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Abstract

We construct an efficient dynamic group signature (or more generally an accountable ring signature)
from isogeny and lattice assumptions. Our group signature is based on a simple generic construction
that can be instantiated by cryptographically hard group actions such as the CSIDH group action or
an MLWE-based group action. The signature is of size O(logN), where N is the number of users
in the group. Our idea builds on the recent efficient OR-proof by Beullens, Katsumata, and Pintore
(Asiacrypt’20), where we efficiently add a proof of valid ciphertext to their OR-proof and further show
that the resulting non-interactive zero-knowledge proof system is online extractable.

Our group signatures satisfy more ideal security properties compared to previously known construc-
tions, while simultaneously having an attractive signature size. The signature size of our isogeny-based
construction is an order of magnitude smaller than all previously known post-quantum group signatures
(e.g., 6.6 KB for 64 members). In comparison, our lattice-based construction has a larger signature size
(e.g., either 126 KB or 89 KB for 64 members depending on the satisfied security property). However,
since the O(·)-notation hides a very small constant factor, it remains small even for very large group
sizes, say 220.

1 Introduction

Group signature schemes, introduced by Chaum and van Heyst [Cv91], allow authorized members of a
group to individually sign on behalf of the group while the specific identity of the signer remains anonymous.
However, should the need arise, a special entity called the group manager (or sometimes the tracing authority)
can trace the signature to the signer, thus holding the group members accountable for their signatures.
Group signatures have been an active area of academic research for the past three decades, and have also
been gathering practical attention due to the recent real-world deployment of variants of group signatures
such as directed anonymous attestation (DAA) [BCC04] and enhanced privacy ID (EPID) [?].

Currently, there are versatile constructions of efficient group signatures from classical assumptions, e.g.,
[BBS04, DP06, Gro07, ?, BCN+10, LPY15, LMPY16, DS18, BHSB19, CS20]. In this work, when we argue
the efficiency of a group signature, we focus on one of the quintessential metrics: the signature size. We
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require it to be smaller than c · logN bits, where N is the group size and c is some explicit small polynomial
in the security parameter. In their seminal work, Bellare, Micciancio, and Warinschi [BMW03] provided
a generic construction of a group signature with signature size O(1) from any signature scheme, public-
key encryption scheme, and general non-interactive zero-knowledge (NIZK) proof system. Unfortunately,
this only provides an asymptotic feasibility result, and thus one of the main focuses of subsequent works,
including ours, has been to construct a concretely efficient group signature.

In contrast to the classical setting, constructing efficient group signatures from any post-quantum as-
sumptions has been elusive. Since the first lattice-based construction by Gordon, Katz, and Vaikuntanathan
[GKV10], there has been a rich line of subsequent works on lattice-based (and one code-based) group signa-
tures, including but not limited to [LLLS13, ELL+15, LLNW16, LNWX18, KY19]. However, these results
remained purely asymptotic. It was not until recently that efficient lattice-based group signatures appeared
[BCN18, dLS18, EZS+19]. In [EZS+19], Esgin et al. report a signature size of 60KB and 148KB for a group
size of N = 212 and 221, respectively—several orders of magnitude better than prior constructions. These
rapid improvements in efficiency for lattices originate in the recent progress of lattice-based NIZK proof
systems for useful languages [YAZ+19, BLS19, ESLL19, ALS20, ENS20, LNS20, LNS21], most of which
rely heavily on the properties of special structured lattices. Thus, it seems impossible to import similar
techniques to other post-quantum assumptions or to standard non-structured lattices. For instance, con-
structing efficient group signatures from isogenies—one of the promising alternative post-quantum tools to
lattices—still seems out of reach using current techniques. This brings us to the main question of this work:

Can we construct an efficient group signature secure from isogenies? Moreover, can we have a
generic construction that can be instantiated from versatile assumptions, including those based
on less structured lattices?

In addition, as we discuss in more detail later, we notice that all works regarding efficient post-quantum
group signatures [BCN18, KKW18, dLS18, EZS+19] do not satisfy the ideal security properties (which are
by now considered standard) formalized by Bootle et al. [BCC+16]. Thus, we are also interested in the
following question:

Can we construct efficient post-quantum group signatures satisfying the ideal security properties
formalized by Bootle et al. [BCC+16]?

To address these questions, in this work we focus on accountable ring signatures [?]. An accountable
ring signature offers the flexibility of choosing the group of users when creating a signature (like a ring
signature [RST01]), while also enforcing accountability by including one of the openers in the group (like a
group signature). Although research on accountable ring signatures is still limited [?, BCC+15, LZCS16, ?,
EZS+19], we advocate that they are as relevant and interesting as group and ring signatures. As shown by
Bootle et al. [BCC+15], accountable ring signatures imply group and ring signatures by naturally limiting or
downgrading their functionality. Thus, an efficient post-quantum solution to an accountable ring signature
implies solutions for both secure (dynamic) group signatures [BSZ05] and ring signatures, making it an
attractive target to focus on.

Finally, as an independent interest, we are also concerned with tightly-secure constructions. To the best
of our knowledge, all prior efficient post-quantum secure group and ring signatures are in the random oracle
model and have a very loose reduction loss. In typical security proofs, given an adversary with advantage ϵ
that breaks some security property of the group signature, we can only construct an adversary with advantage
at most (N2Q)−1 · ϵ2 against the underlying hard problem, where Q is the number of random oracle queries
and N is the number of users in the system. If we aim for 128-bit security (i.e., ϵ = 2−128), and set for
example (N,Q) = (210, 250), then we need at least 326-bits of security for the hard problem. When aiming for
a provably-secure construction, the parameters must be set much larger to compensate for this significant
reduction loss, which then leads to a less efficient scheme. This is especially unattractive in the isogeny
setting since only the smallest among the CSIDH parameters [CLM+18] enjoys properties suitable to achieve
concrete efficiency [BKV19].
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1.1 Our Contribution

In this work, we construct an efficient accountable ring signature based on isogenies and lattices. This
in particular implies the first efficient isogeny-based group signature. Our generic construction departs
from known general feasibility results such as [BMW03] and builds on primitives that can be efficiently
instantiated. Unlike previous efficient post-quantum group signatures, our scheme satisfies all the desired
properties provided by Bootle et al. [BCC+16] including dynamicity and fully (CCA) anonymity : the former
states that the group members can be added and revoked dynamically and are not fixed on setup; the later
states that anonymity holds even in the presence of an adversary that sees the signing keys of all honest users,
who is additionally granted access to an opening oracle. We also satisfy the ideal variant of non-frameability
and traceability [BCC+16], where the former is captured by unforgeability in the context of accountable ring
signature. Roughly, this ensures that arbitrary collusion among members, even with the help of a corrupted
group manager, cannot falsely open a signature to an honest user.

Our accountable ring signature schemes are realized in three steps. We first provide a generic construction
of an accountable ring signature from simple cryptographic primitives such as a public-key encryption (PKE)
scheme and an accompanying NIZK for a specific language. We then show an efficient instantiation of these
primitives based on a group action that satisfies certain cryptographic properties. Finally, we instantiate the
group action by either the CSIDH group action or the MLWE-based group action. Our generic construction
builds on the recent efficient OR-proofs for isogeny and lattice-based hard languages by Beullens, Katsumata,
and Pintore [BKP20], which were used to construct ring signatures. The most technical part of this work is
to efficiently add a proof of valid ciphertext to their OR-proof and proving full anonymity, which done naively
would incur an exponential security loss. At the core of our construction is an efficient online-extractable
OR-proof that allows to also prove validity of a ciphertext.

Moreover, thanks to the online extractability, our construction achieves a much tighter reduction loss
compared to prior accountable ring signatures (and also group and ring signatures). It suffices to assume
that the underlying post-quantum hard problem cannot be solved with advantage more than N−1 · ϵ rather
than (N2Q)−1 · ϵ2 as in prior works whose proofs rely on the forking lemma [FS87, PS00]. Working with the
above example, we only lose 10-bits rather than 198-bits of security. We further show how to remove N−1

using the Katz-Wang technique [KW03] along with some techniques unique to our NIZK. As a side product,
we obtain a tightly-secure and efficient isogeny and lattice-based ring signatures, improving upon those by
Beullens et al. [BKP20] which have a loose security reduction.

Comparison to Prior Work. To the best of our knowledge, Esgin et al. [EZS+19] is the only other work
that provides an efficient post-quantum accountable ring signature.1 Since the efficiency of an accountable
ring signature is equivalent to those of the group signature obtained through limiting the functionality of
the accountable ring signature, we chose to compare the efficiency of our scheme with other state-of-the-art
post-quantum group signatures. Tab. 1 includes a comparison of the signature size and the different notions
of security it satisfies. The first two schemes satisfy all the desired security properties of a dynamic group
signature formalized by Bootle et al. [BCC+16]. Our scheme is the only one to achieve full CCA anonymity.
Esgin et al. [EZS+19] achieves full CPA anonymity, where anonymity is broken once an adversary is given
access to an opening oracle; in practice, this means that if a specific signature is once opened to some user,
then any signature ever signed by that particular user will loose anonymity. Here, “full” means that the
signing key of all the users may be exposed to the adversary. In contrast, Katz, Kolesnikov, and Wang
[KKW18] satisfies selfless CCA anonymity. While their scheme supports opening oracles, anonymity no
longer holds if the signing key used to sign the signature is exposed to the adversary. Moreover, our scheme
is the only one that also achieves the ideal variant of non-frameability and traceability [BSZ05, BCC+16]
(illustrated in the “Manager Accountability” column). The two schemes [KKW18, EZS+19] assume the group
manager honestly executes the opening algorithm and that everyone trusts the output. Put differently, a
malicious group manager can frame any honest members in the group by simply replacing the output of
the opening algorithm. In contrast, our scheme remains secure even against malicious group managers since
the validity of the output of the opening algorithm is verifiable. That is, even the group manager is held

1To be precise, they consider a weaker variant of standard accountable ring signature where no Judge algorithm is considered.
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N Hardness Security Anonymity Manager
2 23 26 212 221 Assumption Level Accountable

Isogeny 3.6 4.8 6.6 10.1 15.5 CSIDH-512 ∗ CCA Yes
Lattice 124 125 126 129 134 MSIS/MLWE NIST 2 CCA Yes
Lattice 86 87 89 92 96 MSIS/MLWE NIST 2 CCA No
[EZS+19] 28 29 34 60 148 MSIS/MLWE NIST 2 CPA No
[KKW18] / / 280 494 / LowMC NIST 5 selfless-CCA No

Table 1: Comparison of the signature size (KB) of some concretely efficient post-quantum group signature schemes.
The first three rows are our scheme. Manager accountability states whether the (possibly malicious) group manager
is accountable when opening a signature to some user. Namely, it is “Yes” when even a malicious group manager
cannot falsely accuse an honest user of signing a signature that it hasn’t signed.
∗ 128 bits of classical security and 60 bits of quantum security [Pei20].

accountable in our group signature.
Not only our group signatures satisfy more ideal security properties compared to previous constructions,

Tab. 1 shows that our signature size remains competitive. Our isogeny-based group signature based on
CSIDH provides the smallest signature size among all post-quantum group signatures, which is 0.6 log2(N)+3
KB. In contrast, our lattice signature is larger; the scheme in the second (resp. third) row has signature size
0.5 log2(N) + 123.5 KB (resp. 0.5 log2(N) + 85.9 KB). Since the signature size grows very slowly with the
group size N , it becomes more efficient then prior post-quantum group signatures when the group size is
larger than 221. We suspect our group signature will become more competitive with Esgin et al. [EZS+19]
for smaller group sizes if we tried to enhance their scheme to satisfy the more desirable CCA anonymity
and/or manager accountability.

1.2 Technical overview

An accountable ring signature is like a standard ring signature where the ring R also includes an arbitrary
opener public key opk of the signer’s choice when creating a signature σ. The signature σ remains anonymous
for anybody who does not know the corresponding opener secret key osk, while the designated opener can
use osk to trace the user who created σ. A ring signature can be thought of as an accountable ring signature
where opk = ⊥, while a group signature can be thought as an accountable ring signature where there is only
a single opener.

General Approach. Our generic construction of an accountable ring signature follows the well-known template
of the encrypt-then-prove approach to construct a group signature [Cam97]. The high-level idea is simple.
The signer encrypts its verification key vk (or another unique identifier) using the opener’s public key opk
for a PKE scheme and provides a NIZK proof for the following three facts: the ciphertext ct encrypts vk
via opk; vk is included in the ring R; and that it knows a secret key sk corresponding to vk. To trace the
signer, the opener simply decrypts ct to recover vk. Notice that the NIZK proof implicitly defines a verifiable
encryption scheme [CD00, CS03] since it is proving that ct is a valid encryption for some message vk in R.
Below, although our construction can be based on any cryptographically-hard group action, we mainly focus
on isogenies for simplicity.

One of the difficulties in instantiating this template using isogeny-based cryptography is that we do not
have an efficient verifiable encryption scheme for an appropriate PKE scheme. To achieve full anonymity,
most of the efficient group signatures, e.g., [DP06, Gro07, ?, LPY15, LMPY16, dLS18], use an IND-CCA
secure PKE as a building block and construct an efficient NIZK that proves validity of the ciphertext. Full
anonymity stipulates that an adversary cannot de-anonymize a signature even if it is provided with an opening
oracle, which traces the signatures submitted by the adversary. Roughly, by using an IND-CCA secure PKE
as a building block, the reduction can simulate the opening oracle by using the decapsulation oracle provided
by the IND-CCA game, rather than the opener’s secret key. In the classical setting, constructing such an
efficient IND-CCA secure verifiable encryption scheme is possible using the Cramer-Shoup PKE [CS98] that

4



offers a rich algebraic structure. Unfortunately, in the isogeny setting, although we know how to construct
an IND-CCA secure PKE based on the Fujisaki-Okamoto transform [FO99], it seems quite difficult to provide
an accompanying verifiable encryption scheme as the construction internally uses a hash function modeled
as a random oracle. Another approach is to rely on the weaker IND-CPA secure PKE but to use a stronger
NIZK satisfying online-extractability [Fis05]. At a high level, the reduction can use the online-extractor to
extract the witness in the ciphertext ct instead of relying on the decapsulation oracle.2 However, it turns
out that even this approach is still non-trivial since we do not have any efficient verifiable encryption scheme
for existing isogeny-based PKEs, let alone an accompanying online-extractable NIZK. For instance, most
isogeny-based IND-CPA secure PKEs are based on the hashed version of ElGamal, and to the best of our
knowledge, there are no efficient verifiable encryption schemes for hashed ElGamal.

Verifiable Encryption Scheme for a Limited Class of PKE. In this work, we observe that in the context of
accountable ring signatures and group signatures, we do not require the full decryption capability of a
standard PKE. Observe that decryption is only used by the opener and that it knows the ciphertext ct
must be an encryption of one of the verification keys included in the ring (or group) R. Therefore, given
a ciphertext ct, we only require a mechanism to check if ct encrypts a particular message M, rather than
being able to decrypt an arbitrary unknown message. Specifically, the opener can simply run through all the
verification keys vk ∈ R to figure out which vk was encrypted in ct. This allows us to use a simple IND-CPA
secure PKE with limited decryption capability based on the CSIDH group action: Let E0 ∈ Eℓℓp(O, π) be a
fixed and public elliptic curve. The public key is pk = (E0, E := s ⋆ E0), where sk = s is sampled uniformly
at random from the class group Cℓ(O). To encrypt a message M ∈ Cℓ(O), we sample r ← Cℓ(O) and set
ct = (ct0 := r ⋆ E0, ct1 := M ⋆ (r ⋆ E)). To check if ct decrypts to M′, we check whether ct1 is equal to
M′ ⋆ (sk⋆ct0). Note that in general we cannot decrypt when M is unknown since we cannot cancel out sk⋆ct0
from ct1. Now, observe that proving ct encrypts M ∈ Cℓ(O) is easy since there is a simple sigma protocol for
the Diffie-Hellman-like statement (ct0, (−M) ⋆ ct1) = (r ⋆ E0, r ⋆ E), where r is the witness, e.g., [EKP20].
Although this comes closer to what we want, this simple sigma protocol is not yet sufficient since the prover
must reveal the message M to run it. Specifically, it proves that ct is an encryption of M, while what we
want to prove is that ct is an encryption of some M ∈ R. In the context of accountable ring signature and
group signature, this amounts to the signer being able to hide its verification key vk ∈ R.

Constructing NIZK for Accountable Ring Signature. Let us move forward to the intermediate goal of con-
structing a (non-online-extractable) NIZK proof system for the following three facts: the ciphertext ct en-
crypts vk via pk; vk is included in the ring R; and that the prover knows a secret key sk corresponding to
vk. Recently, Beullens, Katsumata, and Pintore [BKP20] proposed an efficient sigma protocol (and a non-
online-extractable NIZK via the Fiat-Shamir transform) for proving the last two facts, which in particular
constitutes an efficient OR-proof. We show how to glue the above “weak” verifiable encryption scheme with
their OR-proof.

We first review a variant of the OR-sigma protocol in [BKP20] with proof size O(N), where N is the size
of the ring. Assume each user i ∈ [N ] in the ring holds vki = (E0, Ei := si ⋆E0) ∈ Eℓℓp(O, π)2 and ski = si ∈
Cℓ(O). To prove vkI ∈ R and that it knows skI , the prover first sample s′ ← Cℓ(O) and sets Ri = s′ ⋆ Ei for
i ∈ [N ]. It also samples randomness randi and creates commitments (Ci = Com(Ri, randi))i∈[N ], where this
commitment is simply instantiated by a random oracle. It finally samples a random permutation ϕ over [N ]
and sends a permuted tuple (Cϕ(i) = Com(Ri, randi))i∈[N ]. The verifier samples a random bit b ∈ {0, 1}. If
b = 0, the prover returns all the randomness (s′, (randi)i∈[N ], ϕ) used to create the first message. The verifier
then checks if the first message sent by the prover is consistent with this randomness. Otherwise, if b = 1, the
prover returns (I ′′, rand′′, s′′) := (ϕ(I), randI , s

′ + sI). The verifier then checks if CI′′ = Com(s′′ ⋆ E0, rand
′′)

holds. Notice that if the prover is honest, then s′′ ⋆ E0 = s′ ⋆ EI as desired. It is easy to check it is honest-
verifier zero-knowledge. The transcript when b = 0 is independent of the witness, while the transcript when
b = 1 can be simulated if the commitment scheme is hiding. Moreover, special soundness can be checked by
noticing that given s′′ and s′, we can extract some (i∗, s∗) such that (E0, Ei∗ = s∗ ⋆ E0) ∈ R. A full-fledged
OR-sigma protocol with proof size O(N) is then obtained by running this protocol λ-times in parallel, where

2Note that extractability via rewinding is insufficient for full anonymity as it will cause an exponential reduction loss when
trying to extract the witness from adaptively chosen signatures [BFW15].
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λ denotes the security parameter. [BKP20] showed several simple optimization techniques to compress the
proof size from O(N) to O(logN), but we first explain our main idea below.

We add our “weakly decryptable” PKE to this OR-sigma protocol. Since our PKE only handles messages
in Cℓ(O), the prover with vkI ∈ R encrypts the index I ∈ [N ] rather than vkI , where we assume the
verification keys in the ring R are ordered lexicographically.3 The statement now consists of the ring R
and the ciphertext ct = (ct0 := r ⋆ E0, ct1 = I ⋆ (r ⋆ E)), where (E0, E) is the opener’s public key opk.
Recall the opener can decrypt ct with knowledge of the ring R by brute-force searching for an i ∈ [N ] such
that ct1 = i ⋆ (osk ⋆ ct0). Now, to prove vkI is an entry in R and that it knows skI , the prover samples
s′ ← Cℓ(O) and sets Ri = s′ ⋆ Ei for i ∈ [N ] as before. It then further samples r′ ← Cℓ(O) and prepares
ct′i = (r′ ⋆ ct0, (−i) ⋆ (r′ ⋆ ct1)) for all i ∈ [N ]. Observe that ct′i is an encryption of the message (I − i)
using randomness (r′ + r). Specifically, ct′I is of the form ((r′ + r) ⋆ E0, (r

′ + r) ⋆ E), which admits a
natural sigma protocol as explained above. Finally, the prover samples randomness randi and a random
permutation ϕ over [N ], and sends the randomly permuted commitments (Cϕ(i) = Com(Ri∥ct′i, randi))i∈[N ].
The verifier samples a random bit b ∈ {0, 1}. If b = 0, then similarly to the above OR-sigma protocol,
the prover simply returns all the randomness and the verifier checks the consistency of the first message.
Otherwise, if b = 1, the prover returns (I ′′, rand′′, s′′, r′′) := (ϕ(I), randI , s

′ + sI , r
′ + r). The verifier checks

if CI′′ = Com(s′′ ⋆ E0∥(r′′ ⋆ E0, r
′′ ⋆ E), rand′′) holds. Correctness and honest-verifier zero-knowledge holds

essentially for the same reason as the above OR-sigma protocol. More importantly, special soundness holds
as well. Intuitively, since the opening to b = 0 forces the cheating prover to commit to the proper (vki, i)-pair,
a cheating prover cannot encrypt an index I ′ and prove that it has skI corresponding to vkI for a different
I ̸= I ′.

To compile our sigma protocol into an NIZK, we apply the Fiat-Shamir transform. Moreover, we apply
similar optimization techniques used in [BKP20] to compress the proof size from O(N) to O(logN). Roughly,
the prover additionally uses a pseudorandom generator to generate the randomness (i.e., s′, r′, ϕ, (randi)i∈[N ]).
Then, in case b = 0, the prover needs to reply only with the seed of size O(1). The prover also uses a Merkle
tree to accumulate (Cϕ(i))i∈[N ] and sends the root value in the first message. It then only opens to the path
necessary for verification when b = 1. This has a positive side-effect that we no longer require a permutation
ϕ since the path hides the index if we use a slightly tweaked variant of the standard Merkle tree. Finally,
we take advantage of the asymmetry in the prover’s response size for b = 0 and b = 1, which are O(1) and
O(logN), respectively. Namely, we imbalance the challenge space so that the prover opens to more 0 than
1, while still maintaining negligible soundness error.

Adding Online-Extractability. To build an accountable ring signature or group signature, we require the
above NIZK to be (multi-proof) online-extractable. This is a strengthening of standard proof of knowledge
(PoK) that roughly states that the knowledge extractor, who can see what the adversary queries to the
random oracle, is able to directly extract witnesses from the proofs output by the adversary. The OR-proof
by [BKP20], which our NIZK builds on, was only shown to satisfy the standard PoK, which bases on a
rewinding extractor.

