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Abstract.
We focus on the multiple persistent faults analysis in this paper to fill existing gaps in
its application in a variety of scenarios. Our major contributions are twofold. First,
we propose a novel technique to apply persistent fault in the multiple persistent
faults setting that decreases the number of survived keys and the required data. We
demonstrate that by utilizing 1509 and 1448 ciphertexts, the number of survived keys
after performing persistent fault analysis on AES in the presence of eight and sixteen
faults can be reduced to only 29 candidates, whereas the best known attacks need
2008 and 1643 ciphertexts, respectively, with a time complexity of 250. Second, we
develop generalized frameworks for retrieving the key in the ciphertext-only model.
Our methods for both performing persistent fault attacks and key-recovery processes
are highly flexible and provide a general trade-off between the number of required
ciphertexts and the time complexity. To break AES with 16 persistent faults in the
Sbox, our experiments show that the number of required ciphertexts can be decreased
to 477 while the attack is still practical with respect to the time complexity. To
confirm the accuracy of our methods, we performed several simulations as well as
experimental validations on the ARM Cortex-M4 microcontroller with electromagnetic
fault injection on AES and LED, which are two well-known block ciphers to validate
the types of faults and the distribution of the number of faults in practice.
Keywords: Fault Attack · Persistent Fault Analysis · Multiple Faults · AES

1 Introduction
Fault attacks are a class of physical attacks that consists of two phases; (1) fault injection
and (2) fault analysis. In the first phase, the adversary tries to disturb the operation of
the target device by using the available tools for injecting the desired fault. Fault can
be induced by some common methods, such as clock glitches, voltage starving, voltage
spikes, electromagnetic pulses, laser pulses, light pulses, hardware Trojans, and so on. In
the second phase, the adversary analyzes the response of the target device to the fault
with the aim of retrieving some sensitive information like the secret key.

Boneh et al. were the first to introduce fault attacks with their application on RSA
[BDL97]. Shortly after this seminal work, Biham and Shamir proposed the Differential
Fault Analysis (DFA) on block cipher DES [BS97]. DFA is the most common fault analysis
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technique that has been successfully applied to various block ciphers. Besides, novel
techniques have been proposed in follow-up works such as Fault Sensitivity Analysis (FSA)
[LSG+10], Differential Fault Intensity Analysis (DFIA) [GYTS14], Safe-Error Analysis
(SEA) [YJ00], Ineffective Fault Analysis (IFA) [Cla07], Statistical Fault Analysis (SFA)
[FJLT13], and so on. Dobraunig et al. exploited Statistical Fault Analysis in an ineffective
fault setting to introduce Statistical Ineffective Fault Analysis (SIFA) [DEK+18].

The generated faults can be generally classified into three categories based on the fault
duration. Most proposed fault attacks rely on transient faults which have a temporary
effect on the system. The permanent fault is another type of fault that has irreversible
effects during the lifetime. The third type of fault is the persistent fault that drops between
transient and permanent faults. The faulty value persists from one encryption to another
one, while it disappears when the target device is reset.

The notion of persistent fault was first coined by Schmidt et al. who presented an
attack on AES by erasing the non-volatile memory with ultraviolet light [SHP09]. This
notion was later expounded by Zhang et al. in an extended way to a more dedicated
framework [ZLZ+18]. Persistent fault attack or analysis (PFA) has several advantages
over the previous fault attacks. The main advantageous features are as follows: 1) The
attack only requires a set of ciphertexts, which is a less restrictive model than known- or
chosen-plaintext models. 2) The fault injection does not require precise timing or location
based on the synchronization of the encryption process. 3) PFA takes advantage of the
inherent characteristic to bypass some redundancy-based countermeasures.

1.1 Related Works
The original PFA proposed in [ZLZ+18] has a number of limitations. The major limitation
of original attacks concerns the assumption that the fault location and the value of the
fault are known to the attacker. In a follow-up work at CHES 2020 [ZZJ+20], it is shown
that the assumption of having exact knowledge of the fault value can be relaxed. Besides,
this work introduced a new framework based on utilizing maximum likelihood estimation
(MLE) that led to a 28% reduction in the required ciphertexts compared to the original
attack [ZLZ+18]. However, this framework is only applicable if a single fault occurs, and
it cannot be extended to the multiple-faults setting unless the attacker knows the exact
location and value of the fault again. This issue was addressed in [ESP20]. Engels et al.
presented a new attack called Statistical Persistent Fault Analysis (SPFA), by making
use of the statistical fault analysis (SFA) [FJLT13] in the persistent fault settings. While
SPFA makes it possible to perform persistent fault analysis in the multiple-faults setting
without requiring the location and value of fault, the average residual key entropy is still
high. For instance, the correct key of AES can only be found through an exhaustive search
with a complexity of 250. Hence, the overall complexity of SPFA is dominated by the
process of finding the correct key among possible candidates after performing the attack.

Aside from the the aforementioned works on circumventing PFA constraints, several
publications focused on other aspects, mainly demonstrating the application of the original
attack to various ciphers and implementations. Pan et al. indicated that PFA can break
any higher-order masking countermeasures with only one persistent fault injection in
[PZRB19]. Caforio and Banik presented studies on the application of PFA for reverse-
engineering purposes in the chosen-key model [CB19]. Gruber et al. applied the PFA
to authenticated encryption schemes such as Deoxys-II, OCB, and COLM [GPT19]. In
[CGR20], the authors meliorated the PFA by using several steps such as estimation theory,
rank, and key combination algorithms. Very recently, Xu et al. proposed Enhanced PFA
(EPFA) [XZY+21] which is more a key recovery approach in the single fault model. In
their work, they employ the leaked information in other rounds also to reduce the number
of required ciphertexts. However, an extension of this method to the multiple faults setting
is challenging, as we will discuss later. Besides, the improvement in this method comes
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with the cost of a less feasible assumption in which the attacker knows the location of the
faults.

1.2 Our Contributions
Persistent fault attacks that are published so far can be classified in different ways: 1)
Whether the value of fault is known or unknown. 2) Whether the attack can be efficiently
extended in the multiple-faults setting. 3) Whether the average residual key entropy
(and consequently the overall complexity) is low or high. 4) Whether finding the correct
key among the remaining candidates (after performing the PFA) is considered in the
ciphertext-only scenario or the known-plaintext scenario.

By considering the proposed attacks based on the aforementioned classifications, a
number of important problems have remained open that can be identified as follows:

1. While multiple faults is a realistic scenario, there is no framework for applying
PFA in a multiple-faults setting that is as efficient as a single fault setting and
does not require knowledge of the value of the fault. It is important to note that
multiple persistent faults may occur during practical fault injection, especially as
the technology node shrinks faster than the fault injection capability.

2. Because the PFA cannot uniquely retrieve the secret key, especially when there
is a limited amount of data available, it is critical to have an efficient method for
obtaining the correct key in the ciphertext-only scenario rather than utilizing a
pair of plaintext-ciphertext in the known-plaintext scenario. To the best of our
knowledge, there is no efficient and generalized framework applicable to all SPN
ciphers to uniquely retrieve the correct key from a given set of key candidates in the
ciphertext-only scenario under the assumption of multiple persistent faults occurring,
with the exception of [ESP20], which requires a quite high runtime.

Our contribution is twofold. In the first part of our twofold contribution, we propose
a novel technique that enables us to significantly reduce the number of remaining key
candidates up to 2n for an n× n Sbox in the cipher. The main features of the proposed
methods are as follows: a) It does not rely on knowledge about the value or the location
of the fault. b) It can be effectively extended to the cases where only an extremely limited
number of ciphertexts is available, e.g. less than 500 ciphertexts, while keeping the number
of remaining candidates within a very reasonable bound. The main results of this part
are compared with noted previous works in Table 1. In contrast to previous works, our
methods are parametric. Hence, Table 1 includes only the selected results of this paper.
For more instances, we refer to Section 3.

In the second part, we introduce two generalized and efficient methods for determining
the correct key among a set of key candidates in the ciphertext-only scenario. These
methods are described in Section 4 and target ciphers which use large Sboxes and lightweight
ciphers with small Sboxes. Our experimental results demonstrate that the key-recovery
processes can retrieve the correct key with the success probability one in a very short time.

Besides, we performed practical electromagnetic fault injection experiments which are
reported in Section 5. The experiments were performed on the 32-bit ARM Cortex-M4
microcontroller running both AES and LED. The experiments validate that faulting multiple
Sbox elements is more likely than faulting single elements. Moreover, the key recovery is
validated on the resultant ciphertext.

