
Arrows in a Quiver: A Secure Certificateless
Group Key Distribution Protocol for Drones?

Eugene Frimpong[0000−0002−4924−5258], Reyhaneh
Rabbaninejad[0000−0002−4907−2844], and Antonis Michalas[0000−0002−0189−3520]

Tampere University, Tampere 33720, Finland
{eugene.frimpong, reyhaneh.rabbaninejad, antonios.michalas}@tuni.fi

https://research.tuni.fi/nisec/

Abstract. Drone-based applications continue to garner a lot of atten-
tion due to their significant potential in both commercial and non-com-
mercial use. Owing to this increasing popularity, researchers have begun
to pay attention to the communication security requirements involved in
deploying drone-based applications and services on a large scale, with
particular emphasis on group communication. The majority of exist-
ing works in this field focus on the use of symmetric key cryptographic
schemes or group key agreement schemes. However, in this paper, we
propose a pairing-free certificateless group authenticated key distribu-
tion protocol for drone-based applications which takes into considera-
tion drones with varying computational resources. The proposed scheme
ensures key freshness, group key secrecy, forward secrecy, and backward
secrecy while ensuring that the scheme is lightweight enough to be imple-
mented on very resource-constrained drones or smart devices. We exten-
sively prove the security of our scheme and demonstrate its real-world
applicability by evaluating its performance on three different kinds of
drone boards (UP Xtreme i7 board, SamL11-Xpro board, and a Zolertia
Re-mote Revb board).

Keywords: Certificateless Public Key Cryptography · Group Key Dis-
tribution · Drones

1 Introduction

Unmanned Aerial Vehicles (UAV) are gaining popularity in the Industries, Acad-
emia, and peoples’ personal lives at a rapid and accelerating pace. Big organi-
zations, like Uber and Amazon, are constantly hinting at offering drone-based
services such as package and food delivery [1]. Additionally, drones have been
used for other consumer-related activities such as aerial photography, landscape
surveying, and in some cases, delivering medical supplies to remote places. These
devices come equipped with various capabilities and features – from high def-
inition cameras to temperature sensors. Although drones are expected to offer

? This research has received funding from the Technology Innovation Institute (TII),
Abu Dhabi for the project ARROWSMITH: Living (Securely) on the Edge.

https://research.tuni.fi/nisec/
https://www.tii.ae/

2 E. Frimpong et al.

numerous benefits to consumers and companies, the proliferating adoption of
drone-based services presents a myriad of security concerns and requirements,
chief among them being secure communication [2,3]. Secure communication in
drones centres around securing the communication channel between drones and
their command centre, between individual drones, or groups of drones.

In this paper, we propose a pairing-free certificateless authenticated group
key distribution protocol for drone-based applications. Early group key manage-
ment schemes predominantly focused on symmetric-key based approaches where
symmetric session keys were pre-installed on devices. However, this approach
proved not be scalable for Wireless Sensor Networks (WSNs), a classification
that applies to drones [4]. Subsequently, improvements to Elliptic Curve Cryp-
tographic (ECC) primitives have led to an increased adoption of Public Key
Cryptographic (PKC) schemes for resource-constrained environments [5]. Un-
fortunately, ECC schemes with certificates and pairing-based operations, incur
additional certificate and computational overhead. To mitigate the limitations
related to certificate overhead, many Certificateless Group Key Agreement (CL-
GKA) schemes [6,7,8] have been proposed. However, these schemes are based on
Group Key Agreement (GKA) protocols (all group members collaboratively cal-
culate the group session key without depending on a trusted party), as compared
to the Group Key Distribution (GKD) model we follow. There have been many
arguments for GKA over GKD, such as the security of GKD protocols being
broken when the group manager is compromised as well as its inappropriateness
for distributed environments where a trusted authority or central authority is
unavailable [9].

Contrary to these points, we argue that, for a drone-based application such as
a Smart City consisting of different drones with varying computational resources
and smart devices with equally varying resources, a GKA approach is inefficient.
To support our argument, we consider a case study involving a drone team leader
who receives mission plans and tasks from a central point and a group of edge
drones deployed to accomplish the tasks allocated by the drone team leader.
For our case study, the edge drones are assumed to have limited computational
resources, with the team leader, on the other hand having considerably high ones.
In such a case, a GKA approach is inefficient and is not scalable as the number of
edge drones increases. This is due to the fact that in order to compute a session
key, all devices are required to be online – which also introduces an additional
communication overhead. Our protocol provides an efficient group authenticated
key distribution protocol suitable for the case study described. Additionally, it
can also be extended for environments consisting of resource-constrained smart
devices deployed to sense and generate data.

Contributions: The contributions for this paper are summarized below:

C1. We propose a pairing-free certificateless group authenticated key distribu-
tion protocol for multi-drone applications and environments. The security of
existing identity-based public key solutions is impacted by the use of a fully
trusted KGC (i.e., Key Escrow problem). In our proposed scheme, the KGC
is not fully trusted.

AinQ 3

C2. We provide a comprehensive security analysis to prove the security of the
proposed protocol.

C3. Finally, we implement and evaluate the performance of the proposed pro-
tocol on three different device platforms to demonstrate its benefits and
applicability.

2 Related Work

One of the early key distribution schemes was introduced by Tian et al [10].
They presented a scheme based on Identity-based cryptography (ID-PKC) and
bilinear pairings. Traditional ID-PKC suffer from the key escrow problem while
the computational costs required for pairing operations are considerably higher
than standard ECC operations such as EC point multiplications on resource-
constrained devices. Kumar et al. [11] also proposed an efficient centralized group
key distribution protocol based on the RSA public key cryptosystem, with par-
ticular emphasis on reducing the computation costs and storage complexity at
the Key Server (KS). The scheme offers both forward and backward secrecy - an
essential requirement [9,12] for any secure group key distribution protocol. A few
notable drawbacks with this scheme are the same key escrow problem, certificate
management overhead, and the computational complexity of the RSA scheme
on resource-constrained devices and environments [13]. As a result of the key
escrow and certificate management overhead, several certificateless public key
cryptography schemes have been proposed [6,7,8,14,15,16], both for one-to-one
communication and group-based communication instances.

