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Abstract—Cryptographic communication protocols provide
confidentiality, integrity and authentication properties for end-to-
end communication under strong corruption attacks, including,
notably, post-compromise security (PCS). Most protocols are
designed for one-to-one communication. Protocols for group
communication are less common, less efficient, and tend to
provide weaker security guarantees. This is because group
communication poses unique challenges, such as coordinated
key updates, changes to group membership and complex post-
compromise recovery procedures.

We need to tackle this complex challenge as a community.
Thus, the Internet Engineering Task Force (IETF) has created a
working group with the goal of developing a sound standard for
a continuous asynchronous key-exchange protocol for dynamic
groups that is secure and remains efficient for large group sizes.
The current version of the Messaging Layer Security (MLS)
security protocol is in a feature freeze, i.e., no changes are made
in order to provide a stable basis for cryptographic analysis. The
key schedule and TreeKEM design are of particular concern since
they are crucial to distribute and combine several keys to achieve
PCS.

In this work, we provide a computational analysis of the MLS
key schedule, TreeKEM and their composition, as specified in
Draft 11 of the MLS RFC. The analysis is carried out using
the State Separating Proofs methodology [9], and showcases
the flexibility of the approach, enabling us to provide a full
computational analysis shortly after Draft 11 was published.

I. INTRODUCTION

We expect modern-day messaging applications to provide
end-to-end security, guaranteeing confidentiality and authen-
ticity of the transmitted messages. This expectation has been
made a reality over the course of 25 years through the design
of cryptographic protocols, which nowadays guarantee secure
communication, potentially even after a participant’s key is
compromised.

Our everyday communication protocols inherit their security
from the properties of the keys they use, which, in turn, are
established via key-exchange protocols.

Key exchange protocols therefore have been designed to
achieve strong security guarantees: Entity Authentication [4],
[23] ensures that the key is shared only with the intended re-
cipient. Key Indistinguishability [16], [23], in turn, guarantees
that no one but the participants involved has information about
the key. A stronger variant of key indistinguishability called
Forward Secrecy (FS) ensures that short-term communication
keys exchanged in past sessions are secure if a party’s current
state or long-term key gets compromised [23].

With the introduction of continuous key-exchange, for ex-
ample by protocols such as OTR [7] or ZRTP [28], parties
are able to recover from compromise if the adversary remains
passive for a brief period of time. This counterpart to FS was
first described as Post-Compromise Security (PCS) by Cohn-
Gordon et al. [11], [18].

Modern messaging protocols require that messages can be
sent even if a recipient is offline, requiring an asynchronous
protocol. As a consequence, protocol sessions don’t naturally
end when one participant goes offline, leading to sessions that
remain active for months and years. To cover this use-case,
non-interactive key exchange protocols were introduced that
perform key-exchange and entity authentication continuously
even in an asynchronous setting. Most notably, the Signal
protocol [22] (formerly TextSecure) achieves strong FS and
PCS guarantees [13], [11] due to the use of double ratcheting
(formerly Axolotl).

As users of messaging protocols tend to use more than
one device and/or communicate with more than one party
at a time, messaging protocols are commonly required to be
group messaging protocols. This gives rise to the definition of
continuous group key exchange protocols by Alwen et al. [2].
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Figure 1: Key derivation in
group key exchange proto-
col [26]. f encodes a as a
valid exponent.

The first modern, continuous
group key exchange protocol
is based on an Asynchronous
Ratcheting Tree (ART) and was
proposed by Cohn-Gordon et
al. [12]. Similar to an earlier
protocol proposed by Steer et
al. [26] (see Figure 1), it is based
on a binary tree where each
leaf represents a group member.
The secrets of the members are
recursively combined in lower
nodes of the tree such that the
secret in the root node is shared
by all group members. In con-
trast to the protocol proposed by
Steer et al., ART supports FS and PCS guarantees.

MLS. The Message Layer Security (MLS) Working Group
of the Internet Engineering Task Force (IETF) aims to create
a new continuous, asynchronous group key-exchange proto-
col [3] that is efficient even for large groups [25]. To achieve
this, the current draft makes use of the TreeKEM [6] protocol.

In short, TreeKEM, which is inspired by ART, is a continu-
ous group key distribution based on a tree structure where each
leaf node represents a member’s Key Encapsulation Method
(KEM) key pair and all other nodes represent a secret value
and KEM key pair shared by the members in the node’s sub-
tree. As a result, secrets can be shared efficiently by encrypting
it to individual subtrees. The secret value at the root node of
the tree is a secret shared by the entire group.

Each member can update their keying material by updating
the key pairs and values of their leaf-to-root path, and transfer
the new key material to all other members efficiently by
encrypting it to the set of subtrees below the path nodes. Each
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member can also remove a member or add a new member,
and update the key material so that previous group members
cannot access key material any longer. In Section IV, we
explain TreeKEM in more detail. The updating of keys allows
members to achieve PCS and FS similar to ART.

Note that TreeKEM does not have an internal mechanism
for members to reconcile differing views of individual groups
and thus relies on members agreeing on a total order of group
operations. One straightforward way of achieving this is a
central distribution service enforcing that order.

Once a new secret value is distributed via TreeKEM, MLS
combines the new secret with existing key material used for
communication. From these two keys, a new communication
key is derived for the next epoch. In addition, key derivation
includes information about the group and, optionally, allows
to inject one or more external keys. The combination of keys
allows MLS to achieve PCS and FS guarantees, and the
inclusion of group parameters such as membership ensures
agreement on said parameters. The processing and combining
of the key material and context information is described in the
MLS key schedule.

Related Work. Earlier versions of the MLS RFC have
been analyzed in several works [1], [2], [15], [27]. Alwen
et al. [1] propose an alternative to TreeKEM, named Tainted
TreeKEM, which replaces blank nodes (node without keys,
see Section IV) by so-called tainted nodes. In contrast to
a blank node, the keys of a tainted node are still used. A
tainted node will be blank after the entity that tainted the node
updates their keying material. In doing so, depending on the
distribution of add and remove operations, updates are more
efficient compared to TreeKEM.

Weidner [27] proposes an alternative version of TreeKEM,
named Causal TreeKEM, that does not require a strict total
order of group operations. Where the MLS RFC assumes a
trusted server that can enforce ordering of messages because
key updates overwrite existing keys, Causal TreeKEM does
not have this requirement because it uses keying material that
can be combined in an arbitrary order. However, this requires
keying material that can be combined in an associative and
commutative manner, such as Diffie-Hellman shares. MLS
instead opts for higher modularity with a KEM approach,
where the underlying encryption scheme can be changed
if needed. Specifically, TreeKEM can achieve post-quantum
security by choosing an appropriate KEM scheme, which is
not possible in causal TreeKEM.

In [15], a comparison between MLS and a straightforward
group messaging protocol made of 1:1 Signal sessions, reveals
that in the 1:1 setting, authentication can be healed, while, in
the group setting, MLS never heals authentication thus weak-
ening PCS guarantees in the case of signature key corruptions.

Relatedly, Alwen et al. [2] show that the Forward Secrecy
(FS) guarantees of MLS are relatively weak. An update to the
keying material of one client will leave the group vulnerable
w.r.t. FS from other corrupted clients. Therefore, in the worst
case, FS is only achieved if every group member updates their
keying material. To mitigate this shortcoming, Alwen et al.
propose to use a PKE scheme in TreeKEM where keys are
updated with every encryption and decryption operation. The

proposal was not integrated into MLS due to concerns that
supporting homomorphism is not compatible with considering
the KEM as a black-box primitive.

Contributions. In this work, we study the security claims
made in Draft 11 of the MLS RFC via a cryptographic analysis
of TreeKEM, the MLS key schedule and their composition.
Key schedule analysis was implicitly suggested in Krawczyk’s
study of Sigma protocols [19] and used for the analysis
of TLS 1.3 [8]. We develop security models for TreeKEM,
the key schedule and their composition. Interestingly, our
models themselves are composable, and the composed model
is derived from the composition of the TreeKEM model and
the key schedule model. This composability feature is enabled
via the use of the State Separating Proofs methodology [9]
which specifies security models via modular pseudocode and
enables code reuse (see Section V for details).

Our model allows the adversary to corrupt all base secrets
statically, and to decide to corrupt derived keys upon derivation
(CUD). This corruption model simplifies the security analy-
sis (in comparison to fully adaptive corruption) and models
the intended security of MLS in a meaningful way. Firstly,
adaptive corruption of long-term secrets is most relevant for
signing keys, which are outside the scope of this work.
Secondly, as session states are intended to be rather short-
lived, dynamically corrupting old sessions should be difficult
in practice. Thirdly, in light of the impossibility result of non-
committing encryption [24], our model seems close to the
strongest possible security which can be provably achieved
without random oracles.

We establish that the keys produced by TreeKEM and the
key schedule of MLS are pseudorandom in the CUD corrup-
tion model. We make standard key indistinguishability and
collision-resistance assumptions on the key derivation func-
tions (KDF) and assume indistinguishability under chosen-
ciphertext attacks (IND-CCA) secure public-key encryption,
as well as that the Extract function in Krawczyk’s HKDF
design [20] is a dual pseudorandom function and thus, HKDF
is a dual KDF, which has also been assumed in the analysis
of Noise [17] and TLS 1.3 [8]. Additionally, we assume that
all primitives are collision-resistant. Following the approach
of [10], [8], we model the security of our symmetric primitives
as multi-instance primitives with static corruptions. Jumping
ahead, based on our analysis, we suggest to include the group
context into the derivation of the joiner secret [14] in order to
strengthen its uniqueness properties.

We rely on modular proofs and pseudocode-reuse as spec-
ified by the state-separating proofs (SSP) methodology [9].
SSPs allow us to iterate the proof quickly as the MLS draft
is developed. Given an initial model of the protocol, we make
and verify incremental changes to the model with relative ease.
This is what allows us to release this analysis of the protocol
shortly after the current feature freeze and it will also allow
us to quickly analyse the security of future features.

