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Abstract. We construct efficient (function hiding) functional commit-
ments for arithmetic circuits of polynomial size. A (function hiding) func-
tional commitment scheme enables a committer to commit to a secret
function f and later prove that y = f(x) for public x and y—without re-
vealing any other information about f . As such, functional commitments
allow the operator of a secret process to prove that the process is being
applied uniformly to everyone. For example, one can commit to the secret
function that computes credit scores and then prove that it is applied
uniformly to all. To build a functional commitment scheme, we introduce
a new primitive called a proof of function relation (PFR) to show that
a committed relation is a function. We show that combining a suitable
preprocessing zk-SNARK (or more precisely, an Algebraic Holographic
Proof) with a PFR yields a secure functional commitment scheme. We
then construct efficient PFRs for two popular preprocessing zk-SNARKs,
and obtain two functional commitment schemes for arithmetic circuits.
Along the way we develop new techniques for proving interesting prop-
erties of committed polynomials, which may be of independent interest.

1 Introduction

We introduce a new cryptographic primitive called a (function-hiding) functional
commitment : a committer commits to a secret function f : X → Y using a suc-
cinct hiding and binding commitment scheme. Later, the committer can reliably
open this function at any public point in the domain of f without revealing any-
thing else about f . Specifically, for a public pair (x ∈ X , y ∈ Y), the committer
can prove to a verifier that the committed function f satisfies y = f(x), without
revealing anything else about f .

In more detail, a (function hiding) functional commitment scheme is a triple
(Setup,Commit,Eval). Setup(1λ, N) is a randomized algorithm that outputs pub-
lic parameters pp; these parameters support commitments to functions of com-
plexity at most N . Commit(pp, f, r) is a deterministic algorithm that takes as
input the description of a function f ∈ F , where F is a function space, and ran-
domness r, and outputs a hiding and binding commitment c. Eval is a protocol
between a prover PE(pp, f, r, x, y) and a verifier VE(pp, c, x, y) that is designed
to convince the verifier that f(x) = y. Informally, the evaluation protocol Eval



should be (i) complete, (ii) zero knowledge, and (iii) an argument of knowledge
for a function f ∈ F . We define these properties formally in Section 3.

Several existing cryptographic primitives can be viewed as special cases of
functional commitments. In a polynomial commitment scheme (PCS) [28], the
committer commits to a polynomial of bounded degree in F[X], and can later
open the polynomial at any public point in F. A verifiable random function
(VRF) [34] is a functional commitment where the committer commits to a pseu-
dorandom function (PRF) instantiated using a particular random key. Later, the
PRF can be reliably opened at any point in its domain. Other examples include
vector commitments [10, 13, 14, 23, 36], accumulators [8, 10, 12] and zero knowl-
edge sets [15, 16, 33]. A vector commitment can be viewed as a function-hiding
functional commitment where the function is described as a truth table.

In this paper, we generalize these examples and study the general question of
how to commit to a secret function. We construct two efficient (function hiding)
functional commitment schemes for the set of all functions that can be expressed
as an arithmetic circuit of some bounded size.

An important property of a functional commitment, implied by its security
properties listed above, is called evaluation binding which means that a malicious
prover cannot convince the verifier that f(x) = y and f(x) = y′ for some y 6= y′.
More precisely, it should be infeasible to find c, x, y, y′, where y 6= y′, such
that the verifier accepts the inputs VE(pp, c, x, y) and VE(pp, c, x, y′). Evaluation
binding ensures that c is a commitment to a function: there is a unique output
for every input.

Example applications. In the United States, a credit bureau is an organization
the computes a person’s credit score based on their financial record. To ensure
that the credit bureau uses the same function for the entire population, the
credit bureau can publish a commitment to its secret function. Then, given a
person’s financial record, say Bob, the credit bureau can compute Bob’s credit
score, and prove to Bob that the score was computed correctly with respect
to the committed function. Here Bob plays the role of the verifier. Evaluation
binding ensures that Bob’s credit score is determined uniquely by his financial
record; the credit bureau has no leeway in choosing Bob’s score. Furthermore,
the function can be audited by an auditor who is trusted to examine its inner
workings. If the auditor is satisfied that the function is “fair,” it can indicate
that by signing the public commitment to the function.

Other applications of functional commitments may include:

– Bail decisions: recent proposals suggest using an algorithm to decide whether
a defendant is granted bail [27]. The algorithm used might need to remain
secret to prevent exploitation. With a functional commitment scheme, the
courts can show that the same algorithm is being used for all defendants.

– Software-as-a-Service: Consider a cloud service that charges per query to an
image classifier A. Suppose B is a classifier that is less accurate than A, but
cheaper to evaluate. The cloud could save money by using B and lie that it
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is using A. By committing to the classifier A, the cloud can prove that it is
providing the same service to all of its customers.

– Price discrimination: a company could commit to a pricing function that
takes product and market data as input and outputs a price. Then, it could
prove to every customer that the price is strictly a function of these inputs—
and not user-specific data.

More generally, functional commitments are relevant to the area of algorithmic
fairness [3, 29]. A functional commitment ensures that a process is applied uni-
formly to everyone. However, while uniform application is necessary for fairness,
it is not sufficient. In fact, since “fairness” is a social construct, formalizing it is
the subject of a great deal of work [3, 29]. Ultimately, one would like to prove
that the same function is applied to everyone and that the function satisfies an
agreed upon fairness criterion. The latter condition can be verified by a trusted
auditor or by some other cryptographic technique (as discussed in Section 6),
while the former is ensured by a functional commitment.

1.1 Related work

Previous works on functional commitments [30, 31, 36] consider a dual notion,
which we call input-hiding functional commitments: the committer commits
to an input x, and later the committer proves that f(x) = y, for some public
function f and a value y. In the current paper we focus on function-hiding
functional commitments, where the committer commits to a function f and
later proves that f(y) = x for some public pair (x, y). These two notions can
be shown to be equivalent using a universal function evaluator U(f, x), where
U(f, x) = f(x). However, in practice they are quite different due to efficiency
considerations. An efficient input-hiding functional commitment scheme can be
constructed directly from a standard succinct commitment scheme and a zk-
SNARK, as observed in [30]. In contrast, constructing an efficient function-hiding
functional commitment scheme, as we do here, requires additional tools to effi-
ciently prove that the committed function is well formed. In particular, one has
to prove that the commitment really is to a function: every input has exactly
one output. We do so using a new tool we call a Proof of Function Relation
(PFR), as discussed in Section 1.2.

Prior to the present work, the term functional commitment meant strictly
input-hiding functional commitments. They were implicitly constructed by Gor-
bunov, Vaikuntanathan, and Wichs [24], although commitments produced by
their commitment scheme are not succinct. The term functional commitment was
introduced by Libert, Ramanna and Yung [30] and further developed in [31, 36].
The focus of these works is on efficient input-hiding functional commitments un-
der falsifiable assumptions (the simple zk-SNARK based construction requires a
non falsifiable assumption). Libert et al. [30] and Lipmaa and Pavlyk [31] give
an input-hiding functional commitment scheme for the family of linear (or lin-
earizable) functions. Peikert, Pepin, and Sharp [36] give a lattice construction
for low depth boolean circuits.
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Function Hiding Functional commitments from circuit garbling. Con-
sider a family of circuits that have the same wiring (i.e., the same circuit topol-
ogy), but differ in the choice of gate for each location. Then one can use Yao
garbled circuits [39] to construct a functional commitment scheme for this family,
where a commitment supports a single evaluation. The reusable garbled circuits
scheme of Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [22] extends
this to multiple evaluations. In fact, [22] achieves a stronger property, where the
function is hidden from the verifier, and the input x is hidden from the com-
mitter. However, the evaluation protocol is not succinct or fast to verify, and
requires fairly heavy cryptographic primitives such as fully hom. encryption.

1.2 Technical Overview

Constructing a functional commitment scheme: the challenge. Let F be
the set of functions that can be computed by a bounded size arithmetic circuit
over a field F. A strawman functional commitment scheme for F can be built
from a standard succinct commitment scheme and a general zero knowledge
proof system, using universal circuits. Let 〈f〉 be en explicit description of some
function f ∈ F and let c ← Commit(〈f〉, r). Let U(·, ·) be a universal function
evaluator. The prover must convince the verifier that it knows a witness for the
following relation:

R :=
{

(c, x, y ; 〈f〉, r) : c = Commit(〈f〉, r) and U(〈f〉, x) = y and 〈f〉 ∈ F
}

However, we aim to construct a functional commitment scheme where the eval-
uation proof is non-interactive, succinct, and fast to verify.

A natural starting point is a preprocessing zk-SNARK such as Marlin [17],
Plonk [20], or many others [1, 18, 25, 26, 32, 35, 37, 38]. For a function f : X → Y
define the relation (with no witness)

Rf =
{

(x, y ; ⊥) : y = f(x)
}
⊆ X × Y.

Let i be a binary string, called an index in [17], that describes the relation Rf
(e.g., i is a description of an arithmetic circuit for f). Informally, a preprocessing
zk-SNARK for Rf operates in two phases (following a setup step).

– The first phase of a preprocessing zk-SNARK is a deterministic encoding
algorithm to preprocess the relation Rf . The algorithm takes the index i
as input, and outputs a succinct index key ik that represents Rf .

– In the second phase, called the online phase, the zk-SNARK prover takes as
input i and a pair (x, y), where y = f(x), and outputs a succinct proof π
that (x, y;⊥) ∈ Rf . The verifier takes as input ik, (x, y), and the proof π,
and outputs accept or reject.

In Marlin and Plonk, the size of the indexing key ik and the size of the proof π
depend only on the security parameter λ. Their size is independent of the com-
plexity of f . The verifier’s run time depends logarithmically on the complexity
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of f and linearly on the length of (x, y). The prover’s run time is quasi-linear in
the complexity of f .

To build a functional commitment scheme from a preprocessing zk-SNARK
one might try to use the encoding algorithm as the Commit algorithm, where the
generated index key ik is the commitment string to the function. Then use the
zk-SNARK prover and verifier as the Eval protocol of the functional commitment.

Unfortunately, this simple approach is insecure for a number of reasons. First,
the index key ik may leak information about the committed function. However,
this is easily corrected. We show how to enhance the indexing algorithms in
both Marlin and Plonk so that the indexing key is a succinct hiding and binding
commitment to the function. Moreover, we alter the the zk-SNARK proof so
that it does not leak information about the committed function itself.

The bigger problem is that ik (which comes from the untrusted committer)
may not represent a function. First, ik might not encode a relation R at all. Sec-
ond, since zk-SNARKs support relations—which generalize functions—R might
be a relation that is not a function; we explain this with a small example.

Example 1. Consider the relation R :=
{

(x, y ;w) : y = x+w, w ∈ {0, 1}
}
⊆ F3.

For every x ∈ F, both pairs (x, x) and (x, x+1) are in the language defined by this
relation: w = 0 and w = 1 are witnesses for the first and second respectively. The
zk-SNARK’s encoding algorithm can take a description of R as input and output
an index key ik for R. Suppose the committer publishes ik as a commitment to its
“function.” Now for an input x ∈ F from user Bob, the committer can open the
“function” as either y ← x or y ← x+ 1, and produce a valid proof for either y.
This violates the evaluation binding requirement for a functional commitment.

The problem is that a zk-SNARK is designed for general relations, including
relations that do not define a function. Therefore, to build a functional com-
mitment from a preprocessing zk-SNARK we need an additional protocol that
lets the committer prove that ik is an index key for a relation R that defines a
function. We call this a proof of function relation or PFR. Designing an efficient
PFR for Marlin and for Plonk is one of the main contributions of this paper.

Proof of function relation (PFR). A preprocessing zk-SNARK has an en-
coding algorithm Enc that takes as input the description i of a relation and
outputs an index key ik← Enc(i). A PFR is a ZK proof that lets the committer
efficiently prove in zero knowledge that ik is the encoding of a relation that de-
fines a function. More precisely, for a public statement ik, the prover uses a PFR
to convince the verifier that there is a witness i such that (1) ik = Enc(i) and (2)
i defines a relation Rf where for every x ∈ X there is a unique y ∈ Y for which
(x, y) is in the language defined by Rf . We define this formally in Section 4.1.

In Section 4 we show how to construct a secure functional commitment
scheme from a preprocessing zk-SNARK and a PFR. The challenge then is to
design an efficient PFR for commonly used preprocessing zk-SNARKs.

– Marlin: The Marlin encoding algorithm takes as input a rank one constraint
system (R1CS) which is a tuple of three matrices A,B,C ∈ Fn×n. We design
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an efficient proof that a Marlin index key ik is a commitment to an R1CS
program (A,B,C) where A and B are t-strictly lower triangular (i.e. strictly
lower triangular and the top t rows are zero) and C is t-diagonal (i.e. diagonal
and the top t rows are zero). Here t is the size of the input. We show that
this ensures that the R1CS program has a unique output for every input,
without limiting the expressive power of R1CS. See Section 5.

– Plonk: The Plonk encoding algorithm takes as input the description of an
arithmetic circuit over a field F. We design an efficient proof that a Plonk
index key ik is a commitment to an arithmetic circuit whose graph is acyclic
and has no undeclared inputs. This is sufficient to ensure that every input
has a unique output. See Supplement H.

This work requires new algebraic tools and new sub-protocols to prove properties
of committed polynomials. These may be of independent interest.

An overview of our techniques. The Marlin and Plonk index keys contain
a small number of polynomial commitments. We review what these polynomials
are in Section 5 and Supplement H. Constructing an efficient PFR for these
polynomial commitments requires proofs that the committed polynomials satisfy
certain complex algebraic properties. We give three examples.

– Discrete log comparison: (Protocol 5) For both Plonk and Marlin there is
a need to prove that certain values appear in a particular order. In Section 5
we devise a new efficient zk-SNARK for the following relation: Let K and H
be multiplicative subgroups of the finite field F, and let ω generate H. Let
f, g ∈ F[X] be two committed polynomials of bounded degree. The prover
outputs a succinct proof that

∀k ∈ K : f(k) ∈ H and g(k) ∈ H and logω f(k) > logω g(k).

– Geometric subset check: (part of Protocol 6) In Marlin, there is a need
to prove that the top rows of the R1CS matrices A,B,C ∈ Fn×n are zero.
In the Marlin index key, each matrix is expressed as a commitment to three
polynomials called row, col, and val (nine commitments total). Let K be
multiplicative subgroup of F and let ω ∈ F. As we will see, to prove that the
top t rows of A are zero (and similarly for B and C), the prover needs to
output a succinct proof that the committed polynomial rowA satisfies

∀k ∈ K : rowA(k) ∈
{
ωt, . . . , ωn−1

}
.

– Representative check: (Protocol 15) The Plonk indexing key ik contains
a commitment to a wiring polynomial w that is a permutation of a subgroup
K of F. That is, {w(k) : k ∈ K} = K. This w induces a permutation on K
that can be treated as a collection of cycles. Each cycle represents a wire in
the circuit. Let I be the set of declared input wires to the circuit along with
the output wires from every gate. To prove that the committed circuit has
no hidden inputs we design a novel zk-SNARK to prove that the set I ⊆ K
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intersects every cycle of the committed polynomial w. This is sufficient to
prove that the committed circuit has no hidden inputs.

We design succinct proofs for all these properties, and more. We use them to
prove that a Marlin index key is a commitment to a well formed R1CS program,
and that a Plonk index key is a commitment to a well formed arithmetic circuit.

Efficiency. Our functional commitments are concretely efficient. For our Marlin-
based functional commitment, commitments have the same size as Marlin’s index
key which is ≈850 bytes. Our evaluation proofs are somewhat larger: they are
≈21 kB; whereas Marlin’s proofs are ≈2 kB. The overhead is due to the PFR
proof. All sizes are quoted at the 128 bit security level. We stress that these sizes
are independent of n: the complexity of the committed function. Generating an
evaluation proof takes time Õ(n) and verifying it takes time O(m+ log n) where
m is the size of inputs x and outputs y.

Future work. Our work motivates the design of efficient PFRs for other popular
zk-SNARKs such as Spartan [37], Fractal [18], Ligero [1], Libra [38], and many
others. Designing efficient PFRs for these will likely require new ideas.

