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Abstract. Most cryptography is based on assumptions such as factoring
and discrete log, which assume an adversary has bounded computational
power. With the recent development in quantum computing as well as
concern with everlasting security, there is an interest in coming up with
information-theoretic constructions in the bounded storage model.

In this model, an adversary is computationally unbounded but has lim-
ited space. Past works have constructed schemes such as key exchange
and bit commitment in this model. In this work, we expand the function-
alities further by building a semi-honest MPC protocol in the bounded
storage model. We use the hardness of the parity learning problem (re-
cently shown by Ran Raz (FOCS 16) without any cryptographic assump-
tions) to prove the security of our construction, following the work by
Guan and Zhandry (EUROCRYPT 19).

1 Introduction

Many schemes in cryptography rely on various computational assumptions such
as factoring, discrete log and Learning with Errors. Even though these assump-
tions are well-believed to be true, recent advances in quantum computing show
that factoring and discrete log problems could be solved efficiently by quan-
tum computers [24,11]. It, therefore, could be dangerous to base the security of
global user information on these assumptions. An adversary can store cipher-
text and attempt to decrypt it later when his computational power increases
or quantum computers come into existence. The current systems, therefore, do
not provide everlasting security. Alternately, one could construct schemes in the
information-theoretic model, where no computational power of the adversary is
assumed. However, many of these information-theoretic systems such as one-time
pad are impractical to use.

In the face of the above issues, Maurer proposed bounded storage model [18]
in which we do not assume any computational restrictions on the adversary.
Rather, we assume that the adversary has bounded storage and is unable to
store a long conversation. In this model, [18] constructed a key exchange protocol
assuming a publicly accessible long random stream of bits. In his protocol, Alice
and Bob respectively record a private random subset of n bits from a stream of
n2 random bits. They later send their recorded positions to each other, and the



secret key is set as the bit at their commonly recorded position in the stream.
Note that they will record at least one-bit position in common with a constant
probability according to the birthday paradox. An eavesdropping adversary with
Cn2 (for some constant C < 1) storage can only obtain the secret key with 1/C
probability.

Many sequence of works [18,3,2,1,4,7,17,8,22,13,19,23,6] have given increas-
ingly secure and efficient protocols for key exchange, oblivious transfer, commit-
ments and timestamping in this model. Most of these works rely on the birthday
paradox. Unfortunately, this has several disadvantages. For example, in the above
protocol, (1) The honest parties can succeed with only constant probability. To
achieve high success probability, the protocol has to be repeated several times.
(2) The adversary can succeed with constant probability. To achieve statistical
security, a randomness extractor has to be applied to the obtained secret key.
(3) The birthday paradox does not have a rich structure that can be exploited
to construct advanced protocols.

Recently, Ran Raz et al. [20,21,16] proposed a new class of techniques that
can be used to construct cryptographic schemes in the bounded storage model.
Specifically, they studied the hardness of solving parity learning problem in
bounded space. In this problem, a secret string k is sampled uniformly at ran-
dom from {0, 1}n. A learner has to compute the secret k when given a stream of
samples (a1, b1), (a2, b2), · · · , where each ai is sampled uniformly at random from
{0, 1}n, and bi is the inner product of ai and k mod 2. Roughly speaking, [20]
proved that any (computationally unbounded) learner that uses less than n2/20
space requires either an exponential number of samples or has an exponentially
small probability of outputting the correct answer. [20] used the hardness of
solving the parity learning problem to construct a simple secret key encryption
protocol – The secret key k is randomly sampled from {0, 1}n. To encrypt a
bit b, sample x ← {0, 1}n and output (x, x · k + b mod 2). In this protocol, the
honest users require only O(n) space, whereas a dishonest user requires more
than n2/20 space to break security.

Guan and Zhandry [12] used the hardness of solving parity learning problem
to construct key exchange, oblivious transfer, and bit commitment protocols in
the bounded storage model.

Even after 28 years after the introduction of the bounded storage model,
constructing a general multi-party computation protocol in this model using
any techniques is still an open problem. To the best of our knowledge MPC
in the bounded storage model has not yet been defined in any past work. In
this work, we define semi-honest secure MPC in the bounded storage model and
construct it based on the hardness of solving parity learning in bounded space.

1.1 Our Results and Technical Overview

In a multi-party computation scenario, there are k parties Pi (i ∈ [k]) each
holding a private input xi. The parties would like to know the output of a joint
function y = f(x1, · · ·xk) without leaking any information about its private in-
put to the other parties. We would like to develop a protocol, where the parties
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can send messages to each other in rounds and finally compute y based on the
transcript. To enable the communication between parties, we model the parties
as interactive Turing machines that have additional read and write communi-
cation tapes. Many MPC protocols have been proposed in the computational
model [25,10,15,14] predominantly based on oblivious transfer (OT). As [12]
showed how to build oblivious transfer in the bounded storage model based on
the hardness of parity learning [20], one simple idea could be to directly substi-
tute Guan Zhandry’s OT construction in any of the existing MPC constructions.

However, there are few subtleties here. First, as we base our MPC protocol
on the hardness of parity learning, we would like to show that if an adversary
can break the security of our MPC protocol in bounded space, then he can solve
the parity learning problem in bounded space. To model the adversarial behav-
iors in MPC properly, we model the adversaries as interactive Turing machines.
However, the notion of bounded storage for interactive Turing machines is not
well-defined in this context. We therefore need to first give a formal charac-
terization of bounded-storage interactive Turing machines and show the parity
learning hardness in the setting.

Review of Parity Learning for Branching Programs [20] We first give a brief
overview on the branching program adversary model used in [20] and why we
need to properly remodel the problem when it comes to Turing machines.

When proving the hardness of parity learning, [20] modeled the learning algo-
rithm as a deterministic branching program and not as a probabilistic interactive
Turing machine.

At a high level, a branching program is a graph, with vertices arranged
in layers, and edges between the vertices in adjacent layers marked by parity
learning samples (a, b) ∈ {0, 1}n × {0, 1}. Intuitively, each layer of the graph
represents a time step and the vertices in each layer represent the possible states
of the learning algorithm at that time step. The learner initializes his state with
the vertex in the first layer. When the learner receives a stream of parity learning
samples (a1, b1), (a2, b2), · · · , the learner follows the edges corresponding to the
samples. When it reaches a vertex in the last layer, it outputs a key k ∈ {0, 1}n
depending on the vertex. [20] showed that either the width of the branching

program (number of vertices in a layer) has to be 2cn
2

or the length of the
branching program (total number of layers which also represents the number of
samples) has to be exponential in n in order to solve the parity learning problem
with non-negligible advantage. This implies any learner with access to an only
polynomial number of samples should have space at least cn2 (for some constant
c) to store the state. Intuitively, [20] defined the notion of the learner’s space
as the amount of storage required to store the state of the learner and did not
include the amount of space required to store the transition function.

Parity Learning Hardness for Bounded-Storage Turing Machines.
In the Turing machine model, we let the learner receive a stream of parity learn-
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ing samples via its read communication tape1 and has to write its output key on
the output tape. The learner can additionally sample randomness via its random
tape, interact with other Turing machines using its other communication tapes,
and additionally take an advice string on its input tape.2 What should be an
analogous definition of space in case of (probabilistic interactive) Turing ma-
chines?3 Should we include the space required to store the transition function?
What about the space required to store the advice string on input tape, or the
space required to store the output?

To address these questions, we first define a notion called “space characteris-
tic” for Turing machines. We then prove that any Turing machine with bounded
space characteristic has an exponentially small probability of solving the parity
learning problem with a polynomial number of samples.

In order to prove the hardness result, we show that for every Turing machine
that solves the parity learning problem, there exists a corresponding branching
program that solves the problem with the same advantage. For simplicity, let us
first consider the case of deterministic Turing machines which do not interact
with other parties. Roughly speaking, we define a configuration of the Turing
machine to be a tuple containing (state of the TM, input tape pointer, work
tape contents, work tape pointer, output tape contents, output tape pointer). In
this case, the vertices of the constructed branching program correspond to all
possible configurations of the Turing machine, and the edges between the ver-
tices correspond to how the Turing machine configuration changes when given a
parity learning sample on its read comm. tape. We define the space characteristic
of the TM to be the space required to store a configuration. Note that this does
not include the storage required for input tape contents or state transition func-
tion. We give a more general definition of “space characteristic” for non-uniform
probabilistic interactive TMs in Definition 1, and extend the hardness result to
these general Turing machine learners in Section 3.

MPC in Bounded Storage Model. In this work, we construct a semi-
honest secure k-party MPC protocol secure against k − 1 corruptions in the
bounded storage model. In this model, the corrupted parties try to learn more
information from the union of their protocol transcripts but do not deviate from
the protocol. As we base our security on the hardness of parity learning problem,

1 The Turing machine has only read once access to this tape and thereby cannot move
its tape head to the left.

2 Looking forward, given an adversary that breaks the security of our MPC protocol,
we build a reduction algorithm that solves the parity learning problem. In this case,
the reduction algorithm interacts with the adversary. The reduction algorithm uses
the circuit C and input tuple (x1, · · ·xk) for which the adversary has a high advantage
as an advice string written on its input tape.

3 We note that [12] built various protocols where the parties are modeled as Tur-
ing machines. Unfortunately, they ignored the gap between Raz’s theorem [20] and
Turing machines, and used the traditional space complexity definition to define the
space of a Turing machine.
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the honest parties can run the protocol in O(n) space, whereas the dishonest
parties need at least Ω(n2) space to break the protocol.

At a high level, we follow the GMW semi-honest MPC protocol approach [10].
The functionality is first represented as a circuit C containing only XOR and
AND gates. When the circuit C is evaluated on input (x1, · · · , xk), let the bit
value obtained at each wire w be vw. The goal is to enable all the parties Pi

to hold a secret share ri,w of vw (i.e.,
!

i ri,w = vw mod 2) for each wire w. In
order to do this, each party Pi first secret shares its private input xi with all the
other parties. Now, each party holds a secret share of vw for all the input wires
w.

The parties now proceed to process gate by gate in a logical order. If a gate
is an XOR gate, the parties simply XOR the shares of their input wires locally
to obtain a share of the output wire i.e., perform ri,c = ri,a + ri,b mod 2, where
a, b are input wires and c is the output wire of the gate. If the gate is an AND
gate, then the parties would like to obtain secret shares of the bit va ∗ vb =
(
!

i ri,a)∗ (
!

i ri,b) = (
!

i ri,a ∗ri,b)+
!

i<j(ri,a ∗rj,b+ri,b ∗rj,a). Each party Pi

could locally compute ri,a ∗ ri,b term. To secret share the (ri,a ∗ rj,b + ri,b ∗ rj,a)
term, the party Pi first samples a bit α ← {0, 1}, and sets m(p,q) = α + p ∗
ri,b + q ∗ ri,a for each p, q ∈ {0, 1}. The parties Pi and Pj now run an 1-out-of-4
oblivious transfer protocol4, where Pi acts as the sender with input messages
(m(0,0),m(0,1),m(1,0),m(1,1)), and Pj acts as the receiver with (rj,a, rj,b) as its
choice. The party Pj adds the OT output α+ (ri,a ∗ rj,b + ri,b ∗ rj,a) to its share
of output wire rj,c. The party Pi adds α to its share of the output wire ri,c.
After processing all the gates, each party sends their secret share corresponding
to all the output wires to the other parties. Each party can compute the desired
output by summing up the recieved secret shares.

1-out-of-4 Oblivious Transfer Protocol. In order for the above con-
struction to work, we need a semi-honest secure 1-out-of-4 bit oblivious transfer
protocol in the bounded storage model. However, [12] built only a 1-out-of-2
bit oblivious transfer based on the hardness of parity learning. In this work, we
provide a generic way to transform any 1-out-of-2 OT to 1-out-of-4 OT in the
bounded storage model. Let the sender’s input messages be (m0,m1,m2,m3)
and the receiver’s choice be d. At a high level, the sender samples 3 uniformly
random mask bits ri,1, ri,2, ri,3 for each messagemi. For each pair (i, j) ∈ [3]×[3],
the receiver chooses to obtain either a mask bit of mi or a mask bit of mj by
performing a 1-out-of-2 OT with the sender. At the end, the sender masks each
message mi with the corresponding mask bits and sends yi = mi+ri,1+ri,2+ri,3
(for each i ∈ [3]) to the receiver. Clearly, during the 1-out-of-2 OT invocations,
if the receiver always chooses to obtain the mask bit corresponding to md, then
the receiver can decrypt yd and obtain md.

