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Abstract. We consider the task of designing secure computation proto-
cols in an unstable network where honest parties can drop out at any time,
according to a schedule provided by the adversary. This type of setting,
where even honest parties are prone to failures, is more realistic than
traditional models, and has therefore gained a lot of attention recently.
Unlike previous works in the literature, we allow parties to return to the
computation according to an adversarially chosen schedule and, moreover,
we do not assume that these parties receive the messages that were sent
to them while being offline. However, we do assume an upper bound on
the number of rounds that an honest party can be off-line—otherwise
protocols in this setting cannot guarantee termination within a bounded
number of rounds.
We study the settings of perfect, statistical and computational security
and design MPC protocols in each of these scenarios. We assume that the
intersection of online-and-honest parties from one round to the next is at
least 2t+ 1, t+ 1 and 1 respectively, where t is the number of (actively)
corrupt parties. We show the intersection requirements to be optimal.
Our (positive) results are obtained in a way that may be of independent
interest: we implement a traditional stable network on top of the unstable
one, which allows us to plug in any MPC protocol on top. This approach
adds a necessary overhead to the round count of the protocols, which
is related to the maximal number of rounds an honest party can be
offline. We also present a novel, perfectly secure MPC protocol that
avoids this overhead by following a more “direct” approach rather than
building a stable network on top. We introduce our network model in the
UC-framework and prove the security of our protocols within this setting.

1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows multiple
mutually distrustful parties to compute a function of their inputs without leaking
anything else beyond the output of the computation.

Most protocols in the MPC literature assume that the parties communicate
over a synchronous network, that is, all the parties have access to a global
clock. This allows the parties to follow the protocol specification based on time.
? Work partially done while Daniel Escudero was at Aarhus University



For example, the protocol construction may require the parties to send certain
messages before the first 10 seconds mark, such that all parties can wait for this
time period to receive all the messages before proceeding to the next “round” of
the protocol. More generally, in a synchronous network the computation proceeds
in communication rounds, each of which has a fixed duration and where each
party can send a message to each other party.

Synchronous networks are natural for describing protocols and may make
sense in many contexts, but they have the following limitations. First, the protocol
always takes time equal to the number of rounds times the stipulated duration
of each round. Furthermore, the model is not resilient to sudden slowdowns: if a
party fails to send a message within the allocated time for a specific round, this
message will not be taken into account, and what is worse, in the context of an
active adversary this will be considered a deviation from the protocol specification.
Hence an honest party who accidentally misses a deadline will be classified as
corrupt. The first problem with this is that an MPC protocol can only tolerate
a certain maximal number of corruptions. Tagging parties as corrupt because
of natural network issues that may appear in practice leaves little room for real
corruptions. For instance, MPC over unstable mobile network connections or
denial of service attacks might consume all the corruptions we can handle. The
second problem is that once a party is tagged as corrupt, the protocol may now
reveal her secret inputs, which seems unfair if the party was actually honest but
suffered a random network delay.

Fixing the above synchronous network problems by having each round last
the longest network time possible is not a realistic option, as protocols would
become too slow for practical applications. A different solution is to consider an
asynchronous network. In this model, the parties are not assumed to have a clock
anymore, so the protocol cannot make use of “time” in its design. Instead, protocol
rules are written in terms of conditions on messages received. For example, it
may instruct the parties to send a certain message, after a certain number of
previous messages has been received. This modeling is more resilient to the type
of attacks described above, since the communication network allows for parties to
be slow and no deadlines are set. Unfortunately, one important drawback of an
asynchronous network is that, when dealing with an active adversary, the parties
cannot distinguish a delayed message sent by a slow party, from a message that
an actively corrupt party decided not to send in the first place. This typically
implies that asynchronous protocols tolerate a smaller number of corruptions
[10]. And, what is worse, an asynchronous protocol cannot guarantee that all
honest parties get to contribute inputs to the computation.

Therefore, it seems to be a better approach to consider an imperfect syn-
chronous network where the adversary is allowed to cause some parties to go
offline temporarily, and require protocols to not classify such parties as corrupt.
In such a setting we may still hope to get optimal corruption thresholds, allow
all parties to contribute input, and guarantee termination at a certain time. A
series of works has studied MPC in different variant of this model, see Section
1.3 for a detailed comparison of prior works. However, it is still an open ques-
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tion whether we can have MPC protocols with optimal security and corruption
thresholds in the most adversarial, but also most realistic setting, that we call
an unstable network in this paper. In such a network parties go offline and come
back according to an adversarially chosen schedule, and parties are not assumed
to receive messages sent while they were offline.

1.1 Our Contribution

In this work we given a positive answer to the above question. Before getting
to the answer, we describe the model in a bit more detail: A stable network is
a standard synchronous network. On the other hand, an unstable network is a
synchronous network where we allow the adversary to choose in each round a
subset of parties that will be offline in that specific round, and will therefore not
be able to send or receive messages3. This models honest parties dropping out
in that specific round. Note that the adversary has the power to decide which
parties drop out at which point in time, which serves to model certain failures
like weak mobile connections. Note also that the set the adversary chooses may
be different for every round, which models the fact that parties are allowed to
come back and rejoin the computation.

Finally, the model has, as a parameter, a bound B, where we require that
an honest party is never offline for more than B rounds, i.e. an honest party is
‘immortal’ like the mythological phoenix. If no such bound is assumed, and we
are only promised that a party eventually rejoins, protocols would not be able to
guarantee termination at a certain time, or that all parties get to contribute input.
These are natural properties that virtually all synchronous protocols satisfy, so
we set as a goal to also achieve them on an unstable network.

A crucial aspect of our model is that, when a party rejoins the computation
after being offline for some rounds, it does not receive the messages the adversary
blocked during this period, and moreover, an honest party does not know whether
she was set to be offline in a particular round. This implies that an honest party
does not know if she failed to receive a certain message because the sender was
offline or corrupt, or because she herself was offline. This is a natural way to
model failures due to a cable being cut and later repaired, for instance, but it
also imposes a challenge when designing protocols since it is not possible for the
parties to selectively send messages depending on whether they have been offline
or not, for example.

Our goal is to determine if we can construct MPC protocols for an unstable
network which enjoy the same security guarantees as protocols over a stable
network and if so, what constraints we must assume on the unstable network
to make this happen. To be able to talk more concretely about this, we will
say that two protocols π, π′ are equivalent if they tolerate the same number of
corruptions, achieve the same type of security (computational/statistical/perfect)

3 In fact we allow the adversary to let some messages make it, which only makes the
model more general.
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and the same security guarantee (security with abort/fairness/guaranteed output
delivery).

Let n be the number of parties and let t be the number of (actively) corrupt
parties. Let Or denote the set of online parties in round r, and let H denote the
set of honest parties. Our first set of results is as follows:

Perfect security. (Section 4) Given any perfectly secure synchronous MPC
protocol against t corruptions, we construct an equivalent protocol over an
unstable network, assuming that |Or ∩ Or+1 ∩ H| ≥ 2t + 1 for all r > 0.
Furthermore, this condition is required for any MPC protocol with perfect
security to exist over an unstable network.

Statistical security. (Section 5) Given any statistically secure synchronous
MPC protocol against t corruptions, we construct an equivalent protocol over
an unstable network, assuming that |Or ∩ Or+1 ∩ H| ≥ t + 1 for all r > 0.
This condition is required for any MPC protocol with statistical security to
exist over an unstable network.

Computational security. (Section B in the Supplementary Material) Given
any computationally secure synchronous MPC protocol secure against t
corruptions, we construct an equivalent protocol over an unstable network,
assuming that |Or∩Or+1∩H| ≥ 1 for all r > 0 (and, for malicious security, as-
suming a PKI). The intersection condition is required for any computationally
secure MPC protocol to exist over an unstable network.

Note that even if the (minimal) assumptions in our results say that at least
some parties stay online from one round to the next, this does not imply that any
particular party stays online for more than one round. This makes protocol design
considerably harder. Had we assumed that an honest party always stays online
for more than one round, we believe that much simpler and efficient protocols
could be designed. In this work, however, our goal is to get feasibility results
for the most adversarial version of the model, so we leave the study of relaxed
models for future work.