Polynomial commitments are complete. In summary, we show that both
Plonk and Marlin can be enhanced to provide an efficient functional commitment
scheme for all arithmetic circuits of bounded size. Since Plonk and Marlin are
built from a generic polynomial commitment scheme, we obtain a “completeness”
theorem for functional commitments:

Theorem 1 (informal). A functional commitment scheme for univariate poly-
nomials of degree at most d suffices to construct a functional commitment scheme
for all arithmetic circuits of size at most αd for some constant α. Evaluation
proofs in the derived scheme have about the same length and verification com-
plexity as evaluation proofs in the underlying polynomial commitment scheme.

2 Preliminaries

2.1 Mathematical notation

For n ∈ N>0 we let [n] be the sequence (1, 2, . . . , n). Unless otherwise noted, we
1-index sequences. Let {{·}} denote a multiset. Thus, {{1, 1}} 6= {{1}}. We use ‖
to denote the concatenation operator. Thus ‖ni=1(1, 1) denotes 2n ones. Let λ be
the security parameter. A function f(n) is poly(n) if there exists a c ∈ N such
that f(n) = O(nc). If for all c ∈ N, f(n) is o(n−c), then f(n) is negl(n). We call
f negligible and a probability that is 1− negl(n) overwhelming.

Let F be a field of large prime order p such that log(p) = Ω(λ) and 2k divides
(p − 1) for some k ∈ N. For our Plonk construction, we also require 3 divides
(p − 1). For γ ∈ F∗, let 〈γ〉 denote the set

{
γi
}
i∈N. We assume F is equipped
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with a canonical ordering of its elements. For a prime field this can be the order
of their natural number representatives.

Let F(<d)[X] denote the set of polynomials in formal variable X with coeffi-
cients from F with degree less than d. For a finite set of polynomials P ⊂ F[X], we
denote the sum of the individual degrees as ‖P‖ :=

∑
p∈P deg(P ). The vanishing

polynomial of K ⊆ F is zK(X) :=
∏
k∈K(X−k). When K is a multiplicative sub-

group or a coset, then evaluating zK(X) can be done in time logarithmic in the
size of K. For a set S ⊆ F and a function f , f(S) denotes the set {f(s) : s ∈ S}.
If S has a canonical ordering, then seqS(f) denotes the sequence (f(s) : s ∈ S).

Consider two families of probability distributions, {Dλ}λ∈N and {D′λ}λ∈N,
indexed by the security parameter λ. When unambiguous, we write {D} = {D′}
to denote that the distributions are the same.

2.2 Commitment schemes

A commitment scheme for messages x ∈ X is a pair (Setup,Commit) where

– Setup(1λ)→ pp: Given the security parameter, sample public parameters. A
randomized algorithm.

– Commit(pp, x ∈ X , r ∈ R) → c ∈ C: Given public parameters, a message x,
and randomness r produce a commitment c to x. A deterministic algorithm.

A commitment scheme must satisfy two properties: hiding and binding :

– Binding: For all PPT adversaries A:

Pr

x1 6= x2 ∧
Commit(pp, x1, r1)
= Commit(pp, x2, r2)

∣∣∣∣∣∣pp←
$ Setup(1λ)

(x1, r1, x2, r2)←$ A(pp)

 ≤ negl(λ)

– Perfect hiding: For all x, x′ ∈ X , for pp← Setup(1λ),

{Commit(pp, x, r) : r ←$ R} = {Commit(pp, x′, r′) : r′ ←$ R}

2.3 Polynomial commitment schemes

A polynomial commitment scheme (PCS) [11, 17, 28] enables a prover to commit
to a polynomial f ∈ F[X] with degree bound d. Later, a prover can convince
a verifier that the committed polynomial f opens to y = f(z) for z ∈ F and
deg(f) < d. For simplicity, we use a non-batched notation for our scheme (see
Appendices B–D in [17] for full details).

– PC.Setup(1λ,d = {di}i) → (ck, vk): Given the security parameter and a set
of degree bounds d, output a commitment key ck and verifying key vk.

– PC.Commit(ck, f ∈ F<di [X], di ∈ d, r ∈ R)→ c: Given the commitment key
ck, polynomial f with degree less than di ∈ d, and commitment randomness
r, output a commitment c.
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– PC.Eval(ck, f ∈ F<di [X], di ∈ d, r ∈ R, z ∈ F) → π: Given the commitment
key ck, polynomial f with degree less than di ∈ d, commitment randomness
r, and evaluation point z, output an evaluation proof π.

– PC.Check(vk, c, di ∈ d, z ∈ F, y ∈ F, π) → {0, 1}: Given verifying key vk,
commitment c, degree bound di, commitment randomness r, evaluation point
z, and claimed evaluation value y, output decision bit {0, 1}.

A PCS is secure if it is a binding and hiding commitment with an evaluation proof
that is an argument of knowledge. Evaluation proofs may also be zero-knowledge.
We use the PCS from [17] (which refines [28]) and use the technique of [11] to
make PC.Eval honest-verifier-zero-knowledge. For completeness we describe the
PCS in Supplement B.

Homomorphisms For commitments respecting the same degree bound, the
polynomial commitment schemes from [11, 17, 28] have commitment and ran-
domness spaces that are linearly homomorphic. In other words, a verifier with
commitments c1 and c2 for polynomials f1 and f2, both with degree bound d,
can derive a commitment c3 for a polynomial that is a linear combination of f1
and f2. The prover can similarly derive the commitment randomness for c3 from
the commitment randomness r1 and r2 for c1 and c2 respectively.

2.4 Interactive arguments

Let Name(P(a),V(b)) → {0, 1} denote an interactive protocol called Name. P
takes input a. V takes input b and outputs 0 (reject) or 1 (accept). For random-
ized interactive machines P and V, let 〈P(a),V(b)〉 denote the random variable
that is the output of their interaction.

An interactive argumentΠ for a relationR ⊆ X×W is an interactive protocol
between a pair of PPT algorithms, a prover P and verifier V. P(x,w) attempts
to convince V(x) that it knows a w such that (x,w) ∈ R.1 The outcome of the
protocol is that the verifier accepts or rejects.

Definition 1 (Completeness). An interactive argument (P,V) for a relation
R ⊆ X ×W is complete, if for all (x,w) ∈ R, Pr [〈P(x,w),V(x)〉 = 1] = 1.

Definition 2 (Knowledge-Soundness). Let (P,V) be an interactive argu-
ment for a relation R ⊆ X × W. If for all pairs of PPT adversaries (P1,P2),
there exists a PPT extractor Ext such that for (x, st)← P1,

Pr
[
(x,w) ∈ R : w ← ExtP2(st)(x)1

]
≥ Pr

[
〈P2(st),V(x)〉 = 1

]
− ε

where ExtP2(st) denotes that Ext has oracle access to the “interactive function”
P2(st) (see [4]), then the argument has knowledge error ε. If ε is negligible,
we say that the argument is knowledge-sound. If it is complete and knowledge-
sound then we say that it is an argument of knowledge.

1When there are public parameters pp, P, V, and Ext take in pp as well.
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Definition 3 (HVZK). An interactive argument (P,V) for a relation R ⊆
X ×W is (perfect) honest verifier zero knowledge (HVZK), if there exists
PPT simulator Sim such that for all (x,w) ∈ R, we have

{Sim(x)} = {ViewV(〈P(x,w),V(x)〉)},

where ViewV(〈P(x,w),V(x)〉) denotes the view of the verifier, namely its ran-
domness and the protocol transcript.

2.5 Polynomial interactive oracle proofs

Polynomial interactive oracle proofs (polyIOPs) refine interactive oracle proofs [7],
themselves generalizations of probabilistically checkable proofs [2].2 polyIOPs and
similar yield succinct arguments [6, 17, 18, 32] and proof-carrying data [11]. Here,
we review and give a self-contained definition.

Oracle Relation Let F be a field. For a constant c ≥ 1, let O ⊆ (F[X])c be an
oracle space, X ⊆ {0, 1}∗ be an instance space, and W ⊆ {0, 1}∗ be a witness
space. An oracle relation R ⊆ O × X × W is a set of triples (~o, x, w). The
language L(R) is the set of pairs (~o, x) for which there exists a witness w such
that (~o, x, w) ∈ R. Given a size bound N ∈ N, let RN denote the restriction of
R to oracles where ‖~o‖ ≤ N .

Polynomial IOPs A polyIOP for an oracle relation R is an interactive proof
between a prover P and verifier V, where P sends polynomial oracles that V can
subsequently access only via evaluation queries. More precisely, a Polynomial
Interactive Oracle Proof (polyIOP) is a tuple

polyIOP = (P, V, k ∈ N, s : N→ N, d : N3 → N) (1)

where the prover P and verifier V are PPT interactive algorithms. For a triple
(~o, x, w) ∈ R, the prover P receives inputs (F, ~o, x, w) and V receives (F, x,N)
and input oracles ~o. Next, P and V engage in a k-round protocol; during the
interaction, P can only send oracles. At any point, the verifier can query any
input oracles and any of the oracles it receives from P. After the k rounds of
interaction, V outputs a decision in {0, 1}.

The functions s and d in (1) bound the number of polynomials sent from
P, and their degrees. Specifically, in round i ∈ [k], V sends a message mi ∈ F∗
to P and P sends back s(i) oracles oi,1, ..., oi,s(i) in F[X] to the verifier. Each
oracle oi,j must have degree less than d(N, i, j). The input oracles are denoted
~o = (o0,1, ..., o0,s(0)); thus s(0) gives the number of input oracles and d(N, 0, j)

is the degree bound for oracle o0,j . A pair (~o, P̃) of input oracles and a prover

P̃ is admissible if the degree bounds specified by d are respected. That is, if for
all i ∈ [k] ∪ {0} and j ∈ [s(i)], deg(oi,j) ≤ d(N, i, j).

2Reed-Solomon encoded IOPs [6, 18] are closely related to polyIOPs.
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Oracle polynomials are additive: for two oracle polynomials f and g, V can
efficiently derive a new oracle h := f + g. Derived oracles can be queried.

A polyIOP can have a number of properties:

– Completeness: For all (~o, x, w) ∈ R,

Pr
[
〈P(F, ~o, x, w),V~o(F, x,N)〉 = 1

]
≤ negl(λ)

– Soundness: For all (~o, x) 6∈ L(R) and PPT prover P̃ such that (~o, P̃) is
admissible,

Pr
[
〈P̃,V~o(F, x,N)〉 = 1

]
≤ negl(λ)

– Knowledge Soundness: A polyIOP has knowledge error ε if there exists a
PPT extractor Ext such that for all oracles ~o, instances x, and PPT adver-
saries P̃ such that (~o, P̃) is admissible,

Pr
[
w ← ExtP̃(F, ~o, x,N) ∧ (~o, x, w) ∈ R

]
≥ Pr

[
〈P̃,V~o(F, x,N)〉 = 1

]
− ε

where ExtP̃ means that the extractor Ext has blackbox access to the prover
P̃ as a set of next-message functions. Thus, the extractor has rewind access
to the potentially malicious prover P̃.

– Perfect Honest Verifier Zero Knowledge: There exist a PPT simulator
Sim, for all (~o, x, w) ∈ R,

{Sim(F, x,N)} =
{

View
(
〈P(F, ~o, x, w),V~o(F, x,N)〉

)}
where View

(
〈P(F, ~o, x, w),V~o(F, x,N)〉

)
is the view of the honest verifier V

during the interaction. For a q-query V, this view comprises (r, v1, ..., vq):
the V’s randomness and the responses to V’s oracle queries. Note that Sim
is not given the oracles ~o.

– Additional Properties:
• Public Coin: All verifier messages are uniformly random strings of a

specified length.
• Non-adaptive queries: All verifier queries are based solely on verifier

randomness and inputs (i.e. do not depend on the results of other oracle
queries).

Definition 4. A polyIOP for relation R is secure if it is complete, knowledge
sound, and has (perfect) honest-verifier zero-knowledge for that relation.

In a polyIOP that is public coin and non-adaptive, a verifier V can be viewed
as a pair of algorithms: a query algorithm QV and a decision algorithm DV .
The query algorithm outputs a query set Q = {(ID, z)} ← QV (F, x, ρ1, ..., ρk, r)
(query oracle oID at z) where ρ1, ..., ρk are the verifier’s random messages and r
is additional query randomness. The decision algorithm outputs a decision bit
{0, 1} ← DV (F, x, {vq}q∈Q, ρ1, ..., ρk, r).
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Index Relations An index relation R ⊆ I×X×W is a ternary relation between
an index space I, instance space X, and witness space W. An index i ∈ I is the
explicit representation of a binary relation R ⊆ X ×W where x ∈ X represents
public inputs and w ∈ W represents witness inputs. Given a size bound N ∈ N,
let RN denote the restriction of R to indices |i| ≤ N .

Algebraic Holographic Proofs (AHPs) A constant-round Algebraic Holo-
graphic Proof [17] for an index relation R ⊆ I × X×W is a tuple

(EncAHP, PAHP, VAHP, k ∈ N, d : N3 → N, s : N→ N)

where (1) EncAHP is a deterministic algorithm that maps an index i ∈ I to an
encoded index ~o ∈ O, and (2) the tuple (PAHP,VAHP, k, d, s) is (syntactically) a
polyIOP for the oracle relation

RAHP :=
{(
~o ∈ O, x, (i, w)

)
: (i, x, w) ∈ R

}
.

For i ∈ I, the encoded index ~o = EncAHP(i) is a list of s(0) polynomials with
degree bounds d(|i|, 0, j) for j ∈ [s(0)].

Prior work [17] defines AHP security, which differs slightly from polyIOP
security. In particular, soundness assumes that ~o = EncAHP(i), and the knowledge
soundness extractor receives i instead of ~o. It outputs w such that (i, x, w) ∈ R.

Virtual Oracles The initial oracles ~o and those sent by the prover are called
concrete oracles. Virtual oracles [5]3 are polynomials that are not concrete ora-
cles, but whose evaluations can be efficiently computed from the evaluations of
concrete oracles. For example, V with oracle access to f and g can also query
h(X) = f(αX) · g(X) + β at z by querying f(αz) and g(z). More formally, let
f1, ..., fn ∈ F(<B)[X] be concrete oracles. A virtual oracle F ∈ F(<D)[X] has form

F (X) := G (X,h1 (v1(X)) , h2 (v2(X)) , ..., hm (vm(X)))

where for i ∈ [m], hi ∈ {f1, ..., fn}, vi ∈ F(<b)[X], G ∈ F[X,X1, ..., Xm], and G
and {vi}i are public. We are interested in virtual oracles where D is negl(λ); and
m, b,deg(G), and the number of non-zero terms of G are constants.

Oracles in polyIOPs can be substituted with virtual oracles, since the sound-
ness of polyIOPs depend solely on the evaluations of underlying polynomials. We
prove zero knowledge for relevant protocols when {vi = αiX}i for αi ∈ F∗.

Compilation A polynomial commitment scheme [28] (PCS) enables a polyIOP
to be compiled into a standard protocol. With a PCS, P commits to each polyno-
mial it sends to the verifier during the polyIOP interaction. Upon an evaluation
query, P can send V the desired evaluation, and prove to V that evaluation is
consistent with the committed polynomial.

3Related to “polynomial identities” [20].
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The derived protocol can be proven to have the desired security properties.
For instance, one can construct a secure preprocessing argument from an AHP
and a suitable PCS [17]. In the derived protocol, the encoded index ~o = EncAHP(i)
becomes a tuple of polynomial commitments called an index key denoted ik.
The ik contains polynomial commitments to the polynomials in ~o.

In Section 4, we give a compiler that follows the same approach to produce
a secure functional commitment from a suitable polyIOP.

2.6 Arithmetic circuits

Informally, an arithmetic circuit is a directed acyclic graph of gates and wires.
Wires carry values from F. Each gate is binary, and it adds or multiplies.