4 In 1-out-of-t oblivious transfer protocol, the sender takes t messages (m1, · · ·mt) as
input. The receiver chooses an index c and obtains the message mc, without letting
the sender know about the choice c and without gaining any information about the
other messages.
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The above transformation is secure because the receiver cannot obtain infor-
mation about other messages as for each i ∕= d, the receiver does not know a
mask bit corresponding to mi. The sender cannot obtain any information about
the choice d because the only messages he receives are part of the underlying
1-out-of-2 OT protocol. As the underlying 1-out-of-2 OT is secure, the sender
cannot obtain any more information throughout the protocol. The above trans-
formation can be extended to a general 1-out-of-k case by running 1-out-of-2 OT
protocol

"
k
2

#
times.

1.2 Related Works

A recent concurrent work [5] achieves simulation-based security for MPC based
on the method from [8], but in the slightly different streaming BSM, compared
to the traditional BSM used in [8]: the honest parties are less restricted and
meanwhile the adversary is given less power. The protocols built in [12](and thus
ours) can be viewed as similar to the streaming BSM, but the honest parties only
use a single or very limited number of ”long” rounds where they stream long
messages to each other and therefore achieve better in terms of communication
complexity.

2 Preliminaries

In this section, we first recall the definition of interactive turing machines and
define a new parameter of ITMs called “space characteristic”. We then define
the notions of multiparty computation and oblivious transfer in the bounded
storage model.

2.1 Interactive Turing Machines

An interactive turing machine (ITM) is a multi-tape turing machine. The func-
tionality and access restrictions of each tape are described below.

– Space Parameter tape (read-only): This tape stores a value of the form 1n.
Here n is called the “space parameter” which determines the upper bound
on the space that could be used by the turing machine. This is analogous to
the security parameter typically used in the computational model.

– Input tape (read-only): The ITM receives its input on this tape.
– Output tape (write only): The ITM places its final output on this tape.
– Work tape (read & write): The ITM uses this for its internal storage during

the computation.
– Random tape (read once): The ITM receives random bits on this tape.
– r read communication tapes (read once): These tapes are used to receive

messages from other turing machines in an interactive protocol. Each tape
is given a unique identifier in the set [r].

– w write communication tapes (write-once): These tapes are used to send
messages to other turing machines in an interactive protocol. Each tape is
given a unique identifier in the set [w].
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For the tapes with read once (or write-once) access, the state machine can access
each bit on the tape only once i.e., the head pointer of the turing machine is
only allowed to move in the forward direction. In this paper, we assume that
a uniformly random bit is sampled and placed on a cell of the random tape
only at the time step at which the cell is accessed by the turing machine. In an
interactive protocol, we can connect write tape i of an ITM A to a read tape j
of a different ITM B. In such a case, every bit written by A on it’s ith write tape
is copied immediately to the first blank cell of ITM B’s jth read tape. At every
time step, if an ITM has a non-blank cell at any of its read tape heads, then the
ITM has to definitely read the cell and move its head to right.5 For any turing
machine A, we denote A(1n) to be the turing machine obtained by fixing the
space parameter tape to 1n.

We now define a new parameter for an ITM called “space characteristic”.
Looking ahead, we construct a multi-party computation protocol and show that
no (computationally unbounded) adversary with small space characteristic can
break the security of the protocol.

Definition 1 (Space Characteristic). Consider any interactive turing ma-
chine M with r read comm. tapes, w write comm. tapes, alphabet size a, and Q
states in its state machine. Suppose for every random string on the random tape,
the execution of M on an input x (of length ip) and space parameter n uses at
most T work tape cells, rnd random tape cells6 and outputs a string of length at
most op on its output tape. Then the space characteristic of M on the input x
is given by

(T + op+ 2(r + w)) · log2 a+ log2(n ·Q · T · ip · op · rnd).

Intuitively, the first term (T+op+2(r+w)) · log2 a is the total amount of storage
(in bits) required to store work tape, output tape and few symbols of each of the
communication tapes. The second term intuitively represents the space required
to store the current state, work tape pointer, input tape pointer, output tape
pointer, space tape pointer and random tape pointer locations. The necessity for
the second term would be more clear in Section 3. Note that the definition of
space characteristic is different from that of space complexity. Space complexity
typically does not include the space required to store the output, whereas the
definition of space characteristic includes op term. Moreover, the definition of
space characteristic includes logQ term, which is typically not included in the
space complexity.

Definition 2 (s-space bounded ITM). For any function s : N → N, we
say that an interactive turing machine M is s-space bounded for an input class

5 Note that a turing machine could have multiple read tapes and all the tapes could
receive messages from other turing machines at the same time. The turing machine
has to read all the read tape cells at once, but can only copy one symbol to its work
tape at a timestep. We solve this by problem by allowing our work tape to use large
alphabet size.

6 In case the turing machine does not use randomness, we fix rnd = 1.
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{Xn}n∈N, if for all space parameters n ∈ N, and inputs x ∈ Xn, the turing
machine M has a space characteristic s(n).

When the input class is clear from the context, we simply call an ITM to be
s-space bounded.

2.2 Secure Multiparty Computation

In this section, we define Multiparty Computation protocols in the Bounded
Storage Model. In this scenario, we have k parties Pi (i ∈ [k]) each holding a
private input xi. Each party Pi would like to know the output of a joint function
yi = fi(x1, · · ·xk) without leaking any information about its private input to the
other parties. This is represented using a k-party functionality f = (f1, f2, · · · fk).
To compute (y1, · · · yk), we would like to develop a protocol, where the parties
can send messages to each other in rounds. In each round, the message sent by
Pi to Pj (for any i, j ∈ [k]) depends on Pi’s input, its random coins and all the
messages it received in the previous rounds. At the end of the protocol, each
party Pi computes yi = fi(x1, x2, · · · , xk). As we are working in the bounded
storage model, we are only interested in protocols where the algorithm used by
each party Pi has small space characteristic. More formally,

Definition 3 (MPC protocol). A k-party MPC protocol Π is described by
ITMs (Πi)i∈[k] and a simulator Sim7. The ith ITM is used by party Pi. Each
ITM has k read communication tapes and k write communication tapes. The
simulator has k write tapes. For every j ∕= i ∈ [k], the jth write communication
tape of Πi is connected to the ith read communication tape of Πj i.e., this tape
is used by the party Pi to send messages to the party Pj. To initiate the protocol
for a functionality f , each party Pi first places (f , xi) on the input tape of its
ITM Πi and then runs the turing machine.

Definition 4 (s-Correctness). For any function s : N → N, we say that a
k-party MPC protocol Π = (Πi)i∈[k] s-correctly computes a class of k-party
functionalities {Fn}n∈N if for every space parameter n ∈ N, every functionality
f = (f1, · · · , fk) ∈ Fn, for every input vector (x1, · · · , xk) of the functionality,
every set of random coins used by Π, when each party Πi is run on input (f , xi)
and space parameter 1n, the output tape of each Πi at the end of the protocol
is equal to fi(x1, · · · , xk), and each ITM Πi has a space characteristic at most
s(n).

Semi-honest Security We now provide a security definition for MPC proto-
cols against semi-honest adversaries in the bounded storage model. Intuitively,
a semi-honest adversary can corrupt any subset of parties I before starting
the protocol and then obtain their inputs {xi}i∈I , random coins and transcript
of the messages received by the parties. However, the adversary cannot force

7 The simulator is used only in the security definition but not in the real protocol.
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the corrupted parties to deviate from the protocol. Let the view of the ad-
versary be all the information obtained by the adversary. The folklore defi-
nition says that an MPC protocol Π for some functionality f is semi-honest
secure if there exists a simulator such that no semi-honest adversary can dis-
tinguish between the following two distributions: (1) view obtained by running
the protocol Π on input {xi}i∈[k], and (2) the output of the simulator on in-
put f , I, {xi}i∈I , {fi(x1, x2, · · · , xk)}i∈I . Intuitively, if an MPC protocol satisfies
such a security definition, it guarantees that the adversary cannot learn any more
information by looking at the random coins and transcript of the messages other
than what he can learn based on the inputs and outputs of the corrupted parties.

However, such a security defintion would not work in bounded storage model.
This is because the adversary and the simulator can only have bounded space
s, and the view generated by the protcol execution could be much larger than
s. As a result, the simulator may not be able to generate the complete view on
its output tape and send it to the adversary. Therefore, we model the adversary
and the simulator as bounded space interactive turing machines that exchange
stream of bits via their read and write communication tapes. Formally,

Definition 5 (Semi-honest Security). For any functions s1 : N → N, s2 :
N → N and ε : N → [0, 1], we say that a k-party protocol Π = {Πi}i∈[k] (s1, s2, ε)-
securely computes a class of k-party functionalities {Fn}n∈N if
(1) The simulator Sim is s1-space bounded, and
(2) For every s2-space bounded adversary A with k read tapes there exists an
integer N0 s.t. for every space parameter n > N0, for any functionality f =
(f1, f2, · · · fk) ∈ Fn, all input tuples x = (x1, · · · , xk) belonging to the domain
of f , and for every subset I ⊂ [k], we have

|Pr[GameSHA
1n,f ,I,x(0) = 1]− Pr[GameSHA

1n,f ,I,x(1) = 1]| ≤ ε(n),

where GameSH is described in Figure 1 and the probability is taken over the
random coins used by the simulator, the adversary and the challenger.

2.3 Oblivious Transfer

In this section, we define 1-out-of-k oblivious transfer in bounded storage model.
In our scenario, we have 2 parties – a sender and a receiver. The sender takes as
input k message bits {mi}i∈[k] and the receiver takes as input a selector c ∈ [k].
The goal is to enable the receiver to obtain the messagemc. At the same time, we
do not want the receiver to learn anything about the other messages, and we do
not want the sender to learn anything about the selector c. To that end, we model
the sender and the receiver as interactive turing machines (Πsender,Πreceiver) each
with 1 read and 1 write tape. The parties receive their input on input tape, send
messages to each other using their read and write communication tapes, and
finally write their output to the output tape. In the bounded storage model, we
assume both the sender and the receiver have bounded space characteristic. We
require that an honest sender and receiver can run the protocol using at most
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GameSHA
1n,f ,I,x(b)

– If b = 0: For each i ∈ I, the challenger connects the ith write tape of the simulator
Sim to the ith read tape of the adversary A. The challenger then runs the simulator
Sim(1n, (f , I, (xj)j∈I , (fj(x))j∈I)) and the adversary A(1n, (f , I,x)).

– Else if b = 1: The challenger runs the adversary A(1n, (f , I,x)). It then places
(Input, (f , xi)) on the ith read tape of A for each i ∈ I. The challenger runs the real
protocol Π on input (f ,x) and space parameter n. At each step of the protocol Π,
if any party i ∈ I,
• reads a bit c on its random tape, then the challenger places (sample, c) on the

ith read tape of the adversary A.
• receives a bit c from jth read tape (j ∕= i), then the challenger places

(receive, j, c) on the ith read tape of the adversary A.
– At the end of the protocol, the adversary A writes a guess bit b′ on its output tape,

which is considered as the output of the game.

Fig. 1: Security game for MPC against semi-honest adversary A

space s1, and any dishonest (computationally unbounded) sender and receiver
with space less than s2 cannot break the protocol. For the sake of security
definition, we add two additional ITMs SenderSim and ReceiverSim, each having
1 write tape, to the protocol description. We first define the correctness of an
OT protocol.

Definition 6 (s-Correctness). We say that a protocol Π = (Πsender,Πreceiver)
s-correctly performs a 1-out-of-k OT if for every input vector (m1, · · · ,mk) ∈
{0, 1}k, every set of random coins used by the ITMs, the output tape of Πsender

is empty and the output tape of Πr is mc at the end of the protocol, and both
Πsender and Πreceiver uses at most s space through out the protocol.

