
Paradoxical Compression
with Verifiable Delay Functions

Thomas Pornin

NCC Group, thomas.pornin@nccgroup.com

2 October, 2021

Abstract. Lossless compression algorithms such as DEFLATE strive to reliably pro-
cess arbitrary inputs, while achieving compressed sizes as low as possible for commonly
encountered data inputs. It is well-known that it is mathematically impossible for a
compression algorithm to simultaneously achieve non-trivial compression on some in-
puts (i.e. compress these inputs into strictly shorter outputs) and to never expand any
other input (i.e. guaranteeing that all inputs will be compressed into an output which is
no longer than the input); this is a direct application of the “pigeonhole principle”. De-
spite their mathematical impossibility, we show in this paper how to build such para-
doxical compression and decompression algorithms, with the aid of some tools from
cryptography, notably veri�able delay functions, and, of course, by slightly cheating.

1 Paradoxical Compression
The pigeonhole principle is the colloquial name for the general remark that, given two �nite
sets S1 and S2, there cannot exist an injective map from S1 to S2 if the cardinality of S1 is strictly
greater than that of S2. The principle appears to have been used by mathematicians since at
least the early 17th century[8] and was �rst formalized by Dirichlet two centuries later[5].
Dirichlet’s metaphor involved drawers, which, through some later translation mishaps, led to
the name “pigeonhole” and the description of the principle involving birds in a dovecote[10].
In rough terms, if you have more pigeons than holes, you cannot put each pigeon alone in a
hole; there must be at least one hole where you will cram two pigeons together, or a pigeon
with no hole to sit into.

This principle applies to lossless compression algorithms. We consider the setB of ordered
�nite sequences of bits; each sequence x ∈ B has a length denoted len(x), which is the num-
ber of bits in the sequence. For any integer n ≥ 0, there are precisely 2n possible bit sequences
of length n, and 2n+1 − 1 possible bit sequences of length at most n. A lossless compression
algorithm is de�ned as a pair of computable functions C and D, each taking bit sequences as
input and as output, with the following characteristics:
– C takes as input any bit sequence x ∈ B, and outputs a corresponding bit sequenceC (x).

As a computable function, C may be randomized, i.e. there is no requirement that for a
given x, the exact same output C (x) is always obtained.

– D takes as input a bit sequence y ∈ B, and outputs a corresponding bit sequence D(y);
for some inputs y, D may instead return ⊥, a symbolic value distinct from all bit se-
quences which represents decompression failure. For a given input y, D must always
return the same output (i.e. the implementation ofDmay be randomized, but, as a func-
tion, it is deterministic).



– For any x ∈ B, D(C (x)) = x. This is what “lossless” means: no information about x is
lost in the compression process, and x can be recovered through decompression.

– For inputs x that are expected to occur in a given usage context, the average compressed
length (len(C (x))) is lower than the average uncompressed length (len(x)).

Compression is useful under the assumption that “normal data” is not uniformly dis-
tributed; i.e., for a given bit length n, a small fraction of bit sequences of that length are
much more likely to appear as inputs to C than all others, and these inputs may thus be en-
coded into a shorter format. Commonly used generic-purpose compression algorithms such
as DEFLATE[4] (used in the well-known GZip and Zlib formats, and the PNG image for-
mat) exploit repeated sequences of input bits (or bytes), as well as non-uniform distribution
of input code units, as is typical of text-based data formats, to achieve non-negligible com-
pression ratios at moderate computational cost.

If compression can reduce the length of some inputs, it must necessarily increase the
length of other inputs. We will call paradoxical compression a lossless compression algorithm
(C,D) such that:

– For any x ∈ B, len(C (x)) ≤ len(x).
– There exists at least one input x0 ∈ B such that len(C (x0)) < len(x0).

The second condition implies that C is not simply a length-preserving permutation (e.g. the
identity): some data can really be “compressed”. Notwithstanding, there needs not be many
inputs that can be such compressed.