In [6], authors propose a certificateless GKA scheme for unmanned aerial
vehicles. Similar to majority of key agreement protocols [17,18,19,20,21], this
protocol requires that each user contributes to the generation of the group key
by way of a series of key establishment requests. At the end of the final round
of the protocol, each user generates a similar session key. This work along with
other certificateless schemes such as [14] and [7] ensure mutual key agreement,
key escrow elimination, joint key control and key freshness. However, this scheme
incurs relatively high computational burden at each user based on the pairing-
based computations and does not consider a dynamic group where members of
the group can join or leave a group. Similar certificateless key agreement schemes
such as [16] and [15] also do not consider group environments.

More recently, a blockchain-based mutual healing group key distribution
scheme was proposed in [22]. In this work, the Ground control Station (GCS)
for the drones builds a private blockchain where the distributed group keys gen-
erated by the GCS as well as a list of membership certificates are recorded. The
GCS acts as the KS for this scheme and uses the blockchain to record transac-
tions. Transactions, in the context of this scheme, are instances when members
leave or join the group. Although authors prove that the proposed scheme is resis-
tant to various attacks as compared to other mutual healing schemes [23,24,10],
it poses significant computational overhead resulting from constant interaction
with the blockchain.

4 E. Frimpong et al.

To design an efficient and resource friendly protocol, AinQ, our pairing-free
certificateless key distribution protocol, uses a Key Generation Center (KGC)
to distribute partial private and public keypairs to all users. Our scheme utilizes
a hybrid encryption for multiple users and combines a data encapsulation and a
key encapsulation mechanism to distribute the group session key. Additionally,
the computational burden rests primarily on the team leader. As such, AinQ
can be extended to an IoT environment with significantly resource-constrained
devices.

3 System Model

Our setup consists of four entities: (i) Key Generation Center, (ii) Cloud Service
Provider (CSP), (iii) Edge Drones, and (iv) Team Leaders.

1. KGC: This is a semi-trusted entity responsible for generating and setting the
system parameters for the complete run of the protocol. The KGC generates
partial private and public key pairs for each registered drone during the
protocol initialization phase.

2. CSP: We assume the existence of a CSP, an abstract external platform that
consists of cloud hosts operating virtual machines that communicate through
a network. The CSP will be the final destination of messages aggregated by
the set of drones within our environment. Specific capabilities and features of
the CSP are beyond the focus of this paper and as such are not discussed in
detail. Our proposed scheme is independent of the underlying cloud platform.

3. Edge Drones: Let D = {d1, . . . , dn} be the set of all edge drones in our
environment. Each drone is equipped with a number of sensors to monitor
and report on sensed events. Each di accepts mission tasks and securely
stores and updates mission data so that no adversary can learn anything.

4. Team Leaders: Let Q = {q1, . . . , qm} be the set of drones elected as Team
Leaders in our protocol. Each drone team leader maintains a group list which
contains the group members and their respective public keys. This group list
is updated when a drone joins or leaves the group. Each team leader accepts
missions from the CSP and assigns individual tasks to members of its group.
Note that a team leader is assumed to be a more powerful drone with far
more computational resources compared to a regular edge drone.

4 Arrows in a Quiver (AinQ)

In this section, we present AinQ, which constitutes the core of our contribution.
AinQ’s description is divided into two parts:

1. The construction of a scheme containing algorithms for individual and group
key generation, key retrieval and re-keying.

2. A protocol showing how our scheme can be effectively used to allow drones
to form groups and securely agree on secret keys that will allow them to
securely exchange information over an encrypted channel.

AinQ 5

4.1 AinQ Scheme

For the purposes of AinQ, we extend the functionalities of eCLSC-TKEM [16]
with the GenGroupKey,KeyRetrieval, and Re−Key algorithms to support
group key distribution (using a form of Multiple-Recipient/Multiple-Message
Public Key Encryption (MR-MM-PKE) [25]). In total, our scheme consists of
the following seven probabilistic algorithms.

Setup: This algorithm is run by the KGC to generate the system parameters
for the scheme and a master secret key. The algorithm takes as input a security
parameter λ ∈ Z+, and outputs the system parameters Ω, and the KGC’s master
secret key msk. Given λ, KGC executes the following steps:

Step 1. Chooses a λ-bit prime q and a point P on the curve Gq.

Step 2. Chooses msk as x ∈ Z∗.
Step 3. Computes the corresponding public key as Ppub = xP .

Step 4. Chooses the following cryptographic hash functions where n is the
key length of the symmetric key encryption scheme:

– H0 : {0, 1}∗ ×G2
q × {0, 1}∗ → Z∗q∗,

– H1 : G3
q × {0, 1}∗ ×Gq → {0, 1}n,

Step 5. Publishes the system parameters Ω = {Gq, Ppub, P,H0, H1}.

GenSecretValue: Each edge drone di ∈ D and team leader run this algorithm
to generate a secret value and a public key. The algorithm takes as input the
system parameters Ω generated in the Setup algorithm, the drone identity di,
and outputs a secret value xi along with a corresponding public key Pi. Given
Ω, di executes the following steps:

Step 1. Chooses a secret value xi ∈ Z∗,
Step 2. Computes the corresponding public key as Pi = xiP .