Semi-Honest Security In this section, we define the notion of semi-honest
security of oblivious transfer in the bounded storage model. In the semi-honest
model, the parties run the protocol honestly but try to deduce more informa-
tion than what is described by the functionality from the view of the protocol.
The security definition is analogous to the general semi-honest security of MPC
protocols for the functionality f({mi}i∈[k], c) = (φ,mc), where φ denotes the
empty string. To be more concrete, the semi-honest OT protocol has to 2 secu-
rity requirements – security against a semi-honest sender, and security against a
semi-honest receiver. When the sender is semi-honest, we require that the view
of the sender (which constitutes its input, sampled randomness and set of all
messages received) can be simulated by a space bounded ITM which takes as
input {mi}i∈[k]. We require that any space-bounded sender (adversary) cannot
distinguish between the real view and the simulated view. As we allow the size
of the protocol’s view to be more than the bound on the space of the turing ma-
chines, the simulator does not send the entire view at once. Rather, the simulator
sends the view to the adversary as a stream of bits via a communication tape.
The adversary has only read once access to this stream of bits. If the adversary
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needs to access any of the bits multiple times, it can copy onto its (bounded
space) work tape. Similarly, when the receiver is semi-honest, we require that
the view of the receiver can be simulated by a space bounded ITM which takes
as input (c,mc). Formally,

Definition 7 (Security against Semi-honest Sender). For any functions
s1 : N → N, s2 : N → N and ε : N → [0, 1], we say that a 1-out-of-k obliv-
ious transfer (OT) protocol Π = (Πsender,Πreceiver, SenderSim,ReceiverSim) is
(s1, s2, ε)-secure against a semi-honest sender if
(1) The simulator SenderSim has space characteristic at most s1, and
(2) For every s2-space bounded adversary A with 1 read tape, there exists an in-
teger N0 s.t. for all space parameters n > N0, for all message bit tuples {mi}i∈[k]

and for every selector bit d ∈ [k], we have

|Pr[GameSHSenderA1n,{mi}i∈[k],d
(0) = 1]−Pr[GameSHSenderA1n,{mi}i∈[k],d

(1) = 1]| ≤ ε(n),

where the game GameSHSender is described in Figure 2 and the probability is
taken over the random coins used by the simulator, adversary and challenger.

GameSHA
1n,{mi}i∈[k],d

(β)

– If β = 0: The challenger connects the write communication tape of the sim-
ulator SenderSim to the read communication tape of the adversary A. The
challenger then runs the simulator SenderSim(1n, {mi}i∈[k]) and the adversary
A(1n, ({mi}i∈[k], d)).

– Else if β = 1: The challenger runs the adversary A(1n, ({mi}i∈[k], d)). It then runs
the protocol Π with sender’s input {mi}i∈[k] and receiver’s input d. The challenger
then places (input, d) on the read tape of the adversary. Whenever Πsender reads
a bit b on its random tape, the challenger places (sample, b) on the read tape of
the adversary A. Similarly, whenever Πsender receives a bit b from Πreceiver, then the
challenger places (receive, b) on the read tape of the adversary A.

– At the end of the protocol, the adversary A writes β′ on its output tape, which is
considered as the output of the game.

Fig. 2: Security game for OT against Semi-honest Sender A

Definition 8 (Security against Semi-honest Receiver). For any functions
s1 : N → N, s2 : N → N and ε : N → [0, 1], we say that a 1-out-of-k obliv-
ious transfer (OT) protocol Π = (Πsender,Πreceiver, SenderSim,ReceiverSim) is
(s1, s2, ε)-secure against a semi-honest receiver if
(1) The simulator ReceiverSim has space characteristic at most s1, and
(2) For every s2-space bounded adversary A with 1 read tape, there exists an in-
teger N0 s.t. for all space parameters n > N0, for all message bit tuples {mi}i∈[k]

and for every selector bit d ∈ [k], we have

|Pr[GameSHReceiverA1n,{mi}i∈[k],d
(0) = 1]−Pr[GameSHReceiverA1n,{mi}i∈[k],d

(1) = 1]| ≤ ε(n),
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where GameSHReceiver is described in Figure 3 and the probability is taken over
the random coins used by the simulator, adversary and challenger.

GameSHReceiverA1n,{mi}i∈[k],d
(β)

– If β = 0: The challenger connects the write communication tape of the sim-
ulator ReceiverSim to the read communication tape of the adversary A. The
challenger then runs the simulator ReceiverSim(1n, (d,md)) and the adversary
A(1n, ({mi}i∈[k], d)).

– Else if β = 1: The challenger runs the adversary A(1n, ({mi}i∈[k], d)). It then runs
the protocol Π with sender’s input {mi}i∈[k] and receiver’s input d. The challenger
then places (input, d) on the read tape of the adversary. Whenever Πreceiver reads
a bit b on its random tape, the challenger places (sample, b) on the read tape of
the adversary A. Similarly, whenever Πreceiver receives a bit b from Πsender, then the
challenger places (receive, b) on the read tape of the adversary A.

– At the end of the protocol, the adversary A writes β′ on its output tape, which is
considered as the output of the game.

Fig. 3: Security game for OT against Semi-honest Receiver A

3 Time-Space Lower Bound for Parity Learning for
Turing Machines

In this section, we recall the time-space lower bounds for the parity learning
problem proved in [20] and adapt the theorems in the context of turing machines.
In the parity learning problem, a secret string k is sampled uniformly at random
from {0, 1}n. A learner has to compute the secret k when given a stream of
samples (a1, b1), (a2, b2), · · · , where each ai is sampled uniformly at random from
{0, 1}n, and bi is the inner product of ai and k mod 2. Roughly speaking, Raz [20]
proved that any (computationally unbounded) learner that uses less than n2/20
space requires either an exponential number of samples or has an exponentially
small probably of outputting the correct answer.

To prove the theorem, Raz modeled the learning algorithm as a branching
program. A branching program of length ℓ and width d is a directed acyclic
graph with vertices arranged as ℓ + 1 layers, each layer containing at most d
vertices. Roughly speaking, each layer represents a time step and a vertex in
each layer represents the state of the learning algorithm. Vertices with out-
degree 0 are called leaf vertices. The first layer has only one vertex, representing
the initial state of the learner. Every non-leaf vertex in the first ℓ layers has 2n+1

outgoing edges connected to the vertices in the next layer. Each of the outgoing
edges is labelled with an n + 1-bit string (a, b), where a ∈ {0, 1}n, b ∈ {0, 1}.
Intuitively, an edge labelled by (a, b) represents how the learner modifies its
state after processing the sample (a, b). Every leaf vertex is associated with a
subspace S ⊆ {0, 1}n. Given a stream of samples (a1, b1), (a2, b2), · · · , the learner
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follows the computation path defined by the branching program and outputs
the subspace S associated with the final vertex. We interpret the output as
the learner guessing that the secret k ∈ S. Formally, [20] proves the following
theorem.

Theorem 1 ([20]). For any c < 1/20, there exists α > 0, such that for any

m ≤ 2αn, and a branching program A of width at most 2cn
2

and length m, that
takes a stream of samples (a1, b1), (a2, b2), · · · (am, bm), where k, ai are sampled
uniformly from {0, 1}n and bi = ai · k mod 2 for every i, outputs k̃ ∈ {0, 1}n,
then Pr[k̃ = k] ≤ O(2−αn).

The [21] theorem states the lower bound only for deterministic branching
programs, whereas we need to model our adversary as a probabilistic interactive
turing machine. Therefore, we now prove an analogous time-space lower bound
for the parity learning problem modeling the learner as a probabilistic ITM.

Time-Space Lower Bound for Deterministic Turing Machines. For the sake of
simplicity, we first prove lower bounds for deterministic ITMs without the ran-
dom tape. We later reduce the lower bounds for probabilistic ITMs to the lower
bounds for deterministic ITMs.

In this model, the learner has a space parameter tape storing 1n, an input
tape, an output tape, and one read comm. tape on which he receives a stream
of samples (a1, b1), (a2, b2), · · · . At the end of the stream, a special symbol #
is given as input to denote the end. The learner has to halt by outputting an
n-bit string k on its output tape and moving its read comm. tape pointer to the
cell next to #. Note that we do not input the stream of samples via the input
tape because the ITM has read-only access to the input tape, and the input
tape pointer is allowed to move in both directions. As we consider non-uniform
learners, the ITM is allowed to have any advice string written on its input tape.

We will present the theorem statement and the proof as below.

Theorem 2. For any c < 1/20, there exists α > 0, such that for every non-
uniform deterministic turing machine A with 1 read comm. tape and space char-
acteristic sc, where sc(n) = cn2, for every space parameter n ∈ N, if A(1n) is

run with any advice string x of length at most 2cn
2/4 on its input tape, and

a stream of samples (a1, b1), (a2, b2), · · · (am, bm) on its read comm. tape, where
m ≤ 2αn, k, ai are sampled uniformly from {0, 1}n and bi = ai ·k mod 2 for every
i, then if A outputs k̃ ∈ {0, 1}n, the success probability Pr[k̃ = k] ≤ O(2−αn).

Proof. For the sake of contradiction, suppose there exists a constant c < 1/20
s.t. for any α > 0, there exists a non-uniform deterministic sc-space bounded
ITM Aα, a space parameter n and an advice string x s.t. Aα(1

n, x) solves parity
learning problem with m ≤ 2αn samples and success probability ε > O(2−αn).
Using this, we show a contradiction to Raz’s lower bound. Specifically, for any
such Aα, space parameter n and advice string x, we construct a correspond-
ing branching program B that solves the parity learning problem with success
probability more than O(2−αn).

13



At any time step during the execution of a turing machine, let us define
its configuration to be a tuple containing (state, work tape content, work tape
pointer, output tape content, output tape pointer, input tape pointer, space tape
pointer). Note that we do not include input tape content as part of the configu-
ration as it does not change during the execution. In the constructed branching
program B vertices in every layer correspond to the possible configurations in
the turing machine. As per our definition of space characteristic (Definition 1),
the number of possible configurations of A is 2sc(n) and therefore the width of
the branching program B is 2sc(n). We now describe how the edges are connected
between adjacent layers. Consider any vertex v of the branching program and
let its corresponding configuration be con. Consider any n + 1-bit string (a, b),
where a ∈ {0, 1}n, b ∈ {0, 1}. We run the turing machine A(1n) starting from
this configuration con by placing x on its input tape, (a, b) on read comm. tape
and placing pointer for read comm. tape at the starting cell of (a, b). When the
read comm. tape pointer first reaches the cell next to b, let its configuration be
con′. Note that there exists only one possible configuration con′ as A is deter-
ministic.8 In B, we place a directed edge from vertex v to the vertex w in the
next layer which corresponds to the configuration con′. We now describe how
to associate any vertex v in the final layer with an n-bit string k. Let the con-
figuration corresponding to v be con. Run the turing machine A(1n) from this
configuration con by placing x on its input tape, # on read comm. tape and
placing the pointer for read comm. tape at #. When A runs and places its read
comm. tape pointer to the cell next to #, let the output written on its output
tape be y. We associate the vertex v with the string y. Note that the branching
program B has length m, width 2cn

2

and solves parity learning with success
probability ε which is more than O(2−αn), thereby violating Raz’s time-space
lower bound.

Time-Space Lower Bound for Probabilistic Turing Machines. We now give an
analogous time-space lower bound theorem for probabilistic ITMs.

Theorem 3. For any c < 1/20, there exists α > 0, such that for every non-
uniform probabilistic turing machine A with 1 read comm. tape and space char-
acteristic sc, where sc(n) = cn2, for every space parameter n ∈ N, if A(1n) is
run with any advice string x on its input tape, and a stream of samples (a1, b1),
(a2, b2), · · · (am, bm) on its read comm. tape, where m ≤ 2αn, k, ai are sam-
pled uniformly from {0, 1}n and bi = ai · k mod 2 for every i, then if outputs
k̃ ∈ {0, 1}n, the success probability Pr[k̃ = k] ≤ O(2−αn).

Proof. For the sake of contradiction, suppose there exists a constant c < 1/20
s.t. for any α > 0, there exists a non-uniform probabilistic sc-space bounded
ITM Aα, a space parameter nα and an advice string xα s.t. Aα(1

nα , xα) solves

8 Observe that the transition function in the resulting branching program is determin-
istic even if the output tape contents are not included in the configuration definition.
We include the output tape contents in the configuration so that every vertex in the
final layer corresponds to an output key as defined by the turing machine.
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parity learning problem with success probability ε > O(2−αnα) using at most
m ≤ 2αnα samples. Using this, we show a contradiction to Raz’s lower bound.
Specifically, for any α > 0, we construct a non-uniform deterministic sc′ -space
bounded ITM Bα and an advice string x′

α that solves parity learning problem
with success probability more than O(2−αnα).

