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ABSTRACT

The majority of recently demonstrated Deep-Learning Side-Channel Analysis (DLSCA) use neural networks trained on a
segment of traces containing operations only related to the target subkey. However, when the size of the training set is limited,
as in this paper with only 5K power traces, the deep learning (DL) model cannot effectively learn the internal features of the data
due to insufficient training data. In this paper, we propose a cross-subkey training approach that acts as a trace augmentation.
We train deep-learning models not only on a segment of traces containing the SBox operation of the target subkey of AES-128
but also on segments for other 15 subkeys. Experimental results show that the accuracy of the subkey combination training
model is 28.20% higher than that of the individual subkey training model on traces captured in the microcontroller implementation
of the STM32F3 with AES-128. And validation is performed on two additional publicly available datasets. At the same time, the
number of traces that need to be captured when the model is trained is greatly reduced, demonstrating the effectiveness and
practicality of the method.

Introduction
Side-Channel Analysis (SCA) have become a realistic threat to implementations of cryptographic algorithms, such as Advanced
Encryption Standard (AES)1. Even theoretically secure cryptography may be broken since the encryption has to run in hardware
or software at some point to actually do things. There might be some unintentional physical leakage during the execution
of a cryptographic algorithm, such as the power consumed2, 3 by the victim device. By utilizing the unintentional physical
leakage4–6, it is possible for SCA to bypass the theoretical strength of cryptographic algorithms and to recover the key. This is
particularly threatening since once the secret key is leaked, the ciphertext can be decrypted and the signature can be forged.

Recently, DL7 techniques have made significant breakthroughs in image classification8 and natural language processing
(NLP)9. Because DL models are good at finding relevance from within the data, more and more SCA researchers are applying
DL techniques in SCA. Currently, there are many studies demonstrating that DLSCA is more effective than traditional SCA10–12.
In13, Huanyu et al. evaluated the impact of SCA for the diversity of target chips. In14, Maikel et al. investigate the impact of
changes in the loss function on SCA and introduce multiple loss functions to improve the efficiency of SCA. In15, Yoo-Seung
et al. evaluated the black-box hardware AES engine using the DL models. The above researchers usually choose the tracking of
target subkeys and operations associated with target subkeys as the subject of their experiments.

Most of these existing deep-learning based attacks use a divide-and-conquer strategy to recover a 128-bit secret key of
AES-128, in which the 128-bit key K is divided into 8-bit parts ki ∈K = {0, 1, . . . , 255}, called subkeys, for i∈ {1, 2, . . . ,16}.
We use K to denote the set of all possible subkey candidates. Afterwards, each subkey ki is recovered independently by using
the deep-learning models trained on traces only related to a specific subkey ki.

However, deep learning models always have the problem of not being able to effectively learn features within the data
when there are not enough traces to train. A common solution for this is data augmentation, which is to use modified version
of existing data to expand the training set. In SCA, a trace segment leaked by an operation related to the ith subkey ki could
be used as an augmenting trace for another subkey k j, with the same operation and the same input. In some implementations
of AES-128, instructions are computed sequentially and procedures are executed byte-by-byte. This means if two identical
operations have the same input data, for example, two SBox substitutions in the first round of AES, the resulting power
consumption or electromagnetic emission could be similar. Probably this is noticed before but the potential benefit of training
models on traces for multiple subkeys has not been fully explored.

In this paper, we propose a cross-subkey training approach that uses multiple subkeys rather than a single subkey to build
models with better fitting capacity. By adding a certain amount of traces which are related to the non-targets subkeys, the
profiling data set can be considered as a data augmentation for the traces of the target subkey. Our current results show that (1)
the number of traces included in the training sets is kept constant, and the effectiveness of cross-subkey training is verified



by varying the proportion of target and non-target subkeys in the training sets; (2) adding traces of non-target subkeys to the
target subkey training sets expand the training set and can effectively improve the efficiency of the side-channel analysis by
2-fold. The method is also validated on the home-made dataset AES_STM32 and the publicly available datasets AES_XMEGA,
AES_GPU.

Background
This section first reviews AES-128. Afterwards, we briefly introduces deep learning and how to apply deep learning to
side-channel analysis. For a broader introduction for deep learning, see7. Finally, the three evaluation metrics used in this paper
are presented.

AES-128
AES1 is one of the most widely used symmetric cryptographic algorithm standardized by NIST in FIPS 197 and included in
ISO/IEC 18033-3. AES-128 is a subset of AES which takes a 128-bit key K to encrypt a 128-bit block of plaintext P, and
the output is a 128-bit block of ciphertext C. AES-128 contains 10 encryption rounds in total and except the last round, each
round repeats 4 steps sequentially: SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round does not contain
MixColumns. In our experiment, the mode of operation is set to Electronic Codebook (ECB) mode, which first divides the
message into blocks and each block is encrypted separately. The SubBytes procedure is a non-linear substitution which maps an
8-bit input to an 8-bit output by using the Substitution Box (SBox).

