
Acyclicity Programming for Sigma-Protocols

Masayuki Abe1, Miguel Ambrona1, Andrej Bogdanov2, Miyako Ohkubo3, and
Alon Rosen4

1NTT Secure Platform Laboratories
{abe.masayuki.cp, miguel.ambrona.fu}@hco.ntt.co.jp

2Chinese University of Hong Kong, andrejb@cse.cuhk.edu.hk
3Security Fundamentals Laboratory, CSR, NICT, m.ohkubo@nict.go.jp

4Herzliya Interdisciplinary Center, alon.rosen@idc.ac.il

Abstract. Cramer, Damg̊ard, and Schoenmakers (CDS) built a proof
system to demonstrate the possession of subsets of witnesses for a given
collection of statements that belong to a prescribed access structure P
by composing so-called sigma-protocols for each atomic statement. Their
verifier complexity is linear in the size of the monotone span program
representation of P.

We propose an alternative method for combining sigma-protocols into a
single non-interactive system for a compound statement in the random
oracle model. In contrast to CDS, our verifier complexity is linear in
the size of the acyclicity program representation of P, a complete model
of monotone computation introduced in this work. We show that the
acyclicity program size of a predicate is never larger than its de Morgan
formula size and it is polynomially incomparable to its monotone span
program size. We additionally present an extension of our proof system,
with verifier complexity linear in the monotone circuit size of P, in the
common reference string model.

Finally, considering the types of statement that naturally reduce to acyclic-
ity programming, we discuss several applications of our new methods to
protecting privacy in cryptocurrency and social networks.

Keywords: sigma-protocols, zero-knowledge proofs, random oracles

1 Introduction

The feasibility of proving every NP-statement in zero-knowledge was first es-
tablished by Goldreich, Micali, and Wigderson [GMW86]. For decades, such
generic protocols have been perceived as mere proof-of-concept results, in part
because they involve costly NP reductions and also require multiple independent
repetitions for the sake of soundness error reduction.

More recently, we have witnessed a widespread push towards the efficient
realization of general-purpose zero-knowledge proofs, with varying degrees of
practicality [Gro16, AHIV17, BCG+17, GKM+18, BBB+18, BCR+19, CFQ19,
MBKM19, LMR19]. Despite significant progress, the efforts are still ongoing,

with performance a far cry from traditional cryptographic constructs such as
public-key cryptography.

In contrast, special purpose protocols for specific hard-on-average languages
within NP have seen wide practical deployment, most notably in the form of
standardized digital signatures and anonymous credentials. An abstraction that
is at the heart of this approach is so-called sigma-protocols [Cra97]. A sigma-
protocol is a three-move interactive protocol between a prover and a verifier
where the prover sends an initial message, a, to the verifier who replies with a
random challenge, e, and the prover then responds with an answer, z, based on
which the verifier accepts or rejects.

Sigma-protocols often enjoy low soundness error by design, resulting in high
efficiency relative to their generic counterparts. On the other hand, their zero-
knowledge property is typically only guaranteed against honest verifiers. Using
the Fiat-Shamir (FS) heuristic [FS87], they can be made non-interactive and
secure against malicious verifiers. This conversion generates the challenge e by
applying a hash function to the initial message a.

1.1 Sigma-Protocol Composition

Importantly, sigma-protocols can be used to prove compound NP relations, ob-
tained by composing several sigma-protocols for “atomic” statements. Cramer,
Damg̊ard, and Schoenmakers (CDS) showed that sigma-protocols could be gener-
ically composed [CDS94]. Namely, given a collection of sigma-protocols for NP
statements x1, . . . , xn, one can obtain a zero-knowledge proof of knowledge for
any subset of statements that belong to a prescribed access structure P.

The idea in CDS composition is to secret-share the challenge e according to
the access structure P and then use the shares as challenges in the corresponding
sigma-protocols for each of the atomic statements. It works for any P recognized by
a monotone span program [CDM00]. It results in sigma-protocols that can be made
non-interactive, using the FS heuristic, and proved secure in the programmable
random oracle model [BR93]. Due to its simplicity and generality, the CDS
paradigm is popular both in theory and in practice.

Another composition technique, which is more closely related to this work,
was introduced in [AOS02] and recently revisited in [FHJ20]. The idea, inspired
by the ring signatures of [RST01], is to sequentially generate a challenge ei to a
statement xi by hashing the first message ai from the roof for the statement xi−1.
This sequence ends when the first challenge e1 is generated from an. In [FHJ20],
the method is referred to as a sequential composition and turned into a signature
scheme whose unforgeability is proven in the non-programmable random oracle
model (NPROM) [Nie02] (see also [Lin15, CPSV16]). It is in contrast to CDS+FS,
whose signature counterpart is shown to be not provable in the NPROM in a
black-box manner.

2

1.2 Our contributions

We propose a new method for combining sigma-protocols for statements x1, . . . , xn
into a non-interactive zero-knowledge proof of knowledge of witnesses wi for sub-
sets of the statements that belong to a prescribed access structure P (Section 3).
The complexity of the proof system is dictated by the acyclicity program (ACP)
size of P, a new model of monotone computation introduced in this work.

In contrast, CDS composition complexity depends on the monotone span
program size of P. Relying on monotone complexity theory results, we show the
existence of function families whose monotone span program size is inherently
superpolynomial in their acyclicity program size (Section 4). Acyclicity pro-
grams can be polynomially simulated by monotone circuits, so there is also a
superpolynomial gap in the other direction [BGW99]. Thus the two composition
methods are of incomparable complexity.

We prove the knowledge soundness of our acyclicity programming proof
system in the programmable random oracle model (Theorem 1). We also obtain
regular soundness in the non-programmable random oracle model (Theorem 2).

In Section 5 we describe a variant of the proof system whose complexity is
determined by the monotone circuit size of P. Monotone circuit size is at most
polynomial in acyclicity program size but maybe superpolynomially smaller. The
knowledge soundness of this protocol requires that the prover sample pairs of
instances, out of which he can certify knowledge of exactly one. This is possible
assuming the hardness of discrete logarithms.

Composition via acyclicity programming. Our starting point is the sequential
composition method of [AOS02, FHJ20]. They represent a disjunction of state-
ments x1 ∨ · · · ∨ xn by a cycle on the nodes 1, . . . , n with the interpretation that
the cycle is “satisfied” if the cycle can be traversed starting at any node labeled
by a true statement with a known witness. An acyclicity program extends these
semantics to general directed graphs that may contain multiple and overlapping
cycles. The nodes of an acyclicity program are labeled by statements, allowing
repetitions. A satisfying set of witnesses corresponds to a set of nodes that cover
every cycle.

Composition for monotone formulas. In Section 4.2 we show how to convert any
monotone formula describing an access structure into an acyclicity program of
the same size. This reduction from monotone formulas enjoys concrete efficiency
and thus may be of practical interest. For relatively simple representations such
as those in disjunctive normal form over distinct instances, compound proofs
using our ACP method tend to be shorter than those by CDS+FS as challenges
are not necessarily included in the proofs.

Composition for monotone circuits. In Section 5 we address a more general
composition, represented by monotone circuits consisting of AND and THRESHOLD

gates. This method compiles sigma-protocols into non-interactive systems with
a common reference string (CRS), assuming the added property that the CRS

3

allows oblivious sampling of instances from a hard language having a sigma-
protocol. We note that oblivious sampling is often possible without CRS in the
random oracle model, e.g. [GPS08], which is used in our basic ACP composition.

Unlike their non-monotone counterparts, monotone circuits are not universal
for efficient computation of monotone functions [Raz85, AB87, Tar88]. Non-
monotone circuits on n inputs, however, can be turned into monotone circuits on
their 2n literals (variables and their negations) while at most doubling their size.
Therefore, assuming the additional availability of sigma-protocols for proving
ignorance [BM90, DK18] of the base statements, our composition method is
essentially universal. Succinct proofs of ignorance are in particular known for
discrete logarithms under a CRS and are also used in our circuit protocol
construction. (The CRS we consider is simply a group element with an unknown
discrete logarithm.)

Other advantages over related works. CDS composition essentially relies on the
fact that the composed sigma-protocols are 2-special sound, i.e., two collid-
ing transcripts allow to extract a witness with probability one efficiently. Our
construction can be used to compose more general κ-special sound protocols
since the challenges to every run of the underlying protocol can be directly
re-assigned in the programmable random oracle model, and we can rewind the
execution until κ valid transcripts are obtained. This allows the composition
of a broader class of sigma-protocols, including, for instance, Stern’s proto-
col [Ste96], which is 3-special sound and is used in lattice/code-based construc-
tions [LLNW16, LLNW17, NTWZ19, FLWL20]. Other examples are protocols
for proofs of binary secrets [BCC+15] which are also 3-special sound and useful
for proving the correctness of inputs to a circuit.

A recent work [AAB+20] enhances the CDS composition paradigm in the
random oracle model, yielding shorter proofs and weakening the soundness
requirements of the constituent sigma-protocols. Like CDS itself, their complexity
is governed by the access structure’s span program size and is therefore of
incomparable complexity to the results in this work.

1.3 Technical overview

Let (C1,Z1,V1) and (C2,Z2,V2) be sigma-protocols for relations R1 and R2

respectively. In the following, we show how to build a non-interactive zero-
knowledge argument system (in the random oracle model) for the disjunctive
combination of the above relations, i.e., for the language:

LR1
∨ LR2

:= {(x1, x2) | ∃w : (x1, w)∈ R1 ∨ (x2, w)∈ R2} .