The proposed method is validated on block ciphers with different block sizes and in
different scenarios based on the number of faults. In particular, we tested on AES-128
and LED-64 to represent the Sbox of 8 × 8 and 4 × 4 respectively. The source code
for our simulations in pure Python3 language is publicly available at address below:
https://github.com/hadipourh/faultyaes.

https://github.com/hadipourh/faultyaes
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Table 1: Summary of multiple persistent fault analysis on AES which are derived from the
theory, †: It is assumed the faulty values are known, the upper bound for the number of
ciphertexts is estimated 2000 in [ZLZ+18].

Reference Ciphertexts Remaining Key Candidates Number of Faults
[ZLZ+18]† 2000 216 2
[ESP20] 7775 250 2

Section 3.4 1552 223 2
[ZLZ+18]† 2000 250 8
[ESP20] 2008 250 8

Section 3.4 1509 28 8
Section 3.5 671 214.56 8
[ZLZ+18]† 2000 264 16
[ESP20] 1643 250 16

Section 3.4 1448 28 16
Section 3.5 477 224.52 16

2 Preliminaries
2.1 Persistent Fault Analysis
Following the introduced PFA model by Zhang et al. [ZLZ+18], in this paper, we consider
an R-round word-oriented Substitution-Permutation Network (SPN) cipher EK(P ) which
accepts two inputs: b-bit plaintext block P and k-bit key K. We denote the ciphertext
by C. The encryption of the cipher can be described as an iteration of a function called
round Fskr(X), where skr denotes the r-th round key for 1 ≤ r ≤ R. The b-bit state X
consists of L words of the same size n = b/L denoted by X[i] where 0 ≤ i ≤ L− 1.

Let xr[j] and yr[j] denote the jth word input and output of the substitution layer in
the r-th round, respectively. Hence, the jth word of the ciphertext can be calculated as
C[j] = y[j] ⊕ skR[j], where skR[j] is the jth word of the last round key. Let us assume
that the injected fault alters the correct value v to the faulty value = v∗ = v ⊕∆ where
S∗ denotes the faulty look-up table of Sbox. Hence, the value of v no longer appears
in yR[j], while the value of v∗ is expected to appear twice as usual in y[j]. As a result,
the probability distribution of yR[j] and consequently the probability distribution of C[j]
is not uniform. Hence, the adversary collects N ciphertexts and calculates the statistic
distribution of each byte of ciphertext by counting the appearance of each of the possible
values in C[j] for all 0 ≤ j ≤ L− 1. If a large enough number of ciphertexts N is available,
the adversary is able to find the minimal and maximal number of counts uniquely. We
denote the value that is not observed in C[j] at all by Cmin[j] and denote the value that
appears more than other values by Cmax[j]. Finding Cmin[j] and Cmax[j] can be used
to derive skR[j] in a variety of ways. If v is known and N is large enough, skR[j] can be
retrieved directly from Cmin[j] as skR[j] = Cmin[j]⊕ v. Similarly, given v∗, the adversary
can also retrieve skR[j] directly from Cmax[j] as skR[j] = Cmax[j]⊕ v∗.

In the aforementioned methods, the adversary needs to know the exact position or the
value of the fault. Besides, a large number of faulty ciphertexts is required to find Cmin[j]
and Cmax[j] uniquely. In response to these challenges, Zhang et al. adopted the main
principles of the original PFA attack but made use of Maximum Likelihood Estimation to
estimate Cmin[j] without knowing the fault position or the value of the fault [ZZJ+20].

2.2 Limitations of PFA in Multiple-Faults Setting
An extension of the proposed technique in [ZZJ+20] to the case with multiple faults is
possible, but this comes with the cost of assuming the adversary knows the value of
the fault. Recently, Engels et al. [ESP20] proposed Statistical Persistent Fault Analysis
(SPFA) that is applicable to a block cipher in the multiple-faults setting while the attacker
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does not need to know the value of the fault. The proposed method can be applied to any
number of faults, but as we discuss later, its runtime is quite high.

The insurmountable bottleneck of existing PFA techniques in the multiple-faults scenario
is the high entropy of residual keys, where an exhaustive search with almost infeasible time
complexity is required to be performed to find the correct key. The key candidates cannot
be reduced even by increasing the number of faulty ciphertexts. After performing the PFA
based on the proposed techniques in [ZLZ+18, ZZJ+20], the number of key candidates
cannot become less than λL where λ is the number of faults. For instance, independent of
the available ciphertexts, at least 248 and 264 candidates will remain after applying in PFA
on AES for the case of multiple faults λ = 8 and λ = 16, respectively. Likewise, SPFA
suffers from a similar limitation, since the correct key of AES can be retrieved with the
time complexity of 250 [ESP20] which is a considerable runtime.

2.3 Target Ciphers
Our methods are applicable to SPN block ciphers. However, we apply the proposed
methods to two well-known ciphers, i.e., AES [DR99] and LED [GPPR11], to demonstrate
the flexibility of our methods.

3 Our Framework for PFA with Multiple Faults
This section starts with a short introduction to the fault model which is considered in this
paper. Then we give an overview of a specialized technique that makes performing PFA
feasible in the multiple faults setting. Subsequently, we introduce our method for different
scenarios based on the number of available ciphertexts.

3.1 Fault Model and Notation
The conventional PFA technique on table-based implementations of SPN ciphers and
associated notation presented in Section 2.1 can be generalized to multiple faults. Suppose
the correct values V = {v0, · · · , vλ−1} are altered to the faulty values V∗ = {v∗0 , · · · , v∗λ−1},
respectively such that V ∩ V∗ = ∅.1 Similar to the PFA with a single fault, we can take a
similar discussion to conclude exactly λ values will never be observed in each word of the
ciphertexts C[j] where 0 ≤ j ≤ L− 1. To detect these impossible values, the adversary
counts the appearance of each of the possible values in C[j] for all 0 ≤ j ≤ L− 1, given
N faulty ciphertexts. Assume that the adversary observes λ′j minimum values for each
word of the ciphertext C[j]. We denote the observable minimum values of the byte C[j]
by Cmini [j] where 0 ≤ i ≤ λ′j . In additionally, Dj = {Cmini [j]|0 ≤ i ≤ λ′j − 1} defines the
set of minimum values in the byte C[j]. Obviously, skR[j]⊕ v equals to one of minimum
values of the byte C[j]. If V is known and N is large enough, this relation can be used to
retrieve skR[j]. There exist at least λ impossible values due to the existence of λ persistent
faults. If N is insufficiently large, the number of observable minimum values λ′j can be
larger than λ. In the next part, we discuss the relation between the number of available
faulty ciphertext and the number of minimum values.

3.2 The Effect of Available Data
The exact value of λ′j − 1 depends on the number of available faulty ciphertexts N . If N is
large enough, it is expected for each word of the ciphertext C[j], exactly λ′j = λ minimum
values will be observed. If a limited number of ciphertexts is available, each set Dj for
0 ≤ j ≤ L − 1 is expected to have more than λ elements. The estimation of λ′j can be

1If vi is altered to v∗i such that v∗i ∈ V, this fault is an ineffective fault in PFA framework.
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seen as an instance of the coupon collector’s problem, a well-known problem in probability
theory. In what follows, we aim to find a closed formula for the answer to this question:
How many ciphertexts (N) are required to expect m′ = 2n−λ′ values to be observed given
m = 2n − λ possible values for C[j]?

Let N denotes the number of ciphertexts needed to observe m′ values, and ti denotes
the time required to observe the ith value after (i− 1)th value has been observed. Then the
relation N = t1 + ...+ tm′ holds. The expectation of ti equals to 1

pi
= m

m−i+1 because the
probability of observing the i-th new value is pi = m−(i−1)

m = m−i+1
m . Due to the linearity

of expectations, the expectation of N can be computed as shown in Equation 1.

E(N) = E(t1 + t2 + · · ·+ tm′) = E(t1) + E(t2) + · · ·+ E(tm) = 1
p1

+ 1
p2

+ · · ·+ 1
pm′

= m

m
+ m

m− 1 + · · ·+ m

m−m′ + 1 = m · (Hm−Hm−m′) , (1)

where Hn is the n-th harmonic number. Based on Equation 1, we can calculate the number
of observable minimum values λ′ given the number of ciphertexts N and the number of
faults λ.

On the other hand, the number of observable minimum values λ′ can be estimated by
an exponential function given in Lemma 1.

Lemma 1. Given the number of ciphertexts N and the number of faults λ, the number of
observable minimum values λ′ can be estimated by the exponential function λ′ = f(N,λ) =
ae−bN + c where a = 2n − λ, b = 1

2n−λ and c = λ.

