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Abstract. Public key cryptography is widely used in key exchange and
digital signature protocols. Public key cryptography requires expensive
primitive operations, such as finite-field and group operations. These
finite-field and group operations require a number of clock cycles to exe-
cute. By carefully optimizing these primitive operations, public key cryp-
tography can be performed with reasonably fast execution timing. In this
paper, we present the new implementation result of Curve448 on 32-bit
ARM Cortex-M4 microcontrollers. We adopted state-of-art implementa-
tion methods, and some previous methods were re-designed to fully uti-
lize the features of the target microcontrollers. The implementation was
also performed with constant timing by utilizing the features of micro-
controllers and algorithms. Finally, the scalar multiplication of Curve448
on 32-bit ARM Cortex-M4@168MHz microcontrollers requires 6,285,904
clock cycles. To the best of our knowledge, this is the first optimized im-
plementation of Curve448 on 32-bit ARM Cortex-M4 microcontrollers.
The result is also compared with other ECC and post-quantum cryptog-
raphy (PQC) implementations. The proposed ECC and the-state-of-art
PQC results show the practical usage of hybrid post-quantum TLS on
the target processor.

Keywords: ARM Cortex-M4 · Curve448 · Public Key Cryptography ·
Hybrid Post-Quantum TLS

1 Introduction

Public key cryptography is widely used in key exchange and digital signature
protocols. For public key cryptography, implementation is a challenge with low-
end microcontrollers, which have the disadvantages of low energy, performance,
and memory. In particular, the efficiency of elliptic curve cryptography (ECC)
depends on the compact implementation of finite-field arithmetic and group op-
eration. For this reason, the optimized implementation of finite-field arithmetic
and group operation should be considered. In this paper, we present the first
Curve448 implementation result on 32-bit ARM Cortex-M4 microcontrollers.
The motivations of this work may be summarized as follows:
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– Curve448 offers 224-bit security and is designed for use with the elliptic curve
Diffie-Hellman (ECDH) key agreement scheme [1]. The curve was favored by
the Internet Research Task Force Crypto Forum Research Group (IRTF
CFRG) for inclusion in transport layer security (TLS) standards along with
Curve25519. The curve is an approved elliptic curve for use by the US federal
government, which is confirmed in FIPS 186-5. However, the implementation
of algorithms has not been actively conducted. This work fills this gap.

– The target microcontroller, namely the 32-bit ARM Cortex-M4, is the most
widely used in practice because it has relatively powerful computation abil-
ities in terms of the arithmetic logic unit (ALU), frequency of the CPU,
RAM, and ROM in comparison to legacy embedded processors, such as 8-
bit AVR ATmega and 16-bit MSP430(X) microcontrollers. Furthermore, the
NIST recommended this board for evaluation of post-quantum cryptogra-
phy (PQC). For this reason, a number of cryptographic implementations
have been recently done over 32-bit ARM Cortex-M4 microcontrollers [2–5].
However, Curve448 had not been implemented on this target microcontroller.
This work evaluated Curve448 on ARM Cortex-M4 microcontrollers for the
first time.

For high performance, we adopted state-of-art implementation methods and
some previous methods were re-designed to fully utilize the features of the target
microcontrollers. This was the first implementation of Curve448 on this target
processor. The result was compared with those of other 128-bit security ECC
implementations. The scalar multiplication of Curve448 on 32-bit ARM Cortex-
M4@168MHz microcontrollers requires 6,285,904 clock cycles. The result shows
that Curve448 is reasonably fast enough on the target microcontroller. The result
was also compared with other PQC implementations. This shows the practical
usage of hybrid post-quantum TLS on the target processor is available.

1.1 Contribution

Detailed contributions are as follows:

First implementation of Curve448 on 32-bit ARM Cortex-M4 This
paper presents the first implementation of Curve448 on 32-bit ARM Cortex-M4
processors. State-of-art techniques were applied to improve the performance.
The result shows that the implementation is practically fast enough.