Let H be a random oracle that maps arbitrarily large inputs into {0, 1}λ (w.l.o.g.,
the challenge space of both sigma-protocols). A proof on instance (x1, x2) will
consist of two accepting transcripts (a1, e1, z1) and (a2, e2, z2) for the respective
sigma-protocols, where the challenges are computed as:

e1 = H(a2) and e2 = H(a1)

4

1

23

e1 = H(a3)

e2 = H(a1)

e3 = H(a2)

(a) Sequential composition for the dis-
junctive relation (1 ∨ 2 ∨ 3).

1

2 3

4

e1 = H(a2‖a3‖a4)

e2 = H(a1‖a3)

e3 = H(a1‖a4)

e4 = H(a1‖a2)

(b) Composition for a relation in CNF
(1∨ 2)∧ (1∨ 3)∧ (1∨ 4)∧ (2∨ 3∨ 4).

Fig. 1: Graphs inducing a compound ZK proof system.

and where H(a) is an abbreviation of H(x1‖x2‖i‖a).1 Note that an honest prover
in possession of a valid witness, say w1 such that (x1, w1) ∈ R1, can produce both
transcripts by selecting a1 ← C1(x1, w1; r1), computing e2 = H(a1), running the
simulator of the second sigma-protocol, obtaining (a2, z2)← S2(x2, e2) and using
w1 to complete the transcript for the first protocol on challenge e1 = H(a2),
producing an accepting z1. The soundness of the protocol can be proven based on
the soundness of the underlying sigma-protocols in the random oracle model, since
the structure of our scheme and the fact that H is a random oracle guarantee
that either e1 will be uniformly chosen after having fixed a1 or that e2 will be
uniformly chosen after having fixed a2. Finally, zero-knowledge can be argued by
defining a simulator with the ability to program the oracle H.

Observe that this technique can be generalized to combine in disjunction
more than two statements, e.g., for combining three sigma-protocols we can
define challenges as e1 = H(a3), e2 = H(a1) and e3 = H(a2); but it can also
be used to prove more complex compound statements. For example, given a
monotone formula f in conjunctive normal form (CNF), consider a directed graph
(where nodes are labelled as statements) that satisfies the following property:
for every disjunctive clause in f there exists a cycle in the graph consisting of
nodes associated to all the statements in the clause, and there are not other
cycles that correspond to a clause not implied by the original formula. We can
build a proof system for f where proofs consist of an accepting sigma-protocol

1 To highlight the role of a1 and a2, we use this shorthand in this section. We however
remind readers the importance of including instances x1 and x2 as pointed out
in [BPW12, BDG20].

5

transcript for every node in the graph, and where for every node i, the challenge
ei is computed based on all nodes j1, . . . , jk that have an edge pointing to i, that
is, ei = H(aj1‖ . . . ‖ajk). See Figure 1 for two examples. Graph 1a corresponds
to the already mentioned disjunctive predicate of three statements. On the other
hand, graph 1b corresponds to the formula (1∨ 2)∧ (1∨ 3)∧ (1∨ 4)∧ (2∨ 3∨ 4);
there exist a cycle in the graph between all nodes that appear in the same clause.

It turns out that every graph induces a proof system of a certain monotone
compound predicate over the base statements. We refer to Section 3 for more
details about how to characterize the predicate associated with a graph.

1.4 Potential Applications

An immediate application of our novel composition method is a ring signature
scheme [RST01] where an ACP access structure can describe the admissible group
of signers. It extends the result of [BSS02] where admissible signers are described
by a monotone formula, since ACP can simulate monotone formulas (Section 4.2).
Unforgeability of the signature scheme could be proven in the programmable
random oracle model following standard techniques.

As we have already mentioned, the complexity of our new model of compu-
tation is incomparable to the complexity of monotone span programs. There
exist specific predicates that support superpolynomially more compact ACP
representations. We describe some scenarios where the structure of ACPs could
yield substantial improvements in communication and computation.

Our ACP proof system is especially suitable for predicates related to discon-
necting a graph. One can prove knowledge of witnesses associated to certain nodes
in an acyclic graph that represent a cut from a node s to a node t (by artificially
adding an edge between t and s and arguing the absence of cycles in the new
graph). Such a proof would hide which subset of nodes has been used among
all cuts that disconnect s from t. Even when the original graph is not acyclic,
in Proposition 2 we show that the separation of s from t can be enforced with
ACP at a cubic cost in the size of the graph, thereby retaining superpolynomial
advantage over monotone span programs.

While the focus of our work is theoretical, we envision potential applications
relating to certifying complex statements about social or financial activities. For
example, consider a cryptocurrency system with a transaction graph whose nodes
represent public keys, and whose (directed) edges represent money flows. Our
proof system could apply to the following types of claims:

• Proof of possession of white money. A user may want to certify that the
money associated with a given node (logically, owned by them) has been
transferred (possibly not directly) from a set of whitelisted organizations
(such as banks or well-reputed companies). To preserve the organizations’
pseudonymity (not disclosing the nodes in the network controlled by them)
the organizations can certify the user’s integrity by proving knowledge of valid
credentials associated with nodes that form a cut from the cryptocurrency

6

genesis node to the node of interest, without revealing any information about
the actual cut.

• Proof of self-transaction. A common practice in pseudonymous networks
to increase anonymity is to transfer assets to freshly generated identities.
Repeating such self-transactions makes the graph complex, and it is believed
to be good for privacy. The mechanism described above would allow a user to
certify a statement of the form “this node belongs to me, and all of its money
was once owned by myself or by the subset of parties who are colluding with
me to create this proof”, while retaining privacy on the origin nodes.

Besides scenarios where the graph represents transactions, we expect that our
proof system may find more applications in other settings like social networks.
Other possible applications based on the expressivity of our new approach, i.e.,
arguing knowledge of witnesses that make a graph acyclic, are:

• Resolving circular software dependencies. A user may be willing to pay
money to a company for resolving a circular dependency issue in their
updated software. In the paradigm of fair exchange, the user wants to pay
after the problem is solved, but the company wants the money upfront.
They can leverage the approach devised by Maxwell based on contingent
payment [Max11]. This approach requires the company first proving in zero-
knowledge that they can resolve the circular dependency, a statement that
could be easily expressed with an ACP program.

• st-unreachability in ` or fewer steps. As a generalization of the directed st-cut
predicate, our method can be used to prove unreachability between two
nodes in a directed graph by considering paths of limited length `. This
could be useful on applications where the graph represents a map or, as
above, in graphs of transactions where the transactions’ lifetime matters.
This application would require reducing the original graph G with n vertices
into a graph H with n` vertices so that G has a path from s to t of length at
most ` if and only if H has a cycle. Such reduction could be devised as in
the proof of Proposition 2 if distances were tracked as a separate parameter.

2 Preliminaries

For a finite set S, we write a
$← S to denote that a is uniformly sampled from S.

We denote the security parameter by λ ∈ N. Given two functions f, g : N→ [0, 1],
we write f ≈ g if the difference |f(λ)− g(λ)| is asymptotically smaller than the
inverse of any polynomial. A function f is said to be negligible if f ≈ 0, whereas
it is said to be overwhelming when f ≈ 1. For integers m,n, such that m ≤ n, we
denote by [m,n] the range {m,m+1, . . . , n}. We denote by [n] the range [1, n].
By N∗ we denote the space of arbitrarily-long sequences of numbers in N. We
use multiplicative notation for groups. When A is a probabilistic algorithm, we
denote by A(x; r) an execution of A on input x and random coins r taken from

7

an appropriate domain defined for A. If the random coins are not important,
we simply write A(x). We generally assume stateful adversaries, e.g., in the

game execution a← A(x); e
$← {0, 1}λ; z ← A(e) the adversary A in the second

call knows the state of A after the first call (in particular, it knows x and a).
Let R : X × W → {0, 1} be a binary relation defined over a set of instances
X and a set of witnesses W. We denote by LR be the language defined as
LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}.

2.1 Sigma-protocols

A sigma-protocol, introduced in [Cra97], is a public-coin interactive proof system
that consists of only three data transfers between the prover and the verifier, and
it satisfies a weaker notion of zero-knowledge and special soundness. In this work
we employ a generalized definition of special soundness as in [AAB+20], where
κ ≥ 2 colliding transcripts with distinct (uniformly sampled) challenge lead to
efficient witness extraction with probability 1− ε for a negligible ε. Compared to
the original special soundness, where κ = 2 and ε = 0, it captures a broader class
of schemes, e.g. the parallel version of Stern’s protocol, where an exponential
number (but still negligible compared to the size of the challenge space) of
colliding transcripts can be prepared without knowing the witness.

Definition 1 (Sigma-protocol). A sigma-protocol for R is a triple of PPT
algorithms (C,Z,V) associated to the following execution:

i) a← C(x,w ; r): given (x,w) ∈ X ×W, outputs an initial message.

ii) e
$← {0, 1}λ: the verifier’s challenge is uniformly sampled.

iii) z ← Z(x,w, r, e): the prover answers to the challenge.
iv) 1/0← V(x, a, e, z): the verifier returns 1 (acceptance) or 0 (rejection).

A sigma-protocol must satisfy completeness, special soundness, and special honest
verifier zero-knowledge defined as follows.

Perfect completeness. For every λ ≥ 1 and every pair (x,w) ∈ R,

Pr

[
e

$← {0, 1}λ;
a← C(x,w ; r)
z ← Z(x,w, r, e)

: V(x, a, e, z) = 1

]
= 1 .

κ-special soundness. There exists a predicate Φ : ({0, 1}λ)κ → {0, 1} and there
exists a deterministic polynomial-time extractor E such that:

• On input (x, a, {e1, z1}, . . . , {eκ, zκ}) such that V(x, a, ei, zi) = 1 for all i ∈ [κ]
and Φ(e1, . . . , eκ) = 1, E outputs a witness w s.t. R(x,w) = 1.

