
Faster Isogenies for Quantum-Safe SIKE

Rami Elkhatib, Brian Koziel, and Reza Azarderakhsh

{rami.elkhatib, brian.koziel, razarder}pqsecurity.com

PQSecure Technologies, LLC
Boca Raton, FL

Abstract. In the third round of the NIST PQC standardization process,
the only isogeny-based candidate, SIKE, su�ers from slow performance
when compared to other contenders. The large-degree isogeny computa-
tion performs a series of isogenous mappings between curves, to account
for about 80% of SIKE's latency. Here, we propose, implement, and eval-
uate a new method for computing large-degree isogenies of an odd power.
Our new strategy for this computation avoids expensive recomputation
of temporary isogeny results. We modi�ed open-source libraries targeting
x86, ARM64, and ARM32 platforms. Across each of these implementa-
tions, our new method achieves 10% and 5% speedups in SIKE's key
encapsulation and decapsulation operations, respectively. Additionally,
these implementations use 3% less stack space at only a 48 byte increase
in code size. Given the bene�t and simplicity of our approach, we rec-
ommend this method for current and emerging SIKE implementations.

Keywords: isogeny-based cryptography, post-quantum cryptography,
SIKE, isogeny computations.

1 Introduction

Quantum computing technology is heralded as the next big leap in processing
powers. This new type of computer will allow humanity to solve a wealth of
di�cult problems in applications such as medicine, �nance, and data analytics.
However, the dark side of these new quantum computers is that they are capable
of breaking the foundational cryptography that secures the internet and our
digital infrastructure. Namely, today's deployed public-key cryptosystems are
protected by the di�culty to compute discrete logarithms and factorization, both
of which are infeasible for classical computers once the numbers become large.
However, in 1994, Peter Shor proposed a polynomial-time algorithm that can
break these hard problems in conjunction with a large-scale quantum computer
[44]. It is unclear when a large enough quantum computer will emerge, so there
exist many estimates ranging from a few years to several decades.

With quantum computer fears in mind, the US National Institute for Stan-
dards and Technology (NIST) has initiated a post-quantum cryptography (PQC)
standardization process for public-key cryptosystems [46]. Started in 2017, the
standardization e�ort is currently in its third round, cutting the original 69
submissions to just 15. Quantum-safe schemes fall into a number of categories



ranging from lattices, codes, hashes, multi-variate equations, and isogenies. Un-
fortunately, there are no clear �drop-in replacements� for today's currently de-
ployed technology. Each of the proposed quantum-resilient schemes feature per-
formance, size, communication, and security tradeo�s.

This work focuses on optimizations to the NIST PQC candidate SIKE, which
is based on the hardness of �nding isogenies between supersingular elliptic curves.
SIKE is currently a third round alternative scheme for key encapsulation mech-
anisms. SIKE is lauded for its small public keys, straightforward parameter se-
lection, immunity to decryption errors, and understanding of its generic attacks.
However, SIKE is an order of magnitude slower than lattices and other schemes
and many are requiring further examination of its foundational security. Never-
theless, SIKE's small key and ciphertext sizes enable some applications that can
take the hit to performance. NIST sees SIKE �as a strong candidate for future
standardization with continued improvements.� [2]

In this work, we present a faster method for computing the large-degree
isogeny in SIKE for isogenies of an odd power. As we have observed, current
open source implementations of SIKE such as that in the SIKE submission [5] or
Microsoft's SIDH Library [15] utilize a slow strategy for computing large-degree
isogenies that require a mix of 2 and 4-isogenies. Our new strategy modi�es this
strategy, achieving a nice speedup in SIKE's key generation and decapsulation
operations. Currently, this applies to only the NIST Level 3 SIKE parameter
set. However, new security analyses have proposed additional SIKE parameter
sets for which we can and do apply this large-degree isogeny method.

Our contributions:

� We propose a new method for computing large-degree isogenies of an odd
power.

� We provide explicit algorithms and formulas to speed up these large-degree
isogenies.

� We implement, deploy, and evaluate our methodology on x86, ARM64, and
ARM32 platforms.

� We achieve 10% and 5% speedups in SIKEp610's key encapsulation and
decapsulation, respectively, with approximately a 3% improvement in stack
usage in our experimental results.

2 Preliminaries: Isogenies on Elliptic Curves

In this section, we provide a brief overview of the large-degree isogeny and its
use in SIKE.

2.1 Isogeny-Based Cryptography

History. Primarily, isogeny-based cryptography has focused on the use of iso-
genies on elliptic curves in cryptosystems. An isogeny is a non-constant rational



map between elliptic curves that is also a group homomorphism. The use of iso-
genies for a cryptosystem was �rst proposed in independent works by Couveignes
[17] and Rostovtsev and Stolbunov [41] that were �rst published in 2006. These
works proposed an isogeny-based key-exchange based on the hardness to com-
pute isogenies between ordinary elliptic curves. Initially, these were believed to
be resistant to quantum attacks. However, in 2010, Childs, Jao, and Soukharev
[13] proposed a new quantum subexponential algorithm that computes isoge-
nies between ordinary curves, thus breaking these schemes. In 2009, Charles,
Lauter, and Goren [12] proposed an isogeny-based hash function that was based
on the hardness to compute isogenies between supersingular elliptic curves which
creates an expander graph. Then, in 2011, Jao and De Feo [27] modi�ed the orig-
inal isogeny-based key-exchange to now also utilize supersingular elliptic curves,
creating the Supersingular Isogeny Di�e-Hellman (SIDH) key-exchange. Inter-
estingly, the quantum algorithm from Childs, Jao, and Soukharev [13] relies on a
commutative endomorphism ring. Ordinary elliptic curves have a commutative
endomorphism ring, making them vulnerable, while supersingular elliptic curves
have a non-commutative endomorphism ring. SIKE is an IND-CCA2 upgrade of
SIDH that was submitted to the NIST PQC standardization process in 2017 [6].
Since the inception of SIDH in 2011 to the 4 years of SIKE in the NIST PQC
process, these supersingular isogeny-based schemes remain unbroken.

Since the emergence of SIDH, many facets have isogeny-based cryptography
have been explored through research. Many researchers have investigated secu-
rity foundations from the isogeny hard problems [24,1,16,28] to side-channel at-
tacks [26,47,32,31]. On the application side, we have seen the use of SIDH/SIKE
public key compression [7,14,39,40], new isogeny-based digital signatures schemes
[25,49], isogeny-based hybrid key exchange [15,9], isogeny-based password au-
thenticated key exchange [45,8], and new isogeny-based key agreement with
CSIDH [11]. Among isogeny-based cryptosystem implementations, we have seen
a wealth of implementations including software [18,15,36,23,3,42,43], hardware
[35,33,22,34,30,20,19], and even software-hardware co-design [38,21].

Elliptic Curves. Isogeny-based cryptography can be thought of as an ex-
tension of elliptic curve cryptography. Both operate on elliptic curves de�ned
over �nite �elds. However, rather than stick to a single elliptic curve, isogenies
on elliptic curves focus on the relationship between elliptic curves.