Secure and efficient implementation of primitive operations All prim-
itive operations such as finite-field arithmetic and group operation were imple-
mented in a secure and efficient way. By using constant and regular implemen-
tation, the timing attack was efficiently prevented. Furthermore, cache attack
were prevented by avoiding the pre-computed value access. All requirements for
constant timing on ARM Cortex-M4 specifically are also presented for interested
cryptographic researchers.
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In-depth comparison of pre-quantum and post-quantum cryptography
We compared pre-quantum and post quantum cryptography on the target pro-
cessors. The performance report shows the availability of hybrid post-quantum
TLS. Furthermore, we discuss the trade-off between performance and security
in detail.

First Curve448 on ARM Cortex-M4 as an open source The implemen-
tation will be public domain after publication. The source code will be a helpful
resource for researchers.

The remainder of this paper is organized as follows. In Section 2, we introduce
the target curve (Curve448), the target microcontroller (32-bit ARM Cortex-
M4), and previous implementations. The optimized implementation techniques
for Curve448 on 32-bit ARM Cortex-M4 are presented in Section 3. In Sections
4, we evaluate and compare implementation results. Finally, we conclude the
paper in Section 6.

2 Related Works

In this section, we introduce the target curve (Curve448), target microcontroller
(32-bit ARM Cortex-M4), and previous implementations.

2.1 Target Curve: Curve448

Edwards curves, which were suggested in [6] provide complete addition formu-
las, which does not have a case (division by zero). The one proper Edwards
curve for cryptography is Curve448–Goldilocks, which is faster and simpler than
traditional NIST curves [1]. Curve448–Goldilocks provides high-security level
(224-bit) and the related equation is as follows:

E : y2 + x2 = 1 + dx2y2

defined over the field F2448−2224−1 with curve parameter d = −39081. Curve448
satisfies the requirement of SafeCurves [7] and is one of ECC standards for TLS
1.3 [8].

2.2 Target Microcontroller: 32-bit ARM Cortex–M4

The ARM Cortex–M4 microcontroller is a small and energy-efficient ARM pro-
cessor. The microcontroller supports the ARMv7E-M instruction set, which com-
prises Thumb-2 instructions and additional DSP extensions. The Cortex-M4 ar-
chitecture has a 3-stage pipeline with branch speculation. It includes 16 32-bit
registers (R0:R15), and supports a mix of 16 and 32-bit operations corresponding
to Thumb-2.

Instructions that are relevant for the proposed implementation include 32-
bit arithmetic and logical instructions, such as addition (ADD) and addition with
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carry (ADC), as well as memory instructions that perform multiple-data load-
ing/storing (LDM/STM).

The microcontroller is equipped with powerful single-cycle multiply and multiply-
and-accumulate instructions from DSP extensions, including UMUL, UMLAL, and
UMAAL. These instructions compute the product 32 × 32-bit → 64-bit (UMUL),
plus a 64-bit accumulation with a single 64-bit value (UMLAL) or plus a 64-bit ac-
cumulation with two 32-bit values (UMAAL). The core instruction set is presented
in detail in Table 1.

Table 1. Instruction set summary for ARM Cortex-M4.

Inst. Operands Description Operation

ADD C, A, B Addition without Carry C ← A+B

ADC C, A, B Addition with Carry C ← A+B+Carry

SUB C, A, B Subtraction without Carry C ← A-B

MOV C, A Move 32-bit word between registers C ← A

UMAAL D, C, A, B Multiplication with Accumulaion {D|C} ← A×B+C+D
LDM A!, {B-C} Loading data from memory to registers –

STM A!, {B-C} Storing data from registers to memory –

2.3 Previous Implementations

Since Curve448 was recently presented, it has become a new ECC standard as
a TLS 1.3. For this reason, only few implementations of Curve448 on low-end
microcontrollers are available. In [9], the first Curve448 implementations on both
8-bit AVR ATmega and 16-bit MSP430 microcontrollers were presented. These
works achieved 103,228,541 and 73,477,660 clock cycles for scalar multiplication
of Curve448 on 8-bit AVR ATmega and 16-bit MSP430 microcontrollers, re-
spectively. To improve the performance, the Karatsuba algorithm is utilized for
multi-precision multiplication. On the 32-bit ARM Cortex-M4 microcontroller,
several studies have investigated optimized implementations of the well-known
Curve25519 [10–13]. Curve25519 provides a 128-bit security level (i.e. short-term
security), while Curve448 provides a 224-bit security level (i.e. long-term secu-
rity). For long-term security, implementation of Curve448 should be considered
rather than Curve25519. In this paper, we present an optimized implementation
of Curve448 on the 32-bit ARM Cortex-M4 microcontroller for the first time.