It is also important to note that our results imply a necessary tradeoff between
instability and corruptions: taking perfect security as an example, it is well known
that we must have n ≥ 3t+ 1 to have perfect security at all. So for a maximal
value of t, we have only 2t+1 honest parties, and the result above then says that
all honest parties must stay online all the time. On the other hand, as we increase
n above 3t+ 1, an increasing number of honest players can be sent offline.

The results above are obtained via a generic and modular approach in which
we emulate a stable synchronous network using the unstable network. Since we do
this in the UC framework, we can compose with any synchronous MPC protocol,
and get a protocol for the unstable network, which inherits all the properties of
the underlying MPC protocol. For instance, malicious security can be achieved
“automatically” by starting from a maliciously secure MPC protocol designed for
a stable network.

However, this modularity and generality comes at a price: the round complexity
of the new MPC protocol is a factor θ(B) larger than that of the underlying
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protocol (recall that B is the maximal number of rounds an honest party can
stay offline) We therefore also consider the construction of more efficient MPC
protocols directly on top of an unstable network, and we present a construction
in the perfect security setting. The idea is to start from the standard idea of
preparing multiplication triples in a preprocessing phase. Since this can be done
in constant-round, we can do this in O(B) rounds on the unstable network using
our general approach. This leads to a protocol taking the same number of rounds
as for a stable network, except for an additive O(B) term. Note that such a term
is unavoidable: protocols on an unstable network where even one party get to
contribute input must take Ω(B) rounds. Namely, we must wait at least until
that party has had a chance to send at least one message. This also shows that
the case of computational security is less problematic: in this setting, we can
get a O(B)-round protocol already from the generic compilation approach by
starting from the constant-round protocols in the computational setting.

Finally, we consider a different type of improvement of our general results:
if we assume that each pair of players share a sufficient amount of secret key
material, the lower bounds on the number of parties that must survive from one
round to the next no longer hold for the case of statistical and perfect security. It
turns out that with this set-up assumption, we can emulate a stable network on
top of the unstable one assuming |Or ∩Or+1 ∩H| ≥ 1 for statistical security and
assuming |Or ∩Or+1 ∩H| ≥ t+1 for perfect security. This also implies protocols
without set-up assumptions: namely, to generate the shared keys, the parties first
use the generic network compilation approach to send keys secretly between each
pair of players. Then, to run the actual MPC protocol, they use the alternative
network emulation using shared keys. In practice, this can be an advantage since
the stricter condition on the number of honest players surviving from one round
to the next, only has to be satisfied during the (short) preprocessing phase where
shared keys are exchanged.

In the technical overview, we give more details on our constructions and
their complexities. As an additional contribution, necessary to achieve the results
above, we formalize in Section A the concept of a unstable network with dropouts
and comebacks, which enables the adversary to set parties offline and online
arbitrarily, as an extension of the universal composability (UC) framework [7].
Our results are proven secure in this framework, and therefore they enjoy the
same composability features that protocols set in the traditional UC framework
have.

1.2 Technical Overview

Modular Constructions. We start by briefly discussing the main results of
our generic approach in which we emulate a stable synchronous network using
the unstable network. The main complication when designing protocols in an
unstable network is that parties may not stay online for enough rounds as to
“contribute” to the computation. For example, consider the standard approach to
secure multiplication based on Beaver triples ([a], [b], [c]), where a, b are random
elements in F and c = a · b. To multiply two sharings [x], [y] the parties open
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two secret-shared values d← [x]− [a] and e← [y]− [b], and later take the linear
combination [x · y] = e[a] + d[b] + [ab] + de. Only the parties that are online in
the current round can learn the reconstructed values, so only these parties can
define their shares of x · y. However, even if there are enough of these parties
so that the sharings of x · y are “well-defined”, it could happen that in the next
round many of these parties are offline. As a result, not enough parties know
their shares of x · y to be able to continue with the computation.

To solve this issue, our approach consists of designing multi-round protocols
that ensure that all the parties can learn the necessary data for the protocols
to make progress. In order to achieve this, we abstract away the problem of
designing MPC protocols, and focus only on the task of guaranteeing message
delivery between honest parties, which is the main obstacle when working on an
unstable network.

To this end, we first define a functionality FStableNet that represents a secure
and stable network: it allows parties to send and receive messages, and if both
sender and receiver are honest then the functionality guarantees that the message
is eventually transmitted securely (without any eavesdropping or modification)
and reliably (the transmission cannot be stopped).

To achieve the general “feasibility” results presented in Section 1.1, we take a
very general approach that may be of independent interest. Instead of developing
full-fledged MPC protocols for general functionalities, we focus on developing
protocols to instantiate the simpler primitive FStableNet assuming a functionality
that models an unstable network. Once this is done, due to the composability of the
UC framework, any MPC protocol that is computational/statistically/perfectly
secure in the FStableNet-hybrid model composed with our instantiations results in
an equivalent protocol over an unstable network.

The instantiation of FStableNet in the computational security setting is presented
in Section B in the Supplementary Material, and it makes use of signature and
encryption schemes to transfer messages between honest parties. Since we can
use encryption, it is relatively easy to make sure that a secret message eventually
makes it to the receiver, by asking parties to echo the encrypted messages that
are in transit. Of course, this does not work for perfect security, and hence
the instantiation for this case (discussed in Section 4) is more complicated. It
makes a novel use of (a variant of) the method for secret-sharing using bivariate
polynomials that has been used for verifiable secret sharing in the literature
before [4]. At a high level, a sender secret-shares the message she wants to send
using a symmetric bivariate polynomial f(x, y), giving each party the “share”
f(x, i). Since the receiver may not be online in the exact same round, the parties
transfer these sharings to the parties who are online in the next round by letting
each Pi send to each Pj the value f(j, i). Once each Pj has received enough values
{f(j, i)}i, he can perform error correction to recover the polynomial f(j, x), which
by symmetry equals f(x, j). Once the receiver comes online, she will receive the
secret f(0, 0).

The computational and perfect implementations of FStableNet both make a
number of calls to the unstable network that is polynomial in the number of
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players and the bound B. Also, they reliably transfer a message in at most
2B rounds which is optimal. See Section 4.2 and 4.1 for the passive and active
constructions, respectively.

The instantiation with statistical security, which is much more involved, is
presented in Section 5. At a high level, one of the reasons why this setting is much
more difficult than the one with perfect security is that the number of honest
parties that remain online from one round to the next is not large enough to enable
techniques such as error-correction, that guarantee continuation, but instead only
ensure error-detection. To overcome this issue, we first design a method, rooted
in robust secret-sharing, in which a pair of parties can communicate, assuming
that the rounds in which they are online are not too far from each other. Then,
we devise a novel and non-trivial recursive construction that leverages the first
method to communicate between parties that become online at potentially very
different times. This solution has a communication overhead that is exponential
in the bound B. We leave it as an open problem to design a more efficient solution,
however we show a more efficient protocol (in the statistical setting) by generated
pre-shared secret key material, see Section E.

Last but not least, we show that the intersection requirements of online-and-
honest parties from one round to the next to be at least 2t+ 1, t+ 1 and 1 for
perfect statisitcal and computational security, respectively, to be optimal.

Direct Constructions. While our approach of emulating a stable network
using an unstable one is a clean and modular approach to MPC, there are
also drawbacks. We pay an overhead in practice since each message sent in the
emulated stable network takes several “real” rounds in the underlying unstable
network. To overcome this issue, we present an MPC protocol in the perfectly
secure setting that builds directly on top of an unstable network. We start from
the standard idea of preparing multiplication triples in a preprocessing phase.
Since this can be done in constant-round, we can do this in O(B) rounds on
the unstable network using our general construction. We then go through the
circuit in the usual way, spending a triple for every multiplication gate. We use
sharing by bivariate polynomials to transfer state from one round to the next,
so the protocol can proceed despite the fact that different sets of honest parties
may be online. At a high level, we reuse the technique sketched before in which
each party has a “share” f(x, i) under a symmetric polynomial f(x, y), but this
time the underlying secret is an intermediate value of the computation. Using
the same “transition” mechanism as before, the parties can transfer the shared
state to the next set of online parties, which, coupled with a method to open
masked shared values for Beaver-based multiplication towards this upcoming set
of parties, enables computation to make progress in a “layer-by-layer” fashion.
This leads to a protocol where the computation phase is essentially the same
number of rounds as for a stable network. This compares favourably to our
generic compilation where the round complexity is multiplied by 2B. We present
our protocol in Section 6.
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Constructions with Pre-shared Keys. The reason why results are different
with preshared keys is that a sender can one-time pad encrypt his message and
then the only remaining problem is the simpler one of getting the encrypted
message unchanged to the receiver by relaying the message in every round.

