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Abstract

The Learning with Errors (LWE) problem consists of distinguishing linear equations with
noise from uniformly sampled values. LWE enjoys a hardness reduction from worst-case
lattice problems, which are believed to be hard for classical and quantum computers. Besides,
LWE allows for the construction of a large variety of cryptographic schemes, including fully-
homomorphic encryption and attribute-based cryptosystems. Unfortunately, LWE requires
large key sizes and computation times. To improve efficiency, Ring-LWE replaces linear
equations with noisy ring products. Nowadays, Ring-LWE and its variants are frequently
used in the construction of post-quantum secure cryptosystems.

In this survey, we give an overview of the hardness results for LWE and Ring-LWE, aiming
to connect both problems and to provide good intuition to the reader. We present a proof
of the strongest hardness result for Ring-LWE available the literature, which is a reduction
from ideal lattice problems to its decision form. We start by introducing both Ring-LWE and
LWE and their mathematical foundations, focusing on lattices and algebraic number theory.
Then, we sketch the classical hardness proof for LWE and extend the proof techniques to the
ring case. We also introduce informal discussions on parameter choices, weaknesses, related
work, and open problems.

Key words: Learning with Errors, Ring Learning with Errors, Lattices, Lattice-based
Cryptography, Post-quantum Cryptography.
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Chapter 1

Introduction

The Learning with Errors Problem (LWE) has been in the spotlight for theoretical computer
scientists and cryptographers during the last 15 years [Reg10]. LWE has many remarkable
features, but there are perhaps two major reasons why it attracts such a big interest: there
exist hardness proofs based on reductions from standard lattice problems, and it allows for
highly versatile cryptographic constructions. As a consequence, it is one of the main building
blocks of post-quantum cryptography [Pei16a].

Learning with Errors The idea behind LWE is quite intuitive. Let Zq be the ring of
integers modulo q ≥ 2, and let A ∈ Zm×n

q , b ∈ Zmq and a secret s ∈ Znq . Then, we can
formulate a linear system of equations such as As = b. If we are given A, b, then it is easy
to recover s by standard methods such as Gaussian elimination. Now, suppose that we are
given A and a noisy vector b, this is, As+ e = b where e ∈ Zmq has small coefficients (and is
not known). For example, an instance with n = 2, m = 3 and q = 13 could be:

3s1 + 7s2 ≈ 10 mod 13
2s1 + s2 ≈ 12 mod 13

11s1 + s2 ≈ 9 mod 13

In this case, the secret s = (11, 4) and the noise vector e = (1,−1, 1). Finding s from the
system of equations (samples) is no longer straightforward. Indeed, LWE is hard on both its
search (find s from the samples) and decision (decide whether the samples are LWE samples or
uniformly random) forms, as proven by Regev in a seminal work [Reg09]. In applications, the
noise is drawn from an error distribution χ which is commonly a discrete Gaussian centered
at 0, such that the probability of sampling a large error (such as |ei| ≥ q/4) is very small.
To make the problem hard, the errors must be significant. Nevertheless, they cannot be too
large since they would override the LWE structure, turning the equations into random noise.
The idea behind many cryptographic applications is to provide (A, b) as a public key while
keeping s as a secret key. For instance, the original construction by Regev [Reg09] encrypts
a bit by adding several equations from (A, b) and hiding the bit in the last coordinate.

As mentioned before, LWE is versatile and its applications go far beyond usual public
key cryptosystems. Most remarkably, LWE allows the construction of fully homomorphic
encryption [Gen09] and attribute-based encryption schemes1. However, it also presents a
major drawback, which is the large sizes of both the keys and the ciphertexts required to
perform encryption. Regev’s cryptosystem requires key sizes of Õ(n2), and state-of-the-art
schemes such as FrodoKEM [BCD+16] are still too expensive for everyday use in, for example,
TLS or HTTPS connections.

1See [Pei16a] for a detailed survey on lattice-based cryptography.
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Ring-LWE A major question is then, how can LWE be made efficient? One answer is to
use rings. Instead of noisy equations in Zq, consider an equation as + e = b over a ring R.
If a suitable ring is chosen (such as the ring of integers of a number field), a single equation
gives more LWE samples. Besides, one can benefit from an efficient multiplication operation.
We call this problem Ring Learning with Errors (Ring-LWE or simply RLWE). The main
concern of using RLWE is that samples acquire an additional algebraic structure in the form
of ideal lattices, induced by the ring, that might be exploited by some clever attacks. The first
hardness results were established by Lyubashevsky, Peikert, and Regev [LPR10], building on
the work by Regev for standard LWE [Reg09]. However, the idea of using rings and ideal
lattices had appeared before in the NTRU cryptosystem [HPS98] or in early versions of
Polynomial-LWE [SSTX09].

In the last decade, there have been several lines of work related to Ring-LWE. One of
them is to explore other forms of algebraically structured LWE, mostly with the aim of
finding a tradeoff between the security of LWE and the efficiency of RLWE. Examples are
Module-LWE (MLWE), Learning with Rounding (LWR), Middle-Product LWE (MP-LWE),
and Polynomial-LWE (PLWE). A second line is the construction of practical algorithms
and cryptosystems, particularly for the post-quantum cryptography standardization process
proposed by NIST [AASA+20]. Indeed, the aforementioned variants are behind final-round
candidates such as Crystals-Kyber [BDK+18] or SABER [DKRV18]. A third line, which is
the main focus of this project, is proving solid hardness results for RLWE.

This work Most of the published work on this area builds on previous results and is hard to
parse for a reader new to the topic. In this report, we provide a formal introduction to Ring-
LWE, presenting a proof of the strongest hardness results up to date (namely, the hardness of
the decision version [PRSD17]). We focus on intuition and on drawing parallelisms between
RLWE and LWE, and we also prove several non-standard results used in the hardness proof
of RLWE. There are however two important results that we do not introduce in detail. These
are the quantum part of Regev’s reduction, and the reductions from standard lattice problems
(SIVP, GapSVP) to the Discrete Gaussian Sampling (DGS) problem. Both results appear in
the original LWE reduction [Reg09] and do not need to be adapted to the ring setting.

We do not claim any new results, but aim to approach the problem in a natural and
accessible way, which can be helpful for a reader that is either new to LWE, or already familiar
but interested in the hardness results. The only required knowledge is basic computational
complexity and undergraduate-level mathematics, although some familiarity with lattices and
algebraic number theory is definitely helpful. We note that, while other LWE surveys do exist,
their approaches are different to ours. Since Regev’s survey [Reg10] was published, there have
been many new results, especially around Ring-LWE. Other works, such as [Pei16a], focus
on cryptographic applications.

Roadmap In Chapter 2, we introduce lattices and related matters such as sampling and
computational problems. We also present concepts from algebraic number theory and ideal
lattices required for RLWE. In Chapter 3, we recall the original Learning with Errors problem,
formalize it and present the ideas behind its hardness proof. We will not introduce RLWE
formally until Chapter 4, where we study how to extend these ideas to rings, present the
hardness results, and introduce some insights.

Acknowledgements I am grateful to Johan Håstad for his supervision and suggestions for
improvement. I also want to thank Per Austrin, Phillip Gajland, and Maribel González-Vasco
for helpful comments on the draft.
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Chapter 2

Preliminaries

In this chapter, we present the most relevant concepts underlying LWE and Ring-LWE. The
purpose is to provide an introduction to the topic, as well as to serve as a reference for
further chapters and to clarify notation. We assume a background in linear algebra, algebraic
structures, and basic computational complexity. Before introducing lattices, we introduce the
statistical distance as in [MG02].

Definition 2.1 (Statistical distance). Let X,Y be two random variables over a countable set
A. The statistical distance between them is

∆(X,Y ) =
∑
a∈A
|Pr[X = a]− Pr[Y = a]|.

If X,Y have probability density functions φX , φY on Rn,

∆(φX , φY ) =

∫
Rn

|φX(t)− φY (t)|dt.

The statistical distance satisfies the triangle inequality. Besides, it cannot increase by
applying any (possibly randomized) function f to the random variables, i.e., ∆(f(X), f(Y )) ≤
∆(X,Y ).

2.1 Lattices
Lattices appear not only in cryptography, but also in many areas of mathematics. For
example, they play a fundamental part in algebraic number theory. Besides, lattices are
used in different contexts such as for modelling crystalline structures in physics. A broader
coverage of lattices can be found in [Cas59, LJ08]. In [MG02], a computational overview is
presented.

2.1.1 Key Concepts
Throughout the paper, we use 〈·, ·〉 for the inner product and ‖·‖ for the usual ℓ2 norm. Other
ℓp norms, including ℓ∞, are denoted by ‖·‖p. For vectors x ∈ Rn, the standard inequality
‖x‖p ≤ n1/p · ‖x‖∞ holds.

Definition 2.2. Let B = {b1, . . . , bn} be a basis of Rn. The lattice L(B) is the additive linear
subgroup generated by the integer combinations of the vectors,

L = {a1b1 + a2b2 + · · ·+ anbn : ai ∈ Z} .
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The basis B is called the lattice basis. It is often represented in matrix form, B =
[b1, . . . , bn]. The integer n is called the dimension of the lattice. The region enclosed by the
basis vectors in the euclidean space is the fundamental domain, denoted by Λ(L). The basis
of a lattice is not unique, but there is a fundamental parameter of the lattice that does not
change with the basis, called the determinant.

Definition 2.3. Let L(B) be the lattice generated by B. The determinant det(L) of the
lattice is the determinant of the lattice basis, det(B).

The determinant can be seen as the volume of the fundamental domain, det(L) =
Vol(Λ(L)). A practical way of calculating the determinant of the lattice is via a Gram-
Schmidt orthogonalization. If b1, . . . , bn are the vectors of the basis B and b∗1, . . . , b

∗
n are

their Gram-Schmidt orthogonal vectors, then det(L(B)) = det(B) =
∏n
i=1‖b∗i ‖.

In many applications, it is interesting to know more about short vectors and short bases
of lattices. Let λ1(L) = {infv∈L\{0}‖v‖} be the shortest length of a nonzero vector in L, that
we denote by the minimum distance. More generally, we define λm(L) as the smallest d such
that L has m independent vectors of length at most d. A theorem by Minkowski gives us a
bound for λ1.

Theorem 2.4 (Minkowski). In any n-dimensional lattice L there exists a nonzero vector v
that satisfies ‖v‖∞ ≤ det(L)1/n. Moreover, using the standard inequality between the ℓ∞ and
ℓp norms, ‖v‖p ≤ n1/p det(L)1/n.

Unfortunately for some applications (but, as we will see, fortunately for cryptography)
the proof of the theorem above does not hint any efficient method for finding short vectors.
There exist lattice basis reduction algorithms such as the LLL algorithm [LLL82], which
yield approximations to the shortest vector. The first vector v1 of a LLL-reduced basis of L is
guaranteed to satisfy ‖v1‖ ≤ 2(n−1)/2λ1(L). Another important concept that arises frequently
in lattice-related constructions is the dual lattice.

Definition 2.5. The dual lattice L∗ of L is the lattice

L∗ = {x ∈ Rn : 〈x,v〉 ∈ Z, ∀v ∈ L}.

If B is a basis of L, then (B−1)t is a basis of L∗. Hence, det(L∗) = det(L)−1. Given a
dual lattice L∗, we say that L is its primal lattice. The following “transference theorem” is
a consequence of the primal-dual correspondence.

Lemma 2.6 (Duality [Ban93]). For any n-dimensional lattice L, 1 ≤ λ1(L) · λn(L∗) ≤ n.

2.1.2 Gaussian Distributions
A central tool for working with Learning with Errors are discrete and continuous Gaussian
distributions, as well as sampling from them. Let r > 0 be a width parameter and ρr :
Rn → (0, 1] be a Gaussian function, given by ρr(x) = exp(−π‖x‖2/r2). By normalizing it,
we obtain the n-dimensional (spherical) Gaussian distribution,

Dr =
ρr∫

x∈Rn ρr(x)dx
= ρrr

−n.

A sample from the n-dimensional Gaussian distribution can be obtained from taking n in-
dependent samples from the 1-dimensional case. This fact allows for an easy extension to
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elliptical Gaussian distributions, where the width is no longer a scalar but a vector1. Let r =
(r1, . . . , rn) ∈ (R+)n and let {hi}i be an orthonormal basis of Rn. Then, a sample from Dr in
the basis {hi}i is given by

∑n
i=1 xihi, where the xi ∈ R are sampled from the 1-dimensional

Dri . The Gaussian function in this case is given by ρr(x) = exp(−π
∑n

i=1|xi/ri|2).

Lemma 2.7 (Statistical distance [Reg09]). For 0 < α < β, the statistical distance between
Dα and Dβ is ∆(Dα, Dβ) ≤ 10(β/α− 1).

We can also define a discrete Gaussian probability distribution DL,r over a lattice L, given
by

DL,r(v) =
ρr(v)

ρr(L)
, ∀v ∈ L.

Note that a discrete Gaussian can be defined over any discrete set of points, and not only
over a lattice. The smoothing parameter is a lattice constant that provides the width beyond
which a discrete Gaussian behaves like a continuous Gaussian. The definition is not very
intuitive, but the lemma that follows captures the idea behind it. We introduce it for the
spherical case.

Definition 2.8 (Smoothing parameter). Let L be a lattice and let r, ϵ > 0. The smoothing
parameter ηϵ(L) is the smallest r such that ρ1/r(L∗ \ {0}) ≤ ϵ.

Lemma 2.9. For a lattice L, a vector c ∈ Rn, ϵ ≥ 0 and r ≥ ηϵ(L), the statistical distance
between Dr + c mod L and the uniform distribution over Rn/L is at most ϵ/2. Besides,
ρr(L+ c) ∈

[
1−ϵ
1+ϵ , 1

]
· ρr(L).

The smoothing parameter is one of the most important concepts that arise in lattices
and LWE. Let us try to develop the intuition behind Definition 2.8. For a large r, the
distribution ρ1/r will be very narrow, the zero vector being by far the most probable one.
When r decreases, the distribution will become wider and the probability of sampling from
ρ1/r(L∗ \ {0}) will no longer be negligible. In the primal lattice L, this means that ρr will
become narrower and the discrete Gaussian structure will be more significant.

The sparsity of the lattice also influences the smoothing parameter. If the points in L are
distant from each other, L∗ will be dense and r is required to be large for ρ1/r to sample only
the zero vector. Indeed, in sparse lattices, we will need our discrete Gaussian to be wider in
order to hide the discrete structure. On a different note, it is not hard to see that ηϵ(L) is a
continuous and decreasing function of ϵ.

An equivalent way of describing the smoothing parameter is as the smallest continuous
Gaussian noise required to hide a lattice structure, as seen in the following lemma.

Lemma 2.10 (Sum of distributions [Reg09]). Let L be a lattice, r, s > 0 be reals and u ∈ Rn
any vector. Assume that 1/

√
1/r2 + 1/s2 ≥ ηϵ(L) for some ϵ < 1

2 . Consider the continuous
distribution Y on Rn obtained by sampling from DL+u,r and then adding an element drawn
independently from Ds. Then the statistical distance between Y and D√

r2+s2 is at most 4ϵ.

As a rule of thumb, in LWE and Ring-LWE it is necessary to work with distributions whose
width is above the smoothing parameter, to guarantee that operations such as the sum of
distributions behave adequately. We can also define an elliptical version of the smoothing
parameter (that we name smoothing condition), which will be used only for some parts in
Chapter 4. Lemmas 2.9 and 2.10 extend easily to the elliptical case [PRSD17].

1Indeed, elliptical Gaussians are a particular case of multivariate Gaussian distributions characterized by
positive definite symmetric matrices. These distributions are common in the Ring-LWE setting [RSW18], but
will not be needed in this work.

7



Definition 2.11 (Smoothing condition [PRSD17]). Let L be a lattice and let r ∈ (R+)n. We
write r ≥ ηϵ(L) if ρ1/r(L∗{0}) ≤ ϵ, where 1/r = (1/r1, . . . , 1/rn).
Lemma 2.12 ( [MR07, Reg09, PRSD17]). Let c ≥ 1. For any n-dimensional lattice L and
ϵ = exp(−c2n), we have that√

π−1 ln(1/ϵ) ≤ λ1(L∗) · ηϵ(L) ≤ c
√
n.

In particular, this implies that for ϵ = 2−O(n), we have ηϵ(L) ≥ O(
√
n)/λ1(L∗). Unless

explicitly stated, ηϵ will refer to the smoothing parameter in the (spherical) standard case.
A critical part of lattice-based cryptography resides in the ability to sample from discrete

Gaussian distributions. Sampling from DL,r is only feasible when r is very large (unless a
very short basis is known). Otherwise, many computational problems in lattices would be
easy, as we will see in Section 2.1.3.
Lemma 2.13 (Long vectors are unlikely [Ban93,LPR10]). For any n-dimensional lattice L
and a radius r > 0, a sample s from DL,r satisfies ‖s‖ ≤ r

√
n, except with probability at most

2−2n.
There do exist efficient algorithms to sample from wide discrete Gaussian distributions.