3 Optimization Techniques for Curve448 on 32-bit ARM
Cortex-M4

ECC implementations consist of finite-field arithmetic and group operation. For
finite-field arithmetic, modular addition, subtraction, multiplication, squaring,
and inversion operations are required. For group operations, point addition, point
doubling, and scalar multiplication operations are required.
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3.1 Finite-Field Operations

Finite-Field Addition / Subtraction The 448-bit addition and subtraction
operations are performed together with modular reduction for finite-field addi-
tion and subtraction. First, addition or subtraction is performed. Then, modular
reduction is performed when the addition or subtraction generates a carry bit
or borrow bit as follows:

Integer Addition/Subtraction→Modular Reduction

According to the school-book approach, modular reduction is performed
whenever a carry bit or borrow bit is captured. This approach generates leakage
information from branch statements. For this reason, modular reduction is al-
ways performed regardless of the carry or borrow bit, which removes the relation
between secret information and modular reduction. When the carry bit or bor-
row bit is set, the mask value is generated from it. For example, when the borrow
bit is set, the value is 0xFFFFFFFF, which is used to mask the modulus. When
the carry bit is set, the zero value is subtracted by the carry bit, which also gen-
erates 0xFFFFFFFF mask. Afterward, the masked modulus is added/subtracted
to/from the intermediate results for modular subtraction and modular addition,
respectively.

For efficient memory access, the usage of registers is also optimized further
because the register access is much faster than the memory access. The 32-bit
ARM Cortex-M4 microcontroller provides 14 general purpose registers. These
registers cannot maintain all operands and intermediate results throughout the
computation to reduce the number of memory accesses. For this reason, only
some of the intermediate results are maintained in registers, while the others are
stored in memory. For this purpose, 9, 2, and 3 registers are used for intermediate
results, temporal storage, and memory pointers, respectively.

Finite-Field Multiplication Multiplication is the most expensive operation
of ECC implementation. The multiplication consists of integer multiplication
and modular reduction. The proposed implementation performs each operation
separately.

Integer Multiplication→Modular Reduction

To improve the multiplication performance on the 32-bit ARM Cortex-M4
microcontroller, the operand caching (OC) method is utilized [14]. The OC
method caches many operands in registers, which reduces the number of memory
accesses efficiently. In a previous work, the OC method with a width of 4 was
adopted utilizing general purpose registers [4]. The order of instructions was also
optimized to reduce the number of pipeline stalls.

Figure 1 illustrates strategies for implementing 448-bit multiplication on
32-bit ARM Cortex-M4 microcontroller. Let A and B be operands of length
448 bits each. Each operand is written as A = (A[13], ..., A[1], A[0]) and B =
(B[13], ..., B[1], B[0]). The result C = A · B is represented as C = (C[27], ...,
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Fig. 1. 448-bit Operand Scanning multiplication at the word-level on ARM Cortex-M4
[4].

C[1], C[0]). In the rhombus form, the lowest indices (i, j = 0) of the product
appear at the rightmost corner, whereas the highest indices (i, j = 13) appear
at the leftmost corner. A black arrow over a point indicates the processing of a
partial product. The lowermost points represent the results C[i] from the right-
most corner (i = 0) to the leftmost corner (i = 27). Computation is performed
from 1© to 4©. Because the length of the operand caching is set to 4, the process
is divided into 4 sections.

Finally, the implementation achieved 566 clock cycles for 448-bit multipli-
cation. Because this approach achieves the best performance, we adopted our
implementation. For better performance, the Karatsuba algorithm was also con-
sidered but performance improvement was not observed during the experiment
due to the high efficiency of UMAAL instructions. For the modular reduction, the
fast reduction method introduced in [9] was adopted. Detailed descriptions of
Curve448 are given in Algorithm 1. All general purpose registers are utilized to
maintain the intermediate results. In Step 1, both operands A[2] and A[3] are
added and output the intermediate result (ε0‖T ). The intermediate result (T )
is maintained in registers, and the carry bit (ε0‖T ) is stored in STACK.