Note that these results allow for an alternative MPC construction that can
be used even in the case where no shared keys are given: the parties first use the
(statistical or perfect) protocol mentioned before to send keys secretly between
each pair of players. Then, to run the actual MPC protocol, they use the stable
network emulation using shared keys, that we just mentioned. In practice, this
can be an advantage since the stricter condition on the number of honest players
surviving from one round to the next, only have to be satisfied during the first
part of the protocol where the keys are set up, see Section E.

1.3 Related Work

In what follows we discuss some of the works that study a similar problem to
the one we address in this work. Also, we present in Figure 1 a more graphical
comparison of our model with respect to the works of [1]

Fail-stop adversaries. A series of works have studied the setting of MPC, where
the adversary is allowed to not only corrupt some parties passively/actively,
but also cause some parties to fail (e.g. [12] and subsequent works). However,
their setting differs to ours in several aspects. First, in these works it is typically
assumed that parties who are set to fail do not do so silently, i.e. all the other
parties know when a given party failed. Second, and most crucially, once a party
is set to fail by the adversary, it does not return to the computation.

LazyMPC. The work of [1] considers an adversary that can set parties to be offline
at any round (called “honest but lazy” in that work). This work differs from ours in
several places. First, the authors focus only on the case of computational security,
making use of rather strong techniques such as multi-key fully homomorphic
encryption. Second, just like the case of the fail-stop parties described above,
once a party becomes offline, or “lazy”, it is assumed not to come back. This has
the impact that, in particular, honest parties who leave the computation do not
receive output.

Synchronous but with partition tolerance. Recently, the work of [16] designed
MPC protocol in the so-called “sleepy model”, which enables some of the parties
to lag behind the protocol execution, while not being marked as corrupt. This
could be achieved with an asynchronous protocol, naturally, but the main result
of [16] is obtaining such protocols without the strong threshold assumptions
required to obtain asynchronous protocols. In particular, the authors obtain
computationally secure constant-round protocols, assuming that the set of “fast”-
and-honest parties in every round constitutes as majority, an assumption that is
shown to be necessary.
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(a) Lazy-MPC model
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(b) Guo et al. (Sleepy) model
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(d) Our model

Fig. 1 – Our model compared to other models in the literature. Parties inside
the marked region are online, and messages represented by dashed arrows are
dropped. In Lazy-MPC, Fig. 1a, the parties cannot return. In the model of Guo
et al., Fig. 1b, the parties can return but it is assumed they receive the messages
sent to them while they were offline. In the Fluid-MPC model, Fig. 1c, in each
round the set of parties who send messages may differ from the set of parties who
receive these messages, but the identities of these parties must be known by the
protocol. In our model, Fig. 1d, the parties can return to the computation and it
is not assumed that they receive the messages sent to them while they were offline.

The honest-and-fast-majority assumption implies the one we use in this work
for the computational case: |Or ∩ Or+1 ∩H| ≥ 1 for every round r, so, in a way,
the results in [16] (except for the constant-round aspect of their protocols) can be
derived from our work as well. However, a crucial aspect of our protocols and our
model which is not present in [16] is the following. In our setting, parties are set
to drop out from the protocol execution, and they can rejoin at some point in the
future. Importantly, we do not assume that parties receive of the messages sent
to them while they are offline, that is, after rejoining the computation, a given
party has an outdated view of the protocol execution. In contrast, the model in
[16] is not described as parties being “offline”, but rather as simply being slow.
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In particular, once they return to “normal speed”, they receive all the messages
that were sent to them in previous rounds. This is explicitly used in the protocol
from [16], and the fact that we are avoiding such assumption makes designing
protocols in our setting a considerably harder task.

FluidMPC. In [8], the “fluid” model of MPC is introduced with a statistical
secure protocol. In this model, instead of considering a fixed set of parties as
done traditionally in MPC, the set of parties involved in the protocol execution
can be different from one round to the next one. This setting is related to ours
since, in a way, we can interpret our model of parties dropping out and rejoining
the computation at given times as if the set of active parties in the protocol
changed from round to round.

However, a feature that seems to be essential for the protocol in [8] is that the
identities of the parties that are active in a given round are known beforehand.
This is not the case in our model: the set of parties that are active in a given
round are those that the adversary have not “taken out”, and this set is not
known to the parties in the protocol (in fact, a party does not even know if it is
“offline” or not).

Finally, we also notice that the protocol in [8] satisfies security with abort.
On the other hand, the protocol from our work that is somewhat comparable to
that from [8] in terms of security setting, namely the statistically secure one from
Section 5, satisfies a form of guaranteed output delivery, in the sense that parties
who eventually return to the computation are guaranteed to receive output. It is
not clear how to extend [8] to achieve such notion given that their protocol is
based on certain checks that only enable the parties to detect that some errors
have been introduced, without being able to somehow recover from these.

YOSO. In the recent work of Gentry et al. [14], the “You Only Speak Once”
model for MPC is introduced. In this model, the basic assumption is that the
adversary is able to take a party down as soon as that party sends a message
– using, say, a denial of service attack. Although some number of parties are
assumed to be alive and can receive messages, no particular party is guaranteed
to come back (which is the major difference to our model). Instead, the yoso
model breaks the computation into small atomic pieces called roles roles where a
role can be executed by sending only one message. The responsibility of executing
each role is assigned to a physical party in a randomized fashion. The assumption
is that this will prevent the adversary from targeting the relevant party until
it sends its (single) message. This means that one should think of the entire
set of parties as one “community” which as a whole is able to provide secure
computation as a service. This makes good sense in the context of a blockchain,
for instance. On the other hand, the demand that the MPC protocol must be
broken down into roles makes protocol design considerably harder, particularly
for information theoretically secure protocols. In [14] a statistically secure but
very inefficient protocol is given, and no perfectly secure protocol is known in
the YOSO model. An additional caveat with the yoso model is that one can only
have information theoretically secure protocols assuming that the role assignment
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mechanism is given as an ideal functionality, and an implementation of such a
mechanism must inherently be only computationally secure. In comparison, our
model assumes a somewhat less powerful adversary who must allow a physical
party to come back after being offline. This allows for much easier protocol design,
information theoretic security based only on point-to-point secure channels, and
allows termination such that all parties can provide input and get output.

2 Preliminaries

In this section we introduce the necessary preliminaries that we require to present
our results. Let P = {P1, . . . , Pn} be the set of all parties, and H be the set of
honest parties. We assume that the adversary corrupts t out of the n parties. Let
F be a finite field with |F| > n.

2.1 Shamir Secret-Sharing

Throughout this work we will make use of Shamir secret sharing in order to
distribute data among different parties. To secret-share a value s ∈ F among the
n parties P1, . . . , Pn using threshold t, a dealer proceeds as follows: (1) sample
a uniformly random polynomial f(x) ∈ F[x] of degree at most t, subject to
f(0) = s, and (2) send to Pi its share si := f(i). It is well known that for every
set of t+ 1 points (i, si) there exists a unique polynomial f(x) of degree at most
t such that f(i) = si for all i, which implies that any set of at least t+ 1 shares
can recover the secret, and any set of t shares does not reveal anything about
the secret.

Bivariate sharings. Sometimes we will make use of bivariate sharings, in which
the dealer, to distribute a secret s ∈ F, samples a random symmetric bivariate
polynomial f(x, y) of degree at most t in each variable subject to f(0, 0) = s, and
sends the polynomial f(x, i) to Pi. As before, given at most t of these polynomials
nothing is leaked about the secret s since any secret could be chosen so that it
looks consistent with the given polynomials.

Error-detection and error-correction. Given m shares among which at most
t can be incorrect, then the parties output f(0) as the secret, where f(x) is
the reconstructed polynomial. Given m shares {si} among which at most t are
incorrect we have the following two possibilities:

– If at least t+1 are guaranteed to be correct, error-detection can be performed
by checking if these shares all lies in a polynomial of degree at most t, and
if this is the case, the reconstructed polynomial is guaranteed to be correct
since it is determined by the t+ 1 correct shares.

