the
underlying primitives. The proofs of correctness for both versions that are based
on Construction 1 and Construction 2, follow the proofs of Theorem 2 and

Theorem 4, respectively, until the ciphertexts ct
(Test)
i,j are computed. Remind

that for C(x) = lock we have ct
(Test)
i,j ≈ FHE.Enc(ski,Fj(sk(i mod n)+1)). Then

from Construction 3 we have

ct
(Test,msg)
i,j,l = FHE.Eval

(
[ct

(Test)
i,j , ct

(msg)
i,l ], Mul(., .)

)
≈ FHE.Enc(ski,Fj(sk(i mod n)+1) ·msg[l])
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with probability failure ErrcorrFHE.Eval(λ, δ) for all i ∈ [n], j ∈ [m] and l ∈ [ℓmsg].

Therefore, if msg[l] = 0, then Test([ct
(Test,msg)
i,j,l ]n,mi=1,j=1) = 0, and if msg[j] = 1,

then FHE.Test
(
[ct

(Test,msg)
i,j,l ]n,mi=1,j=1

)
= 1, with probability of failure ErrcorrFHE.Test(λ).

If C(x) ̸= lock, then we have ct
(Test,msg)
i,j,l ≈ FHE.Enc(ski, m̃sgi,j), where the

plaintext is m̃sgi,j = SKE.Dec(C(x), ct
lock
i,j ). From correctness of the SKE scheme

we have that there exists i ∈ [n] and all j ∈ [m] such that m̃sgi,j ̸=
Fj(sk(i mod n)+1) with probability at least 1−ErrcorrSKE(λ). Consequently, we have

that, even if msg[l] = 1, the vector [ct
(Test,msg)
i,j,l ]n,mi=1,j=1 does not encode a cycle,

and the tester returns 0 with probability failure bounded by ErrcorrFHE.Test(λ) and
the LObf.Eval algorithm outputs ⊥.

Note that in the case C(x) ̸= lock, the circuit evaluated by the FHE is smaller,
however we upperbound the error with ErrcorrFHE.Eval(λ, δ). Furthermore, in the case
C(x) = lock, SKE always returns the correct message, but we upperbound the
probability of failure with ErrcorrSKE(λ).

To summarize, we have that the message extraction may fail with probability
at least n ·m · ℓmsg · ErrcorrFHE.Eval(λ) + ℓmsg · ErrcorrFHE.Test(λ) + ErrcorrSKE(λ).

Theorem 6 (Security). Let SKE be a D-IND-CPA secure symmetric key en-
cryption scheme when using Construction 1 as base, or D-RandCt secure when
using Construction 2 as base. Let FHE be a IND-CPA secure fully homomorphic
encryption scheme. Then, LObf given by Construction 1, is D-DVBB secure.

Proof. The proof of Theorem 6 follows the proofs of Theorem 2 and Theorem 4
depending which base construction is used, except with the following changes.

The simulator works as in Theorem 6 or Theorem 4 but it additionally com-

putes ct
(msg)
i,l as encryptions of zero. Let L be the number of the last hybrid in the

proof of Theorem 2 or Theorem Theorem 4. We additionally define the following
sequence of hybrids.

Hybrid L+ n · (i− 1) + l: For i ∈ [n] and l ∈ [ℓmsg], instead of computing

ct
(msg)
i,l ← FHE.Enc(ski,msg[l]), we compute ct

(msg)
i,l ← FHE.Enc(ski, 0).

Claim. If an adversary A distinguishes between Hybrid L+n · (i−1)+ l and
Hybrid L+ n · (i− 1) + l − 1, then there exists a distinguisher D, that uses
A to break IND-CPA security of FHE. We have∣∣Pr[HL+n·(i−1)+l]− Pr[HL+n·(i−1)+l−1]

∣∣ = AdvIND-CPA
D,FHE (λ).

Proof. First, the solver generates all secret keys of the FHE scheme except
ski. The solver generates all ciphertexts as in Hybrid L+n·(i−1)+l−1, except
for the ciphertext ct

(msg)
i,l . To obtain ct

(msg)
i,l the solver sets the challenge query

as msg0 = msg[l] and msg1 = 0. All other ciphertexts for the secret key are
obtained by querying O on messages as in Hybrid L+ n · (i− 1) + l − 1.
If the adversary outputs that it is Hybrid L+n ·(i−1)+ l−1, then the solver
answers that the encrypted message is msg0. Otherwise, the solver answers
that the message is msg1.
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Finally, we have that for

– the base Construction 1, the adversary’s advantage of distinguish between
hybrid 0 and hybrid L+ n · ℓmsg is

AdvDVBBA,LObf ≤ n ·m · AdvD-IND-CPA
D,SKE (λ) + n · (m+ ℓmsg) · AdvIND-CPA

D,FHE (λ)

and for
– the base Construction 2, the adversary’s advantage of distinguish between

hybrid 0 and hybrid L+ n · ℓmsg is

AdvDVBBA,LObf ≤ n ·m · AdvD-RandCt
D,SKE (λ) + n · (1 + ℓmsg) · AdvIND-CPA

D,FHE (λ)

Key Recovery Attack. We show that given a key cycle for any circular in-
secure fully homomorphic encryption, it is possible to decode the key material.
The idea follows from Construction 3.