We de�ne an elliptic curve E over a �nite �eld Fq as the collection of all
points (x, y) as well as the point at in�nity that satisfy the short Weierstrass
curve equation:

E/Fq : y2 = x3 + ax+ b

where a, b, x, y ∈ Fq. By de�ning a method for adding points using geometry,
this collection forms an abelian group over addition. The scalar point multi-
plication is a repeated use of point addition such that Q = kP , where k ∈ Z
and P,Q ∈ E. Given P and k, it is simple to compute Q = kP via a sequence
point additions and point doublings. However, as the order of the elliptic curve
E becomes very large (such as 2256), �nding k when given Q and P becomes in-



feasible for classical computers. Unfortunately, a large-scale quantum computer
can e�ciently solve this problem by using Shor's algorithm [44].

Isogenies. An elliptic curve isogeny over Fq, φ : E → E′ is de�ned as
a non-constant rational map from E(Fq) to E′(Fq) that preserves the point
at in�nity. Isogenies between elliptic curves can be computed over a kernel,
φ : E → E/〈ker〉, by using Vélu's formulas [48]. The degree of an isogeny is its
degree as a rational map. Large-degree isogenies of the form `e can be computed
by chaining e isogenies of degree `. Lastly, an elliptic curve's j-invariant acts as
an identi�er of its isomorphism class. An isogeny moves from one elliptic curve
isomorphism class to another isomorphism class.

Isogeny-based cryptography relies on the di�culty to compute isogenies be-
tween elliptic curves. For φ : E → E′, it is simple to compute an isogeny from E
to E′ given a �nite kernel. However, when only given E and E′, it is di�cult to
�nd the isogenous mapping between elliptic curves. SIDH and SIKE compute φ
as a sequence of small-degree isogenies. This problem can be visualized as a walk
on an isogeny graph of degree ` where each node represents an isomorphism class
and the edges are isogenies of degree `. For supersingular elliptic curves E(Fq),
q = p2, there are approximately p/12 isomorphism classes. For an isogeny graph
over base degree `, this is a complete graph where each node has ` + 1 unique
isogenies up to isomorphism of degree `. SIDH and SIKE perform an isogeny
walk by computing a large-degree isogeny of the form `e. In this walk, there are
e steps of `-degree isogenies.

Isogeny-Friendly Primes. SIDH and SIKE utilize a prime of the form
p = `eAA `eBB f ± 1, where `A and `B are small primes, eA and eB are positive
integers, and f is a small cofactor to make the number prime. This prime is used
to �nd a supersingular elliptic curve E0(Fp2) and �nd torsion bases {PA, QA}
and {PB , QB} that generate E0[`

eA
A ] and E0[`

eB
B ], respectively. Curve E0 has

order #E0 = (p ∓ 1)2 which has a smooth order so that rational isogenies of
exponentially large degree can be computed e�ciently as a chain of low-degree
isogenies. Alice performs her large-degree isogeny φA over the `A isogeny graph
and Bob performs his large-degree isogeny φB over the `B isogeny graph.

The core Di�e-Hellman principle of SIDH and SIKE is that Alice and Bob
each separately perform their large-degree isogenies over `A and `B graphs, re-
spectively, exchange the resulting curve and a few extra points, and then perform
their large-degree isogeny over the other party's public key. Both parties will have
new elliptic curves for which `A and `B isogeny walks were performed, so Alice
and Bob can use the elliptic curve's j-invariant as a shared secret. Since Alice
and Bob perform separate walks, the SIDH and SIKE schemes are as strong as
the weaker isogeny graph to attack. For security, it is desirable that `eAA ≈ `

eB
B .

2.2 Supersingular Isogeny Key Encapsulation

The Supersingular Isogeny Key Encapsulation (SIKE) mechanism [5] allows for
an IND-CCA2 key establishment between two parties. In this scheme, Alice and
Bob want to agree on a shared secret. To accomplish this, Alice and Bob perform



Table 1. SIKE parameter sets for each NIST security level [5]. All sizes are in
bytes.

SIKE Security As Strong
Prime Form

Secret Public Cipher Shared
Scheme Level as Key Key Text Secret

SIKEp434 NIST level 1 AES128 p434 = 22163137 − 1 374 330 346 16

SIKEp503 NIST level 2 SHA256 p503 = 22503159 − 1 434 378 402 24

SIKEp610 NIST level 3 AES192 p610 = 23053192 − 1 524 462 486 24

SIKEp751 NIST level 5 AES256 p751 = 23723239 − 1 644 564 596 32

Table 2. SIKE parameter sets for each round. �Level� indicates the NIST security
level of the prime for the NIST round. [5]

Parameter Set Prime Form
NIST Standardization Round

Round 1 Round 2 Round 3 Proposed in [37]

SIKEp434 22163137 − 1 Level 1 Level 1

SIKEp503 22503159 − 1 Level 1 Level 2 Level 2

SIKEp610 23053192 − 1 Level 3 Level 3

SIKEp751 23723239 − 1 Level 3 Level 5 Level 5

SIKEp964 24863301 − 1 Level 5

SIKEp377 [37] 21913117 − 1 Level 1

SIKEp546 [37] 22733172 − 1 Level 3

SIKEp697 [37] 23563215 − 1 Level 5

their own isogeny walks over separate isogeny graphs. SIKE is protected by the
computational supersingular isogeny (CSSI) problem [1].

SIKE API. SIKE is a key encapsulation mechnism split into three oper-
ations: key generation, key encapsulation, and key decapsulation. In the SIKE
protocol, Bob wants to agree on a shared secret with Alice. He begins the protocol
by performing key generation, where a secret key and public key are generated.
He sends this public key to Alice over a public channel. Alice, upon receiving
Bob's public key, performs key encapsulation to generate a ciphertext and shared
secret. Alice then sends her ciphertext to Bob, again over a public channel. Bob
then �nalizes this protocol by performing key decapsulation over his secret key
and Alice's ciphertext, generating a shared secret. From there, Alice and Bob
can utilize this shared secret to exchange encrypted communications.

SIKE Parameters. The primary computations in SIKE include a double-
point multiplication, large-degree isogeny, and SHAKE256 hashing. For e�ciency
and simplicity, SIKE �xes a prime of the form p = 2eA3eB − 1 where 2eB ≈ 3eB .
The sizes of these isogeny graphs are the primary metric for SIKE's security
strength. Based on known cryptanalysis and known attacks, the SIKE team has
proposed SIKE parameter sets of the form SIKEpXXX, where �XXX� is the size
of the prime in bits. Each SIKE parameter set targets a NIST Security Level
from 1 to 5. NIST Security Level 1 is considered as hard to break as a brute-
force attack on AES128, Level 2 is as hard as �nding a hash collision of SHA256,



Level 3 is as hard as a brute-force attack on AES192, and Level 5 is as hard as a
brute-force attack on AES256. Interestingly, SIKE's prime sizes have decreased
in size over the course of the NIST PQC standardization process, showing that
the CSSI problem was harder than originally thought.

SIKE's strongest advantage is its small public keys and ciphertexts. We sum-
marize SIKE's round 3 parameter sets in Table 1. The communication overhead
is for the uncompressed SIKE scheme. The compressed SIKE scheme further re-
duces the public key and ciphertext by almost half. Compared to other schemes,
SIKE has the smallest public keys and almost the smallest ciphertext. Only Clas-
sic McEliece [10] has a smaller ciphertext. Kyber [4] is a lattice-based scheme
with fairly small public keys, but SIKE's public keys and ciphertexts are more
than half of Kyber's size for an equivalent security level. For instance, Kyber
Security Level 1 has an 800 byte public key and 768 byte ciphertext.