Formally, an arithmetic circuit C—with ni inputs, ng gates, and no ≤ ng
outputs—is a sequence of gate tuples (li, ri, si)

ng

i=1 ∈ ([ni + ng] × [ni + ng] ×
{+,×})ng subject to the constraint li, ri < i+ni. For gate i, we will refer to li, ri
as the left and right input wire indices, i+ni as the output wire index, and si as
the gate selector. The set of circuit input wire indices is [ni]. Let ACni,ng,no denote
the set of arithmetic circuits with ni inputs, ng gates, and no ≤ ng outputs.

To evaluate C on input (x1, . . . , xni) ∈ Fni , one computes (in order) ng + ni
wire values: w1, . . . , wng+ni . The first ni wire values are just the inputs: wi = xi
for i ∈ [ni]. Then, for i ∈ [ng], wi+ni is wli + wri , if si = + otherwise wli × wri .
The last no wire values are the circuit output. Through evaluation, any circuit C
defines a function from ~x ∈ Fni to ~y ∈ Fno , with evaluation denoted as ~y = C(~x).

3 Functional Commitments

We begin by defining what is a (function-hiding) functional commitment scheme.
A functional commitment scheme allows the committer to commit to a secret
function and then prove evaluations of this function.

Let {Xλ}λ∈N and {Yλ}λ∈N be families of input and outputs spaces. Let
{(Fλ,Evaluateλ)}λ be a family of encoded function spaces. An encoded function
space is a finite set Fλ of poly(λ) length strings equipped with a determinis-
tic evaluation algorithm Evaluateλ : Fλ × Xλ → Yλ. We omit λ indices when
unambiguous. For f ∈ F and x ∈ X , we abbreviate Evaluate(f, x) as f(x).

Examples of functions and their encodings include:

– univariate polynomials (F(<d)[X]): The input and output spaces are F.
The encoded function space consists of d-tuples of coefficients. Evaluate(f, x)
evaluates the polynomial whose coefficients are the d-tuple.

– arithmetic circuits: The input and output spaces are Fni and Fno . The
encoded function space consists of poly(λ) size, directed acyclic graphs of
additions and multiplications. Evaluate(f, x) evaluates the arithmetic circuit
represented by the graph.

A functional commitment scheme FC for F , is a tuple (Setup,Commit,Eval) where
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– Setup(1λ, N)→ pp : Given the security parameter and max size (i.e. number
of gates), sample public parameters. A randomized algorithm.

– Commit(pp, f ∈ F , r ∈ R) → c ∈ C : Given pp, an encoded function f , and
randomness r, produce a commitment c to f . A deterministic algorithm.

– Eval(PE(pp, f ∈ F , r ∈ R, x ∈ X , y ∈ Y), VE(pp, c, x, y)) → {0, 1} : an
interactive protocol for PE to convince VE that f(x) = y.

We call R the randomness space and C the commitment space. A secure func-
tional commitment should have the following properties, captured formally in
Definition 5 below:

1. Binding : computing distinct function encodings with equivalent commit-
ments is infeasible.

2. Hiding : commitments to different function encodings are indistinguishable.
3. Completeness: correct evaluation proofs are always accepted.
4. Evaluation zero-knowledge: an evaluation proof reveals nothing other than

the evaluation
5. Knowledge soundness: evaluation proofs show that PE knows a function en-

coding consistent with the evaluation and the commitment.
6. Evaluation Binding : A malicious prover cannot construct valid evaluation

proofs for different evaluations on the same input.

The binding and hiding requirements are exactly those for classical commit-
ments. We omit evaluation binding, which Supplement A shows is implied by
binding and extractability.

Definition 5 (Secure functional commitment) A functional commit-
ment scheme is secure if is has the following properties:

– Committing: The tuple (Setup,Commit) is a hiding and binding
commitment scheme for message space F and randomness space R.

– Complete: Eval is a complete protocol for the following relation:

Reval(pp) = {(c, x, y; f, r) : f ∈ F ∧ f(x) = y ∧ c = Commit(pp, f, r)}

– Extractable: Eval is an argument of knowledge for Reval(pp).
– Evaluation honest-verifier zero-knowledge: Eval is an honest ver-

ifier zero knowledge protocol for Reval(pp).

The Eval protocol is often run in parallel with multiple verifiers. By the
parallel composition of HVZK protocols, this is still HVZK.

4 Functional commitments from AHPs

We will construct an efficient functional commitment scheme from a suitable
algebraic holographic proof (AHP). The AHP must satisfy a non-standard prop-
erty: it must be zero-knowledge for the index as well as the witness. In addition,
we will need a polyIOP called a Proof of Function Relation (PFR).
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We begin with the non-standard AHP property. Recall that an AHP for an
index relation R ⊆ I × X×W comprises (EncAHP,PAHP,VAHP). While standard
AHP zero-knowledge [17] requires that VAHP’s view is simulatable from the index
and instance, our stronger property (index-privacy, Definition 6) requires that
the view be simulatable from the instance alone.

Definition 6 (Index-private AHP). Let AHP be an AHP with prover PAHP

and verifier VAHP. For field F and (i, x, w) ∈ R, let View(〈PAHP(F, i, x, w),

VEncAHP(i)
AHP (x)〉) be the view of VAHP. AHP is index-private if it is complete,

knowledge-sound [17], and there exists a PPT simulator S such that for all
(i, x, w) ∈ R and field F, S(F, x, 1|i|) is indistinguishable from the view of VAHP.

4.1 Proof of Function Relation (PFR)

An AHP may support proofs about relations that are not functions. Thus, we
need a protocol to prove that an oracle-encoded relation is a function: that
every input has a unique output. To capture this, we first define the concept of
a functional set: a subset of indices that encode functions.

Definition 7 (Functional Sets for Index Relations). Let R ⊆ I × (X ×
Y) × W. A subset If ⊆ I is a functional set if it contains only indices for
which the residual X × Y relation is a function. That is, if for all i ∈ If , for
all x ∈ X , there exists a unique y ∈ Y such that there exists w ∈ W such that
(i, (x, y), w) ∈ R. Furthermore, If must be equipped with a poly-time algorithm
Extend(i, x)→ (y, w) such that (i, (x, y), w) ∈ R, for all (i, x) ∈ If ×X .

A functional set If can naturally be viewed as an encoded function space
with the following Evaluate algorithm: Let i ∈ If and x ∈ X . Evaluate(i, x)
does the following: (i) compute (y, w) ← Extend(i, x) and (ii) output y. By the
definition of functional set, y is unique, so the output is deterministic.

A Proof of Function Relation (Definition 8) for a functional set If is a polyIOP
Π that verifies that an oracle encodes an index in If . The protocol Π must be
complete, knowledge-sound, and zero-knowledge.

Definition 8 (Proof of function relation) Let EncAHP be the encoding
function for an AHP with encoding function EncAHP : I → O and encoded
index space O = (F[X])c. Let Π be a polyIOP between Pf and Vf for the
following oracle relation:

Rfunc =
{

(~o ∈ O,⊥, i) : i ∈ If ∧ ~o = EncAHP(i)
}

The protocol Π is a proof of function relation (PFR) if it is a secure
polyIOP for Rfunc.

In the next subsection, we show that an index-private AHP and a PFR together
yield a secure functional commitment. The construction compiles these protocols
into a standard interactive protocol using a polynomial commitment scheme.
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4.2 Functional commitments from algebraic holographic proofs

We construct a functional commitment scheme in two parts (Construction 1).
The Commit algorithm uses a hiding polynomial commitment scheme to commit
to the polynomials that encode an AHP’s index. The Eval protocol begins by
using the PFR to ensure that (a) the commitment encodes some index and (b)
the index lies in the functional set If . Then, the AHP ensures that the prover-
provided witness and function output are consistent with that index.
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Construction 1 (Functional commitment compiler)
Let AHP = (EncAHP,PAHP,VAHP, kAHP, sAHP, dAHP) be an AHP for index
relation R ⊆ I × (X × Y) × W. Let Π = (Pf ,Vf , kf , sf , df ) be a proof
of function relation for functional set If , equipped with Extend, such that
sAHP(0) = sf (0) and for all i ∈ [sAHP(0)], dAHP(N, 0, i) = df (N, 0, i).

Let PC = (PC.Setup,PC.Commit,PC.Eval,PC.Check) be a polynomial
commitment scheme. Let N be the maximum supported index size. Define

d := {dAHP(N, i, j)}i∈[kAHP]∪{0},j∈[sAHP(i)] ∪ {df (N, i, j)}i∈[kf ],j∈[sf (i)]

Then FCAHP,If ,Π,PC is the following tuple:

– Setup(1λ, N): Compute d as above, output pp← PC.Setup(1λ,d)
– Commit(pp, i ∈ If , r ∈ R = RsAHP(0)):
• Parse (r1, . . . , rsAHP(0)) = r and (ck, vk) = pp
• Set ~o← EncAHP(i),
• For i ∈ sAHP(0) set co0,i ← PC.Commit(ck, ~o[i], dAHP(N, 0, i), ro0,i)
• Output c← (co0,1 , . . . , co0,sAHP(0)

).

– Eval(PE(pp, i, r, x, y),VE(pp, c, x, y)):
• PE and VE both parse (ck, vk) = pp
• PE computes ~o← EncAHP(i); (y′, w)← Extend(i, x); abort if y 6= y′.
• PE and VE run the following polynomial IOPs. Let piop ∈ {AHP, f}.

∗ 〈Pf (~o,⊥, i),V~of (⊥)〉 // proof of function relation

∗ 〈PAHP(i, (x, y), w),V~oAHP((x, y))〉 // proof for R

∗ For all i ∈ [kpiop] and j ∈ spiop(i), when Ppiop sends oracle poly-
nomial oi,j , PE computes and sends

coi,j ← PC.Commit(ck, oi,j , dpiop(N, i, j), roi,j ←
$ R)

∗ When Vpiop derives an oracle o that is a linear combination of
other oracles, VE derives co through the PCS homomorphism.
PE similarly derives the commitment randomness ro.

∗ When Vpiop queries oracle polynomial o (regardless of whether
o was sent by Ppiop, encoded in c, or derived from other oracles)
with degree bound do at z ∈ F to receive y = o(z):

· VE sends z
· PE retrieves ro, computes π ← PC.Eval(ck, o, do, ro, z), and

sends π and y ← o(z).
· VE retrieves co and asserts 1 = PC.Check(vk, co, do, z, y, π)

Theorem 2. Let AHP be an index-private algebraic holographic proof with in-
jective EncAHP, let Π be be a secure PFR for functional set If , and let PC
be a perfectly hiding PCS with knowledge-sound and HVZK evaluation. Then
FCAHP,If ,Π,PC (Construction 1) is a secure functional commitment scheme for
function encodings i ∈ If .
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Here, we sketch proofs of hiding, binding, and complete, knowledge-sound,
and honest-verifier zero-knowledge evaluation. Supplement C gives full proofs
that Eval is knowledge-sound and honest-verifier zero-knowledge.
Proof Sketch: Completeness follows from sub-protocol completeness. The com-
mitment is binding because EncAHP is injective and PC.Commit is binding. The
commitment is hiding because PC.Commit is hiding.

The functional commitment extractor EFC builds on the PFR extractor Ef ,
the polynomial commitment extractor EPC, and the AHP extractor EAHP. Through-
out, it uses EPC to extract polynomials and commitment randomness for the
adversary’s commitments and evaluations. From the polynomials, it uses Ef to
extract i ∈ If . Furthermore, it uses EAHP to extract w ∈ W. If these extractors
succeed, EFC has f = i ∈ If , the randomness for i’s commitment, and w such
that (i, (x, y), w) ∈ R, which implies that f(x) = y.

We build an honest-verifier zero-knowledge simulator as follows. First, we
use the simulators for Π and AHP to simulate oracle queries and evaluations.
AHP’s index-privacy is critical—we do not have the index i. Then, with the PCS
evaluation simulator, we simulate PCS evaluation proofs. �

5 Functional commitments from Marlin

Marlin [17] is an algebraic holographic proof (AHP) for rank-1 constraint sys-
tems (R1CS). In this section, we use it to construct a functional commitment.
First, we review R1CS and Marlin’s arithmetization of R1CS. Second, we give
a functional set for R1CS and a compiler from arithmetic circuits to our func-
tion set (Sec. 5.1). Third, we make Marlin index-private (Sec. 5.2). Fourth,
we develop a polyIOP to compare the discrete logarithms of polynomial evalua-
tions (Sec. 5.3); this is used in our proof of function relation (PFR) for Marlin
(Sec. 5.4). Finally, Theorem 2 yields a functional commitment.

Relation and index. Marlin is an AHP for RR1CS(n, h) as in Definition 9. Thus,
an index is three matrices: (A,B,C) ∈ (Fn×n)3 = I. In what follows we use u◦v
to denote component-wise product of two equal size vectors u and v.

Definition 9 (Rank-1 Constraint System (R1CS)).
For n ∈ N constraints and h ≤ n instance variables, the rank-1 constraint system
(R1CS) index relations is:

RR1CS(n, h) :=

{(
(A,B,C) ∈ (Fn×n)3, x ∈ Fh ; w ∈ Fn−h

)
:
z := (x,w)
(Az) ◦ (Bz) = Cz

}
Arithmetization As Marlin is holographic, its verifier accesses A, B, and C
through queries to polynomials that encode these matrices. The encoding uses
two cyclic multiplicative subgroups of F. Let H = 〈ω〉 be a multiplicative sub-
group of F of order n. Let each (sparse) index matrix contain at most m = |K| =
O(n) non-zero entries, where K = 〈γ〉.
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Each matrix is encoded by three polynomials. For M ∈ {A,B,C} with entries
Mri,ci = vi, let the list (ri, ci, vi)

m−1
i=0 ∈ (N × N × F)m represent M . Let rowM ,

colM , and valM be the unique polynomials of degree less than |K| such that
rowM (γi) = ωri , colM (γi) = ωci , and valM (γi) = vi,

4 for i ∈ {0, . . . ,m − 1}.
The encoded index contains rowM , colM , and valM for all M ∈ {A,B,C}.

5.1 A functional set for R1CS

Unfortunately, not all rank-1 constraint systems encode deterministic functions.
More precisely, for s, t ∈ N>0 such that s + t = h, if we set X = Ft, Y =
Fs, and X = X × Y, then the set of all indices I = (Fn×n)3 (for the relation
RR1CS(n, h)) is not a functional set. In this section, we give a restriction of R1CS
that captures bounded sized arithmetic circuits and excludes non-functions. For
ease of exposition, we modify the R1CS slightly: we move the output instance
variables to the end of the vector z.

Definition 10 (Output-final R1CS).
For n, t, s ∈ N such that t, s, s + t ∈ [n]. Let I = (Fn×n)3, X = Ft, Y = Fs,
X = X × Y, W = Fn−t−s. The index relation RR1CS-f (n, t, s) ⊆ I × X×W is:

RR1CS-f (n, t, s) =

{(
(A,B,C) ∈ I,

(x ∈ X , y ∈ Y) ∈ X;w ∈ W

)
:
z := (x,w, y),
Az ◦Bz = Cz

}
RR1CS-f admits a natural functional set: t-FT (Def. 11). For indices in t-FT,

each element of z beyond x is uniquely determined by the previous elements.
Theorem 3 states that t-FT is a functional set for RR1CS-f (proof: Supplement D).

Definition 11 (Functional Triple (t-FT)).
Let n, t ∈ N such that t ∈ [n]. A matrix M ∈ Fn×n is t-diagonal if and only if
M is a diagonal matrix, the first t entries along the diagonal are zero, and the
last n− t entries are nonzero. Let t-Diag be the set of such matrices.

M is t-strictly lower triangular if and only if M is a strictly lower trian-
gular matrix and the first t rows are zero. Let t-SLT be the set of such matrices.

A triple of matrices (A,B,C) ∈ (Fn×n)3 is a functional triple if and only
if A and B are t-SLT and C is t-Diag. Let t-FT be the set of such triples.

Theorem 3. For RR1CS-f (n, t, s), t-FT ⊆ I is a functional set.

Compiling to t-FT To obtain a functional commitment for arithmetic circuits
from a preprocessing argument for RR1CS-f and a proof of function relation for
t-FT, we need a compiler. In Supplement D we construct AC2tFT: a compiler
from arithmetic circuits to t-FT.