Proof. The harmonic number Hm can be approximated as ln(m) + γ + 1
2m where γ is the

Euler–Mascheroni constant. Hence, from Equation 1, we have:

N

m
= H(m)−H(m′) = lnm+ γ + 1

2m − ln(m−m′)− γ − 1
2(m−m′)

⇒ ln(2n − λ)− ln(λ′ − λ) = N

2n − λ −
1

2(2n − λ) + 1
2(λ′ − λ) '

N

2n − λ

ln (2n − λ
λ′ − λ

) ' N

2n − λ ⇒
2n − λ
λ′ − λ

' e
N

2n−λ ⇒ λ′ ' (2n − λ)e−( 1
2n−λ )·N + λ

In the next parts, we demonstrate how the PFA can be performed efficiently in different
scenarios to retrieve the secret key in a multiple-faults setting.

3.3 Core Idea
If N is large enough, for each word of the ciphertext C[j] it is expected to observe exactly
λ minimum values, which means λ′ = λ holds. Hence, each value of Cmini [j] is equal to the
exclusive-or difference between one of the corrupted values v ∈ V and skR[j]. Consequently,
the set of minimum values of the byte C[j] is equal to

Dj = {vi ⊕ skR[j]|0 ≤ i ≤ λ− 1} = V ⊕ skR[j] (2)

We let δj denotes the exclusive-or difference between skR[0] and skR[j]. The crucial
observation that can be deduced from Equation (2) is that there exist a relation between
each set Dj and the set D0 as expressed in Equation (3).

Dj = V ⊕ skR[j] = (V ⊕ skR[0])⊕ (skR[0]⊕ skR[j]) = D0 ⊕ δj (3)
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where δj = skR[j]⊕ skR[0]. In other words, given any Cmini [j] there exists i′ such that
the relation Cmini [j] ⊕ Cmini′ [0] = δj holds. We exemplify this important observation
by considering a case with three persistent faults (λ = 3). Given enough ciphertexts,
exactly two minimum values can be observed for each byte C[j] where 0 ≤ j ≤ L − 1.
Considering Equation (2) and without loss of generality, we assume D0 = {Cmin0 [0] =
v0 ⊕ skR[0], Cmin1 [0] = v1 ⊕ skR[0], Cmin2 [0] = v2 ⊕ skR[0]}, and D1 = {Cmin0 [1] =
v0 ⊕ skR[1], Cmin1 [1] = v1 ⊕ skR[1], Cmin2 [1] = v2 ⊕ skR[1]}. It is easy to observe that the
following equations hold:

δ1 = Cmin0 [1]⊕ Cmin0 [0] = Cmin1 [1]⊕ Cmin1 [0] = Cmin2 [1]⊕ Cmin2 [0]

where δ1 = skR[0]⊕ skR[1].
Equation (3) implies that a careful comparison between the set of minimum values of

the byte C[0] and the set of minimum values of the byte C[j] might determine the value
of δj . One should note that any information about the value of δj where 0 ≤ j ≤ L− 1
can directly lead to a decrease in the number of candidates for the last round key. In the
case that the adversary could retrieve the values δj for all 0 ≤ j ≤ L− 1, it is sufficient for
him/her to guess only the value of skR[0], since other words of the last round key can be
determined simply as skR[j] = skR[0]⊕ δj .

The method described here may bear some resemblance to collision attacks that rely
on internal collisions detected via side-channel leakage [SWP03, SLFP04]. Collisions in
side-channel attacks imply that associated intermediate values are equivalent, whereas
we create a set of relationships between the intermediate values using the ciphertext’s
impossible values. Additionally, collision attacks are relevant because they rely on certain
key-dependent intermediate values, despite the fact that they are highly dependent on the
cipher’s structure and key schedule, whereas our approach makes no use of the cipher’s
internal specifications (like linear layer).

In the next parts, we will precisely describe how Equation (3) can be exploited to
retrieve the values δj in different scenarios. In this work, we discern between two scenarios
based on the number of available ciphertexts.

3.4 Multiple Persistent Faults with a Large Number of Ciphertexts
Assuming that a sufficient number of ciphertexts are available, each set Dj for 0 ≤ j ≤ L−1
has exactly λ elements. This scenario corresponds to the model assumed in Section 3.3.
Equation (3) implies that there exist exactly one value ` where 0 ≤ ` ≤ λ− 1 such that
the relation Cmin0 [0]⊕ Cmin` [j] = δj holds. We use this fact to retrieve the value of δj as
illustrated in Algorithm 1. More precisely, we compute the value α` = Cmin0 [0]⊕Cmin` [j]
for all 0 ≤ ` ≤ λ− 1, and verify whether the relation Dj = D0 ⊕ α` holds or not. If this
relation satisfies for α`, then we conclude that δj = α` holds.

We refer to the below table as an example of performing Algorithm 1 for a byte-oriented
block cipher (n = 8). The first and second rows represent the elements of D0 and D1,
respectively.

D0 0x49 0x52 0x74 0x8C 0x94 0xA5 0xD2 0xE5
D1 0x53 0x6E 0x75 0x82 0xAB 0xB3 0xC2 0xF5

We can easily verify if α1 = Cmin0 [0] ⊕ Cmin0 [1] = 49 ⊕ 53 = 1a is a candidate for
the value of δ1 by checking whether D1 = D0 ⊕ α1 holds or not. Since Cmin1 [0]⊕ α1 =
52 ⊕ 1a = 48 /∈ D1, we conclude δ1 6= α1. Then we continue the process for the value
α2 = Cmin0 [0]⊕ Cmin1 [1] = 49⊕ 6E = 27. It is observed that Cmin` [0]⊕ α2 ∈ D1 for all
0 ≤ ` ≤ λ− 1. In other words, for any Cmin` [0] there always exists an element in D1 such
that the difference between the elements is equal to 27:

27 = 49⊕ 6E = 52⊕ 75 = 74⊕ 53 = 8C⊕ AB = 94⊕ B3 = A5⊕ 82 = D2⊕ F5 = E5⊕ C2
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Algorithm 1 Finding δj = skR[0]⊕ skR[j]
Require: D0 = {Cmin0 [0], . . . , Cminλ−1 [0]} and Dj = {Cmin0 [j], . . . , Cminλ−1 [j]}
Ensure: ∆j = Candidates for δj

1: ∆j ← ∅
2: for ` = 0 to λ− 1 do
3: α` = Cmin0 [0]⊕ Cmin` [j]
4: cnt = 1
5: D ← Dj \ {Cminl [j]}
6: for i = 1 to λ− 1 do
7: E ← Cmini [0]⊕ α`

8: if E ∈ D then
9: cnt← cnt + 1
10: D ← D \ {E}
11: if cnt = λ then
12: ∆j ← ∆j ∪ {α`}
13: return ∆j

It is easy to check that the relation D1 = D0 ⊕ α` holds only for ` = 1. Hence, we can
deduce that δ1 = α1 = 27.

3.4.1 Complexity Analysis

We assumed that the number of minimal values observed for each of the bytes C[j] equals
λ. In other words, we assumed λ′ = λ. The expected value of N can be computed using
the formula given by Section 3.2. By replacing m = m′ = 2n − λ in Section 3.2, the
expected value of N can be calculated as given in Equation (4).

E(N) = m

m
+ m

m− 1 + · · ·+ m

1 = m ·
(

1
m

+ 1
m− 1 + · · ·+ 1

1

)
= m ·Hm . (4)

We observe in the case of two faults (i.e. λ = 2), Algorithm 1 returns two candidates
for each value of δj . This observation comes from the fact that if the relations Cmin0 [0]⊕
Cmin0 [j] = Cmin1 [0]⊕ Cmin1 [j] holds, then the relation Cmin0 [0]⊕ Cmin1 [j] = Cmin1 [0]⊕
Cmin0 [j] holds as well. In this case, it is not possible to determine δj uniquely. The
attacker needs to guess the value of skR[0] and calculate skR[j] = skR[0]⊕ δj . Since there
are two candidates for each value of δj , the number of candidates for the last round key
equals to

τ = 2n × 2L−1 = 2n+L−1 if λ = 2 (5)
In case the number of faults is larger than two (i.e. λ ≥ 3), the condition in line 11

of Algorithm 1 does not necessarily hold if α` 6= δj . The probability that a random n-bit
value α` satisfies the condition in line 11 of Algorithm 1 can be estimated by

λ− 1
2n × λ− 2

2n × · · · × 1
2n = (λ− 1)!

2n(λ−1) (6)

This probability decreases with the number of faults. Hence, the success probability of our
method always increases with the number of faults. We remind that the value of δj can be
retrieved by Algorithm 1 by considering all α` where 0 ≤ ` ≤ λ− 1. Hence, the expected
number of values for δj (i.e., |∆j |) can be estimated by Equation (7) where 1 ≤ j ≤ L− 1.