SIKE Primes. In Table 2, we summarize the SIKE parameter sets for the
NIST PQC standardization process. Based on cryptanalysis of [1,16] and the
like, it was deemed that SIKE's Round 1 parameters were too conservative, so
they were reduced for Round 2 and beyond. We also added the proposed primes
from [37] as it is another work that considers the CSSI problem harder than
expected, resulting in even smaller primes.

For these results, we note that SIKE parameters are not permanent and could
continue to change based on security analysis. When searching for SIKE primes,
there are also limited options. When choosing a random form for p, it is desirable
that 2eA ≈ 3eB so that low-level modular arithmetic is more e�cient and there
are fewer isogenies to perform. Based on the prime number theorem, there is
approximately a 1

lnx chance that a random integer x is prime. If we only choose
odd numbers by using the form 2eA3eB − 1, then there is a 2

lnx chance that the
number is prime. In practice, this means that a 400-bit candidate has a 1 in 139
chance of being prime and a 700-bit candidate has a 1 in 243 chance of being
prime.

3 Proposed Method for Large-Degree Isogenies of Odd

Degree

In this section, we propose a new method to compute the large-degree isogeny
operation in SIKE. This method can be applied to any scheme that computes a
large-degree isogeny of an odd power of the form `2k+1, where k is an integer.
In terms of the parameter schemes presented in Table 2, this applies to each
prime, as every prime has at least one of the 2-isogeny or 3-isogeny graph sizes
of an odd power. However, this is only if it is more e�cient to perform the large-
degree isogenies as a chain of `2 isogenies rather than ` isogenies, which is the
case for the 2-isogeny graphs, where practitioners compute it as a sequence of 4-
isogenies. Thus, this method speci�cally applies to the SIKE schemes SIKEp610,
SIKEp377, and SIKEp546 where the 2-isogeny graph has an odd power.



Input point 

Point Mult by -isogeny

Fig. 1. Visualization of the large-degree isogeny computation.

3.1 Large-Degree Isogenies.

First, we review how the large-degree isogeny is traditionally performed. This
computation accounts for 80% of the latency in SIDH and SIKE operations.
Given a large-degree isogeny of the form `e, we compute this by chaining together
e isogenies of degree `. For a base curve E0 and kernel point R0 = R of order `e

we compute e isogenies of degree ` as follows:

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri) (1)

This computation can be visualized as traversing an acyclic graph in the
shape of a triangle starting from the kernel point (R0) to each of the leaves
(`e−i−1Ri) as is shown in Figure 1. Here, we are computing an isogeny of degree
`5 by starting at the purple kernel node of order `5 and traversing to each of
the green leaf nodes that has order ` with which we can compute an ` isogeny.
When traversing this graph, there is an uneven cost to move left by computing
a point multiplication by ` and to move right by evaluating an `-degree isogeny
over a point.

The simplest method to traverse this graph is the multiplication-based strat-
egy with complexity O(e2) [27], which is the same as Equation 1. However, the
only requirement for the large-degree isogeny is that an isogeny is computed at
each of the leaf nodes. Thus, one can save speci�c points that act as a pivot to
dramatically reduce the number of point multiplication and isogeny evaluations.
As was �rst proposed in [18], optimal strategies can be devised as one of the
least cost, with complexity O(e log e). The key insight when �nding an optimal
strategy is that an optimal strategy is composed of two optimal sub-strategies.
The standard method to perform the large-degree isogeny is to utilize a precom-
puted strategy, whereby we cycle through the following steps until all `-isogenies
are computed.

1. Perform point multiplications by ` to traverse left to reach a leaf node, while
storing pivot points according to a precomputed strategy



2. Compute an `-degree isogeny to move from Ei to Ei+1

3. Evaluate `-degree isogenies on all stored pivot points, translating them from
Ei to Ei+1

Table 3. Fastest known point arithmetic and isogeny formulas for 2 and 4 isoge-
nies [5].

Operation #Fp2 Add #Fp2 Sub #Fp2 Mult #Fp2 Sqr

2-Isogenies

Point Doubling 2 2 4 2

Compute 2 Isogeny 0 1 0 2

Evaluate 2 Isogeny 3 3 4 0

4-Isogenies

Point Quadrupling 4 4 8 4

Compute 4 Isogeny 4 1 0 4

Evaluate 4 Isogeny 3 3 6 2

Why 4 Isogenies? The simple reason that 4 isogenies are used instead of
2 isogenies is that 4 isogenies are more e�cient. The cost of the fastest known
isogeny formulas are shown in Table 3. In this table, each isogeny operation is
made up of point multiplication by `, computing an ` isogeny that performs a
mapping between curves, and evaluating an ` isogeny that maps a point to a new
isogenous curve. Also in this table, the most important computations are Fp2

multiplications and Fp2 squarings that require expensive �eld multiplications. In
the SIKE landscape, Fp2 multiplications require 3 modular multiplications and
Fp2 squarings require 2 modular multiplications. When comparing the cost of
formulas, evaluating two 2-isogenies requires 8 Fp2 multiplications while evaluat-
ing a single 4-isogeny requires 6 Fp2 multiplications and 2 Fp2 squarings. Thus,
4-isogenies require 2 fewer �eld multiplications here. In the case of large-degree
isogenies, hundreds of isogeny evaluations are performed, meaning that saving
a few modular multiplications each step is valuable. Otherwise, 3 isogenies are
known to be faster than 9 isogenies and larger isogeny algorithms are less ex-
plored as the costs of larger base degree isogenies do not scale well. The results
of this paper are speci�cally applied to 2 and 4 isogenies, but given advances in
isogeny formulas, could apply to other base degrees.

3.2 Large-Degree Isogenies of an Odd Power

Since large-degree isogenies of base degree 4 are faster than that of base degree 2,
computing large-degree isogenies of the form 22k is preferred. However, given the
limited availability of SIKE primes, such SIKE-friendly primes may not exist.
When computing large-degree isogenies of the form 22k+1, at least one 2-isogeny
must be computed.



Input point 
2-isogeny

4-isogeny
Point doublePoint double

Input point 

Fig. 2. Visualization of the state-of-the-art [5] methodology to compute large-
degree isogenies of an odd power.

There are a few options for performing large-degree isogenies of an odd power.
The simplest option may be to just skip the 2-isogeny. However, this weakens the
security of the 2-isogeny graph and should only be done if the 2-isogeny graph
is much larger than the 3-isogeny graph, i.e. 2eA � 3eB .

Current Methodology. Currently, the SIKE submission [5] and other li-
braries perform the 22k+1 isogeny by performing an initial 2-isogeny, and then
proceeding with an optimized large-degree isogeny of base degree 22k = 4k. Thus,
this approach starts with the point multiplication-based strategy and then pro-
ceeds with the optimized strategy.

A visualization of this approach is shown in Figure 2 with a toy example.
Although the Figure shows the computation of a 215 large-degree isogeny, it is
simple to adapt this �gure for ` and `2 isogenies for a di�erent base degree.
We use similar colors and representation as Figure 1. Here, a small-sized node
represents a point of an odd power 22k+1 and a medium-sized node represents
a point of an even power 22k = 4k. Thus, we still traverse to the green leaf
nodes, but we have the option to compute 2 or 4 isogenies at the leaves. Since



Point double

Input point 
2-isogeny

4-isogeny

Fig. 3. Visualization of the proposed methodology to compute large-degree iso-
genies of an odd power.