An attack point for side-channel analysis is a selected intermediate state which can be used to describe the power consumed
by the victim device during the execution of AES. The selection of attack point is affected by known input data (e.g. plaintext,
ciphertext) and physical measurements (e.g. power consumption, EM emissions, timing). Two common points of attack are the
first round of SBox output and the last round of SBox input of the AES algorithm. An appropriate attack point will lead to a
more efficient attack.

Deep-Learning Side-Channel Attack
Deep learning is a subset of machine learning16 that uses deep neural networks to learn from experience and understand the
input data in terms of a hierarchy of concepts. Since deep-learning techniques are good at extracting features in raw data7, 17, 18,
deep-learning based SCA become several orders of magnitude more effective than the traditional cryptanalysis. A typical
deep-learning side-channel attack can be divided into two stages.

At the profiling stage, the attacker aims to use the deep-learning model to learn a leakage profile by using a large set of
power traces T = { T1,T2, ...,Tm} captured from the profiling device, where m is the number of traces in the training set. Each
trace Ti is labeled by the data processed at the attack point l(Ti) ∈ L, where L = {0, 1, . . . , 255}, which can be used to derive
the subkey by using some known input (e.g. the plaintext, ciphertext). The process of building a neural network can be viewed
as a mapping N : Rm→ I|L| and the output is a score vector S = N (T) ∈ I|L|. The element s j with value j in S represents the
probability that l(T) = j.

At the attack stage, the attacker uses the trained deep-learning model to classify traces captured from the victim device and
obtain the score vector. The attacker can find the ith subkey ki = j which has the largest probability in S. We use k∗i to denote
the real subkey. Once ki = k∗i , the subkey is recovered successfully. To quantify the classification error of the neural network,
we use the cross-entropy16 as the loss function and the optimizer is set to RMSprop (Root Mean Square prop).

ki = argmax
0≤ j≤255

s̃ j. (1)

Evaluation Metrics
Accuracy: Model accuracy is defined as the probability of a model achieving correct classification results on a testing set.
As one of the most commonly used model evaluation metrics in machine learning, model is used to characterise a model’s
ability to classify data. An increase in model accuracy accuracy indicates that the backpropagation algorithm’s optimization of
the weights and bias parameters gradually converges to the correct values, and the model gradually converges to the optimal
model. The loss of a model characterises the degree of deviation between a model’s predicted and actual values. The smaller
the loss, the closer the model’s prediction is to the actual value. The loss function used in this experiment is the Categorical
Crossentropy. The formula for the accuracy of the model is:

acc(Xattack) =
|{xi ∈ Xattack}k̃|

Xattack
. (2)
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Where Xattack denotes the test dataset, xi denotes the ith power trace in that dataset, k̃ denotes the calculation result, and
xi ∈ Xattack is the set when the guess keys are all equal to the correct key. The model’s accuracy is the ratio of the number of
power traces when the guessed key is equal to the correct key to the number of power traces in all the testing sets.

PGE and Key Rank: However, when traces are noisy19, it might be difficult for the model to predict the key with a single
traces. In that case, partial guessing entropy (PGE) becomes a more suitable evaluation criterion. PGE indicates the mean rank
of the real subkey sorted by the predicted probabilities of all possible subkeys. During the attack stage, we use the trained model
to classify traces from the testing set and obtain the probabilities of different keys for each trace. For trace xi ∈ Xattack, the
obtained probability matrix is denoted as Pi = [pi,1, pi,2, ..., pi,255], where pi, j in Pi is the predicted probability of k= j for trace
xi. Where Pi is the correct Key Rank, which is usually used as an evaluation criterion for datasets with better signal-to-noise
ratios, as the number of traces used to recover the correct key for datasets with higher signal-to-noise ratios is usually in the
single digits, and using the Key Rank provides a more intuitive evaluation of the results. The lower the number of traces in the
Key Rank, the better the model.

Afterwards, we apply an element-wise multiplication for all Pi to obtain a cumulative probability:

P =
m

∏
i=1

Pi = [P0,P1, ...,P255] (3)

where m is the number of traces we used for classification. Then, PGE can be represented as the averaged rank of real key
k∗ sorted by P.

Cross-Subkey Attack
Fig. 1 shows an overview of how the cross-subkey model is trained, where the collaborative use of different subkeys provides
more feature information to the model, providing a better fit to the target subkey.

Figure 1. An overview of how the cross-subkey model is trained on the mixed profiling set.