One simple way to add online-extractability to our NIZK is to apply the Unruh transform [Unr15]. Namely,
we can modify the prover to add two more commitments h0 = Com(s′∥r′, rand0) and h1 = Com(s′′∥r′′, rand1)
in the first message, where Com is instantiated by the random oracle. Then, if b = 0 (resp. b = 1), the
prover further opens to h0 (resp. h1). Recall that if the reduction obtains both (s′, r′) and (s′′, r′′), then
it can invoke the extractor provided by the underlying sigma protocol to extract some (i∗, s∗) such that
(E0, Ei∗ = s∗ ⋆ E0) ∈ R. Therefore, for the cheating adversary to fool the reduction, it must guess the
bit b and create hb correctly while creating h1−b arbitrary. Intuitively, if we have λ-repetition of the sigma
protocol, then the cheating prover cannot possibly guess all the challenge bits correctly. Therefore, there
must be some challenge where it created h0 and h1 honestly. For that challenge bit, the reduction algorithm
can then retrieve the corresponding inputs (s′∥r′, rand0) and (s′′∥r′′, rand1) from simply observing the random
oracle, and then, run the extractor to obtain the witness.

This idea works but it comes with an extra two hashes per one execution of the binary-challenge sigma

3The choice of what to encrypt is rather arbitrary. The same idea works if for instance we hash vk into Cℓ(O) and view the
digest as the message.
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protocol. Although it may sound insignificant in an asymptotic sense, these hashes add up when we execute
the sigma protocol many times, and it makes it difficult to apply some of the optimization tricks. Concretely,
when we apply this change to the isogeny-based ring signature by Beullen et al. [BKP20], the signature grows
by roughly a factor of 2 to 3.

In this work, we show that we can in fact prove online-extractability without making any modification
to the aforementioned NIZK. Our main observations are the following: if the prover uses a seed to gener-
ate the randomness used in the first message via a random oracle, then the online extractor can observe
(s′, r′, ϕ, (randi)i∈[N ]); and the prover must respond to some execution of the binary-challenge sigma protocol
where the challenge bit is 1. The first implies that the seed implicitly acts as a type of commitment to (s′, r′).
The second implies the prover returns a response that includes (s′′, r′′). Specifically, our online extractor
only looks at all the responses for the rounds where the challenge bit was 1, and checks the random oracle
for any seed that leads to the commitment provided in the first message of the sigma protocol. If such seed
is found, then it succeeds in extracting a witness. The intuition is simple but it turns out that the formal
proof is technically more complicated due to the several optimizations performed on the basic sigma protocol
to achieve proof size O(logN).

Generalizing with Group Actions. Although we have been explaining our generic construction using the
CSIDH group action, it is not unique to them. It works equally well for any group action that natur-
ally induces a PKE. Specifically, we instantiate the above idea also by the MLWE group action defined
roughly as ⋆ : Rn+m

q ×Rm
q : (s, e)⋆ t→ A⋆ s+e+ t, where Rq = Zq[X]/(Xd+1). Since CSIDH and MLWE

induce a PKE with slightly different algebraic structures, we introduce a group-action-based PKE defined by
two group actions to formally capture both instances. This abstraction may be of an independent interest
since on first glance, isogeny-based and lattice-based PKEs seem to rely on different algebraic structures.
Finally, one interesting feature unique to our generic construction is that since our sigma protocol is rather
combinatorial in nature, we can for instance use CSIDH for the user’s public key vk and mix it with an
MLWE-based PKE for the opener’ public key opk. The practical impact of such mixture is that we can
achieve stronger bit-security for anonymity (due to MLWE) while keeping the user’s public key and signature
small (due to CSIDH).

Achieving Tight Reduction. Since the proofs do not rely on the forking lemma [FS87, PS00] to extract
witnesses from the forged proofs, our construction achieves a tighter reduction compared to prior works on
efficient group signatures. However, we still lose a factor 1/N in the proof of unforgeability, which may vary
from 1/2 to 1/220.4 Recall N is the size of the group in group signatures but it is the size of all the users
enrolled in the system for accountable ring signatures, which may be far larger than the size of the ring. The
main reason for this loss was because the reduction needs to guess one user’s verification key used by the
adversary to create its forgery and to embed the hard problem into it.

A well known technique to obtain a tight proof is to rely on the Katz-Wang technique [KW03] along with
the generic OR-composition of sigma protocols, and rely on a multi-instance version of the hard problem
(which are believed to be as difficult as the single-instance version for specific hard problems). Namely, we

modify the scheme to assign two verification keys (vk(1), vk(2)) to each user. The users will only hold one

signing key sk(b) for b ∈ {1, 2} corresponding to the verification key vk(b). The user can honestly run the

aforementioned sigma protocol where the statement includes vk(b), and a simulated sigma protocol using the
ZK-simulator where the statement includes vk(3−b). We can then use the sequential OR-proof technique as
presented in [AOS02, FHJ20] to bridge these two sigma protocols so that it hides the b.5

While this generic transform works, it unfortunately doubles the signature size, which may outweigh
the motivation for having a tight reduction. In this work, we present a novel and far cheaper technique
tailored to our sigma protocol. The signature size overhead is a mere 512B for our concrete lattice-based
instantiation. The key observation is that we can view the set of all users’ verification key (vk(1), vk(2)) as a
ring of size 2N , rather than a ring of size N where each ring element consists of two verification keys. This

4We note that we also have some independent looseness in the anonymity proof since we rely on the “multi-challenge”
IND-CPA security from our PKE. This is handled in a standard way, and this is also why we only achieve a truly tight group
signature from lattices and not from isogenies.

5We note that it seems difficult to use the parallel OR-proof for our sigma protocol since the challenge space is structured.
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observation itself is not yet sufficient since recall that we typically must encrypt some information bound
to the signer for traceability, e.g., encrypt the position/index of vk in R, and it is no longer clear what to
encrypt when we have two verification keys in the ring. Luckily, it turns out that our sigma protocol can be
easily modified with no loss in efficiency to overcome this apparent issue. Details are provided in Sec. 5.3.

Structure of this paper. We begin in Sec. 2 with some preliminary background on sigma protocols,
accountable ring signatures, and other mathematical content which this paper relies on. We then introduce
our new, generic constructions of accountable ring signature and dynamic group signature schemes in Sec. 3.
These generic constructions are built from various components put forward in the proceeding sections: Sec. 4
defines group-action-based hard instance generators and public-key encryption schemes; Sec. 5 introduces
our new “traceable” sigma protocol and proves its security; and Sec. 6 then constructs a NIZK proof system
from said sigma protocol through the Fiat-Shamir transform. Finally, Sec. 7 details the instantiation of our
schemes from isogenies and lattices.

2 Preliminaries

Notation. We begin by introducing some notation that will be used throughout the paper. For N ∈ N, we
denote by [N ] the set {1, . . . , N}. We use ∥ to represent concatenation of two strings. We also use {Xi}i∈S

to denote the set of elements Xi iterating over all values i ∈ S. For any randomized algorithm A taking as
input x, we will write A(x; r) to denote the execution of A on x using the randomness r. With an overload
in notation, we write A(x) to denote the set of all possible outputs of A on input x, and y ∈ A(x) to indicate
that there exists a randomness r such that y = A(x; r). Finally, we let negl(λ) be a negligible function, i.e.
one dominated by O(λ−n) for all n > 0.

A note on random oracles. Throughout the paper, we instantiate several standard cryptographic primitives,
such as pseudorandom number generators (i.e., Expand) and commitment schemes, by hash functions modeled
as a random oracle O. We always assume the input domain of the random oracle is appropriately separated
when instantiating several cryptographic primitives by one random oracle. With abuse of notation, we may
occasionally write for example O(Expand ∥ ·) instead of Expand(·) to make the usage of the random oracle
explicit. Here, we identify Expand with a unique string when inputting it to O. Finally, we denote by AO an
algorithm A that has black-box access to O, and we may occasionally omit the superscript O for simplicity
when the meaning is clear from context.

2.1 Sigma Protocols

A sigma protocol ΠΣ for a NP relation R ⊆ {0, 1}∗×{0, 1}∗ is a public-coin three-move interactive protocol
between a prover and a verifier that satisfies a specific flavor of soundness and zero-knowledge. The language
LR is defined as {X|(X,W) ∈ R}. As standard with many sigma protocols for a language defined over
post-quantum algebraic structures, we relax the soundness notion to only hold for a slightly wider relation R̃
(i.e., R ⊆ R̃), e.g., [FO97, DF02, AJL+12, BCK+14, EK18, BKP20]. That is, a cheating prover may not be
using a witness in R but is guaranteed to be using some witness in the wider relation R̃. Below, we consider
a sigma protocol in the random oracle model, where the prover and verifier have access to a random oracle
similarly to [BKP20].6

Definition 2.1 (Sigma Protocol). A sigma protocol ΠΣ for the relations R and R̃ such that R ⊆ R̃ (which
are implicitly parameterized by the security parameter λ) consists of oracle-calling PPT algorithms (P =
(P1, P2), V = (V1, V2)), where V2 is deterministic and we assume P1 and P2 share states. Let ChSet denote
the challenge space. Then, ΠΣ has the following three-move flow:

� The prover, on input (X,W) ∈ R, runs com← PO
1 (X,W) and sends a commitment com to the verifier.

6This should not be confused with the random oracle used to compile a sigma protocol into an NIZK proof system.
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� The verifier runs chall ← V O
1 (1λ) to obtain a random challenge chall from ChSet, and sends it to the

prover.

� The prover, given chall, runs resp← PO
2 (X,W, chall) and returns a response resp to the verifier. Here,

we allow P2 to abort with some probability. In such cases we assign resp with a special symbol ⊥
denoting abort.

� The verifier runs V O
2 (X, com, chall, resp) and outputs ⊤ (accept) or ⊥ (reject).

Here, O is modeled as a random oracle and we often drop O from the superscript for simplicity when the
meaning is clear from context. We assume X is always given as input to P2 and V2, and omit it in the
following. The protocol transcript (com, chall, resp) is said to be valid in case V2(com, chall, resp) outputs ⊤.

We require a sigma protocol ΠΣ in the random oracle model to satisfy the following standard properties:
correctness, high min-entropy, special zero-knowledge and (relaxed) special soundness.

We require the sigma protocol to be correct conditioned on the prover not aborting the protocol. Below,
if δ = 0, then it corresponds to the case when the prover never aborts.

Definition 2.2 ((1− δ)-Correctness). A sigma protocol ΠΣ is (1− δ)-correct for δ ∈ [0, 1] if for all λ ∈ N
and (X,W) ∈ R, the probability of the prover outputting ⊥ is at most δ, and we have

Pr

 V O
2 (com, chall, resp) = ⊤

∣∣∣∣∣∣
com← PO

1 (X,W),
chall← V O

1 (1λ),
resp← PO

2 (W, chall) s.t. resp ̸= ⊥.

 = 1,

where the probability is taken over the randomness used by (P, V ) and by the random oracle.

Definition 2.3 (High Min-Entropy). We say a sigma protocol ΠΣ has α(λ) min-entropy if for any λ ∈ N,
(X,W) ∈ R, and a possibly computationally-unbounded adversary A, we have

Pr
[
com = com′∣∣com← PO

1 (X,W), com′ ← AO(X,W)
]
≤ 2−α,

where the probability is taken over the randomness used by P1 and by the random oracle. We say ΠΣ has
high min-entropy if 2−α is negligible in λ.

Definition 2.4 (Non-Abort Special Zero-Knowledge). We say ΠΣ is (non-abort) special zero-knowledge if
there exists a PPT simulator SimO with access to a random oracle O such that for any λ ∈ N, statement-
witness pair (X,W) ∈ R, chall ∈ ChSet and any computationally-unbounded adversary A that makes at most
a polynomial number of queries to O, we have∣∣∣Pr[AO(1λ, P̃O(X,W, chall)) = 1]− Pr[AO(1λ,SimO(X, chall)) = 1]

∣∣∣ = negl(λ),

where P̃ is a non-aborting prover P = (P1, P2) run on (X,W) with a challenge fixed to chall and the probability
is taken over the randomness used by (P, V ) and by the random oracle.

Below, for the special soundness property, the extraction algorithm is only required to recover a “weaker”
witness in R̃ rather than in R used in the real protocol. In many applications, the capability of extracting
from this wider relation suffices.

Definition 2.5 (Special Soundness). We say a sigma protocol ΠΣ has (relaxed) special soundness if there
exists a PT extraction algorithm Extract such that, given a statement X and any two valid transcripts
(com, chall, resp) and (com, chall′, resp′) relative to X and such that chall ̸= chall′, outputs a witness W satis-
fying (X,W) ∈ R̃.
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2.2 Non-Interactive Zero-Knowledge Proofs of Knowledge in the ROM.

We consider non-interactive zero-knowledge proof of knowledge protocols (or simply NIZK (proof system))
in the ROM. Below, we define a variant where the proof is generated with respect to a label. Although
syntactically different, such NIZK is analogous to the notion of signature of knowledge [CL06]

Definition 2.6 (NIZK Proof System). Let L denote a label space, where checking membership can be done
efficiently. A non-interactive zero-knowledge (NIZK) proof system ΠNIZK for the relations R and R̃ such that
R ⊆ R̃ (which are implicitly parameterized by λ) consists of oracle-calling PPT algorithms (Prove,Verify)
defined as follows:

ProveO(lbl,X,W)→ π/⊥ : On input a label lbl ∈ L, a statement and witness pair (X,W) ∈ R, it outputs a
proof π or a special symbol ⊥ denoting abort.

VerifyO(lbl,X, π)→ ⊤/⊥ : On input a label lbl ∈ L, a statement X, and a proof π, it outputs either ⊤ (accept)
or ⊥ (reject).

We require a NIZK proof system in the random oracle model to satisfy the following standard properties: cor-
rectness, zero-knowledge, (relaxed) statistical soundness, and online extractability. We assume for simplicity
that Verify always outputs ⊥ in case lbl /∈ L.

Definition 2.7 ((1 − δ)-Correctness). A NIZK proof system ΠNIZK is (1 − δ)-correct for δ ∈ [0, 1] if for all
λ ∈ N, lbl ∈ L, (X,W) ∈ R, the probability of ProveO(lbl,X,W) outputting ⊥ is at most δ, and we have

Pr

[
VerifyO(lbl,X, π) = ⊤

∣∣∣∣ π ← ProveO(lbl,X,W),
π ̸= ⊥.

]
= 1,

where the probability is taken over the randomness used by (Prove,Verify) and by the random oracle.

Definition 2.8 (Zero-Knowledge). Let O be a random oracle, ΠNIZK a NIZK proof system, and Sim =
(Sim0,Sim1) a zero-knowledge simulator for ΠNIZK, consisting of two algorithms Sim0 and Sim1 with a shared
state. We say the advantage of an adversary A against Sim is

AdvZKΠNIZK
(A) =

∣∣Pr [AO,Prove(1λ) = 1
]
− Pr

[
ASim0,S(1λ) = 1

]∣∣ ,
where Prove and S are prove oracles that on input (lbl,X,W) return ⊥ if lbl ̸∈ L ∨ (X,W) ̸∈ R and other-
wise return ProveO(lbl,X,W) or Sim1(lbl,X), respectively. Moreover, the probability is taken also over the
randomness of sampling O.

We say ΠNIZK for R and R̃ is zero-knowledge if there exists a PPT simulator Sim such that for all (possibly
computationally-unbounded) adversary A making at most polynomially many queries to the random oracle
and the prover oracle, we have AdvZKΠNIZK

(A) ≤ negl(λ).

Statistical soundness guarantees that any adversary cannot generate a proof for an invalid statement
except with a negligible probability.

Definition 2.9 (Statistical Soundness). Let O be a random oracle and ΠNIZK a NIZK proof system. We say
the advantage of an adversary A against soundness is

AdvsoundnessΠNIZK
(A) = Pr

[
∄W : (X,W) ∈ R̃ ∧
VerifyO(lbl,X, π) = ⊤

∣∣∣∣ (lbl,X, π)← AO(1λ))

]
,

where the probability is taken also over the randomness of sampling O.
We say the NIZK proof system ΠNIZK for R and R̃ has (relaxed) statistical soundness if for all (possibly

computationally-unbounded) adversary A making at most polynomially many queries to the random oracle,
we have AdvsoundnessΠNIZK

(A) ≤ negl(λ).
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Online extractability requires the existence of an extraction algorithm which, on input a valid proof π
and the list or random-oracle queries made by an adversary, always extract a (relaxed) witness except with
a negligible probability.

Definition 2.10 (Multi-Proof Online Extractability). A NIZK proof system ΠNIZK is (multi-proof) online ex-
tractable if there exists a PPT extractor OnlineExtract such that for any (possibly computationally-unbounded)
adversary A making at most polynomially-many queries has at most a negligible advantage in the following
game played against a challenger (with access to a random oracle O).

(i) The challenger prepares empty lists LO and LP , and sets flag to 0.

(ii) A can make random-oracle, prove, and extract queries an arbitrary polynomial number of times:

• (hash, x): The challenger updates LO ← LO ∪ {x,O(x)} and returns O(x). We assume below
that A runs the verification algorithm after receiving a proof from the prove oracle and before
submitting a proof to the extract oracle.7

• (prove, lbl,X,W): The challenger returns ⊥ if lbl ̸∈ L or (X,W) ̸∈ R. Otherwise, it returns
π ← ProveO(lbl,X,W) and updates LP ← LP ∪ {lbl,X, π}.
• (extract, lbl,X, π): The challenger checks if VerifyO(lbl,X, π) = ⊤ and (lbl,X, π) ̸∈ LP , and
returns ⊥ if not. Otherwise, it runs
W← OnlineExtractO(lbl,X, π, LO) and checks if (X,W) ̸∈ R̃, and returns ⊥ if yes and sets flag = 1.
Otherwise, if all check passes, it returns W.

(iii) At some point A outputs 1 to indicate that it is finished with the game. We say A wins if flag = 1.
The advantage of A is defined as AdvOE

ΠNIZK
(A) = Pr[A wins] where the probability is also taken over the

randomness used by the random oracle.

Note, importantly, that OnlineExtract is not given access to the queries ProveO makes directly to O.
Thus, OnlineExtract is not guaranteed to return a valid witness W when called with any output of the Prove
oracle. The requirement that (lbl,X, π) /∈ LP ensures that this does not allow the adversary to trivially win
the game, and in particular by extension ensures that modifying the label lbl should invalidate any proof
obtained from the Prove oracle.

Remark 2.11. If a NIZK proof system ΠNIZK is (multi-proof) online extractable, it is statistically sound—
that is, online extractability implies statistical soundness. This is clear, because if an adversary is able
to generate an accepting tuple (lbl,X, π) for which ∄W : (X,W) ∈ R̃ in the soundness game, then clearly
(extract, lbl,X, π) will allow the adversary to win the online extractability game.

Remark 2.12 (NIZKs with Labels). If the label space of the NIZK is L = {⊥}, we say the NIZK is without
labels (or a plain/unlabelled NIZK). In this case, we omit the lbl argument from the Prove and Verify functions
for clarity.

2.3 Public-Key Encryption

We recall the standard multi-challenge IND-CPA security of a public-key encryption (PKE) scheme.

Definition 2.13 (Public-Key Encryption). A public-key encryption ΠPKE over a message spaceM consists
of four algorithms ΠPKE = (Setup,KeyGen,Enc,Dec):

� Setup(1λ)→ pp : On input the security parameter 1λ, it outputs a public parameter pp.

� KeyGen(pp)→ (pk, sk) : On input a public parameter pp, it outputs a pair of public key and secret key
(pk, sk).

7This is w.l.o.g., and guarantees that the list LO is updated with the input/output required to verify the proof A receives
or sends.
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� Enc(pk,M)→ ct: On input a public key pki and a message M ∈M, it outputs a ciphertext ct.

� Dec(sk, ct) → M or ⊥ : On input a secret key sk and a ciphertext ct, it outputs either M ∈ M or a
special symbol ⊥ ̸∈ M.

We will denote by R the set containing the randomness used by the encryption algorithm Enc.

We omit the standard definition of correctness as we provide a more generalized version in Sec. 3.1, Def. 3.1.
Below, we define the standard IND-CPA security extended to the multi-challenge setting. Using a textbook
hybrid argument, it is clear that the multi-challenge definition is polynomially related to the standard single-
challenge definition. The motivation for introducing the multi-challenge variant is because in some cases, we
can show that the two definitions are equally difficult without incurring any reduction loss.

Definition 2.14 (Multi-Challenge IND-CPA Security). A PKE scheme ΠPKE = (Setup,KeyGen,Enc,Dec) is
multi-challenge IND-CPA secure against Q challenges if, for any λ ∈ N, any PPT adversary A has at most
a negligible advantage in the following game played against a challenger.

(i) The challenger runs pp ← Setup(1λ), (pk, sk) ← KeyGen(pp) and samples a bit b ∈ {0, 1}. The
challenger provides (pp, pk) to A.

(ii) A can adaptively query the challenge oracle at most Q times. In each query, A sends a pair of messages
(M0,M1) ∈M2, and the challenger returns ctb ← Enc(pk,Mb) to A.

(iv) A outputs a bit b∗ ∈ {0, 1}. We say A wins if b∗ = b.

The advantage of A is defined as AdvMulti-CPA
ΠPKE,Q

(A) = |Pr[A wins]− 1/2|.

2.4 Accountable Ring Signatures

We provide the definition of accountable ring signatures (ARSs), following the formalization introduced by
Bootle et al. [BCC+15].

Definition 2.15 (Accountable Ring Signature). An accountable ring signature ΠARS consists of PPT al-
gorithms (Setup,OKGen,UKGen,Sign,Verify,Open, Judge) defined as follows:

Setup(1λ)→ pp : On input a security parameter 1λ, it returns a public parameter pp (sometimes implicitly)
used by the scheme. We assume pp defines openers’ public-key space Kopk and users’ verification-key
space Kvk, with efficient algorithms to decide membership.

OKGen(pp)→ (opk, osk) : On input a public parameter pp, it outputs a pair of public and secret keys (opk, osk)
for an opener.

UKGen(pp)→ (vk, sk) : On input a public parameter pp, it outputs a pair of verification and signing keys
(vk, sk) for a user.

Sign(opk, sk,R,M)→ σ : On input an opener’s public key opk, a signing key sk, a list of verification keys,
i.e., a ring, R = {vk1, . . . , vkN}, and a message M, it outputs a signature σ.

Verify(opk,R,M, σ)→ ⊤/⊥ : On input an opener’s public key opk, a ring R = {vk1, . . . , vkN}, a message M,
and a signature σ, it (deterministically) outputs either ⊤ (accept) or ⊥ (reject).

Open(osk,R,M, σ)→ (vk, π)/⊥ : On input an opener’s secret key osk, a ring R = {vk1, . . . , vkN}, a message
M, a signature σ, it (deterministically) outputs either a pair of verification key vk and a proof π that
the owner of vk produced the signature, or ⊥.

