
Communicating Through Subliminal-Free
Signatures

George Teşeleanu

Institute of Mathematics of the Romanian Academy, Bucharest, Romania
george.teseleanu@imar.ro

Abstract. By exploiting the inherent randomness used by certain dig-
ital signature protocols, subliminal channels can subvert these protocols
without degrading their security. Due to their nature, these channels
cannot be easily detected by an outside observer. Therefore, they pose a
severe challenge for protocol designers. More precisely, designers consider
certain assumptions implicitly, but in reality these assumptions turn out
to be false or cannot be enforced or verified. In this paper we exemplify
exactly such a situation by presenting several subliminal channels with a
small capacity in Zhang et al. and Dong et al.’s subliminal-free signature
protocols.

1 Introduction

The notion of covert channels was introduced by Lampson in [8]. These chan-
nels have the capability of transporting information through system parameters
apparently not intended for information transfer. In order to be efficient, covert
channels should be hard to detect or control by the systems’ security mecha-
nisms.

The prisoners’ problem, introduced by Simmons [12], captures the need of two
parties to communicate secretly through normal-looking communication over an
insecure channel. In the prisoners’ problem Alice (sender) and Bob (receiver) are
incarcerated and want to communicate confidentially and undetected by their
guard Walter who imposes to read all their communication. Note that Alice and
Bob can exchange a secret key before being incarcerated.

A special case of covert channels was introduced by Simmons [13,15–17] as a
possible solution to the prisoners’ problem. Subliminal channels achieve informa-
tion transfer by modifying the original specifications of cryptographic primitives
(for example, by modifying the way random numbers are generated). Hence,
allowing Alice and Bob to communicate without being detected by Walter.

Within the scenario presented previously a natural question rises: how can
one eliminate subliminal channels? To answer this question Simmons developed
in [14] an interactive protocol between Alice and Walter. Other countermeasures
against subliminal channels can be found in [1–3, 5, 6, 10, 11, 21]. Unfortunately,
shortly after the publication of [14], Desmedt [4] found a flaw in the protocol.
When running Simmons’ protocol Alice can stop the protocol when certain con-
ditions are not achieved. Thus, enabling her to subliminally send a bit. This

https://orcid.org/0000-0003-3953-2744

2

method is called a fail-stop channel. To reduce the capacity of fail-stop channels,
Simmons describes in [18] a cut-and-choose method. Note that fail-stop channels
also exist in [6, 7]1 due to their similarity to [14].

Another problem with [14] was described by Simmons himself in [16]. Sim-
mons suggests a method in which Walter can corrupt the protocol in such a way
that he can subliminally communicate to a third party. Such channels are called
cuckoo’s channels.

In this paper we analyse the protocols presented in [5, 21]. We show that
fail-stop channels exist, although the authors claim that the protocols are free of
such channels. We also show that cuckoo’s channels exist in both cases. Hence,
we prove that their protocols are not subliminal-free. Due to their large commu-
nication overhead we suggest using other subliminal-free methods (for example,
the methods proposed in [3, 6, 10,11]2).

Structure of the paper. We introduce notations and definitions in Section 2. In
Section 3 we describe fail-stop and cuckoo’s channels for the protocols proposed
in [5, 21]. We conclude in Section 4.

2 Preliminaries

Notations. Throughout the paper λ and κ will denote security parameters. We
denote by x∥y the concatenation of the strings x and y. The set {0, 1}∗ denotes
the set of all bit strings and the cardinality of a set S is denoted by |S|,

The action of selecting a random element x from a sample space X is denoted
by x

$←− X. We also denote by x← y the assignment of value y to variable x. The
encryption of a message m ∈ {0, 1} using one-time pad is denoted by ω ← m⊕b,
where b is random bit used only once.

2.1 Simmons’ Signing Protocol

2.1.1 Description In [13, 15], Simmons introduced several subliminal chan-
nels that can be embedded into the DSA signature. These channels use as in-
formation carriers the ephemeral keys used by Alice in the signing process. A
possible method for eliminating these channels was proposed by Simmons in [14].
He argued that covert communications can be stopped if the ephemeral keys
where jointly generated by Alice and Walter. Thus, making the exact values
indeterminate to both participants. Moreover, Walter must be able to check if
Alice is honest.