For this work, it suffices to present the original bootstrapping method presented in [Reg09],
which is summarized in the following lemma.
Lemma 2.14 (Bootstrapping [Reg09]). Given any n-dimensional lattice L and a vector r
such that ri ≥ 22nλn(L) for every coordinate i, there exists an efficient algorithm that outputs
an independent sample from a distribution Y such that the statistical distance ∆(DL,r, Y ) ≤
2−Ω(n).

The bootstrapping algorithm consists in finding an LLL-reduced basis B of L (whose
vectors have length at most 2nλn(L)). Then, we can sample a vector y from Dr and output
y − (y mod B) ∈ L, which is proven to be exponentially close to DL,r (recall that the
coordinates of r are very large). The proof in [Reg09] is presented only for spherical Gaussians,
but it holds when Dr is replaced by the continuous elliptical distribution Dr. In applications,
sampling can be done in more efficient ways, especially when a shorter basis is provided
[Pei10].

2.1.3 Computational Problems
There are several hard computational lattice problems that are important for LWE, all of
them related to finding short vectors (or equivalently, short lattice bases).
Definition 2.15 (Shortest Vector Problem, SVP). Given a basis B ∈ Rn×n of a lattice L(B),
find a nonzero lattice vector x ∈ L such that ‖x‖ ≤ ‖v‖ for any v ∈ L \ {0}.
Definition 2.16 (Closest Vector Problem, CVP). Given a basis B ∈ Rn×n of a lattice
L(B), and a vector y ∈ Rn, find the closest lattice vector to y, i.e., find x ∈ L such that
‖y − x‖ ≤ ‖y − v‖ for any v ∈ L.

The previous formulation is the search version of the SVP and CVP problems. It is
important to distinguish them from their respective decision versions, which is easier (the
hardness of the decision problems implies the hardness of the search problem [MG02]). The
SVP (resp. CVP) decision problem can be formulated as, given a constant c > 0, decide
whether there is a nonzero vector x ∈ L such that ‖x‖ ≤ c (resp. ‖x− v‖ ≤ c).

SVP and CVP are often found in their approximation form, especially in cryptography.
These are parametrized by an approximation factor γ ≥ 1 which is generally a function of
the lattice dimension, γ = γ(n) [Pei16a]. These approximation versions are:
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Definition 2.17 (Approximate SVP, SVPγ). Given a basis B ∈ Rn×n of a lattice L(B), find
a nonzero lattice vector x ∈ L such that ‖x‖ ≤ γ‖v‖ for any other v ∈ L \ {0}.

The definition for CVPγ is analogous. We can formulate promise versions of SVPγ and
CVPγ , denoted by GapSVPγ ,GapCVPγ .

Definition 2.18 (Promise SVPγ , GapSVPγ). An instance of GapSVPγ is a pair (B, c) where
B ∈ Rn×n is a lattice basis and c is a positive real number, such that

• (B, c) is a yes instance if λ1(L(B)) ≤ c.

• (B, c) is a no instance if λ1(L(B)) > γc.

The Shortest Independent Vectors problem can be seen as a generalization of SVP for a
set of lattice generators. We introduce it in its approximation form.

Definition 2.19 (Shortest Independent Vectors Problem, SIVPγ). Given a basis B ∈ Rn×n
of a lattice L(B), find n linearly independent short vectors v1, . . . ,vn such that maxi‖vi‖ ≤
γλn(L).

The CVP problem is NP-complete, and in fact it is hard to approximate within quasi-
polynomial factors [DKS98]. However, so far, no cryptosystem has been proven to be secure
based on a CVP-related problem [Pei16a]. The results for SVP are somewhat weaker. Khot
[Kho05] proves that SVP is NP-hard for any constant factor under randomized reductions.
We note that an applicable hardness result for the LWE problem (which is based on the
GapSVPγ and SIVPγ problems) would require polynomial factors.

We now list three less common lattice problems that arise when studying LWE and
RLWE [Reg09,PRSD17].

Definition 2.20 (Bounded Distance Decoding, BDDL,d). Given a lattice L, a distance bound
d < λ1(L)/2, and y of the form y = x + e for x ∈ L and ‖e‖ ≤ d, find the lattice vector x
(or, equivalently, find e).

Definition 2.21 (Discrete Gaussian Sampling, DGSφ). Given a lattice L, a function φ : L →
R+, and a parameter r ≤ φ(L), output an independent sample from a distribution which is
within statistical distance of DL,r.

Definition 2.22 (Gaussian Decoding Problem, GDPL,g). Given a lattice L, a Gaussian
parameter g > 0, and y of the form y = x + e for x ∈ L where e ∈ Rn is drawn from Dg,
find the lattice vector x (or, equivalently, find e).

The BDDL,d and GapCVPγ problems can be seen as duals of each other. BDDL,d is easier
to solve when we are promised a point which is close to the lattice, i.e., when we have a small
d. On the other hand, the GapCVPγ problem becomes easier when γ increases. In fact, for
BDDL,d we have the following result, which can be seen as a “dual” form of the the LLL
algorithm.

Lemma 2.23 (Babai Nearest Plane [Bab86]). There exists a polynomial time algorithm that
solves BDDL,d for d ≤ 2−n/2λ1(L).

The DGSφ is problem is closely related to problems related to finding short vectors. There
exist polynomial-time reductions from the standard problems SIVPγ and GapSVPγ to DGSφ,
as introduced in [Reg09]. Roughly, this is because if we solve DGSφ for a small r, we will be
able to sample from a narrow discrete Gaussian distribution on L, which means that we will
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obtain short lattice vectors. As the sampling is random, the probability of finding a basis (of
independent vectors) among such short vectors is very high, if a sufficient number of them is
sampled. The reduction from GapSVPγ follows a similar high-level idea, but requires further
work.

The last of the listed problems, GDPL,g, is a variant of BDDL,d in which the deviation
from the lattice is Gaussian. In this respect, we introduce a self-reducibility result for the
GDPL,g problem, without proving it. The result is not a fundamental part of any of the
results we present in this work, but it is used to achieve tighter bounds in the reductions in
Chapter 4.

Proposition 2.24 (Self-reducibility of GDP [PRSD17]). Assume we have an oracle that
solves GDPL,g with non-negligible probability over the choice of the vector y. Then, we can
efficiently solve GDPL,δg with overwhelming probability, where δ = δ(n) is an o(1) function.

2.2 Algebraic Number Theory
The original Learning with Errors problem does not require any abstract algebra or number
theory, but rather results on lattices and sampling. Therefore, it is possible to read Chapter
3 without any algebraic background. However, this is required as soon as the rings are
introduced.

In this section, we review the concepts and results needed for studying the Ring Learning
with Errors problem. Most of the material (but for a few exceptions, that we prove) is
standard and can be found in any introductory book or notes in algebraic number theory.
Our main references are [Mil08,Rib13].

2.2.1 Number Fields
We start with the definitions of algebraic number and algebraic integer, to later introduce
concepts such as embedding, trace, and norm.

Definition 2.25. We say that α ∈ C is an algebraic number if there exists a polynomial
f(x) ∈ Q[x] such that f(α) = 0.

The minimal polynomial of an algebraic number α is the monic irreducible polynomial
that has α as a root. This polynomial is unique and denoted by fα(x). Indeed, for any other
g(x) ∈ Q[x] such that g(α) = 0, we have that fα divides g (denoted by fα | g).

If deg(fα) = n, we say that the algebraic number α has degree n. The roots α(1), . . . , α(n)

of its minimal polynomial fα(x) are called conjugates of α.

Definition 2.26. An algebraic number α ∈ C is an algebraic integer if its minimal polynomial
has integer coefficients.

A number field K is an extension of the field of rational numbers Q, that can be obtained
by adjoining an algebraic number to it (K = Q(α)). All number fields can be generated
by a single algebraic number (this fact is a consequence of the Primitive Element Theorem).
The degree n of a number field is the degree of the extension n = [K : Q], which equals the
degree of α. A number field can be seen as an n-dimensional vector space over Q with basis
{1, α, . . . , αn−1}, called the power basis of K. This basis is not unique, and every element
β ∈ K has degree d divisible by n.

There is a natural field isomorphism φ : Q[x]/(fα(x))→ K = Q(α), given by φ(f) 7→ f(α).
This means that the elements of a number field can be represented uniquely by polynomials;
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in fact, every number field can be seen as a field of polynomials of the form Q[x]/(fα(x)).
Hence, one can think of field elements as polynomials of degree smaller than n without loss
of generality. To see why this is true, consider the extension φ̃ of this map φ̃ : Q[x]→ K; its
kernel is the set of polynomials in Q[x] such that f(α) = 0. We know that fα | g for any other
g(x) ∈ Q[x] that vanishes on α. Hence, g(x) ∈ (f(x)) (i.e., the ideal generated by f(x)), so
ker(φ̃) = (f(x)), and φ is an isomorphism by the first isomorphism theorem.

Example 2.27. If we consider α =
√
3, we have that α is a root of g(x) = x3 + x2 − 3x− 3,

but g(x) is not irreducible. If we take f(x) = x2 − 3, then f is irreducible on Q[x] and has α
as a root (notice that f | g). Therefore, f is the minimal polynomial of α, and since it has
integer coefficients, then α is an algebraic integer. Adjoining α to Q gives a number field of
degree 2, which is an n-dimensional vector space over Q whose basis is {1,

√
3}.

In a number field K = Q(α) of degree n, there exist n distinct embeddings σi : K → C that
map α to each of its conjugates. They are given by σi(α

(1)) = α(i). These embeddings are
Q-isomorphisms, since σi(x) = x for any x ∈ Q. If the conjugate α(i) ∈ R, we say that σi is a
real embedding. Otherwise, it is a complex embedding. As the α(i) are roots of a polynomial
in Q[x], the complex roots always come in pairs, and so do the complex embeddings. Hence,
we can denote the number of real embeddings by s1 and the number of pairs of complex
embeddings by s2, having n = s1 + 2s2. For convenience, we can also define an ordering
of the embeddings, σi for i = 1, . . . , s1 are the real embeddings, and σi+s1+s2 = σi+s1 for
i = 1, . . . , s2 are the complex embeddings. This leads to the following definition.

Definition 2.28. The canonical embedding is a map σ : K → Rs1 × C2s2 defined as σ(x) =
(σ1(x), . . . , σn(x)).

In order to make σ a ring homomorphism, the multiplication of embedded elements is
coordinate-wise. We can also define a (field) trace and norm for the elements of the field.

Definition 2.29. The field norm of α ∈ K, denoted by NK/Q(α) or simply by N(α), is the
product of the conjugates of α, N(α) = α(1) · · ·α(n). Equivalently, N(α) =

∏n
i=1 σi(α).

Definition 2.30. The field trace of α ∈ K, denoted by TrK/Q(α) or simply by Tr(α), is the
sum of the conjugates of α, Tr(α) = α(1) + · · ·+ α(n). Equivalently, Tr(α) =

∑n
i=1 σi(α).

Both the trace and the norm of an algebraic number are rational numbers. Besides, if
α is an algebraic integer, they are integers (notice that they are exactly the coefficients of
degree 0 and n− 1 of the minimal polynomial fα(x) =

(
x− α(1)

)
· · ·
(
x− α(n)

)
. The trace is

additive and the norm is multiplicative: Tr(α+β) = Tr(α)+Tr(β) and N(αβ) = N(α)N(β)
for any α, β ∈ K.

The field norm should not be confused with the norm of an embedded element in Rs1×C2s2 ,
(or with the norm of the lattice point associated to an algebraic integer, as we will see later).
Norms of embedded elements are Euclidean norms and they are not multiplicative.

2.2.2 Ring of Integers
The sum, subtraction and product of any two algebraic integers yields another algebraic
integer. Therefore, the algebraic integers of a number field K (i.e., the algebraic integers that
are in K) form a ring OK , called ring of integers (of K). The simplest example of a ring
of integers is Z = OQ. Besides, the ring of algebraic integers is a Z-module of range n (the
degree of the field), since each element can be expressed as an integer linear combination of
some basis B = {b1, . . . , bn} ⊂ OK . The set B is called an integral basis of OK and is also a
basis for K as a Q-vector space.
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It is not hard to see that the units (invertible elements) of the ring are those elements
u ∈ OK such that N(u) = ±1. Every element of OK admits a factorization into irreducible
elements and units, but it is not necessarily unique as in Z. To recover uniqueness, we have
to look at how ideals decompose.
Definition 2.31. An integral ideal I ⊂ OK is an additive subgroup of OK which is closed
under multiplication in OK , i.e., if a ∈ I then ab ∈ I for any b ∈ OK .

The integral ideals of a number field have many useful properties. Any integral ideal
is finitely generated by elements in OK , and we say that it is principal whenever I = (w),
i.e., it is generated by a single element w ∈ OK . Moreover, integral ideals also admit a basis
{u1, . . . , un} ⊂ OK and are Z-modules of OK , where each of the ui can be respectively written
in a basis of OK . For any integral ideals I,J , both their sum I +J = {i+ j : i ∈ I, j ∈ J }
and the product IJ = {i · j : i ∈ I, j ∈ J } are also integral ideals. Notice that the I + J
contains I and J , while their product is contained in them. Integral ideals can be uniquely
factored into a product of powers of prime ideals.
Definition 2.32. An integral ideal p ⊂ OK is prime if whenever ab ∈ p for a, b ∈ OK , then
either a ∈ p or b ∈ p.

We say that two ideals I,J are coprime when I + J = 1, or equivalently if they do not
share any common prime factor. On rings of integers, every prime ideal is maximal, meaning
that for any prime ideal p, the quotient ring OK/p is a field.
Proposition 2.33. Every integral ideal I ⊂ OK can be written uniquely as a product of the
form I = pa11 · · · parr where the pi are prime ideals and the ai are positive integers.
Proposition 2.34. For every integral ideal I ⊂ OK , there exists another ideal I ′ ⊂ OK such
that II ′ = (w) is principal.

An important property of ideals is their norm, which is a generalization of the field norm
defined in Definition 2.29.
Definition 2.35. The ideal norm N(I) of an integral ideal I ⊂ OK is its index as an ideal
of OK , N(I) = |OK/I|.

The norm is multiplicative, such that N(IJ ) = N(I) · N(J ). Besides, we have that if
I = (w) is principal, then N(I) = NK/Q(w) (hence the generalization of the field norm).
Notice that this also means that for any x ∈ I, then N(I) divides N(x) as (x) ⊂ I. Despite
all these nice properties, the set of ideals does not have a group structure, i.e., integral ideals
are not invertible. To recover it, we need fractional ideals.
Definition 2.36. A fractional ideal (also called OK-ideal) is an OK-module I ⊂ K such
that dI is an integral ideal for some d ∈ OK . Equivalently (for number fields), a fractional
ideal is a finitely generated OK-submodule of K.

Notice that this definition includes integral ideals. The set of fractional ideals is indeed
a multiplicative group; it is easy to check that the product is closed and that the ring OK is
a unit element. For an integral ideal I, its inverse I−1 = w−1I ′ where I ′ and w are defined
as in Proposition 2.34. For a fractional ideal I, then dI is integral for some d ∈ OK and
I−1 = d−1(dI)−1.

Both the ideal norm and the unique factorization can be extended to fractional ideals.
For a fractional ideal I such that dI ⊂ OK , N(I) = N(dI) · N(d)−1. For the unique
factorization, we have that I = (d)−1(dI). Hence, if dI = pa11 · · · parr and (d) = qb11 · · · qbss , then
I = pa11 · · · parr q−b11 · · · q−bss . Besides, fractional ideals also admit a basis {u1, . . . , un} ⊂ K.

We remark that fractional ideals are not ideals of the ring of algebraic integers, in spite
of their name.
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2.2.3 Ideal Lattices
Recall the canonical embedding σ from Definition 2.28. The image of K over σ actually lives
in a particular space H ⊂ Cn defined as

H =
{
(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j , ∀j ∈ [s2]

}
⊂ Rs1 × C2s2 .

The space H is isomorphic to Rn via an orthonormal basis {h1, . . . ,hn}, that we can define
from the canonical basis {ei}i ⊂ Cn as follows: for 1 ≤ i ≤ s1, let hi = ei, and for
s1 < i ≤ s1 + s2, take hi =

1√
2
(ei + ei+s2) and hi+s2 =

√
−1√
2
(ei − ei+s2). The norm of an

element of H is the norm induced by Cn; in the case of the ℓ2 norm, it corresponds exactly
with the norm on Rn given by the isomorphism. Generally speaking, the ℓp norm of a field
element x ∈ K under the embedding is

‖x‖p = ‖σ(x)‖p =

(
n∑
i=1

|σi(x)|p
)1/p

,

and the ℓ∞ norm is ‖x‖∞ = maxi|σi(x)| (again, we remark that this is different from the
field norm in Definition 2.29). We also have that for x, y ∈ K and any ℓp norm, ‖xy‖p ≤
‖x‖∞ · ‖y‖p.