Judge(opk,R, vk,M, σ, π)→ ⊤/⊥ : On input an opener’s public key opk, a ring R = {vk1, . . . , vkN}, a veri-
fication key vk, a message M, a signature σ, and a proof π, it (deterministically) outputs either ⊤
(accept) or ⊥ (reject). We assume without loss of generality that Judge(opk,R, vk,M, σ, π) outputs ⊥
if Verify(opk,R,M, σ) outputs ⊥.
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An accountable ring signature is required to satisfy the following properties: correctness, anonymity,
traceability, unforgeability, and tracing soundness.

First, we require correctness to hold even if the ring contains maliciously-generated user keys or the
signature has been produced for a maliciously-generated opener key. Note that the correctness guarantee for
the open and judge algorithms are defined implicitly in the subsequent security definitions.

Definition 2.16 (Correctness). An accountable ring signature ΠARS is correct if, for all λ ∈ N, any PPT
adversary A has at most a negligible advantage in λ in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and generates a user key (vk, sk)← UKGen(pp). It then provides
(pp, vk, sk) to A.

(ii) A outputs an opener’s public key, a ring, and a message tuple (opk,R,M) to the challenger.

(iii) The challenger runs σ ← Sign(opk, sk,R,M). We say A wins if

– opk ∈ Kopk, R ⊆ Kvk, and vk ∈ R,

– Verify(opk,R,M, σ) = ⊥.

The advantage of A is defined as AdvCorrectΠARS
(A) = Pr[A wins].

Anonymity requires that a signature does not leak any information on who signed it. We consider the
standard type of anonymity notion where the adversary gets to choose the signing key used to generate the
signature. Moreover, we allow the adversary to make (non-trivial) opening queries that reveal who signed
the messages. This notion is often called full (CCA) anonymity [BMW03, BCC+16] to differentiate between
weaker notions of anonymity such as selfless anonymity that restricts the adversary from exposing the signing
key used to sign the signature or CPA anonymity where the adversary is restricted from querying the open
oracle.

Definition 2.17 (Anonymity). An accountable ring signature ΠARS is (CCA) anonymous (against full key
exposure) if, for all λ ∈ N, any PPT adversary A has at most a negligible advantage in the following game
played against a challenger.

(i) The challenger runs pp ← Setup(1λ) and generates an opener key (opk, osk) ← OKGen(pp). It also
prepares an empty list Qsign and samples a random bit b← {0, 1}.

(ii) The challenger provides (pp, opk) to A.

(iii) A can make signing and opening queries an arbitrary polynomial number of times:

• (sign,R,M, sk0, sk1): The challenger runs σi ← Sign(opk, ski,R,M) for i ∈ {0, 1} and returns ⊥ if
Verify(opk,R,M, σi) = ⊥ for either of i ∈ {0, 1}. Otherwise, it updates Qsign ← Qsign∪{(R,M, σb)}
and returns σb.

• (open,R,M, σ): The challenger returns ⊥ if (R,M, σ) ∈ Qsign. Otherwise, it returns
Open(osk,R,M, σ).

(iv) A outputs a guess b∗. We say A wins if b∗ = b.

The advantage of A is defined as AdvAnonΠARS
(A) = |Pr[A wins]− 1/2|.

Unforgeability considers two types of forgeries. The first captures the natural notion of unforgeability
where an adversary cannot forge a signature for a ring of honest users, i.e., a ring of users for which it does
not know any of the corresponding secret keys. The second captures the fact that an adversary cannot accuse
an honest user of producing a signature even if the ring contains malicious users and the opener is malicious.
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Definition 2.18 (Unforgeability). An accountable ring signature scheme ΠARS is unforgeable (with respect
to insider corruption) if, for all λ ∈ N, any PPT adversary A has at most negligible advantage in the following
game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and initializes an empty keyed dictionary DUKey[·] and three empty
sets QUKey, Qsign and Qcor. It provides pp to A.

(ii) A can make user key generation, signing, and corruption queries an arbitrary polynomial number of
times:

• (ukeygen): The challenger runs (vk, sk) ← UKGen(pp). If DUKey[vk] ̸= ⊥, then it returns ⊥.
Otherwise, it updates DUKey[vk] = sk and QUKey ← QUKey ∪ {vk}, and returns vk.

• (sign, opk, vk,R,M): The challenger returns ⊥ if vk ̸∈ QUKey ∩ R. Otherwise, it runs σ ←
Sign(opk,DUKey[vk],R,M). The challenger updates Qsign ← Qsign∪{(opk, vk,R,M, σ)} and returns
σ.

• (corrupt, vk): The challenger returns ⊥ if vk ̸∈ QUKey. Otherwise, it updates Qcor ← Qcor ∪ {vk}
and returns DUKey[vk].

(iv) A outputs (opk, vk,R,M, σ, π). We say A wins if

– (opk, ∗,R,M, σ) ̸∈ Qsign, R ⊆ QUKey\Qcor,

– Verify(opk,R,M, σ) = ⊤,

or

– (opk, vk,R,M, σ) ̸∈ Qsign, vk ∈ QUKey\Qcor,

– Judge(opk,R, vk,M, σ, π) = ⊤.

The advantage of A is defined as AdvUnfΠARS
(A) = Pr[A wins].

Traceability requires that any opener key pair (opk, osk) in the range of the opener key-generation al-
gorithm can be open a valid signature σ to some user vk along with a proof valid π. This ensures that any
opener can trace the user and produce a proof for its decision. Below, rather than assuming an efficient
algorithm that checks set membership (opk, osk) ∈ OKGen(pp), we simply ask the adversary to output the
randomness used to generate (opk, osk). Note that this definition contains the prior definitions where opk
was assumed to be uniquely defined and efficiently computable from osk [BCC+15].

Definition 2.19 (Traceability). An accountable ring signature scheme ΠARS is traceable if, for all λ ∈ N,
any PPT adversary A has at most negligible advantage in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.

(ii) A returns a randomness, a ring, a message, and a signature tuple (rr,R,M, σ). We say A wins if

– Verify(opk,R,M, σ) = ⊤, where (opk, osk)← OKGen(pp; rr), and

– Judge(opk,R, vk,M, σ, π) = ⊥, where (vk, π)← Open(osk,R,M, σ).

The advantage of A is defined as AdvTraΠARS
(A) = Pr[A wins].

Finally, tracing soundness requires that a signature cannot trace to two different users in the ring. This
must hold even if all the users in the ring and the opener are corrupt.

Definition 2.20 (Tracing Soundness). An accountable ring signature scheme ΠARS is traceable sound if,
for all λ ∈ N, any PPT adversary A has at most negligible advantage in the following game played against
a challenger.
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(i) The challenger runs pp← Setup(1λ) and provides pp to A.

(ii) A returns an opener’s public key, a ring, a message, a signature, and two verification keys and proofs
(opk,R,M, σ, {(vkb, πb)}b∈{0,1}). We say A wins if

– vk0 ̸= vk1,

– Judge(opk,R, vk0,M, σ, π0) = ⊤,
– Judge(opk,R, vk1,M, σ, π1) = ⊤.

The advantage of A is defined as AdvTraSΠARS
(A) = Pr[A wins].

2.5 Isogenies and Ideal Class Group Actions

Let Fp be a prime field, with p ≥ 5. In the following E and E′ denote elliptic curves defined over Fp. An
isogeny φ : E → E′ is a non-constant morphism mapping 0E to 0E′ . Each coordinate of φ(x, y) is then the
fraction of two polynomials in Fp[x, y], where Fp denotes the algebraic closure of Fp. If the coefficients of the
polynomials lie in Fp, then φ is said to be defined over Fp. We restrict our attention to separable isogenies
(which induce separable extensions of function fields) between supersingular elliptic curves defined over Fp,
i.e., curves whose set of rational points E(Fp) has cardinality p+ 1.

An isogeny φ : E → E′ is an isomorphism if its kernel is equal to {0E}, and an endomorphism of E if
E = E′. The set Endp(E) of all endomorphisms of E that are defined over Fp, together with the zero map,
form a commutative ring under pointwise addition and composition. Endp(E) is isomorphic to an order O
of the quadratic field K = Q(

√
−p) [CLM+18]. We recall that an order is a subring of K, which is also a

finitely-generated Z-module containing a basis of K as a Q-vector space. A fractional ideal a of O is a finitely
generated O-submodule of K. We say that a is invertible if there exists another fractional ideal b of O such
that ab = O, and that it is principal if a = αO for some α ∈ K. The invertible fractional ideals of O form an
Abelian group whose quotient by the subgroup of principal fractional ideals is finite. This quotient group is
called the ideal class group of O, and denoted by Cℓ(O).

The ideal class group Cℓ(O) acts freely and transitively on the set Eℓℓp(O, π), which contains all su-
persingular elliptic curves E over Fp - modulo isomorphisms defined over Fp - such that there exists an
isomorphism between O and Endp(E) mapping

√
−p ∈ O into the Frobenius endomorphism (x, y) 7→

(xp, yp). We denote this action by ∗. Recently, it has been used to design several cryptographic prim-
itives [CLM+18, DG19, BKV19, LGd21], whose security proofs rely on (variations of) the Group Action
Inverse Problem (GAIP), defined as follows.

Definition 2.21 (Group Action Inverse Problem (GAIP)). Let [E0] be an element in Eℓℓp(O, π), where p is
an odd prime and O an order in Q(

√
−p). Given [E] sampled from the uniform distribution over Eℓℓp(O, π),

the GAIPp problem consists in finding an element [a] ∈ Cℓ(O) such that [a] ∗ [E0] = [E].

The best known classical algorithm to solve the GAIP problem has time complexity O(
√
N), where

N = |Cℓ(O)|. The best known quantum algorithm, on the other hand, is Kuperberg’s algorithm for the
hidden shift problem [?, ?]. It has a subexponential complexity, for which the concrete security estimates
are still an active area of research [BLMP19, Pei20, BS20, ?].

For the security of the isogeny-based instantiations, we will also rely on a multi-instance variant the
GAIP problem which is trivially equivalent to the GAIP problem.

Definition 2.22 (Multi-Instance GAIP (MI-GAIP) Problem). Let [E0] be an element in Eℓℓp(O, π), where
p is an odd prime and O an order in Q(

√
−p). Given [E1], · · · , [EN ] sampled uniformly at random from

Eℓℓp(O, π), where N ∈ N, the MI-GAIPp,N problem consists in finding an element [a] ∈ Cℓ(O) such that
[a] ∗ [E0] = [Ei] for some i ∈ [N ].
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To see the equivalence (informally), given an instance of the GAIP problem ([E0], [E]), sample [r1], . . . ,
[rN ] ∈ Cℓ(O), and compute [Ei] = [ri] ∗ [E] for each i. Then a solution for the MT-GAIP on ([E0], [E1], . . . ,
[EN ]), say [a] ∗ [E0] = [Ej ], results in a solution to the GAIP by computing [a][rj ]

−1.

We also need the following assumption, the decisional CSIDH Problem. Looking ahead, the distinguishing
problems will ensure (multi-instance) IND-CPA for our PKE in Sec. 7.1 and therefore anonymity for our
ring/group signature schemes. Note that we will require the class group to be of odd order to avoid the
attack presented in [CSV20]. Equivalently, we require p = 3 mod 4.

Definition 2.23 (Decisional CSIDH (dCSIDH) Problem). Let [E0] be an element in Eℓℓp(O, π), where p is
an odd prime. The decisional CSIDH problem is that given a tuple ([a1] ∗ [E0], [a2] ∗ [E0], E) where [a1], [a2]
are sampled uniformly from Cℓ(O) and [E] is either sampled uniformly from Eℓℓp(O, π) or [E] = [a1a2]∗ [E0],
and decide which distribution [E] is drawn from.

2.6 Lattices

Let R and Rq denote the rings Z[X]/(Xn+1) and Z[X]/(q,Xn+1) for integers n and q, respectively. Norms
over R are defined through the coefficient vectors of the polynomials, which lie over Zn. Norms over Rq are
defined in the conventional way by uniquely representing coefficients of elements over Rq by elements in the
range (−q/2, q/2] when q is even and [−(q − 1)/2, (q − 1)/2] when q is odd (see for example [DKL+18] for
more details).

The hard problems we will rely on are the module short integer solution (MSIS) problem and module
learning with errors (MLWE) problem, first introduced in [?].

Definition 2.24 (Module Short Integer Solution). Let n, q, k, ℓ, γ be integers. The advantage for the
(Hermite normal form) module short integer solution problem MSISn,q,k,ℓ,γ for an algorithm A is defined as

AdvMSIS
n,q,k,ℓ,γ(A) = Pr

[
0 < ∥u∥∞ ≤ γ ∧
[A | I] · u = 0

∣∣∣∣ A← Rk×ℓ
q ,u← A(1λ,A)

]
.

Definition 2.25 (Module Learning with Errors). Let n, q, k, ℓ be integers and D a probability distribution
over Rq. For any A ∈ Rk×ℓ

q , define two oracles as follows:

� OA: Sample (s, e)← Dk ×Dℓ and output As+ e ∈ Rk
q ,

� O$: Output a random b← Rk
q .

The advantage for the decision module learning with errors problem sMLWEn,q,k,ℓ,D for an algorithm A is
defined as

AdvdMLWE
n,q,k,ℓ,D(A) =

∣∣Pr[AOA(1λ,A)→ 1]− Pr[AO$(1λ,A)→ 1]
∣∣ ,

where the probability is taken also over the random choice of A← Rk×ℓ
q .

The advantage for the search learning with errors problem sMLWEn,q,k,ℓ,D is defined as

AdvsMLWE
n,q,k,ℓ,D(A) = Pr

[
v = As+ e ∧

(s, e) ∈ Supp(Dℓ)× Supp(Dk)

∣∣∣∣ (s, e)← AOA(1λ,A)

]
,

where v is one of the vectors returned by OA.

In this work, we consider the MLWE problem where an adversary is given oracle access to a MLWE sample
generator. For any PPT adversary A, this is polynomially related to the conventional single-instance MLWE
problem via a standard hybrid argument. There is also a simple tight reduction from the single-instance to
the multi-instance MLWE problem à la “noise-flooding,” where (roughly) the support of the distribution D
considered by the multi-instance problem is required to be super-polynomially larger than those considered
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by the single-instance problem. However, practically speaking, to the best of our knowledge, we are not
aware of any attacks that exploit the multiplicity of the MLWE sample. Therefore, throughout this work, we
assume the multi-instance MLWE problem to be as difficult as the single-instance MLWE problem.

The assumption on the hardness of (multi-instance) MLWE is believed to hold even when D is the uniform
distribution over ring elements with infinity norm at most a fixed value B, say B ≈ 5, for appropriate
choices of n, q, k, ℓ [ACD+18]. We write MLWEn,q,k,ℓ,B when we consider such distribution D. For example,
the round-2 NIST candidate signature scheme Dilithium [DKL+18] uses such parameters for the (single-
instance) MLWE problem, and in particular, our scheme borrows the same parameter sets.

3 Generic Construction of Accountable Ring Signature and Dy-
namic Group Signature

In this section, we present novel generic frameworks for accountable ring signature, dynamic group signature,
and their tightly secure variants. Firstly, we introduce a generic construction of an accountable ring signature
in Sec. 3.1. Constructing a dynamic group signature immediately follows by limiting the functionality of
accountable ring signature. Our construction achieves a tighter reduction compared to prior works on efficient
group signatures as it does not rely on the forking lemma [FS87, PS00]. However, since we still lose a factor of
1/N in the reduction, we finally show how to modify our construction to be truly tight using the Katz-Wang
technique [KW03] in Sec. 3.3.

3.1 Generic Construction of Accountable Ring Signature

In this subsection, we present our generic construction of an accountable ring signature scheme. Before
diving in the details we give a brief overview of our generic construction. The setup is as follows. The
opening authorities generate a PKE key-pair, denoted as (opk, osk) to indicate that they are the opener’s
keys, and publish the opening public key opk. The users generate an element (x,w) in a hard relation R, and
publish the statement x as verification key, and keep the witness w as secret signing key. A signature for our
ARS scheme for a ring R = {x1, . . . , xN} consists of a ciphertext ct, and a NIZK proof that: 1) The ciphertext
is an encryption of an index I ∈ [N ] under an opener public key opk, and 2) that the signer knows a witness
w corresponding to the I-th statement xI in the ring R. The second property ensures that the signature is
unforgeable, and the first property ensures that the opener (who has the secret key opk) can decrypt the
ciphertext to find out who the real signer is. To convince others that a signature was produced by the I-th
member of the ring, the opener uses a second NIZK proof to prove that he knows a opener secret key osk
that is consistent with opk, and such that Dec(osk, ct) = I. If the opener could find a second secret key
osk′, consistent with opk and such that ct decrypts to I ′ ̸= I under osk′, then the opener could frame I ′ for
signing a signature, which breaks the tracing soundness of the signature scheme. To prevent this we require
the PKE to satisfy a strong correctness property, which says that an encryption of I will always decrypt to
I, even if the encryption randomness and decryption key are invalid (in some specific, controlled way). More
formally we define the following special correctness notion for a PKE scheme.

Definition 3.1 ((R′,KR′)-correctness). Consider a public-key encryption
scheme ΠPKE = (Setup,KeyGen,Enc,Dec), with R the set containing all possible randomness used by Enc and
KR the binary relation that contains all the key pairs (pk, sk) that can be generated by running KeyGen. Let
R′ be a set containing R, and KR′ a relation containing KR. Then we say that ΠPKE is (R′,KR′)-correct
if, for all λ ∈ N, and for all but a negligible fraction of pp ∈ Setup(1λ), we have for all (pk, sk) ∈ KR′, for
all messages m in the plaintext spaceM, and all r ∈ R′ that

Dec(sk,Enc(pk,m; r)) = m.

Remark 3.2. Note that pp is also implicitly used in the relations KR,KR′. If R′ = R and KR′ = KR,
then the (R′,KR′)-correctness is exactly the standard correctness property for PKEs. If R′ or KR′ is larger
than R or KR, respectively, then the definition becomes a stronger property, because the decryption algorithm
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is required to decrypt correctly even when the encryption algorithm used some invalid randomness, and/or
when the keypair is invalid. (R′ and KR′ control how “invalid” randomness and secret key are allowed to
be.)

Our generic construction of an accountable ring signature scheme ΠARS = (ARS.Setup,ARS.OKGen,
ARS.UKGen,ARS.Sign,ARS.Verify,ARS.Open,ARS.Judge), provide in Fig. 1, is based on the following build-
ing blocks:

� A hard-instance generator contains a setup algorithm RelSetup that, on input a security parameter λ,
outputs a description pp of a pair of binary relations Rpp ⊆ R̃pp, and a instance generator IGen for those
pairs of relations. That is, RelSetup and IGen are PPT algorithms such that Pr[(x,w) ∈ Rpp | pp ←
RelSetup(1λ); (x,w) ← IGen(pp)] = 1, and such that if we define the advantage of an adversary A
against (RelSetup, IGen) as

AdvHardRelSetup,IGen(A) = Pr

(x,w′) ∈ R̃pp

∣∣∣∣∣∣
pp← RelSetup(1λ)
(x,w)← IGen(pp)
w′ ← A(pp, x)

 ,

then AdvHardRelSetup,IGen(A) is a negligible function of λ for every PPT adversary A.

� A public-key encryption scheme ΠPKE = (PKE.Setup,KeyGen,Enc,Dec) with multi-challenge IND-CPA
security, and with (R′,KR′)-correctness for some relaxed randomness set R′ and some relaxed key
relation KR′. The message space of the encryption scheme contains a set of indices [N ] for any
polynomially large N ∈ N.

� Amulti-proof online extractable NIZK proof system with labels ΠNIZK,lbl = (NIZK.Setuplbl,NIZK.Provelbl,
NIZK.Verifylbl) for the relations

Rsig =
{(

({xi}i∈[N ], pk, ct), (I,w, r)
) ∣∣ (xI ,w) ∈ Rpp ∧ ct = Enc(pk, I; r)

}
R̃sig =

{(
({xi}i∈[N ], pk, ct), (I,w, r)

) ∣∣ (xI ,w) ∈ R̃pp ∧ ct = Enc(pk, I; r)
}
.

To be precise, we need to also include the public parameters output by RelSetup and PKE.Setup in the
statement. We omit them for better readability.

� A statistically sound NIZK proof system (without labels) ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)
for the relations

Ropen = {((pk, ct, I), sk) | (pk, sk) ∈ KR ∧ Dec(sk, ct) = I}
R̃open =

{
((pk, ct, I), sk)

∣∣ (pk, sk) ∈ KR′ ∧ Dec(sk, ct) = I
}
.

Similarly to above, we omit the public parameter output by PKE.Setup in the statement. We emphasize
that ΠNIZK does not need to be online extractable.

Correctness and security of the proposed accountable ring signature scheme ΠARS are shown in the
following theorems.

Theorem 3.3. The accountable ring signature scheme ΠARS in Fig. 1 is correct.

Proof. Due to the correctness of the underlying NIZK proof system, ΠNIZK,lbl, any signature output by
ARS.Sign will be accepted by ARS.Verify with probability 1.

Theorem 3.4. The accountable ring signature scheme ΠARS in Fig. 1 is (CCA) anonymous (against full
key exposure) in the random oracle model, assuming ΠPKE is multi-challenge IND-CPA secure and (R′,KR′)-
correct, ΠNIZK,lbl is zero-knowledge, multi-challenge online-extractable, and ΠNIZK is zero-knowledge. Pre-
cisely, for an adversary A, running in time T , there exist PPT adversaries B1,B2,B3,B4, with running
times O(T ) such that

AdvAnonΠARS
(A) ≤ AdvZKΠNIZK

(B1) + AdvOE
ΠNIZK,lbl

(B2) + AdvZKΠNIZK,lbl
(B3) + AdvMulti-CPA

ΠPKE
(B4) .

18



ARS.Setup(1λ)

1: pp1 ← RelSetup(1λ)
2: pp2 ← PKE.Setup(1λ)
3: return pp = (pp1, pp2)

ARS.OKGen(pp)

1: (pk, sk)← KeyGen(pp2)
2: return (opk := pk, osk := sk)

ARS.UKGen(pp)

1: (x,w)← IGen(pp1)
2: return (vk := x, sk := w)

ARS.Verify(opk,R,M, σ)

1: (ct, πsign)← σ
2: return NIZK.Verifylbl(M, (R, opk, ct), πsign)

ARS.Sign(opk, sk,R,M)

1: {xi}i∈[N ] ← R
2: if ∄I : (xI , sk) ∈ Rpp1 then
3: return ⊥.
4: r

$← R
5: ct = Enc(opk, I; r)
6: πsign ← NIZK.Provelbl(M, (R, opk, ct), (I, sk, r))
7: return σ := (ct, πsign)

ARS.Judge(opk,R, vk,M, σ, πopen)

1: (ct, πsign)← σ
2: if ∄I : vk = RI then
3: return ⊥.
4: b0 ← ARS.Verify(opk,R,M, σ)
5: b1 ← NIZK.Verify((opk, ct, I), πopen)
6: return b0 ∧ b1

ARS.Open(osk,R,M, σ)

1: if ARS.Verify(opk,R,M, σ) = ⊥ then
2: return ⊥
3: (ct, πsign)← σ
4: I ← Dec(osk, ct)
5: πopen ← NIZK.Prove((opk, ct, I), osk)
6: return π := (RI , πopen)

Figure 1: Generic construction of an accountable ring signature ΠARS obtained from a hard instance generator
(RelSetup, IGen), a public-key encryption algorithm (PKE.Setup,KeyGen,Enc,Dec) satisfying some suitable
security and correctness properties, a NIZK with labels ΠNIZK,lbl for Rsig, and a NIZK without labels ΠNIZK

for Ropen. The public parameter pp is provided to all algorithms where we may omit them for readability.