We further describe the algorithms of Simmons’ signing protocol. For sim-
plicity, public parameters will further be considered implicit when describing an
algorithm.
1 In [6] a fail-stop channel is described, but it can be easily detected due to the protocol

being implemented in devices with limited computational power.
2 Note that in certain cases, hash channels [19,20] create the capability of subliminal

communication through these proposals.

3

Public Parameters’ Generation(κ, λ): Select a prime number q ≥ 2κ and a
prime number p ≥ 2λ such that q|p − 1. Choose an element g ∈ Zp of
order q and a hash function h : {0, 1}∗ → Z∗

q . Output the public parameters
pp = (p, q, g, h).

Signer’s Key Generation(pp): Choose x
$←− Z∗

q and compute y ← gx mod p.
Output the public key pk = y. The secret key is sk = x.

Signing Protocol(m): To sign a message m ∈ {0, 1}∗, the signer Alice and the
warden Walter start the interactive protocol described in Figure 1. If the
protocol succeeds, then Walter will relay (m, r, s) to Bob.

Alice Walter

step 1

Choose k′ $←− Z∗
p−1.

Compute t← gk
′
mod p.

t−−−−−−−−−−−→
step 2

Choose k′′ $←− Z∗
p−1.

k′′
←−−−−−−−−−−−

step 3

Compute the following:
k ← k′k′′ mod p− 1,

r ← (gk mod p) mod q,
s← k−1[h(m) + xr] mod q.

(m,r,s)−−−−−−−−−−−→
step 4

If r ̸= (tk
′′
mod p) mod q

then abort.

Fig. 1. Simmons’ Signing Protocol.

Verification(m, r, s, pk): To verify the signature (r, s) of message m, compute
u1 ← h(m)s−1 mod q and u2 ← rs−1 mod q. Then compute v ← (gu1yu2 mod
p) mod q and output true if and only if v = r. Otherwise, output false.

2.1.2 Fail-Stop Channel Initially introduced in [4], this mechanism allows
Alice to subliminally communicate with Bob even if Walter imposes a protocol
like the one described in Figure 1. To communicate ω to Bob, Alice must stop
the protocol if certain conditions are not achieved. If the protocol is stopped too
often by Alice, Walter might become suspicious and cut off any communication
between the prisoners. Thus, Alice can only send a few bits of data to Bob
through this channel.

4

We further describe the fail-stop protocol in Figure 2 and the corresponding
extraction algorithm (denoted by Extract). The changes made in the original
protocol are marked with red in Figure 2.

Alice Walter

step 3

Compute the following:
k ← k′k′′ mod p− 1,

r ← (gk mod p) mod q,
s← k−1[h(m) + xr] mod q.
If ω ̸≡ r mod 2 abort.

(m,r,s)−−−−−−−−−−−→

Fig. 2. Desmedt’s Fail-Stop Channel.

Extract(r) : To extract the embedded message ω compute ω ← r mod 2.

2.1.3 Cuckoo’s Channel In an article about protocol failures, Simmons de-
scribes a subliminal channel in his own protocol [16]. He called this type of
channel the cuckoo’s channel. Compared to fail-stop channels, cuckoo’s channels
are used by a dishonest Walter to convey information to a third party. Thus,
just like a cuckoo that lays his eggs in the nests of unsuspecting birds, Walter
inserts his message into Alice’s signature without her suspecting anything.

Let ω be the bit Walter subliminally embeds in Figure 1. We briefly describe
the cuckoo’s channel in Figure 3. As before, the changes made by Walter are
written in red.

Alice Walter

step 4

Choose k′′ $←− Z∗
p and compute

r ← (r′k
′′
mod p) mod q,

until ω ≡ r mod 2.
k′′

←−−−−−−−−−−−

Fig. 3. Simmons’ Cuckoo’s Channel.

Extract(r) : To extract the embedded message ω compute ω ← r mod 2.

5

To achieve indistinguishablility from Simmons’ protocol, Walter must use
sufficient parallel computing power. Thus, the more power Walter has, the longer
the conveyed message can be. Let assume that for Simmons’ protocol, Walter
uses one computing unit CU . In the case of the cuckoo’s protocol presented in
Figure 3, if Walter uses α CU , then the probability of Walter transmitting his
message undetected is 1− 1/2α. Hence, we can consider the cuckoo’s channel as
a noisy channel with an error probability of 1/2α.

We further state without proof a security result from [16].

Lemma 1. The cuckoo’s channel presented in Figure 3 preserves the distribution
of r.