H is a larger space than K, since K is a Q-vector space. However, there is an isomorphism
between the spaces H ∼= KR, where KR = K ⊗Q R is a tensor product space (intuitively, one
can think of this tensor product as extending the Q-vector space structure of K to an R-
vector space, by replacing rational coefficients by reals). This property allows the extension
of the results in Section 2.1.2 to Gaussian distributions over number fields. Following the
notation in [PRSD17], let G = {r ∈ (R+)n : ri+s1+s2 = ri+s1 , i = 1, . . . , s2} be a set of
possible radial vectors, and let Dr be defined by the basis {hi}i. For any r ∈ G, Dr is a
distribution over H ∼= KR. For any element x ∈ KR, the distribution x · Dr is Dr′ , where
the components r′i = ri · |σi(x)|, using the constraint on the choice of r. When working with
(elliptical) Gaussian distributions over number fields, we will always consider this setting.

In H, one can embed not only field elements, but also (fractional) ideals.

Definition 2.37 (Ideal lattice). Let I be a fractional ideal with basis {u1, . . . , un}. Its image
under the canonical embedding is a lattice σ(I) ⊂ H given by the basis {σ(u1), . . . , σ(un)}.
Lattices of this form are called ideal lattices.

For readability, we will often denote σ(I) by I. Ideal lattices are discrete additive sub-
groups of H, and we can extend the discrete Gaussian distributions from Section 2.1.2 to
them.

Example 2.38. We illustrate the concepts of ideals, ideal basis, the canonical embedding
and ideal lattices with a toy example. Let K = Q(i) be the fourth cyclotomic field, generated
by the polynomial (x2 + 1). K has degree 2 and the conjugates of i are i and −i. We have
that OK = Z[i], hence a basis of OK is {1, i} and any algebraic integer can be written as a+bi
for a, b ∈ Z. Alternatively, we can look at K,OK as polynomial fields: K = Q[x]/(x2 + 1)
and OK = Z[x]/(x2 + 1).

We want to study how an ideal I ⊂ OK embeds into an ideal lattice in H. For this
purpose, let us choose the principal ideal I = (−2+ i). The first step is to write this ideal as
a Z-module on the basis of OK . Any element α ∈ I is a multiple of (−2 + i), therefore it is
of the form (a+ bi)(−2 + i) = a(−2 + i) + b(−1− 2i) for a, b ∈ Z. The elements −2 + i and
−1− 2i form a basis of I.
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Finally, we need to map our ideal into H via the canonical embedding. Notice that
v1 = σ(1) = (1, 1) and v2 = σ(i) = (i,−i), therefore σ(OK) ⊂ H is the lattice generated by
v1,v2. Notice that both of our embeddings are complex, hence H ⊂ C2. The lattice σ(I) is
a sublattice of σ(OK) which is determined by the canonical embedding of the basis of I, i.e.,
by σ(−2 + i) = (−2 + i, 2 + i) and σ(−1− 2i) = (−1− 2i,−1 + 2i). Thus, we have

σ(I) = {a(−2 + i, 2 + i) + b(−1− 2i,−1 + 2i) : a, b ∈ Z} ⊂ σ(OK) ⊂ H.

If we express the basis of σ(I) with respect to the basis of σ(OK), we obtain that σ(I)

is generated by the matrix basis B =

[
−2 1
−1 −2

]
. Since det(B) = 5, the fundamental volume

Vol(σ(I)) = 5Vol(σ(OK)); one out of five lattice points of σ(OK) is in σ(I), as seen in Figure
2.1.

σ(1) = (1, 1)σ(i) = (i,−i)

σ(−2 + i)

σ(−1 + 2i)

Figure 2.1: Ideal lattice σ(I), where I = (−2 + i) and OK = Z[i].

The discriminant ∆K of a number field K is the square of the fundamental volume of the
ideal lattice generated by the ring of integers OK . Intuitively, it measures the sparsity of the
algebraic integers of the ring. Alternatively, we have that ∆K = |det(Tr(bi · bj))| where the
bi form an integral basis of OK . Hence, the fundamental volume of an ideal lattice I ⊂ OK
is det(I) = N(I) ·

√
∆K . Using the discriminant, it is possible to bound the value of the

shortest vector of an ideal.

Lemma 2.39 ( [PR07]). Let I be a fractional ideal in a number field K. In any ℓp norm for
p ∈ [1,∞],

n1/p ·N(I)1/n ≤ λ1(I) ≤ n1/p ·N(I)1/n ·∆1/(2n)
K .

Proof. For the upper bound, recall that 2.4 (Minkowski) gives us the bound λ1(λ)∞ ≤
det(I)1/n = (N(I) ·

√
∆K)1/n. Using that ‖x‖p ≤ n1/p · ‖x‖∞, the bound follows.

For the lower bound, we have that for any element x ∈ I,

‖x‖pp =
n∑
i=1

|σi(x)|p ≥
1

n

∏
(|σi(x)|p)1/n =

1

n
N(x)p/n ≥ 1

n
N(I)p/n.

14



The first inequality uses the arithmetic-geometric mean inequality, and the second uses that
N(x) ≥ N(I) for any x ∈ I. The bound follows from taking the p-th root on both sides.

Finally, it will be useful to extend the duality that we have for lattices to fractional ideals
in OK . The importance of dual ideals is such, that the main reductions for Ring-LWE apply
for a “dual” version of the decision problem, as we will see in Chapter 4. In this part, we
follow [Con].

Definition 2.40. For any lattice L in K, the dual of L is L∨ = {x ∈ K : Tr(xL) ⊂ Z}.

As in the case of general lattices, we have L∨∨ = L. For a fractional ideal I, its dual ideal
I∨ is also a fractional ideal, as we will see in Lemma 2.41. In OK , a particularly interesting
dual ideal is O∨

K , called the codifferent ideal. First, we have Tr(xOK) ⊂ Z for any x ∈ OK
(notice that the trace is multiplicative and the trace of any algebraic integer is an integer),
hence OK ⊂ O∨

K .

Lemma 2.41. For any fractional ideal I of OK , its dual ideal I∨ is also a fractional ideal
and satisfies I∨ = I−1O∨

K .

Proof. First, notice that I∨ is a finitely generated Z-module because it is a lattice. According
to Definition 2.36, it suffices to check that it is preserved by multiplication by OK . Let a ∈ I∨,
and observe that aOK ∈ I∨ since Tr(aOKI) = Tr(a(OKI)) = Tr(aI) ⊂ Z.

We will now prove the inclusion to the right. Let a ∈ I∨, and let also b ∈ I. We have that
Tr(abOK) ⊂ Z since ab ∈ II−1 = OK . Hence, ab ∈ O∨

K . But as b ∈ I, then a ∈ I−1O∨
K .

Conversely, take a ∈ I−1O∨
K , then a = bc where b ∈ I−1, c ∈ O∨

K . We have that
Tr(aI) = Tr(bcI) = Tr(c(bI)). As b ∈ I−1, bI ⊂ OK . But clearly Tr(O∨

KOK) ⊂ Z, so
Tr(aI) = Tr(c(bI)) ⊂ Z. We conclude that a ∈ I∨.

The ideal (O∨
K)−1 is called the different ideal. This ideal is an integral ideal whose norm

is N((O∨
K)−1) = ∆K . Further details can be found in [Con].

2.2.4 Efficient Computations and CRT
First, recall the well-known Chinese Remainder Theorem in its version for commutative rings
(for this work, R = OK).

Theorem 2.42 (Chinese Remainder Theorem). Let I1, . . . , Ir be pairwise coprime ideals
in a commutative ring R, and let I = I1 · · · Ir. Then, there is a natural isomorphism
f : R/I →

∏r
i=1(R/Ii) given by (a mod I) 7→ (a mod I1, . . . , a mod Ir).

A subtle aspect is that we are now considering ideals of a ring, and therefore not fractional
ideals. Nevertheless, fractional ideals are R-modules, and it is possible to transform them
(by multiplication by an algebraic integer) such that they are embedded in R. We must be
careful when applying results that hold for ideals in rings, such as the CRT, to situations in
which fractional ideals may arise.

A CRT basis is a set of elements c1, . . . , cr ∈ R such that ci = 1 mod Ii and ci = 0 mod Ij
for any j 6= i. This basis is used to invert the isomorphism of Theorem 2.42: given a =
(a1, . . . , ar) ∈

∏r
i=1(R/Ii), then f−1(a) =

∑r
i=1 aici mod I ∈ R/I.

We now describe how computations over number fields are made practical. Following
[LPR10], we say that an algorithm has polynomial complexity (in the context of a number
field K) if its running time is polynomial in n, log∆K and the size of other inputs. Elements
x ∈ K can be represented in a basis {b1, . . . , bn} for OK : if the coefficients are integers,
x ∈ OK , otherwise they will be rationals. Hence, n rational coordinates suffice to represent
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any vector. Moreover, integral ideals I are also represented by a Z-basis of algebraic integers,
so we can use the same basis as before. A fractional ideal I can be represented as an ideal
plus a denominator d ∈ OK such that dI ⊂ OK .

Proposition 2.43 (Efficient computations [LPR10], [LPR13]). Let K be a number field, let
OK be its ring of integers, and let I,J be fractional OK-ideals. There exist algorithms that
perform the following computations efficiently:

• Field: addition, subtraction, product and inversion of elements in K and OK .

• Ideal: check that a basis generates I, compute N(I), compute I−1 and I∨, reduce
a mod I for a ∈ K. For two ideals: compute I · J , sample from I/J if J ⊂ I.

• Sampling: obtain samples from Dr over KR.

• CRT: Obtain a CRT basis for integral ideals I1, . . . , Ir ⊂ OK .

Let I,J be fractional OK-ideals. We now prove two results that yield an efficiently
computable isomorphism (of OK-modules) between I/qI and J /qJ . These will be needed
for the reductions in Chapter 4. Again, we follow [LPR10].

Lemma 2.44. For any two integral ideals I,J ⊂ OK , there exists a t ∈ I such that tI−1 ⊂ R
is an ideal coprime to J . Such t can be found efficiently given I and the prime factorization
of J .

Proof. Suppose that J = pd11 · · · pdrr , where di > 0, is the prime factorization of J . Then,
we can write I = I ′pe11 · · · perr , where I ′ is coprime with J and 0 ≤ ei ≤ di. The exponents
ei can be found efficiently by binary searching on the greatest exponent of pi that divides I;
notice that ei cannot be greater than log(N(J ))/ log(N(pi)). Now, we can take ti ∈ peii and
ti 6∈ pei+1

i for each i. Since I ′ and pi are coprime for each i, we can use the CRT to find a
t ∈ OK such that t ≡ 0 mod I ′ and t ≡ ti mod pei+1

i (this can also be done efficiently using
a CRT basis). Besides, t ∈ I as t ∈ I ′ and t ≡ 0 mod peii for every i.

Notice that tI−1 is an integral ideal, since for t ∈ I, a ∈ I−1, elements of the form
ta ∈ II−1 = OK . It remains to prove that tI−1 is coprime with J , or equivalently, that no
pi divides tI−1. Suppose that pi divides tI−1. Then, piI | (t), and since pei+1 | piI we have
that t ∈ pei+1, which contradicts that t 6≡ 0 mod pei+1.

Lemma 2.45 (Clearing ideals). Let I,J ⊂ OK and t ∈ I as in Lemma 2.44. Let M be a
fractional OK-ideal. The function θt :M→ IM given by x 7→ tx induces an isomorphism
of OK-modules from M/JM to IM/IJM. This isomorphism can be efficiently inverted
given I, J , M, and t.

Proof. Consider the map θ̃t : M → IM/IJM given by θ̃t(x) = tx mod IJM. It clearly
is an homomorphism of OK-modules since it is a multiplication by an element of the ring
t ∈ OK . First, we prove that ker(θ̃t) = JM. Let x ∈ ker(θ̃t), then tx ∈ IJM. Hence,
(tI−1)(xM−1) ⊂ J , and since tI−1 and J are coprime, necessarily xM−1 ⊂ J and x ∈ JM.
On the other direction, if x ∈ JM, then θ̃t(x) = tx ∈ IJM.

If we prove that θ̃t is surjective, we will be done by the first isomorphism theorem. Let
y ∈ IM, we want to find x ∈ M such that θ̃t(x) ≡ y mod IJM. Since tI−1 and J
are coprime, we can (efficiently) find an element c ∈ tI−1 such that c ≡ 1 mod J . Now,
take a = cy ∈ tI−1IM = tM and let x = a/t ∈ M. Clearly, we have that θ̃t(x) = a.
Besides, a − y = y(c − 1) ∈ IJM, so a ≡ y mod IJM and we conclude that θ̃t(x) ≡
y mod IJM as desired. The proof is constructive, showing that the isomorphism can be
inverted efficiently.
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For some results, such as in [RSW18], it is useful that the norm of t ∈ I in Theorem 2.45
is small, in order to avoid large noise amplification. It is worth mentioning that t can be
chosen in a different way, such as using Gaussian samples, but this will not be addressed in
this work.

2.2.5 Ideal Lattice Problems
All computational problems for lattices in Section 2.1.3 can be formulated for ideal lattices,
where L is replaced by an ideal I (notice that considering only integral ideals is sufficient
as we can transform any fractional ideal into an integral ideal). When this is the case, we
append the prefix R- to the problem: R-SVP, R-BDDI,d, etc.

A computational problem may be easy for ideal lattices but hard for general lattices. An
example is the R-GapSVPγ problem, which is easy for ideal lattices (for certain parameters)
but believed to be hard in a general setting. The reason behind this is that ideal lattices are
a special case of general lattices, so a hardness result that relies on an assumption on ideal
lattices is weaker than a result on general lattices. This is exactly what happens with LWE
and Ring-LWE; as we will see in Chapters 3 and 4, the hardness results for Ring-LWE are
similar to the results for LWE, but on ideal lattices only.
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Chapter 3

Learning with Errors

In this chapter, we introduce Learning with Errors formally, following the approach taken in
the seminal work by Regev [Reg09]. We present the ideas behind the worst-case reduction
from standard lattice problems (GapSVP, SIVP) to LWE, including many of the proofs but
focusing on intuition. At the end of the chapter, we introduce the techniques in [PRSD17]
for finding the center of an oracle, an important step in proving the hardness of Ring-LWE.
Nevertheless, we will not require any concepts in algebraic number theory and ideal lattices.

3.1 Overview
The Learning with Errors problem can be found in two main versions. Both of them are
equivalent, as proven in [Reg09]. We will mostly consider the continuous version due to
its similarities with Ring-LWE, however, some results will be proven for the discrete case
for simplicity and similarity with applications. The parameters of a LWE instance are two
positive integers n, q and an error distribution ϕ over T = R/Z (or χ over Zq, for the discrete
case) where n is the vector size and q is the field size. The formal definition of the LWE
distribution is the following [Reg09].
Definition 3.1 (LWE distribution). For a secret s ∈ Znq , the continuous LWE distribution
As,ϕ on Znq ×T is the probability distribution obtained by choosing a vector a ∈ Znq uniformly
at random, sampling e ∈ T from ϕ, and outputting (a, 〈a, s〉/q + e mod 1).

The discrete LWE distribution As,χ on Znq × Zq is the probability distribution obtained
by choosing a vector a ∈ Znq uniformly at random, sampling e ∈ Zq from χ, and outputting
(a, 〈a, s〉+ e mod q).

A probabilistic algorithm which samples from As,χ will be called an LWE-oracle. Most
commonly, the error distributions will be Gaussian, as defined in Section 2.1.2. For the
continuous case and for a width parameter β, this is simply ϕβ = Dβ mod 1. In the case
of a discrete distribution over Znq , it is the discrete Gaussian χβ = DZ,qβ . We will use this
notation from now on.

Similarly to lattice problems, LWE has decision and search variants (the definitions for
the discrete versions are analogous). In both cases, the secret s is fixed for all samples, and
n (dimension) and m (number of samples) parametrize the problem.
Definition 3.2 (Search-LWE, SLWEϕ,q). Let s ∈ Znq be a uniformly random vector. Given
m independent samples (ai, bi) ∈ Znq × T drawn from As,ϕ, find s.
Definition 3.3 (Average-case Decision-LWE, LWEϕ,q). Let s ∈ Znq be a uniformly random
vector. Given m independent samples (ai, bi) ∈ Znq×T either (1) drawn from As,ϕ or (2) drawn
from the uniform distribution, determine which is the case with non-negligible advantage.
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The definitions presented above might hide the actual structure of the LWE problem,
which is solving a system of linear equations with noise. Consider the discrete version, and
suppose that we are given m ≥ n samples of LWE (a1, b1), . . . , (am, bm)) where ai ∈ Znq and
the error distribution is 0. Then, the bi = 〈ai, s〉 and the search problem reduces to solving
As = b, where A is an m × n matrix whose rows are the ai. If the rank of A is n (which
happens with high probability as the ai are sampled from uniform), then it is straightforward
to find s using Gaussian elimination. LWE only becomes harder when we add a small noise ei
to the bi. A natural interpretation of decision-LWE is that the bi are pseudo-random values
generated from the LWE distribution.