Theorem 4. For any bounded sized circuit C ∈ ACni,ng,no , AC2tFT(C) ∈ t-FT.
Additionally, for x ∈ Fni , and y ∈ Fno , if y = C(x), then there exists w ∈ Fng−no

such that (AC2tFT(C), ((1, x), y), w) ∈ RR1CS-f(ng + ni + 1, ni + 1, no)
4Technically, valM (γi) evaluates to vi/f(rowM (γi), colM (γi)) for a public function

f (a formal derivative) defined in [17]. The difference is unimportant to our protocols.
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5.2 Extending Marlin

We begin with small changes to Marlin’s relation and arithmetization. These
changes have no effect on Marlin’s security. Then, we extend Marlin to obtain
the properties required by Theorem 2.

Output-final R1CS Our index relation is not RR1CS , but RR1CS-f (Def. 10).
Adapting Marlin to support the latter is straightforward; see Supplement E.1.

Index privacy Our final scheme requires an index-private AHP (see Theorem 2).
Marlin very nearly has this property already: we discuss the necessary change
in Supplement E.1. A zero-knowledge zero test (Protocol 2) is the key ingredient.

Restricting the index encoding We will only work with C matrices that are t-
diagonal (Def. 11), so we restrict the encoding of C. We fix both seqK(rowC) and
seqK(colC) to be the sequence: ωt, ωt+1, . . . ωn−1, 1, 1, . . . , 1. Furthermore, we fix
seqK(valC) to be the sequence: Ct,t, Ct+1,t+1, . . . , Cn−1,n−1, 0, 0, . . . , 0.

This encoding captures any t-diagonal C. Since this encoding is a restriction
of Marlin’s original encoding, it requires no protocol modifications.

5.3 Comparing logarithms

Recall that our functional set for R1CS (Def. 11) requires that matrices A and
B are strictly lower triangular. Recall also that for each non-zero entry Mr,c in
matrix M ∈ {A,B}, Marlin requires that rowM (γi) = ωr and colM (γi) = ωc.
Thus, building a PFR for Marlin requires proving logω(rowM (γi)) > logω(colM (
γi)). In this subsection, we develop a polyIOP for this relationship.

Throughout, let γ ∈ F∗ be an element of order m that generates K and

induces the canonical order {1, γ, . . . , γm−1} on K. Additionally, |K|
|F\K| ≤ negl(λ).

Unless otherwise noted, all our polyIOP protocols share the following prop-
erties. First, P sends a constant number of polynomials to V. Second, V queries
those polynomials at a constant number of points. Third, they have perfect com-
pleteness. Fourth, the prover’s running time is always quasi-linear in the degree
of the provided polynomials and verifier time is logarithmic in |K|.

Define BAHP := maxi∈[kAHP]∪{0},j∈[sAHP(i)] dAHP(N, i, j) be the max degree
bound of an oracle in the Marlin AHP (where N is the instance size) [17]. Define

B := max(BAHP, |K|+ 2); since BAHP

|F∗\K| and |K|+2
|F∗\K| are ≤ negl(λ), B

|F∗\K| ≤ negl(λ).

Protocol 1 (Subset over K) Previous work [19] gives a polyIOP for relation

Rsubset := {((f, t ∈ F(<B)[X]),⊥,⊥) : f(K) ⊆ t(K)}

assuming the seqK(t) has all repeat elements adjacent to one another. This struc-
tured assumption will suffice for our use case.

Theorem 5. Protocol 1 (Subset over K) is a secure polyIOP (Definition 4) for
relation Rsubset.
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Proof. There is no witness, so it suffices to show completeness, soundness, and
honest-verifier zero-knowledge. Prior work proves completeness and soundness
[19]. HVZK requires a small modification (Supplement E.2).

Zero over K We construct a secure polyIOP to test if a virtual oracle is zero over
a multiplicative subgroup K ⊆ F. Prior works [17, 20, 21, 32] construct similar
protocols. However, none provide a secure polyIOP for this property; indeed,
all leak some extra information about the oracle being tested.5 Here, we give a
secure polyIOP for zero-testing. We explicitly support virtual oracles. Let

F (X) := G
(
X, fj1 (α1X) , fj2 (α2X) , . . . , fjt

(
αtX

))
∈ F(<D)[X] (2)

be a virtual oracle where f1, ..., fn are concrete oracles, ji ∈ [n]; αi ∈ F∗; G ∈
F[X,X1, ..., Xt]; and D, t, deg(G) = dG, and G’s monomial count are negl(λ).

Our polyIOP shows that for all k ∈ K, F (k) = 0. This also enables equality
testing over K; oracles f and g are equal over K if F = f − g is zero over K.

Protocol 2 (Zero over K)
Relation:

Rzero =
{(

(f1, ..., fn),(~α,~j,G),⊥
)

: fi ∈ F(<B)[X], ~α ∈ (F∗)t, ~j ∈ [n]t,

∀k ∈ K, F (k) = 0 where F is define in (2)
}

1. For i ∈ [t], let hi = fji . P samples random ri ←$ F(<2)[X], computes
mask mi(X) = ri(α

−1
i X) · zK(α−1i X), and computes h′i = hi +mi.

2. P computes F ′(X) = G (X,h′1 (α1X) , h′2 (α2X) , ..., h′t (αtX)) and quo-
tient q1 = F ′/zK. P sends polynomials {mi}i, {ri}i, and q1 with degree
bounds B, 2 and dG ·B − |K| respectively.

3. For j ∈ [t], V derives h′i = hi +mi through additive homomorphism. V
samples β1, β2, c←$ F∗ \K and sends c.

4. P computes q2 = r1 + cr2 + ... + ct−1rt. V derives concrete oracle q2
through additive homomorphism.

5. Let M(X) = m1(α1X) + cm2(α2X) + ... + ct−1mt(αtX). V computes
zK(β1), zK(β2), queries q1(β1) and q2(β2), and for i ∈ [t], queries h′i(αiβ1)
and mi(αiβ2). V asserts two identities:

M(β2)− q2(β2) · zK(β2)
?
= 0 (3)

F ′(β1)− q1(β1) · zK(β1)
?
= 0 (4)

Theorem 6. Protocol 2 (Zero test) is a secure polyIOP (Definition 4) for rela-
tion Rzero.

5Prior works obtain zero-knowledge for their overall protocols through other means.
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Proof. There is no witness, so it suffices to show completeness, soundness, and
honest-verifier zero-knowledge.

Completeness Assume F (k) = 0 for all k ∈ K. Thus, F (X) ≡ 0 (mod zK(X)).
By a series of substitutions,

h′i(αiX) = (fji +mi)(αiX) = fji(αiX) +mi(αiX)

= hi (αiX) + ri
(
α−1i αiX

)
· zK

(
α−1i αiX

)
= hi (αiX) + ri (X) · zK (X)

≡ hi (αiX) (mod zK(X))

for i ∈ [t]. Thus, by substituting h′i for hi, we have F ′(X) ≡ F (X) ≡ 0
(mod zK(X)). Then, zK|F ′, so P’s division (Step 2) is without remainder. Iden-
tities (3) and (4) hold by construction.

Soundness Recall that the verifier V receives oracles {mi}i, {ri}i, q1 with ad-
missible degree bounds B, 2, dG ·B − |K| respectively from P. Define

W (X,C) = m1(α1X) + Cm2(α2X) + ...+ Ct−1mt(αtX)

and similarly define Q2(X,C) =
∑t
i=1 C

i−1ri(X).

Lemma 1. If zK(X)|W (X,C) and zK(X)|F ′(X), then zK(X)|F (X).

The first condition implies that zK(X)|mi(αiX) for all i ∈ [t]. Thus:

h′i (αiX) = (fji +mi) (αiX) = fji (αiX) +mi (αiX)

≡ hi (αiX) (mod zK(X))

This implies that F ′(X) ≡ F (X) (mod zK(X)). Since zK|F ′(X) was given, we
now have that zK|F (X). �

Assume that F (X) 6≡ 0 (mod zK(X)). The converse of Lemma 1 implies that
either zK(X) -W (X,C) or zK(X) - F ′(X).

If zK(X) -W (X,C), then W (X,C)−Q2(X,C)zK(X) 6= 0. Identity (3) tests
this polynomial equation at random c, β2 ←$ F∗\K. Note deg(W−Q2·zK) ≤ B+t.
Thus, (3) holds with probability less than B+t

|F∗\K| (by the Schwartz-Zippel lemma).

If zK(X) - F ′(X), then F ′(X) − q1(X)zK(X) 6= 0. Identity (4) tests this
polynomial equation at random β1 ←$ F∗ \ K. We know maxi∈[t] deg(h′i) =
maxi∈[t](deg(fji),deg(mi)) < B. Thus, deg(F ′) < dG · B. Since deg(q1) ≤
dG · B − |K|, we have deg(F ′ − q1 · zK) ≤ dG · B, and (4) holds with proba-
bility < dG·B

|F∗\K| (Schwartz-Zippel).

By union bound, the probability that V accepts (i.e., (3) and (4) hold when
F (X) 6≡ 0 (mod zK(X))) is less than B+t

|F∗\K| + dG·B
|F∗\K| ≤ negl(λ).
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HVZK Consider the view of an honest execution of the protocol given a valid
F . For i ∈ [t], V queries h′i(αiβ1) and mi(αiβ2). Expanding,

h′i(αiβ1) = fji(αiβ1) +mi(αiβ1) = ...+ ri(α
−1
i αiβ1)zK(α−1αiβ1)

= ...+ ri(β1)zK(β1)

mi(αiβ2) = ri(α
−1
i αiβ2)zK(α−1i αiβ2) = ri(β2)zK(β2)

Since β1, β2 ∈ F∗ \ K, we have zK(β1) 6= 0 6= zK(β2). Since ri is a random
linear polynomial, ri(β1)zK(β1) and ri(β2)zK(β2) are distributed independently
and uniformly at random. Thus, h′i(αiβ1) and mi(αiβ2) are also distributed
independently and uniformly.

The simulator Sim samples c, β1, β2 ←$ F∗ \ K and for i ∈ [t], samples
ξi, µi ←$ F. It computes η = G(β1, ξ1, ..., ξt) and ν = µ1 + cµ2 + ... + ct−1µt−1.
It outputs simulated transcript (c, β1, β2, ξ1, ..., ξt, µ1, ..., µt, η/zK(β1), ν/zK(β2)).
This is distributed identically to the view of the honest verifier V: (c, β1, β2,
h′1(α1β1), ..., h′t(αtβ1),m1(α1β2), ...,mt(αtβ2), q1(β1), q2(β2)).

Non-zero over K We present a polyIOP that shows 0 6∈ f(K). This protocol is
a thin wrapper around the previous protocol.

Protocol 3 (Non-zero over K)
Relation: Rnon-zero = {(f ∈ F(<B)[X],⊥,⊥) : ∀k ∈ K, f(k) 6= 0}

1. Let g ∈ F(<|K|)[X] be such that ∀k ∈ K, g(k) = (f(k))−1. P interpolates
g with admissible degree bound B and sends it to V.

2. P and V invoke Zero over K to check f · g = 1 over K.

Theorem 7. Protocol 3 (Non-zero test) is a secure polyIOP (Definition 4) for
relation Rnon-zero.

Proof. Completeness and HVZK follow immediately from the same properties
of Protocol 2. For soundness, suppose f(k) = 0 for some k ∈ K. Then, f(k) ·
g(k)− 1 6= 0. Thus, the zero test succeeds with negligible probability.

Geometric sequence We present a polyIOP that shows the sequence seqK(f)
is the concatenation of geometric sequences that share the same multiplicative
factor. More formally, let a1, a2, ..., an ∈ F be initial values for a set of geometric
sequences that share the same multiplicative factor r ∈ F∗. Let c1, c2, ..., cn ∈ N,
where c1 + ...+ cn = m, be the number of terms in each geometric sequence. For
a polynomial f , we want to verify that f(γ0), f(γ1), . . . , f(γm−1) is the sequence

a1, a1r, . . . , a1r
c1−1, a2, a2r, . . . , a2r

c2−1, . . . , an, anr, . . . , anr
cn−1

The parameters r, ~a, and ~c are known to both the prover and the verifier.
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Protocol 4 (Geometric Sequence Test)
Rgeo =

{
(f ∈ F(<B)[X], (r,~a,~c),⊥) : seqK(f) =‖ni=1 (ai, air, . . . , air

ci−1)
}

For all i ∈ [n], let pi =
∑
j<i cj .

1. V checks ∀i ∈ [n], f(γpi)
?
= ai

2. P and V run Zero over K to check for all k ∈ K,

(f(γ · k)− r · f(k)) ·
∏
i∈[n]

(k − γpi+ci−1)
?
= 0

3. V outputs accept if all checks pass, otherwise reject.

Theorem 8. Protocol 4 (Geometric sequence test) is a secure polyIOP (Defini-
tion 4) for relation Rgeo.

Proof. There is no witness, so it suffices to show completeness, soundness, and
honest-verifier zero-knowledge.

Completeness The first i identities hold because the first term of each sequence
is correct. The final identity follows from two cases:

• k 6∈ {γpi+ci−1 : i ∈ [n]}: This implies that f(γ · k) and f(k) are in the same
geometric sequence. Thus, f(γ · k) = r · f(k). Hence, the left factor of the
identity is zero.
• k ∈ {γpi+ci−1 : i ∈ [n]}: Then, k is a root of the right factor. Hence, the right

factor is equal to zero.

Lemma 2. If for all i ∈ [n], f(γpi) = ai and (f(γX) − rf(X))
∏
i∈[n](X −

γpi+ci−1) ≡ 0 (mod zK(X)), then seqK(f) =‖ni=1 (ai, air, . . . , air
ci−1).

For all i ∈ [n], we prove by induction on j that the sequence (f(γj) : pi ≤ j ≤
pi + ci − 1) is the geometric sequence ai, air, ..., air

ci−1. Consider j = p1: we
already know that f(γpi) = ai.

Otherwise, consider j such that pi ≤ j < pi + ci − 1. Let k = γj . Since k 6=
γpi+ci−1, the right factor of the second identity is nonzero. Thus, the left factor
is zero, so f(γ · k) = r · f(k); in other words, the element next in the sequence
must be the current multiplied by r. Thus, by induction, the sequence (f(γj) :
pi ≤ j ≤ pi + ci − 1) is the required geometric sequence. Since we considered an
arbitrary i ∈ [n], seqK(f) is the required concatenation of sequences. �

Soundness If seqK(f) is not the desired concatenation, one of Lemma 2’s hy-
potheses must be false. If the first is false, V accepts with probability zero. If
the second is false, V accepts with negligible probability (since Zero over K is
sound). By union bound, the probability the verifier accepts is negligible.

HVZK Let trz be the simulated transcript outputted by the Zero over K simu-
lator. The simulator Sim will output transcript (a1, ..., an) ‖ trz.
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Discrete-log comparison We present the primary protocol for this subsection:
a polyIOP for polynomials f and g that verifies:

f(K), g(K) ⊆ 〈ω〉 = H and ∀k ∈ K, logω(f(k)) > logω(g(k))

where H = 〈ω〉. We assume the existence of ∆ ∈ F such that ∆2 = ω and
ord(∆) = 2·ord(ω). At a high level, the P sends a polynomial s whose evaluations
encode (in the exponent) the difference between the logarithms of the evaluations
of f and g. Then, we take a square root of the evaluations of f , g, and s. By
checking the difference equation on both the original polynomials and the square
roots, we show the desired relationship.

Protocol 5 (Discrete-log Comparison)

Rdlog< =

{
(f, g ∈ F(<B)[X], (∆,n),⊥) :

f(K), g(K) ⊆ {1, ω1, . . . , ωn−1} ∧
∀k ∈ K, logω(f(k)) > logω(g(k))

}
where m = |K|, ω = ∆2, ord(∆) = 2n, and n ≤ m.

1. P interpolates s ∈ F(<|K|)[X] that agrees with f/g on K. P sends s to
V with admissible degree bound B.

2. For b ∈ {f, g, s}, P interpolates b′ such that for all k ∈ K, b′(k) =
∆logω(b(k)). P sends to V polynomials f ′, g′, and s′ with admissible
degree bound B.