Construction 4 (The Key Recovery Attack) Let FHE = (Setup, Enc, Dec,
Eval, Test) be a fully homomorphic encryption scheme with a cycle tester. We
build the algorithm KeyRecovery as follows:

KeyRecovery([cti]
n,m
i=1,j=1): Takes as input a vector of ciphertexts [cti,j ]

n,m
i=1,j=1

and returns a vector [s̃ki,j ]
n,m
i=1,j=1.

1. Let ℓ ≥ ⌈log2 Fj(.)⌉ for all j ∈ [m].
2. For i ∈ [n], j ∈ [m] and l ∈ ℓ

– Compute ct
(Bit,i,j)
l ← FHE.Eval

(
cti,j , GetBit(., l)

)
, where GetBit(x, l)

is a circuit that returns the lth bit of x.
– For i′ ∈ [n] and j′ ∈ [m]

• If i′ = i, then set

ct
(Test,i,j)
i′,j′ ← FHE.Eval

(
[ct

(Bit,i,j)
l,i′ , cti′,j′ ], Mul(., .)

)
.

• Otherwise set ct
(Test,i,j)
i′,j′ ← cti′,j′ .

– Set b̃i,j,l ← Test
(
[ct

(Test,i,j)
i′,j′ ]n,mi′=1,j′=1

)
.

3. For i ∈ [n] and j ∈ [m] compute s̃ki,j ←
∑ℓ

l=1 b̃i,j,l · 2l−1.
4. Return [s̃ki,j ]

n,m
i=1,j=1.

Theorem 7 (Correctness). For i ∈ [n] and j ∈ [m] let cti,j ≈ FHE.Enc(ski,
Fj(sk(i mod n)+1)). Let CKR be the circuit that KeyRecovery homomorphically

computes on each ciphertext cti,j until it obtains ct
(Test,i,j)
i′,j′ . Denote as δ the

depth of CKR. Let [s̃ki,j ]
n,m
i=1,j=1 ← KeyRecovery([cti,j ]

n,m
i=1,j=1). Then the equation

s̃ki,j = Fj(sk(i mod n)+1) holds for all i ∈ [n] and all j ∈ [m] with probability

1−
(
ErrcorrFHE.Eval(λ, δ) + ErrcorrFHE.Test(λ)

)
.
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Proof. Let us denote as bi,j,l ∈ {0, 1} the bits which satisfy Fj(sk(i mod n)+1) =∑ℓ
l=1 b(i mod n)+1,j,l ·2l−1. From correctness of the FHE we have that ct

(Bit,i,j)
l =

FHE.Eval(cti,j , GetBit(., l)) ≈ FHE.Enc(ski, bi,j,l).
Again from correctness of the FHE we have

ct
(Test,i,j)
i′,j′ = FHE.Eval

(
[ct

(Bit,i,j)
l,i′ , cti′,j′ ], Mul(., .)

)
≈ FHE.Enc

(
ski′ , bi,j,l · Fj′(sk(i′ mod n)+1)

)
,

for i′ = i. For i′ ̸= i, we set ct
(Test,i,j)
i′,j′ = cti,j . Now observe that the vector

[ct
(Test,i,j)
i′,j′ ]n,mi′=1,j′=1 decrypts to the same messages as the vector [cti,j ]

n,m
i=1,j=1 if

bi,j,l = 1. If bi,j,l = 0, then the ciphertexts ct
(Test,i,j)
i,j′ are ciphertexts of 0, and

the cycle is broken. Hence from correctness of the cycle tester we have b̃i,j,l = 0

if bi,j,l = 0, since ct
(Test,i,j)
i′,j′ ≈ FHE.Enc(ski′ , 0), and b̃i,j,l = 1 if bi,j,l = 1, since

ct
(Test,i,j)
i′,j′ ≈ FHE.Enc(ski′ ,Fj′(sk(i′ mod n)+1)). Finally, from the definition we

have that s̃ki,j =
∑ℓ

l=1 b̃i,j,l · 2l−1 = Fj(sk(i mod n)+1).