A nice property of LWE is that the search and decision problems are in fact equivalent, i.e.,
if one has access to an efficient distinguisher for Decision-LWE, a polynomial-time algorithm
for Search-LWE can be constructed. Unfortunately, the result cannot be extended to Ring-
LWE1.

Lemma 3.4 (Search to Decision reduction [Reg09]). Let n ≥ 1 be some integer, 2 ≤ q ≤
poly(n) a prime, ϵ = ϵ(n) a negligible amount and χ some distribution on Zq. Given an
algorithm W that accepts with probability greater than 1− ϵ on inputs from As,χ and rejects
on inputs from the uniform distribution also with probability larger than 1− ϵ, there exists an
efficient algorithm that, given samples of As,χ, outputs s with probability 1− poly(ϵ).

Proof. Consider samples (a, b) from As,χ. We will find the first coordinate s1 of s using the
output of W . The remaining coordinates can be found similarly. Let k ∈ Zq and consider the
transformation fl : Znq ×Zq → Znq ×Zq given by fl(a, b) = (a+ (l, 0, . . . , 0), b+ lk) where l is
chosen uniformly at random on Zq. Notice that fl takes the uniform distribution into itself,
since it is a (coordinate-wise) linear map over a finite field. If we transform a sample from
As,χ, we obtain (modulo q):

fl(a, b) = fl(a, 〈a, s〉+ e) = (a+ (l, 0, . . . , 0), 〈a, s〉+ e+ kl).

The distribution of the output depends on the value of k. We have two possibilities:

• If k = s1, we have that 〈a + (l, 0, . . . , 0), s〉 = 〈a, s〉 + s1l. Hence, fl preserves the
distribution As,χ.

• If k = s1 + c where c 6= 0, then 〈a+(l, 0, . . . , 0), s〉 = 〈a, s〉+ s1l+ cl. As l is uniformly
random and q is prime, cl mod q is uniformly distributed. Thus the output of fl is also
uniformly distributed.

Hence, we can use the distinguisher W to test whether k = s1, coordinate-wise. Since
there are q possibilities and n coordinates, we try all the possibilities in poly(n).

In the previous result, it suffices to have a non-negligible advantage in the distinguisher;
we just need to iterate on several values for l to increase its advantage [Ste14]. Another
property of LWE is that worst-case hardness implies average-case hardness, meaning that if
the problem is hard for a non-negligible fraction of secrets s (i.e., the worst-case instances),
then it is also hard for random choices of s (average-case). This is a necessary property in
most cryptographic constructions - otherwise, keys could not be chosen at random (among
other implications).

1A search-to-decision reduction for Ring-LWE appears in [Ros20], using techniques from [PRSD17] that we
introduce in Chapter 4
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Lemma 3.5 (Average-case to worst-case reduction [Reg10]). Let n, q ≥ 1 be integers and χ
a distribution on Zq. Given an efficient algorithm W that distinguishes As,χ from uniform
for a non-negligible fraction of s ∈ Znq , there exists an algorithm W ′ that for any s accepts
on inputs from As,χ with probability exponentially close to 1 and rejects on inputs from the
uniform distribution with probability exponentially close to 1.

Proof Sketch. We give the idea of the proof; the calculation of the specific probabilities and
number of iterations can be found in [Reg09]. Let t ∈ Znq and consider the map ft : Znq ×Zq →
Znq × Zq given by

ft(a, b) = (a, b+ 〈a, t〉).

Notice that this function transforms As,χ into As+t,χ and the uniform distribution into itself.
The algorithm W ′ proceeds as follows: on inputs of the form (a, b), sample t uniformly at
random and estimate the probability acceptance of W on both (a, b) and ft(a, b). This is
made by running W a polynomial number of times. If the probabilities differ noticeably, W ′

accepts. Otherwise, a different t is sampled and the process is repeated. If the probabilities
did not differ after a sufficient (polynomial) number of iterations, W ′ rejects.

We present the main hardness result for LWE below. The theorem, due to Regev [Reg09],
is a quantum reduction from worst-case GapSVPγ and SIVPγ to decision-LWE on general
lattices. A quantum reduction means that an efficient distinguisher for LWE samples would
yield an efficient quantum algorithm for solving any instance of GapSVPγ , SIVPγ . The re-
duction transforms lattice problem instances into LWE instances, that can be solved using
the distinguisher. This reduction is meaningful since these problems are believed to be hard
for quantum computers. As of 2021, no polynomial-time algorithm that achieves polynomial
approximation factors for GapSVPγ , SIVPγ on general lattices is known.

Theorem 3.6 (Main theorem, extended version). For any number of samples m = poly(n),
any prime q ≤ 2poly(n), and any discrete Gaussian distribution χα such that αq > 2

√
n and

0 < α < 1, if there is an efficient algorithm that solves LWEχ,q, then there exists an efficient
quantum algorithm that solves GapSVPγ, SIVPγ for γ = Õ(n/α) on n-dimensional lattices.

In applications of LWE, the choice of the modulus q will depend on the dimension n and
generally be polynomial. For example, the cryptosystem in [Reg09] chooses n2 ≤ q ≤ 2n2,
and Frodo KEM [BCD+16] uses n = 752 ≈ 29.5 and q = 215 (the requirement of q being
prime is not necessary, as we will see later). If we choose to have a small q, then α needs
to be larger; this makes γ smaller and hence the lattice problems become harder (since the
approximation factor decreases). Intuitively, a larger α results in a wider error distribution
and therefore in a harder LWE.

Making the reduction entirely classical remains as one of the most important open prob-
lems surrounding LWE. There has been partial progress; in [BLP+13], a reduction that
achieves subexponential approximation factors is presented, but at the cost of squaring the
dimension of the LWE problem to be solved.

3.2 Regev’s Approach
Our goal in this section is to explain the main components of the reduction to LWE, with
a special emphasis on the parts that apply to Ring-LWE. The first thing to note is that
Theorem 3.6 is in fact a generalization of the following theorem, which is the main result
in [Reg09].
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Theorem 3.7 (Main theorem). Let q ≥ 2, α ∈ (0, 1) such that αq > 2
√
n. There is a

polynomial time quantum reduction from DGS√2nηϵ(L)/α (for a negligible ϵ = ϵ(n) > 0) to
SLWEq,ϕα.

Theorems 3.6 and 3.7 are very similar. The main differences are the reduction to search-
LWE instead of decision-LWE, the use of the continuous LWE distribution, and the lattice
problem where we reduce from. To obtain Theorem 3.6 from Theorem 3.7, we therefore
combine the following problem equivalences.

1. Search ⇐⇒ Decision. The reduction in Lemma 3.4 implies that the result on SLWE
extends directly to LWE (for a prime q). We remark that one of the main difficulties in
the ring setting is the lack of such a self-reducibility result for Ring-LWE.

2. Discrete ⇐⇒ Continuous. Handling discrete error samples does not make the problem
easier or harder ( [Reg09]).

3. Lattice problems. There exist tight reductions from GapSVPγ and SIVPγ to DGSφ; these
were mentioned in Section 2.1.3. Notice that DGSφ is a natural problem to work with
when handling discrete Gaussian distributions.

Hence, we focus on proving Theorem 3.7. The reduction is based on repeated applications
of a procedure that takes some samples of DL,r and outputs the same number of samples of
DL,r′ for a smaller r′ ≤ r/2. We refer to this procedure as the Iterative Step (IS), which is
also used (with minor changes) in the reduction to Ring-LWE. In order to reduce the norm
of the samples, the IS uses a quantum algorithm that makes calls to an oracle for SLWE. The
connection with Theorem 3.7 is that, if we start sampling from a wide Gaussian distribution
(recall the bootstrapping procedure in Lemma 2.14), and we repeat the IS a sufficient number
of times, the samples will eventually come from a narrow distribution, which is equivalent to
solving DGSφ. Let us formalize this argument.

Proposition 3.8 (Iterative Step). Let q ≥ 2, α ∈ (0, 1), and O be an oracle that solves
SLWEq,ϕα on input a polynomial number of samples. There exists an efficient quantum
algorithm that, given access to O, an n-dimensional lattice L, a parameter r >

√
2qηϵ(L) for

some negligible ϵ = ϵ(n) > 0, and a polynomial number of samples from DL,r, outputs the
same number of samples from DL,r

√
n/(αq).

Proof of Theorem 3.7

Let L be an n-dimensional lattice and let r >
√
2nηϵ(L)/α. We want to obtain a sample

from DL,r by repeated applications of the IS (Proposition 3.8). Define the sequence ri+1 =
ri · (αq/

√
n) starting from r0 = r, hence ri = (αq/

√
n)i. Notice that (αq/

√
n) > 2 by

assumption, thus the sequence is increasing.
First, notice that we can obtain samples from a wide distribution efficiently. By Lemmas

2.6 and 2.12, it follows that2 r3n > r23n > 22nλn(L), so we can apply the bootstrapping
method from Lemma 2.14 to sample from DL,r3n .

To reduce the norm of our samples, notice that if we have nc samples from DL,ri+1 , we
can obtain nc samples from DL,ri by applying the IS. The condition on r is always satisfied
as, for any i ≥ 1, we have that ri ≥ r1 = rαq/

√
n >

√
2ηϵ(L)αq by assumption. Finally,

notice that applying the IS on r1 yields samples from DL,r. We conclude that it suffices to
bootstrap nc samples from DL,r3n and to apply the IS for i = 3n, . . . , 1.

2This is a gross bound. One could find a better estimation, but we do not focus on making the reduction
implementable in practice.
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3.2.1 The Iterative Step
The only thing that remains is the construction of the Iterative Step, which is divided into
two parts as presented in Figure 3.1. The first part is a classical procedure that solves a BDD
problem on the dual lattice L∗ using a LWE oracle and samples from DL,r. The second part is
a quantum reduction that uses a BDD oracle on L∗ to create samples from a discrete Gaussian
distribution on L. If both parts are applied sequentially, the width of the distribution of the
samples is reduced. The samples that are generated are independent, meaning that there is
no correlation between them (in other words, the probability that m samples obtained in this
way are linearly dependent is the same as for m uniformly random samples).

We present both results separately. For the quantum part, we only introduce the main
result, which will be used in Chapter 4 without change. On the other hand, we present the
classical part in detail. The ideas behind the classical part for LWE and for Ring-LWE are
very similar, but they differ in the technical component. Broadly speaking, this is because
when dealing with ring elements, we have less control on the behaviour of the lattice vectors
under the canonical embedding.

Take nc samples of DL,r

Solve BDDL∗,αq/(
√
2r)

Obtain nc samples of DL,r
√
n/(αq)

Use SLWEq,ϕα
oracle

Quantum algorithm

Figure 3.1: Diagram of the Iterative Step

Proposition 3.9 (Classical part of the IS). Let ϵ = ϵ(n) > 0 be negligible, q ≥ 2, α ∈ (0, 1).
Given access to an oracle that solves SLWEq,ϕα given a polynomial number of samples, there
exists an efficient algorithm that, for any n-dimensional lattice L, r >

√
2qηϵ(L), solves

BDDL∗,αq/(
√
2r) using a polynomial number of samples from DL,r.

Notice that the parameters that appear in Proposition 3.9 determine those appearing
in Proposition 3.8. In particular, the condition r >

√
2qηϵ(L) is imposed by the classical

step and is related to the need to sum discrete and continuous Gaussians. For everything to
behave nicely, we need to work above the smoothing parameter (see Lemma 2.9) and below.

Proposition 3.10 (Quantum part of the IS). Given any n-dimensional lattice L, a real
g < λ1(L∗)/2, a vector r such that ri ≥ 1 for i = 1, . . . , n, and an oracle that solves GDPL∗,g

or BDDg with overwhelming probability, there is an efficient quantum algorithm that outputs
an independent sample from DL,r

√
n/(

√
2g).

Alternatively, if g < λ1(L∗)/(
√
8n), then the algorithm outputs an independent sample from

DL,r/(2g).

The version of Proposition 3.10 presented here is a generalization, introduced in [PRSD17],
of the original reduction in [Reg09]. There are two differences between them. The first is
that in [Reg09], the vector r does not appear, but rather the samples are from a discrete
spherical Gaussian distribution DL,r where r = 1. The extension to elliptical Gaussians with
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vectors r works since each ri ≥ 1. Hence, it is possible to apply a suitable transformation that
yields samples from a (wider) discrete elliptical Gaussian on each coordinate. The second
difference is that in [Reg09], the oracle solves BDD, and GDP is not mentioned. However,
this fact is intrinsic to the original reduction, as the BDD oracle is called on points whose
errors are drawn from a Gaussian distribution (which is precisely the definition of GDP).
The equivalence with BDD follows by an argument similar to Lemma 2.13, which is that the
probability of finding long vectors when sampling from a Gaussian is very small. The oracle
is allowed to be mistaken with negligible probability, so this is not an issue.

The proof of the Iterative Step follows directly from both parts. Starting with nc samples
ofDL,r, we can use the SLWEq,ϕα oracle to construct an efficient algorithm that solves BDDL∗,g

where g = αq/(
√
2r) by Proposition 3.9. Then, we can use such algorithm as the oracle in

Proposition 3.10. Running it nc times and setting r = 1 (a spherical Gaussian), we obtain
nc independent random samples of DL,r′ , where r′ =

√
n/(
√
2g). Plugging in the value of g

yields r′ = r
√
n/(αq) as desired.

3.2.2 The Classical Part
We will now present the insights of the classical part of the Iterative Step (Proposition 3.9).
Our goal is to, starting from a lattice L, a number of samples from DL,r, and an oracle that
solves SLWE, construct an algorithm that solves BDDL,d in the dual lattice for a suitable d.
The main idea (Lemma 3.12) is to formulate BDD as an SLWE instance and then solve it
by calling the oracle. Recall that BDDL∗,d consists in finding a lattice point x ∈ L∗ given a
perturbed vector y = x+e, for some bounded error ‖e‖ ≤ d. We will create SLWE instances
where the secret s is related to the target lattice point x; once s is found with the oracle, we
will be able to recover x.

To carry out the proof, we will benefit from two additional facts. First, it will suffice to
have a SLWE oracle for a single error distribution ϕα. This makes the result stronger and also
allows for a certain slack in the error distribution of the samples, since a smaller error than
expected is not problematic (Lemma 3.11). Second, it will suffice to solve a modular (and
easier) version of BDD (Lemma 3.13). We present the three Lemmas and prove Proposition
3.9 below.

Lemma 3.11. Given access to an oracle that solves SLWEq,ϕα, we can efficiently solve
SLWEq,ϕβ for any (unknown) β ≤ α with overwhelming probability.

Proof Sketch. The idea is to transform the samples from As,ϕβ into samples from As,ϕα . This
is done by adding extra noise to the samples. Notice that if an error term e (not related
to the e from the BDD instance) is sampled from ϕβ, then e0 = e + e′ will correspond to a
sample of ϕα whenever e′ is sampled from ϕ√

α2−β2 .
More specifically, given an oracle W for SLWEq,ϕα , the procedure consists of adding error

terms e′ sampled from different ϕγ and testing W on such inputs. If γ2 ≈ α2 − β2, then
the statistical distance between ϕα and ϕβ + ϕγ will be very small, hence the probability
that the output of W is correct will be large. To find such a γ, it suffices to test a sufficient
(polynomial) number of possible γ ∈ [0, α].

Lemma 3.12. Let BDDL∗,d be instance given by a vector y = x + e such that x ∈ L∗
and ‖e‖ ≤ d. There is a probabilistic algorithm that, given such instance, an r ≥

√
2qη(L),

and a sample from DL,r, outputs a sample from As,ϕβ where β =
√
(r‖e‖/q)2 + (rd/q)2 and

s = (L∗)−1x mod q.

Proof Sketch. Let v ∈ L be a sample from DL,r, and a ∈ Znq its coefficient vector such that
La = v mod q (notice that we are abusing notation, writing L for a matrix basis of the lattice,
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in order to emphasize duality). Let e′ be a sample from ϕα/(2
√
π) for some α ≥ β. We claim

that
(a, 〈y,v〉/q + e′ mod 1)

is a sample from As,ϕβ . Taking different v and e′ will lead to a set of independent samples.
To see why this is true, we first notice that the distribution of a is statistically close

to uniform (differing by a negligible amount). The coefficient vector a is calculated modq,
hence it suffices if it has a uniform distribution modq. Informally, we are sampling v above
the smoothing parameter of L, so Lemma 2.9 tells us that our distribution is uniform in Rn/L.
To extend this modq, we require our radius to be a factor q larger than ηϵ (and therefore the
condition r ≥

√
2qηϵ(L)).

To study the second element, we can condition on a fixed value of a, and observe that

〈y,v〉/q + e′ mod 1 = 〈x,v〉/q + 〈e/q,v〉+ e′ mod 1

For the first term,

〈x,v〉 = (L∗)−1〈x,v〉L∗ = 〈(L∗)−1x,L−1v〉 = 〈s,a〉 mod q,

since the L−1 = (L∗)T and the coefficient vectors s,a are integer vectors. Finally, one can
prove using Lemma 2.10 that the distribution of 〈e/q,v〉 + e′ is statistically close to ϕβ, as
claimed.