Composition of Power Traces
Power based side-channel analysis utilize the fact that the power consumed during the execution of the encryption process
by the victim device might be different according to the different input data and different operations. Therefore, the most
interesting parts of a power consumption trace can be defined as a data-dependent component Pdata and an operation-dependent
component Pop. Besides, using the same device to repeat the same operation with the same input data will also consume
different amount of power for every repetition because of the electronic noise component Pnoise. Meanwhile, the switching
activities of the transistors which are independent from the input data can generate a constant amount of power consumption,
which is called the constant component Pconst . Thus, each point of a power trace can be modeled as the sum of these
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(a) The different data is processed (b) The same data is processed

Figure 2. Power traces captured from an 8-bit microcontroller implementation of AES, which represent the first SBox and the
second SBox operations in the first round. Traces look very similar if the same data is processed.

components3.

Ptotal = Pdata +Pop +Pnoise +Pconst (4)

Trace Augmentation
Deep-learning techniques have performed remarkably well on many side-channel attack scenarios. However, deep learning
models are inadequately trained to measure and always suffer from an inability to effectively learn features within the data.
Unfortunately, many attackers may not have access to big profiling data, for instance, attackers may not have a full control to
the profiling device and can only capture a limited amount of traces. One data-level solution to the problem of limited training
data is data augmentation20, which aims to use the additional synthetically modified traces to act as a regularizer and helps
enhance the fit when training models in the context of side-channel analysis.

In software implementations of AES, leakage is time-dependent since instructions are carried out one by one21. This
leads to a generally accepted approach for the attack to against software implementation of AES, which is to build a leakage
profile between traces and the target subkey. Typically for the 8-bit microcontrollers and microprocessors, the encryption is
implemented byte by byte. If the same data is processed by two SBox substitutions, power traces of these two operations could
be similar since the the data-dependent components and operation-dependent components in formula 4 are the same. Fig. 2
shows power traces captured from an 8-bit microcontroller implementation of AES, which represent the first SBox and the
second SBox operations in the first round. One can see that power traces look very similar if the same data is processed by two
SBox substitutions. So we could use a small amount of traces related to the non-target subkeys as a regularizer for the training
set which contains traces only for the target subkey. It is a data augmentation for a specific subkey to build the model with a
better fitting capacity.

Cross-Subkey model training
As shown in Fig.1, a trace which contains 16 SBox computations of the first round is first divided into 16 sub-traces. The ith
sub-trace is labeled by li which represents the output of the ith SBox procedure, with pi denotes the ith byte of the plaintext.

li = SBox(pi⊕ ki) (5)

At the profiling stage, traces are divided into 16 sub-traces by analyzing the Point of Interest (POI), and each sub-trace
is labeled by the corresponding SBox output. Generally, to recover the ith subkey, attackers train deep-learning models on
sub-traces which are labeled by the ith SBox output. In the cross-subkey training, we go to one step further by adding a small
amount sub-traces which represent the other 15 SBox operations into the training set.

We divided the experiment into two parts (notice: the number of training sets in this paper is 5K):
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Figure 3. DL Model Structure.

• Verifying the validity of cross-subkey training (total training set 5K constant). We define the proportion of subtraces
of the target subkey to the total training set as x ∈ [1,16]. Thus the proportion of other subkeys in the training set is
16− x. The other 15 subkeys are average distributed in the training set.

• Applying cross-subkey training (total training set is increased by 5K at a time). We use all the power traces of the target
subkey (5K in this paper) for training, and add an equal number of power traces (5K) to the training set at a time as the
number of target power traces, which are provided by the other 15 subkeys. The training set is thus 5K× y(y ∈ [1,16]),
where 5K× (y−1) is equally distributed in the training set by the other 15 subkeys.

Experimental Results
In this section, we first introduce the DL model structure. Afterwards, the training setup is presented. Finally we show the
experimental results of the cross-subkey side channel analysis method on three datasets. We use the ρ-test as a leak detection
method22 to find the point of interest (POI) for each subkey. The power consumption model used in this paper is the identity
model13.

Model structure
The structure of the network model used in this work is shown by Fig.3. After passing through the Input Layer, the traces are
connected to a Convolutional Layer with a step size of 5 and a neuron count of 16. After passing through an Average Pooling
Layer with a pooling step of 3, there are expanded by Flatten and then connected to two Dense Layers with 256 neurons. The
last of these Dense Layers is activated by Softmax and is used to generate 256 output predictions. The Activation Functions of
the other layers in the network model are all with Rectified Linear Unit (Relu).

Training setup
We divide the experiment into two parts the first part in order to demonstrate that the inclusion of sub-traces of non-target
subkeys positively influences the training of the model, and the second part for the application of the cross-subkey approach to
the experiment.