In Step 2, both operands A[0] and ε0‖T are added and output intermediate
result (ε1‖C[0]). The intermediate result (ε1‖C[0]) is stored in STACK, while the
intermediate result (T ) is maintained in registers.

In Step 3, the operand (A[1]) is loaded and the intermediate result (ε0‖T ) is
added. Then, the operand (A[3]) is added to the intermediate result and output
the intermediate result (ε2‖C[1]).

From Step 4 to Step 7, carry bits are added to the intermediate result. Both
intermediate results (C[0] and C[1]) are maintained in registers. Two registers
are utilized to handle carry bits, while part of registers are stored in STACK.
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Algorithm 1 Fast reduction Curve448 [9].

Require: 896-bit intermediate result A (A[3]∼A[0] in 224-bit)

Ensure: 448-bit result C (C[1]‖C[0] in 224-bit)

1: ε0‖T← A[2]+A[3]

2: ε1‖C[0]← A[0]+ε0‖T
3: ε2‖C[1]← A[1]+A[3]+ε0‖T

4: ε3‖C[0]← C[0]+ε2
5: ε4‖C[1]← C[1]+(ε1+ε2+ε3)

6: ε5‖C[0]← C[0]+ε4
7: C[1]← C[1]+(ε4+ε5)

8: return C

Finite-Field Inversion The finite-field inversion can be performed by follow-
ing Fermat’s Theorem. The prime of Curve448 is p = 2448 − 2224 − 1 and the
computation of inversion is a = z−1 ≡ z2

448−2224−3 mod p. The inversion opera-
tion can be performed with 447 modular squaring and 13 modular multiplication
operations. Detailed descriptions are given in Algorithm 2.

3.2 Group Operations

The scalar multiplication of Curve448 requires a number of point addition and
point doubling operations. The school-book approach to perform the scalar
multiplication executes the addition operation depending on the secret value
(i.e. branch statement). In order to ensure the constant execution timing for
scalar multiplication, Montgomery ladder algorithm is utilized [15]. The Mont-
gomery ladder algorithm performs point addition and point doubling in a reg-
ular pattern. The inner routine of the point addition performs addition of two
points, including P1(x1, y1, z1, e1, h1) in extended projective coordinates and
P2(u2, v2, w2) in extended affine coordinates. This point addition outputs the
point P3(x3, y3, z3, e3, h3) in extended projective coordinates. The detailed pro-
cedure of point addition is given in Algorithm 3.

The inner routine of the point doubling performs doubling of one point, in-
cluding P1(x1, y1, z1, e1, h1) in extended projective coordinates. This point dou-
bling outputs the point P3(x3, y3, z3, e3, h3) in extended projective coordinates.
The detailed procedure of point doubling is given in Algorithm 4.

3.3 Side-Channel Attack Protection

The cryptography implementation may include the conditional branch depend-
ing on the secret. The proposed implementation of finite-field operation is per-
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Algorithm 2 Fermat-based inversion for Curve448 (p = 2448 − 2224 − 1).

Require: Integer z satisfying 1 ≤ z ≤ p− 1.
Ensure: Inverse t7 = zp−2 mod p = z−1 mod p.

1: z3 ← z2
1

· z { cost: 1S+1M}
2: t0 ← z2

2

3 · z3 { cost: 2S+1M}
3: t1 ← t2

1

0 · z { cost: 1S+1M}
4: t2 ← t2

4

1 · t0 { cost: 4S+1M}
5: t3 ← t2

9

2 · t2 { cost: 9S+1M}
6: t4 ← (t2

18

3 · t3)2 · z { cost: 19S+2M}
7: t5 ← (t2

37

4 · t4)2
37

· t4 { cost: 74S+2M}
8: t6 ← t2

111

5 · t5 { cost: 111S+1M}
9: t7 ← (t2

1

6 · z2
223

· t6)2
2

· z { cost: 226S+3M}

10: return t7

Table 2. Evaluation of finite-field operation and group operation on the 32-bit ARM
Cortex-M4 microcontrollers in speed (in clock cycles).