Overview. Section II introduces notation. Section III pro-
vides syntax for continuous key distribution and key schedule.
Section IV explains the TreeKEM, the MLS key schedule and
their composition. Section V introduces the state-separating
proofs methodology and our assumptions. Section VI explains
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our security model, Section VII states our three main theorems,
and Section VIII and the appendix contain the proofs.

II. PRELIMINARIES AND NOTATION

Binary Trees. A binary tree is a finite, connected, and
directed graph with a single source — called root — such that
each node has at most two outgoing edges. For two nodes n0
and n1, if there is an edge n0 → n1, then we call n0 the parent
of n1 and n1 the child of n0. All nodes which can be reached
from n0 are its descendants, and all nodes from which n1
can be reached are its ancestors. Every node can be reached
starting from the root, and we call the set of ancestors of a
leaf node its direct path. We allow for nodes to be marked
as blank (the marking will later take on the meaning of no
associated data). We call the co-path a list of the closest non-
blank descendent nodes of the nodes along the direct path.

We leave the encoding of the tree abstract in this paper and
only assume that given the size of a tree and the index i of a
node, we can find the indices of its direct path.

Notation. We use pseudocode to describe algorithms. We
denote sets and tables by capital letters, e.g. S or T . We denote
algorithms in lowercase and sans serif. x ← a assigns value
a to variable x, and x ← algo(a) runs algo on value a and
assigns the result to variable x. When algo is a randomized
algorithm, x←$ algo(a) runs algo on value a with fresh
randomness and assigns the result to variable x. When S is
a set, x←$S samples a uniformly random value from S and
assigns that value to variable x. A common set is {0, 1}λ, the
set of bitstrings of length λ. We use a for a vector of variables,
and x

vec← algo(a) means, we run algo separately on each value
in the vector a and then assign the results to the corresponding
indices in vector x . Analogously, x

vec $← S means that we
sample each value in the vector x independently and uniformly
at random. For two tables T and U , the operation T

merge← U
overwrites values T [i] by values U [i] whenever U [i] is defined,
and the operation T

rem← U removes all values T [i] from T
where U [i] is defined. assert cond abbreviates that a special
error message is sent unless cond holds.

III. CONTINUOUS GROUP KEY DISTRIBUTION

A continuous group key distribution protocol (CGKD) al-
lows a group of users to maintain a continuous session which
• distributes a secret value among group members in each

epoch;
• allows for efficient updates to the key material of a

member and the group;
• allows for efficiently adding new clients to the group;
• allows for efficiently removing members from the group.

Assuming pseudorandomness and uniqueness of input keys, a
CGKD achieves pseudorandomness and uniqueness of output
keys. It does not model signatures and attacks against authen-
tication, but instead allows the adversary to combine keys
(almost) arbitrarily. This way, we can model the important
security property of post-compromise security (PCS), which
demands that if key material of a user gets corrupted (and the
adversary learns the session key), the security of the protocol

Input Description U P J
PKmem current public view of the group • • •
PK rem public key(s) to remove • •
PK joi public key(s) to add • •
PK upd new public key(s) of updater •
SK own own current secret key(s) • • •
iown own index • • •
iupd updater’s index • •
kupd seed for updating ◦
CP indices in PKmem to encrypt to •
pk ext external public key ◦
sext external secret randomness(es) • • •
sint internal secret randomness(es) • •
ctx public context • • •
c ciphertext from a member ◦ •/◦
cext ciphertext from an outsider ◦
Output Description U P J
CCP ciphertext(s) for members •
Cjoi ciphertext(s) for joiners •
cext ciphertext from outsider ◦
PK ′upd new public key(s) of updater •
PK ′mem new view of the group • • •
SK ′own new own secret key(s) • • •
k new shared secret key(s) • • •
s′int new sint for the next update • • •
pk ′ext new external public key • • •

Figure 2: • and ◦ indicate the value can be an input/output
of the algorithms of cgkd and wcgkd according to our syntax,
with grey rows only available in cgkd. Values marked by ◦ are
optional; the algorithm might behave differently if provided.
Input c is required for join but optional for wjoin.

can recover. This section introduces the syntax of a CGKD, the
syntax of a weak variant of continuous group key distribution
(wCGKD) and the syntax of a key schedule (KS). The main
difference between a CGKD and a wCGKD is that the group
keys of a wCGKD are corrupt whenever one group member’s
current private keys are corrupted. This property is, indeed,
rather weak, since in large groups, individual members might
use weak randomness, and for insecurity, it suffices if a single
member of the group relies on weak randomness for generating
their current own keys. In turn, a (strong) CGKD relies on key
material which is chained across epochs. If the key material
from a previous epoch was secure, then security in the current
epoch is maintained—unless the key material is leaked by
encrypting it to a client with corrupt keys that joins the group.
As we will see for MLS, a wCGKD can be combined with a
key schedule to obtain a CGKD. We now first introduce the
syntax of a CGKD, a wCGKD and a KS and then elaborate
how this syntax reflects MLS.

Updates of the key material are initiated by one group
member and are modeled in the (w)update algorithm in
(w)CGKD. In order for other group members to keep their key
material in sync with an updating party, they need to process
the messages generated by the update algorithm. Since new
group members might perform processing in different way
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Figure 3: The tree represents a group with members A, B, C,
D, E, G and H. Inside a node, we display TreeKEM secrets
known to members in the corresponding sub-tree. The blue
values are used in the derivation and not stored long-term.

than existing group members, the join algorithm models the
computation performed by new joiners. Last, but not least,
pke.kgen allows to generate new public keys.

Definition III.1 (CGKD). A continuous group key dis-
tribution (CGKD) cgkd consists of four PPT algorithms
(pke.kgen, update, process, join) with inputs and outputs as
specified by Figure 2 that satisfy the correctness criteria Valid
Keys, Consistent Public Views and Consistent Secret Views.

Valid Keys demands that all (sk , pk) returned by the algo-
rithms are in the range of pke.kgen. Consistent Public Views
captures that different group members have consistent views
on the public-keys of each node as well as of the external
public-key pkext . Consistent Secret Views requires that each
pair of group members agrees on 1) the values of k and s ′int , 2)
the value of the external secret-key skext and 3) the secret keys
associated with the nodes the direct path of group members.

Definition III.2 (wCGKD). A weak continuous group key
distribution (wCGKD) wcgkd consists of four PPT algorithms
(pke.kgen,wupdate,wprocess,wjoin) with inputs and outputs
as specified by Figure 2 such that the correctness criteria Valid
Keys, Consistent Public Views and Consistent Secret Views are
satisfied.

The correctness criteria are the same, except that they are
restricted to the inputs and outputs of wcgkd (Figure 2).

Definition III.3 (KS). A key schedule ks takes as input three
symmetric keys kcs , sint , and sext , a vector of labels lbl and a
context value ctx . It returns a secret key klbl for each lbl ∈ lbl ,
a new key sint , a pair (sk , pk), key kjoi and key kwel .

ks(kcs , sint , sext , lbl , ctx )

kjoi ← kdf(kcs, sint , (“joiner”, ctx ))

(s ′int , k lbl , kwel , pk
′
ext , sk

′
ext)

← subks(kjoi, sext , (lbl , ctx ))

return (s ′int , k lbl , kwel , kjoi ,

pkext , skext)

dn(ps)

ps ′ ← xpd(ps, “path”)
ns ← xpd(ps, “node”)
(pk , sk)← dkp(ns)

return (ps ′, pk , sk)

subks(kjoi, sext , lbl , ctx )

kepc ← kdf(sext , kjoi, (“epoch”, ctx ))
kwel ← kdf(sext , kjoi, (“welcome”, “⊥”))
sint′ ← xpd(kepc , (“init”, “⊥”))

k lbl

vec← xpd(kepc , (lbl , “⊥”))
kexs ← xpd(kepc , (“external”, “⊥”))

(pk ′ext , sk
′
ext)← dkp(kexs)

return (s ′int , k lbl , kwel , kjoi , pkext , skext)

Figure 4: The MLS Key Schedule algorithm (ks) and the MLS
Derive Node algorithm (dn).

IV. MESSAGING LAYER SECURITY (MLS)

In this section, we describe MLS and explain how CGKD,
wCGKD and KS can be used to model MLS.

MLS Key Schedule. The purpose of the key schedule is to
combine existing key material into new key material and, in
particular, to chain keys across epochs via the internal key sint ,
which is referred to as the init secret in MLS terminology. In
addition, the MLS key schedule allows to combine sint with
an external key sext , PSK in the MLS RFC, and a commit
secret kcs , which is derived via the MLS wCGKD. We abstract
away the details of how MLS pre-processes the external key
material in case that several external keys are combined and
work directly with a single sext .

The MLS key schedule ks uses a key derivation function
(KDF) which is constructed based on an extract (XTR) and
an expand (XPD) function, following Krawczyk’s HKDF
standard [20]. ks chains two full KDFs and then a single XPD
function, see top of Figure 3. In OPTLS [21], it was suggested
to use the salt position in HKDF to combine two keys, and
therefore, the chained call of two KDFs allows to combine the
aforementioned three secrets sint , sext , and kcs . See Figure 4
for the code of the MLS Key Schedule algorithm ks. It is
split into a KDF call and a call to the subks procedure since,
jumping ahead, the join algorithm of the MLS CGKD only
uses subks rather than the full ks. The splitting is useful, since
join only knows kjoi, but not kcs . The key schedule derives
several secrets and, in particular, uses one of the secrets as
input to a key pair derivation function (DKP), which is a
deterministic algorithm that corresponds to running pke.kgen
using its input as explicit randomness. We now turn to the
MLS wCGKD.