For the third lemma, let q-BDDL,d be the problem in which, given a BDDL,d instance with
solution x ∈ L, the goal is to find x mod qL. We prove that solving q-BDDL,d is sufficient to
solve BDDL,d on the same lattice.

Lemma 3.13. Given access to an oracle that solves q-BDDL,d for a lattice L and an integer
q ≥ 2, we can solve BDDL,d efficiently on the same lattice.

Proof. Let B be a basis of L, and let O be a q-BDDL,d oracle. On input (L, d,y) where
d < λ1(L)/2, y = x+ e for x ∈ L, ‖e‖ ≤ d, the oracle O outputs a coefficient vector a such
that Ba = x mod q.

We start with a point y = x + e close to L, and define a sequence y1,y2, . . . (where
y1 = y) as follows. Let ai be the coefficient vector of the lattice point xi ∈ L closest to yi,
and define yi+1 = (yi − B(ai mod q))/q. We claim that the nearest lattice point to yi+1 is
xi+1 = B(ai − (ai mod q))/q ∈ L. It is indeed a lattice point since q divides each coefficient
of ai − (ai mod q). To see that it is the nearest point, notice that

|yi+1 − xi+1| =
∣∣∣∣yi −B(ai mod q)−B(ai − (ai mod q))

q

∣∣∣∣ = ∣∣∣∣yi − xi
q

∣∣∣∣ < d

qi
.

Each of the yi can be computed using O, since it suffices to find ai mod q. Hence, after
n steps, the point yn+1 is at distance at most d/qn < λ1(L)/(2qn) from the lattice. Using
Lemma 2.23, we can recover xn+1 as the nearest point in the lattice to yn+1, and hence
an+1 = B−1xi+1. Knowing an+1 and an mod q (from the oracle) we can construct the
ai = qai+1 + (ai mod q) in reverse order, and with them all the xi up to x1 = x.

Proof of Proposition 3.9

The result follows almost immediately from the three lemmas above. First, from Lemma 3.11,
we have that, for any β ≤ α, we can construct an oracle W for SLWEq,ϕβ from our oracle for
SLWEq,ϕα , even for unknown β.
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Second, Lemma 3.12 tells us that, for β =
√
(r‖e‖/q)2 + (rd/q)2, we can solve q-BDDL∗,d

from our DL,r samples using W . The condition of β ≤ α is satisfied for d = αq/(
√
2r).

Indeed, plugging this value in and using that ‖e‖ ≤ d yields

β =
√

(r‖e‖/q)2 + (rd/q)2 ≤
√
α2/2 + α2/2 = α.

Finally, since we can solve q-BDDL∗,αq/(
√
2r), we can also solve BDDL∗,αq/(

√
2r) by Lemma

3.13.

3.3 Finding an Oracle’s Center
In the previous section, we presented a reduction from lattice problems to the search version
of LWE. A natural question is whether one can make the reduction to the decision version
of LWE directly, without relying on the decision-search equivalence from Lemma 3.4. This is
achieved in [PRSD17]3, who introduce a methodology to find the center of a decision oracle
under certain assumptions. Using this method, they replace the search oracle by a decision
oracle in the reduction from BDDL,d to SLWE in Proposition 3.9.

Overall, there is little change in LWE due to Lemma 3.44, but it will make a difference for
Ring-LWE as we do not have a similar equivalence between the search and decision problems.
Hence, the main motivation for this result does not come from LWE but rather from Ring-
LWE.

In this section, we present the method for finding the center of a decision oracle, following
the original approach in [PRSD17]. These results will be applied to Ring-LWE in Chapter
4. Besides, we present the main ideas of the reduction from BDDL,d to (decision) LWE. This
reduction follows the same approach than the proof in Chapter 4, and we believe that reading
Section 3.3.1 will help developing the intuition for it.

Motivation Recall the classical part in the previous section where a BDD instance y = x+e
is solved using a SLWE oracle. Basically, we create LWE samples from the vector y and from
DL,r samples, where the secret s is related to the lattice point x that we are trying to find. If
we replace our oracle by a decision LWE oracle, is this approach useful? A priori no, because
our oracle will only confirm us that our samples come from an LWE distribution, and this
will not really help us find s.

However, let us see what happens if we slightly perturb the input vector y′ = y+ z used
to generate the LWE samples. These will no longer be distributed exactly as before, but they
will be close - hence, the probability that our oracle answers yes will vary slightly. Moreover,
it is possible to prove that the probability distribution of the oracle has a central symmetry
around the point y′ = x, that we call center. Therefore, if we manage to find such a center by
testing the probability distribution of the oracle on several points, we will be able to recover
x.

Oracles We will now introduce some notation. Let O be a possibly randomized yes/no
oracle, i.e., a function O : S → {0, 1} for a set S of possible queries. Oracles of this kind are
often useful in reductions involving decision and promise problems. Let pO(t) = Pr[O(t) = 1]
(or simply p(t)) be the probability that O answers yes on input t. For the univariate real
case S = R, we denote by Os : R+ → {0, 1} to the shifted oracle Os(t) = O(s+ t).

3The full, 2020-revised version of the article (https://eprint.iacr.org/2017/258) is more detailed and
easier to follow than the publication in STOC’17.

4In fact, the reduction does yield an improvement for LWE, as we no longer require q to be a prime number.
This supports the choice of non-prime modulus in the Frodo-KEM cryptosystem and other LWE applications.
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We will also deal with multivariate real oracles O : Rk × R+ → {0, 1}. In this case, a
shifted oracle must fix the first input x, such that O∗

s(t) = O(x, s+ t). Our goal is to develop
an algorithm for finding the center of multivariate oracles whose probability distributions
have a central symmetry (i.e., the acceptance probability only depends on the euclidean
distance to a centre z∗). As an intermediate step, we will introduce a method for comparing
two shifted univariate real oracles. We omit some technical details of the proofs as they do
not provide any insight on LWE, but we present the main ideas.

Definition 3.14 (Oracle Comparison Problem). Let ϵ ≥ 0, r > 0. Given an oracle O : R→
{0, 1} and access to two shifted oracles Os1, Os2 for s1, s2 ∈ [−r, r], the promise problem
(ϵ, r)-OCP is to output yes if s2 ≤ s1 − ϵ and no if s2 > s1. Otherwise, any output is valid.

Proposition 3.15. Let O be an oracle, p(t) its acceptance probability, κ ≥ 200, and s1, s2
two shifts of an instance of OCP that satisfy the following conditions: there exists a p∞ ∈ [0, 1]
and a t∗ ≥ s1 such that

1. p(t∗)− p∞ ≥ 1/κ

2. |p(t)− p∞| ≤ 2e−t/κ for all t

3. p(t) is κ-Lipschitz5.

Then, there is a polynomial-time algorithm (in κ) that, on input κ, solves (1/κ, κ)-OCP except
with probability e−κ. Each of the calls of the algorithm to the oracle is of the form Osj (i∆)
for some ∆ = ∆(κ) < 1, 0 ≤ i ≤ poly(κ) and j ∈ {1, 2}.

Before sketching the proof, let us develop the intuition behind these conditions. Even if
this is not completely accurate, it might help to think of O as a decision LWE oracle for a fixed
distribution As,ϕβ , where the input t represents the noise of the samples given to O. In this
setting, p∞ is the probability of acceptance when the noise tends to infinity, where the samples
become uniform. This fact is actually captured by condition (2), which basically says that p(t)
converges to p∞. Condition (1) means that there is a point t∗ in which p(t∗) is significantly
larger than p∞; this simply captures that the oracle has some advantage in distinguishing
LWE samples from uniform samples. Condition (3) means that the acceptance probability
is regular. Small changes in the error distribution will yield samples whose distributions are
statistically close (see the start of Chapter 2). As the statistical distance cannot be amplified
by any function, p cannot suffer large changes.

Proof Sketch. Consider the function h(s) = maxt≥0(1 + t)|p(s + t) − p∞|. First, h(s) is a
decreasing function by definition. To see this, suppose s2 > s1. If the peak on p(s+ t) that
determines h(s2) is reached at t = t2, that maximum will appear on a larger t1 > t2 when
s = s1. Hence, the function will be larger on s1 due to the factor (1 + t). In summary, any
peak on s2 will translate into a larger peak in s1, hence h(s1) ≥ h(s2). Therefore, in the no
instance of OCP, we will have h(s2) − h(s1) ≤ 0. In the yes instance when s2 ≤ s1 − 1/κ,
one can prove that h(s2)− h(s1) ≥ 1/poly(κ) using conditions (1) and (2).

Hence, an algorithm that approximates h precisely on s1, s2 can be used to solve OCP.
The algorithm is the following. On input κ ≥ 200, and for each i = 0, . . . , T , make N calls
to Os(i∆). Then, set p′i to the observed probability of the oracle at step i, and output
h′ = max0≤i≤T (1+ i∆)|p′i− p′T |. To prove that h′ is a good approximation to h on input s, it
suffices to see that |h− h′| ≤ 1/poly(κ). This is based on three observations that we sketch.

5A real-valued function f : (a, b) → R is κ-Lipschitz if for any x, y ∈ (a, b), |f(x)− f(y)| ≤ κ|x− y|.
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• Using the Chernoff bound, one can prove that |p′i−p(s+i∆)| ≤ κ∆/10 with probability
larger than 1− e−κ.

• By the Lipschitz property (condition (3)), we have that the discrete sampling is sufficient
to approximate the actual function h – namely, |p(t+ χ∆)− p(t)| ≤ κ∆ for any t and
any χ ∈ [0, 1].

• By condition (2), we have that p(s+T∆) approximates p∞, namely |p(s+T∆)−p∞| ≤
2e−(s+T∆)/κ ≤ κ∆/10.

Combining the three equations and recalling the definitions of the functions h, h′, the result
follows.

Definition 3.16 (Oracle Hidden Center Problem). Let 0 ≤ ϵ, δ < 1 and β ≥ 1. The
approximate search problem (ϵ, δ, β)-OHCP is defined as follows. An instance is a scale
parameter d > 0 and a multivariate oracle O : Rk×R+ → {0, 1} whose (unknown) acceptance
probability function p on input (z, t) for ‖z − z∗‖ ≤ βd depends only on t+ log‖z − z∗‖, for
an unknown hidden center δd ≤ z∗ ≤ d. The goal is to find a z ∈ Rk such that ‖z−z∗‖ ≤ ϵd.

Notice that, in the previous definition, the probability function p(t+log‖z−z∗‖), behaves
as a radial function when t is fixed - hence the notion of a hidden center. To solve OHCP,
the algorithm resembles some optimization algorithms (such as the interior-point method),
in the sense that it will iterate approaching the center z∗.

Theorem 3.17. Let O : Rk × R+ → {0, 1} be a multivariate oracle, κ ≥ 20 log(k + 1), and
p(t) the acceptance probability of O on input O(0, t) of an instance of OHCP that satisfies
the following conditions: there exists a p∞ ∈ [0, 1] and a t∗ ≥ 0 such that

1. p(t∗)− p∞ ≥ 1/κ,

2. |p(t)− p∞| ≤ 2e−t/κ for all t ∈ R+,

3. p(t) is κ-Lipschitz.

Then, there is a polynomial-time algorithm (in κ, k) that, on input κ, solves (e−κ, e−κ, 1+1/κ)-
OHCP except with probability e−κ. Each of the calls of the algorithm to the oracle is of the
form O(·, i∆) for some ∆ = ∆(κ) < 1, 0 ≤ i ≤ poly(κ, k).

Proof Sketch. Without loss of generality, we can take d = 1 as the problem is invariant under
scaling. Overall, the algorithm constructs a sequence {zi}i that approaches the center of
the oracle z∗, such that ‖zi+1 − z∗‖ ≤ ‖zi − z∗‖. We separate the proof sketch in three
components for clarity. First, we will use Proposition 3.15 to build an auxiliary algorithm
that is able to guide a sequence towards the center. Second, we will build the algorithm that
constructs that sequence. Third, we prove the correctness of the algorithm, i.e., that the
sequence approaches the center as desired, and that at the end we have a point sufficiently
close (depending on κ) to the center.

1. Guidance. We aim for a distinguisher that, given two points x1,x2 ∈ Rk such
that e−λ ≤ ‖xj − z∗‖ ≤ 1 + 1/k, tells us which point is closer to z∗. Let O∗(t) = O(0, t),
O1(t) = O(x1, t), O2(t) = O(x2, t). Notice that the latter two correspond to a shift of O∗.
Indeed, if we let si = log‖xi − z∗‖, we have that

O∗
si−log∥z∗∥(t) = O(0, t+ log‖xi − z∗‖ − log‖z∗‖),
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and its probability distribution (by Definition 3.16) is

p
(
(t+ log‖xi − z∗‖ − log‖z∗‖) + ‖0− z∗‖

)
= p(t+ log‖xi − z∗‖),

which is exactly the probability distribution of Oi(t). Hence, after checking that the condi-
tions on the oracle hold, we can apply Proposition 3.15 to obtain an algorithm that distin-
guishes the cases s1 ≤ s2 and s2 ≤ s1 − 1/λ with probability at most eλ. Equivalently, our
distinguisher works for the cases ‖x1−z∗‖ ≤ ‖x2−z∗‖ and log‖x2−z∗‖ ≤ log‖x1−z∗‖−1/λ.

2. Building the sequence. Let z0 = 0. For i = 0, . . . , T , we will sample j ∈ {1, . . . , k},
x ∈ [0, 1] and σ ∈ {±1} uniformly at random, and set vi = σe−2κxej/

√
κ2k. Candidates xi

for zi will be chosen as xi+1 = zi + vi. Then, we set zi+1 = xi+1 if log‖xi+1 − z∗‖ ≤
log‖zi−z∗‖−1/λ, and zi+1 = zi otherwise (i.e., we do not advance the sequence). To decide
which is the case, we use the previous distinguisher.

3. Correctness. For correctness, we need to prove: (a) that the guidance algorithm
answers correctly for all steps i except with small probability, and (b) that sT+1 = log‖zT+1−
z∗‖ ≤ −κ, also except with small probability.

For (a), we proceed by induction on i. In particular, for every step, we need to ensure
that the parameters are in the allowed ranges for the oracle to work. In particular, that
si ∈ [−λ, log(1 + 1/κ)] to ensure that the assumption on (1) holds. For (b), the argument
is mostly probabilistic, and consists in ensuring that sufficiently many choices of vi make
progress in the sequence. Notice that we are approaching a center, hence there must exist at
least one coordinate in which significant progress can be made.

3.3.1 Application to LWE
As mentioned previously, the classical part of the IS presented in Proposition 3.9 can be
improved using Theorem 3.17 by using an oracle for the decision version LWE instead of
search SLWE. We present it below; as we are only interested in the intuition, we will skip
several details in the proof.

Proposition 3.18 (Classical part of the IS, [PRSD17]). Let ϵ = ϵ(n) > 0 be negligible,
q ≥ 2, α ∈ (0, 1). Given access to an oracle that solves LWEq,ϕα given a polynomial number
of samples, there exists an efficient algorithm that, for any n-dimensional lattice L, r >√
2qηϵ(L), solves BDDL∗,αq/(

√
2r) using a polynomial number of samples from different DL,ri,

where ri ≥ r.

If we look back to our Iterative Step, our reduction now requests samples from different
spherical Gaussians DL,ri , where ri ≥ r, so the IS must be able to provide such samples. The
original quantum step in [Reg09] does not explicitly mention this. Nevertheless, the proof
works in that case too, so the generalized version of Proposition 3.10 does consider it. Besides,
in the initial bootstrapping, sampling from wider Gaussian distributions is also permitted.
To improve readability, we recall the main lemma in the proof of the classical step.
Lemma 3.12. Let BDDL∗,d be instance given by a vector y = x + e such that x ∈
L∗ and ‖e‖ ≤ d. There is a probabilistic algorithm that, given such instance, an r ≥√
2qη(L), and polynomially many samples from DL,r, outputs samples from As,ϕβ where

β =
√
(r‖e‖/q)2 + (rd/q)2 and s = (L∗)−1x mod q.

Proof Sketch. (Proposition 3.18). Let κ = poly(n). We start with a BDDL∗,d instance as in
Lemma 3.12, where x is our target vector and y = x + e is known. Using the oracle for
LWEq,ϕα , we want to create an oracle O(z, t) compatible with Definition 3.16, that takes as
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input a shift vector z and a scale parameter t. The probability of the oracle will depend
only on et‖z − e‖; hence, the oracle will have in e a hidden center. After ensuring that the
conditions are met, we will apply Theorem 3.17 to find e.

A call O(z, t) proceeds as follows. First, it takes samples from DL,etr and applies Lemma
3.12 on the vector y − z, radius r and bound d to obtain a set of samples Mz,t. Finally, O
calls the LWEq,ϕα oracle on input Mz,t and returns its answer. Notice that calls to O(z, t)
with small z will result in samples generated from points very close to y. On the other hand,
if t is large, the distribution will present a large error, eventually becoming uniform.