– If at least 2t+ 1 are guaranteed to be correct, error-correction is possible by
looping through all possible subsets of these shares of size 2t+1 and checking
if all shares in the given subset are consistent with a polynomial of degree at
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most t. The subset used for reconstructing this polynomial has 2t+ 1 points
among which at least t+ 1 are correct (since at most t shares are assumed
to be incorrect), which guarantees that the reconstructed polynomial is the
correct one. Although the process of looping through all subsets of size 2t+1
can be too inefficient if m is much larger than 2t + 1, this can be made
polynomial in m by using error-detection algorithms like Berlekamp-Welch
[13].

In some of our protocols we will need a version of error-correction, which
we call enhanced error-correction, in which the correct polynomial is recovered
if there are enough correct shares, and else an error is output. To this end,
given m ≥ 2t + 1 shares as above among which at most t are incorrect, all
possible subsets of 2t+ 1 shares are inspected, checking if all these shares are
consistent with a polynomial of degree at most t. If one such subset is found,
then its corresponding polynomial is output, and else, an error ⊥ is produced
as the result. By the same analysis as above, this either results in the correct
polynomial or an error. The main complication is that error-correcting algorithms
like Berlekamp-Welch are not designed to handle this setting in which not enough
correct shares may be available, but one can easily modify this algorithm to
handle this case (see for example [11]).

2.2 Crytographic Tools

For our results in the computational setting, we assume the existence of a
CPA-secure public key encryption scheme (enc, dec), and a EUF-CMA signature
scheme (sign, verify). The formal definitions of these primitives and their security
is standard and can be found in any modern book in Cryptography (e.g. [17]).

2.3 Layered Circuits

As described before, we present in Section 6 a direct construction of an MPC
protocol in the perfectly secure setting. This construction will make use of the
concept of a layered circuit [8, Definition 6]. A layered circuit is a circuit that
can be decomposed into layers, indexed by integers 0, . . . , L. Wires in layer 0 are
input wires, and these in layer L are output wires. We denote by `i the number
of wires in layer i, and we denote by x(i)1 , . . . , x

(i)
`i

the values in these wires. For
every i = 1, . . . , L, every value x(i)j is either the sum or product of two values
x
(i−1)
k and x(i−1)h , or it is equal to a value x(i−1)k . In other words, all wires in a

given layer are a function of the wires in the immediate previous layer, only.
We assume that the function f(x

(0)
1 , . . . , x

(0)
`0

) is given by a layered circuit
with L-layers. This is not very restrictive, as it is shown in [8] that any arithmetic
circuit over a field F with depth d and width w can be transformed into a layered
circuit having L = d layers and maximum width 2w.
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3 Networking Model

In this section we provide the different functionalities we will make use of in our
work, together with a sketch of how to model the type of adversaries we consider
in the UC framework [7]. A much more detailed description of our networking
model, within the setting of the UC framework, is presented in Section A in the
Supplementary Material.

Our starting point is a synchronous network, where an upper bound ∆ on
the time it takes for a message to be transmitted between any pair of parties is
known. The communication pattern proceeds in rounds, identified with integers
1, 2, 3, . . ., each taking ∆ time and consisting of all parties sending messages to
each other at the beginning of each round. Since each round r takes ∆ time,
it is guaranteed that all the messages sent at the beginning of round r will be
delivered within the same round r.

A synchronous network as described above is modeled by a functionality that
we denote by FStableNet (described in detail in Section A.1 in the Supplementary
Material). Jumping ahead, it is this functionality the one we will implement in a
secure fashion on top of the unstable network we will describe next.

Before we proceed to defining an unstable network, however, we remark that
we consider a family of functionalities {FPi→Pj

StableNet}ni,j=1 that models a synchronous
channel from Pi to Pj only. It is obvious that FStableNet can be securely instantiated
in the {FPi→Pj

StableNet}ni,j=1-hybrid model, so to instantiate FStableNet, it suffices to
provide an instantiation of all directed channels between each pair of parties.
This is the approach we take in this work.

3.1 Unstable Networks

An unstable network is formalized as a functionality, that we denote by FUnstableNet.
In each round, the functionality proceeds as follows:

– At the beginning of the round the environment, denoted by Z, specifies a
subset of parties Or ⊆ P . This is intended to represent the online parties in
round r.

– For every Pi, Pj ∈ Or ∩H, the functionality delivers messages sent from Pi

to Pj in the given round.
– For every Pi and Pj with either one of the two parties in (Or)

c ∩ H, the
environment can choose whether to drop the message sent from Pi to Pj in
the given round.

More details are given in Section A.2 in the Supplementary Material. Observe
that if a party Pi is set to be offline in a given round r, so Pi /∈ Or, this does
not mean thatPi isnot allowed to send or receive any message in that round. In
reality, Pi may go offline after receiving and sending part of the messages, which
is modeled by the fact that there are not requirements in how the environment
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should handle offline parties,4 and this is precisely one of the main challenges in
the protocol design over a unstable network. Also, notice that an honest party
does not know if it was set to be offline in a given round. For example, if a party
Pi ∈ H does not receive a given message from a party Pj in a given round r, it
might be because (1) Pi is offline in that round (so Pi /∈ Or), (2) Pj is honest
but offline, or (3) Pj is actively corrupt. Finally, a crucial factor of our model
is that, once a party is set to be online after being offline for some rounds, the
messages sent to it during these rounds are lost. This is captured implicitly by
the functionality above.

3.2 A Stable Network on Top of an Unstable Network

As we have mentioned already, our approach is to instantiate FStableNet in the
FUnstableNet-hybrid model. In this model, and considering an active adverary, there
exist computationally secure protocols with t < n (e.g. [6]), statistically secure
protocols with t < n/2 (e.g. [15,5])5, and perfectly secure protocols with t < n/3
(e.g. [3]). As a result, due to the composability of the UC framework, a protocol
that instantiates FStableNet in the FUnstableNet-hybrid model would carry the results
above from the FStableNet networking setting to FUnstableNet, effectively enabling
secure MPC over an unstable network. Furthermore, we remark that, as we have
already hinted, to instantiate FStableNet it suffices to provide instantiations to the
individual channels FPi→Pj

StableNet for i, j = 1, . . . , n.

Intersections of online parties from round to round. It turns out that the feasibility
of instantiating FPi→Pj

StableNet in the FUnstableNet-hybrid model depends, essentially,
in the size of the set Or ∩ Or+1 ∩H (or Or ∩ Or+1 for passive security), which
measures the amount of honest parties that are online from one round to the
next one. An overview of the intersection sizes required in each of the settings
considered in our work is presented in Fig 2 in Section A.3 in the Supplementary
Material.

B-termination assumption. If the adversary is allowed to set a given party
Pi as offline forever, it is obvious that no stable channel to or from Pi could
be instantiated. To address this, we assume that the adversary, or rather, the
environment, enables parties to become online “every once in a while”. This is
captured by the B-assumption, defined next.

4 In fact, a trivial environment could allow all traffic between offline parties. In general,
we can see here that the environment has full control about the order in which
messages are delivered and which parties receive which messages, which models a
very strong and practical adversarial setting in which an attacker has full control of
the network.

5 These protocols require an additional broadcast channel which, unlike in the other two
settings, cannot be instantiated from point-to-point channels. Since such channel must
be assumed anyway, we do not bother with instantiating it in the FUnstableNet-hybrid
model. We elaborate in Section A.4 in the Supplementary Material.
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Definition 1. Let B be a positive integer. We say that an adversary respects the
B-assumption if, for every party Pi and for every non-negative multiple of B,
r ·B, there exists 1 ≤ k ≤ B such that Pi ∈ Or·B+k.

Consider a sender PS who wishes to send a message to a receiver PR. If it
is the adversary’s goal to delay this delivery as much as possible, while still
respecting the B-assumption, then a possible scheduling could consist of the
following: among the rounds r = 1, . . . , B, only set PS online in round B, and
PR in round 1; among the rounds r = B+1, . . . , 2B, only set PR online in round
2B. With this scheduling, we see that PR cannot get the message until round
2B, because it was only online in two rounds, 1 and 2B, but it cannot receive
the message on round 1 since up to that point PS has not been online in order
to send the message. Our protocols from Sections B, 4 and 5 guarantee that
each message is delivered within 2B rounds, which is optimal according to the
reasoning above.