1 + (λ− 1)× (λ− 1)!
2n(λ−1) (7)

It is worth noting that for typical values of λ, and n the terms 1 + (λ−1)(λ−1)!
2n·(λ−1) is almost

equal to 1. The adversary needs to only guess the n-bit skR[0] as the remaining part of
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skR, i.e., skR[j] for 1 ≤ j ≤ λ− 1 can be uniquely determined from skR[j] = skR[0]⊕ δj .
To sum up, the number of remaining candidates for the last round key equals to

τ = 2n × [1 + (λ− 1)× (λ− 1)!
2n(λ−1) ]L−1 if λ ≥ 3 (8)

Table 2 includes the number of required ciphertexts derived from Equation (4), and
the number of remained key candidates derived from Equation (5) in case of λ = 2 and
Equation (8) in case of λ ≥ 3 for an SPN cipher, some typical values of λ and λ′, when
n = 8 and L = 16. It can be observed that in all cases the number of key candidates
is significantly less than the number of possible candidates for the last subkey, i.e., 2n·L.
Besides, the number of required ciphertexts decreases slightly as the number of faults
increases.

Table 2: Expected remained key candidates and required ciphertexts for an AES-like cipher.
λ 2 4 8 16

Key Candidates (τ) 223 28 28 28

Required Ciphertexts 210.6 210.58 210.56 210.50

3.4.2 Simulation Results

We evaluated the accuracy of Equation (4) by selecting AES-128 as the target cipher.
Assuming that λ faults are applied, we altered λ values in the AES Sbox at random
such that there is no overlap between original and faulty values. Similar to the previous
works, persistent faults were applied after deriving the sub-keys in our simulations. After
encrypting N random plaintexts, we counted the number of distinct observed values at
each output byte of ciphertext. We repeated this experiment for 100 random secret keys
and counted the average number of observed values for an arbitrary byte of ciphertext.
Figure 1(a) and Figure 1(b) illustrate the output of our simulations for the different
numbers of faults 1 ≤ λ ≤ 16. It can be seen that the number of non-observed values
exponentially converges to the number of faults as the number of ciphertexts grows, such
that for more than m · Hm available ciphertexts, the number of non-observed values is
almost equal to the number of faults. Moreover, the derived data from our simulation
appropriately fits the exponential curve a · e−b·N + c such that a, b, and c are very close to
the theoretical values derived from Lemma 1, as you can see in Figure 1(c) and Figure 1(d)
which confirms the high accuracy of Lemma 1 in practice.

Considering AES-128 as the target cipher, we also implemented Algorithm 1 and
experimentally evaluated the average number of candidates for δj returned by this algorithm
where 1 ≤ j ≤ 15. To do so, for the given number of faults and number of available
ciphertexts, i.e., λ and N respectively, we applied λ random faults to generate N (faulty)
ciphertexts as before. Next, feeding Algorithm 1 with the non-observed values in our
experiment, we generate some candidates for δj where 1 ≤ j ≤ 15. We repeated this
experiment for 100 random secret keys to compute the average number of candidates
returned by Algorithm 1 for an arbitrary output byte. When the number of ciphertexts
was larger than (m ·Hm) where m = 28 − λ, for each δj , where 1 ≤ j ≤ 15, Algorithm 1
returned only one candidate and two candidates for the case λ ≥ 3 and λ = 2, respectively.
These results confirm the estimation given in Equation (7) and the accuracy of Algorithm 1.

3.5 Multiple Persistent Faults with a Limited Number of Ciphertexts
If a limited number of ciphertexts is available, each set Dj for 0 ≤ j ≤ L− 1 is expected to
have more than λ elements. If we denote the size of the set Dj by λ′j , then λ′j ≥ λ. In this
case, the deterministic relation described in Equation (3) does not hold anymore. This
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(a) Overview (b) Close up

(c) Overview (d) Close up

Figure 1: Average number of non-observed values at each output byte of ciphertext, given
N ciphertexts in presence of λ persistent faults, where 1 ≤ λ ≤ 16, and the target cipher
is AES-128. Moreover, vertical lines specify the required number of ciphertexts according
to Equation (4) for each λ.
comes from the fact that due to the limited number of available ciphertexts, Dj includes
λ′j − λ elements that are not impossible. We discern two challenges in applying our initial
method (described in Section 3.4). First, it is unclear whether the value Cmin0 [0] is an
impossible value or not. Second, the relation Cmini [0]⊕ δj ∈ Dj does not always satisfy
for all values of i. In this part, we take a sophisticated technique to circumvent these
challenges in the case λ′j ≥ λ. The correct value of δj can be determined by utilizing the
process illustrated in Algorithm 2 which is similar to a specialized technique proposed in
Section 3.4 with two main changes. First, we utilize a trial and error approach to find the
first impossible value Cmink [0] ∈ D0 where k is an unknown value and 0 ≤ k ≤ λ′0 − λ.
We make use of Cmink [0] as a base to determine the value of δj . Second, we extend
the preliminary technique to the probabilistic setting. Instead of checking the relation
Dj = D0⊕α`, we look for the value of α` = Cmink [0]⊕Cmin` [j] where the desired relation
Cmini [0]⊕ α` holds at least λ times.

3.5.1 Complexity Analysis

Let us assume that Cmink [0] is an impossible value. We can take a similar discussion to
conclude that there exists an unknown 0 ≤ ` ≤ λ′j − 1 such that δj equals to α` where
α` is defined as α` = Cmink [0]⊕ Cmin` [j]. In the case that λ = 2, we expect the relation
Cmini [0]⊕α` ∈ Dj to hold at least λ times for 0 ≤ i ≤ λ′j−1 if α` = δj or α` = δj⊕v0⊕v1.
In the case that λ ≥ 3, we expect the relation Cmini [0]⊕α` ∈ Dj at least λ times holds for
1 ≤ i ≤ λ′j if α` = δj . For other values of α`, we expect the relation Cmink [0]⊕ α` ∈ Dj
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Algorithm 2 Finding δj = skR[0]⊕ skR[j]
Require: D0 = {Cmin0 [0], . . . , Cminλ′0−1 [0]} and Dj = {Cmin0 [j], . . . , Cminλ′

j
−1 [j]}

Ensure: ∆j = Candidates for δj

1: ∆j ← ∅
2: for k = 0 to λ′0 − λ do
3: D0 ← D0 \ {Cmink [0]}
4: for ` = 0 to λ′j − 1 do
5: α` = Cmink [0]⊕ Cmin` [j]
6: cnt = 1
7: D ← Dj \ {Cmin` [j]}
8: for all d ∈ D0 do
9: E ← d⊕ α`

10: if E ∈ Dj then
11: cnt← cnt + 1
12: D ← D \ {E}
13: if cnt ≥ λ then
14: ∆j ← ∆ ∪ {α`}
15: return ∆j

holds on average x times with the probability given in Equation (9).

Pr[cnt = x|α` 6= δj ] = (1−
λ′j
2n )λ

′
0−x ×

λ′j − 1
2n × · · · ×

λ′j − x+ 1
2n ×

(
λ′j − 1
x− 1

)
= (1−

λ′j
2n )λ

′
0−x × (x− 1)!×

(
λ′j − 1
x− 1

)2
× 2−n·(x−1)

(9)

Hence the probability that the relation Cmini [0]⊕ α` ∈ Dj holds more than λ times can
be computed as Equation (10) where Pr[cnt = x|α` 6= δj ] can be calculated based on
Equation (9).

P =
λ′j∑
x=λ

Pr[cnt = x|α` 6= δj ] =
λ′j∑
x=λ

(1−
λ′j
2n )λ

′
0−x(x− 1)!

(
λ′j − 1
x− 1

)2
2−n·(x−1) (10)

In the case Cmink [0] is not an impossible value, the condition of line 13, i.e. cnt ≥ λ,
holds with probability P for the calculated α` where 0 ≤ ` ≤ λ′j . In the worst case, the
first impossible value in the set D0 is Cminλ′

j
−λ

. In the case Cmink [0] is an impossible
value, the condition of line 13 holds with probability P for α` 6= δj (i.e. (λ′j − 2) times
and (λ′j − 1) times for λ = 2 and λ ≥ 3, respectively). To sum up, the upper bound of the
expected number of values for δj can be estimated by Equation (11) where P is given in
Equation (10). {

2 + [(λ′j − 2) + (λ′j − λ)λ′j ]× P, if λ = 2
1 + [(λ′j − 1) + (λ′j − λ)λ′j ]× P, if λ ≥ 3

(11)

Equation (10) provides an estimate of the number of candidates for δj under the worst-case
scenario of no repetition. As a result, the number of candidates may be reduced in practice,
particularly when P is large.