Part I We know that data augmentation increases the amount of training data by adding minor alterations to the existing
training traces. However, too many alterations in the training set may confuse the neural network. So to find the optimal amount
of augmenting traces in the training set becomes a realistic problem. Thus, for each database, we build 16 different training
sets, which contains different amount of augmenting traces to train 16 deep-learning models. Fig. 1 shows an example of how
these training sets are built. We call these training sets from set1 to set16. Suppose the database contains x traces for training
and we divide each trace to 16 segments as shown in Fig. 1, which are related to 16 subkeys separately. So the total number
of trace segments should be 16× x. To train the model for the target subkey, the training set is composed of x target subkey
segments and y other-subkey segments. Segments of 15 non-target subkeys are equally distributed in all training sets. From set1
to set16, the ratio of the target-subkey segments to all segments is defined by x

x+y ∈ {
1
16 ,

2
16 , ...

16
16}, in which set16 denotes the

set without trace augmentation. The corresponding trained models are denoted by M1,M2, ...,M16.
Part II In image classification, data enhancement methods are often used such as cropping, rotating, flipping, deflating and

shifting23. These methods are essentially a series of changes to the original data in order to expand the number of training
sets on which the models are trained. In the Part I, we do not change the number of training sets on which the models are
trained. The main work in this part is to use all the traces of the target subkey and expand the training set with other subtraces
of non-target subkeys for the purpose of data augmentation. Assuming that the database contains x training traces, similar to the
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work in Part I, we will also train 16 models. The training sets of 16 models are denoted by s̃et1 to s̃et16. The amount of data in
s̃ety(y ∈ [1,16]) is x×y, where (16−y)×x is equally distributed by the sub-traces of non-target subkeys. s̃et1 denotes all traces
of the target subkey x (no sub-traces of other subkeys), and s̃et16 denotes all traces of all subkeys 16× x. The corresponding
trained models are denoted by M̃1,M̃2, ...,M̃16

Results on software AES-128 implementation on STM32F3 (AES_STM32)
The first dataset is captured by a ChipWhisperer-Lite24 device at a sampling frequency of 40MHz. The experimental target
cryptographic board is the CW308T-STM32F3, and the target cryptographic chip is the Arm Cortex M4, which runs the
cryptographic algorithm TinyAES-128. The encryption mode of operation is the Electric Code Book (ECB) mode.

For the first round of the AES algorithm 11K power traces are captured as the data used for the experiments. Of these, 6K
uses random plaintexts and random keys, 5K is used as the training set and 1K is used as the validation set. The remaining 5K
are used as the testing set for the experiments using fixed-key random plaintexts. Each power trace has 750 sampling points and
contains all SubBytes from the first round. This is shown by Fig.4. We call this homemade dataset AES_STM32 in brief.

Figure 4. Waveform of the first round traces of the STM32F3 implementation of TintAES-128 (AES_STM32).

(a) POI for all subkeys in the first round. (b) POI alignment.

Figure 5. The result of all subkey POI and the result of POI alignment (AES_STM32).

Results. Experiment I: We first used the ρ-test to detect the POI of each subkey, as shown in Fig.5(a). The POI of each
subkey in this dataset corresponds to 40 sampling points on the trace. Specifically, the trace segment for the first SBox operation
is [28 : 68] (The 1st subkey as the target subkey). Fig.5(b) shows how we allowed to synchronise segments for different bytes
of the subkeys. In this experiment we generated 16 training sets, called set1, set2, ..., set16, based on the training method in
Part I. Each training set contains 5K traces, with 1K of data for the target subkey as the validation set, which will be saved
during model training when the model is at its highest accuracy in the validation set. The testing set is the one containing 5K
traces of the target subkey, and we also tested the other subkeys, which also contained 5K traces of the corresponding subkeys.
Afterwards, model M1, M2, ..., M16 is trained on the corresponding training set respectively. The training batch_size are set to
256 and the maximum number of epochs is 500 and the learning rate is 0.0005. Since the optimiser RMSprop is random in
updating parameters, we have trained each model 10 times and taken the mean value as the experimental result. Table.1 shows
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Table 1. Classification accuracies of 16 DL models on a testing sets of 16 subkeys (No change in the number of traces in the
training set).