The correctness of the procedure follows from the choice of the tolerance parameter κ. If
κ is sufficiently small, the procedure in Theorem 3.17 will output a value ẽ which is close
enough to the center, say ‖e− ẽ‖ ≤ 2−nλ1(L∗). To find the exact vector e (or, equivalently,
x), we can run Babai’s nearest plane algorithm (Lemma 2.23).

Hence, it suffices to prove that the oracle O is a valid instance of the OCP problem and
that it satisfies the regularity conditions imposed by Theorem 3.17. The first part follows from
careful bounding of the parameters and from the fact that the probability of O depends only
on et‖z − e‖, as the distribution of the samples Mz,t depends only on that value. Regularity
can be proven from the observation that, when t → ∞, the distribution of Mz,t is uniform
(the noise hides all the LWE structure), giving us the desired behaviour for p∞. The Lipschitz
condition holds as for any t1 ≈ϵ t2, the statistical distance of the distributions of Mz,t1 and
Mz,t2 is very small (Lemma 2.7). Therefore, the acceptance probability of the oracle cannot
vary a lot among both distributions.
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Chapter 4

Ring-LWE

The Ring Learning with Errors problem is a variant of LWE introduced in [LPR10]. Previous
work, such as [SSTX09] or even the NTRU cryptosystem [HPS98], already incorporated the
main idea of RLWE for rings of the form Z[x]/(xn ± 1). Recently, RLWE has been used
on many cryptographic primitives, and its security, based on the hardness of computational
problems on ideal lattices, has been gradually strengthened. In this chapter, we first introduce
the RLWE problem, and then we present the strongest hardness results available in the
literature.

Our exposition follows [LPR10, PRSD17] and builds on the ideas in Chapter 3. The
reductions from ideal lattice problems to Ring-LWE follow the same structure; we will have
an iterative step with classical and quantum parts, where the classical part consists in a
reduction from R-GDP directly to decision-RLWE. The chapter concludes with a discussion
on related problems and a survey of variants of Ring-LWE.

4.1 Overview
We start by providing the definition of the RLWE distribution, as we did for LWE in Chapter
3. The idea is very similar; we simply replace the vectors of integers by elements from the
ring of integers R = OK of a number field K. Following the notation from Section 2.2, let
T = KR/R

∨ and denote Iq = I/qI for any fractional ideal I of R and a rational integer
q ≥ 2. The space T can be thought of as the continuous fundamental domain of the ideal
lattice generated by the codifferent ideal R∨.

Definition 4.1 (RLWE distribution). For s ∈ R∨
q and for an error distribution ψ over KR,

a sample from the RLWE distribution As,ψ over Rq × T is obtained by sampling an a ∈ Rq
uniformly at random, sampling e ∈ KR from ψ, and outputting the pair (a, as/q+ e mod R∨).

There is a significant efficiency gain in using Ring-LWE as opposed to LWE. For a single
LWE sample (a, b = 〈a, s〉/q + e) we required a fresh vector a ∈ Znq and we obtained
one pseudorandom value b ∈ R/Z. On the other hand, a single Ring-LWE sample (a, b =
as/q + e mod R∨) requires a ring element a (which is somewhat equivalent to a vector of Znq
as the ring has degree n), but yields a full vector b ∈ T of n coordinates. If we assume the
hardness of the decision-RLWE problem that we introduce below, we will get n pseudorandom
values from one sample.

In some works such as [RSW18], the distribution is slightly different as the error is directly
sampled from an elliptical Gaussian distribution Dr (besides, the definitions for T may vary).
In practice, this makes no difference as ψ will be an elliptical Gaussian distribution in all our
results. The RLWE problem can be stated both on its search and decision variants.
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Definition 4.2 (Search-RLWE). For a family Ψ of distributions over KR, the problem Search-
RLWE, denoted by SRLWEq,Ψ, is defined as follows: given arbitrarily many independent
samples from the RLWE distribution As,ψ for some fixed secret s ∈ R∨

q and ψ ∈ Ψ, find s.

Definition 4.3 (Average-case Decision-RLWE). For a distribution Γ over a family of error
distributions over KR, the average-case Decision-RLWE problem, denoted by RLWEq,Γ, is the
following: with non-negligible probability, distinguish between arbitrarily many independent
samples from the RLWE distribution As,ψ for a random (uniform) choice of s ∈ R∨

q and of
ψ ∈ Γ, and the same number of uniformly random and independent samples from Rq × T.

Error distributions The previous definitions might be somewhat obscure, since we require
a family of error distributions Ψ (and a distribution over a family of error distributions Γ).
We can think of Ψ as a family of elliptical Gaussians Dr over KR, as introduced in Chapter
2. We are particularly interested in families of the form Ψα in which the radius is bounded,
r ≤ α (meaning that ri ≤ α for each i), for every Dr ∈ Ψα. The reason why we work with
elliptical Gaussians, and not spherical as before, is that the image of an element under the
canonical embedding does not yield spherical distributions. For instance, recall the reduction
from BDD to SLWE in Proposition 3.9, and consider what happens if we have a R-BDD
instance instead (where y = x + e and all elements live in I ⊂ R). In this case, we need
to project e into H ∼= KR to convert it to the noise of Ring-LWE samples, and we will
obtain a vector (σ1(e), . . . , σn(e)) ∈ H. The distribution of such a vector depends on each
of the σi, hence it will not be spherical but elliptical, where each coordinate is bounded by
‖e‖∞ = maxi|σi(e)|. This example will become clearer in Section 4.2, when we introduce the
RLWE sample generation from R-BDD instances.

Definition 4.4 (Family Ψα). For α > 0, the family Ψα is the (uncountable) set of all
elliptical Gaussian distributions Dr over KR in which r ≤ α.

When we define a distribution Γ over a family of elliptical Gaussians, we actually have
a distribution over different radius vectors r. Obtaining one sample from Γ is equivalent to
sampling r according to the distribution, and outputting Dr. The following is the distribution
that we consider for the decision problem, as in [PRSD17]. Recall that we defined G = {r ∈
(R+)n : ri+s1+s2 = ri+s1 , i = 1, . . . , s2} as the set of possible radial vectors for an elliptical
Gaussian distribution when we work with the space H, where ideal lattices live.

Definition 4.5 (Distribution Γα). Let α > 0 and f(n) = ω(
√
log n) be a fixed that grows

asymptotically faster than a
√
log n. A sample from Γα is an elliptical Gaussian Dr such that

r ∈ G is sampled as: ri = α
√
(x2i + f(n)2)/2 for 1 ≤ i ≤ s1 where xi ← D1

ri = ri+s2 = α
√

(x2i + y2i + f(n)2)/2 for s1 ≤ i ≤ s1 + s2 where xi, yi ← D1/
√
2

Sampling from Γα yields error distributions whose radius are of size O(α · ω(
√
log n),

essentially O(α · log n). The choice of Γα will become clearer in Section 4.2.

Design choices and primal RLWE Before proceeding with the hardness results, we
provide further intuition as to why is RLWE defined as above. First, RLWE is meant to
be practical and implementable, so it may seem strange that the second component of the
RLWE distribution As,ψ belongs to the continuous domain T. In practice, the samples can
be discretized, as in the case of Plain-LWE. Namely, as proven in [LPR13] (Lemma 2.23), the
hardness of Decision Ring-LWE is preserved if the error distributions are suitably discretized.
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Second, notice that the error e in Definition 4.1 is sampled from a Gaussian distribution
ψ and then reduced modulo R∨. Intuitively, RLWE should be harder when such errors are
large, and this is indeed the case. However, if the error is too large, the distribution becomes
statistically indistinguishable from uniform and hence RLWE becomes impossible to solve.
This occurs precisely when the size of e (roughly the width of ψ, by Lemma 2.13) exceeds
the smoothing parameter of R∨, as presented in Lemma 2.9.

Third, one might question why is the dual ideal R∨ used instead of the primal R, which
seems like the natural choice. The answer is that both choices are equivalent, as we prove
below. Nevertheless, R∨ is more convenient for our proofs, since it will arise naturally in the
R-BDD to SRLWE reduction.

Definition 4.6 (Primal RLWE distribution). Let TP = KR/R. For s ∈ Rq and for an error
distribution ψ over KR, a sample from the primal RLWE distribution AP

s,ψ over Rq × TP

is obtained by sampling an a ∈ Rq uniformly at random, sampling e ∈ KR from ψ, and
outputting the pair (a, as/q + e mod R).

Proposition 4.7 (Equivalence of dual and primal RLWE [RSW18]). Define the primal
(average-case) Decision-RLWE problem as in Definition 4.3, but sampling from AP

s,ψ (Defini-
tion 4.6). If the error distributions are elliptical Gaussians, both problems are equivalent but
for a scaling factor on the error.

Proof. First, notice that there is a natural reduction from primal to dual given by the inclusion
f : R → R∨. Indeed, f maps AP

s,ψ to As,ψ and the uniform distribution on Rq × TP to the
uniform distribution on Rq × T.

For the dual to primal reduction, let t ∈ (R∨)−1 such that tR∨ and qR are coprime, as in
Lemma 2.44. By Lemma 2.45, t induces a bijection θt : R∨/(qR∨)→ R∨(R∨)−1/qR∨(R∨)−1 =
Rq given by θt(x) = tx.

Now let (a, b) be a sample from As,Dr . We are interested in the distribution of (a, θt(b)).
First, we have that θt(b) = θt(as/q + e) = a(ts)/q + te, where ts, te ∈ Rq. The product te
follows a distribution Dr′ (recall that the product of ring elements results in coordinate-wise
multiplication under σ), where r′i = ri|σi(t)|. Hence, (a, θt(b)) is distributed as Ats,Dr′ .

On the other hand, if (a, b) is uniformly distributed, then θt(b) = tb is uniformly distrib-
uted in TP independently of a, since θt is an isomorphism. We conclude that if (a, b) is a
sample for dual Decision-RLWE, (a, θt(b)) is a valid sample for primal Decision-RLWE.

The equivalence is, however, not total. The proof works for arbitrary rings, but does not
control the transformation of the error distribution under the reduction. When we consider a
primal instance, the error distribution is scaled with respect to the dual distribution (by the
factor σi(t)). The hardness results for Ring-LWE that we introduce only hold for the dual
variant. Therefore, one must be very careful when using primal RLWE in a cryptographic
construction, as the resulting error distribution in the dual might be too narrow to provide
the desired level of security. In general, error control is a complex and well-studied problem
which is also useful in the study of variants such as Polynomial LWE [RSW18]. In Section
4.3, we will expand this discussion and survey some attacks based on this weakness.

Initially, the only setting in which primal RLWE was considered is the case R = Z[x]/(xn+
1) for n = 2k. The reason is that the dual ideal R∨ is a scaled isometry of R. Therefore,
all results extend immediately [LPR10]. Rings of such form are particularly interesting as
xn + 1 is a cyclotomic polynomial with some nice properties (for instance, bounded factors
for noise control and fast ring arithmetic), which makes them widely used in practice. This
equivalence was later extended to arbitrary cyclotomic polynomials [DD12]. Furthermore,
security in the case of R = Z[x]/(xn + 1) was proven in an early work by Stehlé et. al.,
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using the so-called polynomial embedding, which consists on considering the cyclic lattice
generated by the coefficients of the polynomials in R [SSTX09]. We will also extend this
discussion in Section 4.3.

4.2 Hardness
In this section, we prove the main hardness result for Ring-LWE, which consists in a quantum
reduction from ideal lattice problems to the decision form of RLWE. As in the case of LWE,
we have two versions of the result. The first (Theorem 4.8 is a generalized result which reduces
R-SIVPγ to RLWE for linear approximation factors. The second (Theorem 4.9), which is the
result we prove, is a reduction from R-DGSφ to RLWE. To obtain Theorem 4.8 from Theorem
4.9, we need the standard reductions mentioned in Section 2.1.3. In contrast to Theorem
3.6 for LWE, the R-GapSVPγ problem is not introduced since this problem is easy on ideal
lattices.

The factor ω(1) denotes a fixed function that grows asymptotically faster than a constant,
and plays the role of an approximation factor. Notice that we already introduced an ω(·)
function in Definition 4.5. We will also use o(1), which represents a fixed function whose
limit tends to zero, and can be seen as the inverse of ω(1).

Theorem 4.8 (Main theorem, extended). Let K be a number field of degree n and R = OK
its ring of integers. Let q ≥ 2, α ∈ (0, 1) such that αq > ω(1). If there is an efficient
algorithm that solves RLWEq,Γα, then there exists an efficient quantum algorithm that solves
R-SIVPγ for γ = max{ω̃(

√
n/α), O(n)}.

Theorem 4.9 (Main theorem). Let K be a number field of degree n and R = OK its ring
of integers. Let q ≥ 2, α ∈ (0, 1) such that αq > 2ω(1). There is a polynomial time quantum
reduction from R-DGSγ (for a negligible ϵ = ϵ(n) > 0) to RLWEq,Γα, for any

γ = max
{√

2ηϵ(I)ω(1)/α,
√
2n/λ1(I∨)

}
.

In [PRSD17], they use the inequality ηϵ(I) > ω(
√
log n)/λ1(I∨) to show that the first

term γ =
√
2ηϵ(I)ω(1)/α dominates in Theorem 4.9, as long as α <

√
log n/n which is the

usual case in applications. The reduction becomes tighter (i.e., works for a smaller γ) when
the smoothing parameter of I is large, meaning that I is a sparse ideal lattice (and that I∨ is
dense). A larger α implies a wider Ring-LWE error distribution, hence the problem is harder
and γ becomes smaller as expected.

This section is structured in the following way. First, we present an overview of the
reduction, highlighting the differences and similarities with LWE, besides the main drawbacks.
Second, we introduce the main theorem and the Iterative Step for Ring-LWE. Third, we
explore the classical step of the IS. Finally, we use the method for finding the center of the
oracle (Section 3.3) to extend our reduction to decision-RLWE for any number field.

4.2.1 Overview
Approach. The proof of Theorem 4.9 follows the same approach as the reduction for LWE
that we presented in Chapter 3. The core part of the reduction is an Iterative Step which
again has two parts, a classical part and a quantum part (which remains the same). The
main difference is that we now work with ring elements instead of integer vectors. To embed
ring elements into (ideal) lattices, the canonical embedding is required.

As opposed to Chapter 3, where we first presented a reduction to search-LWE, here we
reduce to decision-RLWE directly. We do so by including the techniques in Section 3.3 in our
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proofs (finding an oracle’s center). Nevertheless, we will need a method to generate RLWE
samples from a R-BDD instance that can be seen as a stand-alone classical part that uses a
search-RLWE oracle. Again, the reductions are worst-case, meaning that we can transform
any ideal lattice problem into a RLWE instance.

Differences with LWE. The most significant differences with to LWE appear in the
classical step. The first thing to notice is that we now solve a R-GDPI∨ instance using
the RLWE oracle, as opposed to BDD. Both problems are essentially the same, and if we
can solve R-BDDI∨,d, we will be able to solve R-BDDI∨,g for some g = ξ(n) · d (recall
that the norm of vectors sampled from DI,g will have norms bounded by d with very high
probability). However, the main reason why we work with R-GDP is the self-reducibility
result from Proposition 2.24, which ensures that if we can solve GDPL,g with non-negligible
probability for some g, we will be able to solve it with overwhelming probability for g′ = o(1)g.
This is also one of the reason why the functions ω(1) and o(1) appear; we need to take into
account approximation factors that partially vanish when we use the self-reducibility result.

The fact that ring elements are embedded via the canonical embedding also complicates
some of the steps. For example, we need to work with the ℓ∞ norm (in the R-BDD instances),
since we need to bound all the coordinates of our embedded elements (in order to control our
error distributions). Besides, we no longer have the direct correspondence between vectors
and lattice vectors that we used in Lemma 3.12 to relate the secret and the samples. To
circumvent this difficulty, we will make use of the efficient bijection from Lemma 2.44 and
Lemma 2.45 to map Rq ↔ Iq. In this way, we can establish a one-to-one correspondence
between lattice (ideal) elements and ring elements, which form the Ring-LWE instance.

Another remark is that our reductions require samples from different elliptical Gaussians,
i.e., from distributions DI,r for several different r in each step. This feature is required in the
search of the decision oracle’s center, where our samples need to be diverse. In this part, we
replace the single oracle in the proof of Proposition 3.18 by s1 + s2 oracles, roughly one per
embedding coordinate; we need to find the center of each of them (recall that n = s1 + 2s2).

Finally, one of the main differences is hidden in the error distributions. In the case of LWE,
it suffices to have an oracle for a single error distribution ϕα due to the self-reducibility result
in Lemma 3.11. On the other hand, our RLWEq,Γα oracle is required to solve decision Ring-
LWE for any elliptical Gaussian sampled from Γα, which may yield quite diverse Gaussians.