• Pr
[
e1, . . . , eκ

$← {0, 1}λ : Φ(e1, . . . , eκ) = 0
]

is negligible in λ. (This proba-

bility is referred to as the special-soundness error.)

When Φ only checks for the challenges being different, the protocol is said to be
perfectly κ-special sound.

8

Special honest verifier zero-knowledge. There exists a probabilistic polynomial-
time algorithm S that, for every stateful PPT distinguisher D,

Pr
[
(x,w, e)← D(1λ); a← C(x,w; r); z ← Z(x,w, r, e) : D(a, z) = 1

]
≈ Pr

[
(x,w, e)← D(1λ); (a, z)← S(x, e) : D(a, z) = 1

]
where D must output values such that (x,w) ∈ R and e ∈ {0, 1}λ.

The following standard soundness is implied by κ-special soundness, for any
constant κ.

Definition 2 (Soundness). A sigma-protocol for LR is said to be sound with
error εsnd if, for any PPT stateful adversary A and for any x /∈ LR, it holds

Pr[a ← A(x); e
$← {0, 1}λ; z ← A(e) : V(x, a, e, z) = 1] < εsnd. We say the

protocol is sound if εsnd is negligible in λ.

If there existed an adversary A against the soundness game, winning with
non-negligible probability, by the Forking Lemma (Lemma 1), there would exist
another algorithm B producing κ accepting transcripts with the same first message
with non-negligible probability (there would be a probability loss with κ in the
exponent, but κ is constant). Because the challenges in those transcripts would be
sampled uniformly and independently, as the soundness game allows, Φ(e1, . . . , eκ)
would be 1 with overwhelming probability. On the other hand, E cannot extract a
valid witness for x, since such a witness does not exist. This contradicts κ-special
soundness.

For an example of our generalized version of special soundness, think of the
parallel version of Stern’s protocol, with challenge space {0, 1, 2}λ. It achieves 3-
special soundness under our definition, for condition Φ(e, e′, e′′) defined as ∃i ∈ [λ]
such that {ei, e′i, e′′i } = {0, 1, 2}, where the equality is between (unordered) sets.
In this case, the special soundness error would be (7/9)λ.

2.2 Non-Interactive Arguments

We define non-interactive argument systems in the random oracle model.

Definition 3 (Non-Interactive Argument System). A non-interactive ar-
gument system for relation R in the random oracle model is a pair of polynomial-
time oracle algorithms (Prove,Verify) that, for random oracle H:

• ProveH(x,w)→ π is a probabilistic algorithm that takes an instance x and a
witness w as input, and outputs a proof π.

• VerifyH(x, π) → 0/1 is a deterministic algorithm that takes x and π, and
outputs either 1 or 0 representing acceptance or rejection, respectively.

It is correct if, for every sufficiently large λ ∈ N, all H, all (x,w) ∈ R,
VerifyH(x,ProveH(x,w)) outputs 1 except with negligible probability in λ.

9

Definition 4 (Zero-Knowledge). A non-interactive argument system (Prove,
Verify) for R is zero-knowledge in the random oracle model if there exists a
probabilistic polynomial-time algorithm Simulator that for every probabilistic
polynomial-time distinguisher D, the following difference is negligible in λ:

Pr[1← DH,P(1λ)]− Pr[1← DS
H

(1λ)] ,

where H is a random oracle that returns an independently and uniformly chosen
value in an appropriate domain for every distinct input. P is a prover oracle that,
on input (x,w) ∈ R, outputs ProveH(x,w). S is a simulator oracle that takes two
separate types of inputs: one is any string forwarded to Prove directly, and the
other is (x,w) ∈ R that only x is given to Simulator, and returns the output.

Definition 5 (Witness Inidistinguishability). A non-interactive argument
system (Prove,Verify) for R is witness indistinguishable if for every probabilistic
polynomial-time adversary A, any polynomial-size string h, any x,w1, w2 with
R(x,w1) = R(x,w2) = 1, and any random oracle H, the following difference is
negligible in λ:

Pr[1← A(x,w1,Prove
H(x,w1), h)]− Pr[1← A(x,w1,Prove

H(x,w2), h)] .

Definition 6 (Soundness). A non-interactive argument system (Prove,Verify)
for LR is sound if for any PPT oracle algorithm A, any x /∈ LR, and a random
oracle H, Pr[π ← AH(x) : 1 = VerifyH(x, π)] is negligible in λ. The probability
is taken over the coins of A and H.

The following definition models the fact that provers who create a valid proof
must know a witness for the statement being proven. This is enforced by the
existence of an extractor (that can invoke the prover in an oracle manner) that
extracts a witness whenever the prover produces a valid proof.

Definition 7 (Knowledge Soundness). A non-interactive argument system
(Prove,Verify) for R is knowledge sound with knowledge error ε in the random
oracle model if there exists an expected polynomial-time algorithm E such that for
any probabilistic polynomial-time (potentially cheating) prover P ∗, it holds that:

Pr

[
(x, π)← P ∗H(1λ)

w ← EH,P∗(x, π)
: VerifyH(x, π) = 1 ∧ R(x,w) = 0

]
≤ ε(λ) ,

where the probability is taken over the coins of P ∗, E, and random oracle H. The
system is said to be knowledge sound if ε is negligible in λ.

2.3 Graphs

A directed graph is a tuple G = (V,E) where V is a set of elements called vertices
and E is a set of ordered pairs, E ⊆ V × V , called directed edges or arrows.
Throughout the paper, we use N to denote the size of V . Given an edge e = (u, v),

10

u is called the head of e, denoted by head(e) and v is called the tail of e, denoted
by tail(e). We usually assume an ordering on the vertices V and denote by v`
(or simply ` when it is clear from the context) the `-th vertex, for every `∈ [N].
For a vertex v ∈ V , we denote by pred(v) the set of predecessors of v, that is,
pred(v) := {u∈V | (u, v)∈E}. Given a subset of vertices U ⊂ V , we define the
subgraph G(U) as the graph (U,EU), where EU := {(u, v)∈E |u∈U ∧ v∈U}. A
cycle in G is a finite sequence of edges (e1, . . . , e`) satisfying tail(ei) = head(ei+1)
for every i∈ [`−1] and tail(e`) = head(e1). A graph that contains no cycles is
called acyclic.

3 ACP composition

3.1 Construction

In this section we describe and analyze our ACP composition for zero-knowledge
composition of sigma-protocols. The common input to the prover and verifier
consists of n statements x1, . . . , xn and a monotone set system P over base set
[n] represented by a monotone acyclicity program, which we will define shortly.
The prover wants to convince the verifier that he knows valid witnesses wi, ∀i∈S
for some set S in P. We assume the availability of special-sound, honest verifier
zero-knowledge sigma-protocols Σi = (Ci,Zi,Vi,Si) for verifying that wi is a
witness for xi.

Definition 8 (Monotone acyclicity program). A monotone acyclicity pro-
gram A is a directed graph G whose nodes are labeled by the variables 1, . . . , n,
allowing repetitions. We use var(j) ∈ [n] to denote the label of node j ∈ [N], and
pred(j) to denote the set of nodes pointing to j. A set S ⊆ [n] is accepted by A
if every (directed) cycle in G contains a node j such that var(j) ∈ S.

Equivalently, a set S ⊆ [n] is accepted by A if the subgraph G(S̄) induced
by the complement set of nodes {j | var(j) 6∈ S} contains no cycles. The sets
accepted by A form a monotone set system Π(A). We will measure the size of A
by the number of nodes N and, as a complexity parameter of secondary interest,
the number of edges M .

We now describe the ACP verifier (Figure 2). A proof π consists of N parts
(a1, e1, z1), . . . , (aN , eN , zN), where (aj , ej , zj) has the format of a transcript for
Σvar(j). The verifier accepts if all transcripts are accepting. The key idea is to
enforce a specific choice of challenges ej that allows the prover to pass verification
only when knowing a sufficiently large set of witnesses S for which the graph
G(S̄) is acyclic. To accomplish this, we require that ej be the value of the random
oracle H evaluated at all ap for p ∈ pred(j) (ordered canonically).

As an example, consider the acyclicity program in Figure 1a, where the
challenges ej must satisfy the constraints e1 = H(x‖1‖a3), e2 = H(x‖2‖a1)
and e3 = H(x‖3‖a2). A prover that knows a witness, say w1, can pass verifi-
cation by first choosing a1 ← C1(x1, w1 ; r1), then simulating (a2, z2) given e2,
then simulating (a3, z3) given e3, and finally completing the proof of knowledge

11

Inputs: x = x1, . . . , xn, proof π, and acyclicity program A (with N nodes).
Random oracle: H.

1. Parse π as ((a1, e1, z1), . . . , (aN , eN , zN)).

2. Verify that ej = H(x‖j‖{ap | p ∈ predA(j)}) for all j∈ [N].

3. Accept iff Vi(xi, aj , ej , zj) accepts for all j ∈ [N], where i = var(j).

Fig. 2: The ACP Verifier.

Inputs: x = x1, . . . , xn, witnesses wi : i∈S, acyclicity program A (with N nodes).
Precondition: A accepts S.
Random oracle: H.

1. Compute aj ← Cj(xi, wi; ri) for all j ∈ [N] : i = var(j)∈S.

2. Compute a topological sort j(1), . . . , j(tmax) of the vertices in G(S̄).

3. For t ranging from 1 to tmax, do:

(a) Set ej(t) := H(x‖j(t)‖{ap | p∈ pred(j(t))}).
(b) Compute (aj(t), zj(t))← Sj(t)(xi, ej(t)), where i = var(j(t)).

4. For all j such that var(j)∈S, do:

(a) Set ej := H(x‖j‖{ap | p∈ pred(j)}).
(b) Compute zj ← Zj(xi, wi, rj , ej), for all j ∈ [N] : i = var(j)∈S.