The adversary needs to guess the n-bit value of skR[0]. Then, he/she finds other bytes
of the last round key based on the relation skR[j] = skR[0]⊕ δj . As a consequence, the
number of remaining candidates for the last round key equals to

τ =
{

2n × d[2 + [(λ′j − 2) + (λ′j − λ)λ′j ]× P]L−1e, if λ = 2
2n × d[1 + [(λ′j − 1) + (λ′j − λ)λ′j ]× P]L−1e, if λ ≥ 3

(12)
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Table 3 includes the number of required ciphertexts derived from Section 3.2, and the
number of remained key candidates derived from Equation (12) for an SPN cipher, and
some typical values of λ and λ′, when n = 8 and L = 16 (like AES). It also shows that
λ′ = 2 · λ is cost-efficient.

Table 3: Expected number of remained key candidates and required ciphertexts in an SPN
cipher for some typical values of λ and λ′, when n = 8 and L = 16.

λ 2 4 8 16
λ′ 4 6 8 8 12 16 16 24 32 32 48
P 0.0343 0.0917 0.170 3×10−6 0.002 0.040 10−6 0.001 0.028 10−8 0.001

Required Ciphertexts 210.19 210.00 29.86 29.98 29.74 29.56 29.70 29.39 29.16 29.32 28.90

Key Candidates (Theory) 226.43 240.87 260.25 28.33 220.23 256.12 28.01 215.39 273.20 28.00 229.93

Key Candidates (Simulation) 225.07 234.54 250.07 28.71 216.11 240.67 28.00 212.78 255.62 28.00 229.94

3.5.2 Simulation Results

To experimentally validate the correctness as well as the quality of Algorithm 2, we carried
out several random experiments to see how many candidates this algorithm returns on
average when a limited number of ciphertexts are available. More precisely, choosing
AES-128 as the target cipher as before, for a given number of faults and a number of
non-observed values, namely λ and λ′ respectively, we firstly apply λ random faults and
generate N (faulty) ciphertexts such that N = m · (Hm−Hm−m′) according to Section 3.2.
Next, detecting the non-observed values at each output byte, i.e., Dj , we feed Algorithm 2
by (D0,Dj) to derive some candidates for δj , where 1 ≤ j ≤ 15, and |D0| = |Dj | = λ′.
Iterating this experiment for 100 randomly chosen secret keys we compute the average
number of candidates returned by Algorithm 2. Assuming that |D0| = |Dj | = λ′ holds
for the input of Algorithm 2, we computed the average number of candidates returned
by this algorithm for different values of λ and λ′. As shown in Table 3, Equation (11)
and Equation (12) provide an accurate estimate of the output size of Algorithm 2 and,
consequently, the number of key candidates when the probability P is small. However,
when P is large (as indicated by the blue color in Table 3), simulation results reveal that
the attack performs significantly better than Equation (11) predicts. This discrepancy
arises because increasing P results in an increase in the number of repeats.

3.6 Side Information about Faults
In this part, we demonstrate that the proposed framework can also leak side information
about the injected faults.

3.6.1 Determining the Number of Faults (λ)

The assumption of knowing the number of faults usually makes sense as it can be estimated
via a profiling phase by the attacker. However, the profiling phase is not necessarily
possible in all applications. An interesting property of the proposed methods described in
Section 3.4 and Section 3.5 is that the number of faults can be determined by the adversary
as a piece of side information.

If the attacker is able to query enough ciphertexts as it is assumed in Section 3.4,
then he can gradually increase the number of ciphertexts and monitor the size of Dj for
0 ≤ j ≤ L− 1. The set of minimum values of the byte C[j] (i.e. size of Dj) decreases as
the number of ciphertexts increases. After a while, the number of ciphertexts does not
affect the size of Dj . At this point, the adversary can determine the number of faults as
λ = min{|Dj |} where 0 ≤ j ≤ L− 1.

If the attacker has access to a limited number of ciphertexts, then he/she needs to
perform Algorithm 2. As it is mentioned in Section 3.5, the corresponding value of cnt
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in the case of α` = δj becomes equal or larger than λ. In other words, if we denote the
maximum value of cnt during the execution of Algorithm 2 for retrieving the δj by cntmaxj ,
then the relation λ ≤ cntmaxj holds. Hence, a similar process described in Algorithm 2
can find not only δj based on the cntmaxj but it also determines an upper bound for the
number of faults that means λ ≤ min{cntmaxj }.

During our experiments to verify the proposed method in Section 3.5, we noticed that
appearing an α` such that cnt(α`) > λ is almost impossible in Algorithm 2. In other
words, most of the time we observed that cnt(α`) ≤ λ for each α`, which leads us to the
correct value of λ.

3.6.2 Determining Values of Faults

In this part, as another interesting property of the proposed methods in Section 3.4 and
Section 3.5, we demonstrate that some information about V and V∗ can be obtained by the
adversary. Let us assume that by performing Algorithm 1 or Algorithm 2, τ key candidates
Ki are obtained where 1 ≤ i ≤ τ . Besides, we are given Dj for 0 ≤ j ≤ L− 1. We assume
Du has the minimum size among all Dj for 0 ≤ j ≤ L− 1. For each key candidate Ki, the
corresponding Vi can be computed as Vi = Ki[u]⊕Du for 1 ≤ i ≤ τ . In this way, the τ
returned candidates for the secret key are converted to τ candidates tuples of (Ki,Vi) for
1 ≤ i ≤ τ .

On the other hand, the probability of C[j] when C[j] ∈ V∗⊕ skR[j] is higher compared
to other cases (since Pr(C[j]) ≥ 2 × 2−n|C[j] ∈ V∗ ⊕ skR[j]). We make use of this
non-uniform distribution to determine the Cmax[j] candidates, i.e. D∗j for 0 ≤ j ≤ L− 1.
It is clear |D∗j | ≤ λ and for given enough ciphertexts we know the exact value of λ.
However, we overestimate each D∗j to do not miss any member of V∗ ⊕ skR[j]. Hence, we
include λ′′ values of Cmax[j] in D∗j , λ′′ can be fine-tuned dependent on the number of
available ciphertexts. Next, we can use Algorithm 3 to narrow the members and determine
the correct set D∗0 . Given the (Ki,Vi) candidates for 1 ≤ i ≤ τ and D∗0 , we define
V∗i = Ki[0]⊕D∗0 for 1 ≤ i ≤ τ . In this way, τ candidates of (Ki,Vi,V∗i) are determined
and could be used later in the key recovery process, i.e. Section 4.3.

Implementing Algorithm 3 and considering the AES-128 as the target, we also performed
several random experiments to confirm the correctness as well as the quality of Algorithm 3.
In every single experiment, after applying λ random faults we produce a sufficiently large
number of random faulty ciphertexts to collect non-observed values at each output byte,
i.e., Dj for 0 ≤ j ≤ 15. By sufficiently large number, we mean larger than m ·Hm, where
m = 2n − λ. Next feeding Algorithm 1 by the derived (D0,Dj) we find some candidates
for each δj , where 1 ≤ j ≤ 15. It should be recalled that Algorithm 1 returns a unique
value on average when a sufficiently large number of ciphertexts are available. Lastly, we
call Algorithm 3 to retrieve the D∗0 . Throughout our experiments, capturing the cnt[x] for
all 0 ≤ x ≤ 255, we observed that all members of correct D∗0 can be simply distinguished
from the other values, since cnt[x] for x ∈ D∗0 was always much higher in comparison to
the x /∈ D∗0 for correct D∗0 in all of our random experiments. The used filter in line 8 of
Algorithm 3 is to consider the possible overlap in V∗. Consequently, Algorithm 3 returns
the correct D∗0 in practice, when a sufficiently large number of ciphertexts are available.

4 Key-recovery Process for Remaining Key Candidates

In this section, we propose generalized techniques for the key-recovery process in the
ciphertext-only model over the remaining key candidates after the PFA attack.
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Algorithm 3 Finding D∗0
Require: D∗0 = {Cmax0 [0], . . . , Cmaxλ′′0−1 [0]} and D∗j = {Cmax0 [j], . . . , Cmaxλ′′

j
−1 [j]} and δj for

1 ≤ j ≤ L− 1
Ensure: D∗0
1: for j = 1 to L− 1 do
2: D∗j ← D∗j ⊕ δj

3: for x = 0 to 2n − 1 do
4: cnt[x] = 0
5: for j = 0 to L− 1 do
6: for x ∈ D∗j do
7: cnt[x]← cnt[x] + 1
8: D ← {x ∈ {0, . . . , 2n − 1} | cnt[x] ≥ L

2 }
9: D ← [x0, . . . , x|D|−1 | cnt[x0] ≥ · · · ≥ cnt[x|D|−1]; xi ∈ D]
10: return at most λ first elements of D as D∗0

4.1 Attack Scenarios
As we demonstrated in Section 3.6.2, the attacker can obtain corresponding V for each
possible key candidate as a piece of side information by performing Algorithm 1 or
Algorithm 2. Because retrieving V∗ is not always possible, we distinguish between two
situations based on whether the attacker knows the exact set of V∗ for a particular key
candidate or not. Determining the set of V∗ depends on available ciphertexts and the size
of the utilized Sbox. If the adversary only has access to a small number of ciphertexts,
he/she can only use the V. Having a larger number of available ciphertexts, on the other
hand, might indicate that the adversary is aware of both V and V∗. In contrast to a cipher
with a bigger Sbox, such as AES, a cipher with a smaller Sbox, such as LED, requires a
fewer number of ciphertexts to produce V∗. With few ciphertexts, it is difficult to identify
the precise set of V∗ and hence D∗j for a cipher with a bigger Sbox.