Proof. We prove anonymity using a hybrid argument with the following series of games. Let the advantage
of the adversary A in Gamei be denoted by Advi(A).

Game1 : This is the original anonymity game defined in Def. 2.17. The adversary’s advantage in this game
is Adv1(A) = AdvAnonΠARS

(A) by definition.

Game2 : This is the same as Game1, except that it uses the simulator NIZK.Sim = (NIZK.Sim0,NIZK.Sim1) for
ΠNIZK to answer random-oracle and opening queries from the adversary. WhenAmakes a random oracle
query, the challenger forwards the query to NIZK.Sim0, records the query and answers, and forwards
the answer to A. When A makes an opening query, rather than computing πopen using NIZK.Prove and
osk, the challenger instead uses the output of NIZK.Sim1. We consider an adversary B1 against the
zero-knowledge property of ΠNIZK which simulates Game2 for A. Let Prove and S be as in the definition
of zero-knowledge for the NIZK proof system. Then, if B′1s oracle queries are answered by (O,Prove) the
game is identical to Game1, and if queries are answered by (NIZK.Sim0,S), then the game is identical to
Game2. Therefore, assuming B1 outputs 1 when A wins, we have Adv1(A) ≤ Adv2(A) + AdvZKΠNIZK

(B1).

Game3 : This is the same as Game2, except that the way the challenger answers opening queries is further
modified. Rather than using the secret key osk to decrypt the ciphertext ct and identify the index I of
the real signing key (as ARS.Open does in the honest protocol), the challenger instead runs the online
extractor OnlineExtract for ΠNIZK,lbl to extract the witness (I, sk, r) from (ct, πsign), and then returns
the user RI . We consider an adversary B2 against the online extractability of ΠNIZK,lbl that simulates
Game3 for A such that

� random-oracle queries from A are replied by querying (hash, ·) (see Def. 2.10);
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� instead of computing πsign when answering a signing query, B2 makes a query (prove,M, x,w),
where (x,w) = ((R, opk, ct), (I, sk, r)), and

� instead of running OnlineExtract, B2 makes a query (extract,M, x, πsign).

Note that extract for proofs originating from prove queries are answered with ⊥, which is compatible
with the fact that the challenger outputs ⊥ for opening queries that correspond to signatures originating
from the signing oracle in Game3. If B2 loses the multi-proof online extractability game (i.e., B2 did
not cause the extractor to fail), then it follows from the (R′,KR′)-correctness of ΠPKE that for each
extraction W = (I, sk, r) we have Dec(osk, ct) = Dec(osk,Enc(opk, I; r)) = I, so the view of A is not
affected by whether I was obtained from OnlineExtract or by decrypting ct with osk. Therefore, we
have Adv2(A) ≤ Adv3(A) + AdvOE

ΠNIZK,lbl
(B2).

Game4 : This is the same as Game3, except that we change how the challenger answers signing queries from
the adversary: The challenger generates ct as in Game3, but uses the zero-knowledge simulator Sim
for ΠNIZK,lbl to create the proof πsign rather than using NIZK.Provelbl. It then outputs (ct, πsign) as the
signature. Similarly to the transition from Game1 to Game2, we can define an adversary B3 against the
zero-knowledge property of ΠNIZK,lbl such that Adv3(A) ≤ Adv4(A) + AdvZKΠNIZK,lbl

(B3).

Game5 : This is the same as Game4, except we further change how the challenger answers signing queries:
Instead of encrypting the correct index I to obtain ct, the challenger encrypts a random index I ′.
We define a multi-challenge IND-CPA adversary B4 for ΠPKE that simulates Game5 for A, but instead
of generating (opk, osk), the adversary B4 receives opk from the multi-challenge IND-CPA challenger,
and instead of producing the ciphertexts ct the adversary B4 makes encryption queries (I, I ′), where
I is the correct index, and I ′ is a random index. Note that, say on input (sign,R,M, sk0, sk1), the
I-th key in R is the verification key corresponding to sk0. We can make this replacement because in
Game5, the challenger does not use osk. (The purpose of Game2 and Game3 were to remove the use of
osk for this reason.) If the hidden bit b in the IND-CPA game is 0, then the IND-CPA experiment is
identical to Game4, and if the bit is 1, then the experiment is equal to Game5. Therefore, we have that
Adv4(A) ≤ Adv5(A) + AdvMulti-CPA

ΠPKE
(B4).

Finally, observe that in Game5 the challenger leaks no information about the secret bit b because b is not
used. Hence, Adv5(A) = 0.

Remark 3.5. In the previous proof we really relied on the online extractability property (without rewinding).
This is because, even if we allow for a non-tight reduction, we cannot resort to rewinding (i.e., the forking
lemma) since there can be polynomially many open queries and the reduction loss will be exponential if we
try to extract from all of them. Here, keep in mind that the online extractor must succeed with (roughly)
1 − negl(λ) rather than any non-negligible function 1/poly(λ) since there can be polynomially many open
queries. Namely, even a success probability of 1/2 will not be good enough. Most, if not all, prior works
circumvent this issue by using an IND-CCA PKE as building block rather than a (possibly inefficient) online
extractable NIZK to simulate the decryption of ct.

Theorem 3.6. The accountable ring signature scheme ΠARS in Fig. 1 is unforgeable in the random oracle
model. More precisely, for any adversary A that runs in time T and makes Qu queries to the ukeygen oracle,
there exist adversaries B1,B2,B3, running in time O(T ), such that

AdvUnfΠARS
(A) ≤ AdvOE

ΠNIZK,lbl
(B1) + AdvZKΠNIZK,lbl

(B2) +QuAdv
Hard
RelSetup,IGen(B3)

Proof. We prove unforgeability using a hybrid argument with the following series of games. Let the advantage
of the adversary A in Gamei be denoted by Advi(A).

Game1 : This is the original unforgeability game defined in Def. 2.18. The adversary’s advantage in this
game is Adv1(A) = AdvUnfΠARS

(A) by definition.
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Game2 : This is the same as Game1, but the winning condition is changed. We let the challenger maintain
a list LO of all the random oracle queries that A makes. When A finishes the game by outputting
(opk, vk,R,M, σ = (ct, πsign), π), the challenger runs (I, sk, r) ← OnlineExtract(M, (R, opk, ct), πsign,

LO). The game results in a loss if ((R, opk, ct), (I, sk, r)) ̸∈ R̃sig, otherwise, the winning condition is
not changed. We construct an online-extractability adversary B1 for ΠNIZK,lbl that simulates Game2 for
A. He replies random-oracle queries from A by querying (hash, ·) (see Def. 2.10), signing queries by
making an oracle call (prove,M, (R, opk, ct), (I, sk, r)) instead of computing πsign himself, and makes
the oracle call (extract,M, (R, opk, ct), πsign) instead of running OnlineExtract. The view of A during
the game simulated by B1 is identical to its view during Game1 and Game2. Suppose that the output
received by A is a win for the winning condition of Game1, but a loss for the winning condition of
Game2. This means that NIZK.VerifyOlbl(M, (R, opk, ct), πsign) = ⊤ and (ct, πsign) was not the output
of a query (sign, opk, vk′,R,M) for any vk′, otherwise the winning condition of Game1 would not be
met. Moreover, we would have ((R, opk, ct), (I, sk, r)) ̸∈ R̃sig, otherwise the winning condition of Game2
would be met. This is precisely the situation B1 needs in order to win the online extractability game.
Therefore, we have Adv1(A) ≤ Adv2(A) + AdvOE

ΠNIZK,lbl
(B1)

Game3 : This is the same as Game2 except that we change the way the challenger answers signing queries
from A. Specifically, the challenger generates ct as in Game2 but uses the zero-knowledge simulator
Sim = (Sim0,Sim1) for ΠNIZK,lbl to create the proof πsign. That is, it forwards the random-oracle
queries to Sim0, and runs Sim1 to get πsign. It then outputs (ct, πsign) as the signature. Let B2
be an adversary against the zero-knowledge property of ΠNIZK,lbl, which simulates Game3 for A by
forwarding random-oracle queries and proving queries to the oracles Sim0 and Sim1, respectively. If
B2 is given access to oracles O and Prove (see Def. 2.8), then A’s view is identical to Game2, and
if B2 is run with access to Sim0,Sim1, then A’s view is identical to Game3. Therefore, we have
Adv2(A) ≤ Adv3(A) + AdvZKΠNIZK,lbl

(B2).

Game4 : This is the same as Game3 except that we change the winning condition again: the challenger
guesses a random index Ĩ ∈ {1, . . . ,Qu} at the outset of the game. If A makes a corruption query to

corrupt the verification key returned in the Ĩ-th user key generation query, then Game4 aborts. The
game results in a win if the winning condition of Game3 is met and if Ĩ = I. Since Ĩ is information-
theoretically hidden during the execution of the game, we have Ĩ = I with probability 1/Qu. Therefore,
we have Adv3(A) = QuAdv4(A).

Finally, let B3 be an adversary against (RelSetup, IGen) which simulates Game4 for A. At the beginning
of the game, B3 is given an instance (pp1, x). The adversary B3 simulates an execution of Game4 by using
the public parameter pp1 that is given to him, rather than generating a new pp1 himself using RelSetup, and

by answering the Ĩ-th ukeygen query assigning vkĨ = x instead of running (x,w)← IGen(pp1). Note that B3
does not need w because if A makes a query to corrupt vkĨ then the game aborts. The view of A during B3’s
simulation is the same as its view during a real execution of Game4, so OnlineExtract outputs a valid witness
(Ĩ , sk, r) with probability at least Adv4(A). If this is the case, then B3 wins his game against the hardness
of (RelSetup, IGen) by outputting sk. Therefore, we have Adv4(A) ≤ AdvHardRelSetup,IGen(B3).

Theorem 3.7. The accountable ring signature scheme ΠARS in Fig. 1 is traceable and tracing sound in
the random oracle model. More precisely, for any adversary A that runs in time T , we have adversaries
B1,B2,B3 that run in time O(T ), such that

AdvTraΠARS
(A) ≤ AdvsoundnessΠNIZK,lbl

(B1)

and
AdvTraSΠARS

(A) ≤ AdvsoundnessΠNIZK,lbl
(B2) + 2AdvsoundnessΠNIZK

(B3)

Proof. We prove the two properties separately as follows:
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Traceability. Traceability follows from the statistical soundness of ΠNIZK,lbl, the (R′,KR′)-correctness
of ΠPKE, and the correctness of ΠNIZK. Observe that if A wins an execution of the traceability game,
then NIZK.Verifylbl(M, X = (R, opk, ct), πsign) = ⊤, but still there cannot be a witness W = (I, sk, r) such

that (X,W) ∈ R̃sig. Towards a contradiction, suppose that such a witness does exist, then the (R′,KR′)-
correctness of the PKE implies that Dec(osk, ct = Enc(opk, I; r)) = I, which implies that ((opk, ct, I), osk) ∈
Ropen, so the correctness of ΠNIZK implies that NIZK.Verify((opk, ct, I), πopen) = ⊤. This means that A did

not win the traceability game. Therefore, A produces valid proofs for statements not in R̃sig with probability

at least AdvTraΠARS
(A). We can use this to construct an adversary B1 against the statistical soundness of

ΠNIZK,lbl that generates pp ← ARS.Setup(1λ) for a security parameter λ, runs (rr,R,M, σ) ← A(pp) where
σ = (ct, πsign), and (osk, opk) ← ARS.OKGen(pp; rr), and outputs (M, x := (R, opk, ct), πsign), which makes

B1 win. B1’s advantage is therefore AdvTraΠARS
(A) ≤ AdvsoundnessΠNIZK,lbl

(B1).

Tracing soundness. Similarly, tracing soundness follows from the statistical soundness of ΠNIZK and
ΠNIZK,lbl, and the (R′,KR′)-correctness of the ΠPKE. In order for A to win the tracing soundness game, it
needs to output valid proofs πsign, π0, π1 (the former is part of the produced signature σ = (ct, πsign)) such
that there exist witnesses (I, sk, r), osk0 and osk1 where

((R, opk, ct), (I, sk, r)) ∈ R̃sig

((opk, ct, I0), osk0) ∈ R̃open

((opk, ct, I1), osk1) ∈ R̃open,

with I0 ̸= I1. However, it follows from the (R′,KR′)-correctness of ΠPKE that no three such witnesses can
exist. Suppose, towards a contradiction, that those witnesses exist. Then we have I0 = Dec(osk0, ct =
Enc(opk, I; r)), so the (R′,KR′)-correctness implies that I0 = I, and similarly it follows from I1 = Dec(osk1,
ct = Enc(opk, I; r)) that I1 = I, which contradicts I0 ̸= I1. Therefore, at least one of πsign, π0, π1 is a valid

proof of an invalid statement, i.e. a X for which does not exist W such that (X,W) ∈ R̃sig (or (v) ∈ R̃open),

with probability at least AdvTraSΠARS
(A). Let B2 and B3 be statistical-soundness adversaries for ΠNIZK,lbl and

ΠNIZK, respectively, that simulate the tracing soundness game and output πsign or πb, respectively, where b

is a random bit. Then we have AdvTraSΠARS
(A) ≤ AdvsoundnessΠNIZK,lbl

(B2) + 2AdvsoundnessΠNIZK
(B3).

3.2 Accountable Ring Signature to Dynamic Group Signature

Accountable ring signatures are known to trivially imply dynamic group signatures [BCC+15, BCC+16].
A formal treatment is provided by Bootle et al. [BCC+16]. We remark that the transformation provided
in [BCC+16] retains the the same level of security provided by the underlying accountable ring signature.
That is, all reductions between unforgeability, full-anonymity and traceability are tight. For completeness,
we provide more details on group signatures and the transform in App. B.

3.3 Tightly Secure Variant

Observe the only source of loose reduction in the previous section was in the unforgeability proof (see
Thm. 3.6), where we assume each building blocks, i.e., NIZK and PKE, are tightly reduced to concrete hard-
ness assumptions. In this subsection, we apply the Katz-Wang technique [KW03] to modify our construction
in Fig. 1 to obtain a tight reduction.

We firstly give an intuition of the method. Recall that in the proof of Thm. 3.6, the reduction is given a
challenge instance x, guesses which user’s signature the adversary will forge, and assigns x to the verification
key vk of the selected user. If the adversary queries the corruption oracle on the key vk, the reduction fails
and aborts since it will not be able to produce the corresponding secret key for vk. If the guess is correct and
the adversary successfully forges the signature, then the reduction can recover a witness w′ such that (x,w′)

is in the relation R̃pp1 . Therefore, if the adversary makes Qu user key generation queries and its advantage
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is ϵ, then the reduction can extract a witness with probability roughly ϵ/Qu.

A high-level viewpoint of the Katz-Wang method is that each user is given a pair of statements (x(1), x(2)) as
the verification key vk, with only one witness w as the secret signing key, such that either (x(1),w) or (x(2),w)

is in the relation R̃pp1 . Also, we assume that now the reduction is given Qu challenge instances {xi}i∈[Qu]

and it is required to solve any one of them. The reduction in this case needs no guessing steps as above.
Specifically, the reduction can use IGen to generate pairs (x̃i, w̃i) for i ∈ [Qu], randomly permutes xi, x̃i and
assigns the obtained ordered pair to vki. Therefore, the reduction can always answer any corruption query
with w̃i. As long as the adversary wins the unforgeability game by forging a signature, the reduction can
return a witness for one of the {xi}i∈[Qu] with probability 1/2. Roughly speaking, if the success rate of the
adversary is ϵ, then the reduction can extract the answer for the challenge (⋆,X0, {xi}i∈[Qu]) with probability
around ϵ/2. Here, it is important that the information on which verification key the user knows the signing
key to needs to remain hidden from the adversary. Otherwise, the adversary may always create a forgery
with respect to the signing key the reduction already knows.

To turn the above idea into a formal proof, we require two new ingredients: an instance generator that
outputs multiple challenges and a NIZK that additionally hides the information on which signing key is used.
More formally, we build a tightly secure accountable ring signature scheme ΠTight

ARS = (ARS.Setup,ARS.OKGen,
ARS.UKGen,ARS.Sign,ARS.Verify,ARS.Open,ARS.Judge) based on the following tools. The only difference

between the tools used in Sec. 3.1 are the hard multi-instance generator and the NIZK for the relation RTight
sig .

� A hard multi-instance generator (RelSetup, IGen) contains a setup algorithm RelSetup that outputs
a description pp of a pair of relations Rpp ⊆ R̃pp , and an instance generator IGen for these pairs
of relations. That is, RelSetup and IGen are PPT algorithms such that Pr[(xi,wi) ∈ Rpp | pp ←
RelSetup(1λ); {(xi,wi)}i∈[N ] ← IGen(pp, N)] = 1. Moreover, if we define the advantage of an adversary
A against (RelSetup, IGen) as

AdvMulti-Hard
RelSetup,IGen,N (A) = Pr

(xi,w′) ∈ R̃pp

∣∣∣∣∣∣
pp← RelSetup(1λ)

{(xi,wi)}i∈[N ] ← IGen(pp, N)
(i,w′)← A(pp, {xi}i∈[N ])


then AdvMulti-Hard

RelSetup,IGen,N (A) is a negligible function in λ for every PPT adversary A.

� A public-key encryption scheme ΠPKE = (PKE.Setup,KeyGen,Enc,Dec) with multi-challenge IND-CPA
security, and with (R′,KR′)-correctness for some relaxed randomness set R′ and some relaxed key
relation KR′. The message space of the encryption scheme contains a set of indices [N ] for any
polynomially large N ∈ N.

� Amulti-proof online extractable NIZK proof system with labels ΠNIZK,lbl = (NIZK.Setuplbl, NIZK.Provelbl,
NIZK.Verifylbl) for the family of relations

RTight
sig =

{(
(pp, {x(j)i }(i,j)∈[N ]×[2], pk, ct), (I, b,w, r)

) ∣∣∣∣ (I, r) ∈ [N ]×R ∧ (x
(b)
I ,w) ∈ Rpp∧

ct = Enc(pk, I; r)

}
R̃Tight

sig =

{(
(pp, {x(j)i }(i,j)∈[N ]×[2], pk, ct), (I, b,w, r)

) ∣∣∣∣ (I, r) ∈ [N ]×R′ ∧ (x
(b)
I ,w) ∈ R̃pp∧

ct = Enc(pk, I; r)

}
.

� A second NIZK proof system (without labels) ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) for the
family of relations

Ropen = {((pk, ct, I), sk) | (pk, sk) ∈ KR ∧ Dec(sk, ct) = I}
R̃open =

{
((pk, ct, I), sk)

∣∣ (pk, sk) ∈ KR′ ∧ Dec(sk, ct) = I
}
,

with statistical soundness (Def. 2.9).
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The building blocks listed above are combined similarly to Fig. 1. For the sake of completeness, we detail
the resulting protocol in Fig. 2. For the security properties, we only focus on unforgeability. The others are
a direct consequence of the proofs given for the non-tight construction in Fig. 1.

Theorem 3.8. The accountable ring signature scheme ΠTight
ARS in Fig. 2 is unforgeable in the random oracle

model. More precisely, for any adversary A that runs in time T and makes Qu queries to the ukeygen oracle,
there exist adversaries B1,B2,B3, running in time O(T ), such that

AdvUnfΠARS
(A) ≤ AdvOE

ΠNIZK,lbl
(B1) + AdvZKΠNIZK,lbl

(B2) + 2AdvMulti-Hard
RelSetup,IGen,Qu

(B3).

Proof. We prove unforgeability using a hybrid argument with the following series of games. Let the advantage
of an adversary A in Gamei be denoted by Advi(A).

� The first game, Game1, is the original unforgeability game defined in Def. 2.18. The adversary’s
advantage in this game is Adv1(A) = AdvUnfARS(A) by definition.

� Game2 is the same as Game1, but with a modified winning condition. We let the challenger maintain
a list LO of all the random-oracle queries that A makes. When A finishes the game by outputting
(opk, vk,R,M, σ = (ct, πsign), π), the challenger runs (I, b, sk, r) ← OnlineExtract(M, (pp1,R, opk, ct),

πsign, LO). The game results in a loss if ((pp1,R, opk, ct), (I, , b, sk, r)) ̸∈ R̃Tight
sig , otherwise, the win-

ning condition is not changed. As we have shown in the proof of Thm. 3.6, there exists an online-
extractability adversary B1 for ΠNIZK,lbl running in time O(T ) such that Adv1(A) ≤ Adv2(A) +
AdvOE

ΠNIZK,lbl
(B1).

� The third game, Game3, is the same as Game2 except that we change the way the challenger answers
signing queries from A. Specifically, the challenger generates ct as in Game2 but uses the ΠNIZK,lbl

zero-knowledge simulator Sim = (Sim0,Sim1) to create the proof πsign. As we have shown in the proof
of Thm. 3.6, there exists a zero-knowledge adversary B2 for ΠNIZK,lbl running in time O(T ) and such

that Adv2(A) ≤ Adv3(A) + AdvZKΠNIZK,lbl
(B2).

� Finally, we consider an adversary B3 against the hardness of (RelSetup, IGen) which simulates Game3
for A. At the beginning of the game, the adversary B3 is given the instances (pp1, {x}i∈[Qu]). B3
uses the public parameter pp1 that is given to him, rather than generating new pp1 himself using
RelSetup. Moreover, when answering the i-th ukeygen query, B3 uniformly draws bi from {1, 2},
generates (x̃i, w̃i) ← IGen(pp1), and assigns vki = (x

(1)
i , x

(2)
i ) where (x

(bi)
i , x

(3−bi)
i ) = (x̃i, xi). Note

that now B3 is able to respond to any valid corruption query corrupt. In fact, for any i ∈ [Qu],
if A makes a corruption query to corrupt vki, then B3 responds by sk = (bi, w̃i). The view of A
during B3’s simulation is the same as its view during a real execution of Game3, so OnlineExtract
outputs a valid witness (Ĩ , sk = (b′,w′), r) with probability at least Adv3(A). Since the sampling
of the statements and witnesses follows the same distribution determined by IGen(pp1) in the real

execution, there is an 1/2 chance that b′ = (3 − bĨ). That is, (xĨ ,w
′) ∈ R̃pp1 . Therefore, we have

Adv3(A)/2 ≤ AdvMulti-Hard
RelSetup,IGen,Qu

(B3).