For any α > 0, let the success probability of Aα(1
nα , xα) in solving the

parity learning problem be ε, where the probability is taken over the random
coins used to create samples (ai, bi) and the random coins used by Aα. Let rnd
be the upper bound on the random coins used by Aα

9. We know that there
exists a bit r1 ∈ {0, 1} s.t. Aα(1

nα , xα) solves the parity learning problem with
success probability at least ε, when the first cell of Aα’s random tape is fixed to
be r1. Extending this argument, we know that there exists a rnd-bit string rα
s.t. Aα(1

nα , xα) solves the parity learning problem with success probability at
least ε, when the entire random tape is fixed to rα. For any α > 0, let us now
construct the ITM Bα along with an advice string x′

α. At a high level, we let
x′
α be equal to xα concantenated with rα i.e., the random coins on which Aα

has high success probability are given as part of advice string to Bα. Bα(1
nα , x′

α)
emulates Aα(1

nα , xα) with random coins hardcoded to rα. Whenever Aα reads a
bit from its random tape, Bα reads the corresponding bit from its advice string.

We now analyze the space characteristic of Bα. Clearly, Bα uses the same
number of work tape and output tape cells as Aα. The space characteristic of
Aα has log(|xα| · rnd) term in it, whereas the space characteristic of Bα has only
log(|x′

α|) = log(|xα|+ rnd) term in it. The number of states of B is only a small
constant times the number of states in A. Therefore, Bα is sc-space bounded
ITM. Moreover, the success probability of Bα is at least ε, and thereby breaks
the time-space lower bound for deterministic ITMs.

Time-Space Lower Bound for Interactive Turing Machines. In the above the-
orems, we restricted the learner to receive only the stream of parity learning
samples and not interact with any other ITMs. Looking forward, we construct
an OT protocol based on parity learning and prove that if there exists an ad-
versary A that breaks OT security, then there exists a reduction algorithm B
that solves parity learning problem within low space characteristic. In the proof,
B has to interact with A to solve the parity learning problem. In the standard
model where the adversary is computationally bounded, this is not an issue be-
cause B can internally interact with A in poly time. However, in the bounded
storage model, we need to be careful as we need to ensure B can internally run
the conversation with A in bounded space. As similar scenario occurs in every
proof where we need to construct a reduction algorithm, we present a general
theorem which roughly states that if B solves a problem by interacting with A,
then there exists another TM C which can solve the problem without interacting
with any other ITMs. At a high level, C runs both A and B internally, emulates
their interaction using its work tape, and finally outputs whatever B outputs.

9 Note that Aα can use only at most 2sc(n) bits of randomness as it is sc-space bounded
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Formally, in this model, we have two ITMs –A and B. B has t1+1 read comm.
tapes and t2 write comm. tapes for some integers t1, t2. Similarly, A has t2 read
comm. tapes and t1 write comm. tapes. B receives a stream of bits sampled from
some distribution D from a challenger on its first read comm. tape, and uses the
rest of its tapes to send and receive messages from A. Both A,B are allowed to
be randomized and have any advice string on their input tapes. At the end of
the execution, the string written by B on its output tape is considered to be the
output of (A,B) pair. We now show that there exists an ITM C with only 1 read
tape using which C receives a stream of bits sampled from the challenger, s.t.
for any distribution of D used by the challenger, the output distribution of C is
same as that of (A,B).

Theorem 4. For any pair of ITMs (A,B) described above with space charac-
teristic sA and sB respectively, there exists another ITM C with 1 read comm.
tape and space characteristic 2(sA+sB)+∆, where ∆ is a constant that depends
only number of tapes in (A,B), s.t. for any pair of advice strings xA, xB given to
A,B respectively, there exists an advice string xC , s.t. for any space parameter n
and any distribution D used by the challenger, the output distribution of (A,B)
is same as the output distribution of C.

Proof. Let us first construct the ITM C along with its advice string xC . For each
symbol β present in the alphabet of A,B, we include the symbol β along with
a fresh symbol β in the alphabet of C. We also include a fresh symbol $ which
we call ‘tape separator’. Intuitively, C internally runs both A,B by maintaining
many of the A,B’s tapes on its work tape. Specifically, the work tape of C is
divided into many sections separated by the symbol $. Each of the sections is
used to simulate one of the following – work tape of A, work tape of B, output
tape of A, communication tapes between A and B. Let the total number of
communication tapes between A and B be t.10 The work tape of C looks as
follows.

A′s work tape $ B′s work tape $ A′s output tape $ comm. tape 1 $ · · · $ comm. tape t $

The sections reserved for internal communication tapes store only last cell that
is not yet read by the other turing machine. The input tape of C is also divided
into 2 sections to simulate the input tapes of A and B. So, the advice string xC

is given by xA||$||xB , where || denotes concatenation. The output tape of C is
used to store the output tape of B. The random tape of C is used to provide
randomness required to run both A and B internally. At any time step, the fresh
symbols with an underscore are used to mark the tape heads for each of these
internal tapes.

At a high level, C first runs the transition function of A internally for one
step and then runs the transition function of B internally for another step and
repeats. C internally runs the transition function ofA (similarly for B) in multiple

10 Note that B has 1 additional read communication tape to receive a stream of bits
from the challenger.
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steps – (1) C first scans the entire work tape and input tape. For each section
of the tapes, C stores the symbol at the internal tape head (the symbols with
an underscore) in its state. (2) C then runs the transition function of A and
stores the set of actions to be performed (such as moving internal tapes heads
to left or right) in its state. (3) Finally, C scans the entire work tape, input tape,
and output tapes and performs the required actions. (4) C finally switches its
state to perform the next transition for B. In order to enable C to perform these
actions, we design the state space of C in the following way. A state of C is a
tuple consisting of

(A′s state, B′s state, mode, tape head contents/actions to be performed, current section)

Here, the mode indicates, whether C is currently reading contents of internal
tape heads, or performing a transition for A or B. Current section indicates the
internal section at which the tape head of C is currently located at.

Let us now analyze the space characteristic of ITM C. Let the number of
states, number of work tape cells, number of input tape cells, number of out-
put tape cells, alphabet size and total number of communication tapes A be
QA,WA, ipA, opA,αA, t Let the corresponding values for ITM B beQB ,WB , ipB , opB ,
αB , t+1 respectively. The number of work tape cells of C including the tape sep-
arators is given by WC = (WA +WB + opA +2t+3). For the sake of simplicity,
let us assume both A,B use alphabet of same size α.11 The number of input
tape, output tape cells, and alphabet size of C is given by ipC = ipA + ipB + 1,
opC = opB , αC = 2 ∗ α respectively12. The number of states in C is given by
QC = QA · QB · (2αC)

t · (log t) · K, for some constant K. C has only one read
communication tape to receive inputs from the challenger. The amount of ran-
domness uses by C is rndC = rndA + rndB . Therefore, the space characteristic of
C is given by

(WC + opC + 3) log2 αC + log2(n ·QC ·WC · ipC · opC · rndC)
≤ 2[(WA + opA + 2t) log2(α) + log2(n ·QA ·WA · ipA · opA · rndA)]

+ 2[(WB + opB + 2t+ 2) log2(α) + log(n ·QB ·WB · ipB · opB · rndB)] +∆

= 2(sA + sB) +∆

for some constant ∆ that depends only on t.

11 If A uses an alphabet of size αA and B uses an alphabet of size αB , then we can first
convert them into turing machines A′,B′ both using an alphabet of size two, and
then apply the Theorem 4. Each symbol of A is represented using logαA symbols
in A′. A′ internally runs the transition function of A in multiple stages. It reads
a sequence of logαA bits from each tape and stores as part of the state, and then
apply the transition function of A by writing logαA symbols to each tape.

12 We could eliminate the need of introducing a new symbol for the tape separator by
reusing the other fresh symbols introduced in C.
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3.1 Indistinguishability Parity Learning

The Guan-Zhandry 1-out-of-2 OT construction [12] is based on indistinguisha-
bility version of the Raz’s parity learning space lower bound so that they can give
indistinguishability security proofs for the construction. To extend the hardness
result for the computational problem to the hardness result for the indistin-
guishability problem, they use the Goldreich-Levin algorithm, denoted as GL for
the rest of the paper.

Theorem 5 (Goldreich-Levin Algorithm [9]). Assume that there exists a
function f : {0, 1}n → {0, 1} s.t. for some unknown x ∈ {0, 1}n, we have

Pr
r∈{0,1}n

[f(r) = 〈x, r〉] ≥ 1

2
+ ε

Then there exists an algorithm that runs in time O(n2ε−4 log n), makes O(n2ε−4 log n)
oracle queries to the function f , and outputs x with probability Ω(ε2).

Importantly, the GL algorithm also has O(n) space characteristic so that we
can use it during reduction.

We review the definition for the indistinguishability security game of parity
learning, denoted as PLA,δ(n, ℓ).

Definition 9 (Indistinguishability Parity Learning PLA,δ(n, ℓ)). The chal-
lenger’s input is (1n, 1ℓ)

1. The challenger chooses a random k ∈ {0, 1}n.
2. For i = 1, · · · , ℓ:

– The challenger writes (ai, bi) on the communication tape, where ai ←
{0, 1}n is uniformly random and bi = ai · k.

3. The challenger writes (aℓ, bℓ) on the communication tape, where aℓ ← {0, 1}n
is uniformly random and chooses a random bit δ ∈ {0, 1}:
– If δ = 0, bℓ = aℓ · k.
– If δ = 1, bℓ is a random bit.

4. Finally, A outputs a guess δ′ for δ. A’s advantage is defined as (Pr[δ′ =
δ]− 1/2) .

Next, we give a security proof in the ITM setting so that we can use the
indistinguishability parity learning lower bound in later sections.

Theorem 6. For any c < 1/20, there exists α > 0 such that for all ITM adver-
sary A with cn2-space characteristic and that receives at most 2αn parity learning
tuples, A has advantage O(2−αn/2) in PLA,δ(n, 2

αn), for all n ∈ N.

Proof. For the sake of contradiction, suppose there is some c < 1/40 such that
for all α > 0, there exists an ITM adversary A with cn2-space characteristic
and using at most 2αn parity learning tuples solves the above PL problem with
advantage β = Ω(2−αn/2) in PLA,δ(n, 2

αn). We show that there exists an ITM
adversary A′ with (2cn2 + O(n))-space characteristic, which uses at most 2αn
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parity learning tuples and solves the parity learning problem with advantage
β′ = Ω(2−αn), which would contradict Theorem 3. There exists some N0, such
that for all n > N0, there exists some c′ < 1/20 such that c′n2 ≥ 2cn2 +O(n).

As a first step, we show that if an adversary can distinguish between (aℓ, bℓ ←
{0, 1}) and (aℓ, bℓ = aℓ ·k) with large probability, then we can have an algorithm
that outputs f(aℓ) = aℓ · k on input aℓ with large probability.

Claim. If there exists some c1 < 1/20, we have an ITM A with space charac-
teristic c1n

2 that can distinguish between (aℓ, bℓ ← {0, 1}) and (aℓ, bℓ = aℓ · k)
with probability p, given {(ai, bi = a1 · k)}i=1,··· ,ℓ−1 in a stream; then we can
have an ITM B with space characteristic c2n

2 for some c2 < 1/20, B outputs
aℓ · k, with probability p.

Proof. Let A output (d, bℓ) where d is a bit indicating A’s guess. If A thinks
bℓ = aℓ · k, then d = 0; if it thinks bℓ ← {0, 1}, then d = 1. B outputs (bℓ + d)
as its guess for the value aℓ · k. Since A is correct with probability p, then B
outputs the correct value aℓ · k with probability p.

Let the challenger in PLA,δ(n, ℓ) be an adversary A′ in a modified parity
learning game. a tuple in which bℓ can be a real inner product or uniformly
random described as below.

Definition 10 (Modified Parity Learning MPLA,δ(n,m, ℓ)). The challenger’s
input is (1n, 1m, 1ℓ).