GenPartialKey: The KGC runs this algorithm to generate a partial key for all
registered drones. It takes as input the drone’s identity di, its public key Pi, and
the master secret key x. On a successful run, GenPartialKey outputs the partial
private and public keys for di. Given Pi, the KGC executes the following steps:

Step 1. Chooses ri ∈ Z∗

Step 2. Ri = ri · P
Step 3. si = ri + xH0(di, Ri, Pi) mod q

FullKeyGen: Each registered drone runs this algorithm to generate it’s full
private key ski and public key pki. The algorithm takes as input the drone’s
secret value xi, partial secret key si, public key Pi and partial public key Ri. On
successful run, it returns the drone’s full private and public key pair.

GenGroupKey: This algorithm is run by a designated team leader qk ∈ Q to
generate a symmetric group session key Kg for the group. Given a group list

6 E. Frimpong et al.

GL = {d1, . . . , dh} containing a list of valid group members and their respective
public keys pki, i ∈ {1, . . . , h}, qk generates a list of ciphertexts Ci, i ∈ {1, . . . , h}.
The algorithm takes as input the group list GL and the valid time period tg.
Given GL, qk executes the following steps:

Step 1. Chooses Kg ∈ Z∗ and lk ∈ Z∗ at random.

Step 2. Computes V = lk · P .

Step 3. Parses pki as (Ri, Pi) for all di ∈ GL.

Step 4. For each pki:

– Yi = Ri +H0(di, Ri, Pi) · Ppub + Pi.

– Ti = lk · Yi.
– Ci = Kg ⊕H1(V, Ti, qk, pkk, di, pki, tg).

Step 5. Outputs (V,C1, C2, . . . , Ch, tg).

KeyRetrieval: This is the key retrieval algorithm run by each drone di ∈ GL to
obtain the group key Kg generated by qk in GenGroupKey. Given the broadcast
message containing the list of ciphertexts (V,C1, C2, . . . , Ch), and the respec-
tive private key and public key of the recipient drone, di retrieves the group
key Kg. We denote this by: Kg ← KeyRetrieval(V,C1, C2, . . . , Ch, ski, pki). Given
(V,C1, C2, . . . , Ch), each di ∈ GL executes the following steps:

Step 1. Computes Ti = (si + xi) · V

(si + xi) · lk · P = lk · Yi

Step 2. Kg = Ci ⊕H1(V, Ti, qk, pkk, di, pki, tg).

Re−Key: This algorithm is run by the team leader qk whenever a new drone
joins the group, an existing member leaves, or the an existing group key expires
and a new one has to be issued. Given an updated group list GL = {d1, . . . , dh}
containing an up-to-date information on group members, qk generates a new
group key Kg

′. We denote this by: (V,C ′1, C
′
2, . . . , C

′
h)← ReKey(GL). Given the

updated GL, qk executes the following steps:

Step 1. Chooses a new group key Kg
′ ∈ Z∗

Step 2. If di is a new member:

– Parse pki as (Ri, Pi) for di ∈ GL.

– Yi = Ri +H0(di, Ri, Pi,) · Ppub + Pi.

– Ti = lk · Yi.

Step 3. C ′i = K ′g ⊕H1(V, Ti, qk, pkk, di, pki, t
′
g)

Step 4. Outputs (V,C ′1, C
′
2, . . . , C

′
h).

AinQ 7

4.2 AinQ Protocol

The proposed protocol is divided into 3 phases; (i) Setup and Initialization, (ii)
Key Generation and Retrieval, and (iii) Group Re-keying. To provide a detailed
and comprehensive description of each phase, we consider a drone-based scenario
consisting of an elected drone group leader and a number of edge drones in its
group. In our assumed scenario, the elected drone team leader qk wishes to
distribute a group key Kg to all edge drones belonging to GL in the presence of
a KGC. Furthermore, we assume that all drones have a maximum flight time of
tg and are stored in a secure location when not on a mission.

AinQ - Setup and Initialization The KGC runs the Setup algorithm at the
beginning of the protocol to generate a master secret key and system parame-
ters. The algorithm returns the system parameters, Ω, and the master secret key
x. These system parameters are public and accessible to each registered entity
partaking in the protocol. Each registered drone runs the GenSecretValue algo-
rithm to generate a secret value and a corresponding public key. On successful
run of this algorithm, the drones send their identity and public key to the KGC
in order to receive partial private and public keys valid for the length of their
flight. The KGC runs the GenPartialKey algorithm and returns to each drone
the partial private and public key pair. All communication in this phase of the
protocol occurs before the drones leave for a mission and is assumed to be over
a secure channel.
Upon receiving the partial private/public keypair, each drone runs the GenPrivKey
and GenPubKey to generate a full public/private key pair. We assume that each
drone makes its public key available to all other drones.

AinQ - Key Generation and Retrieval In this phase of AinQ, the team
leader qk first generates a random number r1, and runs the GenGroupKey al-
gorithm to generate the symmetric group key Kg and the list of ciphertexts
(C1, C2, . . . , Ch). Kg that will be used to secure all ensuing communication be-
tween the group members as well as with the team leader.
On successful run of the GenGroupKey algorithm, the team leader sends the fol-
lowing broadcast message to drones in the network: m1 = 〈r1, V, C1, C2, . . . , Ch,
qk, tg, σqk〉 where σqk = sigskk(r1||V ||Kg). Upon receiving m1, each registered
drone executes the KeyRetrieval algorithm to retrieve the group key Kg. The
freshness and integrity of m1 is verified using the team leader’s public key and
the generated group key. The protocol is aborted if the signature verification
process fails. Figure 4.1 provides an illustration of this phase.

AinQ - Group Re-Key The team leader qk runs the Re− Key algorithm in this
phase to generate a new group key Kg

′ whenever a new drone joins its group or an
existing drone leaves the group. The re-keying process ensures that AinQ is both
forward and backward private. When a drone leaves or joins a group, the leader
updates the group list GL′, generates a new random number r2, and broadcasts
a new message m2 to the network. m2 = 〈r2, V, C ′1, C ′2, . . . , C ′h, qk, tg ′, σ′qk〉 where
σ′qk = sigskk(r2||V ||K ′g).