4 Group-Action-Based Hard Instance generators and PKEs

In this section, we introduce group-action-based hard instance generators (HIGs) and group-action-based
PKEs. These are classes of HIGs and PKEs, that derive their security from cryptographic group actions, and
which have some specific internal structure. We define these concepts because, as we will see in Sections 5
and 6, if we instantiate our generic accountable ring signature construction with a group-action-based HIG
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ARS.Setup(1λ)

1: pp1 ← RelSetup(1λ)
2: pp2 ← PKE.Setup(1λ)
3: return pp = (pp1, pp2)

ARS.OKGen(pp)

1: (pp1, pp2)← pp
2: (pk, sk)← KeyGen(pp2)
3: return (opk := pk, osk := sk)

ARS.UKGen(pp)

1: (pp1, pp2)← pp

2: b
$← {1, 2}

3: (x(1),w(1)), (x(2),w(2))← IGen(pp1)
4: return (vk := (X(1), X(2)), sk := (b,w(b))

ARS.Verify(opk,R,M, σ)

1: (pp1, pp2)← pp
2: (ct, πsign)← σ
3: return NIZK.Verifylbl(M, (pp1,R, opk, ct), πsign)

ARS.Sign(opk, sk,R,M)

1: (pp1, pp2)← pp

2: {(x(1)i , x
(2)
i )}i∈[N ] ← R

3: if ∄ (I, b) : (x
(b)
I , sk) ∈ Rpp1 then

4: return ⊥.
5: r

$← R
6: ct← Enc(opk, I; r)
7: πsign ← NIZK.Provelbl(M, (pp1,R, opk, ct), (I, b, sk, r))
8: return σ := (ct, πsign)

ARS.Judge(opk,R, vk,M, σ, π)

1: (ct, πsign)← σ
2: if ∄I : vk = RI then
3: return ⊥.
4: b0 ← ARS.Verify(opk,R,M, σ)
5: b1 ← NIZK.Verify((opk, ct, I), πopen)
6: return b0 ∧ b1

ARS.Open(osk,R,M, σ)

1: if ARS.Verify(opk,R,M, σ) = ⊥ then
2: return ⊥
3: (ct, πsign)← σ
4: I ← Dec(osk, ct)
5: πopen ← NIZK.Prove((opk, ct, I), osk)
6: return π := (RI , πopen)

Figure 2: Modified tightly-secure construction of an accountable ring signature ΠTight
ARS obtained from a hard

multi-instance generator (RelSetup, IGen), a public-key encryption algorithm (PKE.Setup,KeyGen,Enc,Dec)
satisfying some suitable correctness and security properties, a NIZK proof system with labels ΠNIZK,lbl for

RTight
sig , and a NIZK proof system without labels ΠNIZK for Ropen.

and a group-action-based PKE, then we can construct a very efficient multi-proof online extractable NIZK
for the Rsig relation. We provide concrete instantiations of group-action-based HIGs and PKEs from lattices
and isogenies in Sec. 7.

4.1 Group-Action-based Hard Instance Generator

We consider a special class of hard instance generators naturally induced by cryptographic hard actions.

Definition 4.1 (Group-Action-based Hard Instance Generator). A group-action-based hard instance gen-
erator, GA-HIG in short, is a pair of efficient algorithms (RelSetup, IGen) with the following properties:

� On input a security parameter λ, RelSetup outputs pp = (G,S1, S2, δ,X0,X , ⋆) such that: G is an
additive group whose elements can be represented uniquely, S1 ⊆ S2 are symmetric subsets of G, such
that membership in S1 and S2 can be decided efficiently, and such that the group law can be computed
efficiently for elements in S1 ∪ S2. Moreover the intersection S3 = ∩g∈S1

g + S2 has cardinality δ |S2|
and membership of S3 can be decided efficiently. ⋆ is an action ⋆ : G × X → X of G on a set X
that contains the element X0. ⋆ can be evaluated efficiently on elements of S1 ∪ S2. These parameters
describe an NP-relation

Rpp = {(X, s) | s ∈ S1 : s ⋆ X0 = X} ,

and a relaxed NP-relation

R̃pp = {(X, s) | s ∈ S2 + S3 : s ⋆ X0 = X} .
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� On input pp, IGen samples an element s from S1 and outputs (s ⋆ X0, s) ∈ Rpp.

� (RelSetup, IGen) is a hard instance generator as defined in Sec. 3.

4.2 Group-Action-based PKE

We also consider group actions provided with a corresponding public-key encryption scheme, as specified in
the following definition.

Definition 4.2 (Group-action-based PKE). A group-action-based public-key encryption scheme, GA-PKE in
short, is a public-key encryption scheme ΠGA-PKE = (Setup,KeyGen,Enc,Dec) with the following properties:

Setup(1λ)→ pp : On input a security parameter 1λ, it returns the public parameter pp = (G,GM,X , S1, S2,
δ,DX , ⋆M,M) (sometimes implicitly) used by the scheme. Here, G,GM are additive groups, S1, S2

two symmetric subsets of G, X a finite set, δ a real number in [0, 1], DX a distribution over a set of
group actions ⋆pk : G × X → X and elements in X , ⋆M : GM × X → X a group action, M ⊆ GM

a message space. For any polynomially large N ∈ N, we assume that there exists a feasible and
invertible embedding τ from the set of index [N ] into the message space M. For simplicity, we will
write τ(i) ⋆M X, Enc(pk, τ(i)) as i ⋆M X, Enc(pk, i) respectively without causing confusion.

KeyGen(pp)→ (pk, sk) : On input a public parameter pp, it returns a public key pk and a secret key sk. We
assume pk = (⋆pk, Xpk) to be drawn from DX , where ⋆pk : G×X → X is a group action and Xpk ∈ X ,
and sk ∈ G. We also assume pk includes pp w.l.o.g.

Enc(pk,M; r) → ct : On input a public key pk = (⋆pk, Xpk) and a message M ∈ M, it returns a ciphertext
ct. We assume ct is generated as M ⋆M (r ⋆pk Xpk) ∈ X , where the encryption randomness is sampled

as r
$← S1.

Dec(sk, ct) → M : On input a secret key skand a ciphertext ct, it (deterministically) returns a message
M ∈M.

In addition, we assume the following properties hold for the group actions defined by pp.

1. There exists a positive-valued polynomial T such that for all λ ∈ N, pp ∈ Setup(1λ), and (pk, sk) ∈
KeyGen(pp), one can efficiently compute g⋆pkX for all g ∈ S1∪S2 and all X ∈ X in time at most T (λ),
sample uniformly from S1 and S2, and represent elements of G and X uniquely. It is also efficient to
compute the action ⋆M for every possible input.

2. The intersection S3 of the sets S2 + g, with g varying in S1, is such that its cardinality is equal to
δ |S2|. Furthermore, it is efficient to check whether an element g ∈ G belongs to S3.

We further require a group-action-based PKE to satisfy standard correctness and decryption efficiency.

Definition 4.3 (Correctness and Decryption Efficiency). We say a group-action-based PKE ΠGA-PKE is
correct if for all λ ∈ N, and for all but a negligible fraction of pp ∈ Setup(1λ), we have Dec(sk,Enc(pk,M)) =
M for all (pk, sk) ∈ KeyGen(pp)and M ∈M.

Moreover, we require Dec to run in poly(λ) for a fixed polynomial function poly and for all possible inputs.

As we shown in Sec. 3.1, in order to construct an accountable ring signature, a group-action-based PKE
is also required to be (multi-challenge) IND-CPA secure (Def. 2.14) and (R′,KR′)-correct for some relaxed
randomness set R′ and some relaxed key relation KR′ (Def. 3.1).

The concrete choice of (R′,KR′) may depend on the instantiation. For instance, while we define
(R′,KR′) = (R,KR) for our isogeny-based instantiation in Sec. 7.1, we must rely on a strictly wider
relation for our lattice-based instantiation in Sec. 7.2 to compensate for the relaxed soundness. In slightly
more detail, in our lattice-based NIZK, we are only able to argue that an adversary created a ciphertext ct
using message M and randomness r ∈ R′, and/or that a ct can be decrypted to M using secret key sk such
that (pk, sk) ∈ KR′. Roughly, (R′,KR′)-correctness guarantees that such an argument suffices to prove that
ct can only be decrypted to a unique M. Recall this argument is explicitly used in the proof of Thm. 3.7.
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5 Sigma Protocol for a “Traceable” OR Relation

In this section, we present an efficient sigma protocol for the relation Rsig introduced in Sec. 3.1, using
group-action-based HIG and a group-action-based PKE from the previous section. Recall this relation was
used to define the multi-proof online extractable NIZK with labels ΠNIZK, which allowed an OR proof along
with a proof of opening to a ciphertext. Looking ahead, in Sec. 6, we show that our sigma protocol can be
turned into a multi-proof online extractable NIZK using the Fiat-Shamir transform. This is in contrast to
the common application of Fiat-Shamir transform that only provides a proof of knowledge via the rewinding
argument [FS87, PS00]. We note that we do not focus on the other NIZK for the relation Ropen in Sec. 3.1
since they can be obtained easily from prior works.

We call the sigma protocol we present in this section as a traceable OR sigma protocol since it allows
to trace the prover. This section is structured as follows. Firstly, we introduce a base traceable OR sigma
protocol Πbase

Σ for the relation Rsig with proof size O(logN) but with a binary challenge space. Secondly, we
amplify the soundness of the sigma protocol by performing parallel repetitions. Here, instead of applying
λ-parallel repetitions naively, we optimize it using three approaches developed in [BKP20] to obtain our

main traceable OR sigma protocol ΠtOR
Σ . Finally, we show a sigma protocol for the “tight” relation RTight

sig

introduced in Sec. 3.3.

5.1 From a Group-Action-Based HIG and PKE to Base Traceable OR Sigma
Protocol

In this section, we present a base OR sigma protocol for the relation Rsig with a binary challenge space from
which the main OR sigma protocol will be deduced.

Parameters and Binary Relation. The sigma protocol is based on a group-action-based HIG and PKE.
Let pp1 = (G,X , S1, S2, δx, ⋆,X0) and pp2 = (G,GT,Y, S1, S2, δy, DY , ⋆M,M) be public parameters in the
image of RelSetup and PKE.Setup, respectively. Moreover, let (pk, sk) ∈ KeyGen(pp2). The relation Rsig in
Sec. 3.1 can be equivalently rewritten as follows:

Rsig =

{(
({Xi}i∈[N ], pk, ct), (I, s, r)

) ∣∣∣∣ (I, s, r) ∈ [N ]× S1 × S1∧
XI = s ⋆ X0 ∧ ct = Enc(pk, I; r)

}
.

Recall that by definition of GA-PKE (Def. 4.2), the ciphertext ct is restricted to the simple form I ⋆M (r ⋆pk
Ypk) ∈ Y, where r ∈ S1 ⊆ G.

Sigma Protocol for Rsig. We now sketch the base traceable OR sigma protocol Πbase
Σ . A prover with

witness (I, s, r) ∈ [N ] × S1 × S1 first samples (s′, r′)
$← S2 × S2, and ({bitsi}i∈[N ]) ← {0, 1}λN . Then, it

computes commitments

Ci = O(Com ∥ s′ ⋆ Xi ∥ r′ ⋆pk (−i ⋆M ct) ∥ bitsi) ∀i ∈ [N ],

and builds a Merkle tree (see App. A.2) with (C1, . . . ,CN ) as its leaves, obtaining root. Here, notice r′ ⋆pk
(−i ⋆M ct) = r′ ⋆pk (−i + I) ⋆M (r ⋆pk Ypk) is simply (r′ + r) ⋆pk Ypk when i = I. Then, the prover sends
com = root to the verifier as the commitment of the sigma protocol. The verifier, in turn, responds with a
uniform challenge chall ∈ {0, 1}.

If the challenge bit chall is 0, then the prover sends (s′, r′) and the commitment randomness {bitsi}i∈[N ].
That is, all the randomness it generated in the first round. The verifier then can reconstruct the Merkle tree
and verify that the root of the obtained tree is equal to root.

If the challenge bit chall is equal to 1, then the prover computes s′′ = s′ + s, r′′ = r′ + r. The prover
aborts the protocol if s′′ ̸∈ S3 or r′′ ̸∈ S3. The first event will occur with probability (1− δx) and, similarly,
the second event will occur with probability (1 − δy). Otherwise, the prover sends (r′′, s′′) together with
the path connecting CI to root in the Merkle tree, and the corresponding commitment randomness bitsI to
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the verifier. The verifier computes C̃I = O(Com ∥ s′′ ⋆ X0 ∥ r′′ ⋆pk Ypk ∥ bitsI) and uses the received path to
reconstruct r̃oot of the Merkle tree. The verifier checks whether r̃oot = root.

To reduce the communication cost, a pseudorandom number generator (PRG) Expand can be run over
a uniform seed seed ∈ {0, 1}λ to produce the group elements s′, r′ and all commitment randomness values
bits1, . . . , bitsN (part of the response for chall = 0). As a consequence, if the challenge bit is 0, the prover
responds with seed so that the verifier can generate (s′, r′, bits1, · · · , bitsN ) with the PRG Expand. The
response corresponding to the challenge bit chall = 1 remains unchanged. We instantiate the PRG by a
random oracle O(Expand ∥ ·). Looking ahead, using a PRG not only provides efficiency but it proves to be
essential when proving multi-proof online extractability when compiled into a NIZK. Roughly, the seed binds
the cheating prover from using arbitrary (s′, r′, bits1, · · · , bitsN ) and the random oracle allows for efficient
extraction. Finally, we instantiate the collision-resistant hash function HColl(·) used in our Merkle tree by a
random oracle O(Coll ∥ ·).

A formal description of Πbase
Σ is provided in Fig. 3.

Security of Sigma Protocol Πbase
Σ .

The following Thms. 5.1 and 5.2 summarize the security of our sigma protocol. We point out that in
Thm. 5.1, we show our sigma protocol satisfies special soundness for the relations Rsig and R̃′

sig such that

Rsig ⊂ R̃′
sig, rather than for the relations Rsig and R̃sig such that Rsig ⊆ R̃sig, where R̃sig is the relaxed

relation introduced in Sec. 3.1. The subtle difference is that R̃′
sig captures the scenario where the extractor

may extract a witness that forms a collision in the random oracle. This has no concrete impact as we are
able to turn such a sigma protocol into a multi-proof online extractable NIZK for the relations Rsig and R̃sig.

Theorem 5.1. The sigma protocol Πbase
Σ has correctness with abort rate (1 − δxδy)/2 and relaxed special

soundness for the relations Rsig and R̃′
sig, where

R̃′
sig =

((
{Xi}i∈[N ], pk, ct

)
,W

) ∣∣∣∣∣∣
W = (I, s, r) ∈ [N ]× (S2 + S3)× (S2 + S3)
∧ XI = s ⋆ X0 ∧ ct = Enc(pk, I; r) or

W = (x1, x2) ∈ {0, 1}∗ ∧ x1 ̸= x2 ∧ O(x1) = O(x2)

 .

Here, R̃′
sig is identical to the one defined in Sec. 3.1 if we ignore the hash collision W = (x1, x2) and set

R′ = S2 + S3 in the (R′,KR′)-correctness of GA-PKE.

Proof. Correctness. Say the prover honestly runs Πbase
Σ on an input (I, s, r) satisfying XI = s ⋆ X0 and

ct = Enc(pk, I; r), and does not abort. If chall = 0, then the verifier repeats the computation in the
commitment phase (see Round 1 in Fig. 3) and therefore obtains the same output. If chall = 1, then the

verifier computes T̃ = s′′ ⋆ X0 and c̃t = r′′ ⋆pk Ypk where s′′ = s′ + s and r′′ = r′ + r. Besides, since T̃ is

equal to TI = s′ ⋆XI , c̃t is equal to ctI = r′ ⋆pk (−I ⋆M ct) and C̃ = O(Com ∥ T̃ ∥ c̃t ∥ bits) is equal to the leaf

C̃ = CI ∈ {C1, · · · ,CN}, the verifier reconstructs the root r̃oot which is equal to root. Hence, the protocol
has (non-abort) correctness.

Abort Rate. The prover will not abort in the case chall = 0. When chall = 1 (which occurs with probability
1/2) the prover aborts if s′′ = s′ + s /∈ S3 or r′′ = r′ + r /∈ S3. We note that s is in S1 and s′ is drawn
uniformly at random from S2 (in the random oracle model). We can therefore say s′′ is drawn uniformly at
random from S2+s, which contains S3 as a subset. So the probability that s′′ = s′+s ∈ S3 is |S3| / |S2| = δx.
The same reasoning applies to r′′, so the probability of both s′′, r′′ lying in S3, S3 respectively is δxδy and
the total abort rate is (1− δxδy)/2

Relaxed Special Soundness. Given two valid transcripts for the same statement and on the same commitment,
(com, 0, seed) and (com, 1, (s′′, r′′, path, bits)) where com = root, an extraction algorithm Extract for a witness

for the relation R̃′
pk proceeds as follows. Extract firstly generates (s′, r′, bits1, · · · , bitsN )← O(Expand ∥ seed)

and constructs C1, · · · ,CN such that the Merkle Tree with leaves (C1, · · · ,CN ) has root equal to root. Extract
outputs W = (Coll∥x1,Coll∥x2) as the witness if it there exists x1 ̸= x2 such that O(Coll∥x1) = O(Coll∥x2).

Otherwise, by Lem. A.1, we can assume C̃ = O(Com∥s′′ ⋆X0 ∥r′′ ⋆pk Ypk ∥bits) is equal to CĨ ∈ {C1, · · · ,CN}
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for some Ĩ ∈ [N ]. Then, Extract outputs W = (Com ∥ x1,Com ∥ x2) as the witness if it there exists x1 ̸= x2

such that O(Com ∥ x1) = O(Com ∥ x2). Otherwise, from C̃ = CĨ , we can assume s′ ⋆ XĨ = s′′ ⋆ X0,

r′ ⋆pk (Ĩ ⋆M ct) = r′′ ⋆pk Ypk, and bits = bitsĨ . Let s̃ = −s
′+ s′′ ∈ S2+S3 and r̃ = −r′+ r′′ ∈ S2+S3. Finally,

Extract outputs W = (Ĩ , s̃, r̃). Here, the equalities s̃ ⋆ X0 = XĨ and Ĩ ⋆M (r̃ ⋆pk Ypk) = ct follow directly from

the relations s′ ⋆ XĨ = s′′ ⋆ X0 and r′ ⋆pk (Ĩ ⋆M ct) = r′′ ⋆pk Ypk, respectively. Therefore, W = (Ĩ , s̃, r̃) is a

witness for the “relaxed” relation R̃′
pk. Hence, the protocol Πbase

Σ has relaxed special soundness.

Theorem 5.2. The sigma protocol Πbase
Σ has non-abort special zero-knowledge. Precisely, there exists a PPT

simulator SimO with access to a random oracle O such that, for any statement-witness pair (X,W) ∈ Rsig,
chall ∈ {0, 1}, and any computationally-unbounded adversary A that makes at most Q queries to the random
oracle O, we have∣∣∣Pr[AO(1λ, P̃O(X,W, chall)) = 1]− Pr[AO(1λ,SimO(X, chall)) = 1]

∣∣∣ ≤ Q

2λ
,

where P̃ is a non-aborting prover P ′ = (P ′
1, P

′
2) run on (X,W) with a challenge fixed to chall.

Proof. Assume the adversary makes QExpand and QCom queries to the random oracles of the form O(Expand∥·)
and O(Com ∥ ·), respectively. We have QExpand +QCom ≤ Q. The PPT simulator SimO, on input (X, chall),
proceeds as follows.

� If chall = 0, the simulator executes as P
′O(X,⊥, chall), where notice P ′ does not require the witness

when chall = 0. Concretely, the simulator outputs (com = root, chall = 0, resp = seed) where root, seed
are honestly generated as in the execution of P

′O
1 .

� If chall = 1, the simulator uniformly samples (s′′, r′′) from S3 × S3, and bits from {0, 1}λ. It com-
putes C1 = O(Com ∥ s′′ ⋆ X0 ∥ r′′ ⋆pk Ypk ∥ bits). It then uniformly samples dummy commitments
Ci for i ∈ {2, . . . , N} from {0, 1}2λ, and computes the (index-hiding) Merkle tree (root, tree) ←
MerkleTree(C1, . . . ,CN ). After that, it extracts the path path ← getMerklePath(tree, 1) in the tree
and sets com = root, and resp = (s′′, r′′, path, bits). Finally, the simulator returns (com, chall = 1, resp).

In the first case, the whole transcript is generated exactly as in the protocol. Hence transcripts generated
by P̃O and SimO are indistinguishable to the adversary A. Therefore, we have∣∣∣Pr[AO(1λ, P̃O(X,W, chall = 0)) = 1]| = |Pr[AO(1λ,SimO(X, chall = 0)) = 1]

∣∣∣ .
To conclude the proof, it suffices to show that the difference between the probabilities that the adversary

A outputs 1 for the other case, chall = 1, is also bounded by Q
2λ
.

We use a hybrid argument by introducing a series of simulators Sim0 = P̃ , . . . , Sim4 = Sim, gradually
changing from the honest prover P̃ to Sim, to show that they are indistinguishable with overwhelming
probability. We fix an adversary A, (X,W) ∈ Rsig, and for each i ∈ {0, 1, . . . , 4}, we denote by Ei the event

that AO(1λ,SimO
i (X, chall = 1)) = 1.

� Sim1 is identical to Sim0 except that instead of using Expand to generate s′, r′, {bitsi}i∈[N ], the simulator
generates these by sampling uniformly at random from the corresponding domains. This does not
change the view of A, unless the adversary queries O on input (Expand ∥ seed). Since seed has λ bits of
min-entropy and because it is information-theoretically hidden from A, the probability that A queries
O on this input is bounded by QExpand/2

λ. That is, |Pr[E1]− Pr[E0]| ≤ QExpand

2λ
.