5. Output π := ((a1, e1, z1), . . . , (aN , eN , zN)).

Fig. 3: The ACP Prover.

Z1(x1, w1, r1, e1) for w1 upon challenge e1. This strategy can be generalized to
an arbitrary acyclicity program A, as long as the complement of the set of known
witnesses is acyclic, or equivalently the set of known witnesses is accepting for A.
The general prover is given in Figure 3.

The communication complexity of this protocol is the sum of the commu-
nication complexities of the sigma-protocols Σvar(1), . . . , Σvar(N). In fact, the
challenges e1, . . . , eN do not have to be sent explicitly as the ACP verifier can turn
step 2 from a verification into a calculation. The running time of the verifier is
O(NtV +M) where tV is the maximum running time of the verifiers Vi, assuming
H can be evaluated in linear time.

3.2 Security

The composition of witness relations Ri with the monotone set system P is the
witness relation RP in which (wi : i ∈ S) is a witness for x = (x1, . . . , xn) if
S ∈ P and wi is an Ri-witness for xi for all i ∈ S.

12

Theorem 1. If Σi = (Ci,Zi,Vi,Si) is a sigma-protocol for Ri for all i ∈ [n]
over the common challenge space {0, 1}λ, P is the set system computed by
acyclicity program A, and H is a programmable random oracle, then ACP is a
non-interactive zero-knowledge argument of knowledge for RP .

We now prove completeness, zero-knowledge, and knowledge soundness of ACP.

Completeness. Assume that the prover knows witnesses wi : i ∈ S for some
accepting set S of A. By definition, the graph G(S̄) is acyclic and admits a
topological sort.2 Therefore all the inputs to H in step 3a are well-defined. By
the HVZK property of Σi for i = var(j) 6∈ S, all the HVZK simulators Si run in
step 3b (on random challenges) yield accepting transcripts. By the completeness
of Σi for i = var(j) ∈ S, all the transcripts computed in steps 1 and 4 are also
accepting. It follows that the ACP prover passes verification with overwhelming
probability. The completeness error of ACP is at most the sum of the larger one
among the completeness and simulation errors of the input protocols Σi.

Zero-knowledge. The zero-knowledge simulator runs independent copies of the
simulators Si(xi, ej), for all j ∈ [N] where i = var(j) and ej is uniformly
sampled, obtaining transcripts (aj , ej , zj). It then outputs their concatena-
tion as the proof π. The random oracle H is programmed so that ej equals
H(x ‖ j ‖ {ap | p∈ pred(j)}). The produced simulated proof is distributed as a
genuine proof owing to the indistinguishability of the output by Si from regular
transcripts of Σi. By a hybrid argument, the simulation error is at most the
sum of the simulation errors of the input protocols Σi. Perfect zero-knowledge is
achieved if every Σi is perfect special honest verifier zero-knowledge.

Knowledge soundness. Let P ∗ be a potentially cheating prover that produces
statement x = (x1, . . . , xn) and a valid proof π with probability δ +

(
q
2

)
2λ, for

some 0 < δ ≤ 1. P ∗ runs in time t, has query complexity q and is given oracle
answers h = (h1, . . . , hq) ∈ ({0, 1}λ)q to its q queries. We will show that if all the
Σi protocols are κ-special sound with knowledge extractor Ei with (negligible)
error εi ≤ (δ/2)κ/2qκ−1, then our ACP extractor, defined in Figure 4, produces
a valid witness for RP with probability at least δ/2, in expected time O(κqnt/δ).

We will assume that (1) all prover queries to the random oracle H are distinct,
and (2) if (x, π) ← P ∗(h) for π = ((ai, ei, zi) : 1 ≤ i ≤ N) then P ∗ made all
queries of the form (x‖j‖{ap : p ∈ pred(j)}). Assumption (1) and (2) are without
loss of generality as these constraints can be enforced while preserving prover
efficiency. Assumption (2) ensures that all oracle queries of the ACP verifier must
have also been made by P ∗. We say that the output (x, π) of P ∗(h) is valid if
the ACP verifier accepts (x, π) when interacting with any oracle that answers
the k-th query of P ∗ by hk, for all k ∈ [q].3

2 A topological sort is a linear ordering of the vertices of the graph satisfying that for
every edge (u, v), u comes before v in the ordering.

3 This is a slight abuse of terminology for the sake of readability as validity is not
determined by x and π only, but may also depend on h.

13

Input: Acyclicity program A with graph G.
Oracle access to: P ∗.

1. Set S = ∅.

2. While G(S̄) has a directed cycle C, repeat the following:

3. Keep sampling random h1 until P ∗(h1) = (x1, π1) is valid.

4. Let j∗ = last(h1;C,x1) and i = var(j∗).

5. Remember xi = x1
j∗ and (a1j∗ , e

1
j∗ , z

1
j∗) = (j∗th component of π1).

6. Set r = 2 and repeat the following until r = κ but at most 4κq/δ times:

7. Sample hr at random conditioned on hr
k = h1

k for 1 ≤ k < det(h1;C,x1).

8. If P ∗(hr) = (xr, πr) is valid and det(hr;C,xr) = det(h1;C,x1),

9. Remember (erj∗ , z
r
j∗) = (last 2 terms in j∗th component of πr).

10. Increment r.

11. If r = κ and Ei(xi, a1j∗ , {e1j∗ , z1j∗}, . . . , {erj∗ , zrj∗}) outputs a valid witness wi,

12. Remember xi, wi and add i to S.

13. Output the statement-witness pairs (xi, wi : i ∈ S).

Fig. 4: The ACP Extractor.

We will also assume that (3) all oracle answers are distinct. Assumption (3)
incurs a loss of

(
q
2

)
2−λ in the probability of P ∗(h) being valid (where h is now a

sequence q uniformly sampled distinct values from {0, 1}λ), so from here on we
will assume that success probability of P ∗ is at least δ.

The ACP extractor greedily collects witnesses from every cycle C of A. To
do so, it seeks to find a query index Q such that the Q-th query is the one that
determines the commitments and challenges along the cycle C. By forking at this
query Q, which is prefixed by x‖j for some node j, a witness for i = var(j) can
be extracted. We define “the query that determines commitments and challenges
along C” as follows. Assume (x, π)← P ∗(h) is a valid statement-proof pair, all
challenges ej are represented in the oracle answers h, and all entries hk in h
are distinct (thus, every challenge ej is uniquely represented as hk(j) in h). Let
det(h;C,x) be the smallest kC such that k(j) ≤ kC for all nodes j in cycle C,
and last(h;C,x) be the node jC so that the kC-th query is prefixed by x‖jC .
We argue that if (x, π)← P ∗(h) is valid then the first kC = det(h;C,x) entries
of h determine the commitment ajC in π in the following sense:

Claim 1 Assume P ∗ is deterministic. If h and h′ are two sequences, each of
which has pairwise distinct entries, (x, π) := P ∗(h) and (x′, π′) := P ∗(h′) are
both valid, kC = det(h;C,x) = det(h′;C,x′), and hk = h′k for all 1 ≤ k < kC ,
then x = x′ and ajC = a′jC .4

4 For π = ((a1, e1, z1), . . . , (aN , eN , zN)) and π′ = ((a′1, e
′
1, z
′
1), . . . , (a′N , e

′
N , z

′
N)).

14

Proof. As P ∗(h) is valid, for every j ∈ C there is a unique query step k(j) such
that the query (x‖j‖{ap : p ∈ pred(j)}) must have been made by P ∗(h) at step
k(j) and answered by hk(j) = ej . The same occurs analogously for P ∗(h′), denote
such query step by k′(j) for all j ∈ C, in this case.

Since the k-the answers hk and h′k are identical for all 1 ≤ k < kC and P ∗

is deterministic, the k-th queries of P ∗(h) and P ∗(h′) must be identical for all
1 ≤ k ≤ kC , and so last(h;C,x) = last(h′;C,x′) =: jC . By definition of det,
we have k(j), k′(j) < kC for all j ∈ C \ {jC}, so k(j) = k′(j) and therefore
ej = hk(j) = h′k′(j) = e′j for all j ∈ C \ {jC}.

In particular, ej+ = e′j+ for the successor j+ of jC in C. Consequently,

the corresponding query k(j+) = k′(j+) made by P ∗ is then of the form
(x‖j+‖{ap | p ∈ pred(j+)}) = (x′‖j+‖{a′p | p ∈ pred(j+)}). It follows that x = x′

and, as jC ∈ pred(j+), also ajC = a′jC . ut

Claim 2 Assume P ∗(h) is valid with probability δ (over the internal coins of P ∗

and the sampling of h: q uniformly chosen distinct values from {0, 1}λ) and the
special soundness error of all Σi is at most (δ/2)κ/4qκ−1. The ACP extractor
outputs a witness for RP in expected time O(κqnt/δ) with probability at least δ/2
over the randomness of P ∗.

Proof. The ACP extractor interacts in a black-box manner with a P ∗ whose
internal randomness τ has been fixed (after being sampled from the appropriate
distribution). We first argue that, with reasonable probability, fixing P ∗’s internal
randomness results in a “decent” prover algorithm. More concretely, let X be
the random variable that maps τ to Pr [P ∗ succeeds | τ] we have that for every
α ∈ [0, 1], Pr [X ≥ α] ≥ δ − α, since

δ = Pr [P ∗succeeds]

= Pr [P ∗ succeeds |X < α] Pr [X < α] + Pr [P ∗ succeeds |X ≥ α] Pr [X ≥ α]

≤ α+ Pr [X ≥ α] .

In particular, for α = δ/2, we have Pr [X ≥ δ/2] ≥ δ/2. Consequently, with
probability δ/2, fixing P ∗’s internal randomness will result in a deterministic
prover with success probability (over the choice of h) of at least δ/2. From now
own, we assume P ∗ has its randomness fixed.