We recall that, in Section 6, we present a perfectly secure MPC protocol (not
an instantiation of FStable) that does not require the B-assumption and is able to
make progress just assuming that the intersection of online parties from round
to round is large enough.

4 Instantiating FPS→PR
StableNet with Perfect Security

In this section we take care of instantiating the functionality for a stable network
with perfect security. First, in Section 4.1 we discuss the simplest setting of
passive security. Then, in Section 4.2 we extend this to active security, while
retaining perfect simulation.

4.1 Passive Security

Assuming a passive adversary, and assuming that |Or ∩ Or+1| ≥ t + 1 for all
r > 0, our protocol to instantiate FPS→PR

StableNet with perfect security is obtained as
follows. At every round, PS tries to secret-share its message m towards all the
parties, which succeeds in the round in which PS comes online. In the following
rounds, the parties try to send their shares of m to PR, who is able to get them
when it comes online, and hence is able to reconstruct m. The only missing step
is that, when PS secret-shares m, only the parties online in the current round
are able to receive the shares. To alleviate this issue, the parties in each round
“transfer” the shared secret to the parties that are online in the next round. This
is done via a simple resharing protocol.

The reason why the condition |Or ∩ Or+1| ≥ t+ 1 is required when we aim
for information-theoretic security is more involved compared to the analogous
restriction in the computational setting from Section B in the Supplementary
Material. We discuss this in more detail later in this section.
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Protocol Πperf,passive
StableNet (PS , PR,m)

– On input (m), PS samples random elements cij ∈ F for i, j = 0, . . . , t,
subject to c0,0 = m and cij = cji, and lets f(x, y) =

∑t
i,j=0 cijx

iyj .
Then, in rounds 1, . . . , B, PS sends f(x, i) to each party Pi.

– Every party Pi initializes a variable fi = ⊥. In rounds 1, . . . , 2B, Pi

does the following:
• If fi is not set already:

∗ If Pi receives a polynomial fi(x) = f(x, i) from PS , then Pi

sets fi = fi.
∗ Else, if Pi receives messages mj ∈ F from at least t+1 parties
Pj , then Pi sets fi to be the polynomial fi(x) such that
fi(j) = mj for the first t+ 1 messages mj .

• If fi 6= ⊥, then Pi sends fi(j) to each party Pj and fi(0) to PR.

– In rounds B+1, . . . , 2B, PR does the following: If PR receives messages
mj ∈ F from at least t+1 parties Pj , then PR computes the polynomial
f0(x) such that f0(j) = mj for the first t+1 messagesmj , and outputs
m = f0(0).

We remark that, although it is not explicitly written in the protocol description,
whenever it is written that Pi sends a message to Pj , this is done by invoking
the FUnstableNet functionality.

Theorem 1. Assume that |Or ∩ Or+1| ≥ t+ 1 for every r > 0. Then, protocol
Πperf,passive

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-
hybrid model with perfect security against an adversary passively corrupting t < n
parties.

Proof. We claim that, in an execution of protocol Πperf,passive
StableNet (PR, PS), PR learns

the value of m at the end of the interaction, and the adversary does not learn
the value of m, unless PS or PR are passively corrupt.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS ,
which exists due to the B-assumption. We claim the following invariant: at the
end of every round r with rS ≤ r ≤ 2B, each Pi ∈ Or has fi 6= ⊥, and these
polynomials satisfy that fi(x) = f(x, i), where f(x, y) is the polynomial sampled
by PS at the beginning of the protocol. To see this we argue inductively. First,
notice that the invariant holds for r = rS given that parties Pi ∈ OrS receive this
directly from PS . For the inductive step assume that the invariant holds for some
round r, that is, each party Pi ∈ Or has set its variable fi, and fi(x) = f(x, i).
In particular, this is held by the parties in Or ∩Or+1, so each party Pi in this set
sends fi(j) to every other party Pj in round r+1, which is received by the parties
in Or+1. Since |Or ∩Or+1| ≥ t+1, we see that each party Pj ∈ Or+1 receives at
least t+ 1 values fi(j) = f(j, i) = f(i, j), which enables Pj to interpolate f(x, j),
which is set to fj . We see then that the invariant is preserved.
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Finally, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR , which is
guaranteed from the B-assumption. By the invariant, the parties in OrR−1 have
set their variables fi at the end of round rR − 1 correctly, so in particular the
parties in OrR−1 ∩OrR will send fi(0) = f(0, i) to PR in round OrR . Since there
are at least t+1 such parties, this means that PR gets at least t+1 values f(0, i),
which allows PR to interpolate m = f(0, 0).

The fact that the adversary does not learn anything if both PS and PR are
honest follows from the fact that its view is limited to t polynomials of the form
f(x, i), which look uniformly random as described in Section 2.1.

We remark that with the analysis above, it is straightforward to set up a
simulator S for the proof. ut

Optimality of |Or∩Or+1| ≥ t+1. Now we show that, in order to instantiate
FPS→PR

StableNet with perfect security against a passive adversary, the assumption that
the adversary’s schedule satisfies |Or∩Or+1| ≥ t+1 in every round r is necessary.
However, we have to be careful about what this should actually mean: consider an
adversary who respects the B-assumption and breaks the intersection condition
in one, or some finite number of rounds. Now, if the sender happens to start our
protocol for sending a message after the last bad round, it will clearly succeed.
So we cannot hope to show that communication between sender and receiver is
impossible, unless we consider an adversary who keeps breaking the intersection
condition “for ever”. So we construct below an adversary that breaks this condition
once every B rounds, and by doing so it is able to learn the message sent by an
honest sender using any instantiation of FPS→PR

StableNet.
Assume the existence of an implementation of FPS→PR

StableNet with perfect security
that tolerates an adversary that schedules the parties as follows:

– The adversary chooses a set A1 ⊂ P such that |A1| = t + 1, PS ∈ A1 and
Ok·B = A1 for k > 0.

– The adversary chooses a set A2 such that A1 ∪ A2 = P and |A1 ∩ A2| ≤ t
such that PR ∈ A2, PS /∈ A2 and Or = A2 for every r that is not of the form
k ·B.

Notice that this scheduling respects the B-assumption. Now, suppose that PR

learns the output in round rR = k ·B+ ` for some k and ` with 1 ≤ ` ≤ B. Since
during the whole protocol PR only hears from the parties in A2, this means that
these parties together had enough information to reconstruct the secret in round
rR. However, these parties only hear from PS through A1∩A2, which means that
at a given point in the protocol this set had enough information to reconstruct
the secret. This is a contradiction since |A1 ∩A2| ≤ t and PS , PR /∈ A1 ∩A2, and
due to privacy no set of at most t parties that does not contain the sender nor
the receiver can reconstruct the message.

4.2 Active Security

The construction we presented in the previous section does not carry over to
the actively secure setting, given that a corrupted party Pi is not forced to send
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correct evaluations fi(j). In this section we show an extension of this protocol
that rules out this case. We assume that, for every r, |Or ∩ Or+1 ∩H| ≥ 2t+ 1,
which should be contrasted with the weaker condition in the passively secure
setting of |Or ∩ Or+1 ∩ H| ≥ t + 1. The use of a larger threshold allows us to
make use of error correction, which allows the parties to reconstruct the right
polynomials at each step of the protocol regardless of any incorrect value sent by
corrupt parties.

Protocol Πperf,active
StableNet (PS , PR,m)

– On input (m), PS samples random elements cij ∈ F for i, j = 0, . . . , t,
subject to c0,0 = m and cij = cji, and lets f(x, y) =

∑t
i,j=0 cijx

iyj .
Then, in rounds 1, . . . , B, PS sends f(x, i) to each party Pi.

– Every party Pi initializes a variable fi = ⊥. In rounds 1, . . . , 2B, Pi

does the following:
• If fi is not set already:

∗ If Pi receives a polynomial fi(x) = f(x, i) from PS , then Pi

sets fi = fi.
∗ Else, Pi collects the messages mj ∈ F for Pj received in that
round and, if there are at least 2t + 1 such messages, Pi

performs error correction on these to reconstruct a polynomial
fi(x) such that fi(j) = mj for every received message mj . If
this succeeds, then Pi sets fi = fi.