The pigeonhole principle expresses the fact that paradoxical compression is impossible
(hence the name). Indeed, if n = len(C (x0)), then consider the set Bn of all bit sequences
of length at most n: for any x ∈ Bn, paradoxical compression ensures that len(C (x)) ≤
len(x) ≤ n, hence C (x) ∈ Bn. The input x0 is not part of Bn (by construction), and thus
the cardinality of S1 = Bn ∪ {x0} is strictly greater than the cardinality of S2 = Bn (namely,
#S1 = 2n+1 = #S2 + 1), and therefore there cannot be an injective map from S1 to S2. This
implies that there must be two distinct inputs x and x′ in S1 that are compressed into the same
output, i.e. C (x) = C (x′). The decompressor, applied on that shared output value, cannot
return both x and x′, which means that compression is not lossless.

Now that we have established that paradoxical compression is mathematically impossible,
we will show in this paper how to achieve it.

Of course there is a cheat. We will subtly change the rules of the game. Consider the unfor-
tunately not too rare situation of a scammer, peddler of some “in�nite compression” scheme,
selling an algorithm (usually as a software or hardware black box) that claims to be able to re-
duce the size of any input, and still decompress the result back into the original data with
no loss. This is a claim much stronger than paradoxical compression (in which it is merely
claimed that no input is made strictly longer, but some inputs might not be made strictly
shorter). In an abstract model, the scammer is defeated by simply trying uniformly random
inputs:

– Choose an input length n.
– Choose a uniformly random sequence x of n bits.
– Obtain y = C (x) and then z = C (y).
– Verify that len(z) < len(y) < n and that D(D(z)) = x.

2



One of the tests in the last step will fail with probability at least 1/2; it su�ces to run that
experiment a few dozen times to reliably reveal the fraud1. In practice, scammers will deploy
great creativity in trying to succeed at that test by getting out of the abstract model, e.g. by
using an extra covert channel between the compressor and the decompressor (for instance,
encoding some information in the output �le name).

We can reuse this setup in order to (re)de�ne paradoxical compression in a way that makes
it possible. We convert it into a game between a defender (the scammer) and an attacker (the
potential scam victim), in which the attacker tries to reveal the fraud.

The paradoxical compression game:

– The defender provides C and D as two systems. Each system can receive an input (an
arbitrary bit sequence) and produces a corresponding output (a bit sequence); the de-
compressor D may also return⊥ for a given input x.

– The defender shows bit sequences x0 and y0 such that y0 = C (x0), x0 = D(y0), and
len(y0) < len(x0).

– No communication of any kind may occur between C and D except the attacker’s
requests described below.

– The attacker submits compression requests xi to C , and decompression requests yj to
D, obtaining the corresponding output (C (xi) or D(yj), respectively). The attacker
may submit many requests, and use the responses to previous requests in order to pro-
duce the next ones.

– The attacker wins the game if any of the following occurs:
• len(C (xi)) > len(xi) for some compression request xi
• C (xi) = yj and D(yj) ≠ xi for some pair of requests (xi , yj)

We will say that we achieve paradoxical compression if we can design systems C and D
that defeat the attacker in this game. It is worth noting the di�erence between this game and
the pigeonhole principle: in the pigeon metaphor, we are now allowed to store several pigeons
in the same hole, provided that the attacker does not catch us doing so. This makes the game
winnable by the defender, if pigeonhole overcrowding is a rare case and the defender can rea-
sonably expect that the attacker will not be able to hit one of these problematic situations.

This metaphor explains why, in the in�nite compression scam, the attacker always wins:
if the defender promises that len(C (xi)) < len(xi) (instead of merely len(C (xi)) ≤ len(xi)
in the case of paradoxical compression), then there are too many tormented volatiles for their
plight to remain unnoticed. As explained above, the attacker can choose a random xi , then
use compression requests xi and xi+1 = C (xi), then decompression requests yj = C (xi+1) and
yj+1 = D(yj); each such group of four requests leads to a win with probability at least 1/2.