Fix an arbitrary directed cycle C in G. Let Validr be the event that P ∗(hr)
is valid and Matchr be the event det(hr;C,xr) = det(h1;C,x1). By assumption,
Pr[Valid1] ≥ δ/2. Applying the Forking Lemma 1 below (with κ = 2, F (h) =
det(h;C,x1), and A = “P ∗(h) is valid”), we get

Pr[Validr ∩Matchr |Valid1] ≥ δ

2q
.

(By Claim 1, Validr ∩ Valid1 ∩Matchr implies that xr = x1 and arjC = a1jC .)
The event that the ACP extractor reaches step 9 in the r-th iteration of loop
6 (given that it completed step 3) is precisely Validr ∩Matchr (conditioned on

15

Valid1). If Tr is the number of executions of loop 6 with a given value of r, then
Tr |Valid1 is a geometric random variable with success parameter at least δ/2q
so E[Tr |Valid1] ≤ q/δ and, by linearity of expectation,

E[T1 + · · ·+ Tκ−1 |Valid1] = E[T1 |Valid1] + · · ·+ E[Tκ−1 |Valid1] ≤ 2κq

δ
.

Let Reach be the event that r reaches value κ in step 11. By Markov’s inequality,

Pr[Reach] = Pr[T1 + · · ·+ Tκ−1 ≤ 4κq/δ |Valid1] ≥ 1

2
.

We now upper bound the probability of the event Fail that Ei fails to extract
a witness wi for xi from these transcripts, given Reach. The event Reach is the
same as Valid1 ∩ · · · ∩Validr ∩Fork , where Fork = Match1 ∩ · · · ∩Matchr is the
event “det(hr;C,x1) = det(h1;C,x1) for all r and h1, . . . ,hκ match in the first
det(h1;C,x1) positions”. Therefore:

Pr[Fail |Reach] ≤ Pr[¬A |Reach] ≤ Pr[¬A |Fork]

Pr[Valid1 ∩ · · · ∩Validr |Fork]
,

where A is the set of admissible transcripts for Ei. Conditioned on Fork , by
Claim 1, for i = var(jC), the i-th component xri of the input xr is equal to x1i
and the commitment arjC is equal to a1jC , for all r. The challenges erjC are however
independent of one another (and distribute uniformly) because the sequences
hr fork in position kC = det(h1;C,x1). So the probability of ¬A given Fork is
exactly the κ-special soundness error εi of Ei: Pr[¬A |Fork] = εi. On the other
hand, by the Forking Lemma 1,

Pr[Valid1 ∩ · · · ∩Validr |Fork] ≥ (δ/2)κ

qκ−1
.

By our assumption on εi, we conclude that Pr[Fail |Reach] ≤ 1/2.
In conclusion, in any given cycle C there exists a node jC such that loop 2

succeeds in extracting a solution (xi, wi) ∈ Ri for i = var(jC) with probability
at least

Pr[Reach ∩ ¬Fail] = Pr[Reach](1− Pr[Fail |Reach]) ≥ 1

2
· 1

2
≥ 1

4
.

It follows that the expected number of iterations to extract a solution to RP ,
namely a solution to Rvar(jC) for some jC in every cycle, is at most 4n. As each
loop 2 iteration has expected running time O(κqt/δ), the total expected running
time of the extractor is O(κqnt/δ) as desired. ut

By Claim 2, the ACP extractor succeeds with probability at least 1/2δ over
the combined randomness of the extractor and P ∗. To extract a witness with
probability 1 − δ we run the ACP extractor independently O((1/δ) log(1/δ))
times (with different fixed randomness for P ∗), thereby establishing knowledge
soundness of ACP.

It remains to establish the following version of the Forking Lemma, first
introduced by Pointcheval and Stern [PS00] and later generalized by Bellare and
Neven [BN06], here restated and proved in our notation.

16

Lemma 1 (Forking Lemma). Let F be a possibly randomized function from
q-term sequences to the set {1, . . . , q} and A be a subset of q-term sequences. The
probability that h1, . . . ,hκ are all in A and F (h1) = · · · = F (hκ), conditioned on
h1, . . . ,hκ being identical in the first F (h1) entries and independent otherwise,
is at least δ(A)κ/qκ−1, where δ(A) is the measure of A.

Proof. Say h1, . . . ,hκ fork at f if they are independent conditioned on their first
f − 1 entries being identical.

Pr
[
h1, . . . ,hκ ∈ A and F (h1) = · · · = F (hκ) |h1, . . . ,hκ fork at F (h1)

]
=
∑q
f=1 Pr

[
hr ∈ A and F (hr) = f for all r ≤ κ |h1, . . . ,hκ fork at f

]
=
∑q
f=1 E [Pr[h ∈ A and F (h) = f |h1, . . . , hf−1]κ]

≥
∑q
f=1 Pr[h ∈ A and F (h) = f]κ,

≥ q ·
(∑q

f=1
1
q · Pr[h ∈ A and F (h) = f]

)κ
=

Pr[h ∈ A]κ

qκ−1
,

where the last two inequalities are both applications of Jensen’s inequality. ut

3.3 Security in the non-programmable random oracle model

Sigma-protocols with the Fiat-Shamir transform provide soundness when the
hash function in the transformation is modeled as a non-programmable random
oracle. Here we show that an analogue statement holds for ACP as well. Roughly,
in the NPROM, the same random oracle is given to every algorithm including
the reduction built in the security proof. Thus, the reduction does not have the
advantage of being able to program the input-output correspondence of the
random oracle. For a more formal definition we refer to [Nie02].

Theorem 2. If Σi = (Ci,Zi,Vi,Si) is a sigma-protocol for LRi for all i ∈ [n]
over the common challenge space {0, 1}λ, P is the set system computed by
acyclicity program A, then ACP is a non-interactive witness indistinguishable
argument for LRP in the non-programmable random oracle model.

Proof. Witness indistinguishability is shown by a hybrid argument. Given two
distinct sets of witnesses, w1 and w2 for x, we build a hybrid starting from a proof
obtained by running the ACP prover for input (x,w1, A). Adding a witness from
w2\w1 one by one, it reaches to a proof for (x,w1∪w2, A) as input to the prover.
Then, removing a witness belonging to w1 \w2 one by one, it reaches to a proof
for (x,w2, A). Any noticeable change of probability of a distinguisher outputting
1 at any point of the hybrid reduces to violating the special honest verifier
zero-knowledge property of the corresponding Σi. Suppose that the gap happens
between hybrids with respect to witness set x∗ and x∗ ∪ {wi∗}. The reduction
executes the prover algorithm with x∗ using the zero-knowledge challenger that,
given ei∗ , returns (ai∗ , zi∗), instead of zero-knowledge simulator in step 3(b) in

17

Figure 3. Thus the proof distributes in the same way as prover with x∗ if (ai∗ , zi∗)
is a simulated one while it is the same as prover with x∗ ∪ {wi∗} if (ai∗ , zi∗) is
created using wi∗ . Accordingly, the witness indistinguishabilty error is at most
2Nεzk where εzk is the largest zero-knowledge error among Σi.

For soundness, suppose that there is an adversary A that outputs, with
probability εA, an instance x := (x1, . . . , xn) together with a valid proof on x,
π := ((a1, e1, z1), . . . , (aN , eN , zN)) that satisfies:

• for every qualified set S, there exists i that xi /∈ LRi ,
• ej = H(x‖j‖{ap | p ∈ pred(j)}) for all j∈ [N], and
• Vi(xi, aj , ej , zj) accepts for all j ∈ [N], where i = var(j).

Let ej←Hj denote the event that H(x‖j‖{ap | p ∈ pred(j)}) is evaluated
and ej is returned. Let Hk← aj denote the event that x‖k‖{ap | p ∈ pred(k)}
satisfying aj ∈ pred(k) is queried to H. Over the sequence of q distinct queries
from A to the random oracle, we define function τ that, given an event E, outputs
` ∈ [q] such that the `-th query to the random oracle made event E happened in
the view of A. (Define the output of τ as 0 if E did not occur at any query).

Suppose that there exist j, k ∈ [N] that either ej←Hj or Hk← aj do not
happen in the view of A. Then the probability that the randomly assigned hash
output (drawn in verification for the first time) satisfies the corresponding relation
with respect to the already fixed xvar(j), aj and zj , is bound by the soundness
error of Σj . Denoting the maximum soundness error by εsnd and taking union
bound for all q possible queries, the probability for this event is upper-bounded
by q · εsnd.

Now, consider the case where for all j, k ∈ [N], both events ej←Hj and
Hk← aj happen in the view of A. For every cycle C in graph G, let (j∗, k∗) be the
arrow in C that satisfies τ(Hk∗← aj∗) = min({τ(Hk← aj) | (j, k) ∈ C}). Observe
that τ(Hk← aj∗) = τ(ej∗←Hj∗) for some k 6= k∗ and therefore, τ(Hk∗← aj∗) <
τ(ej∗←Hj∗). (Equivalently, aj∗ is fixed before ej∗ in the view of the adversary.)
Let J be the set of such index j∗ over all cycles in G. Then, by definition,
S := {var(j) | j ∈ J} is a qualified set. To see this, suppose that there exists
i ∈ S with xi /∈ LRi and let j be such that i = var(j)(∈ J). For fixed xi and
aj , the probability that, ej is sampled uniformly at random (by Hj) and the
adversary outputs zj passing the verification is bounded by the soundness error
εsnd of Σi. Consequently, the probability that A produces a valid proof where
there exists i ∈ S that xi /∈ LRi

is upper-bound by q · εsnd.
Accumulating the above bounds, we have εA < 2q · εsnd, which concludes the

proof of soundness in NPROM. ut

4 The expressive power of acylicity programs

The communication and verification efficiencies of ACP composition grow linearly
in the monotone acyclicity program size of the set system P . To this end, in this
section we study the complexity of acyclicity programs. In Section 4.1 we show

18

that monotone acyclicity program size is polynomially equivalent to monotone
branching program size [GS92].