3 Novel Fail-Stop and Cuckoo’s Channels

By using an interactive protocol between the signer and the warden, the authors
of [5,21] try to eliminate existing subliminal channels from the Schnorr signature
[21] and the ECDSA signature [5]. As we will later see, the protocols presented
in [5, 21] do not manage to completely eliminate covert channels, although the
authors claim that they are subliminal-free.

3.1 Zhang et al.’s Signing Protocol
3.1.1 Description The first subliminal-free proposal that we describe was
presented in [21]. According to the authors, the signer cannot control the out-
puts of the signature. Hence, the protocol is subliminal-free. We will see in the
subsequent subsections that this is not true. Note that Zhang et al. assume that
Walter is an honest-but-curious3 warden that is disallowed to sign messages
independently.

We further state Zhang et al.’s interactive protocol (Figure 4) and the asso-
ciated algorithms, as presented in [21].

Public Parameters’ Generation(κ, λ): Select a prime number q ≥ 2κ and a prime
number p ≥ 2λ such that q|p− 1. Choose an element g ∈ Zp of order q and
two hash functions h : {0, 1}∗ → G and h′ : {0, 1}∗ × G → Z∗

q . Output the
public parameters pp = (p, q, g, h, h′).

Warden’s Key Generation(pp): Choose t
$←− Z∗

q and compute z ← gt. Output
the public key pkw = z. The secret key is skw = t.

Signer’s Key Generation(pkw): Choose x
$←− Z∗

q and compute y ← zx. Output
the public key pk = y. The secret key is sk = x.

Signing Protocol(m): To sign a message m ∈ {0, 1}∗, the signer Alice and the
warden Walter start the interactive protocol described in Figure 4. Note
that in Step 5, Figure 4 Alice uses a non-interactive zero-knowledge proof
P to convince W that loge(f) = logz(y).

3 According to [9, 21], an honest-but-curious adversary is a legitimate participant in
a communication protocol who will not deviate from the defined protocol but will
attempt to learn all possible information from legitimately received messages.

6

Alice Walter

step 1

Send a request (req) stating
”I want to sign a message.”

req−−−−−−−−−−−→
step 2

Choose a, k′ $←− Z∗
q .

Compute α← gak
′
mod p.

α←−−−−−−−−−−−
step 3

Choose k
$←− Z∗

q .
Compute h0 ← h(m) and
β ← αkh0 mod p.

(h0,β)−−−−−−−−−−−→
step 4

Compute the following
ϕ← a−1 mod q, r ← βϕ mod p,
ϵ← k′−1 mod q, γ ← yϵ mod p.

(r,γ)←−−−−−−−−−−−
step 5

Compute the following
e← h′(m∥r), f ← ex mod p,

δ ← gkh0 mod p.
Prepare the proof P.

(e,f,δ,P)−−−−−−−−−−−→
step 6

If P is not valid abort.
Compute η ← k′(γfδ)−1 mod p and
θ ← η−1t mod p.

θ←−−−−−−−−−−−
step 7

Compute
s′ ← kh0 + θxe(γfδ)−1 mod q.

(m,s′)−−−−−−−−−−−→
step 8

If h0 ̸= h(m) or e ̸= h′(m∥r)
then abort.
Else compute s← k′s′ mod q.

s←−−−−−−−−−−−

Fig. 4. Zhang et al. Signing Protocol.

7

Verification(m, e, s, pk): To verify the signature (e, s) of message m, compute
r ← gsy−e mod p and u← h′(m∥r). Output true if and only if u = e. Else
output false.

3.1.2 Fail-Stop Channel To bypass the protections set in place by Zhang
et al. we use a fail-stop channel. Although Alice cannot control e, r and s, she
can control if the protocol is successful or not. Hence, since the final value of r
is not modified by Walter after Step 4, Figure 4 she can use it to carry out her
message.

We further describe our proposed fail-stop protocol (Figure 5) and its cor-
responding extraction algorithm. The changes made in the original protocol are
marked with red in Figure 5.

Alice Walter

step 5

If ω ̸≡ r mod 2 abort.
Compute the following
e← h(m∥r), f ← ex mod p,

δ ← gkh0 mod p.
Prepare the proof P.

(e,f,δ,P)−−−−−−−−−−−→

Fig. 5. A Fail-Stop Channel Embedded into Zhang et al.’s protocol.

Extract(e, s, pk) : To extract the embedded message ω compute r ← gsy−e mod
p and ω ← r mod 2.