Frequency
finite-field Operation Group Operation

Addition Subtraction Multiplication Inversion Addition Doubling Scalar Multiplication

24MHz 164 161 821 363,485 6,566 6,567 6,218,135

168MHz 181 172 838 363,626 6,686 6,674 6,285,904

formed with constant timing by replacing the conditional branch with masked
operation. The mask generation is as follows:

mask ← 0− (carry or borrow)

Furthermore, the legacy ARM Cortex-M3 has early termination issues de-
pending on the input values [23]. Because the ARM Cortex-M4 is the successor
of the ARM Cortex-M3, all arithmetic and logical operations are performed in
one clock cycle. This satisfies one requirement for constant timing.

For the case of group operation, the Montgomery ladder algorithm always
performs point doubling and point addition in regular fashion [24]. When the
target processor equips the cache, the implementation must prevent a cache at-
tack. The cache is activated when memory accesses happen frequently depending
on a certain regular pattern of input (i.e. pre-computed result). The proposed
implementation does not utilize the pre-computed result to avoid a cache attack.

With the above approaches, the implementation achieved constant timing
and this is a basic requirement for cryptographic implementation (i.e. timing
attack resistant). The checklist for constant timing is presented in Table 4. The
proposed implementation satisfies all requirements for constant timing.
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Algorithm 3 Point Addition for Curve448.

Require: Point P1 = (x1, y1, z1, e1, h1) in extended projective coordinates, Point
P2 = (u2, v2, w2) in extended affine coordinates

Ensure: P3 = (x3, y3, z3, e3, h3) in extended projective coordinates

1: t1← e1 · h1
2: e3← y1− x1
3: h3← y1 + x1
4: x3← e3 · v2 {A = (y1− x1) · (y2− x2)}
5: y3← h3 · u2 {B = (y1 + x1) · (y2 + x2)}
6: e3← y3− x3 {E = B −A}
7: h3← y3 + x3 {H = B + A}
8: x3← t1 · w2 {C = t1 · w2}
9: t1← z1− x3 {F = z1− C}

10: x3← z1 + x3 {G = z1 + C}
11: z3← t1 · x3 {Z3 = F ·G}
12: y3← x3 · h3 {Y 3 = G ·H}
13: x3← e3 · t1 {X3 = E · F}

14: return P3(x3, y3, z3, e3, h3)

4 Evaluation

In this section, we first evaluate the proposed implementations of finite-field
operation and group operation for 448-bit wise on the 32-bit ARM Cortex-M4
microcontroller. Then, a comparison of scalar multiplication on low-end proces-
sors will be presented.

A benchmark result was obtained on an STM32F4 Discovery board equipped
with 32-bit ARM Cortex-M4 microcontrollers. The execution timing in clock cy-
cles was obtained at two frequencies (24MHz and 168MHz). The high frequency
(i.e. 168MHz) was for the real-world application, and it showed the highest per-
formance. The low frequency (i.e. 24MHz) is to avoid wait cycles due to the
speed of the memory controller, which ensures the correct clock cycles. All im-
plementations of arithmetic were implemented in the ARM assembly, and the
libraries were compiled with GCC with optimization flags set to -O3.

The results of finite-field operation and group operation on the 32-bit ARM
Cortex-M4 microcontroller is presented in Table 2. Finite-field addition, subtrac-
tion, multiplication, and inversion operations require 164/181, 161/172, 821/838,
and 363,485/363,626 clock cycles for 24MHz/168MHz, respectively. Clock cycles
at 24MHz show better performance than the 168MHz case because the frequency
does not have a wait delay. Group addition, doubling, and scalar multiplication
operations require 6,566/6,686, 6,567/6,674, and 6,218,135/6,285,904 clock cy-
cles for 24MHz/168MHz, respectively.

In Table 3, a comparison of scalar multiplication on 8-bit AVR, 16-bit MSP,
and 32-bit ARM processors is presented. For other low-end microcontrollers,
NIST P-256 shows the worst performance among 128-bit security ECCs. The



10 Hwajeong Seo and Reza Azarderakhsh

Algorithm 4 Point Doubling for Curve448.