3. P interpolates and sends h with admissible degree bound B such that
seqK(h) is the following sequence: 1, ∆,∆2, ....,∆n−1, 0, ..., 0 with m−n
zeroes.

4. P and V run Zero over K four times to check the following equalities
over K: f ′ = s′ · g′, f = (f ′)2, g = (g′)2, s = (s′)2

5. P and V run Geometric Sequence Test on h with multiplicative factor
∆, initial values 1, 0, and c1 = n, c2 = m− n.

6. P and V run Subset over K three times with (p, h) for p ∈ {f ′, g′, s′}.
7. P and V run Non-zero over K to test f ′, g′, s′, s(X) − 1 6= 0 anywhere

on K.

Theorem 9. Protocol 5 (Discrete-log comparison) is a secure polyIOP (Defini-
tion 4) for relation Rdlog<.

Proof. There is no witness, so it suffices to show completeness, soundness, and
HVZK. The protocol is HVZK because its sub-protocols are.

Completeness For all k ∈ K and h ∈ {f, g, s}, h′(k) = ∆logω(h(k)), so (h′(k))2 =
(∆2)logω(h(k)) = ωlogω(h(k)) = h(k). Thus, by this and construction, step 4 suc-
ceeds. For p ∈ {f ′, g′, s′}, by construction, we have p(K) ⊆ h(K) = {∆e−1 : e ∈
[n]}. Thus, step 6 succeeds. Finally, step 7 succeeds because the strict inequality
∀k ∈ K, logω(f(k)) > logω(g(k)) implies that s(k) can never equal 1 and by
construction, f ′, g′, s′ cannot be zero over K.
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Soundness V receives oracles s, f ′, g′, s′, h from P.

Lemma 3. If seqK(h) = ∆0, ∆1, ....,∆n−1, 0, ..., 0; f ′ = s′ · g′; f = (f ′)2; g =
(g′)2; s = (s′)2, f ′(K), g′(K), s′(K) ⊆ h(K); and f ′, g′, s′, s−1 6= 0 everywhere on
K, then f(K), g(K) ⊆ {1, ω1, . . . , ωn−1} and ∀k ∈ K, logω(f(k)) > logω(g(k)).

Given the value of seqK(h), we have h(K) = {∆e−1 : e ∈ [n]} ∪ {0}. Then, the
subset relations imply that f ′(K), g′(K), s′(K) ⊆ {∆e−1 : e ∈ [n]} ∪ {0}. By the
non-zero property, f ′(K), g′(K), s′(K) ⊆ {∆e−1 : e ∈ [n]}.

Thus, for all k ∈ K, there exist integers 0 ≤ a, b, c < n such that f ′(k) =
∆a, g′(k) = ∆b, s′(k) = ∆c. Because f ′ = s′g′ over K, we know that a ≡ b + c
(mod 2n); given the range of a, b, and c and 2n, this implies that a = b + c
(as integers). Since ∆2 = ω, (f ′)2 = f , (g′)2 = g, and (s′)2 = s, we have that
logω(f(k)) = a, logω(g(k)) = b, logω(s(k)) = c. This immediately shows that
f(K), g(K) ⊆ {1, ω, . . . , ωn−1}.

Furthermore, logω(f(k)) = logω(g(k)) + logω(s(k)). Since logω(s(k)) = c ≥ 0
and s(k) 6= 1 for all k ∈ K, we have logω(f(k)) > logω(g(k)). �

Suppose g 6⊆ or f 6⊆ {1, ω1, ..., ωn} or logω(f(k)) 6> logω(g(k)). By the con-
trapositive of Lemma 3, we must have that either one of the equalities is false, h
does not have the desired geometric sequence over K, one of the subset relations
does not hold, or one of the polynomials has a zero in K. These properties are
check by sound subprotocols in steps 4, 5, 6, and 7. Thus, by union bound, the
verifier accepts with negligible probability.

5.4 Proof of function relation for t-FT

In this section, we construct a proof of function relation for the t-FT functional
set. Let n, t, s ∈ N such that t, s, s + t ∈ [n]. Let (A,B,C) be an index for the
relation RR1CS-f (n, t, s). Our protocol is a polyIOP that shows that polynomials
{rowM , colM , valM}M∈{A,B,C} represent matrices (A,B,C) ∈ t-FT. That is, A
and B must be t-strictly lower triangular and C must be t-diagonal.

t-strictly lower triangular For M ∈ {A,B}, we want to show that rowM and
colM encode matrix M ∈ t-SLT. To do so, t-SLT Test shows:

1. the matrix is strictly lower triangular : for all i ∈ {0, . . . ,m− 1},
logω(rowM (γi)) > logω(colM (γi)) and

2. the top t rows are zero: rowM (K) ⊆ {ωt, . . . , ωn−1}.

To prove the first, we use Discrete-log Comparison to show (a) that the image of
each polynomial over K is a subset of H and (b) that the discrete-log inequality
holds. To prove the second, we build a polynomial whose image is {ωe : t ≤ e ≤
n−1}∪{0} using Geometric Sequence Test. Then, we show that image contains
the image of rowM using Subset over K.
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Protocol 6 (t-SLT Test)

Rt-SLT =
{

((rowM , colM , valM ), (t,∆, n,K),⊥)

: rowM , colM , valM ∈ F(<B)[X], ∆2 = ω ∈ F∗, t, n,∈ N,
rowM (K) ⊆ {ωt, . . . , ωn−1} ∧ colM (K) ⊆ H

∧ logω(rowM (γi)) > logω(colM (γi)),∀i ∈ [m]
}

1. P interpolates and sends polynomial h such that seqK(h) is:

ωt, ωt+1...., ωn−1, 0, 0, ..., 0

require h has admissible degree bound B.
2. P and V run Geometric Sequence Test on h with initial values ωt, 0,

multiplicative factor ω, and c1 = n− t, c2 = m− (n− t).
3. P and V run Subset over K between rowM and h.
4. P and V run Discrete-log Comparison between rowM and colM , with

parameters (∆,n = |H|) such that ord(∆) = 2n,∆2 = ω.

Theorem 10. Protocol 6 (t-SLT test) is a secure polyIOP (Definition 4) for
relation Rt-SLT.

Proof. There is no witness, so it suffices to show completeness, soundness, and
HVZK. The protocol is HVZK because its sub-protocols are.

Completeness If M ∈ t-SLT, then we have

• rowM (K), colM (K) ⊆ H
• ∀k ∈ K, logω(rowM (k)) > logω(colM (k))

• rowM (K) ⊆ {ωe : t ≤ e ≤ n− 1}

Since h(K) = {ωe : t ≤ e ≤ n− 1}, completeness follows from the completeness
of Subset over K, Geometric Sequence Test, and Discrete-log Comparison.

Soundness Suppose seqK(h) = ωt, ωt+1...., ωn−1, 0, 0, ..., 0, rowM (K) ⊆ h(K),
and rowM (K), colM (K) ⊆ H and ∀k ∈ K, logω(rowM (k)) > logω(colM (k)).

Then, h(K) = {ωe : t ≤ e ≤ n − 1} ∪ {0}. By subset relation, we have
rowM (K) ⊆ {ωe : t ≤ e ≤ n − 1} ∪ {0}. Since rowM (K) ⊆ H, we have that
rowM (K) ⊆ {ωe : t ≤ e ≤ n − 1}. Thus, because ∀k ∈ K, logω(rowM (k)) >
logω(colM (k)), the polynomials encode M ∈ t-SLT.

Thus, if the polynomials do not encode a M ∈ t-SLT, at least one of the
suppositions above must be false. Since each is checked by a sound sub-protocol,
the verifier rejects with overwhelming probability.
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t-diagonal We need to check that (rowC , colC , valC) encodes a matrix C ∈
t-Diag. We can restrict the prover to known rowC and colC polynomials; specif-
ically, we force their evaluations over K to be: ωt, ωt+1...., ωn−1, 1, 1, ..., 1 as de-
scribed in Section 5.2. Using the Zero over K protocol, and the Geometric image
protocol, we can verify that rowC and colC have this form. This implies all entries
of C must be at: (ωt, ωt), (ωt+1, ωt+1), ...., (ωn−1, ωn−1), (1, 1).

What remains is to test that the values at coordinates not equal to (1, 1)
are nonzero and zero at (1, 1). To do this, we test identities between valC and a
polynomial h2 whose seqK(h2) is: 0, 0, ..., 0, 1, 1, ..., 1.

Protocol 7 (t-Diag Test)

Rt-Diag =
{

((rowM , colM , valM ), (t,∆, n, γ,m),⊥)

: rowM , colM , valM ∈ F(<B)[X], ∆2 = ω, γ ∈ F∗, t, n,m,∈ N,

∃~v ∈ (F∗)n−t, seqK(valM ) = ~v‖~0

∧ seqK(rowM ) = seqK(colM ) = (ωt, ωt+1, . . . , ωn−1, 1, 1, . . . , 1)
}

1. P interpolates and sends two polynomials h1, h2 ∈ F(<|K|)[X] with ad-
missible degree bound B such that
– seqK(h1) is the following: ωt, ωt+1...., ωn−1, 0, 0, ..., 0

in which there are m− (n− t) zeroes.
– seqK(h2) is the following: 0, 0, .., 0, 1, 1, ..., 1

in which there are n− t zeroes and m− (n− t) ones.
2. P and V run Geometric Sequence Test on h1 with initial values ωt, 0,

multiplicative factor ω, and c1 = n− t, c2 = m− (n− t).
3. P and V run Geometric Sequence Test on h2 with initial values 0, 1,

multiplicative factor 1, and c1 = n− t, c2 = m− (n− t).
4. V derives h = h1+h2. P and V run Zero over K between pairs (h, rowM )

and (rowM , colM ).

5. P and V run Zero over K to check for all k ∈ K: valM (k) · h2(k)
?
= 0.

6. P and V run Non-zero over K to check for all k ∈ K: valM (k)+h2(k)
?

6= 0.

Theorem 11. Protocol 7 (t-Diag test) is a secure polyIOP (Definition 4) for
relation Rt-Diag.

Proof. There is no witness, so it suffices to show completeness, soundness, and
HVZK. The protocol is HVZK because its sub-protocols are.

Completeness Steps 2, 3, 4 follow from the completeness of Geometric Sequence
Test and Zero over K. If seqK(valM ) is as described, then seqK(valM · h2) is
v1 · 0, v2 · 0, ..., vn−t · 0, 0, 0, ..., 0. Thus, step 5 must pass since valM · h2 is equiv-
alent to the zero polynomial over K and Zero over K is complete. Additionally,
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seqK(valM + h2) is v1 + 0, v2 + 0, ..., vn−t + 0, 1, 1, ..., 1 which is nonzero over K.
Thus, step 6 passes with the completeness of Non-zero over K.

Soundness Suppose seqK(h1), seqK(h2) are the desired sequences, h = rowM and
rowM = colM over K, and valM · h2 = 0 over K, and valM + h2 6= 0 over K.

Since rowM = h = h1 + h2, seqK(rowM ) is ωt, ωt+1...., ωn−1, 1, 1, ..., 1. This
implies all nonzero entries are restricted to coordinates (ωt, ωt), (ωt+1, ωt+1),
...., (ωn−1, ωn−1), (1, 1). Since h2 has the desired geometric sequence and the
last two properties, we know seqK(valM ) is v1, v2, ..., vn−t, 0, 0, ..., 0 where for all
i ∈ [n−t], vi ∈ F∗. Thus, the values at coordinates not equal to (1, 1) are nonzero
and zero at (1, 1). Thus, the polynomials encode M ∈ t-Diag.

Thus, if the polynomials do not encode a M ∈ t-Diag, at least one of the
assumptions above must be false. Since each is checked by a sound sub-protocol,
the verifier rejects with overwhelming probability.

The proof-of-function relation We next present the main protocol of this sec-
tion: a polyIOP to show that the nine polynomials {rowM , colM , valM}M∈{A,B,C}
encode matrices (A,B,C) ∈ t-FT.

Protocol 8 (t-FT Test)

Rt-FT =
{(

(rowM , colM , valM )M∈{A,B,C}, (t, ω, n, γ,m), (A,B,C)
)

: rowM , colM , valM ∈ F(<B)[X], A,B,C ∈ Fn×n,
(A,B,C) ∈ t-FT

∧ Enc(A,B,C) = (rowM , colM , valM )M∈{A,B,C}

}

1. P and V run t-SLT Test on (rowM , colM , valM ) for M ∈ {A,B}
2. P and V run t-Diag Test on (rowC , colC , valC)

Theorem 12. Protocol 8 (t-FT test) is a secure polyIOP (Definition 4) for re-
lation Rt-FT. Thus it is a secure PFR for the Marlin′ AHP.

Proof. Completeness, soundness, and zero-knowledge follow from the same prop-
erties of the subprotocols.

For knowledge-soundness the extractor E takes as argument the oracles (rowM ,
colM , valM )M∈{A,B,C} and the instance (t,∆, n, γ,m). It initializes zero matri-
ces A, B, and C in Fn×n. Then, for i ∈ {0, . . . ,m − 1}, it adds valM

6 to
Mlogω(rowM (γi)),logω(colM (γi)) for eachM ∈ {A,B,C} . Then, E outputs (A,B,C).

For M ∈ {A,B}, logω(rowM (γi)) is always greater than logω(colM (γi)) and
also greater than t (soundness of t-SLT test), so the outputs A and B are in
t-SLT. Similarly, the soundness of t-Diag test, implies that output C is in t-Diag.

6Technically, it adds valM (γi)× f(rowM (γi), colM (γi)). See Note 4.
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Corollary 1 (FC-Marlin). Let Π denote Protocol 8, let Marlin′ be the ex-
tension of Marlin from Section 5.2, and let PC be a functional commitment
scheme with perfect hiding and an evaluation protocol that is PoK and HVZK.
Then FCMarlin′,t-FT,Π,PC is a secure functional commitment scheme.

Proof. Follows from Theorem 2 and Theorem 12.

6 Conclusion and future work

We defined the concept of a (function-hiding) functional commitment, and showed
how to construct such schemes from a preprocessing argument and a proof of
function relation (Theorem 2). In Section 5 we construct a proof of function
relation (PFR) for a subset of Marlin index keys which is expressive enough
to capture all arithmetic circuits. In Supplement H we construct a PFR for
Plonk. Both PFR protocols are public coin, send a constant number of polyno-
mials, and make a constant number of queries. By combining these PFRs with
their AHPs we construct two public-coin functional commitments for arithmetic
circuits. Verification time is logarithmic in the number of gates and linear in the
input size, prover time is quasilinear, and the proof size depends only on the
security parameter. The evaluation protocols can be made non-interactive using
the Fiat-Shamir heuristic. We hope future work can design efficient proofs of
function relation for other proof systems.

An important direction for future work is to go beyond a proof of function
relation (PFR). While a PFR is a zero knowledge proof that an index key corre-
sponds to a function (every input has a unique output), ultimately we would like
an additional ZK proof to prove that a committed function satisfies some agreed
upon fairness criteria [3, 29]. Zero knowledge proofs for algorithmic fairness is
an interesting direction for future work.
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Supplementary Material

A Evaluation binding

Definition 12 (Evaluation Binding). Let FC = (Setup,Commit,PE,VE) be
a functional commitment scheme. It is evaluation binding if for all pairs of
PPT adversaries A = (A1,A2), the advantage AdvEB[FC,A] is negligible in λ.

AdvEB[FC,A] = Pr

 〈A2(st),VE(pp, c, x, y)〉 = 1 ∧
〈A2(st),VE(pp, c, x, y′)〉 = 1 ∧
y 6= y′

:
pp← Setup(1λ)
(x, y, y′, c, st)← A1(pp)


Theorem 13. If FC is a functional commitment scheme that is binding and has
proof-of-knowledge evaluation, then it is also evaluation binding.

Proof. Consider an adversary for Theorem 13. With it, we build an adversary
for the commitment’s binding property and use the knowledge soundness of the
evaluation protocol.