3.1.3 Cuckoo’s Channel According to [21], Walter will not deviate from
the signing protocol. Thus, in Step 4, Figure 4 Walter has to supply Alice with
(r, γ), θ and s of a given distribution. Keeping this restriction in mind, we have
developed a cuckoo’s channel in Zhang et al.’s protocol.

We briefly describe our proposed cuckoo’s channel in Figure 6. As before, the
changes made by Walter are written in red.

8

Alice Walter

step 4

Choose ϕ
$←− Z∗

q and compute
r ← βϕ mod p, until ω ≡ r mod 2.
Denote by k′′ ← ak′ϕ mod q.
Compute ϵ← k′′−1 mod q and
γ ← yϵ mod p.

(r,γ)←−−−−−−−−−−−
step 6

If P is not valid abort.
Compute η ← k′′(γfδ)−1 mod p and
θ ← η−1t mod p.

θ←−−−−−−−−−−−
step 8

If h0 ̸= h(m) or e ̸= h′(m∥r)
abort.

Compute s← k′′s′ mod q.
s←−−−−−−−−−−−

Fig. 6. A Cuckoo’s Channel Embedded into Zhang et al.’s protocol.

Extract(e, s, pk) : To extract the embedded message ω compute r ← gsy−e and
ω ← r mod 2.

Correctness. The correctness of the Verification algorithm follows from the
equality

s ≡ k′′s′ ≡ k′′[kh0 + θxe(γfδ)−1]

≡ kk′′h0 + k′′(η−1t)xe(γfδ)−1

≡ kk′′h0 + k′′[k′′−1(γfδ)t]xe(γfδ)−1

≡ kk′′h0 + txe mod q,

which leads to

r ≡ gsy−e ≡ gkk
′′h0gtxey−e ≡ gkk

′′h0 ≡ gk(ak
′ϕ)h0 ≡ αkϕh0 ≡ βϕ mod p.

The following lemma proves that no matter how much computing power
Alice has, she will not be able to detect Walter’s cuckoo’s channel and she will
not be able to accuse Walter of being dishonest. Therefore, from the point of
view of Alice, Walter is honest-but-curious, even though he is not.

Lemma 2. The cuckoo’s channel preserves the distributions of (r, γ), θ and s.

9

Proof. In Zhang et al.’s protocol we have

r ≡ gkk
′h0 mod p, ϵ ≡ k′−1 mod q, η ≡ k′(γfδ)−1 mod p and s ≡ k′s′ mod q,

while in the cuckoo’s version we have

r ≡ gkk
′′h0 mod p, ϵ ≡ k′′−1 mod q, η ≡ k′′(γfδ)−1 mod p and s ≡ k′′s′ mod q.

Since ϕ ∈ Z∗
q is chosen at random in the cuckoo’s version, then k′′ ≡ ak′ϕ mod

q is also a random element from Z∗
q . Therefore, k′′ has the same distribution as

k′ value from Zhang et al.’s protocol. Thus, the distributions of (r, γ), θ and s
are preserved. ⊓⊔

3.2 Dong et al.’s Signing Protocol

3.2.1 Description The authors of [5] use a similar approach to Zhang et al.’s
for eliminating subliminal channels. Note that in this case, the authors do not
impose that Walter is honest-but-curious. Fortunately for us, we were able to
devise a fail-stop channel and a cuckoo’s channel.

Before stating our results, we first describe Dong et al.’s protocol (Figure 7)
and the associated algorithms, as presented in [5].

Public Parameters’ Generation(λ): Select an elliptic curve E(Zp) defined over
Zp, where p is prime. Generate a prime number q ≥ 2λ, such that q divides
|E(Zp)|. Generate a point P ∈ E(Zp) of order q and select a hash function
h : {0, 1}∗ → Z∗

q . Output the public parameters pp = (q, P,E(Zp), h).
Signer’s Key Generation(pp): Choose d

$←− Z∗
q and compute Q ← dP . Output

the public key pk = Q. The secret key is sk = d.
Warden’s Key Generation(pk): Choose t

$←− Z∗
q and compute T ← tQ = (xt, yt).

Let ht = h(xt∥yt). Output the public key pkw = ht. The secret key is
skw = t.

Signing Protocol(m): To sign a message m ∈ {0, 1}∗, the signer Alice and the
warden Walter start the interactive protocol described in Figure 7. Note
that in Step 6, Figure 7 Walter uses the Verification algorithm to check the
validity of (r, s, T).