As a corollary, leveraging known results from monotone complexity theory
in Section 4.1 we conclude that there exist families whose monotone span pro-
gram size grows superpolynomially in their monotone acyclicity program size. As
the efficiency of the Cramer, Damg̊ard, Schoenmakers sigma-protocol composi-
tion [CDS94] (CDS composition) is dictated by the former parameter, we obtain
concrete examples of set systems for which ACP composition is asymptotically
more efficient than CDS composition.

In Section 4.2 we demonstrate a simulation of de Morgan formulas by acyclicity
programs of the same size. This is a consequence of known simulations of formulas
by branching programs.

In this section, it will be useful to view (monotone) set systems P over [n]
as (monotone) functions P : {0, 1}n → {0, 1} via the usual identification of a set
by its indicator vector. Recall that the monotone dual P† of P is the function
¬P(¬x1, . . . ,¬xn). An acyclicity program for P can then be interpreted as a
“cyclicity program” for P†:

Definition 9 (Monotone cyclicity program). A monotone cyclicity program
is a directed graph whose nodes are labeled by variables x1, . . . , xn. The program
accepts a given input if the subgraph induced by the true-valued nodes has a cycle.

The size of a cyclicity program is the number of nodes. We may, without
affecting the size, allow for nodes labeled by the constant true. (These nodes
can be bypassed by contracting all their incoming and outgoing edge pairs.)

4.1 Polynomial equivalence with branching programs

A monotone branching program is also a directed acyclic graph with distinguished
start and accept nodes whose vertices are labeled by variables or the constant
1. The program accepts a given input if the subgraph induced by the 1-valued
vertices has a path from the start state to the accept state.

Let mCP(P), mBP(P) be the size of the smallest monotone cyclicity program,
smallest monotone branching program for P. The efficiency of the ACP verifier
for the composed relation RP in Section 1 is proportional to mCP(P).

The following proposition shows that the complexity of our proof system is
polynomially related to the monotone branching program size of the monotone
dual P† of the composition predicate. As monotone branching programs can
polynomially simulate monotone formulas [GS92], the complexity is also upper-
bounded by the formula size mF (P†) of P†. We elaborate on this simulation in
the next section.

Proposition 1. For every monotone P, mBP(P) ≤ mCP(P) ≤ mBP(P)3 + 2.

On the other hand, the prover complexity in the NIZK composition framework
of Cramer, Damg̊ard, and Schoenmakers [CDS94] is proportional to the monotone
span program complexity mSPF(P†) times some polylogarithmic factor in F, over

19

any finite field F.5 Let stC denote the directed st-connectivity family of functions,
Pitassi and Robere [PR18] showed that:

mSPF(stC) = mBP(stC)Ω(mBP(stC)) ,

for every F. The monotone dual stC† is a family of predicates on n inputs for
which ACP composition has complexity linear in n, but CDS composition requires
nΩ(logn) communication for any potential implementation of stC† by a monotone
span program (over any finite field).

In the other direction, it is known that:

mSPF(P) ≤ mF (P) ≤ mBP(P)O(mBP(P)) ,

for every P [GS92] so the quasipolynomial separation is optimal.

Proof of Proposition 1. In the course of proving Proposition 1 we establish the
equivalence of several natural directed graph problems with respect to suitable
reductions. A labeled graph is a directed graph whose nodes are labeled by
variables x1, . . . , xn or the constant 1. A projection reduction from graph property
P to graph property Q is an algorithm that converts a labeled graph G into
another labeled graph H with the same set of labels such the for any assignment
to the variables, the subgraph induced by the 1-labels of G has property P if and
only if the subgraph induced by the 1-labels of H has property Q. We consider
the following graph properties:

• cyclicity: the graph has a (directed) cycle.

• st-connectivity: the graph has a (directed) path from vertex s to vertex t.

• acyclic st-connectivity: st-connectivity under the promise that the graph
is acyclic.

Proposition 2. cyclicity, st-connectivity, and acyclic st-connectivity
are polynomial-time equivalent with respect to projection reductions.

Proof. acyclic st-connectivity reduces to cyclicity by adding a back edge
from t to s and trivially reduces to st-connectivity.

In the other direction, we view cyclicity and st-connectivity as special
cases of the following property paths: Given a set of triplets (si, ti, `i) does there
exist a path from si to ti of length `i for some i? In cyclicity si = ti ranges
over all vertices and `i ranges over all values from 1 to n. In st-connectivity
si = s, ti = t, and `i ranges over all values from 0 to n− 1.

The reduction from paths to acyclic st-connectivity consists of building
the reachability graph for the natural guess-and-verify nondeterministic logspace
algorithm for paths. Let V be the vertex set of the paths instance G. For every
pair (v, w)∈V × V and ` between 0 and n create a node (v, w, `) in the acyclic

5 Both mF and mSP [KW93] are in fact invariant under taking monotone duals, but
mBP is not [GS92].

20

st-connectivity instance H with the same label as w and two special nodes
s and t with label 1. Also, for every edge (w,w′) in G, every v ∈V \{w′} and
all ` ≥ 1, create an edge between node (v, w, `− 1) node (v, w′, `) in H. Finally,
connect s to (si, si, 0) and connect (si, ti, `i) to t for all i in H. By construction,
H is acyclic and its st-paths are all of the form

s, (si, v0, 0), (si, v1, 1), . . . , (si, v`i , `i), t ,

where v0, . . . , v`i is a path from si to ti in G. ut

As the reduction from acyclic st-connectivity to cyclicity preserves
the number of vertices and the reverse reduction maps an n-vertex graph into
an n3 + 2-vertex graph (after shortcutting the bottom-layer vertices) we obtain
Proposition 1.

4.2 Acyclicity programs for monotone formulas

A monotone (de Morgan) formula for a n-variate function P is a tree whose
internal nodes are labeled by AND/OR and whose leaves are labeled by inputs,
allowing repetitions. The size of a formula is the number of leaves. Monotone
formulas naturally compute monotone functions. The monotone formula size
remains invariant under duality by de Morgan’s laws.

By a standard simulation of (monotone) formulas by (monotone) branching
programs (e.g., [GS92]) it is known that every monotone formula can be simulated
by a branching program of the same size, i.e., mF (P) ≥ mBP(P). It follows that
both mF (P) and mF (P†) are lower-bounded by mCP(P), i.e. a formula (and
its dual) can be computed by an acyclicity program of the same size:

Proposition 3. A formula for P can be converted to an acyclicity program for
P of the same size in at most quadratic time in the size.

Before we describe this simulation, we discuss an alternative seemingly intu-
itive approach that does not work. To be specific, let us look at the 4-variate
CNF formula (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ (x1∨x3∨x4). It may be tempting to
“convert” this formula to the acyclicity program in Figure 5c, computed by greedily
including a cycle for each of the clauses. The two are, however not equivalent,
because the assignment x1x2x3x4 = ftft (t, f stand for true, false) is satisfying
for the CNF but not for the acyclicity program. (Note that an unintended cycle
has been created between nodes 1 and 3, unavoidably.)

To prove Proposition 3 we first convert the formula to a branching program,
add a back edge from the accept state to the start state, and then short-circuit all
states labeled by the constant 1. The branching program is constructed inductively.
A variable xi is represented by the branching program s(tart)→ i→ a(ccept).
Their AND and their OR are represented by the branching programs:

s→ A→ t(rue)→ B → a

s A

B a

21

3

2 1

4

(a) Start with a cycle for
clause (x1 ∨ x2 ∨ x3).

3

2 1

4

(b) Then, add a cycle for
clause (x1 ∨ x2 ∨ x4).

3

2 1

4

(c) Finally, add a cycle
for clause (x1∨x3∨x4).

Fig. 5: Not an acyclicity program for (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3∨x4).

In the AND construction, the accept state of A is fused with the start state of
B into the true constant. To illustrate the transformation, consider the formula:

F = x1 ∨ (x21 ∧ (x221 ∨ x222 ∨ x223) ∧ x23) ∨ x3 ∨ x4 .

To convert it into an acyclicity program, we work with its dual:

F† = x1 ∧ (x21 ∨ (x221 ∧ x222 ∧ x223) ∨ x23) ∧ x3 ∧ x4 .

Figure 6 (above) shows the branching program representation of F† including
the constant states. The cyclicity program representation of F†, which is the
same as the acyclicity program representation of F is then obtained by adding a
back edge from the accept state to the start state. Figure 6 (below) shows the
simplification that results from short-cutting the constant states.

We note that this reduction from monotone formulas makes it easy to turn
the witness indistinguishability property into zero-knowledge in the common
reference string model by following the techniques from [FLS90, CPSV16]: select
a random instance x from a hard language as a common reference string and
prove the extended statement “(x ∈ L) ∨ (the original statement)”.

5 Composition for Predicates Represented by Circuits

In this section we present a sigma-protocol composition scheme with respect to
predicates represented by monotone circuits. Unlike Theorem 1, this scheme relies
on additional computational assumptions, specifically, we propose an instantiation
based on the hardness of computing discrete logarithms.

A direct simulation of monotone circuits by acyclicity programs is inherently
inefficient, since mBP(stC†) = mBP(stC)Ω(mBP(stC)), as shown by Grigni and
Sipser [GS92]. By Proposition 1 it follows that the acyclicity program size of stC

22

s 1 t 221 222

21

23

223 t 3 t 4 a

1 221 222

21

23

223 3 4

Fig. 6: Branching program representation of F† (above) and its simplified
representation (below). The acyclicity program is obtained by incorporating
the dashed back edge.

is superpolynomial in its branching program size and therefore in its monotone
circuit size.