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
S1 5.86 8.74 9.56 11.01 11.78 12.77 11.96 13.91 13.83 14.00 14.13 14.69 16.70 18.46 21.27 14.75
S2 5.07 5.16 5.14 4.73 4.09 5.69 4.56 3.52 3.12 3.47 3.14 2.77 2.70 2.47 2.00 0.34
S3 6.31 6.55 6.53 6.40 6.12 6.48 4.30 5.07 5.45 4.17 4.37 4.49 4.22 3.02 2.33 0.36
S4 4.87 5.81 6.09 5.72 5.18 5.19 4.42 4.19 4.21 4.34 2.94 3.90 3.00 2.22 2.11 0.36
S5 7.62 8.15 8.46 8.77 8.17 8.41 8.43 6.38 7.02 6.44 6.20 5.35 4.16 3.53 4.10 1.95
S6 5.93 7.28 6.76 6.82 6.09 6.61 6.68 5.41 6.11 5.49 5.07 4.63 4.29 3.37 2.80 1.05
S7 7.99 8.92 7.43 8.44 7.90 8.38 7.67 6.41 6.23 6.09 5.66 5.50 5.40 3.61 3.93 0.72
S8 6.22 7.40 6.31 7.15 7.00 7.16 6.86 6.24 6.38 5.16 4.49 5.14 4.24 2.62 2.90 0.88
S9 5.22 6.72 6.13 6.60 6.51 5.85 7.37 5.97 6.20 5.99 7.03 5.80 6.95 7.34 5.78 1.63
S10 4.08 4.27 4.66 3.88 3.92 3.89 4.38 3.93 3.84 3.43 3.95 3.12 3.76 3.19 1.82 0.51
S11 4.18 5.42 6.52 4.78 4.67 4.91 4.77 4.44 4.27 3.30 3.96 4.07 4.55 3.88 3.04 0.77
S12 3.79 4.93 5.30 4.96 4.09 4.11 5.15 4.68 4.25 3.74 3.88 3.34 3.74 3.82 3.21 0.84
S13 7.12 7.73 6.85 7.09 7.09 7.05 7.58 6.55 6.37 5.66 5.16 4.71 5.08 4.37 3.60 0.71
S14 5.11 6.01 5.30 5.43 5.89 5.19 5.91 5.36 4.71 3.87 3.52 3.76 2.81 2.53 1.59 0.35
S15 5.77 6.91 6.52 6.53 6.16 6.67 6.16 5.79 4.91 4.46 4.01 4.70 3.35 3.55 2.58 0.50
S16 5.38 5.83 5.84 6.05 5.78 5.43 6.46 6.49 5.24 4.71 3.65 4.12 2.96 2.21 2.19 0.76

Table 2. Classification accuracies of 16 DL models on a testing sets of 16 subkeys (Increasing number of traces in the training
sets).

M̃1 M̃2 M̃3 M̃4 M̃5 M̃6 M̃7 M̃8 M̃9 M̃10 M̃11 M̃12 M̃13 M̃14 M̃15 M̃16
S1 14.75 21.56 27.16 28.79 31.52 31.47 34.78 32.55 38.53 42.95 37.37 37.39 37.63 36.78 39.08 39.85
S2 0.35 4.76 9.09 11.87 14.53 15.94 18.26 18.81 19.12 21.81 23.29 23.54 24.80 25.40 27.66 25.93
S3 0.36 8.51 12.49 14.15 14.90 15.53 19.07 18.97 20.01 23.08 23.42 23.92 25.67 26.14 28.50 26.81
S4 0.36 9.05 12.79 13.21 17.42 16.69 19.76 18.97 21.78 23.88 26.54 23.98 26.13 27.75 28.63 23.72
S5 1.94 11.87 14.30 17.13 18.29 20.73 25.59 23.23 27.39 30.20 27.02 32.56 30.54 31.55 33.88 35.64
S6 1.01 9.29 12.59 11.50 14.14 16.27 19.16 19.22 19.98 19.70 23.54 23.85 25.02 28.15 25.87 29.85
S7 0.72 9.73 13.04 12.75 13.22 13.74 16.97 15.79 18.17 18.47 22.88 23.15 22.60 24.07 23.09 26.41
S8 0.88 9.99 11.78 12.76 12.62 14.01 15.95 16.12 15.96 17.21 20.17 21.25 19.54 22.54 20.39 23.23
S9 1.63 7.82 11.05 10.15 14.07 14.26 17.01 17.29 21.22 21.43 21.84 23.19 25.18 24.42 27.91 31.51
S10 0.51 5.90 8.01 8.57 11.38 9.62 13.19 11.88 13.20 15.25 14.42 13.48 15.96 14.69 18.18 19.11
S11 0.75 6.73 8.59 9.87 13.02 12.30 15.92 14.51 17.44 17.78 17.38 17.77 20.81 16.94 22.61 22.76
S12 0.84 6.68 8.76 10.96 14.54 14.39 18.81 17.48 20.81 21.16 20.77 22.13 24.22 21.71 27.06 26.44
S13 0.71 8.06 13.25 17.11 20.66 20.61 27.53 25.78 29.17 31.85 31.66 33.89 33.30 33.62 34.25 37.10
S14 0.28 7.22 11.56 14.28 16.60 16.24 21.85 19.31 21.68 23.34 24.86 23.41 26.35 25.83 26.51 28.52
S15 0.50 7.38 12.51 13.42 15.02 15.23 20.98 19.04 21.68 22.94 23.98 24.71 26.01 24.45 26.94 28.14
S16 0.76 8.47 12.28 14.98 16.28 18.00 21.66 21.69 24.06 25.03 25.49 28.08 28.01 27.31 28.60 28.07