MLS wCGKD. The MLS wCGKD is called TreeKEM, and
we use the terms MLS wCGKD and TreeKEM interchange-
ably in this work. The main purpose of TreeKEM is to provide
new kcs values to ks. I.e., kcs is fresh key material which is
shared between all group members. As the name suggests, key
material in TreeKEM is structured and stored in a tree data
structure. The leaf nodes of the tree represent group members,
the other nodes represent shared secrets known by members
in the subtree, i.e., members which correspond to the leaves in
the subtree below a node. E.g., kcs is shared by all members of
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Figure 5: Visualisation of a member A updating their their key material. (a) shows the tree for the group. (b) shows the tree
during the update, highlighting the direct path in black and the co-path in dark grey. (c) shows the tree during the update if
there are blank nodes in the tree.

the group and indeed derived from the value ps which is stored
at the root of the tree. Figure 3 illustrates the data associated
with each node as well as the members to which the secret
node data is known. Every node in the tree has associated
with it a KEM key pair known to the members represented
by the leaves in the sub-tree. To share a secret value with
some members, a member can encrypt the value either to the
public key of a node whose secret key all intended members
know or encrypt to several public keys for a more fine-grained
information-sharing.

The main sub-procedure of the TreeKEM is the
Derive Node procedure dn, see Figure 3 and Figure 4. dn uses
an expand function (XPD) and a key encapsulation method
(KEM) as building blocks. dn takes as input the secret of a
node, referred to as the path secret psi of node i, and uses
XPD to derive two random values: The path secret psp(i)
(where p(i) refers to the parent of node i) and randomness
for (DKP) to computes a KEM key pair (pk i, sk i) associated
with node i.

Roughly, in the tree of Figure 3, each arrow can be
interpreted as a possible application of dn with the restriction
that if a node i has two non-blank children, then its path secret
was only derived from one of them. The keys associated with
each node evolve over time via updates which start from a
leaf node and proceed along the direct path to the root. The
path secret psi of a node i is derived from the child which
was last contained in the direct path of an update.

We next explain key updates. In addition, one can also
combine an update with the adding and/or the removing of one
or more members. While adding and removing is implemented
simultaneously —see Figure 9 for the pseudocode of update—
we describe the conceptual idea for each separately below.
Updating Key Material. Consider the group represented by
the tree in Figure 5a. The group member Alice (A) can update
the group secret by the following process. First, A samples
a random value kupd for the key update and uses it as the
new path secret associated with A’s leaf node, i.e., ps ← kupd.
Then, Alice runs (ps ′, pk , sk) ← dn(ps) and stores pk in
PK ′mem [icur ] and PK upd [icur ], where icur is the index of
Alice’s leaf node, PK ′mem is a table which represents Alice’s
view of the public keys of the group members, and PK upd

is a table which contains the public-keys that Alice will tell

other group members to change. Additionally, Alice also stores
the secret key in SK ′own [icur]. SK is a table of secret keys
which Alice knows. Then, Alice computes the parent index
of icur and proceeds in the same way for the parent index:
First, she computes (ps ′′, pk , sk) ← dn(ps′), then stores pk
and sk in the adequate tables, then moves to the parent node
and applies dn to ps ′′ etc. until reaching the root node. This
loop is captured by dopath in Figure 9—it is only executed if
kupd is non-empty. In the end, Alice has replaced all the path
secrets, public-keys and secret-keys of the direct path, marked
in black in Figure 5b.

As only Alice knows the path secrets used along this path,
she now also shares the path secret with the other group
members. Thus, for each node icur on her direct path, she
considers the child ichild of icur which is not on her direct path
(but, instead, is on the co-path) and encrypts the path secret of
icur under PKmem [ichild ], the public-key associated with this
node. In this way, the entire sub-tree below PKmem[ichild ] can
decrypt the ciphertext. In Figure 5b, the co-path is marked in
grey, i.e., for each grey node, Alice encrypts to the public-key
associated with it.

Figure 5a and Figure 5b now illustrate a case where there are
no blank nodes in the tree—blank nodes are nodes which do
not have data associated with it. Figure 5c depicts the case that
the tree contains some blank nodes. In this case, Alice encrypts
to the nodes marked in grey in Figure 5c. Note that we
nevertheless refer to these nodes as co-path even though our
co-path definition does not coincide with the graph-theoretic
notion of co-path. In order to simplify the computation of the
co-path, we give a description of the co-path CP as input to
update. CP is a list of sets, i.e., for each tree index i, CP [i]
contains a set of the indices to which Alice needs to encrypt.

Adding a New Member. There are two ways to add a
new member. One can either add a member in an add-only
operation, or one can add a member and perform an update
at the same time. (In this case, one can also remove members
simultaneously, but let us ignore this operation for now.) When
performing an add operation, we either find the left-most
empty leaf node (there might be empty leaf nodes due to
previous removals) or, if the tree is full, we replace a leaf
node by a 3-node sub-tree. E.g., consider the original group
in Figure 6a. Here, to add Henry (H) to this group, the group
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Figure 6: Visualisation of adding a new member to a group. (a) shows the tree for the original group. (b) shows the tree with H
added to the group in an add-only operation, highlighting blanked nodes in white. (c) shows the tree for the update performed
by A, highlighting the direct path in black and the co-path in dark grey. Note that H’s unmerged leaf is part of the co-path.
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Figure 7: Visualisation of removing a member from a group. (a) shows the tree for the original group. (b) shows the tree with
H removed. (c) shows the tree for the update after the removal, highlighting the direct path in black and the co-path in dark
grey. Blanked nodes are highlighted in white in both (b) and (c).

member Alice (A) blanks Bob’s (B) node, creates below it a
node for H and a new node for B and associates H’s node
with a KEM public-key which Alice knows belong to H, and
associates B’s new node with the same public-key which B
had before. Moreover, Alice runs the key schedule with an
empty kupd and encrypts kjoi to H.

In the case that A wants to simultaneously perform an update
of the key material, she now updates her path as described
in Section IV and encrypts the relevant path-secrets to the
co-path, marked in grey. Again, the co-path is not the graph-
theoretic co-path, since A needs to encrypt a message to H
separately. In addition to sharing the relevant path secrets with
the co-path, A also encrypts the joiner secret kjoi derived via
the MLS Key Schedule (see Figure 3 and Figure 4) to H.
Recall that the dopath procedure in Figure 9 is only executed
if kupd is a non-empty variable. If kupd is empty and an add-
only is performed, the computations are performed in the same
way except that kcs is now a fixed zero value. It is important
to execute the ks function also in an add-only operation to
ensure that the new joiners cannot read messages from the
time before they joined.

A special case is the situation where the add operation is
not performed from inside the group, but instead, an outside
member adds itself to the group. In this case, the external
group public-key pkext is used (marked in red in Figure 9) to
transmit sint . Note that the red code is only run if pkext is
non-empty, which requires that kupd is non-empty, too.

Removing a Member. Consider the group represented by the
tree in Figure 7a. To remove a group member Henry (H) from
this group, the group member Alice (A) blanks the nodes on
the path from node H to the root, shown in Figure 7b. As a
result, a co-path that included those nodes before, now, instead
includes their non-blank child nodes.

Notice that the removal by itself does not update the group
secret and therefore, A also needs to perform an update to
ensure that H cannot decrypt messages sent by group members
anymore. The requirement to perform an update is captured
by

if |PK rem | > 0 : assert kupd 6=⊥

in line 2 of the update procedure in Figure 9. As the tree now
contains blanked nodes, the path secrets along the new direct
path must be encrypted under the keys of a larger co-path, as
shown in Figure 7c.

MLS CGKD. Combining TreeKEM and ks as depicted in
Figure 3 yields the MLS CGKD. Note that the MLS CGKD
achieves significantly stronger security properties than the
wCGKD. Namely, freshness in the wCGKD is violated if any
of the group keys are compromised (and not yet updated),
see left side of Figure 8. In turn, the MLS CGKD also yields
security if the sext or the sint from a previous epoch are fresh.
See Figure 9 for the pseudocode of the update procedure and
Figure 8 for its freshness.
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own keys(PKmem ,PK rem,
PK joi ,SK own ,
kupd, pkext , sext , sint)

if !fresh(kupd):

return all corrupt

PK ′mem ← PKmem

PK ′mem
rem← PK rem

PK ′mem
merge← PK joi

F ← [ ]

fresh← 1

for icur, ∈ SK own:

for inod ∈ CP [icur]:

if !fresh(PK ′mem[inod]):

fresh← 0

F [icur]← fresh

return F

grp keys(PKmem ,PK rem,
PK joi ,SK own ,
kupd, pkext , sext , sint)

if fresh(sint) ∧ fresh(pkext):

return 1

if fresh(sext):

return 1

if 0 /∈ own keys(. . .):

return 1

return 0

Figure 8: Freshness conditions of the MLS Key Distribution.

The algorithms process and join update their key material
consistently with update. I.e., the ciphertexts Ccp and the list
of changes to the public-key information PK rem , PK joi and
PK upd suffice for process to derive the same values as update.
Similarly, the ciphertexts Cadd and the view of the entire new
tree PKmem suffice to allow the join procedure to derive the
same values. See Figure 9 for their code.

V. ASSUMPTIONS

Game-Based Security Notions. We formulate security
properties via indistinguishability between games, a real game
which models the real behaviour of a cryptographic primitive,
and an ideal game which models an ideally secure variant of
the primitive. For example, security of a pseudorandom func-
tion is captured by demanding that the input-output behaviour
of the (keyed) pseudorandom function is indistinguishable
from the input-output behavior of a truly random function
which draws a uniformly random output for each input.