� Sim2 is identical to Sim2 except that all the commitments Ci for i ∈ [N ]\{I} are generated uniformly at
random. This does not change the view ofA, unless the adversary queriesO on input (Com∥Ti∥cti∥bitsi)
for any i ∈ [N ] \ {I}, where Ti = s′ ⋆ Xi and cti = r′ ⋆pk (−i ⋆M ct). Since for any i ∈ [N ] \ {I}
the string bitsi has λ bits of min-entropy and because it is information-theoretically hidden from A,
the probability that A queries O on input (Com ∥ Ti ∥ cti ∥ bitsi) is bounded by QCom/2

λ. That is,
|Pr[E2]− Pr[E1]| ≤ QCom

2λ
.
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� Sim3 is identical to Sim3 except that instead of computing s′′, r′′ as s′ + s, r′ + r (conditioned on them
respectively lying in S3, S3, due to non-aborting transcripts), the simulator generates these two values
by sampling uniformly at random from S3, S3, respectively . Both the distributions are uniform over
S3 and S3. Therefore, we have |Pr[E3]− Pr[E2]| = 0.

� Sim4 = Sim is identical to Sim4 except that the simulator uses I = 1 instead of the value I in the
witness W. These two simulators are indistinguishable because the Merkle tree is index-hiding (by
Lemma A.2). Precisely, we have |Pr[E4]− Pr[E3]| = 0.

Collecting the bounds, we obtain the bound in the statement.

round 1: P ′O
1 (({Xi}i∈[N ], pk, ct), (I, s, r))

1: seed
$← {0, 1}λ

2: (s′, r′, bits1, · · · , bitsN )← O(Expand ∥ seed) ▷ Sample (s′, r′) ∈ S2 × S2 and bits ∈ {0, 1}λ
3: for i from 1 to N do
4: (Ti, cti)← (s′ ⋆ Xi, r

′ ⋆pk (−i ⋆M ct))
5: Ci ← O(Com ∥ Ti ∥ cti ∥ bitsi) ▷ Create commitments Ci ∈ {0, 1}2λ

6: (root, tree)← MerkleTree(C1, · · · ,CN )
7: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c
$← {0, 1}

2: Verifier sends chall← c to Prover.

round 3: P ′
2((I, s, r), chall)

1: c← chall
2: if c = 1 then
3: (s′′, r′′)← (s′ + s, r′ + r)
4: if s′′ ̸∈ S3 or r′′ ̸∈ S3 then
5: P aborts the protocol.

6: path← getMerklePath(tree, I)
7: resp← (s′′, r′′, path, bitsI)
8: else
9: resp← seed

10: Prover sends resp to Verifier

Verification: V ′O
2 (com, chall, resp)

1: (root, c)← (com, chall)
2: if c = 1 then
3: (s′′, r′′, path, bits)← resp
4: if s′′ ̸∈ S3 or r′′ ̸∈ S3 then
5: V outputs reject.

6: (T̃ , c̃t)← (s′′ ⋆ X0, r
′′ ⋆pk Ypk)

7: C̃← O(Com ∥ T̃ ∥ c̃t ∥ bits)
8: r̃oot← ReconstructRoot(C̃, path)
9: Verifier accepts only if r̃oot = root.

10: else
11: Repeat round 1 with seed← resp.
12: Output accept if the computation results in root,

and reject otherwise.

Figure 3: Construction of the base traceable OR sigma protocol Πbase
Σ = (P ′ = (P ′

1, P
′
2), V

′ = (V ′
1 , V

′
2)) for

the relation Rsig. Informally, O(Expand∥·) and O(Com∥·) are a PRG and a commitment scheme instantiated
by the random oracle, respectively.

5.2 From Base to Main Traceable OR Sigma Protocol

In this section, compile Πbase
Σ to make the soundness error negligibly small. This is straightforward if we

run the OR sigma protocol in parallel λ-times. However, we show how to do much better by incorporating
the three optimizations developed in [BKP20] explained in the technical overview. Our main traceable OR
sigma protocol, denote by ΠtOR

Σ , is detailed in Fig. 4.

Unbalanced Challenge Space. Given the construction Πbase
Σ , one can observe that the response produced

by the prover by running P ′
2 when the challenge is 1 is larger than the response produced when the chal-

lenge is 0, which is a single seed of λ bits. Concretely, the response for the challenge chall = 1 consists
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of a Merkle tree path, two elements in S3, S3 respectively, and a λ bit string. We leverage this fact by
preparing an unbalanced challenge space CM,K , where each element in CM,K is a string containing K 1’s

and M−K 0’s. We chose K ≪M to chose more 0’s, while satisfying
(
M
K

)
≥ 2λ for negligible soundness error.

Seed Trees. The seed tree described in App. A.2 allows the prover to generate all seeds seed by using a
single seed seedroot, and reveal parts of the tree according to the challenge. A smaller signature size follows
directly from this approach.

Adding Salt. We prefix a salt and the session identifier, i.e. (salt ∥ i), to the random oracle when used
within the i-th parallel execution of Πbase

Σ . In particular, throughout such execution, Oi(·) = O(salt ∥ i ∥ ·) is
used. The salt is used as a prefix also within the construction of Merkle trees and seed trees. Adding salt
benefits the protocol in having a tighter reduction and resisting multi-target attacks, such as those in [DN19].
The approach appears to make no difference in a sigma protocol but it’s quite benefitial to a group (ring)
signature scheme after we apply Fiat-Shamir transform. Roughly, in the anonymity game (Def. 2.17) each
oracle O query made by the adversary will only give useful information to at most one challenge signature
due to distinct prefix salts. In contrast, without salts an oracle query of O can give useful information to
each challenge signature.

Theorem 5.3. The sigma protocol ΠtOR
Σ has correctness with abort rate (1− δKx δKy ), high min-entropy, and

relaxed special soundness for the relations Rsig and R̃′
sig, where the relations are identical to those used in

Thm. 5.1.

Proof. As a starting remark, we note that in the following lines we will use the notation of Fig. 4.

Correctness and Abort Rate. If the execution of ΠtOR
Σ does not abort, then the verifier will accept with prob-

ability 1 due to the correctness of Πbase
Σ and SeedTree. We recall that in the case of challenge equal to 1 the

execution of Πbase
Σ will abort with probability (1 − δxδy). Since the challenge c, sampled from CM,K , is of

Hamming weight K, the abort rate of ΠtOR
Σ is (1− δKx δKy ).

High Min-Entropy. Since a random salt of length 2λ is included in the commitment com, it has at least 2λ
bits of min-entropy.

Relaxed Special Soundness. The proof is similar to the one for the relaxed special soundness of Πbase
Σ . Let

(com, chall = c, resp) (com, chall′ = c′, resp′) be two accepting transcripts for the same statement. Without
loss of generality, say cj = 0, c′j = 1, i.e. the jth components of c and c′ are different. By computing

{respi}i s.t. ci=0 ← RecoverLeavesO
′
(seedsinternal, 1

M ⊕ c), the extraction algorithm gets respj . In this way,

two valid transcripts (comj , 0, respj) and (comj , 1, resp
′
j) for Π

base
Σ have been obtained, and the extractor of

Πbase
Σ in Thm. 5.1 can be invoked to extract the witness for the relation R̃sig. To be concrete, in case a

witness W = (x1, x2) is extracted by the extractor of Thm. 5.1 such that it forms a collision in the random
oracle Oj = O(salt ∥ j ∥ ·), then the extractor appends x1 and x2 by either salt ∥ j ∥ Coll or salt ∥ j ∥ Com to
produce a collision in O.

Theorem 5.4. The sigma protocol ΠtOR
Σ has non-abort special zero-knowledge. Precisely, there exists a PPT

simulator SimO with access to a random oracle O such that, for any statement-witness pair (X,W) ∈ Rsig,
chall ∈ CM,K and any computationally-unbounded adversary A that makes at most Q queries of the form

(salt ∥ ·) to the random oracle O, where salt is the salt value included in the transcript returned by P̃ or Sim,
we have ∣∣∣Pr[AO(1λ, P̃O(X,W, chall)) = 1]− Pr[AO(1λ,SimO(X, chall)) = 1]

∣∣∣ ≤ Q

2λ
,

where P̃ is a non-aborting prover P = (P1, P2) run on (X,W) with a challenge fixed to chall.
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round 1: PO
1 (({Xi}i∈[N ], pk, ct), (I, s, r))

1: seedroot ← {0, 1}λ
2: salt

$← {0, 1}2λ
3: O′(·) := O(salt ∥ 0 ∥ ·)
4: (seed1, · · · , seedM )← SeedTreeO

′
(seedroot,M)

5: for j from 1 to M do
6: Oj(·) := O(salt ∥ j ∥ ·)
7: comj ← P

′Oj

1 (({Xi}i∈[N ], pk, ct), (I, s, r); seedj)

8: Prover sends com← (salt, com1, · · · , comM ) to Verifier.

round 2: V1(com)

1: c
$← CM,K

2: Verifier sends chall← c to Prover.

round 3: PO
2 ((I, s, r), chall)

1: c = (c1, · · · , cM )← chall
2: O′(·) := O(salt ∥ ·)
3: for j s.t. cj = 1 do

4: respj ← P
′Oj

2 ((I, s, r), cj ; seedj) ▷ Run P ′
2 on state seedj

5: seedsinternal ← ReleaseSeedsO
′
(seedroot, 1

M ⊕ c)
6: Prover sends resp← (seedsinternal, {respj}j s.t. cj=1) to Verifier

Verification: V O
2 (com, chall, resp)

1: ((salt, com1, · · · , comM ), c = (c1, · · · , cM ))← (com, chall)
2: (seedsinternal, {respj}j s.t. cj=1)← resp
3: O′(·) := O(salt ∥ 0 ∥ ·)
4: {respj}j s.t. cj=0 ← RecoverLeavesO

′
(seedsinternal, 1

M ⊕ c)
5: for j from 1 to M do
6: Oj(·) := O(salt ∥ j ∥ ·)
7: Verifier outputs reject if V

′Oj

2 (comj , cj , respj) outputs reject.

8: Verifier outputs accept.

Figure 4: Main traceable OR sigma protocol ΠtOR
Σ = (P = (P1, P2), V = (V1, V2)) for the relation Rsig built

on the the base traceable OR sigma protocol Πbase
Σ = (P ′ = (P ′

1, P
′
2), V

′ = (V ′
1 , V

′
2)) in Fig. 3. The challenge

space is defined as CM,K := {c ∈ {0, 1}M | ∥c∥1 = K}. Both the seed tree and Πbase
Σ have access to salted

random oracles derived from O.
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Proof. The PPT simulator SimO(X, chall) for the main sigma protocol ΠtOR
Σ proceeds as in Fig. 5, where the

simulator used for the base sigma protocol Πbase
Σ in Thm. 5.2, denoted by Sim′ is a subroutine. Say the ad-

versary makes Qi queries to the random oracle of the form O(salt∥i∥·) for i ∈ {0}∪[M ]. We have ΣM
0 Qi ≤ Q.

SimO(X, chall)

1: c = (c1, · · · , cM )← chall
2: salt← {0, 1}2λ
3: O′(·) := O(salt ∥ 0 ∥ ·)
4: seedsinternal ← SimulateSeedsO

′
(1M ⊕ c)

5: {seedi}i s.t. ci=0 ← RecoverLeavesO
′
(seedsinternal, 1

M ⊕ c)
6: for i ∈ [M ] do
7: O′

i(·) := O(salt ∥ i ∥ ·)
8: if ci = 1 then
9: seedi ← {0, 1}λ

10: (comi, ci, respi)← Sim′O′
i(X, ci; seedi)

11: com← (salt, com1, · · · , comM )
12: resp← (seedsinternal, {respi}i s.t. ci=1)
13: return (com, chall, resp)

Figure 5: Zero-knowledge simulator Sim for the main sigma protocol ΠtOR
Σ

We use a hybrid argument by introducing a sequence of simulators Sim0, · · · ,Sim2 that gradually change
from Sim0 = P̃ to Sim2 = Sim. We fix an adversary A, (X,W) ∈ Rsig, and for each i ∈ {0, 1, 2}, we denote

by Ei the event AO(1λ,SimO
i (X, chall)) = 1.

� Sim1 is identical to Sim0, except that, rather than using a SeedTree with root seedroot to generate
seedsinternal and {seedi}i s.t. ci=0, the simulator instead runs SimulateSeeds(1M⊕c) to obtain seedsinternal,
and then {seedi}i s.t. ci=0 via RecoverLeaves(seedsinternal, 1

M ⊕ c). The simulator picks the remaining
seeds (for the challenge components ci equal to 1) {seedi}i s.t. ci=1 uniformly at random from {0, 1}λ.
Lemma A.3 for the bit string 1M ⊕ c implies that the distributions of seedsinternal and {seedi}i s.t. ci=1

generated in this way rather than as in the honest protocol can be distinguished with an advantage
not greater than Q0

2λ
. That is, |Pr[E1]− Pr[E0]| ≤ Q0

2λ
.

� Sim2 is identical to Sim1 except that the simulator uses the base simulator subroutine Sim′ to compute,
for each i ∈ [M ] such that ci = 1, comi and respi on randomness bitsi by seedi

$← {0, 1}λ. By
Theorem 5.2, the distinguishing advantage of the adversary is bounded by Qi

2λ
for each i ∈ [M ] such

that ci = 1. That is, |Pr[E3]− Pr[E2]| ≤ ΣM
1 Qi

2λ
.

Collecting the bounds, we obtain the bound in the statement.

5.3 Base Sigma Protocol for The “Tight” Relation RTight
sig

In this section, we show how to slightly tweak our base sigma protocol for the relation Rsig to obtain a sigma

protocol for the “tight” relation RTight
sig (see Sec. 3.3). This can then be used to construct the desired NIZK

for RTight
sig required for our tightly secure accountable ring signature construction.

As explained in the technical overview, we can use the sigma protocol for Rsig along with the sequential

OR-proof [FHJ20] to construct a sigma protocol for the “tight” relation RTight
sig . Unfortunately, this approach

requires to double the proof size. Instead, we present a small tweak to our sigma protocol for Rsig to directly

support statements in RTight
sig . Concretely, we use the same Merkle tree to commit to the 2N instances
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{X(j)
i }(i,j)∈[N ]×[2] and for each X

(1)
i and X

(2)
i , we encrypt the same index i. The main observation is that

when the prover opens to the challenge bit 1 (which is the only case that depends on the witness), the path

does no leak which X
(1)
i and X

(2)
i it opened to, and hence hides b ∈ [2].

Notice the only increase in the size of the response is due to the path. Since the accumulated commitment
only grows from N to 2N , the overhead in the size of the path is merely 2λ bits. By using the unbalanced
challenge space CM,K for the optimized parallel repetition, which consists of M -bit strings of Hamming
weight K, the additional cost is only 2Kλ where we typically set K to be a small constant (e.g., K ≤ 20 for
our concrete instantiation). This is much more efficient than the generic approach that doubles the proof
size.

Formally, the sigma protocol for the “tight” relation RTight
sig , denoted as ΠbaseTi

Σ , is provide in Fig. 6. We
can turn it into a full-fledged sigma protocol with negligible soundness error by applying exactly the same
argument in Sec. 5.1. We omit the proof of correctness and security for ΠbaseTi

Σ as they are almost identical
to those of our sigma protocol Πbase

Σ for Rsig.

6 Multi-Proof Online Extractable NIZK From Sigma Protocol
ΠtOR

Σ

In this section, we show that applying the Fiat-Shamir transform to our traceable OR sigma protocol
ΠtOR

Σ from the previous section results in a multi-proof online extractable NIZK with labels ΠNIZK,lbl. The
construction of our ΠNIZK,lbl for the relation Rsig is provide in Fig. 7.8 We assume the output of O(FS ∥ ·) is
an M -bit string of Hamming weight K, i.e., the image is the challenge set CM,K .

Correctness of ΠNIZK,lbl for the relation Rsig follows directly from the correctness of the underlying trace-
able OR sigma protocol ΠtOR

Σ . We show in Thms. 6.1 and 6.4 that ΠNIZK,lbl is multi-proof online extractable
and zero-knowledge. We highlight that while we shown special soundness for ΠtOR

Σ with respect to the relaxed
relation R̃′

sig (see Thm. 5.1), ΠNIZK,lbl is multi-proof online extractable with respect to the relaxed relation

R̃sig originally considered in Sec. 3.1 for the generic construction of accountable ring signature. At a high
level, we upper bound the probability that a cheating prover finds a collision in the random oracle, which
was the only difference between R̃sig and R̃′

sig. This subtle difference makes the resulting NIZK more handy
to use as a building block, since we can ignore the edge case where the extractor accidentally extracts a
collision in the random oracle. Due to page limitation, the proof of zero-knowledge is provided in ??. Below,
we provide the proof of the multi-proof online extractability.

Theorem 6.1. The NIZK with labels ΠNIZK,lbl in Fig. 7 is multi-proof online extractable for the family of

relations Rsig and R̃sig considered in Sec. 3.1, where Rsig was formally redefined using notations related to

group actions in Sec. 5.1 and R̃sig is formally redefined as follows:

R̃sig =

{
(({Xi}i∈[N ], pk, ct),W)

∣∣∣∣ W = (I, s, r) ∈ [N ]× (S2 + S3)× (S2 + S3)
∧ XI = s ⋆ X0 ∧ ct = Enc(pk, I; r)

}
.

More precisely, for any (possibly computationally-unbounded) adversary A making at most Q queries to the
random oracle and T queries to the extract oracle, we have

AdvOE
ΠNIZK,lbl

(A) ≤ T ·
(
Q2/22λ−2 + (M ·Q)/2λ + 1/ |CM,K |

)
,

where CM,K is the challenge space (or equivalently the output space of O(FS ∥ ·)).

Proof. We begin the proof by providing the description of the online extractor OnlineExtract. Below, it is
given as input (lbl,X, π, LO), where π is guaranteed to be valid by definition.

8An astute reader may notice that the prover is only expected polynomial time. We can always assign an upper bound on the
runtime of the prover, but did not do so for better readability. In practice, for concrete choices of the parameter, the number
of repetition never exceeds, say 10.
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round 1: P ′O
1 (({X(1)

i , X
(2)
i }i∈[N ], pk, ct), (I, b, s, r))

1: seed
$← {0, 1}λ

2: (s′, r′, bits1, · · · , bits2N ) ← O(Expand ∥ seed) ▷ Sample (s′, r′) ∈ S2 × S2 and bits ∈ {0, 1}λ
3: for i from 1 to N do
4: cti ← r′ ⋆pk (−i ⋆M ct)
5: for b ∈ {1, 2} do

6: T2(i−1)+b ← s′ ⋆ X
(b)
i

7: C2(i−1)+b ← O(Com ∥ T2(i−1)+b ∥ cti ∥ bits2(i−1)+b)

8: (root, tree)← MerkleTree(C1, · · · ,C2N )

9: Prover sends com← root to Verifier.

round 2: V ′
1(com)

1: c
$← {0, 1}

2: Verifier sends chall← c to Prover.

round 3: P ′
2((I, b, s, r), chall)

1: c← chall
2: if c = 1 then
3: (s′′, r′′)← (s′ + s, r′ + r)
4: if s′′ ̸∈ S3 or r′′ ̸∈ S3 then
5: P aborts the protocol.

6: path← getMerklePath(tree, 2(I − 1) + b )

7: resp← (s′′, r′′, path, bitsI)
8: else
9: resp← seed

10: Prover sends resp to Verifier

Verification: V ′O
2 (com, chall, resp)

1: (root, c)← (com, chall)
2: if c = 1 then
3: (s′′, r′′, path, bits)← resp
4: if s′′ ̸∈ S3 or r′′ ̸∈ S3 then
5: V outputs reject.

6: (T̃ , c̃t)← (s′′ ⋆ X0, r
′′ ⋆pk Ypk)

7: C̃← O(Com ∥ T̃ ∥ c̃t ∥ bits)
8: r̃oot← ReconstructRoot(C̃, path)
9: Verifier outputs accept if r̃oot = root and reject otherwise.

10: else
11: Verifier repeats the computation of round 1 with seed← resp.
12: Verifier outputs accept if the computation results in root, and reject otherwise.

Figure 6: Construction of the base traceable OR sigma protocol ΠbaseTi
Σ = (P ′ = (P ′

1, P
′
2), V

′ = (V ′
1 , V

′
2))

for the “tight” relation RTight
sig . The box indicates the difference between the “non-tight” relation Rsig.

Informally, O(Expand∥·) and O(Com∥·) are a PRG and a commitment scheme instantiated by the random
oracle, respectively.
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ProveO(lbl, ({Xi}i∈[N ], pk, ct), (I, sI , r))

1: resp := ⊥
2: while resp = ⊥ do
3: com← PO

1 (({Xi}i∈[N ], pk, ct), (I, sI , r))
4: chall← O(FS ∥ lbl ∥ ({Xi}i∈[N ], pk, ct) ∥ com)
5: resp← PO

2 ((I, sI , r), chall)

6: return π ← (com, chall, resp)

VerifyO(lbl, ({Xi}i∈[N ], pk, ct), π)

1: (com, chall, resp)← π
2: if accept← V O

2 (com, chall, resp) ∧ chall = O(FS ∥ lbl ∥ ({Xi}i∈[N ], pk, ct) ∥ com) then
3: return ⊤
4: else
5: return ⊥

Figure 7: A multi-proof online extractable NIZK with labels ΠNIZK,lbl for the relation Rsig obtained by applying
the Fiat-Shamir transform to the traceable OR sigma protocol ΠtOR

Σ = (P = (P1, P2), V = (V1, V2)) in Fig. 4.

1. It parses ({Xi}i∈[N ], pk, ct) ← X, (com, chall, resp) ← π, ((salt, com1, · · · , comM ), c = (c1, · · · , cM )) ←
(com, chall), (seedsinternal, {respj}j s.t. cj=1)← resp, and rootj ← comj for j ∈ [M ].9

2. For j ∈ [M ] such that cj = 1, it proceeds as follows:

(a) It parses (s′′j , r
′′
j , pathj)← respj .

(b) For every
(
(salt ∥ j ∥ Expand ∥ seed), (s′, r′, bits1, · · · , bitsN )

)
∈ LO, where salt ∥ j ∥ Expand is fixed,

it proceeds as follows:

i. It sets (s, r) = (s′′j − s′, r′′j − r′) and checks if (s, r) ∈ (S2 + S3)× (S2 + S3).

ii. It then checks if there exists I ∈ [N ] such that XI = s ⋆ X0 and ct = Enc(pk, I; r).

iii. If all the check above passes, it returns W = (I, s, r).

3. If it finds no witness W of the above form, then it returns W = ⊥.

We analyze the probability of A winning the multi-proof online extractability game with the above online
extractor OnlineExtract. Below, P ′ and V ′ are the prover and verifier of the base traceable OR sigma protocol
Πbase

Σ in Fig. 3.