On the other hand, if we only claim paradoxical compression, then the probability of at-
tacker’s success can be made much lower. This, of course, relies on implicit assumptions on

1The use of two nested compression calls is needed to avoid making hypotheses on the selection
of the length n: if the scammer can guess in advance the length n we are going to choose, then they
could make a compression function that injectively encodes 2n − 1 of the 2n possible inputs of length
n into the 2n − 1 sequences of length less than n, lowering the risk of fraud detection to 2−n. With two
compression calls, we ensure that z should be at least two bits shorter than x, as per the scammer’s claims,
which greatly increases the minimal probability of detection.

3



the number of requests: if the attacker can make an arbitrarily high number of requests, then
it su�ces to request all possible bit sequences xi (in order of increasing length, and lexico-
graphic order for a given length) until C (xi) matches a previously obtained C (xj) for some
xj ≠ xi . At that point, decompressing the common C (xi) = C (xj) value might yield xi or xj ,
but not both, and the attacker wins.

2 Using a Shared Secret Key
We present here a concrete instantiation of paradoxical compression, built under an addi-
tional assumption: the compressor C and decompressor D share a secret key K that the at-
tacker does not know. This is a restrictive hypothesis but it can match some usage contexts,
e.g. mass storage compression scenarios (the attacker is a “normal user” who can choose arbi-
trary �le contents to store, but the compressor and decompressor are privileged tasks in the
operating system).

Paradoxical compression with a shared secret key:

Setup:

– (C0, D0) is a normal lossless compression scheme such as DEFLATE[4].
– K is a shared secret between the compressor and decompressor.
– MAC is a stateless deterministic message authentication code, e.g. HMAC[6], that uses

K as key; its output has a known �xed length MAClen.
– enc is a function that encodes an unsigned integer value over clen bits with a �xed

convention (e.g. big-endian); clen is chosen to be “somewhat large” (at least 64 bits in
practice).

Compressor: On input x ∈ B:

1. If len(C0 (x)) ≤ len(x) − clen −MAClen:
– Return C (x) = C0 (x) ‖ enc(0) ‖ MAC(C0 (x) ‖ enc(0)).

2. Otherwise, if x = d ‖ enc(c) ‖ MAC(d ‖ enc(c)) for some d ∈ B and integer c ≥ 0:
– Return C (x) = d ‖ enc(c + 1) ‖ MAC(d ‖ enc(c + 1)).

3. Otherwise, return C (x) = x.

Decompressor: On input y ∈ B:

1. If y = d ‖ enc(0) ‖ MAC(d ‖ enc(0)) for some d ∈ B:
– Return D(y) = D0 (d).

2. Otherwise, if y = d ‖ enc(c) ‖ MAC(d ‖ enc(c)) for some d ∈ B and integer c > 0:
– Return D(y) = d ‖ enc(c − 1) ‖ MAC(d ‖ enc(c − 1)).

3. Otherwise, return D(y) = y.

The compressor obviously ful�lls the rule of length non-extension: the returned value
C (x) is never longer than the input x. We now have to explain why the decompressor D cor-
rectly returns the original x given C (x):

4



– If C (x) = d ‖ enc(0) ‖ MAC(d ‖ enc(0)), as matched by decompressor case 1, then
C (x) cannot be an output of the compressor case 3, since that would mean that x = d ‖
enc(0) ‖ MAC(d ‖ enc(0)), which would have been matched by the compressor case
2. Similarly, it cannot be an output of the compressor case 2, since that case produces only
counter values c + 1 > 0 (this assertion is only computationally true, see below). Thus,
it must be the output of compressor case 1, and decompressor case 1 properly returns
D0 (d) = x.

– IfC (x) = d ‖ enc(c) ‖ MAC(d ‖ enc(c)) for some c > 0, as matched by decompressor
case 2, then it must similarly be an output of compressor case 2, and the decompressor
correctly returns the original x (thanks to the fact that the MAC output is deterministic).