Drawbacks. The former fact significantly weakens the result, making it less satisfactory
than the one for LWE. In an attempt to overcome this limitation, both [LPR10] and [PRSD17]
present a reduction that holds for fixed spherical error distributions. Nevertheless, the error
width increases by a factor of O((mn)1/4), where m is the number of samples required by
the oracle. The dependency on the number of samples can be significant in applications and
differs to the results obtained for plain LWE. We will comment on this result in Section 4.2.4.

We remark that the results for Ring-LWE are intrinsically weaker than the results for
LWE, since the reductions are only valid for ideal lattices (and only for the dual form of
Ring-LWE where s ∈ R∨

q ). Whether computational problems on ideal lattices are as hard as
their counterparts in general lattices is not clear; we comment on this in Section 4.3.

4.2.2 The Iterative Step
As we mentioned, one of the main differences with the LWE reduction is that we require
Ring-LWE samples from elliptical error distributions DI,r, for different vectors r. The set
of vectors that we will need belong to the set Wr,ζ,T , which is a finite subset of G of size
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(s1 + s2)(T + 1). The vectors in Wr,ζ,T are slight perturbations of the spherical vectors
r = (r, r, . . . , r) on a single coordinate. Recall that s1 is the number of real embeddings and
s2 is the number of pairs of complex embeddings.

Definition 4.10. Let r ≥ 0, ζ = 1/poly(n) > 0, and T = poly(n) ≥ 1. Let also i =
1, . . . , s1 + s2 and j = 0, . . . , T . We denote Wr,ζ,T to the set of vectors ri,j ∈ G such that all
coordinates are equal to r except the i-th coordinate (and the (i + s2)-th if i > s1), which is
equal to r(1 + ζ)j.

The proof of Theorem 4.9 follows from the Iterative Step that we present below, which
preserves the structure of the IS in Chapter 3, as summarized in Figure 4.1. Again, we have
a classical part and a quantum part that are applied as before. The latter is unchanged,
whereas the former is adapted to the ring setting. One of the main differences is that we
use a decision oracle, achieving a reduction to decision RLWE. This is a consequence of the
novel approach in [PRSD17], which follows the same argument that we presented in Section
3.3 with the modification of the classical part (Proposition 3.18). As we mentioned, other
differences are the use elliptical discrete Gaussians such as DI,r, the increased complexity of
the parameter set, and that the intermediate lattice problem is now GDP instead of BDD,
since the offset will be sampled from a Gaussian distribution.

Proposition 4.11 (Iterative Step). Let ϵ = ϵ(n) > 0 be negligible, q ≥ 2, α ∈ (0, 1). Given
access to an oracle that solves RLWEq,Γα given a polynomial number of samples, there exists
an efficient quantum algorithm that, for any fractional ideal I ⊂ K, a radius r >

√
2qηϵ(I)

such that r′ = rω(1)/(
√
2αq) >

√
2n/λ1(I∨), a polynomial number of samples from DI,r for

each r ∈Wr,η,T , and a vector r′ ≥ r′, produces an independent sample of DI,r′.

Take samples of DI,r, r ∈ Wr,ζ,T

Solve GDPI∨,o(1)αq/(
√
2r)

Obtain samples of DI,r′ ,
for r′ ≥ ω(1)r

√
n/(αq)

Use RLWEq,Γα
oracle

Quantum, Proposition 3.10

Figure 4.1: Diagram of the Iterative Step for Ring-LWE

In an attempt to clarify the role of the parameters in the IS, we describe all its inputs
below.

• The parameters ϵ, q ≥ 2, α ∈ (0, 1). As in LWE, an instance of RLWEq,Γα where α is
small involves easier lattice problems, since we will have narrower error distributions.
If we have a small q, our α is required to be larger. The parameter ϵ determines the
tolerance of the smoothing parameter of the ideal lattices; a small ϵ ensures that the
error distributions that we obtain in our reductions are tight. Also, notice that we do
not need the factorization of q; as the reduction is quantum and q = poly(n), we can
factor q in polynomial time if needed.
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• Access to an oracle that solves RLWEq,Γα given a polynomial number of samples. This
is a decision oracle, which appears because we include the main result in [PRSD17]. On
the other hand, we need an oracle for the distribution Γα defined over a family of error
distributions, whereas for LWE it suffices to have an oracle for a single distribution ϕα.

• Any fractional ideal I ⊂ K, meaning that the reduction works for any ideal lattice (i.e.,
we have a worst-case reduction).

• A radius r >
√
2qηϵ(I) such that r′ = rω(1)/(

√
2αq) >

√
2n/λ1(I∨). The role of r

is to characterize the width of the inputs samples from DI,r, since r is a vector in
Wr,ζ,T (recall that all coordinates except one of r are equal to r, and r ≥ r). The
lower bound on r guarantees that r is sufficiently above the smoothing condition ηϵ(I),
which is required in Lemma 4.13 for handling the error distributions. It also imposes
a bound on how narrow our distributions can become, and hence on the parameters of
the R-DGS problem that we solve.
The value ω(1)/(

√
2αq) is the largest width reduction factor that we can achieve for

our samples in a single IS. The limit r′ >
√
2n/λ1(I∨) is imposed by the quantum part

(Proposition 3.10).

• A vector r′ ≥ r′ of our choice, that characterizes the output. We can request our al-
gorithm to output samples from any distribution DI,r′ , as long as each of its coordinates
r′i ≥ r′.

Proposition 4.12 (Classical part of the IS). Let ϵ = ϵ(n) > 0 be negligible, q ≥ 2, α ∈ (0, 1).
Given access to an oracle that solves RLWEq,Γα given a polynomial number of samples, there
exists an efficient algorithm that, given any fractional ideal I ⊂ K, a radius r >

√
2qηϵ(I),

and the factorization of q, solves R-GDPI∨,o(1)αq/(
√
2r) using a polynomial number of samples

from DI,r for each r ∈Wr,ζ,T .

Proposition 3.10 (Quantum part of the IS). Given any n-dimensional lattice L, a real
g < λ1(L∗)/(

√
8n), a vector r such that ri ≥ 1 for i = 1, . . . , n, and an oracle that solves

GDPL∗,g with overwhelming probability, there is an efficient quantum algorithm that outputs
an independent sample from DL,r/(2g).

Proof of Proposition 4.11. The proof follows from both parts in a straightforward man-
ner. We start with a radius r ≥

√
2qηϵ(I) and samples from DI,r for each r ∈Wr,ζ,T , and we

define r′ = rω(1)/(
√
2αq) >

√
2n/λ1(I∨) for some function ω(1) that grows asymptotically

faster than a constant. The goal is to obtain samples of DI,r′ for some r′ ≥ r′ of our choice;
let r′ = r′ · t where t ≥ 1 is a scaled representation of r′.

Using the samples and the RLWE oracle, Proposition 4.12 yields an algorithm that solves
R-GDPI∨,g for g = o(1)αq/(

√
2r). Then, Proposition 3.10 yields an algorithm that, on input

t, outputs an independent sample from DI,t/(2g). Plugging in the values of g and r, we have

t

2g
=

r

o(1)
√
2αq

t =
r′
√
2αq

ω(1)o(1)
√
2αq

t = ξr′t = r′,

where ξ = 1/(ω(1)o(1)) vanishes since ω(1) and o(1) are the inverse of each other. Finally,
the condition on the quantum part holds since

g =
o(1)αq√

2r
=
o(1)w(1)

2r′
<
λ1(I∨)√

8n
.
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The rest of the section is dedicated to the proof of the classical part, that we divide in two
components. The first one is the generation of Ring-LWE samples. The procedure takes an
instance y ∈ R∨ of R-BDDI∨,d where y = x+e for ‖e‖∞ ≤ d and produces Ring-LWE samples
where the secret is related to x. The reason why we use a BDD and not a GDP instance is
that it is more convenient to work with a strict bound for e. Since samples from Dg have ℓ∞
norm at most g · ω(

√
log n) with all but negligible probability, the sample generation can be

applied for R-GDPI∨,g where d = g · ω(
√
log n).

In Section 4.2.3, we show how to carry out the sample generation. In Section 4.2.4, we
will use it to prove Proposition 4.12 using the method for finding an oracle’s center presented
in Section 3.3.

4.2.3 From BDD to Ring-LWE samples
Our goal is to convert a R-BDD instance on the dual ideal I into RLWE samples, following
the proof sketch in Lemma 3.12 very closely. The result is presented below. Combined with
Lemma 3.13, it can be seen as a classical part for the Iterative Step which uses a search
RLWE oracle, in a similar fashion as Proposition 3.9.

The reduction takes the R-BDDI∨,d instance and creates samples of As,ψ using the invert-
ible bijection θt : Rq → Iq given by Lemma 2.44. We structure the proof in three parts. First,
we introduce the algorithm to generate the samples. Second, we prove the correctness of the
procedure assuming that the errors behave nicely. Third, we prove that the error distribu-
tions do behave as claimed. We closely follow the proofs of Lemmas 4.7 and 4.8 in [LPR10],
but we reformulate the statement and generalize it to the use of samples from an elliptical
discrete Gaussian DI,r instead of a spherical one. This generalization will be required later,
and is mentioned (but not presented) in [PRSD17]. We also generalize the proof and do not
restrict the parameters to those required by Proposition 4.11.

Lemma 4.13 (From R-BDD to RLWE samples). Let y = x + e ∈ I∨ such that x ∈ I∨
and ‖e‖∞ ≤ d be an instance of R-BDDI∨,d. There is a probabilistic algorithm that, given
such instance, an r ≥

√
2qη(I), the factorization of q, and samples from DI,r for r ≥ r,

outputs samples from As,ψ where ψ = Dr′ for r′i =
√
(ri|σi(e)|/q)2 + (rd/q)2, and s =

θt(x mod qI∨) = tx ∈ R∨
q .

Proof. 1. Procedure. Given y and the samples of DI,r, our algorithm proceeds as follows.
First, it computes an element t ∈ I such that tI−1 and (q) are coprime ideals, as in Lemma
2.44. Since we know the factorization of q over the integers, we can also factor the ideal (q)
and do this efficiently. Second, for each sample z ∈ I from DI,r, it samples e′ ← Drd/q and
calculates

a = θ−1
t (z mod qI), b = (zy)/q + e′ mod R∨.

Recall that the bijection θt can be inverted efficiently. Finally, it outputs (a, b) ∈ Rq × T,
which is our Ring-LWE sample.

2. Correctness. We will now prove that (a, b) is a sample of As,ψ as claimed. First, we
show that a ∈ Rq follows a distribution which is at negligible distance from uniform. Indeed,
we have that r ≥ r ≥ ηϵ(I), so Lemma 2.9 implies that the distribution of z mod qI is close
to uniform1 (recall that z ← DI,r). Since a = θ−1

t (z mod qI) and θt is a bijection, then
a mod qR is also uniform.

1We need to use the generalization of Lemma 2.9 for elliptical Gaussians, see Definition 2.11. Lemma 2.10
is also generalized in this way.
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We can now condition on a fixed value of a and study the distribution of b. Using that
y = x+ e, we have

b = (zy)/q + e′ = (zx)/q + e(z/q) + e′ mod R∨
q .

For the first term zx/q, we have that z = θt(a) = at ∈ Iq, by definition of a. Since
x ∈ I∨ = I−1R∨, then zx = atx mod R∨

q (notice that zx ∈ IqI−1R∨ = R∨
q ). Besides,

s = tx mod R∨
q , therefore

zx/q = as/q mod R∨.

To conclude the proof, we need to prove that the sum of the second and third terms
e(z/q) + e′ follows the distribution Dr′ . For the second term e(z/q), we know that z follows
a distribution DI,r. Fixed a, z/q follows a distribution DI+u/q,r/q where u = θt(a) mod qI.
Notice that the coset u/q appears because z/q is not a point of the lattice I. Therefore,
we need to analyze the distribution that results from the sum of the elliptical Gaussian
distribution DI+u/q,r/q and Drd/q.

3. Error distributions. We have that e ∈ K, so we can write e(z/q)+e′ as e(z/q+e′/e)
and study both terms in the sum. The distribution of e′/e is an elliptical Gaussian Dt where
ti = rd/q|σi(e)|, since the multiplication of embedded elements is coordinate-wise. Besides,

ti =
rd

q|σi(e)|
≥ rd

q‖e‖∞
≥ r

q
,

so we can write Dt as a sum of a continuous Gaussian and an elliptical Gaussian, Dt = Dr/q+

Dt′ where t′i
2 = t2i − (r/q)2 ≥ 0. We now want to study the distribution of z/q + e′/e, which

corresponds to DI+u/q,r/q+Dr/q+Dt′ . For the first two terms, notice that r/q ≥
√
2ηϵ(I) by

assumption. This means that their widths are above the smoothing condition, so we can apply
Lemma 2.10 to obtain that their sum is at negligible distance from the elliptical continuous
Gaussian D√

r2+r2/q. We conclude that z/q+e′/e follows a distribution D√
r2+r2/q+Dt′ = Dh,

which is a continuous elliptical Gaussian where

h2i =
r2i + r2

q2
+ t′i

2
=
r2i + r2

q2
+ ti

2 − r2

q2
=

(
ri
q

)2

+

(
rd

q|σi(e)|

)2

.

Thus, e(z/q) + e′ follows the distribution ψ = Dr′ as claimed.

As we mentioned, we can interpret this result as the classical part of a reduction to search
RLWE. To complete the reduction from R-BDD to SRLWE, notice that we recover the secret
x = θ−1

t (s mod qI∨), which is a solution modulo qR∨. Then, we can apply Lemma 3.13
to obtain the general solution (i.e., not modular) to the R-BDD problem. The reduction in
Lemma 3.13 is lattice-preserving, hence it applies as well to ideal lattices [LPR10].

The equivalence between the BDD and GDP instances was explained before. The key
observation is that if we have a R-GDPI∨,g for g = αq/(

√
2r) and take the bound d = f(n) ·g

for a function f(n) = ω(
√
log n), then our R-GDPI∨,g instances will be R-BDDI∨,d instances

with all but negligible probability. Besides, once we apply Lemma 4.13, the error distribution
of the samples will be distributed exactly as Γα (Definition 4.5). We will need this fact in
the coming section.

4.2.4 Using the Decision Oracle
With Lemma 4.13, we finally have all the tools required to prove the classical part of the IS
(Proposition 4.12). We want to find the e ∈ I∨ from a R-GDP instance y = x + e. For this,
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we will construct OHCP instances from oracles that create Ring-LWE samples using Lemma
4.13 and whose hidden center is related to the error vector e. The approach is similar to the
proof sketch of Proposition 3.18

The proof that we present follows [PRSD17] very closely, but reformulates some parts
(particularly towards the end of the proof) for improved clarity. The algorithm will create
s1 + s2 = n− s2 oracles Oi, one for each of the real coordinates of the canonical embedding
and one for each conjugate pair of complex embeddings. When testing each of the oracles to
approach their center, we leave all the other coordinates fixed. To this respect, the set Wr,ζ,t

from Definition 4.10 provides the necessary samples that are used to create the Ring-LWE
instances given to the decision oracle.

We remark that the procedure does not aim to find the secret of the samples, which would
be equivalent to constructing a reduction from search RLWE to decision RLWE. We simply
need the answers of the decision oracle to guide each of our Oi. Hence, the value of s in the
samples does not play an important role and we can randomize it.

Before proving the main result, we introduce a lemma that says that if the product of
the coordinates of a vector r is large, the whole r must be above the smoothing condition of
the lattice. This is a key part of the proof, since it ensures that when we increase a single
coordinate of the canonical embedding, our Ring-LWE samples are overridden by the error
distribution and indistinguishable from uniform.

Lemma 4.14. For any r ∈ G where c = (
∏n
i=1 ri)

1/n ≥ 1, then r ≥ ηϵ(R∨) for ϵ = e−c
2n.

Proof. Consider the lattice L generated as T−1σ(R∨) where T is a diagonal matrix such that
Ti,i = ri. This is, L is an elliptical scaling of σ(R∨). We have that L∗ = Tσ(R∨)∗ and any
w ∈ L∗ \ {0} is of the form T−1σ(v) for some v ∈ R. Since |N(v)| =

∏
i|σi(v)| ≥ 1, then

‖w‖2 =
n∑
i=1

r2i |σi(v)|2 ≥ n

(
n∏
i=1

r2i |σi(v)|2
)1/n

≥ c2n

and therefore λ1(L∗) ≥ c
√
n. By Lemma 2.12, this implies that 1 ≥ ηϵ(L), which is equivalent

to r ≥ ηϵ(R∨).

Proof of Proposition 4.12

The proof is structured in four parts, preceded by some useful remarks. First, we present the
procedure and the construction of the OHCP instances. Second, we prove that the procedure
is correct (assuming the validity of the OHCP instances) and that it returns the error term
e ∈ R∨, solving the target R-GDP instance. Third, we prove that the OHCP instances are
valid according to Definition 3.16. Fourth, we prove that the conditions in Theorem 3.17 are
met.