8 E. Frimpong et al.

Fig. 4.1. Key Generation and Retrieval Phase

5 Security Analysis

In this section, we proceed to prove the security of our construction in the
presence of a malicious adversary A, who can be an outside adversary– which
covers a variety from a passive eavesdropper who just listens to the network to a
malicious entity who has captured some drones–, or inside adversaries including
a corrupt KGC and a revoked user. We begin by describing the main security
properties that a group key distribution scheme should satisfy (5) and follow
this up with the necessary security definitions that we consider for our threat
model (5).
Security Requirements: Consider a group where edge drones dynamically
join or leave. Furthermore, let K = {K0

g , . . . ,K
s
g} be the set of sequential group

keys generated during s successive sessions. Below we provide a list of the main
security properties that a GKD scheme should satisfy.

1. Key Freshness: A GKD scheme has this property if it guarantees a key to
be new, thus preventing the reuse an old key by an adversary.

2. Group Key Secrecy: A GKD scheme must guarantee that a session key is
only known to legitimate drones. This means that extracting a session key
Ki
g ∈ K, i ∈ [0, s] is computationally infeasible for an adversary.

3. Forward Secrecy: Assume an adversary possesses a consecutive subset of
session keys (e.g., {K0

g ,K
1
g , . . . ,K

i
g}). This property guarantees that he can

learn nothing about a future session key Kj
g , for all i < j. Therefore, a

revoked drone cannot discover future session keys.
4. Backward Secrecy: Assume an adversary possesses a consecutive subset of

session keys (e.g., {Ki
g,K

i+1
g , . . . ,Kj

g}). This property guarantees that he

can learn nothing about a past session key Kl
g, for all l < i < j. Therefore,

a newly joined drone cannot discover previous session keys.

Security Model: We now formally define indistinguishability against adaptive
chosen ciphertext attack (IND-CCA2) through the following game between an

AinQ 9

adversary A (this can be an outside adversary, a corrupt KGC, or a revoked
user) and a challenger B.

Ainq-IND-CCA2 Game

– Challenger B runs the Setup algorithm to generate msk, the corresponding
public key Ppub, and system parameters Ω. B then forwards Ω and Ppub to
A and keeps msk confidential. In case A is a corrupt KGC, msk is also sent
to A.

– Adversary A can make the following queries to the challenger. In case A is
a revoked user, the run time of the operations executed by B is less than the
challenge time period.

1. GenSecretV alue Query. Adversary A queries the secret value and the
corresponding public key of a specified drone. B runs the GenSecretValue
algorithm and forwards the output to A. Note that we exclude a corrupt
KGC from these queries.

2. GenPartialKey Query. To respond to a query on the partial private
and public keypair of a specified drone from A, B runs the GenPartialKey
algorithm with msk and the drone’s public key as inputs, and forwards
the output to A.

3. GenGroupKey Query. Adversary A sends a query to OGenGroupKey or-
acle by giving as input the group list GL, identity qk of the team leader,
and the valid time period tg. Using the key for group of drones GL gener-
ated by team leader qk for time period tg. B runs GenGroupKey algorithm
and forwards the output to A.

4. KeyRetrieval Query. Adversary A queries OKeyRetrieval oracle to ex-
tract a group key from the broadcast message. B runs KeyRetrieval al-
gorithm and forwards the output to A. Note that we exclude a corrupt
KGC from these queries.

5. Re−Key Query. Adversary A sends a query to ORe−Key oracle by giv-
ing as input an updated group list GL, the team leader’s identity qk,
and the valid time period tg. B runs Re− Key algorithm and forwards
the output to A.

– At the end of query phase, A submits challenge inputs including group list
GL∗, team leader identity q∗k, and a valid time period t∗g, and two session keys
K0
g ,K

1
g . A may not have made FullKeyGen queries on any of the identities

in GL∗ and q∗k by querying both OGenSecretV alue and OGenPartialKey oracles.
Also, A may not have made KeyRetrieval query on tuple (GL∗, q∗k, t

∗
g) in

the query phase. In case A is a revoked user, the condition t∗g > tR must
also hold, where tR is the revocation time. That is, in the challenge time
period, A has no access to new information. B picks a random b ∈ {0, 1}
and runs (V ∗, C∗1 , C

∗
2 , . . . , C

∗
h)← GenGroupKey(GL∗, q∗k, t

∗
g,K

b
g), where C∗i =

Kb
g ⊕H1(V ∗, Ti, q

∗
k, pk

∗
k, d
∗
i , pk

∗
i , t
∗
g). Finally, B sends (V ∗, C∗1 , C

∗
2 , . . . , C

∗
h) as

challenge to A.

10 E. Frimpong et al.

– Excluding the case where A is a revoked user, A can continue the query
phase by adaptively making a polynomially bounded number of queries. A
may not make FullKeyGen queries on any identities in GL∗ and q∗k by
querying both OGenSecretV alue and OGenPartialKey oracles. Also, A may not
make KeyRetrieval query on same group list GL∗, team leader identity q∗k,
and time period t∗g. Finally, A outputs a bit b′ and wins the game if b′ = b.

Definition. AinQ is IND-CCA2 secure if any probabilistic polynomial-time
adversary A has at most negligible advantage in the above security game. A’s
advantage is defined as below:

AdvIND−CCA2(A) = |Pr[b′ = b]− 1

2
|. (5.1)

5.1 Security Proof

Below, we provide the formal security proof for AinQ which relies on the hardness
of decisional Diffie–Hellman problem.