– Otherwise, the providedC (x) can be only an output of compressor case 3, i.e.C (x) = x,
and this is the value that decompressor case 3 correctly returns.

The analysis above relies on the idea that compressor case 2, where the counter value c+ 1
is encoded by enc, must be matched by the decompressor case 2 but not case 1, i.e. if c ≥ 0,
then enc(c + 1) must not be equal to enc(0). This is of course true for all values of c from 0
to 2clen − 2, but not for c = 2clen − 1. In the latter case, the counter “wraps around” and the
encoding of c + 1 over clen bits either fails, or is truncated to the value zero; in either case, the
attacker wins the game. Thus, the construction hinges on the impossibility for the attacker
to produce a compressor input x = d ‖ enc(2clen − 1) ‖ MAC(d ‖ enc(2clen − 1)). This
impossibility comes from the following:
– The MAC construction is supposed to be secure, i.e. not to allow forgeries. The only way

to obtain a valid MAC(t) value for any t is to use the key K , which is known only to the
compressor and the decompressor.

– The MAC outputs computed by the decompressor are always over data containing the
counter value c − 1, after having veri�ed that a value containing a MAC over counter
value c was provided. Thus, the decompressor cannot be used to obtain a MAC over a
counter value greater than what was already known.

– The compressor will produce a MAC output over counter value c+ 1, but only after hav-
ing veri�ed that the provided input contained a counter value cwith a valid MAC, which
must itself have been obtained beforehand. Therefore, in order to obtain MAC(d ‖
enc(2clen − 1)), at least 2clen requests must have been made to the compressor C ; these
requests must moreover be made sequentially, since each is over the output of the pre-
vious request. Since clen was chosen to be “somewhat large”, the compressor cannot
practically process all these requests in a feasible amount of time.

In the pigeon metaphor, the two “pigeons” x1 = x and x2 = C0 (x) ‖ enc(2clen −
1) ‖ MAC(C0 (x) ‖ enc(2clen − 1)) are stored (i.e. compressed) into the same hole y =

C0 (x) ‖ enc(0) ‖ MAC(C0 (x) ‖ enc(0)), and the decompressor returns x1 on input y,
not x2. However, the attacker cannot produce the problematic pigeon x2, since that would
require either a MAC forgery, or coercing the compressor into producing x2 as an output,
the latter case being unreachable because of the �nite computing power of the compressor.
We furthermore note that the computing power of the attacker does not matter here: the
impossibility to reach 2clen − 1 comes from the compressor’s limitations, not the attacker’s.
Moreover, the inherent sequentiality of the requests that lead to high counter values c implies
that no attack speed-up ensues if there are multiple instances of the compressor C with the
same secret key K .

5



In practice, one may achieve proper security with a 128-bit MAC output, and a 64-bit
counter. This implies an overhead of only 192 bits (24 bytes) over the “raw” compression
scheme (C0, D0):

– If len(C0 (x)) > len(x) − 192, then C returns x and gains nothing on the length (com-
pression does not yield enough room for our custom header with the counter and the
MAC).

– Otherwise, len(C (x)) = len(C0 (x)) + 192.

While the usage context, with a shared secret key between compressor and decompressor, is
restrictive, this construction is practical and has low computational overhead, MAC compu-
tations being normally quite fast.

3 Using a Verifiable Delay Function
We can now remove the shared key requirement, by replacing the MAC with a veri�able delay
function (VDF). The concept of VDFs was described in 2018[1] with some proposals for
the concrete instantiation; additional constructions with improved characteristics (shorter
output, lower proof computation overhead) were shortly after proposed by Pietrzak[9] and
Wesolowski[11] (see also [2] for a comparison of these two constructions). In our concrete
practical instantiation of keyless paradoxical compression, we will use Wesolowski’s VDF.

A VDF consists of three algorithms:

– Setup(λ) → p produces (randomly) some public parameters p used by the other algo-
rithms; λ is a security parameter.

– Eval(p, T, e) → (f, π) works over an input message e ∈ B and a time factor T (an
integer), and outputs a value f along with a proof π.