Especially since Bellare and Rogaway promoted code-based
game-hopping [5], it has been popular to formulate games in
pseudocode, and we follow this approach here. I.e., a game G
provides a set of oracles to the adversary A, these oracles are
specified by pseudocode and operate on a common state which
is secret to the adversary. This hidden state might contain,
e.g., a secret key. In this work, we denote by A ◦ G that
the adversary A interacts with the oracles of game G. I.e.,
the adversary is the main procedure that makes queries to
the oracles of G, which returns an answer to A, and then,
in the end, the adversary A returns a bit indicating their
guess whether the game is indeed real or ideal. The advantage
AdvG0,G1(A) measures an adversary A’s ability to distinguish
between G0 (real) and G1 (ideal).

Definition V.1 (Advantage). For an adversary A and two
games G0,G1, the advantage AdvG0,G1(A) denotes the term∣∣Pr[1 = A ◦ G0

]
− Pr

[
1 = A ◦ G1

]∣∣ .
We formulate security statements by relating advantages.

E.g., we upper bound an adversary A’s advantage against a
game pair for MLS key distribution security by an adversary

update(PKmem ,PK rem ,PK joi ,
SK own , iown , kupd ,CP ,
pkext , sext , sint , ctx )

if |PK rem | > 0 ∨ pkext 6=⊥:
assert kupd 6=⊥

(Ccp ,PK
′
upd ,PK

′
mem ,SK

′
own , kcs)

← wupdate(PKmem ,PK rem ,

PK joi ,SK own , iown , kupd ,CP)

cext ←$ pke.enc(pkext , sint)

(s ′int , k lbl , kjoi , pk
′
ext , sk

′
ext)

← ks(kcs , sint , sext , lbl , ctx )

SK ′own [−1]← sk ′ext

Cjoi ← [ ]

for inod , pk ∈ PK joi :

Cjoi [inod ]←$ pke.enc(pk , kjoi)

return (Ccp ,Cjoi , cext ,PK
′
upd ,

PK ′mem ,SK
′
own , k lbl , s

′
int , pk

′
ext)

dopath(PKmem , icur , kupd ,CP)

Ccp ← [ ]

PK ′own ,SK
′
own ← [ ], [ ]

ps ← kupd

while icur 6=⊥:
(ps′, pk , sk)← dn(ps)

PK ′own [icur ]← pk

SK ′own [icur ]← sk

if icur 6= iown :

for inod ∈ CP [icur ]:

pknod ← PKmem[inod ]

c←$ pke.enc(pknod , ps
′)

Ccp [inod ]← c

icur ← parent(icur , |PKmem |)
ps ← ps ′

return (Ccp ,PK
′
own ,SK

′
own , ps)

process(PKmem ,PK rem ,PK joi ,
PK upd ,SK own , inod , iupd ,
sext , sint , ctx , c, cext)

(PK ′mem ,SK
′
own , kcs)←

wprocess(PKmem ,PK rem ,PK joi ,

PK upd ,SK own , inod , iupd , c)

sint ← pke.dec(SK own [−1], cext)
assert sint 6=⊥
(s ′int , k lbl , , pk

′
ext , sk

′
ext)

← ks(kcs , sint , sext , lbl , ctx )

SK ′own [−1]← sk ′ext

return (PK ′mem ,SK
′
own , k lbl , s

′
int , pk

′
ext)

join(PKmem ,SK own , iown , iupd , sext ,
ctx , c)

SK ′own ← SK own

skown ← SK ′own [iown ]

kjoi ← pke.dec(skown , c)

assert kjoi 6=⊥
(s ′int , k lbl , , pk

′
ext , sk

′
ext)

← subks(kjoi , sext , lbl , ctx )

SK ′own [−1]← sk ′ext

return (PKmem ,SK
′
own , k lbl , s

′
int , pk

′
ext)

wupdate(PKmem ,PK rem ,PK joi ,
SK own , iown , kupd ,CP)

kcs ← 0

PK ′mem ← PKmem

PK ′mem
rem← PK rem

PK ′mem
merge← PK joi

Ccp,PK
′
upd ← [ ], [ ]

SK ′own ← SK own

for i ∈ directpath(iown , |PKmem |):
PK upd [i]← PK ′mem[i]

(Ccp ,PK
′
upd ,SK

′
own , kcs)

← dopath(PK ′mem , iown , kupd ,CP)

PK ′mem
merge← PK ′upd

return (Ccp ,PK
′
upd ,PK

′
mem ,SK

′
own , kcs)

Figure 9: Procedures update, process, join, and wupdate.

B’s advantage against a game pair for the base primitive
security. Importantly, the runtime of A and B will be similar.
Namely, we often write B as A ◦R where R is referred to as a
reduction which translates A’s oracle queries to its own game
(in this case, the game pair for MLS key distribution security)
into oracle queries to the game for the base primitive.

State-Separating Proofs. The previous description lacks a
natural way to compose games. However, if games are not
described as a single block of pseudocode but rather sliced
into individual packages of code, then the same package of
code can be reused. This notion of code-reuse, together with
a separate state for each package results in a natural notion of
package composition to form games.

A frequent example of a natural, re-usable code package
is the KEY package described in Figure 10. Cryptographic
primitives often share key material (e.g., in the MLS key
schedule, KDF produces outputs which become keys of KDF
which produces outputs which become keys of XPD etc., see
Figure 3). Now, if KDF computes keys and stores them in
a KEY package using the SET oracle, then XPD can retrieve
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KEYb,λ

Package Parameters

b: idealization bit
λ: key length

Package State

K[h 7→ k]: key table
H[h 7→ b]: honesty table

SET(h, hon, s)

assert |s| = λ

if K[h] 6=⊥:
return h

if b ∧ hon:

s ←$ {0, 1}λ

UNQ(h, hon, s)

K[h]← s

H[h]← hon

return h

REG(hon, s)

assert |s| = λ

i ← index(KEY)

h ← reg〈|K| , i〉
if K[h] 6=⊥:

return h

if hon:

s ←$ {0, 1}λ

UNQ(h, hon, s)

K[h]← s

H[h]← hon

return h

GET(h)

assert K[h] 6=⊥
return K[h]

CGET(h)

assert H[h] = 0

return K[h]

HON(h)

assert H[h] 6=⊥
return H[h]

LOGb

Package Parameters

b: idealization bit

Package State

L: log table

UNQ(h, hon, s)

if L[h] 6= ⊥ :

(h′, hon ′, s′)← L[h]

assert s′ = s

if hon′ = hon:

return h′

for (h′, hon′, s′) ∈ L
with s = s′:

r ← (level(h) = set)

r′ ← (level(h′) = set)

if r 6= r′ ∧ M [s] = ⊥
∧ hon = hon ′ = 0:

M [s]← 1

L[h]← (h′, hon, s)

return h′

if hon = hon′ = 0

∧ r = r′: abort

if b ∧ r = r′ = 1:

abort

Log[h]← (h, hon, s)

return h

Figure 10: Definition of the KEY and LOG package, where
reg〈·〉 is an injective handle constructor, creating a tuple from
the inputs.

them via the GET oracle.
We now explain how to use KEY packages to model security.

Figure 12 and Figure 13 describe the security games for KDF,
XPD and HPKE, decomposed into several packages. For KDF
and XPD, the upper KEY models the input key, the lower KEY
package models the output keys. KDF and XPD are stateless
packages, (see Figure 12d) which retrieve an input key from
the upper KEY package, perform a computation, and store the
result in the lower KEY package. The lower KEY package
models security, namely pseudorandomness of the output keys.

Recall that our security notion aims to capture that output
keys are indistinguishable from uniformly random values of
the same length. Thus, if b = 0 in KEYb,λ, the concrete key
values are stored, and if b = 1 in KEYb,λ, then uniformly
random keys of the same length are drawn. Finally, the
adversary can retrieve the output keys via the GET oracle.

Note, that we want to model multi-instance security, where
some of the keys might be known to the adversary. We track
the adversary’s knowledge of a key by marking the key as
dishonest (sometimes also called corrupt). In that case we will
say that the honesty value hon is 0. In turn, for honest keys,
hon is 1. In the case that hon = 0, the concrete keys (i.e. the
real result of the key computations) are stored regardless of
whether b = 1 or b = 0. Concretely, we model multi-instance
security with static corruptions on the input keys and corrupt-

PKEYb,pke

Package Parameters

b: idealization bit
pke: pub. key enc. sch.

Package State

K[h 7→ k]: key table
H[h 7→ b]: honesty table
Q[h 7→ h]: handle table

SET(h, hon, pk , sk)

assert pke.valid(pk , sk)
if Q[h] 6=⊥:
return Q[h]

if b ∧ hon:
(pk , sk)←$ pke.kgen()

h′ ← (h, pk)

UNQ(h′, hon, sk)

K[h′]← sk

H[h′]← hon

Q[h]← h′

return h′

REG(hon, pk , sk)

assert pke.valid(pk , sk)

if hon:

(pk , sk)←$ pke.kgen()

h′ ← reg〈(|K|, pk)〉
UNQ(h′, hon, sk)

K[h′]← sk

H[h′]← hon

Q[h]← h′

return h′

GET(h)

assert K[h] 6=⊥
return K[h]

CGET(h)

assert H[h] = 0

return K[h]

HON(h)

assert H[h] 6=⊥
return H[h]

Figure 11: Definition of the PKEY package. reg〈·〉 is an
injective handle constructor, creating a tuple from the inputs.

upon-derivation (CUD) on the output keys. If all input keys
are corrupt, then the output value is marked as corrupt as well.
Moreover, if the adversary uses hon = 0 as a parameter in its
oracle query to EVAL, then the key will be marked as corrupt,
too. Else, keys are marked as honest. Note, that in the upper
KEY package, honest keys are sampled uniformly at random
and secret from the adversary, as the adversary cannot access
them via GET, because the GET query cannot be asked by
the adversary—the arrows specify which package may call
which oracles of which package. Importantly, this means that
the graphs are part of the formal game definitions.