the accuracies of the 16 models on the full testing set of subkey. where Mi(i ∈ [1,16]) denote the models and Si(i ∈ [1,16])
denote the testing set of different subkeys, e.g. the first column in the first row shows the accuracy of M1 on the testing set of
the first subkey (accuracy figures are in percentages, with the % omitted at the end).

We found that model M15 had the highest accuracy on the testing set of the first subkey. Because the training set of model
M16 is the full trace of the first subkey, a model trained by means of cross-subkey will be 6.52% more accurate than a model
trained traditionally on a one-to-one approach. Next, we show the results of the trace number increase in the training set.

Experiment II: Again in this subsection the first subkey is used as the target subkey. In contrast to Experiment I the number
of training sets for each model is increasing when training the cross-subkey model, with the training set being increased by 5K
traces at a time, and these 5K traces being equally distributed among the sub-traces of the other non-target subkeys. Where
the training set for M̃1 is all the traces of the first subkey and the training set for M̃16 is all the traces of all subkeys. The
models M̃i(i ∈ [1,16]) is then trained on the corresponding dataset. The other hyperparameters are the same as Experiment I .
Finally each model is trained 10 times and the results on the testing sets of different subkeys are taken as the mean value for
the experimental results. Table.2 shows the accuracy of the 16 models on the testing set of all subkeys, where M̃i denotes the
models and Si(i ∈ [1,16]) denotes the testing set of different subkeys (accuracy figures are in percentages, with the % omitted
at the end).

We found that model M̃10 had the highest accuracy on the testing set of the first subkey. It is 28.20% more accurate than the
traditional one-to-one trained model M̃1 on the testing set of the first subkey.
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Table 3. Results of Key Rank < 5 and PGE for Mi and M̃i on testing set S1 (AES_STM32).

DL model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
Key Rank 843 1237 1327 1579 1615 1691 1697 1911 1886 1931 1887 1891 2179 2341 2746 2096
PGE 17 13 10 10 9 9 8 8 8 8 6 7 5 4 2 4
DL model M̃1 M̃2 M̃3 M̃4 M̃5 M̃6 M̃7 M̃8 M̃9 M̃10 M̃11 M̃12 M̃13 M̃14 M̃15 M̃16
Key Rank 2096 2685 3113 3249 3383 3355 3523 3369 3727 4160 3741 3752 3689 3661 3775 3836
PGE 4 3 2 2 2 2 2 2 2 1 2 2 2 3 2 2

This is because classification accuracy partially reflects the effectiveness of the models on SCA. Next, we evaluated Mi
and M̃i on the testing set S1 using Key Rank and PGE. The results are shown in Table.3. Because of the higher AES_STM32
signal-to-noise ratio, the higher classification accuracy of the DL models on the testing set S1 and the lower number of traces
needed to recover the correct key, for this dataset mainly Key Rank < 5 is used for the experimental comparison (the larger the
number of traces with Key Rank < 5, the more efficient the DL models are at SCA). The final prediction result of M15 on the
testing set has 650 more traces than the prediction result of M16 on the testing set Key Rank, and the prediction result of M̃10 on
the testing set S1 has 2064 more traces than the prediction result of M̃1 on the testing set S1 Key Rank (where M16 and M̃1 are
trained with the same training set).

Next, we validate the method on two well-known publicly available datasets.

Results on software AES-128 implementation on ATXMEGA128D4 (AES_XMEGA)
The second dataset is captured using an 8-bit ATMEL microcontroller, the ATXMEGA128D4, and all the power traces generated
during the encryption process are extracted using chipwhisperer to form this paper’s dataset, with the encryption mode being
TinyAES-128’s electrical codebook (ECB) mode. The training, validation and testing sets of this dataset are set up in the same
way as the first dataset. We call this dataset AES_XMEGA in brief. Each power trace has 1700 sampling points and contains
all SubBytes from the first round. This is shown by Fig.6. Specific information on this dataset can be found in Literature13.

Figure 6. Waveform of the first round traces of the ATXMEGA128D4 implementation of TintAES-128 (AES_XMEGA).