Definition: Decisional Diffie–Hellman (DDH) Assumption. Given a
prime q and a generator P on the curve Gq, for randomly and independently
chosen a, b ∈ Zq, the value abP is indistinguishable from a random element in
Gq. Formally, for each probabilistic polynomial-time adversary A which is given
(D1 = aP,D2 = bP) and a candidate solution D3, A’s advantage to distinguish
whether D3 = abP or whether D3 was chosen at random from Gq is negligible.
In other words, for any probabilistic polynomial-time algorithm A, we have:

|Pr[ADDH(Gq, P, aP, bP, cP) = 1]

− Pr[ADDH(Gq, P, aP, bP, abP) = 1]| ≤ negl(λ),

where a, b, c ∈ Zq are chosen at random.

Theorem 1. AinQ is IND-CCA2 secure under DDH assumption in the ran-
dom oracle model.

Proof. As noted in the security model, we consider three types of adversaries:
an outside adversary – which covers a variety from a passive eavesdropper who
just listens to the network to a malicious entity who has captured some drones–,
and inside adversaries including malicious KGC and a revoked user. Here we for-
mally prove AinQ security against an outside adversary. Security proofs against
malicious KGC and revoked user follow same arguments as proof below, which
are omitted due to the space limitation.

–Security Against Outside Adversary: extracting a session key is com-
putationally infeasible for an outside adversary. To show this, we prove that if an
outside adversary A has a non-negligible advantage in IND-CCA2 game, then
there exists an algorithm B that solves the DDH problem with overwhelming
probability.

AinQ 11

Setup. Given a DDH challenge (D1 = aP,D2 = bP,D3), B sets the public
key Ppub = D1 and forwards it to A. Here, the virtual master secret key msk is
equal to x = a.

GenSecretValue Query. To answer a query on secret value of drone di sub-
mitted by A, B chooses random xi ∈ Z∗ and sets the corresponding public key
as Pi = xiP . Then, B sends (xi, Pi) to A and also saves the pair (xi, Pi) into a
table Tdi .

GenPartialKey Query. To answer a query on the partial key of a drone di sub-
mitted by A, since B does not possess msk, he generates si = ri + xH0(di, Ri, Pi)
mod q by controlling the output of H0 as follows. B chooses random si ∈ Z∗
as the queried partial key. B also selects random ci ∈ Z∗ as the output of
H0(di, Ri, Pi) and computes Ri = siP −ciD1. Finally, B checks if ({di, Ri, Pi}, .)
is an entry in table TH0

; if it is so, the random ci assigned to H0(di, Ri, Pi) is not
correct and the game aborts. Otherwise, B saves ({di, Ri, Pi}, ci) in table TH0

and outputs the queried partial key as (si, Ri) which is also recorded in table
Tdi .

Hash Query. To answer H query on input ai, B first checks previously queried
values in table TH . If there is the same entry in TH , he outputs the corresponding
value. Otherwise, he outputs a random value ci ∈ Z∗ and saves (ai, ci) in TH .

GenGroupKey Query. Adversary A sends GL, qk, tg to query OGenGroupKey
oracle. To answer this query, B chooses Kg ∈ Z∗ and l′k ∈ Z∗ at random, and
computes V = l′k · D2. Next, B extracts pki = (Ri, Pi) from table Tdi , for all
di ∈ GL. Note that if table Tdi for a drone di ∈ GL was empty, B generates
the corresponding values by calling OGenSecretV alue and OGenPartialKey oracles.
For all pki, B computes Ti = l′ksi · D2 + l′kci · D3 + l′kxi · D2 and Ci = Kg ⊕
H1(V, Ti, qk, pkk, di, pki, tg). Finally, B outputs (V,C1, C2, . . . , Ch, tg) as response
to the query.

KeyRetrieval Query. Adversary A queries B to extract group key from a
broadcast message (V,C1, C2, . . . , Ch, tg). B extracts ski = (si, xi) from table
Tdi , for one di in group list GL corresponding to the broadcast message. B then
computes Ti = (si+xi)·V and Kg = Ci ⊕H1(V, Ti, qk, pkk, di, pki, tg) to retrieve
the session key and forwards Kg to A.

Re-Key Query. Adversary A sends an updated group list GL, team leader
qk, and valid time period tg to query ORe−Key oracle. To answer this query,
B performs same process as he did in GenGroupKey Query except that the Ti
values for old drones can be reused from previous runs. Finally, the output is
forwarded to A.

Challenge. At the end of query phase, A submits challenge inputs includ-
ing group list GL∗, team leader identity q∗k, and a valid time period t∗g, and
two session keys K0

g ,K
1
g . If the conditions described in Ainq-IND-CCA2 game

hold, B (1) picks a random b ∈ {0, 1} (2) runs GenGroupKey Query on input
(Kb

g, GL
∗, q∗k, t

∗
g) to generate (V ∗, C∗1 , C

∗
2 , . . . , C

∗
h) (3) sends it as challenge to A.

12 E. Frimpong et al.

Response. A can run another query phase by adaptively making a polyno-
mially bounded number of queries which must meet the conditions described in
Ainq-IND-CCA2 game. Finally, (1) A outputs a bit b′ (2) B responds to the
DDH challenge by outputtig 1 if b′ = b, and 0 otherwise.