4-isogenies are preferred, the example strategy utilizes seven 4-isogenies and one
2-isogeny to compute the 215 large-degree isogeny.

As Figure 2 shows, there is a large amount of recomputation needed to com-
pute the large-degree isogeny. Namely, this strategy performs two traversals from
the top node to the left-most node. Of the 33 point doublings in this Figure, 27
point doublings are computed for the �rst 2-isogeny and subsequent 4-isogeny.

Proposed Methodology. To dramatically reduce this wasted traversal, our
proposed �x is to store pivot points on the �rst traversal to the left, as is shown
in Figure 3. In order to make this work, we need to store pivot points of an odd
power order 22k+1 that correspond to the point multiples used in the optimized
4-isogeny strategy. After performing the �rst 2-isogeny, we push each of these
pivot points through the 2-isogeny, incrementing their order to 22k = 4k. Thus,
we can then continue with an optimized 4-isogeny as normal.

Improvement. Between Figures 2 and 3, we showed two di�erent methods
for computing the large-degree isogeny 215. The state-of-the-art method requires
33 point doublings, 1 2-isogeny, and 11 4-isogenies, whereas the new method
requires 22 point doublings, 3 2-isogenies, and 11 4-isogenies. Thus, for this toy



example, our proposed method exchanges 10 point doublings for 2 additional 2-
isogeny evaluations. Based on the cost of current isogeny formulas shown in Table
3, this saves 16 Fp2 multiplication operations and 20 Fp2 squaring operations.
When applied to something like SIKEp610, one sample strategy comparison
showed that our new method exchanges 303 point doubling operations for 5
additional 2-isogeny point evaluations.

Discussion. With this proposed methodology, we chose the same policy of
performing the 2-isogeny �rst. This is primarily because once done, no more
of the (slower) 2-isogeny operations need to be performed in the middle of the
large-degree isogeny. One interesting consideration was the use of mixing 2 and
4-isogeny operations. For example, one could perform about half of the isogeny
computations and then the 2-isogeny. This makes the algorithm more complex
and did not provide any real bene�t from our analysis as the more 2-isogeny
arithmetic you use, the more the large-degree isogeny slows down. Lastly, one
could use a mix of 2 and 4-isogenies to compute new representations of pivot
points. We did not �nd any bene�t, but leave this open for further investigation.

4 Proposed Explicit Formulas for Large-Degree Isogenies

In this section, we propose a new algorithm and method to perform the large-
degree isogeny within SIKE or SIDH. Although we directly apply this algorithm
to the large-degree isogeny of odd power over base degree 2 for SIKE, we gener-
alize this algorithm for any large-degree isogeny of a single base degree.

4.1 Proposed E�cient Algorithm for Large-Degree Isogenies with a
Remainder

The large-degree isogeny computes an isogeny of degree `e by chaining together
e isogenies of degree `. Typically, ` is a small prime such as 2 or 3. When isogeny
operations over degree `x, where x is a positive integer, are more e�cient than
performing x `-isogenies, then `x isogenies should be used. However, when e is
not divisible by x, there will be a remainder r. Thus, we represent `e = `x·be/xc+r,
where r = e mod x.

For this algorithm we assume that the computations for `x isogeny computa-
tions, `x isogeny evaluations, and scalar point multiplications by `x will speed up
the large-degree isogeny operation over other powers of `. An isogeny computa-
tion computes an isogenous mapping between two elliptic curves given a kernel
and an isogeny evaluation uses an isogenous mapping to map a point on one ellip-
tic curve to its new representation on the isogenous curve. As is used by e�cient
SIDH and SIKE implementations, we can precompute an optimized strategy to
traverse the large-degree isogeny computation as is shown in Figures 2 and 3.
This signi�cantly improves the complexity of the large-degree isogeny. For our
large-degree isogeny with a remainder algorithm, we only need to precompute
the optimized strategy for a large-degree isogeny of the form `x·be/xc. Although
there are several methods to store a strategy, the strategy simply represents the



number of point multiplications to traverse left. In most implementations, this
is stored as a series of e positive integers. When using isogenies of base degree
`x, we only need to store e/x positive integers.

New Large-Degree Isogeny Algorithm. Our proposed algorithm for
large-degree isogenies with a remainder is shown in Algorithm 1. In general,
the method boils down to computing the remainder isogeny `r �rst by comput-
ing a point multiplications by `x up to `x·be/xc where we store the pivot points
along the way. These point multiplications produce a point of order `r for which
an `r isogeny can be computed. After the `r isogeny, the remaining `x·be/xc iso-
genies can then be computed using an optimal strategy based on the latency of
`x isogeny evaluations and point multiplications by `x.

Algorithm 1 uses a very similar format as the large-degree isogeny formulas
found in the SIKE submission. [5]. We note that we use D to represent a deque,
or double-ended queue, where each data element contains an index representing
a point and the order of the point. h represents the remaining number of `x

scalar point multiplications that could be applied, so h = 1 indicates the point
is of order `x. Indeed, Lines 1 to 3 and Lines 18 to 35 are roughly equivalent
to the state-of-the-art [5]. Lines 4 to 17 compute the remainder isogeny `r in a
similar fashion as Lines 18 to 35, however only one isogeny needs to be computed.
Speci�cally, Lines 4 through 9 perform the point multiplications by `x according
to the large-degree isogeny strategy, Lines 10 to 11 compute the `r isogeny, and
Lines 13 to 17 apply the `r isogeny to all stored pivot points.

Although we do not describe how to compute the `r isogeny, it can be com-
puted in whatever the most e�cient method is, whether that is a combination of
smaller isogenies or a single `r isogeny. For simplicity, Algorithm 1 assumes that
the `r isogeny is computed in one go. If multiple smaller isogenies are computed,
then the Lines 11 through 17 of the algorithm simply need to be revised such
that smaller point multiplications are performed to get a kernel point, whereby
each smaller isogeny computation over the kernel is followed by a smaller isogeny
evaluation over each stored pivot point.

Strategy Considerations. Interestingly, we found that only an optimal
strategy needs to be made for the `x·be/xc large-degree isogeny. When applying
the `x·be/xc strategy to a kernel point of order `x·be/xc+r, the �rst series of scalar
point multiplications will �nd pivot points of the order `kx+r where k is some
positive integer whereas applying the strategy to a kernel point of order `x·be/xc

will produce points of the order `kx. Thus, after applying the `r isogeny to the
pivot points generated with the kernel point of order `x·be/xc+r, we will naturally
have pivot points of the order `kx as we need. The only caveat is that we need
to perform one additional `x scalar point multiplication before the `r isogeny
so that the point actually has order `r. Our Algorithm accounts for this by
performing point multiplications until h = 0 rather than h = 1, as is done in
Line 4. Furthermore, after the `r isogeny evaluations, we do not update the h
indices in the deque as an `x isogeny has not been performed.