Instead, we emulate a circuit C on n inputs x1, . . . , xn by an acyclicity
program A that, in addition to these n inputs as nodes, contains paired auxiliary
nodes (y1, z1), . . . , (ym, zm). Accepting inputs to C yield accepting inputs to A
in which at most one of the two nodes in each pair (yi, zi) is set to true (and
vice versa). Each auxiliary pair represents a pair of sigma-protocols for proving
knowledge of at most one out of two auxiliary witnesses. Such protocols can be
constructed and proved secure in the common random string model from the
discrete logarithm assumption.

For simplicity, we apply the construction to monotone circuits in the AND/OR

basis, but we note that the method can be extended to other threshold gates.

Definition 10 (Boolean circuit). An AND/OR boolean circuit is a directed
acyclic graph with n sources, and other nodes of in-degree 2, called internal gates.
Sources are labeled by inputs x1, . . . , xn, all other nodes are labeled by AND/OR.

The size of the circuit is the total number of nodes. We consider circuits with
a single output node, which compute a monotone function from {0, 1}n to {0, 1}:
after assigning the input nodes, the internal gates can be evaluated in any order
consistent with the underlying graph, determining in a unique output value.

An entangled assignment to a pair of boolean variables (y, z) is an assignment
in which at most one of the values is true.

23

w w′

ŵ

w w′

ŵ

f

(a) Transformation of an AND gate.

wy wz

ŵ

j

wy wz

ŵ

yj zj

f

(b) Transformation of an OR gate.

Fig. 7: From a circuit to an acyclicity program with entangled nodes.

Proposition 4. Given a circuit C with n sources x1, . . . , xn and m OR nodes
there exists an acyclicity program A with n+2m nodes x1, . . . , xn, y1, z1, . . . , ym, zm
such that x1, . . . , xn satisfies C if and only if there exists an entangled assignment
to all (yj , zj) so that x,y, z satisfies A. Moreover, A (and y, z) can be computed
from C (and x) in time at most n+O(m2).

Proof. We replace each AND gate by a false node and the j-th OR gate by a
gadget consisting of (yj , zj) and a false node connected as in Figure 7. We
add back edges from the output node to all n input nodes. See Figure 8 for an
example of this transformation.

If we ignore the back edges, we need to argue that satisfying assignments
to C can be extended to cover all source-to-sink paths in A and vice versa.
First suppose x is a satisfying assignment for C. For each true OR gate j with
input wires wy, wz, set yj to true if wy is false and set zj to true if wz is false.
(The values to the false OR gates can be set arbitrarily.) We now argue that all
source-sink paths in A are covered by induction on circuit size. The claim is
vacuous for a circuit with one node. Since the assignment is satisfying, the top
gate top evaluates to true. If top is AND, then by the inductive hypothesis the
paths in both subcircuits are covered. If top is OR, then the true subcircuit paths
are covered by the inductive hypothesis, while the false subcircuit paths (if any)
are covered by our definition of yj and zj .

We prove the converse also by induction on circuit size. The claim is vacuous
for a circuit with one node. Now assume x is not satisfying so the top gate top
evaluates to false. If top is AND, then at least one of the subcircuits is false and
the paths in it cannot all be covered. If top is OR, then both of the subcircuits
are false, so at least one of them cannot be covered regardless of the choice of yj
and zj .

The false nodes in A can be short-circuited resulting in an acyclicity program
of size n+ 2m as desired. ut

In order to instantiate the ACP compiler with the acyclicity program A from
Proposition 4, we need to describe proof relations and sigma-protocols for each

24

x1
x2
x3
x4
x5

(a) Circuit C.

x1

x2

x3

x4

x5

f

f

f

f

f

(b) Acyclicity program A.

Fig. 8: Circuit to acyclicity program conversion example.

entangled pair. Given two entangled inputs y and z, the prover ought to be
able to prove knowledge of a witness for y or a witness for z but not both. The
instances y and z should therefore be chosen in a correlated manner. In order to
provide a general definition, we define the notion of restrictive sampling. We will
then show how to build a restrictive sampling scheme from the discrete logarithm
assumption.

Definition 11 (Restrictive sampling). A restrictive sampling scheme is a
triple of PPT algorithms Υ = (Setup,Gen,Verify):

• Setup(1λ) → pp is a probabilistic algorithm that outputs a set of public
parameters, including an NP-relation R∗ and a sigma-protocol Σ∗ for it.

• Gen(pp, b)→ (h0, h1, w) is a probabilistic algorithm that, on input pp and a
bit b, outputs two instances h0, h1 and a witness w such that R∗(hb, w) = 1.

• Verify(pp, h0, h1)→ 0/1 is a deterministic algorithm that, on input pp and
two instances h0, h1 outputs either 1 (acceptance) or 0 (rejection).

We require a restrictive sampling scheme satisfy the following properties:

Partial knowledge. For every PPT algorithm A, the following probability is
negligible in the security parameter λ:

Pr

[
pp ← Setup(1λ)

(h0, h1, w0, w1)← A(pp)
:

R∗(h0, w0) = R∗(h1, w1) = 1
∧ Verify(pp, h0, h1) = 1

]
.

Witness independence. For b ∈ {0, 1}, let Db be the distribution defined as:

Db :=
(
pp ← Setup(1λ); (h0, h1, w)← Gen(pp, b); return (pp, h0, h1)

)
.

We require distributions D0 and D1 be identical.

25

Theorem 3. For some λ, n∈N, and all i∈ [n], let Σi be a sigma-protocol for
relation Ri, with common challenge space {0, 1}λ and let Υ be a restrictive
sampling scheme. Let C be a monotone AND/OR boolean circuit for the set system
P and let H : {0, 1}∗ → {0, 1}λ be a random oracle. The scheme described in
Figure 9 is a NIZK proof of knowledge for RP .

Proof. Completeness, follows from the completeness of the ACP proof system
and the “only if” part of Proposition 4.

The zero-knowledge simulator samples random pairs h0
j , h

1
j by running Υ.Gen

on input6 (pp, 0) to simulate the first part of the view of the prover. It then runs
the ACP simulator on inputs xi, h

0
j , h

1
j , inheriting its indistinguishability.

For knowledge soundness, given the partial knowledge property of Υ , we can
assume that algorithms running in expected time t cannot find h0, h1, w0, w1 such
that R∗(h0, w0) = R∗(h1, w1) = 1 and Υ.Verify(pp, h0, h1) = 1, where t is the
running time of the ACP extractor E . By soundness of the ACP extractor, if t is
sufficiently large in terms of the cheating prover complexity, E produces witnesses
for some satisfying set S in A. Our assumption guarantees that this set cannot
include a pair of entangled claims h0

j , h
1
j such that Υ.Verify(pp, h0

j , h
1
j) = 1 and the

corresponding witnesses w0
j , w

1
j satisfy R(h0

j , w
0
j) = R(h1

j , w
1
j) = 1. Consequently,

the extraction of witnesses for S provided at most one witness for each pair
of entangled claims, so by the knowledge soundness of E and the “if” part of
Proposition 4, the subset of S indexed by nodes x1, . . . , xn is satisfying for P . ut

5.1 Restrictive sampling from the discrete logarithm assumption

Consider the following restrictive sampling scheme:

• Setup(1λ): sample a λ-bits prime p and select a group G = 〈g〉 of order p.

Sample τ
$← Zp and let h := gτ . Define R∗(h, x) := (h = gx) and let Σ∗ be the

Schnorr sigma-protocol for PoK{(x) : R∗(h, x) = 1}. Return pp := (p,G, g, h).

• Gen(pp, b): sample w
$← Zp, set hb := gw, h1−b := hg−w. Return (h0, h1, w).

• Verify(pp, h0, h1): output 1 if h0h1 = h, output 0 otherwise.

It is not hard to see that the scheme satisfies the partial knowledge property,
because an algorithm A that, given (g, h), outputs h0, h1, w0, w1 satisfying that
h0 = gw0 , h1 = gw1 and h0h1 = h, can be used to compute discrete logarithms,
since w0+w1 is the discrete logarithm of h in base g.

Furthermore, the scheme satisfies the witness independence property, since
for any g, h ∈ G, the following two distributions are identical:(

w
$← Zp; return (gw, hg−w)

)
≡
(
w

$← Zp; return (hg−w, gw)
)
.

6 The simulator may alternatively choose input (pp, 1), in both cases the simulation is
perfect due to the witness independence property of Υ .

26

Inputs: Claims x1, . . . , xn, circuit C represented by acyclicity program A with
entangled pairs (y01 , y

1
1), . . . , (y0m, y

1
m).

Common reference string: pp generated with Υ.Setup, random oracle H.

Prover:

Input: Witnesses wi : i ∈ S ⊆ [n] and b(j) ∈ {0, 1} for j ∈ [m] such that the input
set {xi : i ∈ S} ∪ {yb(j)

j : j ∈ [m]} is satisfying for A.

1. For each entangled pair, run (h0
j , h

1
j , w

∗
j)← Υ.Gen(pp, b(j)) and set values h0

j , h
1
j

as statements for the claims associated to nodes yb(j)

j and y1−b(j)

j , respectively.

2. Emulate the ACP prover for acyclicity program A on claims x1, . . . , xn with
witnesses wi : i ∈ S ⊆ [n] and claims h0

1, h
1
1, . . . , h

0
m, h

1
m with witnesses w∗j .

Verifier:

1. Upon receiving instances h0
j , h

1
j , verify that Υ.Verify(pp, h0

j , h
1
j) = 1, ∀j ∈ [m].