The adversary Abind begins by running FC’s evaluation PoK extractor E with
arguments (pp, c, x, y) to get f, r. Then, it runs E with arguments (pp, c, x, y′)
to get f ′, r′. It outputs ((f, r), (f ′, r′)).

Suppose, to obtain a contradiction, that AdvEB[FC,A] were non-negligible.
Since

Pr[〈A2(st),VE(pp, c, x, y)〉 = 1] ≥ AdvEB[FC,A]

is non-negligible, and FC has negligible soundness error, c = Commit(f, r), except
with negligible probability. Similarly, c = Commit(f ′, r′), except with negligible
probability. Since y 6= y′, we have f 6= f ′. Thus, the advantage of Abind in the
binding game is non-negligible, which contradicts the binding property of the
functional commitment scheme.

B Additive PCS Scheme with ZK Eval

Marlin [17] modifies the PCS from [28] to obtain an additive, perfectly hid-
ing, binding, and extractable PCS with succinct commitments. However, we also
need HVZK evaluation; fortunately [11] provides a technique for modifying the
evaluation proofs to make them HVZK. HVZK Evaluation presents that tech-
nique without addressing norm bounds. While prior work [11] states and proves
this protocol is HVZK, we observe that their proof shows a stronger property:
special HVZK. That is, transcripts can be simulated even when f(z) 6= yf .

Protocol 9 (HVZK Eval)
Given: An additive, hiding, and binding PCS = (Setup,Commit,Verify,Eval).
Public inputs (pp, d, Cf , z, yf ) and private prover inputs (f ∈ F(<d)[X], rf ).
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1. P samples g(X)←$ F(<d)[X] and computes Cr = Commit(ck, g(X), d, rg).
P sends Cg and yg = g(z) to the V.

2. V sends random challenge γ ←$ F to P.
3. We now invoke the additive property of the PCS. P computes s :=
g + γ · f and rs := rg + γ · rf . P and V derive Cs := Cg + γ · Cf .

4. P runs PC.Eval(ck, s, d, rs, z)→ π and sends π to V
5. V runs PC.Check(vk, Cs, d, z, ys = yg + γ · yf , π). V accepts if PC.Check

outputs accepts.

C Proof for Theorem 2

C.1 Knowledge Soundness

We prove that Construction 1 has proof-of-knowledge evaluation, assuming a
polynomial commitment that is binding and has proof-of-knowledge evaluation,

Consider an adversary A for a functional commitment scheme constructed
per Construction 1. We will show that if this adversary is convincing with non-
negligible probability, there is an extractor EFC which extracts (f, r) with over-
whelming probability. Since the AHP and the PFR are non-adaptive, both can
be split into a commit phase (k rounds: in round k, P sends oracles s(i) and V
replies with a random challenge) and a query phase, where V queries the oracles
and checks the results.

Our proof exploits an additional property of the polyIOPs presented in this
paper: all oracles that are inputs to the polyIOP or are sent by P are either (a)
directly queried by V or (b) efficiently computable from oracles that are queried.
All protocols except the zero test protocol directly query their oracles. In the
zero test protocol, each polynomial hi for i ∈ [t] is not queried,7 but hi = h′i−mi,
where h′i and mi are queried. Thus, all oracles can be computed given the oracles
that are queried at least once.

Let Q be the number of total number queries, summed across all oracles.
Define k = kAHP + kf , s(i) to be

s(i) =


sf (0) i = 0

sf (i) 0 < i ≤ kf
sAHP(i− kf ) kf < i

and d(N, i, j) to be

d(N, i, j) =


df (N, 0, j) i = 0

df (N, i, j) 0 < i ≤ kf
dAHP(N, i− kf , j) kf < i

7This is essential for zero-knowledge.
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Polynomial extractor We begin with an extractor E built around the functional
commitment adversary A = (A1,A2) that computes polynomials consistent with
the adversary’s commitments and claimed evaluations. We will see that if that
adversary is convincing with non-negligible probability, then E succeeds with
overwhelming probability. It does this using an extractor EPC for the polyno-
mial commitment evaluation protocol; E exists since the polynomial commitment
scheme has knowledge-sound evaluation.

E(pp) begins by running: ((c, x, y), st)← A1(pp) and parsing c as polynomial
commitments (c0,1, . . . , c0,s(N)) with degree bounds (d0,1 = d(N, 0, 1), . . . , d0,s(0) =
d(N, 0, s(0))) Then, for commit round i from 1 to k: E(pp) does the following:

1. receive ~c from A2

2. parse ~c as polynomial commitments (ci,1, . . . , ci,s(N)) with degree bounds
(di,1 = d(N, i, 1), . . . , di,s(i) = d(N, i, s(i)))

3. receive randomness ρi from Vf (~c)

4. send ρi to A2.

Let the query q ∈ [Q] be against oracle jq from round iq. Let this oracle be rep-
resented by commitment cq = ciq,jq , with purported degree bound dq = diq,jq .
Let the query be at input xq and have claimed evaluation yq. APC uses EPC to
(by re-winding the evaluation prover) extract pq ∈ F<dq [X] and randomness ri,j
such that cq = PC.Commit(pp, pq, rq) and pq(xq) = yq. If A is convincing with
non-negligible probability, than all polynomial commitment evaluation proofs are
convincing with with non-negligible probability. Then, the knowledge soundness
of the evaluation protocol shows that each run of EPC succeeds with overwhelm-
ing probability. Since Q = poly(λ), all Q extractions succeed with overwhelming
probability.

For i ∈ {0, . . . , k} and j ∈ [s(i)], let q the first query to the polynomial
represented by commitment ci,j . Then E outputs pi,j = pq and ri,j = rq. If
pi,j is not queries, E computes it from polynomials that are, per the discussion
above.

An admissible prover for the PFR From E we build an admissible prover P̃f for

the PFR. P̃f is defined as follows:

1. Internally run E , obtaining polynomials pi,j .

2. In round i ∈ [kf ], send polynomials pi,j for j ∈ [s(i)].

An admissible prover for the AHP From E we also build an admissible prover
P̃AHP for the AHP. P̃AHP is defined as follows:

1. Internally run
〈
P̃f ,Vf

〉
, saving the pi,j .

2. In round i ∈ [kAHP], send polynomials pi+kf ,j for j ∈ [s(i)].
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A functional commitment extractor We describe an extractor EFC for the func-
tional commitment knowledge soundness property. EFC uses an extractor Ef for
the PFR and an extractor EAHP for the AHP; these exist per the knowledge
soundness of the respective prover. EFC has access to (A1,A2) and can rewind
them. It will exploit this access through E , P̃f , and P̃AHP. EFC is defined as
follows:

1. Obtain the first round of polynomial from E : o ← (p0,1, . . . , p0,s(0)). Also,
obtain randomness r ← (r0,1, . . . , r0,s(0)).

2. i← E P̃f

f (o)

3. w ← E P̃AHP

AHP (F, i, (x, y))
4. Output (i, r).

Analyzing E, P̃f , P̃AHP, and EFC We define four events:

– FailPC: For some i, j ci,j 6= PC.Commit(pp, pi,j , ri,j) or for some query q at x
to oracle j in round i that yields evaluation y, pi,j(x) 6= y.

– FailPFR: ¬[o = EncAHP(i) ∧ i ∈ If ]
– FailAHP: ¬[(i, (x, y), w) ∈ R]
– FailFC: ¬[(i, (x, y), w) ∈ R ∧ i ∈ If ∧ c = Commit(pp, i, r)

First, we show that Pr[FailPC] is negligible assuming an extractable and bind-
ing polynomial commitment scheme. If ci,j 6= PC.Commit(pp, pi,j , ri,j) for some
i, j, then the extractor EPC for the first query q to oracle j in round i failed,
which happens with negligible probability per the extractability of the com-
mitment scheme. If some other query q′ to that same oracle is inconsistent
with pi,j . That is, a polynomial p′ 6= pi,j and randomness r′ is extracted for
query q′, then we have (p′, r′) 6= (pi,j , ri,j) such that PC.Commit(pp, p′, r′) =
PC.Commit(pp, pi,j , ri,j): a collision in the commitment scheme, which happens
with negligible probability since the scheme is binding.

Second, we show that Pr[FailPFR|¬FailPC] is negligible, assuming a knowledge-
sound PFR. Since ¬FailPC holds, P̃f sends oracles consistent with the commit-
ments sent be A, i.e., queries to those oracles agree with evaluations sent by A.
Thus, since V accepts with non-negligible probability, Vof does too. Thus, the
extractor Ef obtains (with overwhelming probability) i such that i = EncAHP(o)
and i ∈ If .

Third, we show that Pr[FailAHP|¬FailPC ∧¬FailPFR] is negligible, assuming a
knowledge-sound AHP. Since ¬FailPC holds, P̃AHP sends oracles consistent with
the commitments sent be A, i.e., queries to those oracles agree with evaluations
sent by A. Thus, since o = EncAHP(i) and V accepts with non-negligible prob-
ability, VoAHP does too. Thus, the extractor EAHP obtains (with overwhelming
probability) w such that (i, (x, y), w) ∈ R.

Fourth, we show that ¬FailPC∧¬FailPFR∧¬FailAHP imply ¬FailFC. Define f :=
i. The first non-failure gives c = (PC.Commit(pp, oi, ri) for (oi, pi) in (EncAHP(f), r)) =
Commit(pp, f, r). The second non-failure gives o = EncAHP(f). The third non-
failure gives (i, (x, y), w) ∈ R, which implies f(x) = y.
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Finally, a union bound gives

Pr[FailFC] ≤ Pr[FailPC] + Pr[FailPFR|¬FailPC] + Pr[FailAHP|¬FailPFR ∧ ¬FailPC]

Since all probabilities on the right are negligible, the extractor EFC fails with
negligible probability. ut

C.2 Honest-Verifier Zero-Knowledge

We show that that there exists a simulator S such that for any ((c, x, y), (f, r)) ∈
Reval(pp),

{Sim(pp, (c, x, y))} = {View (〈P(pp, (c, x, y), (f, r)),V(pp, (c, x, y))〉)}

i.e., that Construction 1 has (perfect) honest-verifier zero-knowledge evaluation.
Let SPFR and SPC be simulators that witness the (perfect) honest-verifier

zero knowledge of the PFR and polynomial commitment evaluation protocol re-
spectively. Let SAHP be the simulator for the index-private AHP. The polynomial
commitment must also be perfectly hiding. Let F be the encoded function space,
which contains functions f ∈ F of size N . Recall that a transcript for the func-
tional commitment contains commitments to polynomials, verifier challenges,
and polynomial evaluations and proofs. However, a transcript for the AHP or
PFR contains only verifier challenges, opaque oracles, and oracle evaluations.
S(pp, (c, x, y)) does as follows:

1. Compute tr′1 ← SAHP(F, (x, y), N)
2. Compute tr′2 ← SPFR(N)
3. Parse the combined transcripts as nr verifier challenges: ρ′1, . . . , ρ

′
nr

, ne query
locations: x′1, . . . , x

′
ne

, and ne evaluations: y′1, . . . , y
′
ne

(the queries are each
to one of nc opaque oracles of degrees d1, . . . , dnc , let the first no of these
oracles be sent by the prover during the protocol, and the last nc − no be
inputs to the protocol).

4. For i ∈ [no], set p′i ← 0 (subject to agreement with the evaluations), sample

randomness r′i
$←− R, and compute c′i ← PC.Commit(pp, pi, r

′
i).

5. For q ∈ [ne], use the appropriate verifier (from the AHP or PFR) compute
π′q ← SPC(pp, c′iq , x

′
q, y
′
q).

6. Outputs a transcript containing the commitments {c′i}i∈no , the verifier chal-
lenges {r′i}i∈nr , the evaluations {y′q}q∈ne , and the evaluation proof tran-
scripts {π′q}q∈n′e .

Let the distribution of transcripts computed by S be D0. We show that
this distribution is equivalent to the distribution of transcripts produced by
the real protocol execution using a hybrid argument. In these hybrids, let f
denote the real function, let r1, . . . , rno

be the randomness with which the prover
commits to polynomials p1, . . . , pno

that is wishes to send in the protocol, and
let rno+1, . . . , rnc be commitment randomness for the polynomials pno+1, . . . , pnc

in EncAHP(f).
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In the first hybrid, D1, we replace tr′1 with tr1: the transcript obtained from

〈PAHP(F, f, (x, y), w),VEncAHP(f)
AHP (F, (x, y))〉, where w is from Extend(f, x). Since

SAHP witnesses the index-privacy of the AHP, tr1 and tr′1 are distributed identi-
cally. Thus, D0 and D1—which contain functions of these transcripts—are equiv-
alent.

In the second hybrid, D2, we replace tr′2 with tr2: the transcript obtained from

〈Pf (EncAHP(f),⊥, f),VEncAHP(f)
f (⊥)〉. Since SPFR is a (perfect) honest-verifier

zero-knowledge simulator for the PFR, tr2 and tr′2 are distributed identically.
Thus, D1 and D2 are equivalent.

In the third hybrid, D3, we replace p′1, . . . , p
′
no

with p1, . . . , pno and r1, . . . , rno

with r′1, . . . , r
′
no

. Call the resulting commitments ci. Since the polynomial com-
mitment scheme is perfectly hiding, and both the ri and r′i are sampled uniformly,
the commitment tuples (c1, . . . , cno

) and (c′1, . . . , c
′
no

) are distributed identically.
Thus, D2 and D3 are equivalent.

In the fourth hybrid, D4, we replace each π′q = SPC(pp, ciq , x
′
i1
, y′iq ) (for q ∈

[ne]) with πq ← PC.Prove(pp, piq , riqx
′
q, y
′
q). Since the queries xq and evaluations

yq are the same, and since the polynomial commitment scheme has special honest
verifier zero-knowledge, each πq is distributed identically to π′q. Thus, D3 and
D4 are equivalent.

Since the queries x′q and evaluations y′q are parsed from the real transcripts
tr1 and tr2, this final hybrid D4 constructs the same transcripts as the real
protocol. ut

D R1CS-f Details

D.1 t-FT is a Functional Set

We give a proof of Theorem 3 below.

Proof. We want to show that

∀ (A,B,C) ∈ t-FT,∀x ∈ X ,∃! y ∈ Y,∃w ∈ W,
(
(A,B,C), (x, y), w

)
∈ RR1CS-f (n, t, s)

Let (A,B,C) be a functional triple. Consider an arbitrary x ∈ X . We will
construct a unique w′ = (w, y) that is determined by x and z = x||w′ satisfies
Az ◦ Bz = Cz. Since w′ is unique, we have a unique y; this will satisfy the
required condition.

Since (A,B,C) ∈ t-FT, we have the first |x| rows of each are zero. Thus, any
x ∈ X will satisfy the first |x| constraints imposed by these rows. We will now
prove by induction on the constraints imposed by the rows that w′ is determined
by x. The (|x|+ 1)’th rows of A, B, and C must have the following form:

A|x|+1 = (a1, ..., a|x|, 0, 0, ..., 0)

B|x|+1 = (b1, ..., b|x|, 0, 0, ..., 0)

C|x|+1 = (0, 0, ..., 0, c1, 0, ..., 0)
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Construction 2 (Compiler from arithmetic circuits to functional R1CS)
Given: an arithmetic circuit with ng gates, ni inputs, and no ≤ ng outputs, defined
by gates (li, ri, si)

ng

i=1.

Produces: An index for RR1CS-f(ng + ni + 1, ni + 1, no).

Procedure AC2tFT:

1. Initialize three square matrices A,B,C over F of height and width ni +no + 1
with zeros everywhere.

2. For i ∈ [ng]:
(a) Set: C1+ni+i,1+ni+i ← 1
(b) If si = +, set:

• A1+ni+i,1 ← 1
• B1+ni+i,1+li ← 1
• B1+ni+i,1+ri ← 1

(c) If si = ×, set:
• A1+ni+i,1+li ← 1
• B1+ni+i,1+ri ← 1

3. Output i← (A,B,C)

where ai, bi ∈ F for all i ∈ [|x|] and c1 6= 0. Thus, the (|x|+1)’th constraint must
have the following form:

〈a, x〉 · 〈b, x〉 = c1w
′
1

with a, b ∈ F|x|. Solving for w′1, we see that w′1 is fixed as a function of x. The
constraints following must have the form:〈

a′, (x,w′1, ..., w
′
j)
〉
·
〈
b′, (x,w′1, ..., w

′
j)
〉

= cj+1w
′
j+1

with a′, b′ ∈ F|x|+j and cj+1 6= 0 for j ∈ [|w′| − 1]. Therefore, w′j+1 is fixed
as a function of (x,w′1, ..., w

′
j). Thus, inductively, w′ is determined by x. Since

w′ = (w, y) is a unique solution, we must have y is unique. Since we considered
an arbitrary x ∈ X , this implies we have the required condition and t-FT is a
functional set.