– Verify(p, T, e, f, π) → {true, false} checks that (f, π) is a correct evaluation of the VDF
over e (i.e. (f, π) is a possible output of Eval(p, T, e)).

We slightly diverge from the formal de�nition in [1] in that we suppose that the security pa-
rameters can accept several time factor values, provided dynamically toEval andVerify; in the
terminology of [1], we expect the VDF to be incremental. The de�nition of a VDF requires
uniqueness, i.e. that for given input values p, T and e, a single output f may (practically) be
found such that Verify(p, T, e, f, π) = true; in our case, we will also require π to be similarly
unique for given p, T and e. We will call this last property proof uniqueness. Finally, we also
need VDF outputs (f, π) to be encodable into a bit sequence with a �xed length (possibly
with some ad hoc padding).

The point of a VDF is that computing Eval requires O(T ) sequential operations, thus
taking time O(T ), and that time cannot be substantially reduced by using more compute
units (i.e. the computation cannot be performed in parallel); on the other hand,Verify should
be fast. The VDF output thus represents a proof that some quanti�able physical time must
have been spent for its computation over the input data e. The ability to �ne-tune the ex-
pectation on the minimal delay for evaluation with a given work factor T is an important
and active research area, targeting use in applications such as blockchain consensus proto-
cols. However, in our case, we will use a VDF in a somewhat di�erent context that entails
di�erent requirements.

6



In the paradoxical compression method described in section 2, the success of the con-
struction relies on compressed outputs including a counter value c that keeps track of how
many times the output has been re-compressed; high counter values are made unattainable by
virtue of being authenticated with a MAC, and the only entities able to produce new MAC
values structurally refuse to try new counter values except in small increments. Since high val-
ues cannot be practically reached by attackers, a �xed-size counter can be used and the counter
over�ow issue can be ignored. In a keyless solution, we replace the MAC with a VDF; instead
of a counter increment policy enforced by the MAC key holders, we will use the counter c
as work factor, and rely on the VDF sequentiality to make counter over�ow conditions un-
reachable.

This leads to the following keyless paradoxical compression:

Keyless paradoxical compression with a VDF:

Setup:

– (C0, D0) is a normal lossless compression scheme such as DEFLATE[4].
– (Setup, Eval,Verify) is an incremental VDF which ful�lls proof uniqueness. The

VDF public parameters (output of Setup) are p; they are generated once and hard-
coded into both the compressor and the decompressor. The output of Eval can be
encoded over exactly VDFlen bits.

– enc is a function that encodes an unsigned integer value over clen bits with a �xed
convention (e.g. big-endian); clen is chosen to be large enough thatEval(p, 2clen−1, e)
is computationally too expensive to produce for any input e ∈ B.

Compressor: On input x ∈ B:

1. If len(C0 (x)) ≤ len(x) − clen − VDFlen:
– Return C (x) = C0 (x) ‖ enc(0) ‖ Eval(p, 0, C0 (x)).

2. Otherwise, if x = d ‖ enc(c) ‖ (f, π) for some d ∈ B, integer c ≥ 0, and (f, π) a
syntactically correct VDF output such that Verify(p, c, d, f, π) = true:
– Return C (x) = d ‖ enc(c + 1) ‖ Eval(p, c + 1, d).

3. Otherwise, return C (x) = x.

Decompressor: On input y ∈ B:

1. If y = d ‖ enc(0) ‖ (f, π) for some d ∈ B and (f, π) a syntactically correct VDF
output such that Verify(p, 0, d, f, π) = true:
– Return D(y) = D0 (d).

2. Otherwise, if y = d ‖ enc(c) ‖ (f, π) for some d ∈ B, integer c > 0, and (f, π) a
syntactically correct VDF output such that Verify(p, c, d, f, π) = true:
– Return D(y) = d ‖ enc(c − 1) ‖ Eval(p, c − 1, d).