In case that a limited number of ciphertexts is available to the adversary, he/she has
access only to the V. In contrast, having a larger number of available ciphertexts can be
interpreted that both V and V∗ are known to the adversary. On the other hand, a smaller
number of ciphertexts is required to obtain V∗ for a cipher with a smaller Sbox, e.g. LED,
compared to a cipher with a larger Sbox, e.g. AES. In contrast, for a cipher with a larger
Sbox it is hard to determine the exact set of V∗ and therefore D∗j with few ciphertexts.

Standard cipher designers often pick a larger Sbox but a smaller number of rounds.
In contrast, lightweight block ciphers often have a tiny Sbox, but the round function is
repeated across a larger number of rounds. Dependent on this distinction, we suggest two
distinct techniques for the key-recovery process in Section 4.2 and Section 4.3, based on
whether the adversary knows V∗ or not. This technique gives the attacker the option of
selecting one of the approaches dependent on the application. We should point out that in
these approaches, the attacker has no knowledge of the location or values of the faults.

4.2 Key-recovery Attack Based on V
Let us assume the adversary is given N faulty ciphertexts C1, . . . , CN that are produced
using an identical faulty Sbox S∗. The input and the output of the Sbox layer of the
rth round are designated by xr and yr, each of them consists of L words of the same
size n = b/L. Similar to previous research, we assume that the cipher’s key schedule is
invertible and that |skR| = k = b, i.e. given skR it is possible to determine the master
key K uniquely. Furthermore, we assume that the round keys are precomputed and are
unaffected by faults.

By performing PFA as described in Section 3, the adversary has τ candidates of
(Ki,Vi) where Vi = {vi0, · · · , viλ−1}. The correct key and corresponding V are unclear to
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the adversary. However, it is apparent that the correct values V = {v0, · · · , vλ−1} were
not produced in the output of Sboxes throughout the encryption process. If the candidate
(Ki,Vi) is a correct pair and the state is unaffected by faults, the elements of Vi should not
appear after the Sboxes during the decryption of ciphertexts under Ki. This distinguisher
appears to be beneficial in locating the correct key among the key candidates. However,
this fact cannot be used straightforwardly, since the process of decryption is challenging
in the PFA model. Although the Sbox used in an SPN block cipher is always invertible,
this is not true for S∗(.). More precisely, if β /∈ {V ∪ V∗} then we can uniquely determine
S∗−1(β); if β ∈ V∗ then there will be more than one possible value for S∗−1(β) and if
β ∈ V then S∗−1(β) =⊥.

We make use of the aforementioned properties to propose a sophisticated key-recovery
framework in the probabilistic setting. The process is described in Algorithm 4. For any
candidate (Ki,Vi) we allocate a counter cnt(Ki,Vi) and set them zero. We decrypt each
Cj under the key candidate Ki round by round. In the rth round , for 1 ≤ r ≤ R− 1 , we
calculate yr and increase the counter cnt(Ki,Vi) if the elements of Vi do not appear in
yr. More precisely, we increase the counter cnt(Ki,Vi) if {yr[0], · · · , yr[L− 1]} ∩ Vi = ∅.
Finally, a pair (Ki,Vi) with the highest counter value is returned as our guess for the
correct pair.

4.2.1 Attack Analysis

In what follows, we estimate the expectation of the counter cnt(Ki,Vi) for the wrong key
and correct key to proving this can be used as a strong distinguisher for determining the
correct key among the key candidates.

Given a wrong pair (Ki,Vi), we expect the calculated value yr will be random for 1 ≤
r ≤ R−1. Hence, the probability of achieving a yr such that {yr[0], · · · , yr[L−1]}∩Vi = ∅
is (1 − λ

2n )L·r′ , where r′ = L − r (Figure 2a). As a consequence, the expected value of
cnt(Ki,Vi) for a wrong pair (Ki,Vi) can be estimated as given in Equation (13).

cnt(Ki,Vi) ≈ N ·
R−1∑
r=1

pr, where p = (1− λ

2n )L (13)

Similarly, we can calculate the expected value of cnt(Ki,Vi) for the correct pair (Ki,Vi).
Given the correct pair (Ki,Vi), cnt(Ki,Vi) can be increased under two circumstances as
is depicted in Figure 2b. First, we consider a situation in which {yh[0], · · · , yh[L− 1]} have
not been alerted by the introduced faults for R−1 ≤ h ≤ r−1, i.e. {S(xh[0]), · · · , S(xh[L−
1])}∩Vi 6= ∅ for R− 1 ≤ h ≤ r− 1. In this case, cnt(Ki,Vi) is increased with probability
(1 − λ

2n )L·r′ in the rth round. Hence, the expected increase in cnt(Ki,Vi) under this
circumstance (left branch in Figure 2b) can be estimated as given in Equation (14).

N ·
R−1∑
r=1

pr (14)

Second, we consider a situation in which {yh[0], · · · , yh[L−1]} have been altered by the
introduced faults for r−1 ≤ h ≤ R but {yr[0], · · · , yr[L−1]}∩Vi = ∅. For instance, in case
of yR−1, if {S(xR[0]), · · · , S(xR[L− 1])} ∩ V 6= ∅ but {yR−1[0], · · · , yR−1[L− 1]} ∩ V = ∅
then cnt(Ki,Vi) is increased with probability p1 = (1− p) · p. As can be followed from
Figure 2a, this observation can be extended to other rounds as well. In general, the counter
cnt(Ki,Vi) is increased again with the probability of pr′ = (pr′−1 · (1− p) + pr′−1) · p =
r′ · pr′ · (1− p) over the rth round, where r′ = L− r. Consequently, the expected increase
in cnt(Ki,Vi) under this circumstance (right branch in Figure 2b) can be estimated as
given in Equation (15).

N ·
R−1∑
r=1

r · pr · (1− p) (15)
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Algorithm 4 Key-recovery attack on multiple fault model, given candidates of (Ki,Vi)
Require: C1, . . . , CN and τ candidates of (Ki,Vi)
Ensure: Correct (Ki,Vi)

1: for i← 1 to τ do
2: cnt(Ki,Vi) = 0
3: for l← 1 to N do
4: for r ← R− 1 down to 1 do
5: yr ← C−r,Ki

l

6: for j ← 0 to L− 1 do
7: if yr[j] ∈ Vi then
8: Go to the line 3 (next l)
9: cnt(Ki,Vi)← cnt(Ki,Vi) + 1
10: return Higher ranked {cnt(Ki,Vi)}

By considering both aforementioned circumstances presented with corresponding ex-
pected values presented in Equation (14) and Equation (15), the expected value of
cnt(Ki,Vi) for a correct pair (Ki,Vi) can be estimated as given in Equation (16).

cnt(Ki,Vi) ≈ N ·
R−1∑
r=1

pr +N ·
R−1∑
r=1

r · pr · (1− p) (16)

It is worth noting in the above estimation while decrypting an affected yr under a
correct (Ki,Vi), we assumed the whole yr−1 will be random. However, depending on the
diffusion layer of the cipher and the number of affected words of yr, it is possible that only
part of yr−1 behaves randomly and the rest pass the verification deterministically. Hence,
we expect a higher actual value for cnt(Ki,Vi) of the correct pair which enhances the
distinguishability of the correct key recovery from the wrong keys. This fact is confirmed by
our simulations which demonstrates the key-recovery attack works slightly better compared
to our formulations. For more details about the simulation results, we refer to the next
part (Section 4.2.2).
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Figure 2: Expectation of added value to cnt(Ki,Vi) over the last four rounds; (a) wrong
guess of (Ki,Vi); (b) correct guess of (Ki,Vi).