Complexity. For a large-degree isogeny of degree `e, this proposed Algo-
rithm features the same O(e log e) complexity as the original use of optimized



Algorithm 1: Computing and evaluating an `e-isogeny with remainder

function `_e_iso
Static Parameters: Integer e from public parameters, Integer x for

fastest `x isogenies, Integer r = e mod x, a strategy
(s1, . . . , sbe/xc−1) ∈ (N+)be/xc−1

Input: Curve E0 and point S on E0 with exact order `e = `x·be/xc+r

Output: Curve E = E0/〈S〉 by computing e isogenies of degree `

1 Initialize empty deque D
2 push(D, (be/xc, S))
3 E ← E0, i← 1, h← be/xc
4 while h 6= 0 do
5 (h,R)←pop(D)

6 push(D, (h,R))
7 for j ← 0 to si do
8 R← mult_by_`x(R,E)

9 push(D, (h− si, R)), i← i+ 1

10 (h,R)← pull(D)

11 (E′, φ)← compute_`r_iso(E,R)
12 Initialize empty deque D′

13 while D not empty do

14 (h,R)← pull(D)

15 R← evaluate_`r_iso(E′, φ, R)
16 push(D′, (h,R))

17 D ← D′, E ← E′

18 while D not empty do

19 (h,R)←pop(D)

20 if h = 1
21 (E′, φ)← compute_`x_iso(E,R)
22 Initialize empty deque D′

23 while D not empty do

24 (h,R)← pull(D)

25 R← evaluate_`x_iso(E′, φ, R)
26 push(D′, (h− 1, R))

27 D ← D′, E ← E′

28 elif 0 < si < h
29 push(D, (h,R))
30 for j ← 0 to si do
31 R← mult_by_`x(R,E)

32 push(D, (h− si, R)), i← i+ 1

33 else

34 Error: Invalid strategy

35 return E = E0/〈S〉



strategies proposed in [18]. However, when the fastest base degree isogeny `x

has an x which is not a divisor of e, this method e�ciently performs the `r

isogeny in complexity O(e) and has already stored pivot points for the following
`x·be/xc large-degree isogeny in complexity O(e log e). This Algorithm also does
not change the size of the precomputed strategy.

4.2 Proposed Faster 2-Isogeny Formulas for Large-Degree Isogenies.

In the SIKE submission [5] and similar SIKE libraries, we noted that the 2-
isogeny formulas are not optimized for the scenario when multiple 2-isogeny
evaluations are performed. Thus, we propose new and faster 2-isogeny formu-
las for this case that can be used in conjunction with our large-degree isogeny
algorithm to accelerate the large-degree isogeny in SIKE parameters such as
SIKEp610. Speci�cally, SIKEp610 performs a large-degree isogeny of degree 2305

which can be rewritten as 22·152+1 = 41522. Our optimized formulas slightly al-
ter the 2-isogeny APIs, moving computations over a point of order 2 from the
2-isogeny evaluation function to the 2-isogeny computation function, resulting
in fewer �eld addition and subtractions when multiple 2-isogeny evaluations are
performed.

For the following optimized formulas, we operate on Montgomery curves of
the form E/Fq : by2 = x3 + ax2 + x. Similar to short Weierstrass curves,
Montgomery curves are the set of all points (x, y) as well as the point at in�n-
ity that satisfy this equation. This curve is de�ned over the �nite �eld Fq, so,
b, y, x, a ∈ Fq.

There are additional representations of this curve for SIDH and SIKE to
reduce the complexity of isogeny and point arithmetic. Notably, the introduction
of a projective �C� term is used so that isogenies can be performed without
inversions until the very end of a large-degree isogeny. The following formulas
�x the b coe�cient to 1 and simplify the Montgomery form to E/Fq : y2 =
x3 + ax2 + x. Next, we denote the projective representation (A : C) to denote
the equivalence (A : C) ∼ (a : 1). Rather than keep track of A and C, the
following equations represent the Montgomery curve with the values (A+

24 : C24)
∼ (A+ 2C : 4C). Lastly, elliptic curve points are represented in the Kummer
projective representation (X : Z) where x = X/Z and the y-coordinates are
dropped.

2-Isogeny Computation. Our new 2-isogeny computation formula is shown
in Algorithm 2. The 2-isogeny computation uses an input curve E and point of
order 2 on the input curve P2 = (X2 : Z2) to compute a 2-isogenous elliptic
curve E′ such that φ : E → E/〈P2〉 = E′. Similar to the SIKE submission's
formulas [5], the output curve is represented with coe�cients (A+

24 : C24) ∼
(A′+2C ′ : 4C ′), where A′ and C ′ are the projective coe�cients on curve E′. Our
new formula adds new computations for constants K1 and K2 which are used in
the 2-isogeny evaluation formula. The total cost of this computation is 2S+3A,
where S is the cost of Fp2 squaring and A is the cost of Fp2 addition/subtraction.

2-Isogeny Evaluation. Our new 2-isogeny evaluation formula is shown in
Algorithm 3. The 2-isogeny evaluation pushes a point Q = (XQ : ZQ) on elliptic



Algorithm 2: Computing the 2-isogenous curve

function 2_iso_curve
Input: P2 = (XP2 ZP2), where P2 has exact order 2 on Montgomery curve

EA,C

Output: (A+
24 : C24) ∼ (A′ + 2C′ 4C′) corresponding to

EA′,C′ = EA,C/〈P2〉, and constants (K1,K2) ∈ (F2
p)

2

1 A+
24 ← X2

P2
,

2 C24 ← Z2
P2
,

3 A+
24 ← C24 −A+

24,
4 K1 ← XP2 − ZP2 ,

5 K2 ← XP2 + ZP2 ,

6 return A+
24, C24, (K1,K2)

Algorithm 3: Evaluating a 2-isogeny at a point

function 2_iso_eval

Input: Constants (K1,K2) ∈ (F2
p)

2 from 2_iso_curve, and
Q = (XQ : ZQ) on Montgomery curve EA,C

Output: (X ′Q : Z′Q) corresponding to Q
′ ∈ EA′/C′ , where EA′/C′ is the

curve 2-isogenous to EA/C output from 2_iso_eval

1 t0 ← XQ + ZQ,
2 t1 ← XQ − ZQ,
3 t0 ← t0 ·K1,

4 t1 ← t1 ·K2,
5 t2 ← t1 + t0,
6 t0 ← t1 − t0,

7 X ′Q ← t2 ·XQ,
8 Z′Q ← t0 · ZQ,
9 return Q′ = (X ′Q : Z′Q)

curve E to its 2-isogenous representation Q′ = (XQ′ : ZQ′) on elliptic curve
E′ by using 2-isogeny constants outputted in the 2-isogeny computation. Our
new formula no longer needs the point of order 2 to evaluate the 2-isogeny. We
remark that this formula requires three temporary registers whereas the previous
formula required four. The total cost of this computation is 4M +4A, where M
is the cost of Fp2 multiplication and A is the cost of Fp2 addition/subtraction.

Table 4. Complexity of newly proposed 2-isogeny formulas versus the state-of-
the-art.