Results. The ρ-test is first used to locate the POI of the 16 subkeys on the traces, as shown in Fig.7(a). Each subkey leakage
interval contains 90 sample points. Our target subkey is the first byte of the SBox output, which corresponds to a leakage
interval of [858: 948]. Fig.7(b) shows how we allowed to synchronise segments for different bytes of the subkeys. The other
experimental configurations are identical to the first dataset. During the training of the DL models, we used the RMSprop
optimizer with a learning rate of 0.001. The mini-batch size is 256 and the maximum iterative epoch is 500. Next, the DL
models are trained on a training sets that don’t change the number of traces contained in the training sets, which is denoted Mi.
Finally, the DL models are trained on an increasing number of traces contained in the training sets, which is denoted M̃i.

Table.4 shows the classification accuracies (accuracy figures are in percentages, with the % omitted at the end), Key Rank
and PEG of the DL models trained with a constant number of traces in the training sets (Mi) and the DL models trained with a
training sets with an increasing number of traces in the training sets (M̃i) on the testing set S1 for the first subkey. Since the
target subkey is the first subkey, we only show the classification accuracies, Key Rank < 5 and PGE of the DL models on the
testing set S1 for the first subkey, and the training process for the other subkeys is the same as for the target subkey.

The results show that when the size of the training sets don’t change, M14 trained with cross-subkey have a 6.48% higher
classification accuracy than M16 trained with the original training set, the number of Key Rank increases by 331 and the number
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(a) POI for all subkeys in the first round. (b) POI alignment.

Figure 7. The result of all subkey POI and the result of POI alignment (AES_XMEGA).

Table 4. Classification accuracy, Key Rank < 5 and PGE of Mi and M̃i on the testing set S1 (AES_XMEGA).

DL model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
Accuracy 28.31 31.65 36.78 40.20 43.07 45.39 47.09 42.49 48.55 51.23 50.41 47.31 49.64 54.34 50.72 47.86
Key Rank 2749 3067 3458 3641 3811 3887 3953 3777 3974 4142 4058 3934 4058 4311 4064 3980
PGE 6 5 4 4 4 4 3 3 3 2 2 2 3 1 1 2
DL model M̃1 M̃2 M̃3 M̃4 M̃5 M̃6 M̃7 M̃8 M̃9 M̃10 M̃11 M̃12 M̃13 M̃14 M̃15 M̃16
Accuracy 47.86 62.07 77.32 83.89 86.94 86.97 91.20 89.84 89.85 91.86 91.46 94.01 92.00 92.60 92.97 90.47
Key Rank 3980 4434 4775 4873 4939 4935 4970 4948 4960 4974 4978 4996 4976 4987 4973 4951
PGE 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

of PGE decreases by 1. When the size of the training sets are increasing, M̃12 trained with cross-subkey have 46.15% higher
classification accuracy than M̃1 trained with the original training set, the number of Key Ranks increased by 1016 and the
number of PGE decreased by 1 (where M16 and M̃1 are trained with the same training set).

Results on AES-128 Parallel implementation on GPU (AES_GPU)
The third dataset is an NVIDIA GeForce GT620 graphics card (GPU) connected to the host with a PCIe bus. The AES parallel
implementation (32 threads in a warp) and trace acquisition details are stated in25. The dataset has 34,511 traces for analysis
and 5,000 traces for attacks. Because the paper uses a small sample dataset, we set the training sets, validation set and testing
set for this dataset to be the same as the first dataset. We call this dataset AES_GPU in brief. Each power trace contains 15,001
sampling points as shown in Fig.8.

Results. The ρ-test is first used to locate the POI of the 16 subkeys on the traces, as shown in Fig.9(a). Each subkey leakage
interval contains 100 sample points. Our target subkey is the 16th byte of the SBox output, which corresponds to a leakage
interval of [13081: 13181]. Fig.9(b) shows how we allowed to synchronise segments for different bytes of the subkeys. The

Figure 8. Waveform of the last round traces of the NVIDIA GeForce GT620 graphics card implementation of TintAES-128
(AES_GPU).
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(a) POI for all subkeys in the last round. (b) POI alignment.

Figure 9. The result of all subkey POI and the result of POI alignment (AES_GPU).

Table 5. Classification accuracy, Key Rank < 5 and PGE of Mi and M̃i on the testing set S16 (AES_GPU).