1. The challenger chooses a random k ∈ {0, 1}n.
2. For i = 1, · · · ,m:

If i < ℓ:
– The challenger writes (ai, bi) on the communication tape, where ai ←

{0, 1}n is uniformly random and bi = ai · k.
Else if i ≥ ℓ:
– The challenger writes (ai, bi) on the communication tape, where ai ←

{0, 1}n is uniformly random and chooses a random bit λ ← {0, 1}:
• If λ = 0, bi = ai · k.
• If λ = 1, bi is a random bit.

3. Finally, A outputs a guess k′ for k and wins if k′ = k.

A′ receives parity learning tuples (ai, bi)i=1,··· ,ℓ from the MPLA,δ(n,m, ℓ)
challenger and writes it on the communication tape to A. The first (ℓ−1) tuples
are used as the stream of parity learning tuples in PLA,δ(n, ℓ) and the rest (m−ℓ)
tuples each is used as a challenge tuple in PLA,δ(n, ℓ).

The advantage of A is β = |Pr[PLA,0(n, ℓ) = 0] − Pr[PLA,1(n, ℓ) = 1]|.
In other words, we have an ITM A that given (a1, b1), · · · , (aℓ−1, bℓ−1) on the
read tape, can distinguish between (aℓ, bℓ ← {0, 1}) and (aℓ, bℓ = aℓ · k) with
probability (1 + β)/2. According to Section 3.1, given unknown k ∈ {0, 1}n and
aℓ ∈ {0, 1}n the function f(aℓ) = 〈aℓ,k〉 can be computed with probability
(1 + β)/2.
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After receiving every ℓ tuples from the MPLA,δ(n,m, ℓ) challenger, A′ can
obtain f(ai) = 〈ai,k〉 for each ai with probability (1 + β)/2, where i ≥ l, ;
A′ runs the GL algorithm from Theorem 5 along with obtaining O(n2β4 log n)
number of inner products of k with ai by invoking A. By Theorem 5 A′ can
output correct k with probability Ω(β2) in the end. A′ simulates A using cn2

space and running GL algorithm takes O(n) space; A’s space characteristic is
(2cn2 + O(n)) ; according to Theorem 3, A′’s advantage is O(2−αn) and we
must have Ω(β2) ≤ O(2−αn). Hence, using cn2 space and at most 2αn tuples,
adversary A’s advantage is at most β = O(2−αn/2).

4 1-out-of-4 Semi-Honest OT Construction

In this section, we describe our 1-out-of-4 oblivious transfer based on 1-out-of-2
oblivious transfer in the bounded storage model. In summary, we perform six
1-out-of-2 oblivious transfer with random input bits.

1. Let the sender’s input be (m0,m1,m2,m3), and the receiver’s input be t ∈
{0, 1, 2, 3}.

2. For each pair (a, b) ∈ {0, 1, 2, 3}2 s.t a < b,
Sender samples uniformly random bits denoted by raa,b, r

b
a,b ← {0, 1}. If

t = a, receiver sets c = 0, else if t = b receiver sets c = 1, else receiver
samples c ← {0, 1}. The sender and the receiver performs 1-out-of-2 OT
with sender’s input (raa,b, r

b
a,b) and receiver’s input c.

3. The Sender sends the following 4 bits (y0, y1, y2, y3) to the receiver.

y0 = m0 + r00,1 + r00,2 + r00,3

y1 = m1 + r10,1 + r11,2 + r11,3

y2 = m2 + r20,2 + r21,2 + r22,3

y3 = m3 + r30,3 + r31,3 + r32,3

4. The receiver computes mt from yt as he has all the 3 mask bits from the
1-out-of-2 oblivious transfers.

We will leave the proofs for correctness and security to Appendix A. We also
review the 1-of-2 OT construction from [12] in Appendix B.

5 MPC Protocol in Bounded Storage

In this section, we describe our k-party semi-honest secure MPC protocol (for
any integer k) in the bounded storage model from semi-honest secure 1-out-4
OT protocol in the bounded storage model.

Consider any functionality f = (f1, f2, · · · fk). Let the private input of each
party Pi be xi. The party Pi intends to compute fi(x1, x2, · · ·xk). We first
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represent the functionality as a circuit C containing only XOR and AND gates,
which takes the inputs of all the parties and computes the output of all the
parties. Let us denote the space parameter used by the protocol to be n, and let
Cn be the set of all n-gate circuits. We describe our MPC protocol for the class
of functionalities {Cn}n∈N. We show that an honest party can run the protocol
within O(n) space characteristic, whereas any dishonest set of parties require at
least O(n2) space characteristic to break the security.

Notations. Let us first introduce some notations. We order the gates of the
circuit in such a way that g1, g2 < g3 if the output wires of gates g1, g2 are used
as input wires for gate g3. We call such an order as a logical order. We denote
the set of input wires and output wires of the circuit that belong to the party Pi

be Input(i) and Output(i) respectively. Also for any input wire w, let the party
that holds the private input corresponding to the wire be Party(w). Similarly,
for any output wire w, let the party that is entitled to recieve output from the
wire be Party(w). Let the input of the circuit C on input x = (x1, · · · , xk) be
y = (y1, · · · , yk). For any input wire w that belongs to the party Pi, let Pi’s
input bit corresponding to the wire w be xi[w]. Similarly, for any output wire
w that belongs to the party Pi, let Pi’s output bit corresponding to the w be
yi[w]. When the circuit C is run on the input (x1, · · · , xk), let the value at any
wire w be vw.

At a high level, the algorithm is similar to the GMW protocol [10]. Each
party Pi first secret shares its input xi with all the parties. Each of the parties
now holds a secret share of vw for each input wire w. The parties now run a 1-
out-of-4 OT protocol to compute secret shares of vw for each of the internal and
output wires. Finally, for each output wire w, each party sends its secret share
of vw to the party that is entitled to receive the value of wire w (i.e., Party(w)).
Each party Pi now computes its output from the received shares.

Let OT4 = (Πsender,Πreceiver, SenderSim,ReceiverSim) be a 1-out-of-4 obliv-
ious transfer protocol secure in the bounded storage model. For the sake of
simplicity, we assume that the reciever’s choice in the OT4 protocol is chosen
from {(0, 0), (0, 1), (1, 0), (1, 1)} intead of {0, 1, 2, 3}. The algorithm used by each
party Pi is formally described in Figure 4. Note that all the computations over
bits are done over GF(2).

5.1 Security Proof for MPC Protocol

We present the proof of security and correctness for the MPC protocol in Sec-
tion 5 here.

Correctness. Throughout the protocol, we maintain an invariant that the values
{ri,w}i for any wire w form a secret sharing of the bit vw i.e.,

!
i∈[k] ri,w = vw.

We can prove this via induction. Clearly, the invariant is satisfied if w is an input
wire. Suppose the invariant is satisfied for the input wires a, b of any gate g. If g is
an XOR gate, then

!
i ri,c =

!
i ri,a+

!
i ri,b = va+vb = vc and the invariant is

satisfied for the output wire. Suppose g is an AND gate, each pair of parties (i, j)
perform 1-out-4 OT and obtain a secret sharing of ri,a∗rj,b+ri,b∗rj,a. Therefore,

21



Πi(1
n, C, xi)

Input Phase:

For each input wire w ∈ Input(i):
For j = 1 to k s.t. j ∕= i:

Sample random bit rj,w and send it to party Pj .
Set ri,w = xi[w] +

!
j ∕=i rj,w.

For each input wire w /∈ Input(i):
Receive bit ri,w from other parties. This corresponds to the party Pi’s share of the
input at wire w.

Eval Phase:
For each gate g in logical order:

– Let a, b be the input wires and c be the output wire of gate g.
– If g is XOR gate, set ri,c = ri,a + ri,b.
– If g is AND gate:

• For j = 1 to i− 1:
Run OT4.Πreceiver algorithm with (ri,a, ri,b) as input and party Pj as the

OT sender.
Let the received message bit be βj .

• For j = i+ 1 to k:
Sample bit αj ← {0, 1}.
For each (x, y) ∈ {0, 1}2, compute message m(x,y) = αj +x ∗ ri,b + y ∗ ri,a.
Run OT4.Πsender algorithm with input messages

(m(0,0),m(0,1),m(1,0),m(1,1)) and Pj as the OT receiver.

• Set the party Pi’s share for wire c as ri,c = ri,a ∗ ri,b +
!i−1

j=1 βj +
!k

j=i+1 αj .

Output Phase:
For each output wire w:

– If w /∈ Output(i), send the party Pi’s share ri,w to the party Party(w).
– If w ∈ Output(i), receive secret shares of the wire w from the other parties i.e.,

For j = 1 to k s.t. j ∕= i:
Receive bit rj,w from party Pj .

Compute the output bit y[w] =
!k

j=1 rj,w and write it to the output tape.

Fig. 4: The algorithm used by the party Pi in the MPC protocol.
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!
i ri,c =

!
i ri,a ∗ ri,b +

!
i ∕=j(ri,a ∗ rj,b + ri,b ∗ rj,a) = (

!
i ri,a) ∗ (

!
i ri,b) =

va ∗ vb = vc.
We now argue that if OT4 is s-correct for some function s : N → N, then all

the parties in the above protocol have space characteristic at most O(s+ n) for
the class of n-gate functionalities. Observe that work tape of each party needs
to store at most 1 bit per each wire, along with work tape contents needed for
oblivious transfer. Both the input and output tapes need to store at most n bits,
as we are dealing with n-gate functionalities. Moreover, the number of states
required by the protocol is only constant times that of the number of states in
OT4. Therefore, the above MPC protocol has space characteristic O(s + n). If
OT4 scheme presented in the Section 4 is used, the space characteristic of the
protocol is O(n).

5.2 Proof of Security

We now prove that the above scheme is semi-honest secure against adversaries
that have space characteristic less than n2/80. Formally, we prove the following
theorem.

Theorem 7. For any functions s1, s2, s3 : N → N, and ε : N → [0, 1], assuming
OT4 is s1-correct (as per Definition 6), (s2, s3, ε)-secure against semi-honest
sender and (s2, s3, ε)-secure against semi-honest receiver (as per Definitions 7
and 8),13 the above k-party MPC protocol is (O(s1 + s2 + kn), s2/2− (s1 + s3 +
O(n)), ε · n · k2) semi-honest secure for the class of the n-gate functionalities
{Cn}n∈N.

Proof. To prove security, we first build a simulator Sim which given a circuit
C, a set of parties I along with their input-output pairs, outputs a view of the
parties in the set I. We then argue that the simulator has O(s1+ s2+kn) space
characteristic, and prove that any adversary with space characteristic at most
1/2 · s3 − (s1 + s2 + O(n)) cannot distinguish between the views generated by
the simulator, and the views generated during the real execution of the protocol
with advantage more than ε · n · k2 probability.

At a high level, the simulator works as follows. The simulator has k write
communication tapes, each indexed by an integer in [k]. The simulator writes
the view of the ith party to its ith communication tape, which we hereby denote
WriteTapei. We present a formal description of the algorithm used by the simula-
tor in Figure 5. Observe that the simulator has to internally run an OT4 protocol,
run ReceiverSim and SenderSim algorithms and store at most k bits per each gate.
Therefore, the Sim can be run within space characteristic O(s1 + s2 + kn).

We now prove that the distribution of the views generated by the real protocol
and the simulator are indistinguishable for any space bounded adversary via a
hybrid argument. The hybrids are indexed by a tuple (t, ℓ,m), where t is an

13 For the sake of simplicity, we assume OT4 is (s2, s3, ε)-secure against semi-honest
receiver. A similar proof works even if we assume OT4 is (s4, s5, ε

′) for some other
functions s4, s5, ε

′.
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Sim(1n, C, I, (xj)j∈I , (yj)j∈I)

Input Phase:

For each party i ∈ I:
Include the input in the party Pi’s view i.e., Write (input, (C, xi)) to WriteTapei.

For each party i ∈ I and each input wire w ∈ Input(i):
For j = 1 to k s.t. j ∕= i:

Sample party Pj ’s share of the input at wire w as rj,w ← {0, 1}. Write
(sample, rj,w) to WriteTapei. Set the party Pi’s share of wire w to be ri,w =
xi[w] +

!
j ∕=i rj,w.