Operation #Fp2 Add #Fp2 Sub #Fp2 Mult #Fp2 Sqr #Temporary Values

SIKE Submission [5]

Compute 2 Isogeny 0 1 0 2 0

Evaluate 2 Isogeny 3 3 4 0 4

This Work

Compute 2 Isogeny 1 2 0 2 0

Evaluate 2 Isogeny 2 2 4 0 3

E�ciency of New Formulas. We summarize the cost of our 2-isogeny
formulas versus the SIKE submission's [5] in Table 4. Our new formulas swap
out an Fp2 addition and Fp2 subtraction from the evaluate 2 isogeny formula
to the compute 2 isogeny formula. Since 4 isogenies are more e�cient than



2-isogenies, it is expected that we will only ever compute a single 2-isogeny.
However, with our new method we will evaluate multiple 2-isogenies, resulting
in saving several Fp2 additions and subtractions. Interestingly, our proposed
method uses fewer temporary registers in the 2-isogeny evaluation formula. As
we see in our stack usage, this actually reduces the total stack usage of the
SIKE operations that perform a large-degree isogeny of base degree 2. Given
that this revision of formulas reduces stack size, we recommend its use even if
our large-degree isogeny algorithm is not employed.

5 Benchmarking and Evaluation

Benchmarking Platforms. With this new method for large-degree isogenies
of an odd power, we set out to benchmark it on various platforms. To tar-
get di�erent computing capabilities, we chose SIKE implementations based on
x86-64, ARM64, and ARM32. Our x86-64 platform was on an X1 Carbon 7th
Generation laptop running an Intel Core i7-8565U processor at 1.8 GHz. Our
ARM64 platform was a Raspberry Pi 4B device with 8 GB of RAM running
an ARM Cortex-A72 processor at 1.5 GHz. Lastly, our ARM32 platform is the
STM32F407 Discovery Kit which runs an ARM Cortex-M4 processor at up to
168 MHz. Although we only benchmark on software platforms, our improve-
ments to the large-degree isogenies will most likely provide similar speedups to
hardware and software-hardware designs.

x86/ARM64 Benchmarking. For the x86 and ARM64 devices, we used
Microsoft's SIDH library [15] v3.41 as a base. This provides both SIDH and
SIKE implementations for each of the SIKE parameter sets. Importantly, this
provides optimized low-level arithmetic for both x86 and ARM64 devices. For the
x86 implementation, we disabled TurboBoost. The X1 Carbon 7th Generation
device was running Ubuntu 20.04 and the Raspberry Pi 4 is running Raspberry
Pi OS (64 bit) release built on May 28, 2021. Although the 64-bit Raspberry Pi
OS is still in beta, the ability to employ optimized ARM64 assembly improves
performance. Both platforms utilized GNU GCC version 9.3.0 and were compiled
with -O3.

ARM32 Benchmarking. On the ARM32 side, we used PQCRYPTO's
open-source pqm4 [29] library2. The pqm4 library provides a benchmarking
and testing framework for evaluating post-quantum schemes. It includes ARM
Cortex-M4 implementations of schemes such as SIKE with hand-optimized as-
sembly. In addition, there are simple benchmarking capabilities to analyze perfor-
mance, stack usage, and code-size. Our numbers are obtained with the toolchain
arm-none-eabi-gcc 9.2.1. We note that for speed benchmarking, the Cortex-
M4 is locked to 24 MHz to avoid wait cycles caused by the memory controller.

Library Modi�cations. Both of these above libraries utilize code that orig-
inated in Microsoft's SIDH library and was extended for the SIKE submission
[5]. The basic framework of the libraries, such as the directory structure or

1 Commit @e�a607 of https://github.com/microsoft/PQCrypto-SIDH
2 Commit @844e7ca of https://github.com/mupq/pqm4



function names are generally consistent. Of the four NIST implementations in
SIKE's round 3 package, this new method applies only to SIKEp610, which is
at NIST Level 3. When upgrading these implementations for our new method of
computing a large-degree isogeny, we only edited the ec_isogeny.c for new 2-
isogeny formulas, P610.c for a new large-degree strategy, and sidh.c for Alice's
large-degree isogeny algorithm. All other �les were left untouched.

Table 5. Speedups achieved for SIKEp610 using newly proposed large-degree
isogeny method.

Work
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E+D KeyGen Encap Decap E+D

x86-64 i7-8565U @ 1.8 GHz

Prior 9.5 17.1 17.3 34.5 17.0 30.9 31.2 62.0

This Work 9.5 15.6 16.5 32.0 17.0 28.0 29.7 57.7

Improvement - 10.5% 4.8% 7.5% - 10.5% 4.8% 7.5%

ARM64 ARM Cortex-A72 @ 1.5 GHz

Prior 32.8 60.3 60.6 120.9 49.2 90.4 90.9 181.4

This Work 32.8 54.7 57.9 112.6 49.2 82.1 86.8 168.9

Improvement - 10.2% 4.8% 7.4% - 10.2% 4.8% 7.4%

ARM32 ARM Cortex-M4 @ 24 MHz

Prior 4,972 9,139 9,196 18,335 119.3 219.3 220.7 440.0

This Work 4,972 8,295 8,774 17,069 119.3 199.1 210.6 409.9

Improvement - 10.2% 4.8% 7.4% - 10.2% 4.8% 7.4%

Table 6. Stack and code size improvements on ARM Cortex-M4 for SIKEp610
using newly proposed large-degree isogeny method.

Work
Stack [Bytes] Code Size [Bytes]

KeyGen Encap Decap .text .data .bss

ARM32 ARM Cortex-M4 @ 24 MHz

Prior 10,528 10,952 11,416 29,936 0 0

This Work 10,528 10,624 11,088 29,984 0 0

Improvement [value] - 328 328 -48 - -

Improvement [%] - 3.1% 3.0% -0.16% - -

P610 Speedups. First, we summarize our performance improvements for
SIKEp610 in Table 5. These results target the three major SIKE operations,
including key generation, key encapsulation, and key decapsulation. The �E + D�
column is the sum of the key encapsulation and key decapsulation timings. Since
key generation generally only needs to be performed once, the �E + D� time has
been used as an e�ective measure of SIKE's performance when deployed. Across



the board, key encapsulation is improved by just over 10% and key decapsulation
is improved by just less than 5%, resulting in �E + D� improvement of about
7.5%.

P610 Stack and Code Size. In Table 6, we utilize pqm4 to analyze the
stack usage and code size of our implementation. Interestingly, our approach
reduces the stack usage by 3% for both key encapsulation and decapsulation. Our
modi�cations do include 48 additional bytes for code size, but this is a neglible
amount. Based on the analysis of our new 2-isogeny formulas, we believe our
revised 2-isogeny computation and evaluation formulas are the primary reason
for stack usage improvement. Furthermore, our changes actually impacted the
max stack usage, which means that the large-degree isogeny over base degree 2
consumes the most stack within both key encapsulation and decapsulation.

Table 7. Speedups achieved for SIKEp610_compressed using newly proposed
large-degree isogeny method.

Work
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E+D KeyGen Encap Decap E+D

x86-64 i7-8565U @ 1.8 GHz

Prior 17.2 24.1 18.5 42.6 30.9 43.4 33.3 76.7

This Work 16.3 24.1 17.6 41.7 29.3 43.4 31.7 75.1

Improvement 5.4% - 5.0% 2.1% 5.4% - 5.0% 2.1%

Table 8. Speedups achieved for SIKEp377 and SIKEp546 on x86-64 i7-8565U
platform @ 1.8 GHz using newly proposed large-degree isogeny method.