Handles. If an adversary wants to interact with a specific
key, e.g., to retrieve it via a GET or have it be the subject of
another oracle query such as EVAL, they use the handle of
that key. We construct handles in such a way that each handle
injectively maps to a key. When a key is initially randomly
generated via the REG oracle, its handle reg〈·〉 is composed
of the index of the KEY (denoted by index(KEY)) and a
counter, implemented as |K| where K is the table of keys
already stored in the KEY package. We denote by reg the
corresponding an injective handle constructor, see Figure 10.

If a key is derived from one or more other keys, the handle
of the output key is constructed from the handles of the input
key(s), as well as any other inputs to the key derivation. See,
e.g., the description of the EVAL oracles in Figure 12d. This
guarantees that the handle-to-key mapping is compuitationally
injective, i.e., will not have collisions unless we found a
collision in the key derivation function used to derive the key.

Finally, let us elaborate on the role of the KEY package in
HPKE. Here, KEY models a message that shall remain secret.
If the HPKE is idealized, the message is instead replaced with
an all-zero string before encryption (Figure 13). Note that pairs
of secret keys and public keys are stored in the PKEY package,
see Figure 11 and Figure 13.

Logging. We now turn to how we model collision resistance
and key uniqueness. We call two handles h and h′ such that
they correspond to the same key in the K table in KEY a key
collision. For honest, uniformly random keys, such collisions
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EVAL EXP

KEYs.(CGET,HON)
(KEYs)1

KEYt0..tn.REG (KEYt0..tn)b0

(LOGs)1

(LOGt0..tn)b1

KEYt0..tn.SET

KEYt0..tn.(GET,HON)

KEYs.(SET,REG)

A
KEYs.(GET,HON)

(a) Game GEXPb0b1f .

EVAL1..n (KDF1..n)b

KEYs1..sn.(CGET,HON) (KEYs2..sn)0

(KEYt1..tm)0

(LOGs2..sn)1

(LOGt1..tm)1

KEYt0..tm.SET

KEYt1..tm.(GET,HON)

KEYs1..sn.(SET,REG)

KEYs0.(C/GET,HON),KEYs1..sn.(GET,HON)

KEYs0.CGET
(KEYs0)1 (LOGs0)1

KEYs0.SET

A

(LOGs1)1(KEYs1)1

(b) Game GKDFLbg .

(KEYs1)1 (LOGs1)1

EVALi (KDFi)1

KEYs1.(CGET,HON)

(KEYt0..tv)b (LOGt0..tv)1

KEYt0..tv.SET

KEYt0..tv.(GET,HON)

KEYs1.(SET,REG)

KEYs0.(CGET,HON),KEYs1.(GET,HON)

KEYs0.CGET
(KEYs0)1 (LOGs0)1

KEYs0.SET

A

(c) Game GKDFRbg .

EXP

Package Parameters

f : a PRF

lbl : labels
s : input name
t : output names

Package State

no state

EVAL(hs, ctx , hon)

s← KEYs.GET(hs)

hon ′
vec← KEYs.HON(hs) ∧ hon

t
vec← f(s, (lbl , ctx ))

ht
vec← (hs, (lbl , ctx ), t)

h ′t
vec← KEYt .SET(ht , hon ′, t)

return ht

KDFbi

Package Parameters

g : a KDF s0 : left name

lbl : labels s1 : right name
b : idealization bit t : output names
i : epoch index

Package State

no state

EVAL(hs0, hs1, ctx , hon)

hon0 ← KEYs0.HON(hs0)

hon1 ← KEYs1.HON(hs1)

if b ∧ hon0:

t
vec $← {0, 1}λ

′

else s0 ← KEYs0.GET(hs0):

s1 ← KEYs1.GET(hs1)

ctx
′ vec← (ctx , i)

t
vec← g(s0, s1, (lbl , ctx

′
))

hon ′
vec← (hon0 ∨ hon1) ∧ hon

ht
vec← (hs0, hs1, (lbl , ctx

′
), t)

h ′t
vec← KEYt .SET(ht , hon ′, t)

return ht

(d) Code of packages EXP and KDFi.

Figure 12: Games GEXPb0b1f , GKDFLbg and GKDFRbg .

are unlikely, but for keys registered by the adversary or known
to the adversary, such collisions can trivially occur. We thus
1) disallow the adversary from registering the same dishonest
key value k twice under two different handles (since identical
input keys would lead to identical output keys), 2) remove
collisions between registered and set dishonest keys (once)
and 3) prove that then derived keys do not have collisions.
We model both properties using a LOG package which keeps
track of the keys and handles used so far and sends a special
abort message when a collision occurs.

This modular style of code-writing has recently been de-
veloped by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and
Kohlweiss (BDFKK [9]) and been coined state-separating
proofs (SSP) since the state separation of the games enables
proofs which rely on code-separation and state-separation. We
now state all our assumptions formally using the composed
games style and return to proofs in Section VIII.

Expand. We consider Krawczyk’s XPD function as a function
xpd : ({0, 1}λ × {0, 1}∗) 7→ {0, 1}λ′ , where λ′ = λ′(λ) is
hardcoded (rather than provided as an explicit input). The
second input is a pair (lbl , ctx ), where in some cases, ctx
might be empty. We parametrize our security game for XPD
with a list of labels lbl and measure the security of the
XPD function by the advantage which adversaries A have
in distinguishing the real game GEXP0,0f and the ideal game
GEXP1,1f , defined in Figure 12a, for f = xpd. For an adversary
A, we define the advantage function AdvfEXP(A) :=∣∣∣Pr[1← A ◦ GEXP0,0f

]
− Pr

[
1← A ◦ GEXP1,1f

]∣∣∣ .

In asymptotic terminology, if the advantage AdvxpdEXP(A) is
negligible for all PPT adversaries, then xpd is a secure pseu-
dorandom function. AdvfEXP(A) incorporates both, pseudoran-
domness and collision-resistance into a single assumption,
since the bit in the LOG also changes from 0 to 1. While
this is convenient in proofs, in some cases, we need pseudo-
randomness only, since collision resistance has already been
taken care of. For an adversary A, we write AdvfPREXP(A) :=∣∣∣Pr[1← A ◦ GEXP1,1f

]
− Pr

[
1← A ◦ GEXP0,1f

]∣∣∣ .
KDF. We model Krawczyk’s HKDF as a function kdf :
({0, 1}λ×{0, 1}λ×{0, 1}∗) 7→ {0, 1}λ′ for some hard-coded
λ′ = λ′(λ) such that a triple (k , lbl , ctx ) is mapped to a string
of length λ′. We assume that kdf is a dual KDF. I.e., if either
of the inputs is random and secret from the adversary, then
kdf produces a pseudorandom output. Idealization based on
the left input is modeled by a bit in the code of KDF. For an
adversary A, we define the advantage AdvgKDFL(A) :=∣∣Pr[1← A ◦ GKDFL0

g

]
− Pr

[
1← A ◦ GKDFL1

g

]∣∣ ,
where GKDFLbg is defined in Figure 12b. Note that here, right
inputs might come from one of many packages. In turn,
idealization based on the right input is modeled by a bit in
the lower KEY and for an adversary A, is captured by the
advantage AdvgKDFR(A) :=∣∣Pr[1← A ◦ GKDFR0

g

]
− Pr

[
1← A ◦ GKDFR1

g

]∣∣ ,
where GKDFRbg is defined in Figure 12c.
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KEY0..n.(SET,REG)
KEY0..n.(GET,HON) (KEY1..n)0 (LOG_KEY1..n)0

ENC,DEC

(KEY0)1

PKEY0..m.(SET,REG)
PKEY0..m.(CGET,HON) (PKEY0..m)1

PKEY0..m.HON

(LOG_KEY0)1

(LOG_PKEY0..m)1

PKEY0..m.GETPKE0..m.(ENC,DEC)
PKE0..m

A

KEY0..n.(C/GET,HON)HPKEb

PKE0..m.(ENC,DEC)

(a) Game GHPKEbpke.
PKE

Package Parameters

pke : pub. key enc. sch.

Package State

H[c 7→ b] : hon. ciph.

ENC(hkp, hk)

pk ← parse(hkp)

c←$ pke.enc(pk ,m)

H[c]← 1

return c

DEC(hkp, c)

j ← parse(hkp)

if H[c] = 1:

return ⊥
sk ← PKEYj .GET(hkp)
m← pke.dec(sk , c)
return m

HPKE

Package Parameters

b : idealisation bit
λ : encrypted key length

Package State

Q[c 7→ h] : handle table

ENC(hkp, hk)

j ← parse(hkp)

i← parse(hk)

assert PKEYj .HON(hkp)

∨ ¬KEYi.HON(hk)

if b ∧ PKEYj .HON(hpk):

m← 0λ

else if b:

m← KEYi.CGET(hk)
else :

m← KEYi.GET(hk)
c←$ PKEj .ENC(hkp,m)

Q[c]← hk

return c

DEC(hkp, c)

j ← parse(hkp)

if Q[c] 6=⊥:
return Q[c]

m← DEC(hkp, c)
return m

(b) Packages PKE and HPKE

Figure 13: Game GHPKEbpke.

Public-Key Encryption. Lastly, we assume the existence
of a public-key encryption (PKE) scheme pke, which con-
sists of three algorithms pke.kgen, pke.enc and pke.dec with
standard correctness and confidentiality properties, namely
indistinguishability under chosen ciphertext attacks (IND-
CCA2). IND-CCA2 captures that encryptions of (adversarially
chosen) messages m are computationally indistinguishable
from encryptions of 0|m|, even when the adversary can use
a decryption oracle (except on the challenge ciphertexts). We
use the PKE scheme exclusively to model Hybrid Public Key
Encryption (HPKE), i.e. we only encrypt symmetric keys with
the PKE scheme. The length of the symmetric keys is λ. For
an adversary A, we define the advantage as AdvpkeHPKE(A) :=∣∣Pr[1← A ◦ GHPKE0

pke

]
− Pr

[
1← A ◦ GHPKE1

pke

]∣∣ ,
where the game GHPKEbpke is defined in Figure 13 and n and m
refers to an upper bound on the number of secret-key public-
key pairs, and symmetric-keys to be encrypted, respectively.
Since we will need to run pke.kgen with explicit randomness,
we introduce a derive key pair function (DKP), which maps
the random coins to the output of pke.kgen.