Verification(m, r, s, T, pkw): To verify the signature (r, s, T) of message m, com-
pute u1 ← h(m)s−1 mod q, u2 ← rs−1 mod q and h∗

t = h(xt∥yt). Then com-
pute u1P + u2T = (x1, y1) and v ← x1 mod q. Output true if and only if
v = r and h∗

t = ht. Otherwise, output false.

3.2.2 Fail-Stop Channel The authors of [5] claim that they eliminate fail-
stop channels. Their main argument is that Alice does not know any information
about (r, s) before Walter finishes the signature and thus she cannot use r as a
carrier. Contrary to their statement, we managed to find such a channel.

We further describe our proposed channel (Figure 8) and its corresponding
extraction algorithm. The changes made to the original protocol are written in
red in Figure 8.

10

Alice Walter

step 1

Send a request (req) stating
”I want to sign message m.”

req−−−−−−−−−−−→
step 2

Choose a, k′ $←− Z∗
q .

Compute α← ak′P.
α←−−−−−−−−−−−

step 3

Choose k
$←− Z∗

q .
Compute β ← kα.

β−−−−−−−−−−−→
step 4

Compute the following
(x0, y0)← a−1β, r ← x0 mod q,
θ ← r−1t−1 mod q.

θ←−−−−−−−−−−−
step 5

Compute
s′ ← k−1[h(m)θ + d] mod q.

s′−−−−−−−−−−−→
step 6

Compute s← k′−1s′θ−1 mod q.
If (r, s, T) is not valid abort.

(r,s,T)←−−−−−−−−−−−

Fig. 7. Dong et al. Signing Protocol.

11

Alice Walter

step 5

Compute (xs, ys)← θ−1Q.
If ω ̸≡ xs mod 2 abort.
Compute
s′ ← k−1[h(m)θ + d] mod q.

s′−−−−−−−−−−−→

Fig. 8. A Fail-Stop Channel Embedded into Dong et al.’s protocol.

Extract(r, T) : To extract the embedded message ω compute rT = (xs, ys) and
ω ← xs mod 2.

Correctness. The correctness of the Extract algorithm follows from the following
equality

θ−1Q = rtQ = rT.

3.2.3 Cuckoo’s Channel Using a technique similar to the Zhang et al.
cuckoo’s channel, we further present in Figure 9 a cuckoo’s channel that can
be inserted into the Dong et al.’s protocol. As before, the changes made by
Walter are written in red.

step 4

Choose ϕ
$←− Z∗

q and compute
(x0, y0)← ϕβ, r ← x0 mod q,
until ω ≡ r mod 2.
Compute θ ← r−1t−1.

θ←−−−−−−−−−−−
step 6

Denote by k′′ ← ak′ϕ mod q.
Compute s← k′′−1s′θ−1 mod q.
If (r, s, T) is not valid abort.

(r,s,T)←−−−−−−−−−−−

Fig. 9. A Cuckoo’s Channel Embedded into Dong et al.’s protocol.

Extract(r) : To extract the embedded message compute ω ← r mod 2.

12

Correctness. The check the correctness of the Verification algorithm we first
compute

s ≡ k′′−1s′θ−1 ≡ k′′−1k−1[h(m)θ + d]θ−1

≡ k−1k′′−1[h(m) + dθ−1]

≡ k−1k′′−1[h(m) + drt] mod q,

which leads to

u1P + u2T = s−1[h(m)P + rT] = s−1[h(m) + rtd]P

= kk′′P = k(ak′ϕ)P = kϕα = ϕβ.

In order to be secure, we need to prove that our proposal cannot be detected
by Alice no matter how much computing power she has at her disposal. This is
proven in the following lemma.

Lemma 3. The cuckoo’s channel preserves the distributions of θ and (r, s).

Proof. In Dong et al.’s protocol we have

(x0, y0)← kk′P, and s← k′−1s′θ−1 mod q,

while in the cuckoo’s version we have

(x0, y0)← kk′′P, and s← k′′−1s′θ−1 mod q.