• If fi 6= ⊥, then Pi sends fi(j) to each party Pj and fi(0) to PR.

– In rounds B+1, . . . , 2B, PR does the following: If PR receives at least
2t+ 1 messages {mj}j , then PR performs error correction to recover
a polynomial f0(x) such that f0(j) = mj for every received message
mj . If this succeeds then PR outputs m = f0(0).

Theorem 2. Assume that |Or ∩Or+1 ∩H| ≥ 2t+ 1 for every r > 0. Then, pro-
tocol Πperf,active

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-
hybrid model with perfect security against an adversary actively corrupting t < n/3
parties.6

The proof is similar to the one in Theorem 1, and we present it in Section C
in the Supplementary Material.

Optimality of |Or ∩Or+1∩H| ≥ 2t+1. As in Section 4.1, we show that the
bound |Or∩Or+1∩H| ≥ 2t+1 is necessary for essentially all rounds by presenting
an adversary that breaks the correctness of any perfectly secure implementation

6 In principle the restriction is simply t < n, but we have that n − t = |H| ≥
|Or ∩ Or+1 ∩H| ≥ 2t+ 1, so n ≥ 3t+ 1.
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of FPS→PR

StableNet against active adversaries, by using a scheduling that breaks the
condition above while still respecting the B-assumption.

The adversary’s scheduling is as follows. For simplicity let us assume that
n = 5 and t = 1, although the argument can be extended easily to any number
of parties. Assume that P1 is the sender, P5 is the receiver.

– Let Ok·B = {P1, P2, P3, P4} for k = 0, 1, . . ..
– Let Or = {P2, P3, P4, P5} for every r that is not of the form r0+k ·B. Notice

that |Ok·B ∩ Ok·B+1 ∩ H| = |{P3, P4}| = 2 = 2t where Ok·B ∩ Ok·B+1 =
{P2, P3, P4}.

Notice that this scheduling respects the B-assumption. Suppose that there
is a protocol that instantiates FPS→PR

StableNet with perfect security against an active
adversary, supporting the scheduling above. We will show a contradiction arising
from the fact that the adversary can actively cheat.

Suppose that PR learns the output in round rR = k0 ·B + ` for some k0 and
` with 1 ≤ ` ≤ B. Consider two different messages m 6= m′, and let Mj and M ′j
for j = 2, 3, 4 be the concatenation of the messages sent by Pj in round k ·B to
the parties in Ok·B ∩ Ok·B+1 = {P2, P3, P4} for k = 0, . . . , k0, when the inputs
of PS to the protocol are m and m′ respectively.

First, we claim that the messages (M2,M3,M4) (resp. (M ′2,M ′3,M ′4)) must
uniquely determine the secret m (resp. m′). To see why this is the case, observe
that the receiver, P5, only ever hears from the parties P2, P3, P4, but these
in turn only hear from the sender, P1, through the messages (M2,M3,M4)
(resp. (M ′2,M ′3,M ′4)), so these messages have to carry enough information to
determine the secret.

Now, due to privacy, no single party must be able to determine whether the
message sent is m or m′. If P3 was corrupt and if M3 6= M ′3 for all possible
initialization of all random tapes, then the adversary would be able to distinguish
the message by simply looking at whether M3 or M ′3 is being sent by P3. Hence,
we see that there must exist an initial random tape for which M3 =M ′3. For the
rest of the attack we assume this is the case.

With the observations we have seen so far, a corrupt party P2 can mount the
following attack: If P2 sees it needs to send M2, it will send M ′2 instead. Since the
protocol withstands an active attack, the transcript (M2,M3,M4), which would
be transformed to (M ′2,M3,M4) after the attack, would uniquely determine m.
On the other hand, the very same transcript can arise from an actively corrupt
P4 that modifies the message M ′4 when the message is m′ to M4 (recall that
M ′3 =M3). In this case, due to the resilience of the protocol against one active
attack, (M ′2,M3,M4) should reconstruct to the same message as (M ′2,M ′3,M ′4),
which is m′. This is, however, a contradiction, since the same transcript cannot
lead to two different messages.

5 Instantiating FPS→PR
StableNet with Statistical Security

The goal of this section is to develop an information-theoretic protocol that
instantiates FPS→PR

StableNet against active adversaries, but replacing the condition
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|Or ∩ Or+1 ∩ H| ≥ 2t + 1 from Section 4.2 with |Or ∩ Or+1 ∩ H| ≥ t + 1. As
shown in Section 4.2, perfect security cannot be achieved in this setting, so we
settle with statistical security.

Our construction at a high level works as follows. First, we design a pair of
functions f(m) = (m1, . . . ,mn) and g(m′1, . . . ,m′n) = m′ such that, if m′i = mi

for at least t + 1 (unknown) indices, then m′ = m. Also, it should hold that
no set of at most t values mi leaks anything about m. Assuming the existence
of such pair of functions, we can envision a simple construction of a protocol
Π1(PS , PR,m) that guarantees that a receiver PR gets the message m sent by
a sender PS , as long as PR comes online either in the same round where PS is,
or in the next one. This operates as follows: PS computes (m1, . . . ,mn) = f(m),
and, in every round, PS sends mi to party Pi, as well as m to PR. Once a party
Pi receives mi, it sends this value to PR in the next round. Let m′1, . . . ,m′n be
the values received by PR when it comes online, where m′i = ⊥ if PR does not
receive a message from Pi (notice that m′i could differ from mi if Pi is actively
corrupt). Since |Or ∩ Or+1 ∩H| ≥ t+ 1, we see that at least t+ 1 of the m′i are
equal to mi, so PR can output m = g(m′1, . . . ,m

′
n).

Now, we would like to “bootstrap” the protocolΠ1 into a protocolΠ2(PS , PR,m)
that guarantees that a receiver PR gets the message m sent by a sender PS ,
as long as PR comes online either in the same round where PS is, in the next
one, or in the one after that. To this end, the parties run Π1(PS , PR,m), which
guarantees that PR gets m if it comes online in the same round as PS , or at
most in the round after. However, to deal with the case in which PR comes
online two rounds after PS , the parties also execute the following in parallel :
PS computes (m1, . . . ,mn) = f(m) and executes Π1(PS , PR,mi) for i = 1, . . . , n.
This ensures that every Pi ∈ O2 will get mi, and at this point, the parties in
O3 ∩O2 can send these to PR in the third round. Upon receiving m′i, PR outputs
m = g(m′1, . . . ,m

′
n).

To analyze the protocol Π2, assume for simplicity that PS ∈ O1. We first
observe that if PR ∈ O1∪O2, then PR gets m as Π1(PS , PR,m) is being executed.
If, on the other hand, PR ∈ O3, PR gets m as g(m1, . . . ,mn) since the parties
Pi ∈ O2 getmi fromΠ1(PS , PR,mi). This idea can be iterated to obtain protocols
that deliver messages as long as PR comes online at most k rounds after PS

comes online.
In what follows we present the tools necessary to formalize this idea, and

later discuss the actual protocols for instantiating FPS→PR

StableNet.

Robust Secret Sharing. The functions f and g discussed above are instanti-
ated using robust secret-sharing, which are techniques that enables a dealer to
distribute a secret among multiple nodes in such a way that (1) no subset of at
most t nodes learn the secret and (2) if each node sendS its share to a receiver,
no subset of at most t corrupt nodes can stop the receiver from learning the
correct secret.

The definition we consider here is more general than standard definitions
from the literature since, at reconstruction time, we allow missing shares, and
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if there are many of these we allow the reconstruction algorithm to output an
error signal ⊥. However, if there are enough honest non-missing shares, then
reconstruction of the correct message must be guaranteed. This is needed since,
in our protocols, there are some rounds in which parties may not receive enough
shares to reconstruct the right secret, and they must be able to detect this is the
case to wait for subsequent rounds where more shares are available.

Definition 2. Let A ⊆ {1, . . . , n} with |A| ≤ t. A robust secret-sharing (RSS)
scheme with deletions having message space M and share space S is made up
of two randomized polytime functions, share : M → Sn and rec : Sn → M,
satisfying the properties below for any not-necessarily-polytime algorithm A. Let
(s1, . . . , sn) = share(m). Let Bc = A(missing, {sj}j∈A) ⊆ P denote a set chosen
by A of shares to be deleted. Let (s′1, . . . , s′n) be defined as follows: s′i = ⊥ for
i ∈ Bc, s′i = A(i, {sj}j∈A) ∈ S for i ∈ A ∩B and s′i = si for i ∈ Ac ∩B.