For each i ∈ I and each input wire w /∈ Input(i):
If Party(w) /∈ I, sample bit ri,w ← {0, 1}.
Write (receive,Party(w), ri,w) to WriteTapei.

Eval Phase:
For each gate g in the logical order:

– Let a, b be the input wires and c be the output wire of gate g.
– If g is XOR gate, for each i ∈ I, set ri,c = ri,a + ri,b.
– If g is AND gate:

• For each i ∈ I, set ri,c = ri,a ∗ ri,b.
• For each i = 1 to k − 1 & j = i+ 1 to k:

∗ If both Pi and Pj are in the set I (i ∈ I & j ∈ I),
· Sample bit α ← {0, 1}.
· For each (x, y) ∈ {0, 1}2, compute the message bit m(x,y) = α + x ∗
ri,b + y ∗ ri,a.

· Perform 1-out-of-4 OT internally with (m(0,0),m(0,1),m(1,0),m(1,1)) as
sender’s input and (rj,a, rj,b) as receiver’s input.

· During the OT protocol, write the sender’s transcript on tape
WriteTapei and receiver’s transcript on WriteTapej .

· Set ri,c = ri,c + α and rj,c = rj,c + α+ ri,a ∗ rj,b + ri,b ∗ rj,a.
∗ Else if only Pi is in the set I (i ∈ I & j /∈ I),

· Sample bit α ← {0, 1} and set ri,c = ri,c + α.
· For each (x, y) ∈ {0, 1}2, compute the message bit m(x,y) = α + x ∗
ri,b + y ∗ ri,a.

· Internally, run SenderSim(1n) on input (m(0,0),m(0,1),m(1,0),m(1,1))
using WriteTapei as its write comm. tape.

∗ Else if only Pj is in the set I (i /∈ I & j ∈ I),
· Sample bit β ← {0, 1} and set rj,c = rj,c + β.
· Internally, run ReceiverSim(1n) on input (β, (rj,a, rj,b)) using
WriteTapei as its write comm. tape.

Output Phase:
For each output wire w s.t. Party(w) ∈ I,

For each i /∈ I, sample ri,w ← {0, 1} under the constraint
!k

i=1 ri,w = y[w].
For each j ∕= i, write (receive, j, rj,w) on tape WriteTapei.

Fig. 5: Algorithm used by simulator to generate the view of parties in set I.
The simulator writes the view of party Pi on WriteTapei.
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integer in [1, n], and ℓ,m are integers in [k] s.t. ℓ < m. In any hybrid Ht,ℓ,m, the
hybrid simulator HSimt,ℓ,m (described in Figure 6) is used to generate a view of
the parties in the set I. Unlike the simulator Sim, this hybrid simulator is given
access to inputs xj of all the k parties.

At a high level, the hybrid simulator HSimt,ℓ,m algorithm first secret shares
the input during the input phase just like the simulator Sim. The hybrid sim-
ulator, therefore, knows the secret shares ri,w for all the parties Pi in the set
I and all the input wires w. Then during the eval phase, the hybrid simulator
HSimt,ℓ,m processes all the gates g < t just like the simulator Sim, and pro-
cesses gates g > t by internally running the real protocol. For the gate g = t,
for all party pairs (i, j) s.t. (i, j) ≽ (ℓ,m)14, the hybrid simulator internally run
a real oblivious transfer protocol, whereas for the party pairs (i, j) ≺ (ℓ,m)15,
the hybrid simulator simulates the view of the oblivious transfer. We formally
describe the sequence of hybrids described in Figure 6. The differences from the
Sim algorithm are marked in red color.

Throughout the execution, the hybrid simulator maintains an invariant that
it knows secret share ri,w for any party i ∈ I and wire w. For any gate g < t
and its output wire c, the hybrid simulator HSimt,ℓ,m has no information about
shares ri,c for parties Pi /∈ I after processing the gate g. In case the wire c is the
output wire of the circuit or if c is used as input wire to another gate g′ for which
the real OT protocol is used to process the gate, then ri,c is sampled at that
point. When processing the gate g = t, suppose the oblivious transfer for party
pair (i, j) is simulated and the party Pi is not in the set I. Then the party Pi’s
share ri,c of the output wire c that is computed by HSimt,ℓ,m is not complete,
as the party Pi’s output of the OT between (i, j) parties is not included in the
share ri,c. Therefore, HSimt,ℓ,m deletes the share ri,c in such a case. The hybrid
simulator acts similarly if the oblivious transfer for party pair (i, j) is simulated
and Pj is not the set I.

Let us introduce some notations. For any set of integers (g1, i1, j1, g2, i2, j2),
we say that (g1, i1, j1) ≺ (g2, i2, j2) if g1 < g2 or (g1 = g2 ∧ i1 < i2) or (g1 = g2 ∧
i1 = i2∧j1 < j2). We say that (g1, i1, j1) ≽ (g2, i2, j2) if (g2, i2, j2) ≺ (g1, i1, j1)∨
(g2, i2, j2) = (g1, i1, j1). For any tuple of integers (g, i, j) ∈ [n]×[k]×[k] s.t. j > i,

we define the function Next(g, i, j) =

$
%&

%'

(g + 1, 1, 2) if i = k − 1 ∧ j = k

(g, i+ 1, i+ 2) if i < k − 1 ∧ j = k

(g, i, j + 1) if j < k

.

Consider any adversaryA which has k read tapes. Let Pr[HA
t.ℓ.m(1n, C, I, (xi)i∈[k]) =

1] be the probability that A outputs 1 when its read tapes are connected to the
write tapes of HSim(1n, (C, I, (xi)i∈[k])). We now prove that each adjacent pair
of hybrids are indistinguishable to a space bounded adversary.

Lemma 1. For any space parameter n ∈ N, any circuit C ∈ Cn, any input tuple
(x1, · · · , xk) belonging to the domain of C and any set I ⊂ [k], the distribution

14 We say that (i, j) ≽ (ℓ,m) iff (i > ℓ) ∨ (i = ℓ ∧ j >= m).
15 We say that (i, j) ≺ (ℓ,m) if (i < ℓ) ∨ (i = ℓ ∧ j < m).
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The algorithm used by HSimt,ℓ,m(I, C, (xj)j∈[k]):

Input Phase: The input phase runs similar to the Sim algorithm. Additionally, for each
input wire w, set vw = x[w].
Eval Phase:
For each gate g in the logical order:

– Let a, b be the input wires and c be the output wire of gate g.
– If g is XOR gate, set vc = va + vb. For each i ∈ I, ri,c = ri,a + ri,b.
– If g is AND gate, set vc = va ∗ vb.

• For each i ∈ I, set ri,c = ri,a ∗ ri,b.
• For each i = 1 to k − 1 & j = i+ 1 to k:

∗ If (g, i, j) ≽ (t, ℓ,m) and one of the parties i, j is in I:
· For any party p ∈ {i, j} and wire w ∈ {a, b}, if bit rp,w is not set, then
sample rp,w uniformly at random subject to constraint

!k
q=1 rq,w =

vw, and set rp,c = rp,a ∗ rp,b.
· Sample bit α ← {0, 1}.
· For each (x, y) ∈ {0, 1}2, compute the message bit m(x,y) = α + x ∗
ri,b + y ∗ ri,a.

· Perform 1-out-of-4 OT internally with (m(0,0),m(0,1),m(1,0),m(1,1)) as
sender’s input and (rj,a, rj,b) as receiver’s input.

· During the OT protocol, write the sender’s transcript on tape
WriteTapei and receiver’s transcript on WriteTapej .

· Set ri,c = ri,c + α and rj,c = rj,c + α+ ri,a ∗ rj,b + ri,b ∗ rj,a.
∗ Else if both Pi and Pj are in the set I (i ∈ I & j ∈ I), run similar to the

Sim algorithm
∗ Else if only Pi is in set I (i ∈ I & j /∈ I), run similar to the Sim algorithm
∗ Else if only Pj is in set I (i /∈ I & j ∈ I), run similar to the Sim algorithm.

• If there exists a party Pi not in the set I, and some other party Pj s.t. either
(i, j) ≺ (ℓ,m) or (j, i) ≺ (ℓ,m), then delete the bit ri,c.

Output Phase:
For each output wire w s.t. Party(w) ∈ I,

For each i /∈ I s.t. ri,w is not set, sample ri,w ← {0, 1} under the constraint!k
i=1 ri,w = vw.
For each j ∕= i, write (receive, j, rj,w) on tape WriteTapei.

Fig. 6: Algorithm used by the hybrid simulator HSimt,ℓ,m (t ∈ [n], ℓ ∈ [k],m > ℓ)
to generate the view of set of parties I. The simulator writes the view of party
Pi on WriteTapei.
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of views of parties in the set I generated by the real protocol is identical to the
views generated by HSim1,1,2.

Proof. This follows from the definition of the hybrids.

Lemma 2. For any functions s1, s2, s3 : N → N and ε : N → [0, 1], assuming
OT4 is s1-correct (as per Definition 6), (s2, s3, ε)-secure against semi-honest
sender and (s2, s3, ε)-secure against semi-honest receiver (as per Definitions 7
and 8), then for every s3/2 − (s1 + s2 + kn)-space bounded adversary A, there
exists an integer N0 s.t. for every space parameter n > N0, for every circuit
C ∈ Cn, every set of parties I ⊂ [k], every input tuple (x1, · · · , xk) belonging to
the circuit’s domain, any indices (t, ℓ,m) ∈ [n]×[k]×[k] s.t. ℓ < m, the advantage
|Pr[HA

t.ℓ.m(1n, C, I, (xi)i∈[k]) = 1] − Pr[HA
t′.ℓ′.m′(1n, C, I, (xi)i∈[k]) = 1]| ≤ ε(n),

where (t′, ℓ′,m′) = Next(t, ℓ,m).

Proof. For the sake of contradiction, let us assume there exists an s2/2− (s1 +
s3 + kn)-space bounded adversary A s.t. for every integer N0, there exists an
n > N0, circuit C ∈ Cn, set of parties I ⊂ [k], input tuple (x1, · · · , xk), indices
(t, ℓ,m) ∈ [n]× [k]× [k] s.t. ℓ < m, the advantage |Pr[HA

t.ℓ.m(1n, C, I, (xi)i∈[k]) =
1]−Pr[HA

t′.ℓ′.m′(1n, C, I, (xi)i∈[k]) = 1]| > ε(n), where (t′, ℓ′,m′) = Next(t, ℓ,m).
We now show how to break the semi-honest security of the underlying OT4

scheme.
We know that the Hybrids Ht.ℓ.m and Ht′.ℓ′.m′ are identical if (1) the gate t

is an XOR gate or (2) t is an AND gate and both the parties Pℓ,Pm are in the set
I or (3) t is an AND gate and both Pℓ,Pm are not in the set I. As the adversary
A can distinguish between these hybrids, we know that t is an AND gate and
exactly one of the parties Pℓ,Pm is not in the set I. Suppose Pℓ /∈ I and Pm ∈ I,
we break the security of OT4 scheme against semi-honest receiver16. Specifically,
we show that there exists an s3-space bound adversary A′ s.t. for every N ′

0, there
exists a space parameter n′ > N ′

0, message bits (m(0,0),m(0,1),m(1,0),m(1,1)) and
receiver’s choice (d1, d2) s.t. the advantage in GameSHReceiver is atleast ε(n′).

We prove the argument in two steps – We first show that there exists a pair of
ITMs (A1,A2) s.t.A1 is 1/2·s3−(s1+s2+kn)-space bounded,A2 is (kn+s1+s2)-
space bounded, A2 receives oblivious transfer challenge view on one of its read
tapes, interacts with A1 using its other tapes and finally solves the oblivious
transfer game GameSHReceiver with ε advantage. We then invoke Theorem 4 to
construct an s3-space bounded adversary A′ that solves game GameSHReceiver
with ε advantage. At a high level, we simply setA1 to be equal to the adversaryA
which can distinguish between the hybrids (t, ℓ,m) and (t′, ℓ′,m′) with advantage
more than ε. The algorithm A2 takes (C, I, (x1, · · · , xk), t, ℓ,m) on its input tape
as an advice string. The algorithm A2 has k write tapes that are connected to the
k read tapes of A1. A2 runs similar to the HSimt.ℓ.m algorithm to generate the
views for each oblivious transfer corresponding to the pairs (g, i, j) ∕= (t, ℓ,m).
When processing the gate t and oblivious transfer for party pair (ℓ,m), A2

16 In case, Pℓ ∈ I and Pm /∈ I, we can break the security of OT4 scheme against
semi-honest sender. This case can be handled analogously.
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samples a random bit α ← {0, 1} and invokes OT challenger with the sender’s
input sampled similar to HSimt.ℓ.m, and the receiver’s input as (α, rj,a, rj,b). The
OT challenger samples a bit b ← {0, 1}. If β = 0, the OT challenger sends the
real view of party Pj in the oblivious transfer to A2. If β = 1, the OT challenger
sends the simulated view of party Pj in the oblivious transfer to A2. A2 copies
this message onto its jth write tape i.e., includes party Pj ’s view. At the end of
the game, A1 sends a guess bit to A2, which A2 outputs as its guess in the OT
game.