Collision-Resistance. In addition to assuming that xpd
and kdf produce pseudorandom outputs, we also assume
their collision-resistance. In particular, we encode collision-

resistance by assuming that xpd and kdf pass on the unique-
ness of their input keys to their output keys, i.e., if the bits
in the logs of their input keys have bit 1, then the bits in the
log packages of their output keys can also be flipped from
0 to 1. For an adversary A, we denote these advantages by
AdvxpdCRXPD(A) and AdvxpdCRKDF(A), respectively, and we refer
by AdvxpdCRDKP(A) to the collision-resistance advantage of the
derive key pair function dkp.

VI. SECURITY MODELS

We now introduce our security model for the MLS CGKD.
We start with a high-level overview which considers the
CGKD, defined as a composition of TreeKEM and the key
schedule and then turn to modeling TreeKEM and the key
schedule each on their own.

A. CGKD

A crucial component in the modeling are different keys,
inputs and outputs as described in Figure 2. Based on the
rationale outlined in Section V, storing keys in separate
packages is useful for composition, and so, our model stores
each type of key in a separate KEY package, i.e., there
are two main packages wCGKD (modeling TreeKEM) and
KS, each reading and writing keys from/into the different
KEY and PKEY packages, see Figure 14a for the composed
game GWCGK and Figure 14c for GKS. Figure 14b and 14c
respectively show the security definition of TreeKEM and the
Key Schedule on their own. Note that each KEY package has
a different subscript and so have their oracles to ensure that
queries are unique across the entire graph. We now map the
inputs and outputs described in Figure 2 to the KEY packages.

The values (pk , sk ) of the KEMs associated with different
nodes in the tree are stored in PKEY_NKP packages, the kupd
variable, conceptually, corresponds to a path secret and thus
is stored in the KEY_PS packages with other path secrets.
Finally, values for the sext variable are stored in KEY_PSK
packages, values for the sint variable are stored in KEY_IS
packages, and values of each of the k variables in k lbl are
stored in KEY_GR.

Our base keys are modeled as uniformly random, unique
keys (for honest keys) or adversarially chosen (but still unique)
keys, e.g., the KEY_PSK starts with an idealization bit b = 1,
reflecting that keys are sampled uniformly at random and that
the adversary cannot register the same dishonest key twice.
We can then rely on the assumptions stated in Section V to
prove that a game where the idealization bits of the other
KEY packages are all 0 is computationally indistinguishable
from a game where the idealization bits of the other KEY
packages are all 1. This establishes that the MLS CGKD
provides pseudorandom and unique keys.

Definition VI.1 (CGKD advantage). For an expand function
xpd, a KDF kdf, a PKE pke, for all polynomials d and
t and all adversaries A which generate trees of depth at
most d and run groups for at most t epochs, we denote by
Advxpd,kdf,pkeCGKD (A) the advantage∣∣∣Pr[1← A ◦ GCGKD0,d,t

xpd,kdf,pke

]
− Pr

[
1← A ◦ GCGKD1,d,t

xpd,kdf,pke

]∣∣∣ .
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Figure 14: Composed (left) and individual (right) TreeKEM and Key Schedule games.
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Figure 15: TreeKEM subgames.

B. TreeKEM model
In Figure 14b, the wCGKD package represents the composi-

tion of packages shown in the center of Figure 15a (LAYER0..d

and EXP). Note that the KEY, PKEY, and PKE packages
correspond to those in Figure 14b. The LAYER packages
represent an at most d-layer tree structure where each layer
is encoded as a separate composition of packages. Note that
for each layer, the KEY_PS package, storing path secrets, has
a REG query that allows nodes on that layer to function as a
leaf node by generating a random (secret) value from scratch.

We define each LAYER package as composition of pack-
ages, see Figure 15b. Again, the KEY, PKEY NKP, and PKE
packages correspond to those in Figure 14b. Figure 15b
encodes both the dn function (Figure 4) through the EXP
and DKP packages, and the encryption of path secrets to
other members through the HPKE, PKE, PKEY, and KEY_PS
packages. The GET access of HPKE to all layers above it
encodes that path secrets at various positions in the tree might
be encrypted by HPKE.

This model gives significantly more power to the adversary
than the MLS TreeKEM interface would (making our security

statements only stronger). The model allows the adversary to
set up derivations and encryptions that encode arbitrary tree
structures. The model merely enforces the concept of layers.

Definition VI.2 (wCGKD advantage). For an expand function
xpd, a PKE pke, for all polynomials d and all adversaries
A which generate trees of depth at most d, we denote by
Advxpd,pkewCGKD(A) the advantage∣∣∣Pr[1← A ◦ GWCGKD0,d

xpd,pke

]
− Pr

[
1← A ◦ GWCGKD1,d

xpd,pke

]∣∣∣.
C. Key Schedule model

We define the KS package in Figure 14c by the composition
of packages shown in the center of Figure 16a (EPOCH0..t).
The KEY, PKEY, and PKE packages correspond to those in
Figure 14c. The EPOCH packages represent a t-epoch group
where each epoch is encoded as a separate composition of
packages. Each EPOCH package is the composition of pack-
ages shown in the center of Figure 16b. Recall that the KEY,
PKEY, and PKE packages correspond to those in Figure 14c.

Figure 16b encodes the ks and subks functions (Figure 4).
The KDF and EXP packages correspond to kdf and xpd calls
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Figure 16: Key Schedule subgames.

in ks and subks, and the DKP package corresponds to the dkp
call. The HPKE packages encode the encryption of the joiner
secret to new members (top), and the encryption of init secrets
by external committers (bottom). The REG query allows the
adversary to create external init secrets. The values of external
key pairs, (pk ext, sk ext), are stored in the PKEY_EX package.

Definition VI.3 (KS advantage). For an expand function xpd,
a key derivation function kdf, a PKE pke, for all polynomials
d, t and all adversaries A which generate trees of depth at
most d and run groups for at most t epochs, Advxpd,kdf,pkeKS (A)
denotes∣∣∣Pr[1← A ◦ GKS0,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GKS1,d,txpd,kdf,pke

]∣∣∣ .
VII. THEOREMS

This section relates the security of the MLS CGKD to the
security of the underlying primitives XPD, KDF, and HPKE.
We first make separate security claims for the wCGKD and the
key schedule and then bound the security of their composition.
Our security statements are concrete and constructive, i.e., they

transform an adversary against the CGKD into an adversary
against the underlying primitives.

Theorem 1. (wCGKD Security) For all polynomials d and
all adversaries A which generate trees of depth at most d, it
holds that

Advxpd,pkewCGKD(A) ≤ AdvxpdEXP(A ◦Rexp) +

d−1∑
i=0

(AdvxpdEXP(A ◦Ri ◦ Rexp,i)

+ AdvpkeHPKE(A ◦Ri ◦ Rhpke,i))

where GWCGKDb,dxpd,pke is provided in Figure 14b.

Theorem 2. (Key Schedule Security) For all polynomials d
and t and all adversaries A which generate trees of depth at
most d and run groups for at most t epochs, it holds that

Advxpd,kdf,pkeKS (A) ≤ Advxpd,kdf,dkpCR (A ◦Rcr)
+ AdvkdfKDFL(A ◦Rint) + AdvkdfKDFL(A ◦Rjoi)

+

t∑
i=0

AdvkdfKDFR(A ◦Rhyb,i ◦ Ra,i) + AdvpkeHPKE(A ◦Rhyb,i ◦ Rb,i)

+ AdvkdfKDFR(A ◦Rhyb,i ◦ Rc,i) + AdvxpdEXP(A ◦Rhyb,i ◦ Rd,i)
+ AdvpkeHPKE(A ◦Rhyb,i ◦ Re,i),

where GKSb,d,txpd,kdf,pke is defined in Figure 14c.

Theorem 3. (CGKD) For all polynomials d and t and all
adversaries A which generate trees of depth at most d and
run groups for at most t epochs, it holds that

Advxpd,kdf,pkeCGKD (A) ≤ Advxpd,pkewCGKD(A ◦ Rp) + Advxpd,kdf,pkeKS (A ◦ Rq),

where GCGKDb,d,txpd,kdf,pke is given in Figure 14a.

We prove Theorem 1 in Section VIII, provide the proof of
Theorem 3 in Appendix A and the proof of Theorem 2 in
Appendix B, C and D.

VIII. PROOF OF THEOREM 1 (WCGKD SECURITY)

The proof of Theorem 1 consists of Lemma 1 and a
hybrid argument. We start with the former which shows that
a TreeKEM layer with an ideal path secret can be completely
idealized such that the path secret of its parent is ideal as well
as the encryptions it performs.

Lemma 1. (Layer Security) Let B be an adversary and
GLAYERb,ixpd,pke the indistinguishability game defined by Fig-
ure 15b. Then it holds that

Advxpd,pke,iLAYER (B) ≤ AdvxpdEXP(B ◦ Rexp,i) + AdvpkeHPKE(B ◦ Rhpke,i),

where Rexp,i is defined as the grey area in Figure 17a and
Rhpke,i is defined as the grey area in Figure 17c.

The proof of Lemma 1 consists of three steps, each of which
modifies one or two bits in the overall game. We denote

GLAYERb,ixpd,pke := GLAYERbbb,ixpd,pke,

i.e., GLAYERb0b1b2,ixpd,pke with b = b0 = b1 = b2.
In the first proof step, we apply the expand assumption for

lbl = {path,node} to idealize the node secret of layer i and
the path secret of layer p(i). We obtain the following bound:
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Figure 17: Proof of Lemma 1.