� We say a tuple inputbase = (X, salt, j, com, chall, resp) is valid if the following properties hold:

– chall = 1;

– V
′O(salt∥j∥·)
2 (com, chall, resp) outputs accept (i.e., it is a valid transcript for Πbase

Σ with challenge 1);

– there exists (seed, s′, r′, bits1, · · · , bitsN ) such that
(
(salt∥j∥Expand∥seed), (s′, r′, bits1, · · · , bitsN )

)
∈

LO, and if we execute P
′O(salt∥j∥·)
1 with randomness seed, it produces com. Here, we use the fact

that P
′O(salt∥j∥·)
1 can be executed without the witness. By correctness of Πbase

Σ , this implies that
(com, 0, seed) is a valid transcript.

� We say a tuple inputbase = (X, salt, j, com, chall, resp) is invalid if chall = 1, V
′O(salt∥j∥·)
2 (com, chall, resp)

outputs accept, but it is not valid.

9Throughout the proof, we use overlines for (com, chall, resp) to indicate that it is a transcript of of ΠtOR
Σ . We use respi

without overlines to indicate elements of resp.
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Observe that if inputbase is valid, then the online extractor can recover a valid transcript (com, 0, seed)
from inputbase. Then, it can (informally) extract a witness by combining it with (com, 1, resp) and using
the extractor from Πbase

Σ constructed in Thm. 5.1. In contrast, if inputbase is invalid, then intuitively, no
adversary would be able to prepare a valid response resp = seed for the challenge chall = 0 since LO (i.e., the
random oracle query the adversary makes) does not contain a valid response. However, to make this claim
formal, we need to also take into account the fact that the adversary may learn non-trivial information about
resp = seed via the proof output by the prove query. That is, when the challenger runs PO, the adversary
may learn non-trivial input/output pairs without directly querying the random oracle itself. In this case,
even though no useful information is stored in LO, the adversary may still be able to forge a proof.

We formally show in Lem. 6.2 below that if an adversary A submits an extract query on a valid input
(lbl,X, π), then a valid inputbase must be included in π (i.e., it cannot consist of inputbase that are all invalid).
This allows us to argue that the online extractor will be able to recover two valid transcripts with over-
whelming probability, which then further allows the online extractor to extract the witness by running the
extractor for the special soundness of the base traceable OR sigma protocol Πbase

Σ . Due to page limitation,
the proof is provide in ??.

Lemma 6.2. Assume an adversary A submits a total of T extract queries of the form {(lblk,Xk, πk)}k∈[T ],
where every πk is a valid proof including the same salt and satisfies (lblk,Xk, πk) ̸∈ LP . Let {(comk,j ,
challk,j , respk,j)}j∈[M ] be the transcript of the base traceable OR sigma protocol Πbase

Σ that the verification

algorithm reconstructs when verifying πk (see Line 7 of Verification V O
2 in Fig. 4). Then, with probability

at least 1−T ·
(
Qsalt/2

2λ−1+(M ·Qsalt)/2
λ+1/ |CM,K |

)
, for all k ∈ T there exists at least one j ∈ [M ] such

that inputbase = (Xk, salt, j, comk,j , challk,j = 1, respk,j) is valid.

Proof. For any k ∈ [T ], let us redefine πk = (com, chall, resp), (com, chall) = ((salt, com1, · · · , comM ), c =
(c1, · · · , cM )) where c = O(FS ∥ lbl ∥ X ∥ com), resp = (seedsinternal, {respj}j s.t. cj=1). Namely, we omit
the subscript k for better readability. We consider two cases: (1) there exists (lbl,X, π′) ∈ LP such that
π′ = (com, chall, resp′) and resp′ ̸= resp and (2) no such entry in LP exists.

We consider the first case (1). This corresponds to the case where A reuses the proof π′ obtained through
the prove query by simply modifying the response. We claim that this cannot happen with overwhelming
probability. Let resp′ = (seed′internal, {resp′j}j s.t. cj=1). It is clear if seed′internal is different from seedsinternal,
then A finds a collision in the random oracle. Since we use a seed tree to generate the randomness used in
each base sigma protocol, we can very loosely upper bound the probability of A outputting such transcript
for any k ∈ [T ] by Qsalt/2

2λ. Similarly, consider resp′j ̸= respj for some j such that cj = 1. Then, it either
finds a collision in O(Coll ∥ ·) (used by the Merkle tree) or O(Com ∥ ·). We can again very loosely upper
bound the probability of A outputting such transcript for any k ∈ [T ] by Qsalt/2

2λ. Thus, case (1) occurs
with probability at most Qsalt/2

2λ−1.
We next consider the second case (2). If com included in π is the same as π′, then chall is the same

challenge included in π since the challenge is generated as O(FS∥lbl∥X ∥ com). However, this results in a
tuple that falls in the first case (1). Therefore, there exists no π′ in LP that contains the same com as π.
This, in particular, implies that the output chall ← O(FS∥lbl∥X ∥ com) is distributed uniform random from
the view of A before it makes the hash query.

Now, for the sake of contradiction, we assume inputbase,j = (X, salt, j, comj , cj , respj) is invalid for all
j ∈ [M ] such that cj = 1. Let LOP

be a list that contains all the inputs/outputs of the random oracle

queries ProveO makes when the challenger answers the prove query made by A. We prove the following
corollary.

Corollary 6.3. For any j∗ ∈ [M ], if inputbase,j∗ is invalid, then either of the following holds:

� there exists no tuple (s′, r′, bits1, · · · , bitsN , seed) and j′ ∈ [M ] such that
(
(salt∥j′∥Expand∥seed), (s′, r′,

bits1, · · · , bitsN )
)
∈ LOP

, but if we execute P
′O(salt∥j′∥·)
1 with randomness seed, it produces comj∗ ;

� there exists such a tuple but seed retains λ-bits of min-entropy from the view of A except with probability
at most (MQsalt)/2

λ.
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Proof. Assume such an entry is found in LOP
. This corresponds to the case A is reusing comj∗ that was

included in a proof π obtained through the prove query. Let {(com′
j , c

′
j , resp

′
j)}j∈[M ] be the transcript of the

base traceable OR sigma protocol Πbase
Σ that the verification algorithm reconstructs from such π (see Line 7

of Verification V O
2 in Fig. 4), where com′

j′ = comj∗ . Our current goal is to prove that c′j′ = 1 (i.e., seed
was not used as a response). Since com′

j′ and comj∗ are roots of a Merkle tree and the indices j′ and j∗

are used as prefix to the hash when constructing the roots, respectively, the probability of A outputting
comj∗ such that j′ ̸= j∗ is upper bounded by ((M − 1)Qsalt)/2

λ. Below, we assume j′ = j∗. Recall by
definition of the online extractability game (see Def. 2.10), A runs the verification algorithm to check if π
is valid. Therefore, if inputbase,j∗ is invalid, then we have c′j′ = 1. Otherwise, there must exist an entry(
(salt ∥ j∗ ∥ Expand ∥ seed), (s′, r′, bits1, · · · , bitsN )

)
∈ LO, which contradicts that inputbase,j∗ is invalid. This

further implies that resp′j′ does not include seed. Then, by Lem. A.3 regarding the seed tree, seed that was

used to construct comj′ = comj∗ is statistically hidden to the adversary with all but probability Qsalt/2
λ.

The proof is completed by collecting all the bounds.

By Corollary 6.3, if inputbase,j is invalid, then A cannot prepare a valid response for the challenge cj = 0

with all but probability at most (MQsalt)/2
λ. This is because such response is either not recorded in both

LO and LOP
, or it is recorded in LOP

but the seed retains λ-bits of min-entropy from the view of A except
with probability (MQsalt)/2

λ. Moreover, since chall is statistically hidden to A before it queries the random
oracle, the probability that chall coincides with challenges for which A can open to is at most 1− 1/ |CM,K |,
where recall CM,K is the challenge space (or equivalently the output space of O(FS ∥ ·)).

Taking the union bound and collecting all the bounds together, at least one of the inputbase must be valid
with the probability stated in the statement. This completes the proof of the lemma.

We are now prepared to analyze the probability that A wins the multi-proof online extractability game
with the aforementioned online extractor OnlineExtract. By Lem. 6.2, if A makes at most T extract queries,
then by a simple union bound and using the inequality

∑
i Qsalti ≤ Q, with probability at least 1 − T ·(

(2Q)/22λ + (M ·Q)/2λ + 1/ |CM,K |
)
, all the inputbase included in the queried proof are valid. Then, by the

definition of valid and the description of OnlineExtract, OnlineExtract is able to extract two valid transcripts
for all T proofs queried by A. Recalling Thms. 5.1 and 5.3, OnlineExtract either succeeds in extracting a
witness W = (I, s, r) ∈ [N ]×(S2+S3)×(S2+S3) or a witness that consists of a collision in O(salt∥j ∥Coll∥·)
or O(salt ∥ j ∥ Com ∥ ·) for some j ∈ [M ]. Hence, with all but probability Q2/22λ, OnlineExtract succeeds in
extracting a witness W = (I, s, r) as desired, conditioned on all the inputbase included in the queried proof
are valid. Collecting the bounds, we arrive at our statement.

Theorem 6.4. The NIZK with labels ΠNIZK,lbl in Fig. 7 is zero-knowledge. Precisely, there exists a PPT sim-
ulator Sim = (Sim0,Sim1) such that, for any statement-witness pair (X,W) ∈ Rsig and any computationally-
unbounded adversary A that makes at most Q1 queries to O or Sim0, and Q2 queries to Prove or S, we
have

AdvZKΠNIZK,lbl
(A) =

∣∣Pr [AO,Prove(1λ) = 1
]
− Pr

[
ASim0,S(1λ) = 1

]∣∣ ≤ Q2 · (Q1 +Q2)

22λ
+

Q1

2λ
.

Proof. To prove the zero-knowledge property of ΠNIZK,lbl = (ProveO,VerifyO), we define a zero-knowledge
simulator Sim = (Sim0,Sim1) in Fig. 8, where Sim0 and Sim1 share states, including a list L which is
initially empty. At a high level, Sim0 simulates the random oracle O in an on-the-fly manner but replaces
certain queries for consistency with Sim1. On the other hand, Sim1 simulates the prover oracle using the
simulator from the underlying sigma protocol, which we denote here by SimΣ (see Thm. 5.4), as a subroutine.
Specifically, Sim1 is given a valid statement X = ({Xi}i∈[N ], pk, ct), and samples a random challenge chall
from the challenge space CM,K , which is also the output space of O(FS ∥ ·). It then runs SimΣ on challenge
chall by providing it oracle access to Sim0, and updates the list L accordingly. In Fig. 8, we denote by Dx

the distribution of O(x), where the probability is taken over the random choice of the random oracle O.
Without loss of generality, we assume Dx to be efficiently sampleable.

To show the indistinguishability of (O,Prove) and (Sim0,S), we use a hybrid argument by introducing
an intermediate pair of simulators (Sim0,Simint), where Simint is defined in Fig. 9. Let Sint, analog to Prove
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Sim0(x)

1: if x ∈ L then
2: return L[x]

3: y ← Dx

4: L[x] := y
5: return y

Sim1(lbl,X)

1: chall← CM,K

2: (com, chall, resp)← SimSim0

Σ (X, chall)
3: if (FS ∥ lbl ∥ X ∥ com) ∈ L then
4: return ⊥
5: L[(FS ∥ lbl ∥ X ∥ com)] := chall
6: return π ← (com, chall, resp)

Figure 8: Zero-knowledge simulator Sim = (Sim0,Sim1) for ΠNIZK,lbl

and S, be an oracle that on input (lbl,X,W) returns ⊥ if lbl ̸∈ L ∨ (X,W) ̸∈ Rsig and otherwise returns
Simint(lbl,X,W).

Simint(lbl,X,W)

1: com← P Sim0
1 (X,W)

2: chall← CM,K

3: if (FS ∥ lbl ∥ X ∥ com) ∈ L then
4: return ⊥
5: L[(FS ∥ lbl ∥ X ∥ com)] := chall
6: resp← P Sim0

2 (X, chall)
7: return π ← (com, chall, resp)

Figure 9: Intermediate simulator Simint, where P = (P1, P2) is the prover of the traceable OR sigma protocol
ΠtOR

Σ in Fig. 4.

Suppose A makes Q1 queries to the oracles O or Sim0, and Q2 queries to the oracles Prove,Sint, or S.
For each i ∈ {1, 2, 3}, we denote by Ei the event that A returns 1 respectively. We analyze the differences
by defining three games as follows:

Game1 : This is the real zero-knowledge game where A is given access to O and Prove.

Game2 : The game is modified to provide A access to Sim0 and Sint instead. The view of A is identical to
the previous game unless Simint outputs ⊥ in Line 4. Roughly, this occurs when the reprogramming
of the random oracle fails due to the input being already defined. By Thm. 5.3, com has 2λ bits of
min-entropy. Since at most Q1 + Q2 queries of the form (FS∥lbl∥X∥com) are made in this game, we

have |Pr[E1]− Pr[E2]| ≤ Q2·(Q1+Q2)
22λ

.

Game3 : The game is modified to provide A access to Sim0 and S instead. The only difference is that rather
than computing honestly via (P1, P2) from the traceable OR sigma protocol ΠtOR

Σ , the simulator Sim1

simulates these using the simulator SimΣ provided by ΠtOR
Σ .

Let salti represent the salt that Simint or Sim1 samples on its i-th invocation. For i ∈ [Q2], let Q′
i

be the number of queries the adversary makes to oracle Sim0 of the form (salti∥·). By Thm. 5.4,

the advantage of the adversary in distinguishing Simint or Sim1 is bounded by
Q′

i

2λ
for each i ∈ [Q2].

Therefore, |Pr[E2]− Pr[E3]| ≤
∑Q2

1 Q′
i

2λ
≤ Q1

2λ

Collecting the bounds, we obtain the bound in the statement.
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7 Instantiations

We instantiate the building blocks required for our generic construction of an accountable ring signature
scheme presented in Sec. 3 via isogenies based on CSIDH group action and lattices.

7.1 Instantiation from Isogenies

We instantiate a group-action-based HIG and PKE, and the corresponding NIZKs for the relations Rsig and
Ropen based on the CSIDH paradigm. In particular we assume that the structure of the ideal class group
Cℓ(O) is known, and cyclic of odd order n, so that it is isomorphic to Zn. Given a generator g of Cℓ(O), Zn

acts freely and transitively on Eℓℓp(O, π) via the group action ⋆ : (a,E) 7→ ga ∗ E, which we can compute
efficiently. Note that in case the class group structure is not known (e.g., at higher security levels where
computing the class group is currently not feasible.) we can still instantiate all the building blocks using
rejection sampling à la SeaSign.

Group-Action-Based HIG. We instantiate the group-action-based HIG defined by the algorithms (RelSetup, IGen)
as follows. The output of RelSetup describes a setup for a CSIDH group action ⋆ : Cℓ(O) × Eℓℓp(O, π) →
Eℓℓp(O, π), sets G = S1 = S2 = Cℓ(O), δ = 1, X = Eℓℓp(O, π), and X0 = E0, where E0 is the elliptic curve
E0 : y2 = x3 + x over Fp. The output of IGen is then (E0, a ⋆E0), where a is uniformly sampled from Cℓ(O).
Then the properties of Def. 4.1 are easily verified. In particular, the security of the hard instance generator is
equivalent to the hardness of GAIP for CSIDH. Moreover, it is not difficult to see that the group-action-based
HIG is also a hard multi-instance generator based on the same assumption. Concretely, given one instance
(E0, E), the reduction can rerandomize this arbitrarily many times to obtain fresh statements (E0, b ⋆ E),
where b is uniformly sampled from Cℓ(O). If an adversary succeeds in breaking any of these instances, then
the reduction can subtract b from it to solve its original instance.

Group-Action-Based PKE. We can define an ElGamal-like public-key encryption scheme ΠGA-PKE =
(Setup,KeyGen,Enc,Dec) based on the CSIDH group action, as follows. Note that the decryption algorithm
works by enumerating the message space, so the PKE is only efficient when the message space M (which
is a subset of Cℓ(O)) is polynomially large. This relaxed notion of decryption suffices for our ARS generic
construction.

Setup(1λ) → pp : On input a security parameter 1λ, it returns the setup for a CSIDH group action
⋆ : Cℓ(O) × Eℓℓp(O, π) → Eℓℓp(O, π), and sets G = GM = S1 = S2 = Cℓ(O),X = Eℓℓp(O, π) ×
Eℓℓp(O, π), δy = 1. The “message” group action ⋆M : G × X → X is defined as (a, (E1, E2)) 7→
(E1, a ⋆ E2) (i.e., ⋆M acts on the second component only).

KeyGen(pp) → (pk, sk) : On input a public parameter pp, it returns a secret key sk sampled uniformly
from Cℓ(O), and a public key pk = (⋆pk, Xpk), where ⋆pk : G × X → X is defined as (a, (E1, E2)) 7→
(a ⋆ E1, a ⋆ E2) (i.e., ⋆pk acts on both components), and Xpk = sk ⋆ E0.

Enc(pk,M; r)→ ct: On input a public key pk = (⋆pk, Xpk) and a message M ∈M, it returns the ciphertext
ct = (M ⋆M (r ⋆pk Ypk) ∈ Y, where r ← G.

Dec(sk, ct) → M: On input a secret key sk and a ciphertext ct = (ct1, ct2), the decryption algorithm tries
all messages M ∈M until it finds a message M such that M ⋆ ct1 = −sk ⋆ ct2. If such a message exists,
it is unique, and the algorithm outputs it; otherwise, ⊥ is output.

It is not difficult to verify that the above-defined ΠGA-PKE is correct (with probability 1). The decryption
scheme of ΠGA-PKE differs from that of ElGamal since it is not possible to divide out sk ⋆ ct1 from ct2.
Therefore, retrieving M from ct1, ct2, sk requires the resolution of an instance of GAIP with input (sk⋆ct1, ct2).
Dec solves this problem by a brute force over the message spaceM. In caseM is polynomially large, then
we have efficient decryption as desired.
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Multi-Challenge IND-CPA Security. The scheme is multi-challenge IND-CPA secure based on the dCSIDH
assumption. Since ΠGA-PKE is an ElGamal-like encryption scheme in the CSIDH setting — where each
exponentiation is replaced by a group action — for the security proof it is sufficient to adapt the usual proof
for the group-based ElGamal encryption scheme. Note that the the reduction loses a factor 1/Qct, where
Qct is the number of challenge ciphertext the adversary observes. This is the only reason why we do not
achieve tight security for our accountable ring signature and group signature.

We point out that by ignoring the PKE, we obtain a ring signature identical to Beullens et al. [BKP20].
Thus we obtain the first tightly secure and efficient isogeny-based ring signature in this work.

(R′,KR′)-correctness. In the isogeny setting, it is not needed to relax the key relation (contrary to our lattice
instantiation where some relaxation is necessary in order to get an efficient opening proof). We can simply
set KR′ = KR = {(E, sk) | sk ⋆ E0 = E} ⊆ Eℓℓp(O, π)× Cℓ. Similarly, since S2 = S1, there is no relaxation
in the encryption randomness. Therefore (R′,KR′)-correctness is equivalent to the standard correctness
property (with probability 1), which is satisfied by our PKE.

Multi-Proof Online Extractable NIZK with Labels ΠNIZK,lbl. Using the group-action-based HIG and
PKE, we can instantiate ΠNIZK,lbl for the signing relation Rsig (see Sec. 3.1) as explained in Secs. 5 and 6.

Statistically Sound NIZK without Labels ΠNIZK. The last ingredient for our ARS is a NIZK for the
opening relation Ropen, which in our instantiation is

Ropen = {((pk, ct = (E1, E2),M), sk) | sk ⋆ E0 = pk ∧M ⋆ sk ⋆ E1 = E2} .

A sigma protocol for this relation was introduced in [EKP20, Sec. 3.2]. We can then turn this sigma
protocol into an NIZK by applying the Fiat-Shamir transform. (Note that we do not need this NIZK to be
online-extractable.)

Concrete Instantiation for Tab. 1. For our isogeny based instantiation, we chose an HIG and a PKE based
on the CSIDH-512 group action. The structure of this class group has been computed [BKV19], which allows
for more efficient proofs. We chose the challenge space as string of length M = 855 with Hamming weight
K = 19. Most of the signature is independent of N , and contains a fixed number of curves and class group
elements as well as some overhead from the generic construction such as a hash value, the internal nodes in
the seed tree, and commitment randomness to open the commitments. The only reason the signature size
increases with N is that the signature contains a fixed amount of paths in a Merkle tree of depth log2 N .
This makes for a very mild dependence on N .

7.2 Instantiation from Lattices

We instantiate a group-action-based HIG and PKE, and the corresponding NIZKs for the relations Rsig and
Ropen based on lattices under the MSIS and MLWE assumptions. The choices for the integer n, modulus q,
and ring Rq are provided in Sec. 2.6.

Group-Action-Based HIG. By Def. 4.1, it suffices to define the public parameter pp1 = (G,S1, S2, δx, X0,X , ⋆)
generated by RelSetup and to check that the output of IGen defines a hard relation. The public parameters
pp are defined as follows:

� (G,X ) = (Rℓ
q ×Rk

q , R
k
q ), where X0 is an arbitrary element in X ,

� For b ∈ {0, 1}, Sb = {(s, z) ∈ G | ∥s∥∞, ∥e∥∞ ≤ Bb}, where B1, B2 are positive integers such that
B1 < B2 < q,

� δx =
( 2(B2−B1)+1

2B2+1

)n(k+ℓ)
,

� The group action ⋆ : G × X → X is defined as (s, e) ⋆w = (As + z) +w, where A ∈ Rk×ℓ
q is a fixed

matrix sampled uniformly by RelSetup.
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We define S3 to be a subset of G with coefficients all bounded by B2 − B1. It can be checked that pp
satisfies all the conditions in Def. 4.1, where δx follows by simply counting the points included in S2 and
S3. It remains to check that the relation R̃pp = {(b, (s, z)) | b = As + e ∧ (s, e) ∈ S2 + S3} defines a hard
relation as defined in Sec. 3.1, where S2 + S3. Note that if the adversary A is restricted to output a witness
(s, e) ∈ S1, then this follows directly from the MLWEn,q,B1

assumption. For our application, we have to
further consider the scenario where A may output a witness (s, e) outside of S1. We need to consider this

case since our online extractor for the NIZK can only extract a witness in the relaxed relation R̃pp rather
than Rpp.

The hardness of our group-action-based HIG follows naturally from theMSISn,q,k,ℓ,2B2
and sMLWEn,q,k,ℓ,B1

assumptions. We only focus on an adversary A that outputs a witness (s, e) outside of S1, since the other
case simply follows from MLWE as we seen above. Let us construct an adversary B against the MSISn,q,k,ℓ,2B2

problem by using A as a subroutine. B, given A as input, samples a random (s, e) ← S1, sets b = As + e
and invokes A on input pp,b, where pp includes A. When A outputs (s′, e′), B submits (s + s′, e + e′) as
its solution. By assumption, ∥s+ s′∥∞, ∥e+ e′∥∞ ≤ B1 +B2 +B3 = 2B2 and they are non-zero. Therefore,
B breaks the MSISn,q,k,ℓ,2B2

problem as desired.
Finally, the same proof shows that our group-action-based HIG is a hard multi-instance generator based

on the same assumptions.