DL model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
Accuracy 0.49 0.43 0.60 0.64 0.82 0.88 0.81 0.79 1.04 1.12 1.07 0.99 0.86 1.10 1.47 1.19
Key Rank 93 89 97 105 145 127 138 156 181 201 170 196 180 167 354 210
PGE - - 3211 3012 2321 2411 2891 3366 1942 1465 1652 1765 2545 1607 671 865
DL model M̃1 M̃2 M̃3 M̃4 M̃5 M̃6 M̃7 M̃8 M̃9 M̃10 M̃11 M̃12 M̃13 M̃14 M̃15 M̃16
Accuracy 1.19 1.05 0.90 1.29 1.18 1.16 1.20 1.18 1.18 1.18 1.25 1.54 1.81 1.52 1.37 1.14
Key Rank 210 182 185 224 223 191 208 197 186 224 198 383 409 312 205 167
PGE 865 1047 1901 1424 1365 1497 1302 1170 865 852 799 560 331 597 745 962

other experimental configurations are identical to the first dataset. During the training of the DL models, we used the RMSprop
optimizer with a learning rate of 0.0001. The mini-batch size is 256 and the maximum iterative epoch is 500. Next, the DL
models are trained on a training sets that don’t change the number of traces contained in the training sets, which is denoted Mi.
Finally, the DL models are trained on an increasing number of traces contained in the training sets, which is denoted M̃i.

Table.5 shows the classification accuracies (accuracy figures are in percentages, with the % omitted at the end), Key Rank
< 5 and PGE (cannot recover the correct key replace with "-") of the DL models trained with a constant number of traces in the
training sets (Mi) and the DL models trained with a training sets with an increasing number of traces in the training sets (M̃i) on
the testing set S16 for the 16th subkey. Since the target subkey is the 16th subkey, we only show the classification accuracies of
the DL models on the testing set S16 for the 16th subkey, and the training process for the other subkeys is the same as for the
target subkey.

The results show that when the size of the training sets don’t change, M15 trained with cross-subkey have a 0.28% higher
classification accuracy than M16 trained with the original training set, the number of Key Rank increases by 144 and the number
of PGE decreases by 194. When the size of the training sets are increasing, M̃13 trained with cross-subkey have 0.67% higher
classification accuracy than M̃1 trained with the original training set, the number of Key Ranks increased by 199 and the number
of PGE decreased by 534 (where M16 and M̃1 are trained with the same training set).

Discussion
We set up two sets of experiments to validate on the homebrew dataset AES_STM32 and the public datasets AES_XMEGA,
AES_GPU respectively. In Experiment I, the number of traces in the training set used when each model is trained is constant,
and what is changed is the proportion of subtraces of the target subkey and subtraces of the non-target subkey in the training set.
Because the model structure and hyperparameters are identical for the 16 models, only one independent variable, the training
set, is used during the experiments. The experimental results show that by varying the proportion of target and non-target
subkeys in the training sets (i.e. training the DL models using cross-subkey) when the size of the training set does not change,
the final experimental results are improved in all three datasets. Because of the random nature of the iterative process of the
parameters during the training of the neural network, we have repeated the training 10 times for each model and took the
average accuracy, Key Rank and PGE of each DL model on the testing set with different subkeys as the experimental results.

Experiment I is designed to validate the effectiveness of the cross-subkey training model. Model M̃1 is trained using the full
trace of the target subkeys. Model M̃i(i ∈ [2,16]) is trained using a training set that is expanded with sub-traces of non-target
subkeys. In AES_STM32, M̃10 improved classification accuracy by 28.20% over M̃1 on the testing set S1, with an increase of
2064 traces for Key Rank < 5 and a decrease of 3 traces for PGE. In AES_XMEGA, M̃12 improved classification accuracy over
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M̃1 on the testing set S1 by 46.15%, the number of Key Rank < 5 traces increased by 1016, and the number of PGE traces
decreased by 1. In AES_GPU, M̃13 improved classification accuracy over M̃1 on the testing set S16 by 0.67%, the number of
Key Rank < 5 traces increased by 199, and the number of PGE traces decreased by 534. The results of Experiment II showed
that by using the non-target subkeys traces to expand the training set obtained 2-fold better results than the model trained with
the target subkeys.

Finally, when training the model, if a trace of a non-target subkey is added to the training set, the model is equally effective
on the testing set of non-target subkeys. This result suggests that the traditional approach of one model recovering one subkey
can be replaced by one model recovering all subkeys.

Conclusion
In this paper, we propose a cross-subkey deep-learning side-channel analysis, which utilizes the additional synthetically
modified power traces as a data augmentation to build models with a better fitting capability. Our results show that the accuracy,
Key Rank and PGE of the models on the testing set can be improved by adding traces of other subkeys to the training set of the
target subkeys when the traces of the capture are limited. This paper validates the effectiveness of the cross-subkey training
models on the homebrew dataset AES_STM32 and the publicly available datasets AES_XMEGA, AES_GPU, but there are
still many open rows for the links between different subkeys. As mentioned in the previous sections, there are many possible
directions of research regarding the connections between different subkeys, which will ultimately bring more cohesion to the
field and more confidence in the results obtained.
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