We now analyze the advantage of (A1,A2) pair in the OT game. If β = 0, the
messages received by A1 is identical to hybrid Ht.ℓ.m. Otherwise, it is identical to
hybridHt′.ℓ′.m′ . Therefore, the pair (A1,A2) has advantage ε(n) in distinguishing
between the two cases.

Corollary 1. For any c < 1/80, there exists an α s.t. the above k-party MPC
protocol is (O(kn), cn2 − O(n), O(2−αn)) semi-honest secure for the class of n-
gate functionalities {Cn}n∈N.
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Supplementary Material

A Security Proof for 1-out-of-4 OT in Bounded-Storage
Model

In this section we present proof for correcness and security for the OT protocol
in Section 4.

Correctness. We now prove the correctness property of the scheme in section 4.

Claim 1 If the underlying 1-out-of-2 OT scheme is O(n)-correct, then the 1-
out-of-4 OT scheme described above is O(n)-correct.

Proof. By the correctness property of the 1-out-of-2 scheme, after step 2, the
receiver will correctly compute rtt,b for all b > t and rta,t for all a < t, which
are the 3 masking bits it needs to decrypt the message yt. The receiver can
then correctly decrypt yt to get mt. The sender and reciever runs six 1-out-of-2
OT protocols. If the underlying 1-out-of-2 OT scheme run within O(n) space
characteristic, then both the receiver and sender can run within O(n) space.

A.1 Proof of Security

Now we prove that the construction is semi-honest secure in the bounded storage
model as per Definitions 7 and 8, assuming the underlying 1-out-of-2 OT protocol
is semi-honest secure in the bounded storage model. For simplicity, we denote
the underlying 1-out-of-2 OT scheme by OT2 and the 1-out-of-4 OT scheme
constructed above by OT4.

At a high level, the OT4 scheme is secure against a semi-honest sender with
bounded space, because all the message that the sender receives are part of one of
the underlying OT2 invocations. As any bounded space semi-honest sender can-
not extract more information from the 1-out-of-2 protocol transcript, he cannot
extract more information from the 1-out-of-4 OT protocol transcript as well.

In order to argue that the OT4 scheme is secure against a semi-honest receiver
with bounded space, let us consider an example when the receiver’s choice t is 1.
By the security of the OT2 scheme, the receiver does not have any information
about the bits r0(0,1), r

2
(1,2), r

3
(1,3). As these bits are used to mask the messages

m0,m2,m3. The receiver cannot distinguish y0, y2, y3 from uniformly random
bits.

Security against Semi-Honest Sender

Theorem 8. For any constants c,α, if OT2 scheme is O(n)-correct and (O(n), cn2,
O(2−αn))-secure against semi-honest sender, then there exists corresponding con-
stants c′,α′ s.t. the above OT4 scheme is (O(n), c′n2, O(2−α′n))-secure against
semi-honest sender.
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Proof. We first construct a simulator OT4.SenderSim4 which outputs a simulated
view of the sender in OT4 protocol, given input {mj}j∈[3]. The simulator outputs
the view via its write communication tape.

SenderSim4(1
n, (m0,m1,m2,m3)) :

Write (Input, (m0,m1,m2,m3)) on the write communication tape.
For each pair (a, b) ∈ {0, 1, 2, 3}2 s.t. a < b:

– Sample uniformly random (raa,b, r
b
a,b) ← {0, 1}2, and write (sample, raa,b),

(sample, rba,b) to the write tape.

– Run OT2.SenderSim2(1
n, (raa,b, r

b
a,b)), and write the generated view

on the write tape.

The OT4 simulator internally invokes OT2 simulator 6 times sequentially.
As the OT2 simulator has space characteristic O(n), the OT4 simulator also has
space characteristic O(n). We now prove that a space bounded adversary cannot
distinguish between the views generated by the real protocol and the simulator
via a hybrid argument. First let us order the six tuples (a, b) ∈ {0, 1, 2, 3}2 s.t.
a < b in any order from 1 to 6. Let the order of any tuple (a, b) be Order(a, b).

At a high level, in the hybrid Hi, for the tuples with order less than or
equal to i, a real OT2 protocol is run internally to generate the corresponding
view, whereas for the tuples with order more than i, OT2.SenderSim2 is used to
generate the view of the corresponding 1-out-of-2 OT. The description of the al-
gorithm used in Hi is formally described below. Note that unlike the SenderSim4,
these intermediate hybrids additionally take the receiver’s choice t as input.

Hi(1
n, (m0,m1,m2,m3), t) (0 ≤ i ≤ 6) :
Write (Input, (m0,m1,m2,m3)) on the write communication tape.
For each (a, b) ∈ {0, 1, 2, 3}2 s.t. a < b,

– Sample uniformly random (raa,b, r
b
a,b) ← {0, 1}2, and write (sample, raa,b),

(sample, rba,b) to the write tape.
– If Order(a, b) ≤ i, If t = a, set c = 0. If t = b, set c = 1. Otherwise,

sample c ← {0, 1}. Internally run the OT2 protocol with sender’s
input (raa,b, r

b
a,b), and the receiver’s input c. Throughout the protocol,

write the sender’s transcript on the write tape.
– If Order(a, b) > i, run OT2 simulator SenderSim2(1

n, (raa,b, r
b
a,b)), and

write the generated view on the write tape.

Clearly, the distribution of the view generated by Hybrid H0 is identical to the
view generated in the real protocol. Similarly, the distribution of the view gen-
erated by final hybrid H6 is identical to the view generated by the simulator
OT4.SenderSim4. We now show that if a space-bounded adversary can distin-
guish between the hybrids Hi and Hi+1 with an ε advantage, then there exists
a space-bounded reduction algorithm that can break the 1-out-of-2 OT security
with ε advantage. Formally we state the lemma below. Consider any adversary A
with 1 read-tape. For any hybrid Hi, we let Pr[H

A
i (1n, (m0,m1,m2,m3), t) = 1]

to be the probability that the adversary outputs 1 when the write tape of
Hi(1

n, (m0,m1,m2,m3), t) algorithm is connected to the read tape of the adver-
sary.
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Lemma 3. For any constants c,α, if the underlying OT2 scheme is O(n)-correct
and (O(n), cn2, O(2−αn))-secure against semi-honest sender, then there exists
corresponding constants c′,α′ s.t. for every c′n2-space bounded adversary A,
there exists an integer N0 s.t. for any space parameter n > N0, any sender’s in-
put tuple (m0,m1,m2,m3), receiver’s choice t, any index 0 ≤ i < 6, |Pr[HA

i (1n,

(m0,m1,m2,m3), t) = 1]− Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]| ≤ O(2−α′n).

Proof. We show that if for all c′,α′ s.t. there is a c′n2-space bounded adversary
A, for all integer N0 s.t. there exists space parameter n > N0, some sender’s
input tuple (m0,m1,m2,m3), some receiver’s choice t, some index 0 ≤ i < 6,
|Pr[HA

i (1n, (m0,m1,m2,m3), t) = 1]− Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]| ≥
Ω(2−α′n); then there exists constants c,α, such that there is a cn2-space charac-
teristic semi-honest sender adversary A′ that breaks the underlying OT2 scheme
with Ω(2−αn) advantage.

Let the challenger in hybrid Hi be an adversary A′ in an OT2 security
game against the semi-honest sender. In the reduction during Hi, for all or-
dered tuples (a, b) where Order(a, b) < i, A′ runs a real OT2 protocol as de-
scribed above and writes the sender’s view on the read tape of adversary A;
for k = i + 1, A′ receives the sender adversary’s view from the challenger in
GameSHSenderA(raa,b,r

b
a,b),c

against semi-honest sender, where Order(a, b) = i + 1;

A′ writes this view on the read tape of A; for k > i+ 1, A′ runs SenderSim2 as
described above for Hi.

At the end of the game, A outputs a bit b′ ∈ {0, 1} and A′ passes it as its own
output to the challenger in GameSHSenderA(raa,b,r

b
a,b),c

, where Order(a, b) = i+1.A′

has advantage |Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1]−Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) =

1]|. Hence if there exists A that has Ω(2−α′n) advantage difference between two
hybrids, A′ has Ω(2−α′n) advantage in winning GameSHSenderA(raa,b,r

b
a,b),c

against

semi-honest sender.

By triangle inequality, the advantage of adversaryA in the OT4 game GameSHA
{mj}j∈[3],t

is

|Pr[HA
0 (1n, (m0,m1,m2,m3), t) = 1]− Pr[HA

6 (1n, (m0,m1,m2,m3), t) = 1]|

≤
5(

i=0

|Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1]−Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) = 1]|

If there exists A that has Ω(2−αn) advantage in GameSHSenderA{mj}j∈[3],t
, then

there must exist some α′ such that some adversary A′ has advantage Ω(2−α′n) =
Ω(2−αn/6) inOT2 semi-honest sender security game on some input ((raa,b, r

b
a,b), c),

which contradicts the proved security of OT2.

Corollary 2. For any c < 1/40, there exists α > 0 such that the above 1-out-of-
4 OT construction is (O(n), c · n2, O(2−αn))-secure against semi-honest sender.

The corollary follows when the above OT4 scheme is used with the OT2 con-
struction described in Appendix B.
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Security against Semi-Honest Receiver

Theorem 9. If the underlying OT2 scheme is O(n)-correct and (O(n),∞, O(2−n))-
secure against semi-honest receiver, then the above 1-out-of-4 OT construction
is (O(n),∞, O(2−n))-secure against semi-honest receiver.

Proof. We first construct a receiver simulator for OT4,ReceiverSim4 which out-
puts a simulated view of the receiver in the OT4 protocol, given the receiver’s
choice t ∈ {0, 1, 2, 3} and the receiver’s output bit mt. The simulator outputs
the view via its write communication tape.

ReceiverSim4(1
n, (t,mt)) :

– Write (Input, (t,mt)) to the write communication tape.
– For each pair (a, b) ∈ {0, 1, 2, 3}2 s.t. a < b:

If t = a, sample raa,b ← {0, 1}, run OT2.ReceiverSim2(1
n, (0, raa,b)).

If t = b, sample rba,b ← {0, 1}, run OT2.ReceiverSim2(1
n, (1, rba,b)).

Else, sample c ← {0, 1} and write (sample, c) to the write tape.
If c = 0, sample raa,b ← {0, 1} and run OT2.ReceiverSim2(1

n, (0, raa,b)).

If c = 1, sample rba,b ← {0, 1} and run OT2.ReceiverSim2(1
n, (1, rba,b)).

In all the cases, copy the view generated by OT2 simulator to the write
tape.

– Sample yj ← {0, 1} for j ∕= t. Compute yt by encrypting mt as in the
real game. Write (receive, (y0, y1, y2, y3)) on the write tape.

The OT4 simulator internally invokes OT2 simulator 6 times sequentially. As
the OT2 simulator has space characteristic O(n), the OT4 simulator also has
space characteristic O(n), the OT4 simulator also has space characteristic O(n).
We now prove that a space bounded adversary cannot distinguish between the
views generated by the real protocol and the simulator via a hybrid argument.
Recall that we order all possible tuples in {0, 1, 2, 3}2 by numerical order and
denote that the k-th tuple has Order(a, b) = k.

At a high level, in the hybrid Hi, for the tuples with order less than or
equal to i, a real OT2 protocol is run internally to generate the corresponding
view; whereas for the tuples with order more than i, OT2.ReceiverSim2 is used
to generate the view of the corresponding 1-out-of-2 OT.