D.2 Compiling Arithmetic Circuits to t-FT

Construction 2 compiles from arithmetic circuits to indices for relation RR1CS-f.
For any input circuit with ni inputs and ng it creates matrices A,B,C, which
define an R1CS index. There is one constraint (row) for each gate, and a number
of additional zero constraints so that the matrices are square.
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E Modifications for Marlin & plookup

E.1 Marlin

Marlin [17] (Section 5.3) gives an AHP with PAHP(F, (A,B,C), x, w) and VEncAHP(A,B,C)
AHP (x)

for the R1CS index relation:

RR1CS = {((A,B,C), x,w) : let z := (x,w), Az ◦Bz = Cz}

where EncAHP(A,B,C) := {rowM , colM , valM}M∈{A,B,C} outputs a polynomial
encoding of the matrices.

Output Final Modification We want to obtain an AHP for Output-final
R1CS. We will modify the online protocol in Section 5.3.2 [17].

Run the Marlin AHP with z := (x, (w, y)); thus, the sub-AHP witness is
w = (w, y). Define ŷ(X) be a polynomial of degree less than |y| that agrees with
y on H[> |x|+ |w|]. Add a Zero over H check for the following identity:

w · vH[≤|H|−|y|] − ŷ = 0

This checks that the last entries of w agree with y.

Index Privacy Modification The AHP for R1CS does not meet our definition
of zero knowledge. In particular, we require the simulator Sim(F, x,N) does not
have access to the oracles. Marlin assumes the oracles (polynomials encoding
R1CS matrices A, B, and C) are not private. We will modify the online protocol
in Section 5.3.2 [17].

Since the main sum-check is blinded by a random polynomial s(X) (i.e the
mask; they refer to this technique as a zero knowledge sum-check), the only
responses that are not simulatable are the two checks necessary for equation (8).
In particular, the sum-check for f3(X) and the zero check a(X)− b(X)f3(X) =
0 over K. We simply need to 1) convert the sum-check for f3(X) to a zero
knowledge sumcheck using their technique and 2) replacing the zero check with
our Zero over H.

E.2 plookup

plookup [19] gives a polyIOP for the relation

{((f, t ∈ F(<B)[X]),⊥,⊥) : f(K) ⊆ t(K)}

Zero-Knowledge Modification The only responses consist of queries to check
identities in step 6) of the protocol in Section 3. Thus, we simply check these
identities by using our Zero over H protocol. The simulator for plookup simply
invokes the Zero over H Sim for each identity check.
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Multiple Polynomial Subset over K

Protocol 10 (Multiple Polynomial Subset over K) The polyIOP in [19] can
be adapted to check the relation

Rmpsub = {((f, t1, ..., tc ∈ F(<B)[X])),⊥,⊥) : f(K) ⊆ t1(K) ∪ ... ∪ tc(K)} (5)

for some small constant c ≥ 1 and polynomials t1, ..., tc such that ‖ci=1 seqK(ti)
has all repeat elements adjacent to one another. The requirement for t to have
a structured image was implicitly assumed in [19].

We will refer to section 3 of [19]. Let f ∈ Fn and ti ∈ Fd for i ∈ [c]. Let
s ∈ Fn+cd be (f, t1, ..., tc) sorted by (t1, ..., tc). We will update the bivariate
polynomials F,G to be:

F (β, γ) := (1 + β)n
∏
i∈[n]

(γ + fi) ·
∏
j∈[c]

[∏
i∈[d−1](γ(1 + β) + tj,i + βtj,i+1)

]
·
∏

i∈[c−1]

[
γ(1 + β) + tj,d + βtj+1,1

]
G(β, γ) :=

∏
i∈[n+cd−1]

(γ(1 + β) + si + βsi+1)

The remaining proof and protocol (polyIOP) from section 3 of [19] follow with
only minor modifications.

Theorem 14. Protocol 10 (Multiple Polynomial Subset over K) is a secure
polyIOP (Definition 4) for relation Rmpsub.

Proof. Since there is no witness, it suffices to show completeness, soundness, and
HVZK. We omit the proofs of completeness and soundness as they are minor
changes to the respective proofs in [19]. HVZK requires the same modification
as in Supplement E.2.

F polyIOPs Necessary for plonk FCS

Note our protocols from Section 5.3 can be updated to work when K is a coset of a
multiplicative subgroup (with logarithmic evaluation time [17]) or an arbitrary
subset of F∗ (with evaluation time linear in the set size). Let the vanishing
polynomial zS =

∏
s∈S(X− s). The vanishing polynomial vK simply needs to be

replaced with zS instead.

F.1 polyIOP for image multiset equality

We present a polyIOP for verifying that the images of two polynomials are equal
as multisets.8 That is, that {{f(k) : k ∈ K}} = {{g(k) : k ∈ K}}. Note K = 〈γ〉
and |K| = m.

8This protocol can be modified to have perfect completeness as done in [20].
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Protocol 11 (Multiset Equality over K)
Rms =

{
((f, g ∈ F(<B)[X]),⊥,⊥) : {{f(k) : k ∈ K}} = {{g(k) : k ∈ K}}

}
1. V sends challenge c←$ F to P.
2. P interpolates z(X) defined below and sends z(X) to V.

z(1) = 1, ∀i ∈ [m], z(γi) =
∏

1≤j<i

f(γj)− c
g(γj)− c

3. V queries to check if z(1)
?
= 1

4. P and V run Zero over K to check:

∀k ∈ K : z(k) · (f(k)− c) ?
= (g(k)− c) · z(γ · k)

Theorem 15. Protocol 11 (Multiset Equality over K) is a secure polyIOP (Def-
inition 4) for relation Rms.

Proof. Since there is no witness, it suffices to show completeness, soundness, and
HVZK.

Completeness The verifier’s second check holds by z’s construction. The first
check holds because

z(1) = z(γm) =
f(γ0)− c
g(γ0)− c

· · · f(γm−1)− c
g(γm−1)− c

= 1

where the last equality is implied by the multiset equality.

Soundness By induction and the z(1) = 1 condition, the verifier knows that

1 = z(γm) =
f(γ0)− c
g(γ0)− c

· · · f(γm−1)− c
g(γm−1)− c

for uniformly random c chosen independently of f, g. Per the Schwartz-Zippel
lemma, this implies the polynomials in C, (f(γ0) − C) · · · (f(γm−1) − C) and
(g(γ0)−C) · · · (g(γm−1)−C) are equivalent, except with the negligible probabil-
ity m/|F|. Equivalent polynomials have the same multisets of roots, so {{f(k) :
k ∈ K}} and {{g(k) : k ∈ K}} are equal.

Zero Knowledge Let trz denote the simulated transcript from running the Zero
over K Sim for the identity in step 4). The simulator for Multiset Equality over
K outputs transcript (1, trz).

F.2 Permutation composition over K

Previous work [20] also gives a polyIOP for the relation

{((f, g,w ∈ F(<B)[X]),⊥,⊥) : ∀k ∈ K, f(k) = g(w(k))} (6)
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assuming w is known to be a permutation on K (i.e. w(K) = K).
We note that Permutation Composition over K cannot be implemented by

directly applying Zero over K to the polynomials f(X) and g(w(X)). The dif-
ficulty is that if g and w are of degree |K|, then the polynomial g(w(X)) has
degree |K|2, and computing it will make the prover too inefficient. Instead Gabi-
zon et al. [20] develop an elegant protocol for proving (6) where the prover only
manipulates polynomials of degree |K|. Technically, the protocol is for a slightly
different relation:{

((f, g,w ∈ F(<B)[X]),⊥,⊥) : ∀k ∈ K, f(k) = g(γw(k))
}

for γ that generates K and w(K) = [|K|]. However, adapting their protocol to
our relation is straightforward, We present a polyIOP for the relation in (6).

Protocol 12 (Permutation Composition over K)

Rpcomp = {((f, g,w ∈ F(<B)[X]),⊥,⊥) : ∀k ∈ K, f(k) = g(w(k))}

where w is known to be a permutation on K (i.e. w(K) = K).

1. V samples and sends β
$←− F∗ \K.

2. Run Multiset Equality over K to show that the evaluations of w(X) +
βf(X) and X + βg(X) are equal as multisets.

Theorem 16. Protocol 12 (Permutation Composition over K) is a secure polyIOP
(Definition 4) for relation Rpcomp.

Proof. Since there is no witness, it suffices to show completeness, soundness, and
HVZK.

Completeness Since f = g ◦ w, for all k ∈ K, the multisets {{(w(k), f(k)) : k ∈
K}} and {{(k, g(k)) : k ∈ K}} are equal. Thus, {{w(k) + βf(k) : k ∈ K}} and
{{k + βg(k) : k ∈ K}} are equal.

Soundness By the soundness of the multiset check, we know

{{w(k) + βf(k) : k ∈ K}} = {{k + βg(k) : k ∈ K}}

Since β was chosen at random, we have

{{(w(k), f(k)) : k ∈ K}} = {{(k, g(k)) : k ∈ K}}

except with negligible probability. Thus, since w is a permutation, we have that
f = g ◦ w over K.

Zero Knowledge Let trM be the simulated transcript generated by the Multiset
Equality over K. This Sim outputs simulated transcript (β′ ←$ F∗ \K, trM ).
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F.3 Expanded Discrete-log Comparison

We present a polyIOP to check the following about polynomials f and g for
multiplicative subgroup H = 〈ω〉:

f(K), g(K) ⊆ 〈ω〉 = H and ∀k ∈ K, logω(f(k)) > logω(g(k))

Protocol 13 (Expanded Discrete-log Comparison)

Redlog< =

{
((f, g ∈ F(<B)[X], (∆,n),⊥) :

f(K), g(K) ⊆ {1, ω1, . . . , ωn−1} ∧
∀k ∈ K, logω(f(k)) > logω(g(k))

}
where m = |K|, ω = ∆2, ord(∆) ≥ 2n is even, and there exists a constant
c ∈ N>0 such that n < cm.

1. P interpolates and sends s ∈ F(<|K|)[X] that agrees with f/g on K.
2. For b ∈ {f, g, s}, P interpolates and sends b′ such that for all k ∈ K
b′(k) = ∆logω(b(k)). Let these polynomials be called f ′, g′, and s′.

3. P interpolates and sends h1, ..., hc such that ‖ci=1 seqK(hi) is the follow-
ing sequence: 1, ∆,∆2, ....,∆n−1, 0, ..., 0 with cm− n zeroes.

4. P and V run Zero over K four times to check the following equalities
over K: f ′ = s′ · g′, f = (f ′)2, g = (g′)2, s = (s′)2

5. P and V run Geometric Sequence Test on h1, ..., hc with multiplicative
factor ∆. For i ∈ [c−1], the initial value is 1 and c1 = m. Let r = cm−n.
For i = c, the initial values are 1, 0 and c1 = m− r, c2 = r.

6. P and V run Multiple Polynomial Subset over K three times with
(p, h1, ..., hc) for p ∈ {f ′, g′, s′}.

7. P and V run Nonzero over K to test s(X)− 1 is non-zero over K.

Theorem 17. Protocol 13 (Expanded Discrete-log Comparison) is a secure polyIOP
(Definition 4) for relation Redlog<.

Proof. We omit the proof as it is almost identical to the proof of Theorem 9.

G Partition Lemma

Lemma 4. Let S and T be partitions of a finite universe U such that S is a
refinement of T . If for all pairs S1 6= S2 ∈ S, there cannot exist T ∈ T such
that S1, S2 ⊆ T , then S = T .

Proof. Consider an arbitrary S ∈ S. Since S is a refinement of T , we have there
exist T ∈ T such that S ⊆ T . We would like to show that S = T . Assume for
the sake of contradiction, that there exist t ∈ T such that t 6∈ S. Since S is a
partition, this implies t ∈ S′ 6= S ∈ S. By refinement, we know there exists a
T ′ ∈ T such that S′ ⊆ T ′. Since T is a partition, T ′ = T . Thus, we have S′ ⊆ T .
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C = ((1, 2,×), (1, 3,×), (4, 5,+))

x ∈ K γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

w(x) ∈ F(<9)[X] γ3 γ1 γ6 γ0 γ4 γ7 γ2 γ5 γ8

s(x) ∈ F(<3)[X] 1 – – 1 – – 0 – –

cycles of w: (γ0 γ3)(γ1)(γ4)(γ2 γ6)(γ5 γ7)(γ8)
J = {γ0, γ1, γ4} (input representatives)
G = {γ2, γ5, γ8} (all gate output wires)
{PinsIni }i∈[ni] = {{γ0, γ3}, {γ1}, {γ4}}
{PinsOut

i }i∈[ng] = {{γ2, γ6}, {γ5, γ7}, {γ8}}

Fig. 1: A circuit and Plonk arithmetization for ng = 3, ni = np = 3, no = 1.

By the statement condition, this is a contradiction and S = T . Thus, we have
for all S ∈ S, there exists a T ∈ T such that S = T . This implies S ⊆ T .

Consider an arbitrary T ∈ T and t ∈ T . Since S is a partition, there exists
S ∈ S such that t ∈ S. We know there exists T ′ = S. Since T is a partition, we
have T = T ′. This implies T ∈ S and S = T .

H Functional commitments from Plonk

In this section, we build a PFR for Plonk: a different preprocessing argument.
First, we review the index relation and arithmetization of Plonk [20]. We fol-
low [9], but represent circuit inputs slightly differently.

The Plonk index relation Plonk proves evaluations of arithmetic circuits.
Figure 1 will be our running example: a circuit that computes x1x2 + x1x3.
Plonk partitions the ni circuit inputs into np ≤ ni public inputs (part of the
relation instance) and ni−np witness inputs (part of the relation witness). Plonk
is a preprocessing argument for the index relation with

– indices I = C ∈ ACni,ng,no : the circuit being evaluated
– instances X = (~x, ~y) ∈ Fnp × Fno : public inputs and outputs
– witnesses W = ~w ∈ Fni−np : witness inputs

defined by
Rnp,ni,ng,no = {(C, (~x, ~y); ~w) : ~y = C(~x ‖ ~w)}

Plonk preliminaries Plonk assumes the existence of two multiplicative sub-
groups of F: Kg of order ng and K of thrice that order, such that γ generates K
and γg = γ3 generates Kg. Kg will represent gates indices, while K will represent
pin indices. Each gate has two input pins and one output pin.

The Plonk index key In Plonk, the circuit C is encoded as two polynomials.
Recall (Section 2.6) that C is defined by a tuple (li, ri, si) for each gates i ∈
[ng]. The first polynomial is the selector polynomial : s(X), which is the unique
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polynomial of degree less than ng such that for all i ∈ [ng], s(γ
i−1
g ) is 0 when

si = +, and 1 otherwise.

The second is the wiring polynomial. Associate with gate i ∈ [ng]: a left
input pin γ3(i−1), a right input pin γ3(i−1)+1, and an output pin γ3(i−1)+2 (see
Figure 1). The union of all gate pins is K, and the wiring polynomial w(X)
permutes K. Informally, w must equate pins that are wired together in C. The
permutation w(X) naturally defines an equivalence relation over K; this relation
equates elements in the same cycle of the unique cycle decomposition of w(X).