We introduce three preliminary observations. The first is that it suffices to solve R-
GDPI∨,g′ with non-negligible probability, where g′ = αq/(

√
2r) (i.e., g′ = g/o(1)), thanks to

the self-reducibility result in Proposition 2.24. The second is that we will always work with
ϵ ≤ 2−n, concerning ηϵ(I) and the statistical distances from uniform distributions. Hence,
we can use the convenient inequality ηϵ(I) ≥ O(1)

√
n/λ1(I∨) from Lemma 2.12. The third

is that we can assume that α ≥ e−n. Otherwise we would have, due to the previous fact, that
with overwhelming probability

‖σ(e)‖ ≤
√
ng ≤ α

√
n/ηϵ(I) ≤ 2−nλ1(I∨)

and the problem can be solved using Babai’s algorithm (Lemma 2.23). Here, we have used
that g = o(1)αq/

√
2r ≤ α/ηϵ(I) since r ≥

√
2qηϵ(I).
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1. Procedure. Let κ = poly(n) ≥ 100n2m such that the advantage of the decision
RLWEq,Γα oracle requiring m samples is at least 2/κ (we can always choose a κ since the
oracle has a non-negligible advantage). The algorithm takes all inputs stated in Proposition
4.12 with the difference that our instance y = x+e is from R-GDPI∨,g′ , where g′ = αq/(

√
2r).

The desired output is the offset e.
The procedure simulates s1 + s2 decision oracles Oi : R × R+ for i = 1, . . . , s1 and

Oi : C × R+ for i = s1 + 1, . . . , s1 + s2, following the definitions in Section 3.3, and where
z ∈ C is embedded in a vector z ∈ R2 as usual. The oracles are constructed as follows. Let
τi : R 7→ KR defined as σ−1

i (zei) for i = 1, . . . , s1 and τi : C 7→ KR as σ−1
i (zei + zei+s2) for

i = s1+1, . . . , s1+s2, where ei is a vector of the canonical basis that is 1 in the i-th coordinate
and 0 elsewhere. The oracle Oi(z, t) takes fresh samples from DI,rij where ri,j ∈Wr,ζ,T ⊂ G
following the notation in Definition 4.10, and such that (1 + ζ)j = et. Then, it creates a
R-GDPI∨,g′ instance y′ = y − τi(z) (i.e., y′ = x + e − τi(z)) and it transforms the DI,rij
samples and y′ into a set Mi,z,t of samples from As,ψ. This is done using the algorithm in
Lemma 4.13 with a bound d = f(n)g′ for a fixed f(n) = ω(

√
log n) ≤ n. Finally, the oracle

Oi calls the RLWEq,Γα oracle on input Mi,z,t and returns the same answer.
We will prove that each of the Oi have a hidden center σi(e), and that their acceptance

probability on input (z, t) depends only on et|z − σi(e)|. Besides, they are valid instances of
(e−κ, e−κ, 1 + 1/κ)-OHCP with a distance parameter d′ = d/(1 + 1/κ). Hence, the algorithm
runs the procedure in Theorem 3.17 to find a good approximation to the center zi ≈ σi(e).
Finally, it runs Lemma 2.23 on x′ = y −

∑s1+s2
i=1 τi(zi) and outputs x ∈ I∨ (or, equivalently,

e).

2. Correctness. We will assume that the OHCP instances are valid and prove that
the above algorithm outputs the correct e with all but negligible probability. Let zi be the
approximations of σi(e). By Theorem 3.17, we have that

|zi − σi(e)| ≤ e−κd′ ≤ e−κf(n)g′ ≤ e−κf(n)α/ηϵ(I) ≤ 2−nλ1(I∨)/
√
n

where we again used that g′ = αq/
√
2r ≤ O(1)α/ηϵ(I), besides the fact that e−κf(n)α ≤

e−2nf(n)α ≤ 2−n. Hence, the error in the approximation is bounded by∥∥∥∥∥e−
s1+s2∑
i=1

τi(zi)

∥∥∥∥∥ =

(
s1+s2∑
i=1

|σi(e)− zi|2
)1/2

≤
√
nmax

i
|σi(e)− zi| ≤ 2−nλ1(I∨).

Therefore, Babai’s algorithm (Lemma 2.23) will return the correct answer x ∈ I∨.

3. Validity of the OHCP instances. We need to prove that theOi are valid instances
of (e−κ, e−κ, 1+ 1/κ)-OHCP according to Definition 3.16. The distribution of the Ring-LWE
samples Mi,z,t generated as in Lemma 4.13 only depends on et|z − σi(e)|; this is because
we are fixing the coordinate i that characterizes the vector r′ ∈ Wr,ζ,t used to generate the
samples, and the non-spherical coordinate i changes by a factor et. Hence, pi depends only on
that same factor. Besides, |z − σi(e)| ≤ d and as d′ = f(n)g′, then e−κd′ ≤ |σi(e)| ≤ d′ with
overwhelming probability, since e−κ is negligible on n and e is sampled from the Gaussian
Dg′ .

4. Conditions of Theorem 3.17. The first condition that we need to prove is that
there exists a t∗ such that pi(0, t∗)−p∞ ≥ 1/κ. Recall that p∞ is the probability of the oracle
accepting on uniform (random) input samples. Notice that pi(0, t) is identical for each of the
Oi, since the input to the sample generation by Lemma 4.13 is the initial GDP instance y
(no offset is added). Besides, if we take t∗ = 0, then the error distribution of the samples is
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Γα, so our distinguisher has an advantage greater than 2/κ by assumption. It follows that
pi(0, 0)− p∞ ≥ 1/κ.

The second condition is the convergence of the probability, |pi(0, t) − p∞| ≤ 2e−t/κ for
every t. We will calculate the statistical distance between the samples of Mi,0,t (on which Oi
accepts with probability pi(0, t)) and the uniform distribution (respectively p∞). We know,
by Lemma 4.13, that the samples from Mi,0,t follow the distribution As,r′

i
for a vector r′i

given by {
r
′2
i,i = e2t(r|σi(e)|/q)2 + (rd/q)2 ≥ e2t(r|σi(e)|/q)2

r
′2
i,j = (r|σj(e)|/q)2 + (rd/q)2 ≥ (r|σj(e)|/q)2

.

Notice that all coordinates are spherical except for one of them, as in Wr,ζ,t. We now
choose ϵ = e−c

2n as in Lemma 4.14 where c =
∏n
i=1 r

′
i,j . We know that, since c ≥ 1 by

assumption, then r′ ≥ ηϵ(R
∨). Thus, by Lemma 2.9, the statistical distance between a

sample from Mi,0,t (recall that they are produced mod R∨) and the uniform distribution is
at most ϵ/2. The statistical distance cannot be amplified by any function, so the advantage
of the distinguisher cannot be larger. If our decision oracle has access to m samples, we can
apply the union bound on m and we have that, for large t such as t ≥ κ/10 ≥ 10n2m,

|pi(0, t)− p∞| ≤ mϵ/2

≤ (m/2) exp

−n n∏
j=1

(r′i,j)
2/n


≤ (m/2) exp

−ne2t/n(r/q)2 n∏
j=1

|σj(e)|2/n
 .

Since |σj(e)| ≥ e−ng′ ≥ e−nαq/(
√
2r) with all but negligible probability and α ≥ 2−n, then

|σj(e)| ≥ e−2n−1/2(q/r). Besides, we can just take that e2t/n−4n−1 � t/(κn) + log(m/4)/n
because t is very large compared to n. Plugging in both facts yields:

|pi(0, t)− p∞| ≤ (m/2) exp
(
−ne2t/n(r/q)2[e−2n−1/2(q/r)]2

)
≤ (m/2) exp(−ne2t/n−4n−1)

≤ 2 exp (−t/κ) .

For small t ≤ κ/10, we have that 2e−t/κ ≥ 2e−1/10 ≥ 1. As |pi(0, t) − p∞| ≤ 1, the
condition also holds.

The third condition follows by studying the statistical distance between the distributions
of Mi,z,t1 and Mi,z,t2 . Notice that these differ only on the i-th coordinate. If |t1 − t2| ≤ 1,
then by Lemma 2.7 their statistical distance is bounded by 10m(e|t1−t2| − 1) ≤ κ|t1 − t2|. If
|t1 − t2| ≥ 1, then the statistical difference is larger than 1, but the probability difference
cannot be larger than 1 ≤ κ|t1 − t2|. In both cases, |pi(t1)− pi(t2)| ≤ κ|t1 − t2|, so pi(z, t) is
κ-Lipschitz in t.

One of the main drawbacks of this result is that it requires a Ring-LWE oracle for the
distribution over the error distributions Γα, which is a rather restrictive requirement. With
a loss of roughly O((mn)1/4) in the approximation factor, one can relax this requirement to
an oracle for a single spherical Gaussian error distribution Dξ. The result is the following
[PRSD17].
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Corollary 4.15 (Main theorem, spherical error). Let K be a number field of degree n and
R = OK its ring of integers. Let q ≥ 2, α ∈ (0, 1) such that αq > 2ω(1), ρ = ω(

√
log n) ·

(nm/ log(nm))1/4, and ξ ≥ ρ/q. There is a polynomial time quantum reduction from R-DGSγ
(for a negligible ϵ = ϵ(n) > 0) to RLWEq,Dξ

, for any

γ = max
{√

2ρηϵ(I)/ξ,
√
2n/λ1(I∨)

}
.

4.3 Related Work and Variants
The Ring-LWE problem is supported by solid hardness results, as we have just seen. Never-
theless, they might be unsatisfactory for some real-world applications. The conjecture that
algebraically structured lattices are quantum-safe is at least questionable, and the canonical
embedding is less intuitive and implementable than, for instance, the polynomial coefficient
embedding. In this final section, we discuss Ring-LWE related work on aspects such as weak
instances and variants. The discussion is mostly informal and concludes with a brief survey
of open questions.

4.3.1 Weaknesses
The security of Ring-LWE is not as straightforward as the security of LWE, especially when
considering applications. As we mentioned previously, the primal RLWE variant (Definition
4.6) is widely used in practice since it is faster and easier to implement. There exist instances
of primal RLWE that are vulnerable to number-theoretical attacks. In [ELOS15], samples
from polynomial rings Rq = Zq/(f(x)) are shown to be vulnerable against distinguishing
attacks when f has a root that has a small order modulo q. They also provide lower bounds
on the width of the error distribution for which primal RLWE is safe. The attack first uses
the coefficient embedding (PLWE) and is later extended to a family of number fields for Ring-
LWE. In particular, some polynomials of the form xn+ q− 1 for a prime q are vulnerable. It
is worth noticing that these attacks do not extend to cyclotomic polynomials.

Later, the same family of attacks was made more efficient and extended directly to the
search version of primal RLWE in [CIV16]. A general study was done in [Pei16b], concluding
that all these weaknesses are related to a poor transformation of the error distribution from
the primal to the dual version (recall the discussion that follows Proposition 4.7).

A second threat on Ring-LWE arises in the improvements on algorithms for solving ideal
lattice problems, both classical and quantum. When Ring-LWE was first proposed, no
quantum algorithm could significantly outperform any classical algorithm on neither lat-
tices or ideal lattices. However, this has changed in the last years, as polynomial-time
quantum algorithms for approximating ideal SVP up to subexponential factors have been
developed [Duc17]. This creates a hardness gap between unstructured lattice problems (on
which the security of LWE is based) and algebraic lattices. Moreover, it questions the as-
sumption that ideal lattice problems are quantum-safe.

In cryptographic applications, subexponential approximations are insufficient to break
Ring-LWE, so the loss of security is still not significant. Nevertheless, cryptosystems based
on plain LWE such as FrodoKEM [BCD+16] are a great backup plan in the event of further
progress on ideal lattice algorithms. The security estimates of post-quantum cryptosystems
are based on the best available algorithms for solving lattice problems (somehow analogously
to how the security of RSA is estimated by the performance of integer factoring algorithms).
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4.3.2 Variants of LWE
Besides Ring-LWE, several variants of Learning with Errors have been proposed in recent
years2. Most of them pursue the goal of being more efficient and easily implementable than
the original LWE problem, while maintaining good security properties.

Polynomial-LWE was proposed before the actual Ring-LWE problem in [SSTX09]. The
approach is very similar; an instance of Polynomial-LWE is an instance of Ring-LWE in
which the elements are considered as polynomials, and they are embedded in a lattice via the
coefficient embedding instead of the canonical embedding. This makes error sampling easier
because we can directly sample polynomials with small coefficients. The main problematic
with the coefficient embedding is that the error distribution is not well controlled for rings
other than Z[x]/(xn + 1) for n a power of 2. The equivalence of Polynomial-LWE and Ring-
LWE was established in [RSW18], where they manage to control the error distribution.

Module-LWE tries to interpolate between plain LWE and Ring-LWE. An sample from a
Module-LWE distribution is given by a = (a1, . . . , ad) ∈ (Rq)

d and b ∈ T, where the secret
s ∈ (Rq)

d [LS15]. Instead of having a single ring product a·s, now we have two vectors of ring
elements. In applications, the vector dimension is usually small; for example Kyber [BDK+18]
uses d = 2, 3, 4 depending on the security level (higher d implies higher security and larger
computational cost).

Middle-Product LWE. Let d ∈ Z, f, g ∈ Z[x] two polynomials such that deg(f) ≤
d1,deg(g) ≤ d2, and assume that d − 2k = d1 + d2 − 1 for some integer k. The d-middle
product between f and g is given by multiplying f · g as usual, deleting all terms of degree
up to xk−1, deleting all terms of degree larger than xd+k, and dividing all remaining terms by
xk [RSSS17]. The result is a polynomial of degree d. A sample from a Middle-Product LWE
instance consists on replacing the multiplication operation in polynomial-LWE (or in Ring-
LWE) by the middle product of two polynomials; the rest remains the same. The efficiency
gain is that the middle-product operation can be computed very fast, and that there is no
need to work on a quotient ring (i.e., Z[x]/(f)).

Learning with Rounding is a variant of discrete LWE (where e ∈ Zq) that replaces
the addition of an error e ← χ by a deterministic rounding of the product 〈a, s〉. The
rounding function divides the (0, q − 1) interval in d parts and rounds the product to the
nearest part [BPR12]. Learning with Rounding enjoys a reduction from LWE (for certain
parameters) and is used by the NIST PQC finalist SABER [DKRV18]. Some of its main
advantages are its simplicity and the reduced amount of randomness required for sample
generation.

The web of reductions between some of the variants of Ring-LWE has been greatly simpli-
fied recently by Peikert and Pepin, who introduce a generalized algebraic LWE problem that
generalizes variants such as Module-LWE, Polynomial-LWE or Order-LWE [PP19]3. Then,
they achieve tight reductions from Ring-LWE to the generalized problem. Separately, they
reduce Ring-LWE for any ring to Middle-Product LWE, managing to narrow the error dis-
tributions. In general, their results imply that most of these convenient forms of LWE can
benefit from the hardness results for Ring-LWE.

2A schematic view of reductions and equivalences, mostly between primal/dual Ring-LWE and Polynomial-
LWE, can be found in [Ros20]. In [PP19], a diagram of their reductions is also presented.

3The revisited version of this paper includes stronger results.
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4.3.3 Future Directions
At the time of writing, many questions around LWE and Ring-LWE remain open. Arguably,
the main question addressing LWE directly is whether the reductions that we have seen can
be made entirely classical, continuing the work in [BLP+13]. Such a result would increase the
confidence that we have on LWE-based constructions. In parallel, there is ongoing research in
finding good (possibly quantum) algorithms for lattice problems. There is limited progress in
the search of efficient approximation algorithms for SVP and related problems. Nevertheless,
this is not the case for ideal lattices, and the gap that exists between lattices and ideal
lattices certainly questions the assumption that ideal lattice problems are hard, and hence
the hardness of Ring-LWE [Duc17].

Another line of research concerns the algebraic LWE variants [PP19]. The introduction
of more efficient and provably secure variants of LWE and Ring-LWE is of interest since it
will improve the quality of our cryptographic constructions. It is also important to close the
web of reductions among them. In order to construct practical and secure (such as IND-
CCA) cryptosystems on these variants, new tools such as the modular Fujisaki-Okamoto
Transform [HHK17] have been introduced.

Regarding practical constructions, proving the security of several variants of NTRU
[HPS98], some of which are candidates for standardization by NIST, also remains an open
problem [AASA+20]. For many other cryptosystems, the security proofs are not completely
satisfactory, since the chosen LWE or Ring-LWE parameter sets do not correspond to the
parameters required in the reductions of Chapters 3 and 4. Besides, some of them (such as
Kyber [BDK+18]) introduce “rounding” steps to improve efficiency that are not considered
in the security proofs, and others rely on the random oracle model. There is also room
for improvement in advanced LWE-based constructions such as fully-homomorphic encryp-
tion [Gen09] and attribute-based encryption schemes.

We conclude that the cryptographic community has solid reasons to believe that we can
construct schemes based on the Learning with Errors Problem that are against quantum
adversaries. Nevertheless, the security of constructions based on Ring-LWE-based is less
certain and requires further study. We believe that the intense research activity around LWE
will lead to important cryptographic breakthroughs in the coming years.
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