Analysis. Th probability of aborting in the above game, is equal to the prob-
ability of collision in H0 which is at most qH/2

λ, where qH is the total number
of queries to H0. So, the probability that A wins the game is ε(λ)(1 − qH/2λ).
Regarding B’s response, two cases can be considered:

Case 1. The DDH challenge given to B is generated by randomly choosing
a, b, c ∈ Zq, and setting D1 := aP , D2 := bP , and D3 := cP . In this case, D3

is a random element in Gq and thus T ∗i = l′
∗
ksi ·D2 + l′

∗
kci ·D3 + l′

∗
kxi ·D2 is

uniformly distributed in Gq. Therefore, the view of A on the challenge ciphertext
C∗i = Kb

g ⊕ H1(V ∗, T ∗i , q
∗
k, pk

∗
k, di, pki, t

∗
g), is distributed exactly as A’s view in

one-time pad (OTP). Since B outputs 1 exactly when the output b′ of A is equal
to b, we have that:

Pr[BDDH(Gq, P, aP, bP, cP) = 1]

= (1− qH/2λ) · Pr[AOTP (b = b′)]

=
1

2
· (1− qH/2λ).

Case 2. The DDH challenge given to B is generated by randomly choosing
a, b ∈ Zq, and setting D1 := aP , D2 := bP , and D3 := abP . In this case, the
view of A on the challenge ciphertext C∗i = Kb

g ⊕H1(V ∗, T ∗i , q
∗
k, pk

∗
k, di, pki, t

∗
g)

is distributed exactly as A’s view in AinQ. Since B outputs 1 exactly when the
output b′ of A is equal to b, we have that:

Pr[BDDH(Gq, P, aP, bP, abP) = 1]

= (1− qH/2λ) · Pr[AAinQ(b = b′)]

= (
1

2
+ ε(λ)) · (1− qH/2λ).

Therefore, B’s advantage in solving the DDH challenge is:

|Pr[BDDH(Gq, P, aP, bP, cP) = 1]

− Pr[BDDH(Gq, P, aP, bP, abP) = 1]|

= |1
2
− (

1

2
+ ε(λ))| · (1− qH/2λ)

which implies that if ε(λ) is non-negligible, then the probability of solving DDH
problem ε(λ) · (1− qH/2λ) is non-negligible too, completing the proof. �

Discussion. Now we consider how security requirements are satisfied by
AinQ. (1) key Freshness: this requirement is trivially satisfied since each new
session key is chosen uniformly at random from the key space making the event

AinQ 13

of repetitious session keys unlikely to happen. (2) Group Key Secrecy: this is
a trivial inference of Theorem 1. (3) Forward Secrecy: whenever a revocation
happens, the team leader executes Re− Key algorithm to refresh session key
and distributes it through the network. Since the refreshed session key Kj

g is

chosen independent from all previous session keys {K0
g ,K

1
g , . . . ,K

i
g} known to

the leaving drone, revoked drone’s view is exactly same as the view of an outside
adversary. Therefore, a former drone cannot discover subsequent session keys.
This can be also deduced from Theorem 1. (4) Backward Secrecy: whenever a new
drone joins the group, the team leader executes Re− Key algorithm to refresh
session key randomly and distributes it through the network. Since all the new
session keys {Ki

g,K
i+1
g , ...,Kj

g} known to the new drone are chosen independent

from a previous session key Kl
g, for all l < i < j, new drone’s view with respect

to the prior session keys is exactly same as the view of an outside adversary.
Therefore, based on Theorem 1, a new drone can learn about previous session
keys only with negligible advantage.

6 Experiments

In this section, we evaluate the performance of the AinQ’s core functions and
their impact on our target devices. For the purposes of this experiment, we
implemented the protocol on devices that are considered to be commercially
available. Our testbed was made up of the following boards:

– Team Leader: An UP Xtreme board equipped with an Intel Core i7-8665UE
SoC, 16GB RAM, 64GB storage capacity and an Intel UHD Graphics 620
graphics card1. We installed Ubuntu 20.04 on this board and utilized the
MIRACL cryptographic library [26] to implement the proposed protocol.

– Edge Drones: To provide a comprehensive evaluation on resource-constrai-
ned devices, we considered two boards for this role. The Zolertia Re-Mote
Revb board which comes equipped with a 32MHz ARM Cortex-M3 SoC
with 512KB flash, and 32KB RAM2, and the SAML11 Xplained Pro board
with a 32MHz ARM Cortex-M23 SoC, 64KB flash, and 16KB SRAM3. Im-
plementations for both boards were built on top of the RIOT [27] OS using
the C25519 cryptographic library4 for RIOT.

6.1 Performance of Core Cryptographic Functions

In this phase of our experiments, we evaluated the performance of the proposed
cryptographic functions by measuring their execution times. For each specific

1 https://up-board.org/up-xtreme/
2 https://github.com/Zolertia/Resources/wiki/RE-Mote
3 https://www.microchip.com/Developmenttools/ProductDetails/DM320205
4 https://www.dlbeer.co.nz/oss/c25519.html

14 E. Frimpong et al.

entity, we focused on the functions it executes directly. For example, when eval-
uating the performance on the resource-constrained edge drone, we focused ex-
clusively on the GenSecretValue, and KeyRetrieval functions. For the team leader,
we focused on the GenSecretValue,GenGroupKey, and Re− Key functions.

Edge Drone During the course of these experiments, we observed that the per-
formance of the proposed functions on the resource-constrained edge drones de-
pended heavily on the number of EC point multiplications performed by the
device. Based on the specifications of the chosen target devices, we noticed a
considerable difference in the execution times. The SAML11-xpro executed an
EC multiplication in approximately 4.782 seconds while the Zolertia Re-mote
board used approximately 2.598 seconds. Subsequently, the SAML11-xpro exe-
cuted the GenSecretValue in approximately 5.343 seconds and the KeyRetrieval
function in approximately 4.783 seconds. The Zolertia Re-mote board on the
other hand, executed the GenSecretValue in approximately 2.943 seconds and
the KeyRetrieval function in approximately 2.613 seconds.