– Privacy. The distribution of {si}i∈A is independent of m.
– Error detection. With probability 1− negl(κ), rec(s′1, . . . , s′n) outputs either
m or ⊥.

– Guaranteed reconstruction. If |Ac ∩ B| > t then, with probability 1 −
negl(κ), it holds that m = rec(s′1, . . . , s

′
n).

Several robust secret-sharing constructions can be found in the literature.
However, since we consider a non-standard version of robust secret-sharing, we
present below a concrete construction that fits Definition 2, which is motivated
on the so-called information-checking signatures from [20].

RSS scheme with deletions: (share, rec)

share(m): Compute Shamir shares m1, . . . ,mn of m. Sample
(α1, β1), . . . , (αn, βn) ∈R F2 and let, for every i, j ∈ {1, . . . , n}, τij =
αjmi + βj . Return (s1, . . . , sn), with si = (mi, (αi, βi), {τij}nj=1).

rec(s′1, . . . , s
′
n). Let B = {i : s′i 6= ⊥}. Parse each s′i for i ∈ B as

(m′i, (α
′
i, β
′
i), {τ ′ij}nj=1). Then proceed as follows:

1. If |B| ≥ t + 1: for every i ∈ B do the following. If α′jm′i + β′j
?
= τ ′ij

does not hold for at least t+ 1 values of j ∈ B, then set m′i = ⊥.a
2. After this process, if |{m′i : m′i 6= ⊥}| > t, then using any subset of

this set of size t+1 to interpolate a polynomial f(x) of degree at most
t, and output m = f(0). Else, output ⊥.

a In particular, if 0 ≤ |B| ≤ t then all m′i would be set to ⊥ as the check would
always fail.

The following proposition shows that the scheme (share, rec) is an RSS scheme
with error detection.

21



Proposition 1. The construction (share, rec) from above is an RSS scheme with
deletions.

Proof. Let share(m) = (s1, . . . , sn) with si = (mi, (αi, βi), {τij = αjmi+βj}nj=1).
First we argue privacy. It is clear that the n Shamir shares m1, . . . ,mn do not
leak anything about the secret m towards the adversary. Additionally, the keys
(αi, βi) are simply random values, which do not leak anything either. Finally, each
Pi receives {τij = αjmi + βj}nj=1, but these only involve mi, which is already
known by Pi.

Now, to see the guaranteed reconstruction property, let (s′1, . . . , s
′
n) be as

in Definition 2. Assume that |Ac∩B| > t, we want to show that rec(s′1, . . . , s′n) out-
putsm in this case. Let us write each s′i for i ∈ A∩B as s′i = (m′i, (α

′
i, β
′
i), {τ ′ij}nj=1).

We claim that if m′i = mi + δi with δi 6= 0, then τ ′ij = αjm
′
i + βj for at least

j ∈ Ac ∩B can only happen with negligible probability. To see why this holds, let
us write τ ′ij = τij + εij , so τ ′ij = (αjmi + βj)+ εij = (αjm

′
i + βj)−αjδi + εij . For

this to be equal to αjm
′
i+βj , it has to hold that αj = δ−1i εij . However, δi and εij

are functions of {s`}`∈A, so they are computed independently of the uniformly
random value αj since j /∈ A. This shows that the equation αj = δ−1i εij for at
least j ∈ Ac ∩ B can only hold with probability at most 1/|F| = negl(κ), so in
particular the claim above holds (recall that n = poly(κ)).

From the above we see that if m′i 6= mi then, with overwhelming probability,
τ ′ij 6= αjm

′
i + βj for every j ∈ Ac ∩B, so in particular τ ′ij = αjm

′
i + βj can only

be satisfied for j ∈ A ∩ B, but since |A ∩ B| ≤ t, we see that m′i would be set
to ⊥ from the definition of rec(·). As a result, only values with m′i = mi remain,
and since there are at least |Ac ∩B| > t of these, we see that rec(·) outputs m
correctly in this case.

The argument above also shows the error detection property: the extra
assumption |Ac ∩ B| > t was only used at the end to show that the set {m′i :
m′i 6= ⊥} will have at least t+ 1 elements, in which case the correct m could be
reconstructed. If this does not hold, then rec(·) outputs ⊥. ut

Delivering within 2 rounds. Let (share, rec) be a robust secret-sharing scheme
with deletions. We begin by presenting a protocol Π1(PS , PR,m) that guarantees
that PR gets the message m sent by PS as long as PR comes online either in the
same round as PS , or at most one round later. First, we define the concept of
k-delivery, which formalizes and generalizes this notion.

Definition 3 (k-delivery). A protocol Π is said to satisfy k-delivery if it
instantiates the functionality FPS ,PR

StableNet (with statistical security), modified so that
PR is only guaranteed to receive the message sent by PS if PR ∈

⋃k
r=0OrS+r,

where rS is the first round in which PS ∈ OrS . If PR /∈
⋃k

r=0OrS+r, then PR

cannot output an incorrect message.

The following protocol satisfies 1-delivery:
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Protocol Π1(PS , PR,m)

PS does the following:

– Let (s1, . . . , sn) = share(m). Send si to Pi in every round.
– Send m to PR.

Every party Pi does the following:

– Pi sets an internal variable si = ⊥. In every round, if Pi receives si
from Pi, then it sets si = si.

– In every round, if si 6= ⊥, then Pi sends si to PR.

PR does the following in every round:

– If PR receives m from PS , then PR outputs m.
– Let s′i be the message PR receives from Pi, setting s′i = ⊥ if no such

message arrives. If rec(s′1, . . . , s′n) 6= ⊥, then PR outputs this value.

Proposition 2. Π1(PR, PS ,m) satisfies 1-delivery.

Proof. Privacy holds from the privacy of the robust secret-sharing scheme.
Now, assume that PR ∈ OrS ∪ OrS+1. If PR ∈ OrS , then PR gets m as it is

being sent by PS directly. On the other hand, if PR ∈ OrS+1, the argument is
the following. First, each Pi ∈ OrS receves si from PS , which in particular means
that the parties in OrS ∩ OrS+1 ∩ H send the correct si to PR. PR receives at
least t+1 correct shares si and at most t incorrect ones, hence, by the guaranteed
reconstruction property of the RSS, PR obtains s from these shares.

Finally, the fact that if PS /∈ OrS ∪ OrS+1 then PS does not output an
incorrect message follows from the error detection property of (share, rec). ut

From (k − 1)-delivery to k-delivery. Now we show that, given a protocol
Πk−1(PR, PS , ·) that achieves (k − 1)-delivery, one can obtain a protocol that
achieves k-delivery.

Protocol Πk(PR, PS ,m)

In the following, multiple protocols will be executed in parallel. We
assume that messages are tagged with special identifiers so that they can
be effectively distinguished.

The parties execute Πk−1(PS , PR,m). In parallel, they execute
the following.
– Let (s1, . . . , sn) = share(m). The parties run n protocol instances
Πk−1(PS , Pi, si) for i = 1, . . . , n.

– Each Pi, upon outputting si from Πk−1(PS , Pi, si), send (si) to PR

in all subsequent rounds.
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– PR initializes variables s1, . . . , sn = ⊥. Then PR does the following
in every round:
• Upon outputting si from some execution Πk−1(PS , Pi, si), PR sets
si = si.

• Upon receiving s′i from some party, sets si = s′i.
• PR outputs rec(s1, . . . , sn) if this value is not ⊥.

Proposition 3. Protocol Πk(PS , PR,m) achieves k-delivery.