Require: Point P1 = (x1, y1, z1, e1, h1) in extended projective coordinates
Ensure: P3 = (x3, y3, z3, e3, h3) in extended projective coordinates

1: e3← x1 · x1 {A = x1 · x1}
2: h3← y1 · y1 {B = y1 · y1}
3: t1← e3− h3 {G = A−B}
4: h3← e3 + h3 {H = A + B}
5: x3← x1 + y1
6: e3← x3 · x3
7: e3← h3− e3 {E = H − (x1 + y1) · (x1 + y1)}
8: y3← z1 · z1
9: y3← 2 · y3 {C := 2 · z1 · z1}

10: y3← t1 + y3 {F := G + C}
11: x3← e3 · y3 {X3 := E · F}
12: z3← y3 · t1 {Z3 := F ·G}
13: y3← t1 · h3 {Y 3 := G ·H}

14: return P3(x3, y3, z3, e3, h3)

fastest performance is achieved in the implementation of FourQ. Implemen-
tations of Curve25519 show middle performance. The 224-bit security ECC
(i.e. Curve448) on 8-bit AVR ATmega and 16-bit MSP430 requires 103M and
73M clock cycles, respectively. The performance of Curve448 is relatively slower
than that of 128-bit security ECC implementations because of its parameters.
On the 32-bit ARM Cortex-M4 microcontroller, the fastest implementation of
Curve25519 requires 847,048 clock cycles [13], while the FourQ requires 542,900
clock cycles [20]. The proposed implementation of Curve448 requires 6,218,135
clock cycles. Compared with other ECC implementations, the implementation
of Curve448 is 86% and 91% slower than Curve25519 and FourQ because these
curves are defined over small finite-fields, which ensure compact finite-field im-
plementations on the target processor. ROM and RAM sizes are 3,828 bytes and
2,128 bytes, respectively.

4.1 Trade-off between Performance and Security

Performance and security have trade-off relations between them. In the imple-
mentation, we focused on security first. The recommended security level by 2030
is 128-bit (i.e. Curve25519 and FourQ) [25, 26]. Even though the performance of
128-bit security ECCs (i.e. Curve25519 and FourQ) is better than that of 224-
bit security ECC (i.e. Curve448), security-sensitive services should ensure high
security levels. This is even more secure against quantum attacks. The quan-
tum resources for the 224-bit security ECC are significantly more than those for
128-bit security ECCs [27].
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Table 3. Comparison of scalar multiplication on 8-bit AVR ATmega, 16-bit
MSP430(X), and 32-bit ARM Cortex-M4 processors in speed (in clock cycles).

Target Implementation
128-bit security 224-bit security

NIST P-256 Curve25519 FourQ Curve448

8-bit AVR ATmega

Wenger et al. [16] 34,930 000 – – –

Hutter and Schwabe [17] – 22,791,580 – –

Nascimento et al. [18] – 20,153,658 – –

Düll et al. [19] – 13,900,397 – –

Liu et al. [20] – – 7,296,000 –

Seo [9] – – – 103,228,541

16-bit MSP430
Wenger et al. [16] 22,170 000 – – –

Gouvêa and López [21] 20,476,234 – – –

Seo [9] – – – 73,477,660

16-bit MSP430X
Hinterwälder et al. [22] – 6,513,011 – –

Düll et al. [19] – 5,301,792 – –

Liu et al. [20] – – 4,826,100 –

32-bit ARM Cortex-M4

Groot [10] – 1,816,351 – –

Santis and Sigl [11] – 1,563,852 – –

Fujii and Aranha [12] – 907,240 – –

Haase and Labrique [13] – 847,048 – –

Liu et al. [20] – – 542,900 –

This work – – – 6,218,135

Table 4. Checklist for ECC implementations in constant timing.