∣∣∣Pr[1← B ◦ GLAYER000,i
xpd,pke

]
− Pr

[
1← B ◦ GLAYER100,i

xpd,pke

]∣∣∣
≤ AdvxpdEXP(B ◦ Rexp,i),

where Rexp,i is defined as the grey area in Figure 17a.
In the second step of this proof we use the definition of a

DKP function to idealize the PKEY package of layer i. By the
perfect correctness of the DKP, we obtain that∣∣∣Pr[1← B ◦ GLAYER100,i

xpd,pke

]
− Pr

[
1← B ◦ GLAYER110,i

xpd,pke

]∣∣∣ = 0.

In the third and last step of this proof we apply the HPKE
assumption for n = i − 1 and m = 1 to idealize the HPKE
package of layer i. This gives us the following bound w.r.t.
GLAYERb,ixpd,pke∣∣∣Pr[1← B ◦ GLAYER110,i

xpd,pke

]
− Pr

[
1← B ◦ GLAYER111,i

xpd,pke

]∣∣∣
≤ AdvpkeHPKE(B ◦ Rhpke,i),

whereRhpke,i is defined as the grey area in Figure 17c. Hence,
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Figure 18: Proof of Lemma 1.

Advxpd,pke,iLAYER (B) ≤ AdvxpdEXP(B ◦ Rexp,i) + 0 + AdvpkeHPKE(B ◦ Rhpke,i)

= AdvxpdEXP(B ◦ Rexp,i) + AdvpkeHPKE(B ◦ Rhpke,i),

which concludes the proof of Lemma 1.
Hybrid argument. We apply a hybrid over Lemma 1 to the
game GWCGKD defined by Figure 15a, which, as explained in
Section VI, is equivalent to Figure 14b.

For convenience we add several bits into the superscript
of GWCGKD to model security of the different layers, i.e., if
b = b−1 = ... = bd−1, then

GWCGKD
b−1...bd−1,d
xpd,pke = GWCGKDb...b,dxpd,pke.

Recall that the KEY_PSd package represents base secrets at
the lowest possible leaf layer. Thus, the package is idealized so
that its values are either corrupt and chosen by the adversary
or honest, randomly generated and never shared.

Due to Lemma 1, we can idealize any layer with an ideal
path secret, resulting in an ideal path secret for the parent layer.
Hence, we use a hybrid argument upwards through the tree,
see Figure 18a. Hence, for all PPT adversaries A, we have∣∣∣Pr[1← A ◦ GWCGKD10...0,d

xpd,pke

]
− Pr

[
1← A ◦ GWCGKD1...10,d

xpd,pke

]∣∣∣
≤ Advxpd,pke,iLAYER (A ◦Ri),
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wprocess(PKmem ,PK rem ,
PK joi ,PK upd ,
SK own , inod , iupd , c)

kcs ← 0

PK ′mem ← PKmem

PK ′mem
rem← PK rem

PK ′mem
merge← PK joi

PK ′mem
vec← PK upd

SK ′own ← SK own

sknod ← SK own [inod ]

ps ← pke.dec(sknod , c)

assert ps 6=⊥
icur ← lcp(iown , iupd ,

∣∣PK ′mem

∣∣)
( , ,SK ′′own , kcs)

← dopath(PK ′mem , icur , ps,⊥)
SK ′own

vec← SK ′′own

return (PK ′mem ,SK
′
own , kcs)

wjoin(PKmem ,SK own , iown ,
iupd , c)

kcs ← 0

skown ← SK own [iown ]

ps ← pke.dec(skown , c)

assert ps 6=⊥
icur ← lcp(iown , iupd , |PKmem |)
( , , , kcs)

← dopath(PKmem , icur , ps,⊥)
return (PKmem ,SK own , kcs)

Figure 19: Procedures wprocess and wjoin.

where Ri is defined as the grey area in Figure 18a. We apply
this hybrid argument until KEY_PS0 is ideal. At this point
the entire TreeKEM tree is ideal, except for the commit secret
derived at the root. Therefore, as visualized in Figure 18b, we
apply the expand assumption and obtain∣∣∣Pr[1← A ◦ GWCGKD1...10,d

xpd,pke

]
− Pr

[
1← A ◦ GWCGKD1...11,d

xpd,pke

]∣∣∣
≤ AdvxpdEXP(A ◦Rexp),

where Rexp is defined as the grey area in Figure 18b. Using
B = A ◦Ri, we derive the desired bound for Theorem 1:

Advxpd,pkewCGKD(A) ≤ AdvxpdEXP(A ◦Rexp) +
d−1∑
i=0

Advxpd,pke,iLAYER (A ◦Ri)

= AdvxpdEXP(A ◦Rexp) +

d−1∑
i=0

(AdvxpdEXP(A ◦Ri ◦ Ra,i)

+ AdvpkeHPKE(A ◦Ri ◦ Rb,i))
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APPENDIX

A. Proof of Theorem 3 (CGKD security)
We prove Theorem 3 using Theorem 1 and Theorem 2.

Recall (see Figure 14a) that, if b = b0 = b1, then

GCGKDb0b1,d,txpd,kdf,pke = GCGKDbb,d,txpd,kdf,pke = GCGKDb,d,txpd,kdf,pke.

In the first step of this proof we modify b0 from 0 to 1 and
reduce to GWCGKD. For all PPT adversaries A, we obtain∣∣∣Pr[1← A ◦ GCGKD00,d,t

xpd,kdf,pke

]
− Pr

[
1← A ◦ GCGKD10,d,t

xpd,kdf,pke

]∣∣∣
≤ Advxpd,pkewCGKD(A ◦Rp),
where Rp is defined as the grey area in Figure 20a. Next, we
modify b1 from 0 to 1 and reduce to GKS. We obtain∣∣∣Pr[1← A ◦ GCGKD10,d,t

xpd,kdf,pke

]
− Pr

[
1← A ◦ GCGKD11,d,t

xpd,kdf,pke

]∣∣∣
≤ Advxpd,kdf,pkeKS (A ◦Rq),
where Rq is defined as the grey area in Figure 20b. Hence,
we obtain the desired bound for Theorem 3:

Advxpd,kdf,pkeCGKD (A) ≤ Advxpd,pkewCGKD(A ◦Rp) + Advxpd,kdf,pkeKS (A ◦Rq).
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security of a single epoch. Reduction Rhyb,i is marked in grey.

Figure 21: Proof of Theorem 2.

B. Proof of Theorem 2 (KS security)

This appendix proves Theorem 2. We first idealize collision-
resistance for all primitives (unique inputs translate into unique
outputs), then idealize the two KDFs of the key schedule based
on the commit secret and the external secret globally for all
epochs (since the commit secret and the external secret do not
have an epoch) and then finally apply a hybrid argument over
the epochs which is captured by Lemma 3.
KEY_IS0 represents the initial init secret and is ideal from

the start, i.e., it samples honest values independently at random
and allows the adversary to register corrupt values. Similarly,
the pre-shared keys (KEY_PSK) are ideal from the start as
they are exchanged out-of-bound. Lastly, note that the public-
private key-pairs (PKEY NKP) and commit secrets (KEY_CS)
are ideal form the start, which follows from Theorem 3.

Figure 21a depicts GGKS
b′0b
′
1,d,t

xpd,kdf,pke for trees up to depth d
and groups that run for up to t epochs. For b = b′0 = b′1, we
define

GKSb,d,txpd,kdf,pke := GGKS
b′0b
′
1,d,t

xpd,kdf,pke.

http://www.rfc-editor.org/rfc/rfc6189.txt
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Figure 22: GPGKSb0b1b20,d,txpd,kdf,pke .

Here, b′0 corresponds to global proof steps (collision-resistance
and KDFs), and b′1 corresponds to epoch-wise proof steps.
Note that the second G in GGKS stands for global.

We now state Lemma 2 and Lemma 3, then show that they
imply Theorem 2 and then prove Lemma 2 and Lemma 3.

Lemma 2. For all polynomials d and t and all adversaries
A which generate trees of depth at most d and run groups for
at most t epochs, it holds that Advxpd,kdf,pke,b0GGKS (A) :=∣∣∣Pr[1← A ◦ GGKS00,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GGKS10,d,txpd,kdf,pke

]∣∣∣
≤ Advxpd,kdf,dkpCR (A ◦Rcr) + AdvkdfKDFL(A ◦Rcs)

+ AdvkdfKDFL(A ◦Rpsk)

Recall that GGKS
b′0b
′
1,d,t

xpd,kdf,pke is defined in Figure 21a. Analo-
gously to Advxpd,kdf,pke,b0GGKS (A), we use the notation

Advxpd,kdf,pke,1bGGKS (A) :=∣∣∣Pr[1← A ◦ GGKS10,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GGKS11,d,txpd,kdf,pke

]∣∣∣ .
In order to state Lemma 3, we need to split b′1 into t different
bits b0 to bt. We write GGKS0b0...bt,d,txpd,kdf,pke and note that

GGKS0b0...bt,d,txpd,kdf,pke = GGKS0b,d,txpd,kdf,pke

for b′1 = b0 = ... = bt.

Lemma 3. (Epoch Security) Let B be an adversary and
GEPOCHb,d,t,ixpd,kdf,pke the indistinguishability game defined by
Figure 25. Then ∀d, t, i ∈ N : 0 ≤ i ≤ t

Advxpd,kdf,pke,iEPOCH (B) :=∣∣∣Pr[1← B ◦ GEPOCH0,d,t,i
xpd,kdf,pke

]
− Pr

[
1← B ◦ GEPOCH1,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFR(B ◦ Ra,i) + AdvpkeHPKE(B ◦ Rb,i)

+ AdvkdfKDFR(B ◦ Rc,i) + AdvxpdEXP(B ◦ Rd,i) + AdvpkeHPKE(B ◦ Re,i),
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Figure 23: Reducing to KDFL security based on ideal CS.
Reduction Rcs is marked in grey.

where Ra,i is defined as the grey area in Figure 26, Rb,i as
the grey area in Figure 27, Rc,i as the grey area in Figure 28,
Rd,i as the grey area in Figure 29, and Re,i as the grey area
in Figure 30.