3. Otherwise, return D(y) = y.

This construction achieves paradoxical compression for reasons similar to the keyed con-
struction from section 2:

7



– Decompression cases 1, 2 and 3 undo the operations of compression cases 1, 2 and 3,
respectively. In particular, decompression case 2 rebuilds the exact same bit sequence that
was previously produced by compression case 1 or 2 thanks to the uniqueness and proof
uniqueness of the VDF (since only a single output f and single proof π can be practically
produced for input d and work factor c, the same f and π must be generated as the ones
previously produced by the compressor).

– The attacker is defeated insofar as the counter maximal value 2clen−1 cannot be reached.
This is ensured by making the counter size clen large enough; the size depends on the
VDF internals, but in our practical instantiation (described below) 128 bits ought to
be enough. We note here that since the security relies on the sequentiality of the VDF,
not by a policy enforced by a defender’s system, the attacker may use the most powerful
sequential computing unit that can be found, possibly quite faster than the system on
which the compressor will run. Therefore, the counter length clen should be de�ned
with some extra margin.

3.1 Instantiation with Wesolowski’s VDF
In Wesolowski’s VDF[11], the public parameters p contain a big composite integer N whose
factorization is unknown; in concrete terms,N is the modulus of an RSA key. Setup discards
the factors of N ; it is assumed that nobody knows them. This is a case of a trusted setup, a
usually undesirable property since it raises the suspicion that the generating system may have
kept a copy of the private factors; this drawback can be mitigated with procedural means (an
audited key ceremony) or multi-party computation protocols[3]. In the rest of this section,
N is a 2048-bit RSA modulus, generated with a normal RSA key pair generator, the private
factors being discarded.

Wesolowski’s VDF uses the groupG+ of (unordered) pairs {u,−u} for u a non-zero inte-
ger modulo N ; the group operation combines {u,−u} and {v,−v} into {uv,−uv}. A group
element {u,−u} is uniquely represented by its component which is, as an integer, in the 1 to
(N − 1)/2 range (inclusive). For all practical purposes, this is the group of invertible integers
modulo N , with the multiplication as group law, but we do not care about the di�erence
between u and −u, and values are normalized into the “lower half” of the range of integers
modulo N . This use of G+ ful�lls the low order assumption that ensures the security of the
construction[2].

H is a hash function with output in G+. A simple choice for H is to use a XOF such as
SHAKE[7] to produce a value with the size ofN (256 bytes for a 2048-bit modulus), which is
then interpreted as a big integer with a given convention (e.g. unsigned big-endian encoding)
and reduced modulo N , then normalized as per the rules ofG+. We ignore the conceptually
possible cases of the output of SHAKE being non-invertible modulo N (�nding such a case
would constitute a preimage attack on SHAKE, a factorization attack on N , or both).

Another hash functionh is used to sample a random prime of size up to 256 bits. A simple
instantiation is to �rst obtain a 256-bit output from a classic hash function such as SHA3-
256 (or SHAKE again, with a 256-bit output), then interpret that 256-bit string as an integer
t, and �nd the smallest prime ℓ ≥ t.

We assume that an unambiguous unique �xed-length encoding is de�ned for all values.
For instance, N can be encoded over 2048 bits in unsigned big-endian conventions; any el-

8



ement of G+ is normalized into an integer in the 1 to (N − 1)/2 range and can be encoded
over 2047 bits, again in unsigned big-endian convention.

For public parameters p (i.e. the modulusN ), input message e and time factorT , the VDF
output Eval(p, T, e) = (f, π) is computed as follows:

1. Compute g = H (e ‖ N ).
2. Compute f = g2T . This can be done withT successive squarings moduloN ; it is postu-

lated that no faster method exists without knowing the prime factors of N .
3. Compute ℓ = h(g ‖ N ‖ T ‖ f ).
4. Compute the proof π = gq for the integer q = b2T /ℓc.

Though q can be too large to comfortably �t in memory, the computation ofπ in a classic
square-and-multiply algorithm only needs the bits of q in high-to-low order, and they can be
obtained by running the schoolbook long division algorithm of 2T by ℓ (see [2], section 3 for
some details).