Work
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E+D KeyGen Encap Decap E+D

SIKEp377

Prior 2.7 5.0 5.0 9.9 4.81 8.92 8.93 17.8

This Work 2.7 4.5 4.7 9.2 4.81 8.07 8.52 16.6

Improvement - 10.5% 4.8% 7.5% - 10.5% 4.8% 7.5%

SIKEp546

Prior 7.2 13.1 13.2 26.3 12.9 23.6 23.7 47.3

This Work 7.2 11.8 12.5 24.3 12.9 21.3 22.5 43.8

Improvement - 10.9% 5.5% 8.1% - 10.9% 5.5% 8.1%

P610 Compressed Speedups. As a further testament to the robustness of
our method, we apply it to the SIKEp610_compressed scheme. SIKE with key
compression actually swaps the order of 2 and 3 isogenies. Now, key generation
and key decapsulation perform the isogeny of base degree 2. Compared to the
uncompressed scheme, SIKEp610_compressed only computes two large-degree



isogenies of base degree 2, one in key generation and one in key decapsula-
tion, whereas SIKEp610(_uncompressed) computes three large-degree isogenies
of base degree 2, two in key encapsulation and one in key decapsulation. Our
results agree with this fact and show a 5.4% improvement in key generation and
a 5.0% improvement in key decapsulation, leading to an �E + D� speedup of
about 2.1%.

New P377 and P546 Speedups. Next, we apply our work to the newly
proposed SIKE parameters featured in [37]. SIKEp377 and SIKEp546 are new
parameter sets targeted at NIST Security Level 1 and 3, respectively. Since this
work only provided implementations targeting x86 implementations, we only
benchmarked it for our x86 platform. SIKEp377 and SIKEp546 timing results are
summarized in Table 8. When comparing these results to the SIKEp610 results,
the same 10% improvement for key encapsulation and 5% improvement for key
decapsulation are achieved. These numbers are so close most likely because all
three implementations feature a similar point multiplication to point evaluation
ratio which is used for �nding a large-degree isogeny strategy.

Table 9. Evaluation of SIKE performance scaling as prime size increases on
x86-64 i7-8565U platform @ 1.8 GHz. Note that SIKEp377, SIKEp546, and
SIKEp610 employ our revised large-degree isogeny method.

SIKE Parameter Set
Timings [ms] Timings [cc · 106]

KeyGen Encap Decap E+D KeyGen Encap Decap E+D

SIKEp377 2.7 4.5 4.7 9.2 4.81 8.07 8.52 16.6

SIKEp434 3.8 6.2 6.7 12.9 6.90 11.2 12.1 23.2

SIKEp503 5.2 8.5 9.2 17.7 9.37 15.4 16.5 31.9

SIKEp546 7.2 11.8 12.5 24.3 12.9 21.3 22.5 43.8

SIKEp610 12.7 21.4 22.7 44.1 22.9 38.6 40.8 79.4

SIKEp751 15.8 25.4 27.3 52.8 28.4 45.8 49.2 95.0

SIKE Performance Scaling. As a �nal evaluation of our method, we ex-
amine the scaling of SIKE performance as the prime size increases. We sum-
marize the results of all SIKE implementations on our x86 platform in Table
9. Our new large-degree isogeny method applies to SIKEp377, SIKEp546, and
SIKEp610. All other schemes have been left unchanged and their performance is
only to analyze scaling. For instance, prior SIKE results in the SIKE submission
[5] show that key encapsulation is several percent faster than key decapsulation.
This trend did not �t for SIKEp610, where key encapsulation and decapsula-
tion results were almost the same. Since our new method accelerates SIKEp610
encapsulation by 10% and decapsulation by 5%, our results now show a several
percent gap between encapsulation and decapsulation.

We visualize the SIKE performance scaling results as a graph in Figure 4. As
a trendline, we added a polynomial of order 2, which generally �ts well. This is
to be expected as the size of the prime dictates the low-level modular arithmetic



Fig. 4. Performance of SIKE versus the size of its prime on x86 platforms.

as well as the size of the large-degree isogeny. Low-level modular arithmetic is
O(p2) for a prime p and the large-degree isogeny is O(e log e), where e = p/2.
Thus, a combined complexity of about O(p3 log p) is achieved. The only blip in
the performance graph is for SIKEp503, which may be because 512 bits �ts very
well in modern processors when computing modular multiplication.

6 Conclusion

In this paper, we proposed, implemented, and evaluated a new method for com-
puting large-degree isogenies of an odd power. Our results accelerated uncom-
pressed SIKEp610 key encapsulation and decapsulation operations by about 10%
and 5%, respectively, also with a 3% improvement in stack usage. This proposed
method is both simple to implement and applicable to a variety of SIKE applica-
tions. Besides SIKE parameter sets, we applied this method to newly proposed
SIKE parameter sets and SIKE key compression. Given the bene�t and simplic-
ity of our approach with very few drawbacks, we recommend this method for
current and emerging SIKE implementations.

7 Acknowledgment

The authors would like to thank the reviewers for their comments.



8 Intellectual property disclosure

Some of these techniques may be covered by US and/or international patents.

References

1. Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Alfred
Menezes, and Francisco Rodríguez-Henríquez. On the cost of computing isogenies
between supersingular elliptic curves. In Carlos Cid and Michael J. Jacobson Jr.,
editors, Selected Areas in Cryptography � SAC 2018, pages 322�343, Cham, 2019.
Springer International Publishing.

2. Gorjan Alagic, Jacob Alperin-Sheri�, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status Report on the Second Round of
the NIST Post-Quantum Cryptography Standardization Process. 2020. NIST IR
8309.

3. Mila Anastasova, Reza Azarderakhsh, and Mehran Moza�ari Kermani. Fast strate-
gies for the implementation of SIKE round 3 on ARM Cortex-M4. IEEE Transac-
tions on Circuits and Systems I: Regular Papers, pages 1�13, 2021.

4. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
Crystals-kyber: Algorithm speci�cations and supporting documentation (version
2.0). Submission to the NIST Post-Quantum Standardization project, 2019.

5. Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik.
Supersingular Isogeny Key Encapsulation. Submission to the NIST Post-Quantum
Standardization project, 2020.

6. Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael
Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. Supersingular
Isogeny Key Encapsulation. Submission to the NIST Post-Quantum Standardiza-
tion Project, 2017.

7. Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and Christopher
Leonardi. Key compression for isogeny-based cryptosystems. In Proceedings of the
3rd ACM International Workshop on ASIA Public-Key Cryptography, pages 1�10,
2016.

8. Reza Azarderakhsh, David Jao, Brian Koziel, Jason T. LeGrow, Vladimir
Soukharev, and Oleg Taraskin. How not to create an isogeny-based PAKE. In
Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, edi-
tors, Applied Cryptography and Network Security - 18th International Conference,
ACNS 2020, Rome, Italy, October 19-22, 2020, Proceedings, Part I, volume 12146
of Lecture Notes in Computer Science, pages 169�186. Springer, 2020.

9. Reza Azarderakhsh, Rami El Khatib, Brian Koziel, and Brandon Langenberg.
Hardware deployment of hybrid PQC. Cryptology ePrint Archive, Report
2021/541, 2021. https://ia.cr/2021/541.

10. Daniel J Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nico-
las Sendrier, et al. Classic McEliece: conservative code-based cryptography. Sub-
mission to the NIST Post-Quantum Standardization project, 2019.



11. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An e�cient post-quantum commutative group action. In Thomas Peyrin
and Steven Galbraith, editors, Advances in Cryptology � ASIACRYPT 2018, pages
395�427, Cham, 2018. Springer International Publishing.

12. Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash
functions from expander graphs. Journal of Cryptology, 22(1):93�113, Jan 2009.

13. Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. Journal of Mathematical Cryptology,
8(1):1�29, 2014.

14. Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David
Urbanik. E�cient compression of SIDH public keys. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
679�706. Springer, 2017.

15. Craig Costello, Patrick Longa, and Michael Naehrig. E�cient algorithms for su-
persingular isogeny Di�e-Hellman. In Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, pages 572�601, 2016.

16. Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia.
Improved classical cryptanalysis of SIKE in practice. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography -
PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-
Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II, volume
12111 of Lecture Notes in Computer Science, pages 505�534. Springer, 2020.

17. Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291, 2006.

18. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptol-
ogy, 8(3):209�247, Sep. 2014.

19. Rami El Khatib, Reza Azarderakhsh, and Mehran Moza�ari-Kermani. Optimized
algorithms and architectures for Montgomery multiplication for post-quantum
cryptography. In International Conference on Cryptology and Network Security,
pages 83�98. Springer, 2019.

20. R. Elkhatib, R. Azarderakhsh, and M. Moza�ari-Kermani. Highly optimized Mont-
gomery multiplier for SIKE primes on FPGA. In 2020 IEEE 27th Symposium on
Computer Arithmetic (ARITH), pages 64�71, 2020.

21. Rami Elkhatib, Reza Azarderakhsh, and Mehran Moza�ari-Kermani. Accelerated
RISC-V for post-quantum SIKE. Cryptology ePrint Archive, Report 2021/597,
2021. https://ia.cr/2021/597.

22. Mohammad-Hossein Farzam, Siavash Bayat-Sarmadi, and Hatameh Mosanaei-
Boorani. Implementation of supersingular isogeny-based Di�e-Hellman and key
encapsulation using an e�cient scheduling. IEEE Transactions on Circuits and
Systems I: Regular Papers, 2020.

23. Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Francisco
Rodríguez-Henríquez. A faster software implementation of the supersingular
isogeny Di�e-Hellman key exchange protocol. IEEE Transactions on Computers,
67(11):1622�1636, 2017.

24. Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. In Advances in Cryptology - ASI-
ACRYPT 2016, pages 63�91, 2016.

25. Steven D. Galbraith, Christophe Petit, and Javier Silva. Identi�cation protocols
and signature schemes based on supersingular isogeny problems. In Advances in
Cryptology � ASIACRYPT 2017, pages 3�33, Cham, 2017.



26. Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on supersingular
isogeny cryptosystems. In Post-Quantum Cryptography : 8th International Work-
shop, PQCrypto 2017, pages 93�106, 2017.

27. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In Post-Quantum Cryptography: 4th International
Workshop, PQCrypto 2011, pages 19�34, 2011.

28. Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM model:
Claw-�nding attacks on SIKE. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceed-
ings, Part I, volume 11692 of Lecture Notes in Computer Science, pages 32�61.
Springer, 2019.

29. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Sto�elen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.

com/mupq/pqm4.
30. B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani. SIKE'd

up: Fast hardware architectures for supersingular isogeny key encapsulation. IEEE
Transactions on Circuits and Systems I: Regular Papers, pages 1�13, 2020.

31. Brian Koziel, Reza Azarderakhsh, and David Jao. An exposure model for super-
singular isogeny Di�e-Hellman key exchange. In Topics in Cryptology - CT-RSA
2018 - The Cryptographers' Track at the RSA Conference 2018, pages 452�469,
2018.

32. Brian Koziel, Reza Azarderakhsh, and David Jao. Side-channel attacks on
quantum-resistant supersingular isogeny Di�e-Hellman. In Selected Areas in Cryp-
tography � SAC 2017, 24th International Conference, pages 64�81, 2018.

33. Brian Koziel, Reza Azarderakhsh, and Mehran Moza�ari-Kermani. Fast hardware
architectures for supersingular isogeny Di�e-Hellman key exchange on FPGA. In
Progress in Cryptology � INDOCRYPT 2016: 17th International Conference on
Cryptology in India, pages 191�206, 2016.

34. Brian Koziel, Reza Azarderakhsh, and Mehran Moza�ari-Kermani. A high-
performance and scalable hardware architecture for isogeny-based cryptography.
IEEE Transactions on Computers, 67(11):1594�1609, Nov 2018.

35. Brian Koziel, Reza Azarderakhsh, Mehran Moza�ari-Kermani, and David Jao.
Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE
Transactions on Circuits and Systems I: Regular Papers, 64(1):86�99, Jan 2017.

36. Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Moza�ari-
Kermani. NEON-SIDH: E�cient implementation of supersingular isogeny Di�e-
Hellman key exchange protocol on ARM. In Cryptology and Network Security:
15th International Conference, CANS 2016, pages 88�103, 2016.

37. Patrick Longa, Wen Wang, and Jakub Szefer. The cost to break SIKE: A com-
parative hardware-based analysis with AES and SHA-3. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology � CRYPTO 2021, pages 402�431, Cham,
2021. Springer International Publishing.

38. Pedro Maat C Massolino, Patrick Longa, Joost Renes, and Lejla Batina. A com-
pact and scalable hardware/software co-design of SIKE. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 245�271, 2020.

39. Michael Naehrig and Joost Renes. Dual isogenies and their application to public-
key compression for isogeny-based cryptography. In Steven D. Galbraith and
Shiho Moriai, editors, Advances in Cryptology � ASIACRYPT 2019, pages 243�
272, Cham, 2019. Springer International Publishing.



40. Geovandro C. C. F. Pereira and Paulo S. L. M. Barreto. Isogeny-based key com-
pression without pairings. In Juan A. Garay, editor, Public-Key Cryptography �
PKC 2021, pages 131�154, Cham, 2021. Springer International Publishing.

41. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.

42. Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh. Super-
singular isogeny key encapsulation (SIKE) round 2 on ARM Cortex-M4. IEEE
Transactions on Computers, pages 1�1, 2020.

43. Hwajeong Seo, Pakize Sanal, Amir Jalali, and Reza Azarderakhsh. Optimized
implementation of SIKE round 2 on 64-bit ARM Cortex-A processors. IEEE Trans.
Circuits Syst. I Regul. Pap., 67-I(8):2659�2671, 2020.

44. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pages 124�134, 1994.

45. Oleg Taraskin, Vladimir Soukharev, David Jao, and Jason T. LeGrow. Towards
isogeny-based password-authenticated key establishment. Journal of Mathematical
Cryptology, 15(1):18�30, 2021.

46. The National Institute of Standards and Technology (NIST). Post-quantum
cryptography standardization, 2017�2018. https://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization.
47. Yan Bo Ti. Fault attack on supersingular isogeny cryptosystems. In Tanja Lange

and Tsuyoshi Takagi, editors, Post-Quantum Cryptography, pages 107�122, Cham,
2017. Springer International Publishing.

48. Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l'Académie
des Sciences Paris Séries A-B, 273:A238�A241, 1971.

49. Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir
Soukharev. A post-quantum digital signature scheme based on supersingular isoge-
nies. In Financial Cryptography and Data Security: 21st International Conference,
FC 2017, pages 163�181, Cham, 2017. Springer International Publishing.