4.2.2 Simulation Results

To verify the described key-recovery attack, we consider AES-128. Table 4 represents
numerical results for 1 ≤ λ ≤ 16, where theoretical values are driven from the framework
(Equation (16) and Equation (14)) and the experimental results are conducted based on
taking the average over 100 random experiments. In each experiment, we chose a secret key
at random, applied λ random faults, and generated N random faulty ciphertexts at first.
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After that, we detect non-observed values at each output byte, i.e, Dj for 0 ≤ j ≤ 15, and
perform Algorithm 2 to derive the candidates for δj , where 1 ≤ j ≤ 15. Then we obtained
candidates for the last round key as well as its corresponding V = D0⊕ skR[0]. These steps
provided the input of Algorithm 4, by calling which we could retrieve the correct key. We
calculated the average of cnt(Ki, V i) for the correct as well as the wrong keys. We have not
only observed that Algorithm 4 can uniquely retrieve the correct key, but the experimental
results precisely match the theoretical expectations concerning the cnt(Ki, V i) for wrong
keys (as it can be seen in Table 4). We also have observed that cnt(Ki, V i) for the correct
key is even higher than the expected value according to Equation (16). There are some
dependencies in the case of the correct key. As we considered the worst-case scenario for
the correct key by disregarding any dependencies, the results are always better for the
correct key in practice. As we discussed in Section 4.2.1, this observation adjusts with the
fact that the calculated values of state yr−1 for the correct key are not completely random.
The higher actual value of cnt(Ki,Vi) for the correct key is helpful for the key-recovery
attack. Our results confirm the high accuracy of Algorithm 4 in retrieving the correct key
uniquely in practice.

It is worth noting that, with a non-optimized implementation of Algorithm 4 in the
Python3 language running on a single core Intel Core i7-9750H at 2.60GHz, the correct
key can be recovered in less than a minute when λ > 2. For λ = 2, if we utilize basic
data-parallel programming, we can obtain the right key in a few hours on the same
machine, albeit the number of key candidates may be more than in the previous cases. To
accomplish this, we simply divide the set of key candidates into several equally subsets
and run Algorithm 4 on each subset in parallel, ultimately picking the key with the highest
counter as the correct key.

Table 4: Expected values of counters of a wrong candidate (Ki,Vi) versus the correct
(Ki,Vi), i.e. cntWK and cntCK respectively.

Theory Experiment Theory Experiment
N λ cntWK cntCK cntWK cntCK N λ cntWK cntCK cntWK cntCK

1554 2 7865.94 11744.44 7866.06 12316.36 1490 11 1459.29 2906.68 1459.17 3798.01
1547 3 6088.03 10064.41 6089.08 10642.27 1483 12 1281.85 2557.55 1281.45 3419.05
1540 4 4817.60 8519.74 4816.42 9253.09 1476 13 1132.86 2262.55 1133.12 3113.09
1533 5 3889.99 7192.24 3888.73 8038.08 1469 14 1006.41 2011.19 1006.53 2843.33
1526 6 3197.91 6086.93 3197.89 6983.73 1462 15 898.08 1795.32 898.37 2604.68
1519 7 2670.56 5179.21 2671.10 6093.00 1455 16 804.50 1608.58 804.87 2389.48
1511 8 2259.12 4433.64 2258.90 5346.17 1343 32 179.79 359.58 179.84 785.64
1504 9 1934.63 3825.15 1934.87 4749.19 1231 48 46.07 92.13 46.12 282.93
1497 10 1673.20 3323.45 1673.31 4232.39 1121 64 11.35 22.70 11.36 91.59

4.3 Key-recovery Attack Based on V and V∗

In this part, we demonstrate how the knowledge of V∗ can be utilized to provide a more
efficient key-recovery attack to retrieve the correct key uniquely given the candidates
of (Ki,Vi,V∗i). Let us assume that the attacker can obtain a list of candidates for
(Ki,Vi,V∗i) by performing Algorithm 2, as it is described in Section 3.6.2. Considering
the permutation layer of an SPN cipher, the output of an Sbox in the (r − 1)th round is
affected by t Sbox(es) in the rth round in the backward direction, where t depends on the
structure of the target block cipher and the target word yr[j]. We denote the corresponding
t-value for the jth word by tj . For the block ciphers like AES and LED which utilize strong
permutations tj = 4 for all words 0 ≤ j ≤ 16 while 1 ≤ tj ≤ 3 for other block ciphers like
CRAFT [BLMR19] and SKINNY [BJK+16] depending on j. In what follows we assume that
yR−1[j] depends on {yR[j1], yR[j2], · · · , yR[jtj ]}.

If {yR[j1], yR[j2], · · · , yR[jtj ]} ∩ V∗
i = ∅, the probability that the word yR−1[j] would

not be in Vi depends on whether the candidate (Ki,Vi,V∗i) is a correct or wrong candidate
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as it is given in Equation (17).

Pr(yR−1[j] /∈ Vi) =
{

1 Correct candidate (Ki,Vi,V∗i),
(1− λ

2n ) Wrong candidate (Ki,Vi,V∗i).
(17)

Equation (17) emphasizes that yR−1[j] ∈ Vi is an impossible event for the correct
candidate. In other words, if yR−1[j] ∈ Vi happens during the decryption process over a
candidate (Ki,Vi,V∗i), then it can be interpreted that the candidate is certainly wrong.
This strong distinguisher can be utilized to filter the wrong candidates of (Ki,Vi,V∗i), as
it is described in Algorithm 5. To determine that a candidate (Ki,Vi,V∗i) is a correct or
wrong candidate we follow this procedure: For each available ciphertext Cl, we obtain the
words of the corresponding yR−1 as much as possible. If there is a yR−1[j] ∈ Vi, then we
remove (Ki,Vi,V∗i) as it is a wrong candidate.

4.3.1 Attack Analysis

Given a ciphertext Cl, we can determine yR−1[j] only if {yR[j1], yR[j2], · · · , yR[jtj ]}∩V∗
i =

∅ which occurs with the following probability:

Pr({yR[j1], yR[j2], · · · , yR[jtj ]} ∩ V∗
i = ∅) = (1− 2 · λ

2n )tj (18)

Hence, we expect to be able to determine Ψ =
∑L−0
j=0 (1 − 2·λ

2n )tj words of yR−1 for a
ciphertext. The probability of passing the filter (i.e. yR−1[j] ∈ Vi never happened) by
a wrong candidate of (Ki,Vi,V∗i) is (1 − λ

2n )Ψ. Given N ciphertexts C1, . . . , CN , the
probability that a wrong candidate can pass the filter in all N experiments is (1− λ

2n )N ·Ψ
while the correct candidate (Ki,Vi,V∗i) always passes the filer over all experiments. When
(1− λ

2n )Ψ is small enough, the correct key may be obtained uniquely.

Algorithm 5 Key-recovery attack on multiple fault model, given candidates of
(Ki,Vi,V∗i)
Require: C1, . . . , CN and τ candidates of (Ki,Vi,V∗i)
Ensure: Correct (Ki,Vi,V∗i)

1: for i← 1 to τ do
2: for h← 1 to N do
3: Determine yR

4: for j ← 0 to L− 1 do
5: if {yR[j1], yR[j2], · · · , yR[jtj ]} ∩ V∗

i = ∅ then
6: Determine yR−1[j]
7: if yR−1[j] ∈ Vi then
8: Remove (Ki,Vi,V∗i) from candidates and go to line 1 (next i)
9: return remaining candidates for (Ki,Vi,V∗i).

4.3.2 Application on LED-64 and AES-128

LED-64 consists of eight steps, each of which has four rounds. Hence, it comprises a total
of 32 rounds. As the primary source of diffusion, LED-64 employs an MDS function. As a
result, each word of y31 is a function of four words of y32. In other words, tj = 4 holds for
all words in LED-64, i.e. 0 ≤ j ≤ 15. For example, the value of y31[0] is solely determined
by the four words {y32[0], y32[4], y32[8], y32[12]}, if we consider the backward direction and
it can be determined uniquely if {y32[0], y32[4], y32[8], y32[12]} ∩ V∗i = ∅. Similarly, each
value of y31[5], y31[10] and y31[15] only depends on {y32[0], y32[4], y32[8], y32[11]}. Therefore,
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if we can determine y31[0] uniquely, we can also determine the values of these three words
(y31[5], y31[10], and y31[15]) as well. A similar argument can be made for the remaining
word in y31. Hence, given a ciphertext Cl we can determine four words of its corresponding
y31 if the corresponding four words from y32 are not in V∗i, which happens with probability
(1− 2·λ

2n )4. Given N ciphertexts, we expect to find Ω = N · 4 · 4 · (1− λ
2n )4 words of y31,

since each ciphertext contains four such sets. Consequently, the expected wrong keys that
could pass the filtering will be |WK| = τ · (1 − λ

24 )Ω. Table 5 represents the numerical
results for 2 ≤ λ ≤ 7. Following the provided experimental results in Section 5, λ ≤ 6 are
more probable for 4-bit block ciphers, e.g. LED, and the proposed attack filters the wrong
keys for these values of λ perfectly.

The same argument can be used for AES, and to determine 4 words of y9 we need 4
corresponding words from y10. Table 5 represents the numerical results for 2 ≤ λ ≤ 32
faults on AES. We also implemented Algorithm 5 to simulate the key recovery attack on
AES-128. We observed that if a sufficiently large number of ciphertexts are provided, it
always delivers the correct key uniquely.