SAML11-Xpro Zolertia Re-mote

EM Time (sec) Time (sec)

EC Multiplication 0 4.782 2.598
GenSecretValue 1 5.343 2.943
KeyRetrieval 1 4.783 2.613

Table 6.1. Edge Drone Performance

Table 6.1 provides an overview of the results of the experiments conducted
on the edge drone. Each experiment was conducted 50 times with the average
time recorded. From the results, we observe that the Zolertia Re-mote is almost
twice as efficient as the SAML11 Xplained pro. The difference in the performance
results was to be expected based on the resources available to each of the boards.

Team Leader The overall performance of our proposed protocol at the team
leader is determined by the execution of the GenGroupKey and Re− Key func-
tions. To this end, we measure the execution time of the GenGroupKey function
for a varying number of edge drones, ranging from 1 to 2,000. When the num-
ber of edge drones was 1, GenGroupKey took approximately 0.66 ms to execute
whereas when the number of edge drones was 2,000, it executed in approximately
0.72 seconds. We observed that as the number of edge drones in the group in-
creased, the execution time increased in an efficient manner due to the re-use of
the same V parameter for all drones. To be more precise, multiplying 0.66 ms
by 2,000 drones resulted in approximately 1.32 seconds. Consequently, we con-
clude that the GenGroupKey algorithm achieved an execution time which was
about 50% more efficient than the expected performance.

As stated in subsection 4.1, the Re− Key function is executed when an edge
drone joins the group, leaves the group or the current group key expires. To this
end, we measured the execution of the Re− Key function by performing two sets

AinQ 15

of experiments. The first set focused on renewing an expired key. Similar to the
experiments for the GenGroupKey function, we executed the function for a range
of 1 to 2,000 edge drones. For the instance of only 1 drone, the function execution
time was approximately 0.03 ms, while when the number of drones in the group
was 2,000, the execution time was approximately 15.28 ms. Figure 6.1 shows the
overall execution times of both the GenGroupKey and Re− Key functions when
the number of edge drones ranged from 1 to 2,000.

0 500 1,000 1,500 2,000
0

150

300

450

600

750

Number of Edge Drones

T
im

e
(m

s)

GenGroupKey

Re-Key

Fig. 6.1. Performance of the Team Leader

As a next step, we evaluated the performance of the Re− Key function when
new edge drones join a group. To do this, we measured the execution of the
Re− Key function when a varying number of new edge drones joined a group
while maintaining a varying number of existing group members. When a new
drone joins group containing 1 member, the Re− Key function takes approxi-
mately 0.47 ms to execute while when 1,000 users join a group which has 1,000
existing members, Re− Key function takes approximately 389.88 ms. Table 6.2
illustrates the results from these sets of experiments. It is worth mentioning that
we exclude evaluations when a drone leaves a group as this is similar to a simple
group key re-keying operation.

Comparison with Similar Works: One of our intentions during the experi-
ments, was to compare our scheme with other similar works. We firmly believe
that this would make our experimental evaluation more comprehensive. How-
ever, this proved to be difficult as similar works based on GKD techniques have
not make their code publicly available and therefore we were unable to repro-
duce their results. However, since we believe that comparison with similar works
can give valuable insights about the performance of our work, we attempted to
compare our scheme to that presented in [6]. It is worth noting that the scheme
in [6] is a certificateless GKA scheme (CL-GAKA) whereas AinQ is certificate-
less GKD scheme. As such, a comparison was not straightforward. For example,
we compared the performance of the group key generation by the team leader in
AinQ to the group key agreement by x number of users in CL-GAKA. For the

16 E. Frimpong et al.

Existing Group Members New Group Members Time (ms)

1 1 0.47
1 100 32.48
1 500 185.79
1 1000 352.34

100 1 0.98
100 100 35.61
100 500 174.21
100 1000 355.44

500 1 0.59
500 100 39.89
500 500 183.71
500 1000 391.56

1000 1 8.40
1000 100 51.69
1000 500 209.42
1000 1000 389.88

Table 6.2. Group Re-key Function

purposes of this comparison, we implemented the CL-GAKA scheme on our UP
Xtreme board using the PBC library5. The implementation was executed over a
loopback interface (i.e. the same node emulates all clients considered during our
experiments), with all measurements recorded over 50 iterations. We measured
the performance of CL-GAKA’s key agreement phase for three users, excluding
the communication overhead, and observed an average time of 24.3ms. Addi-
tionally, we measured a user’s performance when executing the computations
needed to contribute to the key agreement phase and observed an average time
of 5.5ms. On the other hand, the group key generation phase of AinQ takes
approximately 1.22ms for three users while each user takes an average of 0.22ms
to retrieve a received group key (summing up the group key retrieval time for
three users equates to approximately 0.66ms). These results prove that the key
distribution and pairing-free cryptographic approach employed by AinQ make
it considerably more efficient than the pairing-based key agreement approach
used by CL-GAKA. We acknowledge that the number of users considered for
our implementation of CL-GAKA could have been more. However, practically
implementing a GKA scheme with a large numbers of users was not a straightfor-
ward task; hence, supporting our argument that a GKD scheme is more scalable
than a GKA scheme.

Open Science and Reproducible Research: To support open science and
reproducible research, our source code for the experiments is publicly available
on Github6.

5 https://crypto.stanford.edu/pbc/
6 https://github.com/iammrgenie/AinQ

AinQ 17

7 Conclusion

In this paper, a secure pairing-free certificateless group authenticated key dis-
tribution protocol is presented. The proposed scheme, AinQ, meets the require-
ments for a secure group key distribution protocol and considers multiple drones
with varying resource constraints. AinQ has been proven efficient for a group
with up to 2,000 edge drones when considering a team leader with high com-
putational resources. Our experimental testbed also assessed the performance
of AinQ on the Zolertia Re-mote Revb and SamL11-xpro boards, which have
minimal resources, with results showing that the scheme can be extended to IoT
devices with significant resource constraints. We hope to use AinQ as a founda-
tional scheme to build more secure drone-based applications that can be applied
to multiple domains in future works. Additionally, we plan to investigate how to
accommodate edge drones off-line during the initial group key broadcast phase
using either self-healing, mutual healing, or any lightweight technique that would
compliment AinQ efficiently.