The veri�cation process Verify(p, T, e, f, π) works as follows:

1. Compute g = H (e ‖ N ).
2. Compute ℓ = h(g ‖ N ‖ T ‖ f ).
3. Compute r = 2T mod ℓ (note: this implies that 2T = qℓ + r).
4. Compute f ′ = πℓgr inG+.
5. Return true if f = f ′, false otherwise.

It can be proven that this process ful�lls the expected VDF properties (see [11,2]). Proof
uniqueness is also achieved because �nding two di�erent π and π ′ such that πℓ = π ′ℓ would
imply that π/π ′ has order ℓ in G+, making ℓ a prime factor of the unknown order of G+.
Finding such a ℓ , computing an ℓ -th root of unity moduloN , and �nding a preimage of ℓ by
the hash function h are all considered infeasible if N was generated properly and h was built
over a secure hash function.

Using a 2048-bit modulus and a 128-bit work factor (i.e. compression counter c), the
total size overhead of this construction is 128 + 2047 + 2047 = 4222 bits (slightly over half
a kilobyte). Whether such an overhead is acceptable depends on the usage context.

We implemented this algorithm in C#; source code can be found on:

https://github.com/pornin/paradox-compress/

3.2 Denial-of-Service a�acks and updatable VDFs
The main drawback of the instantiation with Wesolowski’s VDF is that it can raise the com-
putational cost of compression and decompression. If the attacker spends once the cost of
computing Eval over a given input e with a relatively high work factor T , yielding a valid
VDF output (f, π), then every time the input e ‖ enc(T ) ‖ (f, π) is submitted to the com-
pressor (or the decompressor), the compressor will need to perform the computation of the
VDF with work factor T + 1 (or T − 1 for the decompressor), with cost O(T ). This can lead
to denial-of-service (DoS) attacks in contexts where the attacker can submit chosen inputs to
a compressor or decompressor system that is not nominally in reach of the attacker.

To mitigate such attacks, a nice solution would be an updatable VDF, i.e. a VDF such
that computing Eval(p, T + 1, e) or Eval(p, T − 1, e) would be inexpensive, given the output

9

https://github.com/pornin/paradox-compress/


of Eval(p, T, e). Unfortunately, Wesolowski’s VDF is not updatable in that sense. Updata-
bility does not seem to inherently contradict the de�nition of a VDF, but, since it was not
envisioned (yet) as a potentially useful property, no e�ort has been made to �nd VDFs that
o�er that feature. We can note that given g2T , computing g2T+1 is already inexpensive (it is
a matter of a single modular squaring); however, the same cannot be said about computing
the proof for time factor T + 1, since it will use a di�erent and unpredictable value for the
prime ℓ . As for updates in the other direction (for decompression), there is no known method
for computing g2T−1 from g2T that is faster than starting again from g, with cost O(T ) and
disregarding the provided g2T .

4 Conclusion
We presented methods to instantiate a nominally impossible algorithm: a lossless compression
algorithm that can reduce the size of some inputs, but never increases the size of any input.
In practical terms, this is useless.

Indeed, compression is useful only if the overall context can take advantage of a smaller
but dynamically obtained data size; such contexts normally involve encoding formats with
some metadata such as a “length” �eld. If the maximum allowed data length (m) is lower
than the greatest integer that can be stored in that “length” slot (usually 2k − 1 for a k-bit
�eld), then it is possible to implement compression without exceeding overall message size
limits by using a special length value of m + 1 in some cases:

– If the data has length m and cannot be compressed by at least 1 bit, then the uncom-
pressed data can be used as the payload, and the length �eld set to the special valuem+ 1.

– Otherwise, if the data has length at mostm−1 and cannot be compressed by at least 1 bit,
then an extra bit of value 0 can be added as a header, leading to an at mostm-bit payload.

– Otherwise, an extra bit of value 1 can be added as a header to the compressed data (of
length as most m − 2), yielding a payload of length at most m − 1.