Since ϕ ∈ Z∗
q is chosen at random in the cuckoo’s version, then k′′ ≡ ak′ϕ mod

q is also a random element from Z∗
q . Therefore, k′′ has the same distribution as

k′ value from Dong et al.’s protocol. Thus, the distributions of θ and (r, s) are
preserved. ⊓⊔

4 Conclusions

Zhang et al. [21] and Dong et al. [5] propose two signature protocols that they
claim to be subliminal-free. In this paper, we have proved that their claims are
false. Since, the main utility of these protocols was to be subliminal-free and they
failed to be so, we suggest that users employ other means of protection against
subliminal channels with a lower communication overhead (e.g. the methods
proposed in [3, 6, 10,11]).

References

1. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-Resilient
Signature Schemes. In ACM-CCS 2015, pages 364–375. ACM, 2015.

2. Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer Steinwandt. A
subliminal-free variant of ECDSA. In IH 2006, volume 4437 of Lecture Notes in
Computer Science, pages 375–387. Springer, 2006.

13

3. Jong Youl Choi, Philippe Golle, and Markus Jakobsson. Tamper-Evident Digital
Signature Protecting Certification Authorities Against Malware. In DASC 2006,
pages 37–44. IEEE, 2006.

4. Yvo Desmedt. Simmons’ protocol is not free of subliminal channels. In Ninth IEEE
Computer Security Foundations Workshop, pages 170–175. IEEE, 1996.

5. Qingkuan Dong and Guozhen Xiao. A Subliminal-Free Variant of ECDSA Using
Interactive Protocol. In ICEEE 2010, pages 1–3. IEEE, 2010.

6. Lucjan Hanzlik, Kamil Kluczniak, and Mirosław Kutyłowski. Controlled Random-
ness - A Defense against Backdoors in Cryptographic Devices. In MyCrypt 2016,
volume 10311 of Lecture Notes in Computer Science, pages 215–232. Springer,
2016.

7. Patrick Horster, Markus Michels, and Holger Petersen. Subliminal Channels in
Digital Logarithm Based Signature Schemes and How to Avoid Them. Technical
Report TR-94-13, 1994.

8. Butler W Lampson. A Note on the Confinement Problem. Communications of the
ACM, 16(10):613–615, 1973.

9. Andrew Paverd, Andrew Martin, and Ian Brown. Modelling and Automatically
Analysing Privacy Properties for Honest-but-Curious Adversaries. Technical re-
port, 2014.

10. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. In ASIACRYPT 2016, volume 10032
of Lecture Notes in Computer Science, pages 34–64. Springer, 2016.

11. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic Se-
mantic Security against a Kleptographic Adversary. In ACM-CCS 2017, pages
907–922. ACM, 2017.

12. Gustavus J Simmons. The Prisoners’ Problem and the Subliminal Channel. In
CRYPTO 1983, pages 51–67. Plenum Press, New York, 1983.

13. Gustavus J. Simmons. The Subliminal Channel and Digital Signatures. In EURO-
CRYPT 1984, volume 209 of Lecture Notes in Computer Science, pages 364–378.
Springer, 1984.

14. Gustavus J Simmons. An Introductions to the Mathematics of Trust in Security
Protocols. In CSFW 1993, pages 121–127. IEEE, 1993.

15. Gustavus J. Simmons. Subliminal Communication is Easy Using the DSA. In
EUROCRYPT 1993, volume 765 of Lecture Notes in Computer Science, pages
218–232. Springer, 1993.

16. Gustavus J Simmons. Cryptanalysis and Protocol Failures. Communications of
the ACM, 37(11):56–65, 1994.

17. Gustavus J Simmons. Subliminal Channels; Past and Present. European Transac-
tions on Telecommunications, 5(4):459–474, 1994.

18. Gustavus J Simmons. Results concerning the bandwidth of subliminal channels.
IEEE Journal on Selected Areas in Communications, 16(4):463–473, 1998.

19. George Teşeleanu. Subliminal Hash Channels. In A2C 2019, volume 1133 of
Communications in Computer and Information Science, pages 149–165. Springer,
2019.

20. Chuan-Kun Wu. Hash channels. Computers & Security, 24(8):653–661, 2005.
21. Yinghui Zhang, Hui Li, Xiaoqing Li, and Hui Zhu. Provably Secure and Subliminal-

Free Variant of Schnorr Signature. In IICT-EurAsia 2013, volume 7804 of Lecture
Notes in Computer Science, pages 383–391. Springer, 2013.

	Communicating Through Subliminal-Free Signatures
	George Teşeleanuhttps://orcid.org/0000-0003-3953-2744[HTML]A6CE39"E9D9