Masked implementation Early termination prevention Montgomery ladder w/o look-up table
√ √ √ √

5 Hybrid Post-Quantum TLS

During the transition from pre-quantum cryptography to post-quantum cryptog-
raphy, both algorithms should be supported in real-world applications. Recently,
AWS cryptography proposed supersingular isogeny key encapsulation (SIKE)
based hybrid post-quantum transport layer security (TLS) algorithms1. Because
SIKE is an alternative candidates, this algorithm should be counted for PQC2

Classical TLS 1.2 and hybrid post-quantum TLS 1.2 are compared in detail in
Table 5. The protocol performs two independent key exchanges (one classical
and one post-quantum). Then, both keys are combined into a single TLS master
secret. The hybrid post-quantum TLS allows network connections to be secure
when one of the key exchanges (i.e. classical or post-quantum) for TLS is com-
promised by hackers. One of the potential scenarios is quantum computers. If
a large-scale quantum computer is developed in the near future, the current
discrete logarithm problem (DLP) and integer factorization (IF)-based public
key cryptography will be vulnerable. Under this difficult condition, the hybrid
post-quantum TLS still keeps the connection in secret. Similarly, PQC is not
completely proven to be secure against the quantum computer and quantum
algorithm. When PQC has a backdoor, the legacy PKC still ensures security.

1 https://aws.amazon.com/ko/blogs/security/round-2-hybrid-post-quantum-tls-
benchmarks/

2 https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
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In Table 6, the performance of isogeny based post-quantum cryptography (i.e.
SIKE) is presented. The execution timing for SIKEp434, SIKEp503, SIKEp610,
and SIKEp751 require 184, 257, 493, and 770 million clock cycles, respectively.
Implementations on the 168MHz Cortex-M4 take 1.09, 1.53, 2.94, and 4.58 s for
SIKEp434, SIKEp503, SIKEp610, and SIKEp751, respectively. The performance
is not as fast as pre-quantum PKC but it is still practically fast enough for real-
world applications, considering that PKC is not frequently performed. When
ECC and SIKE cryptography systems are adopted for hybrid post-quantum
TLS, the multiplication part can be shared. This optimizes the code size. It is
also possible to adopt other PQC candidates for protocols. This is our future
work.

Table 5. Comparison result between classical TLS 1.2 and hybrid post-quantum TLS
1.2 [28].

Classical TLS 1.2 Hybrid Post-Quantum TLS 1.2

premaster secret = ECDHE KEY premaster secret = ECDHE KEY ‖ PQ KEY

seed = “master secret” seed = “hybrid master secret”

‖ ClientHello.random ‖ ClientHello.random

‖ ServerHello.random ‖ ServerHello.random

master secret=HMAC(premaster secret,seed) master secret=HMAC(premaster secret,seed)

6 Conclusion

In this paper, we presented the first optimized implementation of Curve448 on
the 32-bit ARM Cortex-M4 microcontroller. State-of-art implementation tech-
niques are used to achieve the optimal performance. The proposed implemen-
tation achieved 6,218,135 clock cycles. This is practically fast enough consid-
ering that the target microcontroller supports a 168 MHz operating frequency.
Furthermore, the implementation is secure against timing attacks by avoiding
conditional branch and cache access.

Our future work is practical implementation of a hybrid post-quantum TLS
protocol for pre-quantum and post-quantum cryptography algorithms. We will
investigate the secure and efficient implementation of both protocols to achieve
the highest performance.
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Table 6. SIKE implementations on the ARM Cortex-M4 microcontrollers.

Implementation
Timings [cc × 106] Timings [second]

KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total

SIKEp434 (AES-128)

Seo et al. [4] 74 122 130 252 0.44 0.73 0.77 1.50

Seo et al. [29] 54 89 95 184 0.32 0.53 0.56 1.09

SIKEp503 (SHA-256)

Seo et al. [4] 104 172 183 355 0.62 1.02 1.09 2.11

Seo et al. [29] 76 125 133 257 0.45 0.74 0.79 1.53

SIKEp610 (AES-192)

Seo et al. [29] 134 246 248 493 0.80 1.46 1.47 2.94

SIKEp751 (AES-256)

Seo et al. [4] 282 455 491 946 1.68 2.71 2.92 5.63

Seo et al. [29] 229 371 399 770 1.36 2.21 2.37 4.58
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