Proof of Theorem 2. We first apply Lemma 2 and then apply
a hybrid argument over the t epochs using that for all B,

Advxpd,kdf,pke,iEPOCH (B ◦ Rhyb,i) (1)

=
∣∣Pr[1← B ◦ GGKS

1,10,..,1i−1,0i,0i+1,..,0t,d,t
xpd,kdf,pke

]
−Pr

[
1← B ◦ GGKS

1,10,..,1i−1,1i,0i+1,..,0t,d,t
xpd,kdf,pke

] ∣∣,
where Rhyb,i is defined in Figure 21b. We obtain Theorem 2
as follows:

Advxpd,kdf,pkeKS (A)
≤ Advxpd,kdf,pke,b0GKS (A) + Advxpd,kdf,pke,1bGKS (A)

≤ Advxpd,kdf,pke,b0GKS (A) +
t−1∑
i=0

Advxpd,kdf,pke,iEPOCH (A ◦Rhyb,i).

Plugging in the bounds from Lemma 2 and Lemma 3 with
B = A ◦ Rhyb,i yields Theorem 2. We now turn to the proof
of Lemma 2.

C. Proof of Lemma 2

In order to prove Lemma 2, we split b′0 into 3 different
bits b0, b1, and b2 and write GPGKSb0b1b2,0,d,txpd,kdf,pke for the game
depicted in Figure 22, where the P in GPGKS stands for proof.
Note that when b0 = b1 = b2 = b′0, then

GPGKSb0b1b20,d,txpd,kdf,pke = GGKS
b′00,d,t
xpd,kdf,pke.

For collision-resistance, we can construct a reduction Rcr such
that the distinguishing advantage between GPGKS0000,d,txpd,kdf,pke and
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Figure 24: Reducing to KDFL security based on ideal PSK.
Reduction Rpsk is marked in grey.

GPGKS1000,d,txpd,kdf,pke can be turned into a collision against one
of the underlying primitives. This is possible because (a) the
initial commit secret, PSK, and level 0 init secrets are unique
and (b) we have domain separation between the different
epochs due to the inclusion of the group context in the KDFs.
Thus, we can argue inductively that∣∣∣Pr[1← A ◦ GPGKS0000,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GPGKS1000,d,txpd,kdf,pke

]∣∣∣
≤ Advxpd,kdf,dkpCR (A ◦Rcr).

After idealizing collision-resistance, we can now reduce to
the LKDF security of the commit secret, since the respective
second inputs are unique. We thus obtain that∣∣∣Pr[1← A ◦ GPGKS1000,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GPGKS1100,d,txpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFL(A ◦Rcs),

where Rcs is defined in Figure 23. Analogously,∣∣∣Pr[1← A ◦ GPGKS1100,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GPGKS1110,d,txpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFL(A ◦Rpsk),

where Rpsk is defined in Figure 24. We obtain

Advxpd,kdf,pke,b0GKS (A) :=∣∣∣Pr[1← A ◦ GGKS00,d,txpd,kdf,pke

]
− Pr

[
1← A ◦ GGKS10,d,txpd,kdf,pke

]∣∣∣
≤ Advxpd,kdf,dkpCR (A ◦Rcr) + AdvkdfKDFL(A ◦Rcs)

+ AdvkdfKDFL(A ◦Rpsk),

which concludes the proof of Lemma 2.

D. Key Schedule Epoch

We now prove Lemma 3 which captures the security of a
single epoch of the key schedule, a core argument in the proof
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Figure 25: Definition of GEPOCHb0b1b2b3b4b5,d,t,ixpd,kdf,pke . We write
GEPOCHb,d,t,ixpd,kdf,pke if b0 = b1 = b2 = b3 = b4 = b5. Note that
KEY IS−1 should technically have a REG query, but for an
ideal KEY package REG and SET are functionally equivalent.

of Theorem 2. We show that when an MLS epoch relies on an
ideal internal secret sint derived in a previous epoch or an ideal
PSK sext or an ideal commit secret kcs , then the current epoch
provides security guarantees, too, for the new s′int derived in
the current epoch, all group secrets for the current epoch and
for the current external public-key encryption keys.

The proof of Lemma 3 consists of six steps, each of which
flips one or more bits in the overall game. See Figure 25 for
the definition of GEPOCHb0b1b2b3b4b5,d,t,ixpd,kdf,pke and note that

GEPOCHb,d,t,ixpd,kdf,pke = GEPOCHb0b1b2b3b4b5,d,t,ixpd,kdf,pke

if b = b0 = b1 = b2 = b3 = b4 = b5.
In the first step of this proof we use the KDFR assumption

to idealize the KEY_JS package of epoch i. We obtain∣∣∣Pr[1← A ◦ GEPOCH000000,d,t,i
xpd,kdf,pke

]
− Pr

[
1← A ◦ GEPOCH100000,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFR(A ◦Ra,i).

Now, in the second game hop, we use the HPKE assumption
for n = 1 and m = d to idealize the first HPKE package of
epoch i and to remove access to the joiner secret. We obtain∣∣∣Pr[1← A ◦ GEPOCH100000,d,t,i

xpd,kdf,pke

]
− Pr

[
1← A ◦ GEPOCH110000,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvpkeHPKE(A ◦Rb,i).

In the third step of this proof we use the KDFR assumption
to idealize the KEY_ES package of epoch i. This is possible
since there is no GET query on the joiner secret anymore. We
obtain the bound∣∣∣Pr[1← A ◦ GEPOCH110000,d,t,i

xpd,kdf,pke

]
− Pr

[
1← A ◦ GEPOCH111000,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvkdfKDFR(A ◦Rc,i).
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Figure 26: Step 1 of idealizing epoch i. We mark Ra,i in grey.
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Figure 27: Step 2 of idealizing epoch i. We mark Rb,i in grey.

In the fourth step of this proof we use the XPD assumption
with n = 2 + |GR| to idealize all current group secrets in
KEY_GR, the init secret in KEY_IN and the seed in KEY_EX
(later used for computing the external public-key). We obtain∣∣∣Pr[1← A ◦ GEPOCH111000,d,t,i

xpd,kdf,pke

]
− Pr

[
1← A ◦ GEPOCH111100,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvxpdEXP(A ◦Rd,i).

In the fifth step of this proof, we use the definition of a
DKP function to idealize the PKEY_EX package of epoch i.
Due to the perfect correctness of the DKP, we have that 0 =
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Figure 28: Step 3 of idealizing epoch i. We mark Rc,i in grey.
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Figure 29: Step 4 of idealizing epoch i. We mark Rd,i in grey.

∣∣∣Pr[1← A ◦ GEPOCH111100,d,t,i
xpd,kdf,pke

]
− Pr

[
1← A ◦ GEPOCH111110,d,t,i

xpd,kdf,pke

]∣∣∣
In the sixth and final step of the epoch proof we use the

HPKE assumption for n = 1 and m = 1 to idealize the second
HPKE package of epoch i. We obtain∣∣∣Pr[1← A ◦ GEPOCH111110,d,t,i

xpd,kdf,pke

]
− Pr

[
1← A ◦ GEPOCH111111,d,t,i

xpd,kdf,pke

]∣∣∣
≤ AdvpkeHPKE(A ◦Re,i).

Hence,
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Figure 30: Step 5 of idealizing epoch i. We mark Rdkp in grey.

MOD

ISi-1.(SET,REG)
ISi-1.CGET

(KEY_ISi-1)1

KDFi.0.EVAL (KDFi,0)1

CS.SET

(KEY_JSi)1

JSi.(GET,HON),PSK.(CGET,HON)(KDFi,1)1

PSK.SET

KDFi.1.EVAL

(KEY_ESi)1

ESi.(GET,HON)EXPi

GRi.GET
(KEY_GRi)1

ISi.(GET,HON)
(KEY_ISi)1

CS.(CGET,HON)

NKP0..d.HON
JSi.(CGET,HON)

PKE0..d.(ENC,DEC)

(HPKEi,0)1

NKP0..d.(SET,REG)

KEY_PSK1

KEY_CS1

NKP0..d.(CGET,HON)
(PKEY_NKP0..d)1 (LOG_NKP0..d)1

LOG_CS1

LOG_PSK1

PKE0..d.(ENC,DEC) NKP0..d.GETPKE0..d

(LOG_ISi-1)1

(LOG_JSi)1

(LOG_ESi)1

(LOG_GRi)1

(LOG_ISi)1

ISi-1.(GET,HON),CS.(CGET,HON)

(GR,IS,EX')i.SET

(ENC,DEC)i,0

PSK.(CGET,HON)

(PKEY_EXi)1 (LOG_EXi)1

(KEY_EX'i)1 (LOG_EX'i)1

EX'i.(GET,HON)
EXi.SET

DKPi.EVAL DKPi

EXi.HON
ISi.(C/GET,HON)

(HPKEi,1)b5(ENC,DEC)i,1

(ENC,DEC)i PKE'i

EXPi.EVAL

DERIVEi

EXi.GET

ISi.REG

JSi.SET

WSi.GET
(KEY_WSi)1 (LOG_WSi)1

(ES,WS)i.SETA

Figure 31: Step 6 of idealizing epoch i. We mark Re,i in grey.

Advxpd,kdf,pke,iEPOCH (A) ≤ AdvkdfKDFR(A ◦Ra,i) + AdvpkeHPKE(A ◦Rb,i)
+ AdvkdfKDFR(A ◦Rc,i) + AdvxpdEXP(A ◦Rd,i)
+ 0 + AdvpkeHPKE(A ◦Re,i),

and Lemma 3 holds.
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