Group-Action-Based PKE. We use a PKE scheme based on the Lindner-Peikert framework [LP11]. We
first explain the public parameters pp2 = (G,GT,Y, S1, S2, δy, DY , ⋆M,M) generated by PKE.Setup.10

� (G,GT,Y) = (Rk
q ×Rℓ

q ×Rq, Rq, R
k
q ×Rq),

� For b ∈ {0, 1}, Sb = {(r, e, e) ∈ G | ∥r∥∞, ∥e∥∞, ∥e∥∞ ≤ Bb}, where B1, B2 are positive integers such
that B1 < B2 < q and 4(nk + 1)(2B2 −B1) ≤ q,

� δy =
( 2(B2−B1)+1

2B2+1

)n(k+ℓ+1)
,

� DY is a distribution that samples a uniform random (A, s, z) ∈ Rk×ℓ ×Rℓ
q ×Rk

q and outputs a group

action ⋆ : G × Y → Y defined as (r, e, e) ⋆ (w, w) = ((A⊤r + e + w,b⊤r + e + w) and an element
Y = (w, w) ∈ Y, where b = As+ z,

� ⋆M : GT × Y → Y is a group action defined as M ⋆M (c, c) = (c, c+M · ⌊q/2⌉),

� The message spaceM is a subset of GT = Rq with coefficients in {0, 1}.

We define S3 to be a subset of G with coefficients all bounded by B2 − B1. It can be checked that pp
satisfies the conditions in Def. 4.2, where δy follows by simply counting the points included in S2 and S3.
The remaining algorithms (KeyGen,Enc,Dec) are defined as follows, where U(B) denotes elements in Rq

with infinity norm at most B ∈ N:

KeyGen(pp) : It samples a uniform random (A, s, z) ∈ Rk×ℓ × U(B1)
ℓ × U(B1)

k and outputs (pk, sk) =
((⋆pk,0), s), where 0 is the zero polynomial in Y and ⋆pk is a group action defined as (r, e, e)⋆pk(w, w) =
((A⊤r+ e+w,b⊤r+ e+ w), where b = As+ z. Note that pk is distributed as a sample from DY .

Enc(pk,M): On input a public key pk = (⋆pk, Ypk = 0) and a message M ∈M, it samples (r, e, e)← S1 and
returns ct = M ⋆M ((r, e, e) ⋆pk 0) = (A⊤r+ e,b⊤r+ e+M · ⌊q/2⌉) ∈ Y.

Dec(sk, ct) → M: It parses (c, c) ← ct and computes w = c− c⊤s over Rq. It rounds each coefficient back
to either 0 or ⌊q/2⌉ whichever is closest modulo q and outputs the polynomial.

10Note that although we use the same (q,B1, B2) as those used by the group-action-based HIG, they can be set differently.
We only use the same notations for better readability.
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Correctness is a consequence of (R′,KR′)-correctness, which we show below, and decryption efficiency
clearly holds as well. We discuss the remaining properties.

Multi-Challenge IND-CPA Security. The security follows by a standard proof using dMLWE. For complete-
ness, we provide the proof: We consider a sequence of games and prove that the adversary’s advantage only
changes negligibly in each adjacent games. The first game is the original security game. In the second game,
we modify the group action ⋆pk included in the public key to be defined by a random (A,b)← Rk×ℓ ×Rk

q .
By the dMLWEn,q,k,ℓ,B1 assumption, this game is indistinguishable from the previous game. In the final
game, we sample each ciphertext as ct← Rk×Rq. By the dMLWEn,q,ℓ+1,k,B1 assumption, this game is indis-

tinguishable from the previous game. Note that we appropriately parse the matrix A′ ∈ R
(ℓ+1)×k
q provided

by the challenge as A and b, and query the oracle once for each ciphertext. Since the challenge bit b is
statistically hidden from the adversary, no adversary has advantage in winning this game. This concludes
the proof.

We note that we can prove multi-challenge IND-CPA security while only relying on the dMLWE assumption
with a fixed number of instances (i.e., those that do not rely on the number of challenge ciphertexts), if we
can tolerate choosing slightly less efficient parameters. Specifically, we can use the dual-Regev encryption
[GPV08], where A is a tall matrix. When A is tall enough, A⊤r and b⊤r is distributed statistically close
to random under appropriate choices of parameters owing to the regularity lemma [LPR13]. Hence, we only
need the dMLWE assumption to jump from the first to second game above.

(R′,KR′)-correctness. We define R′ and KR′ as follows, where the choice of R′ coincides with those con-
sidered in Thm. 5.1:

� (R′,KR′) = (S2 + S3, U(2B2 − B1)
ℓ × U(2B2 − B1)

k), where recall S3 is a subset of G with ring
elements whose coefficients are all bounded by B2 − B1. Specifically, S2 + S3 = {(r, e, e) ∈ G |
∥r∥∞, ∥e∥∞, ∥e∥∞ ≤ 2B2 −B1}.

We check that correctness holds even if the ciphertext is encrypted using randomness (r, e, e) ∈ R′ and a
secret key sk = (s, e) ∈ KR′. Let ct = (A⊤r+e,b⊤r+e+M ·⌊q/2⌉), then c−c⊤s = M ·⌊q/2⌉+e+e⊤s−z⊤r.
Then, ∥e + e⊤s − z⊤r∥∞ ≤ ∥e∥∞ + ∥e⊤s∥∞ + ∥z⊤r∥∞ ≤ (2B2 − B1) + 2nk(2B2 − B1)

2 ≤ q/4, where the
last inequality follows from our parameter choice. Thus, M can be correctly decrypted with probability 1.

Multi-Proof Online Extractable NIZK with Labels ΠNIZK,lbl. Using the group-action-based HIG and
PKE, we can instantiate ΠNIZK,lbl for the signing relations Rsig and R′

sig (see Sec. 3.1) as explained in Secs. 5
and 6.

Statistically Sound NIZK without Labels ΠNIZK. It remains to show how to construct ΠNIZK for the
opening relations Ropen and R′

open. We can rewrite the relation Ropen (see Sec. 3.1) as follows:

Ropen =

{
((pk = b, ct = (c, c),M), sk = (s, z))

∣∣∣∣ ∥s∥∞, ∥e∥∞ ≤ B1 ∧ b = As+ z
∧ ∥c− c⊤s−M · ⌊q/2⌉∥∞ ≤ q/4

}
.

Notice we can rewrite the righthand side as[
A
c⊤

]
︸ ︷︷ ︸

Ã

s+

[
z
0

]
︸︷︷︸
z̃

=

[
b

c−M · ⌊q/2⌉+ d

]
︸ ︷︷ ︸

b̃

,

where d is some element in Rq such that ∥d∥∞ ≤ q/4. Since d is not secret, we can think d is included in the
statement (pk, ct,M). Then, ΠNIZK can simply viewed as an NIZK for the standard MLWE-based statement
Ãs + z̃ = b̃, where ∥s∥∞, ∥z̃∥∞ ≤ B1. Notice that such a statement is implicitly used in ΠNIZK,lbl for the
relation Rsig since this statement is essentially the group-action-based HIG. Specifically, if we remove all the
components regarding the OR proof and leave the proof regarding the group-action-based HIG from Figs. 3,
4 and 7, we arrive at our desired NIZK. Similarly to ΠNIZK,lbl for the relation Rsig, we can only prove that a
cheating prover was using a witness (i.e., secret key) satisfying ∥s∥∞, ∥z̃∥∞ ≤ B2 + B3. This is exactly the
KR′ defined above and coincides with the relaxed relation R̃open.
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One may wonder if we can construct an NIZK for this standard MLWE relation based on a sigma protocol
with a non-binary challenge set. Although the proof size of ΠNIZK is already constant, this may further
minimize the proof size of the opening proof. We claim that this may be difficult. The main reason is
that when we use a non-binary challenge space, the extracted witness (s, z̃) typically comes from a furthered
relaxed relation such that not only they have a larger norm, they are guaranteed to only satisfy Ãs+ z̃ = t · b̃
for some short t ∈ Rq. This relaxation may suffice in some settings but it turns out that it won’t for ours as
we can no longer prove (R′,KR′)-correctness. When restricted to binary challenges, we can control t to be
1 ∈ Rq.

Remark 7.1 (Bai-Galbraith Optimization [BG14]). We can apply the Bai-Galbraith optimization [BG14]
by exploiting the lattice structure. This is a common and simple optimization used in various lattice-based
interactive protocols based on the Fiat-Shamir with aborts paradigm [Lyu12] that allows to roughly halve the
proof size, or signature size when viewing the proof as a signature, with no additional cost. Intuitively, for
MLWE, proving knowledge of a short s indirectly proves knowledge of a short e since it is uniquely defined
as b−As. Therefore, we can remove the components that are used to explicitly prove that e is short. Since
the size of s and e are about the same in our construction, this allows to almost halve the proof size. For
further details, see for example [BG14, DKL+18, BKP20].

Concrete Instantiation for Tab. 1. For the concrete instantiation in Tab. 1, we use M = 1749,K = 16.
For the HIG, we chose the parameters according to the parameters used in the Security Level II variant
of the (round 3) NIST submission of the Dilithium signature scheme. Concretely, we use the ring Rq =
Zq[X]/(Xn + 1), with n = 256 and q = 223 − 213 + 1, and we put l = k = 4, B1 = 2, B2 = 217. These
parameters are chosen by the Dilithium team such that the relevant MLWE and MSIS problems are hard
enough to reach NIST SL II.

For the PKE, we use the ring R′
q with n = 256 and q′ ≈ 249, and we put k = l = 8, B1 = 1, B2 ≈ 216.3.

The LWE estimator of Albrecht et al. estimates that this MLWE instance has 141 bits of security [APS15].
Moreover, the (R′,KR′)-correctness holds, because we have (2B2 − B1) + 2nk(2B2 − B1)

2 ≤ q/4. For
the parameter set without manager accountability, we only require (R′,KR)-correctness, so we only need
(2B2−B1)+2nk(2B2−B1)B1 ≤ q/4. Therefore, we can choose our parameters as q′ ≈ 230, l = k = 5, B1 = 1,
and B2 = 215.9 for better signature sizes. The LWE estimator of Albrecht et al. estimates that this MLWE
instance has also 141 bits of security. In either cases, we use an optimization due to Bai and Galbraith to
reduce the size of the proofs (and therefore the size of the signature).

Similar to the isogeny instantiation, the signature size depends very mildly on N because N only affects
the length of some paths in the signature. Finally, we can use Sec. 5.3 to obtain a tightly secure scheme.
Since K = 16, the overhead compared to the non-tight scheme is a mere 512B.
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[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
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A Omitted Primitives

A.1 Index-hiding Merkle trees

The definition an index-hiding Merkle tree is taken almost verbatim from [BKP20]. Merkle trees [Mer88]
allow one to hash a list of elements A = (a0, · · · , aN ) into one hash value (often called the root). At a later
point, one can efficiently prove to a third party that an element ai was included at a certain position in the
list A. In the following, we consider a slight modification of the standard Merkle tree construction, such that
one can prove that a single element ai was included in the tree without revealing its position in the list.
Formally, the Merkle tree technique consists of three algorithms (MerkleTree, getMerklePath, ReconstructRoot)
with access to a common hash function HColl : {0, 1}⋆ → {0, 1}2λ.

� MerkleTree(A)→ (root, tree): On input a list of 2k elements A = (a1, · · · , a2k), with k ∈ N, it constructs
a binary tree of height k with {li = HColl(ai)}i∈[2k] as its leaf nodes, and where every internal node h
with children hleft and hright equals the hash digest of a concatenation of its two children. While it is
standard to consider the concatenation hleft ∥ hright, we consider a variation which consists in ordering
the two children according to the lexicographical order (or any other total order on binary strings).
We denote by (hleft, hright)lex this modified concatenation. The algorithm then outputs the root root of
the Merkle tree, as well as a description of the entire tree tree.

� getMerklePath(tree, I)→ path: On input the description of a Merkle tree tree and an index i ∈ [2k], it
outputs the list path, which contains the sibling of li (i.e. a node, different from li, that has the same
parent as li), as well as the sibling of any ancestor of li, ordered by decreasing height.

� ReconstructRoot(a, path) → root: On input an element a in the list of elements A = (a1, · · · , a2k)
and path = (n1, · · · , nk), it outputs a reconstructed root root′ = hk, which is calculated by putting
h0 = HColl(a) and defining hi for i ∈ [k] recursively as hi = HColl((hi−1, ni)lex).

If the hash function HColl that is used in the Merkle tree is collision-resistant, then the following easy
lemma implies that the Merkle tree construction is binding, i.e. that one cannot construct a path that
“proves” that a value b /∈ A = (a1, . . . , aN ) is part of the list A that was used to construct the Merkle tree
without breaking the collision-resistance of the underlying hash function HColl.
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Lemma A.1 (Binding for Merkle Tree). There is an efficient extractor algorithm that, given the description
tree of a Merkle tree (having root root and constructed using the list of elements A) and (b, path) such that
b /∈ A and ReconstructRoot(b, path) = root, outputs a collision for the hash function HColl.

The use of the lexicographical order to concatenate two children nodes in the Merkle tree construction
implies that the output path of the getMerklePath algorithm information-theoretically hides the index i ∈ [N ]
given as input. Formally, we have the following.

Lemma A.2 (Index Hiding for Merkle Tree). Let N ∈ N be a power of 2, D,D′ be two arbitrary distributions
over {0, 1}∗ and DI , with I ∈ [N ], be the distribution defined as

DI =

 (aI , path, root)

∣∣∣∣∣∣∣∣
aI ← D,

ai ← D′ ∀ 1 ≤ i ̸= I ≤ N,
(tree, root)← MerkleTree(A),
path← getMerklePath(tree, I)


where A = (a1, . . . , aN ). Then we have DI = DJ for all I, J ∈ [N ].

A.2 Seed Tree

The definition seed tree is taken almost verbatim from [BKP20]. The purpose of a seed tree is to first
generate a number of pseudorandom values and later disclose an arbitrary subset of them, without revealing
information on the remaining values. The seed tree is a complete binary tree11 of λ-bit seed values such that
the left (resp. right) child of a seed seedh is the left (resp. right) half of Expand(seed∥h), where Expand is
a pseudorandom generator (PRG). The unique identifier h of the parent seed is appended to separate the
input domains of the different calls to the PRG. A sender can efficiently reveal the seed values associated
with a subset of the set of leaves by revealing the appropriate set of internal seeds in the tree. We provide the
full detail of the seed tree below. Let Expand : {0, 1}λ+⌈log2(M−1)⌉ → {0, 1}2λ be a PRG for any λ,M ∈ N,
instantiated by a random oracle O. Then, a seed tree consists of the following four oracle-calling algorithms.

� SeedTreeO(seedroot,M)→ {leafi}i∈[M ] : On input a root seed seedroot ∈ {0, 1}λ and an integer M ∈ N,
it constructs a complete binary tree with M leaves by recursively expanding each seed to obtain its
children seeds. Calls are of the form O(Expand∥seedh∥h), where h ∈ [M − 1] is a unique identifier for
the position of seed in the binary tree.

� ReleaseSeedsO(seedroot, c) → seedsinternal : On input a root seed seedroot ∈ {0, 1}λ, and a challenge
c ∈ {0, 1}M , it outputs the list of seeds seedsinternal that covers all the leaves with index i such that
ci = 1. Here, we say that a set of nodes D covers a set of leaves S if the union of the leaves of the
subtrees rooted at each node v ∈ D is exactly the set S.

� RecoverLeavesO(seedsinternal, c) → {leafi}i s.t. ci=1 : On input a set seedsinternal and a challenge c ∈
{0, 1}M , it computes and outputs all the leaves of subtrees rooted at seeds in seedsinternal. By construc-
tion, this is exactly the set {leafi}i s.t. ci=1.

� SimulateSeedsO(c) → seedsinternal : On input a challenge c ∈ {0, 1}M , it computes the set of nodes
covering the leaves with index i such that ci = 1. It then randomly samples a seed from {0, 1}λ for
each of these nodes, and finally outputs the set of these seeds as seedsinternal.

By construction, the leaves {leafi}i s.t. ci=1 output by SeedTree(seedroot,M) are the same as those output
by RecoverLeaves(ReleaseSeeds(seedroot, c), c) for any c ∈ {0, 1}M . The last algorithm SimulateSeeds can be
used to argue that the seeds associated with all the leaves with index i such that ci = 0 are indistinguishable
from uniformly random values for a recipient that is only given seedsinternal and c. More formally, we have
the following.

11A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are
as far left as possible.
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Lemma A.3. Fix any M ∈ N and any c ∈ {0, 1}M . If we model Expand as a random oracle O, then any
(computationally unbounded) adversary AO that makes Q queries to the random oracle O can distinguish
the following two distributions D1 and D2 with distinguishing advantage bounded by Q

2λ
:

D1 :

seedsinternal, {leafi}i s.t. ci=0

∣∣∣∣∣∣
seedroot ← {0, 1}λ

{leafi}i∈[M ] ← SeedTreeO(seedroot,M)

seedsinternal ← ReleaseSeedsO(seedroot, c)


D2 :

{
seedsinternal, {leafi}i s.t. ci=0

∣∣∣∣ ∀i s.t. ci = 0 : leafi ← {0, 1}λ
seedsinternal ← SimulateSeedsO(c)

}
Here, the distributions take into account the randomness used by the random oracle as well.

B Dynamic Group Signatures from Accountable Ring Signatures

In this section, we review briefly the definition of group signatures and explain how accountable ring signa-
tures can be naturally viewed as group signatures. A formal treatment can be found in Bootle et al. [BCC+16]

B.1 Preliminaries on Group Signatures

Group signatures can be divided into two primary types: static schemes [BMW03] and dynamic schemes [BSZ05].
Roughly, while static group signature require the group to be fixed at setup, dynamic group signatures allow
members to join and leave the group at any time. This joining and leaving is administered by the group
manager, who has the power to add and revoke membership — as well as the ability to revoke anonymity
and reveal the specific signer of a certain signature. For a dynamic group signature scheme, the revocation
mechanism can be handled by a separate entity called opening or tracing authority to offer better flexibility
in the scheme and this makes only little difference regarding the security notions.

Informally, a dynamic group signature scheme consists of a setup algorithm Setup, key generation al-
gorithms MKGen and UKGen for the group manager and group members (or users) respectively, and Sign,
Verify, Open, and Judge algorithms which are counterparts of the ARS scheme functions of the same names.
Additionally, an interactive Join protocol run between the group manager and a user allows users to be added
to the group, while an UpdateGroup function allows the group manager to revoke a user’s membership in the
group dynamically (this is done via some publicly-published group info info).

Dynamic group signature schemes should satisfy standard security properties of correctness, anonymity,
traceability and non-frameability [BSZ05, BCC+16]. Correctness ensures that a signature produced by a user
running Sign after joining the group via Join is accepted by Verify. The inclusion of the Join function in this
definition ensures joining works as intended, beyond just guaranteeing the signing algorithms’s correctness.
Full CCA-anonymity (often refereed simply as full anonymity) states that even under full key exposure of
all group members (other than the group manager, who can trivially revoke anonymity via Open), and
with access to an opening oracle, the user who generated a certain signature cannot be identified. More
specifically, an adversary should be unable to distinguish between signatures generated by any two members
of the adversary’s choice— even if the adversary knows all secret keys involved. This notion is almost
identical to its namesake in the ARS setting (Sec. 2.4). In contrast, CPA-anonymity is a weaker notion which
still allows the adversary to learn all group members’ keys, but removes access to the opening oracle. Weaker
variants of these two are selfless CCA-anonymity and selfless CPA-anonymity where the adversary cannot
obtain any secret keys of targeted members in the anonymity game. Traceability states that an adversary
who is able to corrupt any members is not able to produce a signature for which Open fails to return an
active member of the group even if the group manager’s secret key is leaked. Finally, non-frameability states
that even if the group manager and all but one of the group members are corrupted, they cannot forge or
falsely attribute a signature to an honest member who did not produce it. These properties also imply what
is usually called unforgeability, because if an adversary could produce a signature for a group they knew no
secret keys for, the signature must either fail to Open to an active user, or would frame an honest member
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of the group—violating either traceability or non-frameability. We also remark a difference, usually being
neglected, that the group manager can be corrupted in the security model of a dynamic group while a static
variant only takes into account the exposure of the opening secret key [BMW03]. We refer the reader to
[BCC+16] for more thorough definitions.

B.2 Constructing Group Signatures from ARS

For completeness, we now review the generic construction of a dynamic group signature scheme from an
accountable ring signature scheme, by Bootle et al. [BCC+15, BCC+16]. Let ΠARS be a secure ARS scheme,
then we define a group signature scheme ΠGS as follows:

Let the group manager be the opening authority of ΠARS, and let the group manager’s keypair be
(gmpk = opk, gmsk = osk). The group public key gpk is then set to (gmpk, pp), where pp is the output of
GS.Setup := ARS.Setup. Define GS.UKGen := ARS.UKGen, so that users generate their own keypairs directly.
The Join protocol proceeds by a user submitting their public key pk to the group manager, who appends it
to the list of keys in infoτ := [vk0, . . . , vki] (the group info at epoch τ) and publishes infoτ+1. Membership is
similarly revoked by the group manager via UpdateGroup by removing the user’s public key from infoτ and
publishing the updated info. Finally, define:

� GS.Sign(gpk, infoτ , ski,M) := ARS.Sign(gmpk, ski, infoτ ,M).

� GS.Verify(gpk, infoτ ,M, σ) := ARS.Verify(gmpk, infoτ ,M, σ).

� GS.Open(gpk, infotau, gmsk,M, σ) calls (vkj , π)← ARS.Open(gmsk, infoτ ,M, σ) and returns (j, π).

� GS.Judge(gpk, infoτ ,M, σ, (j, π)) := ARS.Judge(gmpk, infoτ , vkj ,M, σ, π).

Note that infoτ defines the ring of signers at epoch τ and should be publicly accessible, as too should
be the index-to-public-key (j ↔ vkj) correspondence table, maintained by the group manager. As shown in
[BCC+16], this generic construction of a group signature from an ARS is tightly secure assuming the ARS is
secure. Hence, our ARS construction in Sec. 3.1 implies a secure dynamic group signature scheme. The type
of security notions satisfied by the resulting group signature, e.g., full or selfless, CCA or CPA anonymity, is
directly inherited from the ARS.

We note that this scheme’s group info grows linearly in the number of group members. This is the same
as all other proposed efficient post-quantum group signature constructions such as [EZS+19]. It remains
an interesting open problem to construct a efficient group signature where the group info grows at most
logarithmically in the number of group members.
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