Remark 2 (Further simplification of Multibit Lockable Obfuscation). At this point
we believe it is easy to see, that we can reduce the size of the obfuscated pro-
gram given by Construction 3, by publishing ctmsg ← FHE.Enc(sk1,msg) instead

of [ctmsgi,j ]
ℓmsg

j=1)]
n
i=1. The idea to decrypt the message from ctmsg, is to run the

attack given by Construction 3, i.e., recover all secret keys for the FHE scheme,
including sk1. Note that we assume that it is feasible to recover the secret keys
given [Fj(sk(i mod n)+1)]

n,m
i=1,j=1. Finally, we computemsg← FHE.Dec(sk1, ctmsg).

5 Conclusions

We believe that our lockable obfuscators are intuitive and easy to understand.
Our algorithms exemplify, alongside the work from Kluczniak [Klu20], that cir-
cular insecure encryption is a useful building block for advanced cryptographic
primitives. It is worth noting that circular insecure encryption was previously
constructed solely out of theoretical curiosity.

As mentioned in the introduction, the main aim of this paper is to introduce
and analyze a general methodology of building lockable obfuscators. In particu-
lar, we leave concrete instantiations of our methods to future work. An exciting
direction would be whether, for instance, we can use existing fully homomorphic
encryption schemes together with the cycle testers in [BHW15, KW16, AP16] to
build more efficient lockable obfuscation without the need to obfuscate branching
programs.
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Appendices

A Fully Homomorphic Encryption with a Cycle Tester

In this section we recall the construction of a cycle testable fully homomorphic
encryption scheme from [GKW17a].

Construction 5 (Construction of a FHE Scheme with a Cycle Tester)
Let FHE = (Setup, Enc, Eval, Dec) be a fully homomorphic encryption, and
LObf = (Obf, Eval) be a lockable obfuscator. We build the fully homomorphic
encryption scheme FHE∗ with a cycle tester as follows.

Setup(λ, δ): Takes as input a security parameter λ and bound on the circuit
depth δ.

1. Run sk′ ← FHE.Setup(λ, δ), and choose lock← {0, 1}η.
2. Let C ← FHE.Dec(sk, .) and run Ĉ ← LObf.Obf(λ,C, lock). We assume

that |C| ≤ δ.

3. Output sk = (sk′, lock). Furthermore, we assume that Ĉ is publicly avail-
able.

Enc(sk,msg): Takes as input a secret key sk = (sk′, Ĉ, lock), and a message msg.

1. Output ct← FHE.Enc(sk′,msg).

Eval([cti]
κ
i=1, C): Takes as input a set of ciphertexts [cti]

κ
i=1, and a circuit C.

1. Output ct← FHE.Eval([cti]
κ
i=1, C).

Dec(sk, ct): Takes as input a secret key sk = (sk′, lock) and a ciphertext ct.

1. Outputs msg← FHE.Dec(sk′, ct).

Test(ct): Takes as input a ciphertext ct.

1. Return 1 if LObf.Eval(Ĉ, ct) = 1. Otherwise return 0.

Correctness of decryption and evaluation follows from correctness of the FHE
scheme. Correctness of cycle testing, follows from correctness of the lockable
obfuscator. Note that the cycle testing function for Construction 5 is to return
lock given as input sk.

Below we restate the proof of ind-cpa security from [GKW17a].

Theorem 8 (IND-CPA of Construction 5). Let FHE be a ind-cpa secure
fully homomorphic encryption scheme, and LObf = (Obf, Eval) be a lockable
obfuscation. Let FHE∗ be as given by Construction 5. Given ind-cpa security of
FHE and D-DVBB security of LObf = (Obf, Eval) with D being the uniform
distribution, FHE∗ is ind-cpa secure.

Proof (Sketch). We show the proof via a sequence of hybrid experiments. Let
us denote as υ the size of the circuit C : {0, 1}κ 7→ {0, 1}η defined as C ←
FHE.Dec(sk, .).

Hybrid 0: This is the original scheme in which we encrypt the message msg0.
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Hybrid 1: This hybrid is as the previous, except we simulate the lockable ob-
fuscation. Specifically, we compute Ĉ ← Sim(λ, κ, η, υ, 1) instead of Ĉ ←
LObf.Obf(λ,C, lock). Indistinguishability between Hybrid 0 and Hybrid 1
follows from D-DVBB of the lockable obfuscation scheme and the fact that
lock is chosen independently from the uniform distribution.

Hybrid 2: This hybrid is as the previous, except we encrypt the message msg1.
Since the lockable obfuscation is simulated, indistinguishability betweenHy-
brid 1 and Hybrid 2 follows from ind-cpa security of FHE.
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