For a more formal definition of w, we define the sets pins that are wired
together. For input i ∈ [ni], define

PinsIni = {γ3(j−1) : j ∈ [ng], lj = i} ∪ {γ3(j−1)+1 : j ∈ [ng], rj = i}

to be the pins wired to input i. For gate i ∈ [ng], define PinsOut
i =

{γ3(i−1)+2} ∪ {γ3(j−1) : j ∈ [ng], lj = i+ ni} ∪ {γ3(j−1)+1 : j ∈ [ng], rj = i+ ni}

to be the pins wired to gate i’s output. For any circuit, these sets partition K.
To be a wiring polynomial, w must induce the same partition of K. That is, if
W are the cycles of w, then the following must hold:

W =
{
PinsIni

}
i∈[ni]

∪
{
PinsOut

i

}
i∈[ng]

Finally, let J = {ji : ji ∈ PinsIni }
np

i=1 be a set of representative input pins.
Plonk’s index key comprises the set J and commitments to w(X) and s(X).

The right side of Figure 1 shows G, s, PinsIn, and PinsOut for our example, as
well as valid choices of w and J .

H.1 Plonk Argument (Proving Protocol)

We briefly describe the Plonk argument from [20][9]. The prover interpolates a
wire value polynomial p(X) : K → F which maps pins to the values they carry.
This represents a candidate wire value assignment by the prover. The prover
sends p(X) to the verifier. The Plonk permutation argument (Permutation
Composition over K) is used to convince the verifier that for all k ∈ K, p(k) =
p(w(k)). Informally, this argument shows that pins wired together carry the same
value. The verifier must also confirm that the wire value assignment respects the
gate types. The prover and verifier run a zero check for all k ∈ K, (1−s(k))[p(k)+
p(γ · k)] + s(k)p(k)p(γ · k)− p(γ2 · k) = 0. This shows that the output pin value
of every gate is either the sum or product of the input pin values, depending on
the gate type. Thus, p(X) is a valid assignment of the wire values in the circuit.
The verifier must also query p(X) to check that the wire values assigned to the
circuit input pins J match ~x and to circuit output pins (in our example, γ8)
match ~y.
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H.2 Extending Plonk

Modifying the index encoding The set of input pin representatives J may reveal
relationships between the circuit inputs. To avoid this, the circuit indexing al-
gorithm can be augmented to add prefix dummy gates which copy values from a
fixed set of publicly known, prefix pins J ′ to the underlying input pins J . Thus,
we can remove J from the Plonk index key and treat it as a fixed set of pins.

Additional properties To obtain the properties required by Theorem 2, we modify
Plonk to meet our definition of zero knowledge. This can be done by performing
the zero check with Zero over K.

H.3 Proof of function relation

Functional Set for Plonk We require a functional set for the relationRnp,ni,ng,no .
Informally, we restrict Plonk to have no witness inputs; thus, the circuit out-
puts must be a function of the public inputs. Formally, we fix ni = np, restricting
to the relation Rnp,np,ng,no . The functional set is then ACnp,ng,no .

Our approach For s, it suffices to show its image is in {0, 1} on Kg.

It is harder to prove that w is a wiring polynomial. Informally, we must
convince the verifier that each equivalence class induced by the wiring polynomial
w contains a gate output or a circuit input declared in J—but not both. Then,
we show that these equivalence classes can be sorted, such that each gate’s input
classes come before that gate’s output class.

In a little more detail, let W = {Wi}
ng+ni

i=1 be the partition of K induced by w
and let J be a set of np input pins, as defined above. Let G = {γ2p : p ∈ Kg} be
the subset of pins which are the output of a gate. Let I = J ∪G. Let α generate
F∗, with an order divisible by 2, and let β = α2. Let N = {βi : i ∈ [ng + np]}.
Our protocol will show:

1. w is a permutation (so partition W is well-defined),

2. There exists a bijection B : I →W such that for all i ∈ I, i ∈ B(i).

3. The W can be topographically sorted, with inputs first.

More precisely one can extract a surjective map v : K→ N such that

(a) For all Wi ∈W , for all elements w,w′ ∈Wi, we have v(w) = v(w′).

(b) seqJ(v) = (βi : i ∈ [np])

(c) For all γ3(i−1)+2 ∈ G (thus, i ∈ [ng]), v(γ3(i−1)+2) = βi+np .

(d) For each gate i, the discrete log of the image of the left and right input
pins is less than that of the output pin. More formally, logβ(v(γ3(i−1))) <

logβ(v(γ3(i−1)+2)) and logβ(v(γ3(i−1)+1)) < logβ(v(γ3(i−1)+2)).

4. s(Kg) ⊆ {0, 1}.
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Soundness and extractability

Claim. If the above conditions hold, one can extract from w, s, and v a sequence
of ng tuples C = ((li, ri, si))

ng

i=1 such that C is a valid arithmetic circuit on np
inputs, and w is a wiring permutation for it.

Proof. First, we extract a candidate np-input, ng-gate circuit C from the poly-
nomials s and v. Then, we show that w is a wiring polynomial for the candidate
circuit C. Define C as follows. For gate i ∈ [ng], define that gate by9(

li = logβ
(
v(γ3(i−1))

)
, ri = logβ

(
v(γ3(i−1)+1)

)
, si = s

(
γig
))

We argue that C is a valid arithmetic circuit with np inputs. By construction,
C has ng gates and np inputs. It suffices to show that for each i ∈ [ng], li, ri
are strictly less than i+ np and si ∈ {0, 1}. The former is implied by conditions
3(c-d). The latter is implied by condition 4. Thus, C is valid.

We will show that w is a wiring polynomial for C. It suffices to show that W
(the partition induced by w) and {PinsIni }i∈[ni] ∪ {Pins

Out
i }i∈[ng] are equivalent.

By definition of PinsIni , we know that {PinsIni }i∈[np] = {{γ3(j−1) : j ∈ [ng], lj =

i}∪{γ3(j−1)+1 : j ∈ [ng], rj = i}}i∈[np]. By the construction of C and 3(b-c), this

implies {{PinsIni }}i∈[np] = {{h ∈ K : v(h) = βi}}i∈[np]. Similarly, it can be shown

that {{PinsOut
i }}i∈[ng] = {{h ∈ K : v(h) = βi+np}}i∈[ng]. Thus, by the definition

of N , we have {PinsIni }i∈[ni] ∪ {Pins
Out
i }i∈[ng] = {{h ∈ K : v(h) = b}}b∈N . Let

us call this set V . Since v is a surjective map, each member of V is non-empty,
so V is a partition of K. By condition 3(a), we have for all Wi ∈ W , there
exists V ∈ V such that Wi ⊆ V ; that is, that W refines V . By condition 3(b-c),
we know that v maps elements of I to distinct elements in N . Therefore, there
cannot exist i1, i2 ∈ I such that v(i1) = v(i2). Thus, by condition 2, there cannot
exist W1 6= W2 such that W1,W2 ⊆ V for some V ∈ V . By the partition lemma
(appendix G) this fact and the fact that W refines V implies that W = V . Thus,
w is a valid wiring polynomial for C.

Finally, condition 2 and the definition of I guarantee that J represents all np
input wires.

The proof of function relation, in detail Our proof of function relation simply
checks the conditions listed above. Condition 1 is checked with Permutation on
K. Condition 2 is checked with Representative Check and Topological Sort. Con-
dition 3 is checked with Topological Sort. See Plonk Proof-of-Function Relation
for the full protocol description.

Protocol 14 (Permutation on K)
Rperm =

{
((w ∈ F(<B)[X]),⊥,⊥) : w(K) = K

}
9The extractor can efficiently compute these discrete logarithms because N is small.
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1. Use Multiset Equality over K on w, g(X) = X to show {{w(k) : k ∈
K}} = {{k : k ∈ K}}.

Theorem 18. Protocol 14 (Permutation on K) is a secure polyIOP (Defini-
tion 4) for relation Rperm.

Proof. Completeness, Soundness, and Zero Knowledge are immediate.

Protocol 15 (Representative Check)
Let G = {γ2p : p ∈ Kg}, let J ⊆ K, and let W be the partition of K induced
by the cycles of w, where w is a permutation polynomial over K.

Rrep = {((w ∈ F(<B)[X]), (J,G),⊥) : w(K) = K and

∀W ∈W, W ∩ (J ∪G) 6= ∅}

In other words, J ∪G intersects every cycle of w over K.

1. P interpolates and sends a polynomial f ∈ F(<B)[X] that satisfies{
f(k) = 1 for k ∈ I = J ∪G, and

f(k) = α · f
(
w−1(k)

)
for k ∈ K \ I.

(7)

Such an f can be constructed whenever the set I intersects every cycle
in w (i.e., I intersects every set in W ).

2. P interpolates and sends p ∈ F(<B)[X] where ∀k ∈ K: f(k) = p(w(k)).
3. Use Permutation on K to show w(K) = K.
4. Use Permutation Composition over K to show f(X) = p(w(X)) over K.
5. Use Zero over K to show that for all k ∈ K,(

f(k)− α · p(k)
)
· zG(k) · zJ(k) = 0, (8)

where zG(X) = (X |Kg| − γ2·|Kg|) and zJ(X) =
∏
j∈J(X − j) are the

vanishing polynomials on G and J respectively.
6. Use Nonzero over K to show that for all k ∈ K, f(k) 6= 0.

Theorem 19. Protocol 15 (Representative Check) is a secure polyIOP (Defini-
tion 4) for relation Rrep.

Proof. Since there is no witness, it suffices to show completeness, soundness, and
zero-knowledge.

Completeness We need to show that (8) holds. It suffices to show that for all
k ∈ K \ I we have f(k) − α · p(k) = 0. Since f(k) = p(w(k)) over K, we have
p(k) = f(w−1(k)). Thus, it suffices to show that f(X) − α · f(w−1(X)) = 0 for
k ∈ K \ I. Indeed this holds by definition of f in (7).
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Soundness Assume for the sake of contradiction that there exists a Wi ∈ W
such I ∩ Wi = ∅. Consider an arbitrary element w ∈Wi. From the soundness of
Zero over K, we know that f(w) = α · p(w) (since the vanishing polynomials for
I = J∪G must be nonzero). By the soundness of Permutation Composition over
K, we have f(X) = p(w(X)) over K, which implies p(X) = f(w−1(X)) over K.
Thus, we have f(w) = α · f(w−1(w)). Since we considered an arbitrary w ∈Wi,
for all w ∈Wi, we have f(w) = α · f(w−1(w)).

Pick an arbitrary w0 ∈ Wi. Let (w0, w1, ..., wj) for j = |Wi| − 1 represent
the cycle that contains w0. Since α generates F∗ and Nonzero over K is sound,
we have f(w0) = αa for some a < |F∗|. Inductively, f(wi) = αa+i for all i ≤ j.
Since f(w) = α · f(w−1(w)), we must have f(w0) = α · f(wj) implies αa =
αa+j+1. However, this implies αj+1 = α|Wi| = 1, but since |Wi| � |F∗|, this is
a contradiction. Therefore, we must have for all Wi ∈ W , there exists an i ∈ I
such that i ∈Wi.

Zero Knowledge is immediate.

Checking topological order Informally, we must check that the wires encoded
by w can be ordered such that each gate’s inputs come before its outputs. We
show this with a mapping v : K → N = {β1, . . . , βng+np}. The mapping must
send the representation of input i ∈ [np] (from J) to βi and the output pin for
gate i ∈ [ng] to βi+np . Furthermore, it must assign the same value to any pins
that w connects (i.e., has in the same cycle). Finally, it must assign a lesser β
power to each gate’s input pins than it assigns to the output pin. The relation
for Topological Sort describes these conditions in detail.

Protocol 16 (Topological sort)
Let G = {γ2p : p ∈ Kg}, let J ⊆ K, and let W be the partition of K induced
by the cycles of w, where w is a permutation polynomial over K.

RTS =
{

((v,w ∈ F(<B)[X]), (J,G),⊥) : seqJ(v) = (βi : i ∈ [np]) ∧
∀ γ3(i−1)+2 ∈ G, v(γ3(i−1)+2) = βi+np ∧
∀Wi ∈W,∀w,w′ ∈Wi, v(w) = v(w′) ∧ v(K) = N ∧
∀ i ∈ [ng], logβ(v(γ3(i−1))) < logβ(v(γ3(i−1)+2)) ∧

logβ(v(γ3(i−1)+1)) < logβ(v(γ3(i−1)+2))
}

1. P and V interpolate u(X) ∈ F(<B)[X] such that u(ji) = βi for i ∈ [np],
where ji is the ith element of J , where J has an agreed upon ordering.

2. Use Zero over J to check v(X) = u(X) over J .
3. Use Geometric Sequence Test seqG(v) = (βi+np : i ∈ [ng])
4. Use Permutation Composition over K to show v(w(X)) = v(X) on K.
5. Use Expanded Discrete-log Comparison with parameters (α, ng+np+1)

to show logβ(v(X)) < logβ(v(γ2X)) over Kg.
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6. Use Expanded Discrete-log Comparison with parameters (α, ng+np+1)
to show logβ(v(γX)) < logβ(v(γ2X)) over Kg.

7. Use Nonzero over K to check v(X)− 1 is nonzero over K.

Theorem 20. Protocol 16 (Topological Sort) is a secure polyIOP (Definition 4)
for relation RTS.

Proof. Since there is no witness, it suffices to show completeness, soundness, and
zero-knowledge.

Completeness By construction, steps 2, 3, and 4 must succeed. Since v(w) =
v(w′). for all w,w′ ∈ Wi for all Wi ∈ W , step 5 succeeds. Since, for each gate
i, v(γ3(i−1)) < v(γ3(i−1)+2) and v(γ3(i−1)+1) < v(γ3(i−1)+2), the comparisons
succeed in steps 5 and 6.

Soundness Step 2 directly implies the first property in R(J,G). From the sound-
ness of Geometric Sequence Test, we have the second property. Step 4 directly
implies10 that v(w) = v(w′) for all w,w′ ∈ Wi and for all Wi ∈ W . For any
γ3(i−1) ∈ Kg, step 5 shows that v(γ3(i−1)) < v(γ3(i−1)+2) and step 6 shows
that v(γ3(i−1)+1) < v(γ3(i−1)+2). From the soundness of Expanded Discrete-log
Comparison, we have v(Kg), v(γKg), v(γ2Kg) ⊆ N ∪ {1}. Because these are the
cosets of Kg in K and by step 7 (Nonzero over K), we have v(K) ⊆ N . From
steps 2, 3 (Geometric Sequence Test), we must have v(K) = N .

Zero Knowledge is immediate.

Protocol 17 (Plonk proof-of-function relation)
RAC = {((w, s ∈ F(<B)[X]), (np, ng, no), C ∈ ACnp,ng,no) : w and s encode C}

1. P interpolates and sends v ∈ F(<B)[X] such that for i ∈ [ng],
– v(γ3(i−1)) 7→ βli

– v(γ3(i−1)+1) 7→ βri

– v(γ3(i−1)+2) 7→ βi+np

2. Use Zero over Kg to show s(X)s(X) = s(X) over Kg.
3. Invoke Permutation on K on w, Representative Check on w, Topological

Sort on w and v.

Theorem 21. Protocol 17 (Plonk proof-of-function relation) is a secure polyIOP
(Definition 4) for relation RAC. Thus is a secure PFR for the Extended
Plonk.

Proof. Completeness, soundness, and zero-knowledge follow from the same prop-
erties of the subprotocols.

10A similar argument was made for the wire value assignment in Plonk [20].
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Knowledge Soundness The extractor E takes as argument the oracles w and
s. We show that the properties required by our previous circuit extractor are
guaranteed:

1. Permutation on K shows that w is a permutation.
2. Representative Check shows

– For all Wi ∈W , there exists i ∈ I such that i ∈Wi.
– |W | ≤ |I| as a corollary.

Topological Sort shows from the third property ofR(J,G) that |v(K)| ≤ |W |.
The first and second properties imply |I| ≤ |v(K)|. Thus, |I| ≤ |W |. Thus,
from the corollary above, we must have |I| = |W |. Therefore, there exists a
bijection B : I →W such that for all i ∈ I, i ∈ B(i).

3. Topological Sort shows W can be topologically sorted.
4. Zero over K shows s(Kg) ⊆ {0, 1}, since the only roots of X2−X = (X−1)·X

are zero and one.

Thus, by our previous argument, a circuit encoded by w and s can be extracted.
ut
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