Table 5: Expected values of survived wrong keys on different values of λ for LED-64 and
AES-128, where Pr(WK) = (1− λ

28 )Ω.
LED-64

τ N λ Ω Pr(WK) |WK| τ N λ Ω Pr(WK) |WK|
219 28 2 1296 6.95724E-76 3.6476E-70 25 27.91 3 587.2017 1.11719E-53 3.57501E-52
25 27.91 4 240.5178 8.91265E-31 2.85205E-29 25 27.91 5 76.10134 4.1327E-13 1.32246E-11
25 27.91 6 15.03236 0.000854268 0.027336575 25 27.91 7 0.93 0.582417518 18.63736058

AES-128
τ N λ Ω Pr(WK) |WK| τ N λ Ω Pr(WK) |WK|

223 28 2 3845.938 7.93925E-14 1.33199E-06 28 28 3 3725.29 8.48368E-20 2.17182E-17
28 28 4 3607.504 2.12202E-25 5.43237E-23 28 28 5 3492.533 1.20812E-30 3.09279E-28
28 28 6 3380.332 1.52308E-35 3.8991E-33 28 28 7 3270.857 4.13866E-40 1.0595E-37
28 28 8 3164.063 2.36051E-44 6.04291E-42 28 28 9 3059.905 2.75336E-48 7.0486E-46
28 28 10 2958.34 6.40242E-52 1.63902E-49 28 28 11 2859.325 2.89452E-55 7.40996E-53
28 28 12 2762.816 2.48253E-58 6.35527E-56 28 28 13 2668.772 3.94315E-61 1.00945E-58
28 28 14 2577.149 1.13286E-63 2.90012E-61 28 28 15 2487.905 5.75244E-66 1.47262E-63
28 28 16 2401 5.04702E-68 1.29204E-65 28 28 32 1296 6.95724E-76 1.78105E-73

5 Experimental Results
In this section, we report results from our practical fault injection experiments performed
on AES and LED block-ciphers. The main aim of our experiments is to identify the types of
persistent faults on the Sbox that are achievable.

5.1 Target Platform
Our DUT is the STM32F407VG microcontroller based on the 32-bit ARM Cortex-M4
processor housed on the STM32F4DISCOVERY evaluation board. The core and peripherals
of the DUT are clocked at the maximum possible clock frequency of 168 MHz. We
compiled our implementations using the arm-none-eabi-gcc compiler with the highest
compiler optimization level-O3. We utilize the ST-LINK/v2.1 add-on board for UART
communication with our DUT and OpenOCD framework for flash configuration and on-chip
hardware debugging with the aid of the GNU debugger for ARM (arm-none-eabi-gdb).
For AES-128, we used a simple round based implementation written in the C language
with a focus on Sbox transfer from flash to RAM on boot-up2. For LED, the experiments
were done on a publicly available implementation3.

2Adapted from https://github.com/kokke/tiny-AES-c/blob/master/aes.c
3https://github.com/vedadux/configurable-LED
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5.2 Experimental Setup for Fault Injection

We utilize Electromagnetic Fault Injection (EMFI) to inject persistent faults into our
DUT. Our choice of EMFI is motivated by several reasons. Firstly, the fault injection can
be done in a completely non-invasive manner. Moreover, it can be used to inject faults
from the front-side of the chip, and thus requires very minimal and in some cases, no
preparation of the DUT for fault injection. Our EMFI setup consists of a pulse generator
that can generate high voltage pulses (up to 200V) with very low rise times (<4ns). A
controller software on the laptop synchronizes the operation of the EM pulse generator
and DUT through serial communication. The pulse generator is directly triggered by an
external trigger signal from the DUT, which synchronizes the voltage pulse with the DUT’s
operation. The EM pulse injector is a customized hand-made EM probe designed as a
simple loop antenna. The location of the EM pulse injector on the chip is controlled by an
XYZ motorized table. Our setup also contains an additional relay switch to perform an
automated power-on reset of the device, used during validation of the persistent faults.
Refer to Figure 3 for the EM probe used in our experiments.

EM pulse generator

Injection Probe

DUT(ARM Cortex-M4F)

X-Y Table

(a)

Figure 3: Electromagnetic Fault Injection on the STM32F407VG microcontroller based on
32-bit ARM Cortex-M4 core (a) Experimental Setup, (b) and its placement over the DUT

5.3 Persistent Faults on Sbox through EMFI

We consider the scenario of cryptographic software running on such embedded microcon-
trollers wherein the Sbox is typically present as part of the code stored in flash memory.
Upon boot up (or an encryption call), the Sbox is retrieved from flash and is stored in a
designated location in the main memory (RAM). Subsequently, the encryption procedure
utilizes the Sbox stored in RAM to compute the ciphertext. This approach is desirable
to decrease Sbox access times, especially in devices such as constrained microcontrollers
with no cache memory. Thus, if an attacker is able to fault the movement of Sbox from
flash to RAM, then it leads to a persistent fault in the Sbox. A similar fault model has
been reported by Menu et al. [MBD+19]. In our experiments, we consider two types of
Sboxes: (1) 4-bit Sbox (LED-64) and (2) 8-bit Sbox (AES-128). The Sbox values are loaded
from the flash memory into the registers, in an iterative manner, using the 32-bit LDR.W
load instruction and subsequently, they are stored from the registers into the RAM using
the 32-bit STR.W store instruction. For our practical experiments, we fix the width of
the pulse to 7 ns (nanoseconds) and the voltage to about 190 v, as we are able to observe
reliable faults with these fault injection parameters. We then perform a thorough fault
injection campaign over the entire area and a full sweep of the injection delay to identify
the different types of faults that can be observed on the Sbox values.
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5.4 Fault Injection Results
While our aim is to study the different types of faults achievable on the Sbox values, our
main focus is on the number of Sbox values that can be corrupted and not the value that
the faulted Sbox is corrupted to, as it is not relevant for our analysis. In the case of the
4-bit Sbox of LED-64, the attacker is much more likely to fault 3-5 elements in the Sbox,
compared to faulting a single entry (Figure 4(a)). In the case of the 8-bit Sbox of AES-128,
the chance to fault 4 or 6 elements of the Sbox is the highest (Figure 4(b)). Refer to
Figure 4(c) for the bar plots demonstrating the frequency of faults affecting single and
multiple Sbox elements. We found that in total, 18,865 faults successfully targeted the AES
S-box, out of which over 87% were affecting multiple elements, and single element faults
were less than 10%. A few faults affect more than half of the elements of the Sbox, which
violates our fault model and are considered out of scope (see Section 3.1). We observed
about 3% and 0.1% of faults for AES and LED Sbox of such types. While single faults
are achievable with high repeatability, it requires detailed profiling of the chip surface to
identify exact coordinates and EM pulse parameters. An attacker who does not spend
much effort in the profiling phase is more likely to get multiple faults. We also verified
the proposed key-recovery attacks by incorporating the faulty Sboxes with 2, 4, 6 injected
faults driven from experiments. In all cases, both Algorithm 4 and Algorithm 5 returned
the correct key efficiently. We also made two interesting observations: 1) V∗ < V, which
shows a bias in the injected fault and 2) for the driven Sbox with 8 faults, we observed an
ineffective fault value. Hence, the exact λ was 7 not 8. Interestingly, Algorithm 3 returned
the correct λ which was 7. The details of Sboxes and key-recoveries are available under
the following address: https://github.com/hadipourh/faultyaes

Further, the presented attacks can be extended to other implementation choices. A
common performance-oriented implementation choice for AES is the use of T-tables instead
of Sbox. T-tables merge SubBytes, ShiftRows and MixColumns into 4 8× 32 t-tables. As
the last round of AES does not execute MixColumns, often Sbox is used in the last round,
thus keeping our analysis technique unchanged. Even if a modified t-table is used for the
last round, the proposed analysis can be trivially adapted, as already shown in [ZLZ+18].
Similarly, masked implementation based on look-up tables is also vulnerable, as previously
demonstrated in [PZRB19].

(a) LED-64 (b) AES-128 (c) Single vs Multiple

Figure 4: Distribution of the no. of faulted entries of the Sbox for (a) LED-64, (b) AES-128
and (c) Single vs Multiple Faults

6 Conclusion
While the feasibility of persistent fault analysis with a single-fault injected is demonstrated
in the literature, there are some challenges in extending the known techniques to the
multiple faults setting. In this paper, we provided new insight into PFA by proposing novel
methods for extending its application to the multiple faults setting that can be performed

https://github.com/hadipourh/faultyaes
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in practice. We provided parametric frameworks that can be easily adjusted to different
scenarios. This paper can be considered as a significant step in performing PFA under
multiple faults in more realistic scenarios.
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