The distribution of the view generated by Hybrid H0 is identical to the
view generated in the real protocol. Similarly, the distribution of the view gen-
erated by the final hybrid H6 is identical to the view generated by the sim-
ulator OT4.ReceiverSim4. We now show that if an adversary can distinguish
between the hybrids Hi and Hi+1 with an ε advantage, then there exists a
space-bounded reduction algorithm that can break the 1-out-of-2 OT security
against semi-honest receiver with ε advantage. Formally we state the lemma
below. Consider any adversary A with 1 read-tape. For any hybrid Hi, we let
Pr[HA

i (1n, (m0,m1,m2,m3), t) = 1] to be the probability that the adversary out-
puts 1 when the write tape of Hi(1

n, (m0,m1,m2,m3), t) algorithm is connected
to the read tape of the adversary.
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Lemma 4. If the underlying OT2 scheme is O(n)-correct and (O(n),∞, O(2−n))-
secure against semi-honest receiver, then for every adversary A, there exists
an integer N0 s.t. for any space parameter n > N0, any sender’s input tu-
ple (m0,m1,m2,m3), receiver’s choice t, for any index 0 ≤ i < 6, Pr[HA

i (1n,
(m0,m1,m2,m3), t) = 1]− Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) = 1]| ≤ O(2−n).

Proof. We show that if there is some adversary A, for all integer N0 s.t. there ex-
ists space parameter n > N0, some sender’s input tuple (m0,m1,m2,m3), some
receiver’s choice t, some index 0 ≤ i < 6, |Pr[HA

i (1n, (m0,m1,m2,m3), t) =

1] − Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]| ≥ Ω(2−α′n); then there exists some
semi-honest receiver adversary A′ that breaks the underlying OT2 scheme with
Ω(2−n) advantage.

Let the challenger in hybrid Hi be an adversary A′ in an OT2 security game
against the semi-honest receiver. In the reduction during Hi, for all ordered
tuples (a, b) where Order(a, b) ≤ i, A′ runs a real OT2 protocol as described
above; for Order(a, b) = i + 1, A′ gets the adversary’s view from the challenger
in GameSHReceiverA(raa,b,r

b
a,b),c

against semi-honest receiver, and then A′ writes

this view on the read tape of A; for Order(a, b) > i+ 1, A′ runs ReceiverSim2 as
described above for Hi.

At the end of the game, A outputs a bit b′ ∈ {0, 1} and A′ passes it as its own
output to the challenger in GameSHReceiverA(raa,b,r

b
a,b),c

, Order(a, b) = i+1. A′ has

advantage |Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1]−Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) =

1]|. Hence if there exists A that can distinguish between two hybrids with prob-
ability Ω(2−n) , A′ has Ω(2−n) advantage in winning GameSHReceiverA(raa,b,r

b
a,b),c

against semi-honest receiver.

Conclusion. By triangle inequality, the advantage of adversary A in the
OT4 game GameSHA

{mj}j∈[3],t
is given by

|Pr[HA
0 (1n, (m0,m1,m2,m3), t) = 1]− Pr[HA

6 (1n, (m0,m1,m2,m3), t) = 1]|

≤
5(

i=0

|Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1]−Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) = 1]|

If there exists A that has Ω(2−n) advantage in GameSHReceiverA{mj}j∈[3],t
, then

there must exist some adversary A′ has advantage Ω(2−n) = Ω(2−n/6) in OT2

semi-honest receiver security game on some input ((raa,b, r
b
a,b), c), which contra-

dicts the proved security of OT2.

B Review of 1-out-of-2 Semi-honest OT Protocol

In this section, we recall the 1-out-of-2 OT construction by Guan and Zhandry [12]
and prove its security. [12] proposed an indistinguishability based security def-
inition for 1-out-of-2 OT, whereas we need simulation-based secure OT in our
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construction of MPC protocol. We thereby prove the security of their construc-
tion as per Definitions 7 and 8.

At a high level, the OT construction proceeds as follows. Let (x0, x1) be the
sender’s input message bits, and let d be the receiver’s choice bit. The receiver
sends a randomly sampled stream of parity learning tuples (a1, b1), · · · (aℓ, bℓ)
to the sender. The sender stores two random linear combinations (L0, q0) and
(L1, q1) of these samples. For a sufficiently large m, these samples stored by
the sender statistically resemble a fresh parity learning samples. The receiver
then encrypts its choice bit d i.e., creates a fresh parity learning sample (a, b)
and sends (a, b + d) to the sender. The sender then computes encryptions of
(1 − d) · x0 and d · x1, rerandomizes these by adding (L0, q0) and (L1, q1) and
sends them to the receiver. The receiver can decrypt (1− d) · x0 and d · x1 using
its secret key and obtain xd.

We now describe the protocol formally. The construction is parameterized by
a space parameter n. Intuitively, the honest parties can run the protocol within
space characteristic O(n), whereas the dishonest parties with space characteristic
O(n2) cannot break the security of the protocol.

1. The receiver samples a random key k ← {0, 1}n. The sender sets L = {0}2×n

and q ← [0, 0]⊤. Let ℓ = 2n.
2. For i = 1 to ℓ,

The receiver samples ai ← {0, 1}n and sends (ai,ai ·k mod 2) to the sender.
Upon receiving (ai, bi), the sender first samples Mi ← {0, 1}2 and updates

L ← L +Mi · ai and q ← q +Mi · bi, where ai is interpreted as a row
vector and Mi is interpreted as a column vector.

3. The receiver then samples a random y ← {0, 1}n and sends a tuple (y,y ·
k+ d) to the sender.

4. Let us denote L0,L1 as the first and second rows of L, and denote q0, q1 to be
the first and second element in q. The sender sends the following encryptions
of (1− d)x0, dx1 to the receiver:

(L0, q0) + x0 · (y,y · k+ 1− d) = (L+ x0 · y, (L+ x0 · y) · k+ x0(1− d))

and

(L1, q1) + x1 · (y,y · k+ d) = (L+ x1 · y, (L+ x1 · y) · k+ x1d).

5. Let the values received by the receiver be (c0, c
′
0) ∈ {0, 1}n × {0, 1} and

(c1, c
′
1) ∈ {0, 1}n × {0, 1}. The receiver computes c′0 − c0 · k mod 2 and

c′1− c1 · k mod 2. If both values are 0, the receiver outputs 0. Otherwise, the
receiver outputs 1.

Correctness. Note that in the last step, c′0− c0 ·k mod 2 evaluates to x0 · (1−d),
and c′1− c1 ·k mod 2 evaluates to x1 ·d. In case the chosen message xd = 0, then
both the values are 0 and the receiver outputs 0. Whereas if xd = 1, then one of
these values is 1, and the receiver outputs 1.
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The above protocol can be run within O(n) space characteristic. This is
because, at each step of the protocol, the receiver has to store the key k and
at most two other n-bit messages. The sender only maintains L, q which also
requires only O(n) space.

B.1 Proof of Security

Theorem 10. For any c < 1/40, there exists α > 0 such that the above 1-
out-of-2 OT construction is (O(n), c · n2, O(2−αn))-secure against semi-honest
sender.

Proof. We first build a simulator SenderSim which outputs the simulated view
of the sender given its input messages (x0, x1). The simulator outputs the view
via its write communication tape.

SenderSim(1n, (x0, x1)):
– Place (Input, (x0, x1)) on the write comm. tape.
– Sample k ← {0, 1}n.
– For i = 1 to 2n,

Sample ai ← {0, 1}n, compute bi = ai·kmod 2, and write (receive, (ai, bi))
on the write tape.

Sample Mi ← {0, 1}2, and write (sample,Mi) on the write tape.
– Sample y ← {0, 1}n and a bit r ← {0, 1}, and write (receive, (y, r)) on

the write tape.

To prove Theorem 10, we prove that if there exists a space bounded semi-
honest sender that can break the security defined above, then we can construct
a space bounded adversary that breaks the indistinguishability version of parity
learning, defined in 9 in this paper.

For the sake of contradiction, suppose there exists some c < 1/40, for all
α > 0, there exists a cn2-space bounded adversary such that for all N0 ∈ N,
there is some n > N0, {xi}i∈[k] ⊆ M, d ∈ {0, 1} where A has advantage Ω(2−αn)

in the GameSHSenderA{xi}i∈[1],c
security game; then for all α′ > 0, there is a

(2cn2+O(n))-space bounded adversary A′ where A′ has advantage Ω(2−α′n) in
the indistinguishability parity learning security game. There exists someN0, such
that for all n > N0, there exists some c′ < 1/20 such that c′n2 ≥ 2cn2 +O(n).

The challenger in the semi-honest sender security game GameSHSenderA{xj}j∈[1],c

is an adversary A′ in the indistinguishability parity learning security game de-
noted as PLA′,δ(n, 2n+ 1), where the secret key of parity learning has length n
and the adversary will receive 2n parity learning tuples plus one challenge tuple.

If A′’s coin flip is b = 1, A′ runs the real-world OT2 protocol, regardless of the
PLA′,δ(n, 2n+ 1) challenger. If A′’s coin it flips b = 0, then A′ writes the parity
learning tuples from PLA′,δ(n, 2n+1) on communication tape of the simulator. In

the reduction, the simulator in GameSHSenderA{xj}j∈[1],d
does not sample k, ri,y

by itself but instead gets (ri, ai), i ∈ [2n + 1] from the PLA,δ(n, 2n + 1) game.
For the first 2n tuples (ai, bi), i ∈ [2n], the simulator uses them as the tuples in
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protocol step 2; when i = 2n+ 1, the sender simulator sets y = a2n+1 and sets
r = b2n+1.

Recall that when i = 2n + 1, the PLA′,b(n, 2n + 1) challenger flips a coin
δ ← {0, 1}; it sends b2n+1 = a2n+1 ·k to A′ if δ = 0 and sends uniformly random
b2n+1 ← {0, 1} to the A′ if δ = 1. At the end of the game, A outputs a bit b′; A′

passes A’s output b′ to the the PLA′,b(n, 2n+1) challenger as its own output δ′.
A′ has space characteristic (cn2+O(n)) where cn2 space is used to simulate theA
and O(n) for interaction with challenger. Suppose A has advantage ε = Ω(2−αn),
then A′ has advantage ε/2 = Ω(2−α′n) in PLA′,b(n, 2n + 1), which forms a
contradiction with 6.

Theorem 11. The above 1-out-of-2 OT construction is (O(n),∞, O(2−n))-secure
against semi-honest receiver.

Proof. We first build a simulator ReceiverSim which outputs the simulated view
of the receiver given the choice bit d and the receiver’s output xd. The simulator
outputs the view via its write communication tape.

ReceiverSim(1n, (d, xd)) :
– Write (Input, (d, xd)) to the write comm. tape.
– Sample key k ← {0, 1}n, and place (sample,k) on the write tape.
– For i = 1 to 2n, sample key ai ← {0, 1}n, and write (sample,ai) on the

write tape.
– Sample y ← {0, 1}n, and place (sample,k) on the write tape.
– Sample uniformly random U ← {0, 1}2∗n. Let U0,U1 be the first and

second row vectors.
– If d = 0:

Write (receive, (U0,U0 ·k+x0)) and (receive, (U1,U1 ·k)) on the write
tape.

else if d = 1:
Write (receive, (U0,U0 ·k)) and (receive, (U1,U1 ·k+x1)) on the write

tape.

Notice that other than the final step, rest of the view generated by the
simulator is identical to the view of the receiver in the real protocol. Suppose
d = 0. In the final step, the receiver in the real protocol receives (L0 + x0 ·
y, (L0 + x0 · y) · k + x0), (L1 + x1 · y, (L1 + x1 · y) · k + 0), where L0,L1 are
random linear combinations of ai vectors. Note that the stream of randomness
{ai}i∈[2n] can be viewed as a 2n × n matrix, and with all but exponentially
small probability, the matrix has rank n. Therefore, a random linear combination
of these rows (L0,L1) are statistically indistinguishable from uniform sampled
vectors in {0, 1}n. Consequently, (L0 + x0 · y, (L0 + x0 · y) · k + x0), (L1 + x1 ·
y, (L1 + x1 · y) · k+ 0) are statistically indistinguishable from (U0,U0 · k+ x0)
and (U1,U1 · k). Similar analysis works even when d = 1.
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