References

1. Logan Kugler. Real-world applications for drones. Communications of the ACM,
62(11):19–21, 2019.

2. Riham Altawy and Amr M. Youssef. Security, privacy, and safety aspects of civilian
drones. ACM Transactions on Cyber-Physical Systems, 1(2):1–25, 2017.

3. Raja Naeem Akram, Konstantinos Markantonakis, Keith Mayes, Oussama
Habachi, Damien Sauveron, Andreas Steyven, and Serge Chaumette. Security, pri-
vacy and safety evaluation of dynamic and static fleets of drones. 2017 IEEE/AIAA
36th Digital Avionics Systems Conference (DASC), 2017.

4. Eugene Frimpong, Alexandros Bakas, Hai-Van Dang, and Antonis Michalas. Do
not tell me what i cannot do! (the constrained device shouted under the cover of
the fog): Implementing symmetric searchable encryption on constrained devices.
Proceedings of the 5th International Conference on Internet of Things, Big Data
and Security, 2020.

5. Eugene Frimpong and Antonis Michalas. Iot-cryptodiet: Implementing a
lightweight cryptographic library based on ecdh and ecdsa for the development
of secure and privacy-preserving protocols in contiki-ng. Proceedings of the 5th
International Conference on Internet of Things, Big Data and Security, 2020.

6. Benjamin Semal, Konstantinos Markantonakis, and Raja Naeem Akram. A cer-
tificateless group authenticated key agreement protocol for secure communication
in untrusted uav networks. 2018 IEEE/AIAA 37th Digital Avionics Systems Con-
ference (DASC), 2018.

7. Haiyan Sun, Qiaoyan Wen, Hua Zhang, and Zhengping Jin. A novel pairing-
free certificateless authenticated key agreement protocol with provable security.
Frontiers of Computer Science, 7(4):544–557, 2013.

8. Guomin Yang and Chik-How Tan. Strongly secure certificateless key exchange
without pairing. Proceedings of the 6th ACM Symposium on Information, Com-
puter and Communications Security - ASIACCS ’11, 2011.

9. Hu Xiong, Yan Wu, and Zhenyu Lu. A survey of group key agreement protocols
with constant rounds. ACM Computing Surveys, 52(3):1–32, 2019.

18 E. Frimpong et al.

10. Biming Tian, Song Han, Jiankun Hu, and Tharam Dillon. A mutual-healing key
distribution scheme in wireless sensor networks. Journal of Network and Computer
Applications, 34(1):80–88, 2011.

11. Vinod Kumar, Rajendra Kumar, and S.K. Pandey. A computationally efficient
centralized group key distribution protocol for secure multicast communications
based upon rsa public key cryptosystem. Journal of King Saud University - Com-
puter and Information Sciences, 32(9):1081–1094, 2020.

12. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. Advances in Cryptology - CRYPTO 2003, page 110–125, 2003.

13. Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryp-
tography. Advances in Cryptology - ASIACRYPT 2003, page 452–473, 2003.

14. Eun-Jung Lee, Sang-Eon Lee, and Kee-Young Yoo. A certificateless authenticated
group key agreement protocol providing forward secrecy. 2008 International Sym-
posium on Ubiquitous Multimedia Computing, 2008.

15. Pietro Tedeschi, Savio Sciancalepore, Areej Eliyan, and Roberto Di Pietro. Like:
Lightweight certificateless key agreement for secure iot communications. IEEE
Internet of Things Journal, 7(1):621–638, 2020.

16. Jongho Won, Seung-Hyun Seo, and Elisa Bertino. A secure communication pro-
tocol for drones and smart objects. Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, 2015.

17. Colin Boyd and Juan Manuel Nieto. Round-optimal contributory conference key
agreement. Public Key Cryptography — PKC 2003, page 161–174, 2002.

18. Emmanuel Bresson and Dario Catalano. Constant round authenticated group key
agreement via distributed computation. Public Key Cryptography – PKC 2004,
page 115–129, 2004.

19. Ratna Dutta and Rana Barua. Constant round dynamic group key agreement.
Lecture Notes in Computer Science, page 74–88, 2005.

20. Junghyun Nam, Jinwoo Lee, Seungjoo Kim, and Dongho Won. Ddh-based group
key agreement in a mobile environment. Journal of Systems and Software,
78(1):73–83, 2005.

21. Sandro Rafaeli and David Hutchison. A survey of key management for secure
group communication. ACM Computing Surveys, 35(3):309–329, 2003.

22. Xinghua Li, Yunwei Wang, Pandi Vijayakumar, Debiao He, Neeraj Kumar, and
Jianfeng Ma. Blockchain-based mutual-healing group key distribution scheme in
unmanned aerial vehicles ad-hoc network. IEEE Transactions on Vehicular Tech-
nology, 68(11):11309–11322, 2019.

23. Sarita Agrawal and Manik Lal Das. Mutual healing enabled group-key distribution
protocol in wireless sensor networks. Computer Communications, 112:131–140,
2017.

24. Sarita Agrawal, Jay Patel, and Manik Lal Das. Pairing based mutual healing in
wireless sensor networks. 2016 8th International Conference on Communication
Systems and Networks (COMSNETS), 2016.

25. Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext.
Public Key Cryptography, page 48–63, 2002.

26. Michael Scott, Kealan McCusker, and Alessandro Budroni. The MIRACL core
library. Available at https://github.com/miracl/core.

27. Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and Thomas
Schmidt. Riot os: Towards an os for the internet of things. 2013 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2013.

https://github.com/miracl/core