In this example, compression is achieved without increasing the maximum payload length.
The pigeonhole principle is not contradicted here: the real payload is sometimes enlarged,
but we can smuggle the extra information in the header, as the special length value m + 1.

This simple example shows that there usually are encoding tricks that allow for compres-
sion to be �tted inside the limitations of an existing protocol. For paradoxical compression to
be useful, it takes a speci�c context in which such information smuggling in metadata is not
doable for some reason (e.g. interoperability with legacy systems).

Despite the apparent futility of the exercise, the paradoxical compression constructions
described here nevertheless have some virtues:

– They show how a slight model shift can turn an impossible functionality into an imple-
mentable one. Going from “this cannot mathematically be done” to “you cannot catch
me doing something wrong” opens potentially unbounded possibilities. Arguably, most
of the �eld of cryptography �ts in the gap between these two notions.

– At the same time, the same model shift highlights the hopelessness of “in�nite com-
pression” schemes, which are not only impossible conceptually, but also necessarily de-
tectable with the most simple and ham-�sted attacker challenges (random messages!).

10



– Paradoxical compression is yet another �eld of application of VDFs, which shows how
these primitives can be versatile, useful and worth extra research e�orts.

– The VDF property of updatability has been de�ned, and �nding a VDF construction
that provides it, or proving that it cannot be done, is a new open research question.

Acknowledgements
We thank Parnian Alimi, Marie-Sarah Lacharité and Eric Schorn for useful discussions and
reviewing of draft versions of this paper.

No corporeal bird was harmed in the making of this article.

References
1. D. Boneh, J. Bonneau, B. Bünz and B. Fish, Verifiable Delay Functions, Advances in Cryptology -

CRYPTO 2018, Lecture Notes in Computer Science, vol. 10991, pp. 757-788, 2018.
2. D. Boneh, B. Bünz and B. Fisch, A Survey of Two Verifiable Delay Functions,

https://eprint.iacr.org/2018/712
3. M. Chen, R. Cohen, J. Doerner, Y. Kondi, E. Lee, S. Rose�eld and a. shelat, Muliparty gener-

ation of an RSA modulus, Advances in Cryptology – CRYPTO 2020, Lecture Notes in Com-
puter Science, vol. 12172, pp. 64-93, 2020.

4. P. Deutsch, DEFLATE Compressed Data Format Specification version 1.3,
https://datatracker.ietf.org/doc/html/rfc1951

5. P. G. L. Dirichlet, Recherches sur les formes quadratiques à coefficients et à indéterminées com-
plexes, Journal für die reine und angewandte Mathematik, vol. 24, pp. 291-371, 1842.

6. H. Krawczyk, M. Bellare and R. Canetti, HMAC: Keyed-Hashing for Message Authentication,
https://datatracker.ietf.org/doc/html/rfc2104

7. Information Technology Laboratory, SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, National Institute of Standard and Technology, FIPS 202, 2015.

8. J. Leucheron, Selectæ Propositiones in Tota Sparsim Mathematica Pulcherrimæ, Gasparem
Bernardum, 1622.

9. K. Pietrzak, Simple Verifiable Delay Functions, Innovations in Theoretical Computer Science
Conference (ITCS), pp. 60:1-60:15, 2019.

10. B. Rittaud and A. Hee�er, The pigeonhole principle, two centuries before Dirichlet, Mathematical
Intelligencer, vol. 36, issue 2, pp. 27-29, 2014.

11. B. Wesolowski, Efficient Verifiable Delay Functions, Advances in Cryptology - EUROCRYPT
2019, Lecture Notes in Computer Science, vol. 11478, pp. 379-407, 2019.

11

https://eprint.iacr.org/2018/712
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2104

	1 Paradoxical Compression
	2 Using a Shared Secret Key
	3 Using a Verifiable Delay Function
	3.1 Instantiation with Wesolowski's VDF
	3.2 Denial-of-Service attacks and updatable VDFs

	4 Conclusion