2. Emulate the ACP verifier for acyclicity program A, claims xi w.r.t. relation Ri,
and claims h0

j , h
1
j w.r.t. relation R∗ (defined in pp).

Fig. 9: Composition for Predicates Represented by Circuits.

5.2 Security in the non-programmable random oracle model

We can prove the security of our construction from Figure 9 in the NPROM,
at the cost of having soundness (Definition 6) instead of knowledge soundness.
For that, observe that the proof of Theorem 3 relies almost completely on the
ACP composition security, which can be proven secure in the non-programmable
random oracle model. Nevertheless, as shown in Section 3.3, in the NPROM the
ACP composition achieves witness indistinguishability (and not ZK).

Our construction from Figure 9 can, however, achieve zero-knowledge if the
restrictive sampling scheme is equipped with an extra algorithm that, on input
pp and the randomness used to compute it (which can be seen as a trapdoor), can
indeed “violate” the partial knowledge property. Namely, it can produce instances
h0 and h1 and valid witnesses for both them, such that Verify(pp, h0, h1) = 1. The
zero-knowledge simulator could leverage this algorithm to sample the instances
associated to entangled pairs, knowing both witnesses of every pair, and then
emulate the ACP prover for the acyclicity program on claims x1, . . . , xn (with not
witnesses for them) and claims h0

1, h
1
1, . . . , h

0
m, h

1
m (with all witnesses for them).

Observe that this extra algorithm can be defined for (but it is not specific to)
the instantiation of restrictive sampling based on discrete logarithm. In particular,

knowing τ computed during Setup, one can generate w
$← Zp, compute h0 := gw,

h1 := gτ−w and output (h0, h1, w, τ−w). Furthermore, observe that the above
distribution on (h0, h1) is identical to D0 and D1 (from the witness independence
property).

27

6 Concluding remarks

Constructing zero-knowledge proof systems by combining sigma-protocols in a
compound statement is a powerful technique used for many applications, including
anonymous credentials or ring signatures. The most famous and widely used of
such composition techniques is the celebrated CDS composition [CDS94], which
can be used for compound statements expressed as monotone span programs.

In this work, we have presented a novel technique for combining sigma-
protocols into a single non-interactive system for a compound statement. Unlike
CDS, our scheme looses the structure of sigma-protocol and it is proven secure
in the random oracle model. However, our new methodology enhances the CDS
composition in several flavors, including: new expressivity (the complexity of
our system is linear in the size of the acyclicity program representation of the
access structure, incomparable to monotone span programs), more generality (it
is not limited to 2-special sound atomic protocols) and can often lead to more
compact proofs (as in our circuit composition, where one single transcript is
present per atomic statement). Consequently, our results arguably complement
previous composition techniques.

Exploring whether our techniques can lead to more efficient zero-knowledge
systems achieving post-quantum security is an appealing target for future work.
Observe that the only part of the presented work that relies on classical as-
sumptions is the instantiation of the restrictive sampling scheme. But even this
primitive could be instantiated under post-quantum assumptions. For example, it
could be instantiated under the Short Integer Solution (SIS) assumption [GPV08].
Note that the map fA(x) = Ax (mod q) is almost surjective, so given y, one
could sample y0 and y1 such that y0 + y1, and know a short xb such that
Axb = yb. For that, sample a short xb first and set yb := Axb, y1−b := y−Axb.
The partial knowledge property would hold because if, given y, one could find
short x0,x1 such that Ax0 +Ax1 = y, then x0 +x1 would be a short preimage
of y under A. The witness independence is guaranteed by the fact that the
distribution of y = Ax for a randomly chosen short x is close to uniform.

References

AAB+20. Masayuki Abe, Miguel Ambrona, Andrej Bogdanov, Miyako Ohkubo, and
Alon Rosen. Non-interactive composition of sigma-protocols via share-then-
hash. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, December 7-11, 2020,
Proceedings, volume 12493 of Lecture Notes in Computer Science, pages
749–773. Springer, 2020.

AB87. Noga Alon and Ravi B. Boppana. The monotone circuit complexity of
boolean functions. Combinatorica, 7(1):1–22, 1987.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

28

Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Octo-
ber / November 2017.

AOS02. Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures
from a variety of keys. In Yuliang Zheng, editor, ASIACRYPT 2002, volume
2501 of LNCS, pages 415–432. Springer, Heidelberg, December 2002.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society Press, May 2018.

BCC+15. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based
on DDH. In Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl,
editors, Computer Security - ESORICS 2015 - 20th European Symposium
on Research in Computer Security, Vienna, Austria, September 21-25, 2015,
Proceedings, Part I, volume 9326 of Lecture Notes in Computer Science,
pages 243–265. Springer, 2015.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 336–365.
Springer, Heidelberg, December 2017.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

BDG20. Mihir Bellare, Hannah Davis, and Felix Günther. Separate your domains:
NIST PQC kems, oracle cloning and read-only indifferentiability. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT
2020 - 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II, volume 12106 of Lecture Notes in Computer Science, pages 3–32.
Springer, 2020.

BGW99. László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds
for monotone span programs. In Combinatorica, volume 19, pages 301–319,
1999.

BM90. Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and
applications. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 547–557. Springer, Heidelberg, August 1990.

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399.
ACM Press, October / November 2006.

BPW12. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 626–643. Springer, Heidelberg, December 2012.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Raymond
Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, ACM
CCS 93, pages 62–73. ACM Press, November 1993.

29

BSS02. Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring
signatures and applications to ad-hoc groups. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 465–480. Springer, Heidelberg,
August 2002.

CDM00. Ronald Cramer, Ivan Damg̊ard, and Philip D. MacKenzie. Efficient zero-
knowledge proofs of knowledge without intractability assumptions. In Hideki
Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages
354–372. Springer, Heidelberg, January 2000.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Yvo Desmedt,
editor, CRYPTO’94, volume 839 of LNCS, pages 174–187. Springer, Heidel-
berg, August 1994.

CFQ19. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular
design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

CPSV16. Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti.
A transform for NIZK almost as efficient and general as the Fiat-Shamir
transform without programmable random oracles. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages
83–111. Springer, Heidelberg, January 2016.

Cra97. Ronald Cramer. Modular Design of Secure yet Practical Cryptographic
Protocols. PhD thesis, University of Amsterdam, January 1997.

DK18. Apoorvaa Deshpande and Yael Kalai. Proofs of ignorance and applications
to 2-message witness hiding. Cryptology ePrint Archive, Report 2018/896,
2018.

FHJ20. Marc Fischlin, Patrick Harasser, and Christian Janson. Signatures from
sequential-OR proofs. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 212–244. Springer,
Heidelberg, May 2020.

FLS90. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero
knowledge proofs based on a single random string (extended abstract). In
31st FOCS, pages 308–317. IEEE Computer Society Press, October 1990.

FLWL20. Hanwen Feng, Jianwei Liu, Qianhong Wu, and Ya-Nan Li. Traceable ring
signatures with post-quantum security. In Stanislaw Jarecki, editor, CT-
RSA 2020, volume 12006 of LNCS, pages 442–468. Springer, Heidelberg,
February 2020.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

GMW86. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic protocol
design (extended abstract). In 27th FOCS, pages 174–187. IEEE Computer
Society Press, October 1986.

30

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings
for cryptographers. Discret. Appl. Math., 156(16):3113–3121, 2008.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

GS92. Michelangelo Grigni and Michael Sipser. Monotone complexity. In Proceed-
ings of the London Mathematical Society, Symposium on Boolean Function
Complexity, pages 57–75, 1992.

KW93. Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings
of the Eighth Annual Structure in Complexity Theory Conference, pages
102–111. IEEE Computer Society, 1993.

Lin15. Yehuda Lindell. An efficient transform from sigma protocols to NIZK with
a CRS and non-programmable random oracle. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 93–109. Springer, Heidelberg, March 2015.

LLNW16. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge
arguments for lattice-based accumulators: Logarithmic-size ring signatures
and group signatures without trapdoors. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 1–31. Springer, Heidelberg, May 2016.

LLNW17. Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge
arguments for lattice-based PRFs and applications to E-cash. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 304–335. Springer, Heidelberg, December 2017.

LMR19. Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct arguments
for bilinear group arithmetic: Practical structure-preserving cryptography.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2057–2074. ACM Press, November
2019.

Max11. Gregory Maxwell. Zero knowledge contingent payment. https://en.

bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment, 2011.
MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:

Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM
Press, November 2019.

Nie02. Jesper Buus Nielsen. Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer, Heidelberg,
August 2002.

NTWZ19. Khoa Nguyen, Hanh Tang, Huaxiong Wang, and Neng Zeng. New code-based
privacy-preserving cryptographic constructions. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS,
pages 25–55. Springer, Heidelberg, December 2019.

PR18. Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone
span programs over any field. In Ilias Diakonikolas, David Kempe, and

31

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

Monika Henzinger, editors, 50th ACM STOC, pages 1207–1219. ACM Press,
June 2018.

PS00. David Pointcheval and Jacques Stern. Security arguments for digital sig-
natures and blind signatures. Journal of Cryptology, 13(3):361–396, June
2000.

Raz85. A. A. Razborov. Lower bounds on monotone complexity of the logical
permanent. Mathematical notes of the Academy of Sciences of the USSR,
37(6):485–493, 1985.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
552–565. Springer, Heidelberg, December 2001.

Ste96. Jacques Stern. A new paradigm for public key identification. IEEE Trans.
Inf. Theory, 42(6):1757–1768, 1996.

Tar88. É. Tardos. The gap between monotone and non-monotone circuit complexity
is exponential. Combinatorica, 8(1):141–142, 1988.

32

	Acyclicity Programming for Sigma-Protocols