Proof. Let rS be the first round in which PS ∈ OrS , and assume that PR ∈⋃k
r=0OrS+r. If PR ∈

⋃k−1
r=0 OrS+r, then PR would receive m correctly from the

properties of Πk−1.
Given the above, it remains to analyze the case in which PR ∈ OrS+k. From

the properties of Πk−1, every party Pi ∈ OrS+(k−1) receives si from PS in round
rS + (k − 1). In particular, each party Pi ∈ OrS+(k−1) ∩ OrS+k sends si to PR

in round rS + k. An analysis similar to the one in the proof of Proposition 2
shows that PR is able to recover m from this information, and it also shows that
if PR /∈

⋃k
r=0OrS+r, then PR cannot be fooled into reconstructing an incorrect

message. This concludes the proof. ut

Combining Propositions 2 and 3, we obtain the following corollary:

Corollary 1. For every k, there exists a protocol Πk satisfying k-delivery.

Now, recalling that the B-assumption implies that there is one round among
1, . . . , B in which PS will come online, and a round among B+1, . . . , 2B in which
PR is online as well, we obtain the following theorem as a corollary.

Theorem 3. Assume that |Or∩Or+1∩H| ≥ t+1 for every r > 0. Then, protocol
Π2B(PR, PS , ·) instantiates the functionality FPR→PS

StableNet in the FUnstableNet-hybrid
model with statistical security against an adversary actively corrupting t < n/2
parties.7

Remark 1. The communication complexity of Πk is Θ(nk). This is because, in the
execution of Πk, PS must use Πk−1 to communicate a share to each single party,
adding a factor of n with respect to the communication complexity of this protocol.
This is too inefficient for large values of k. We leave is an open problem the
challenging task of obtaining instantiations of FPS ,PR

StableNet with statistical security
in the setting in which |Or ∩Or+1∩H| ≥ t+1 having communication complexity
that is polynomial in the bound B.

7 As with Theorem 2, in principle the restriction is simply t < n, but we have that
n− t = |H| ≥ |Or ∩ Or+1 ∩H| ≥ t+ 1, so n ≥ 2t+ 1.
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6 A More Efficient Protocol with Perfect Security

Recall that in Section 4.2 we presented a protocol to instantiate the functionality
FStableNet, which is intended to represent a traditional stable and secure network
among the n parties. This is the typical communication model used in several
MPC protocols, and, assuming t < n/3, we can find perfectly secure protocols
in this model which can be used together with our protocol Πperf,active

StableNet (PS , PR)
from Section 4.2 to obtain a perfectly secure protocol over an unstable network.

In order to instantiate the functionality FStableNet, we required that the schedul-
ing the adversary provides allows each party to come online at least once within
certain amount of rounds, say B. This is necessary since FStableNet requires each
message between honest parties to be delivered, and if the receiver never comes
online such guarantee cannot hold. Unfortunately, our protocol Πperf,active

StableNet (PS , PR)
requires 2B rounds to deliver a message between a sender and a receiver, which
ultimately means that the final protocol after composing Πperf,active

StableNet (PS , PR) with
an existing perfectly secure protocol would lead to a multiplicative overhead of
2B in the number of rounds.

Round-count is a very sensitive metric in distributed protocols, especially in
high-latency scenarios where every communication trip incurs in a noticeable
waiting time. Furthermore, the θ(B) overhead may not be so noticeable if the
higher level protocol has a low round count, but unfortunately, it is a well-
known open problem to achieve constant round protocols with perfect security
for functionalities outside NC1 while achieving polynomial computation and
communication complexity. Motivated by this, we develop in this section a
perfectly secure protocol over an unstable network whose number of rounds
corresponds to the depth of the circuit being computed plus a term that depends
on B, but is independent of the size of the circuit, matching the round complexity
of existing protocols over stable networks. Furthermore, after the inputs have
been provided, our protocol does not require anymore the assumption that each
party has to be online at least once every B rounds.8 This is because, as we will
see, our protocol only relies on the assumption that |Or ∩ Or+1 ∩ H| ≥ 2t + 1
for every round r in order to transmit and advance the secret-shared state of the
computation from one round to the next. Intuitively, it is irrelevant if certain
specific parties become online at certain points of the protocol, and the only
thing that matters is that enough parties remain online from one round to the
next one, irrespectively of their identities.

Remark 2. (Low-round complexity in the computational setting) As mentioned
above, if the high level protocol has a low/constant number of rounds then the
θ(B) overhead is less of a problem. In the computational setting constant round
protocols can be designed, for example the early works based on garbled circuits
[2] or on threshold variants of fully homomorphic encryption [19]. For instance, we
could use the 3-round protocol from [1] together with Πcomp,active

StableNet (PR, PS) from

8 However, the output will be received only by the parties who happen to be online at
the output phase.
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Section B.2 to obtain a computationally secure protocol in an unstable network
using 3 · (2B) rounds. The first 2B rounds would consist of the parties sending
to each other certain parameters for an underlying threshold multi-key fully
homomorphic encryption scheme and a non-interactive zero-knowledge protocol.
In the second 2B rounds the parties send to each other encryptions of their inputs,
and the remaining 2B rounds consist of the parties sending decryption shares to
recover the output, after computing homomorphically on the ciphertexts received
in the previous rounds.

6.1 Bivariate Sharings and Transition of Shares

We describe the input and preprocessing phases of our protocol in Section 6.2,
and in Section 6.3 we describe its computation phase. However, before we dive
into the protocols themselves, we need to present certain primitives that will be
useful for these constructions. These are bivariate sharings, defined initially in
Section 2.1, together with methods for transmitting bivariate shared values from
one round to the next. This will allow the parties to “transmit” the state of the
computation from the parties that are online in a given round, to these online in
the next one, making progress in one layer of the circuit at the same time.

We say that the parties have bivariate shares of a value s if there exists a
symmetric bivariate polynomial f(x, y) of degree at most t in both variables such
that (1) each party Pi ∈ P has f(x, i) and (2) it holds that f(0, 0) = s. We denote
this by 〈s〉. Observe that this scheme is linear, i.e. parties can locally compute
additions of secret shared values, which is denoted by 〈x+ y〉 ← 〈x〉+ 〈y〉.

Bivariate sharings were used indirectly in Section 4.2 to instantiate FPS→PR

StableNet

with perfect security against an active adversary. This type of sharings proved
useful in Protocol Πperf,active

StableNet (PS , PR) to “transfer” a state between a set of parties
to another one, and this is the purpose of this primitive in this section as well.
In a bit more detail, during the execution of our protocol it will not hold that
all parties have shares of certain given values, but rather only specific subsets
corresponding to online parties will do. Since the set of online parties potentially
changes from round to round, a crucial primitive our protocol relies on is what
we call transition of shares, which takes care of transmitting the shared state
from one set of parties to another.

We first formalize the notion that only (part of) the online parties hold shares
of a given value. We say that the parties have a bivariate-shared value s in round
r if there exists a symmetric bivariate polynomial f(x, y) of degree at most t in
both variables such that (1) there exists a subset Sr ⊆ Or ∩H with |Sr| ≥ 2t+ 1
such that each Pi ∈ Sr has f(x, i), (2) each Pi ∈ (Or ∩H) \Sr has set their share
to either f(x, i), or a predefined value ⊥, and (3) it holds that f(0, 0) = s. This is
denoted by 〈s〉Or . Observe that nothing is required from parties outside Or ∩H.
Also, notice that if all the parties have bivariate shares of a value s, which we
denote by 〈s〉, then it holds that 〈s〉Or for every r.

A protocol for transition of shares is a one-round protocol in which the parties
start with 〈s〉Or in round r, and they obtain 〈s〉Or+1 in the next round r + 1. In
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what follows we present a protocol for transition of shares, which is motivated in
the perfectly secure protocol for instantiating FPS→PR

StableNet from Section 4.

Protocol Πtransfer

Input: 〈s〉Or in round r
Output: 〈s〉Or+1 in round r + 1.

Parties do the following:

1. For each i = 1, . . . , n, if Pi has a share f(x, i) of 〈s〉Or+1 (different to
⊥), then Pi sends f(j, i) to Pj for j = 1, . . . , n.

2. For each j = 1, . . . , n, if Pj receives at least 2t+1 messages {f(j, i)}i,
then Pj performs enhanced error correction (see Section 2.1) to either
recover f(j, x) or output an error ⊥.

Theorem 4. If executed in round r, protocol Πtransfer guarantees that the parties
get sharings 〈s〉Or+1 .

Proof. Let Sr ⊆ Or ∩H with |Sr| ≥ 2t+1 be the set of honest parties Pi having
f(x, i), guaranteed from the definition of bivariate sharings. Since the protocol
above is executed in round r, each party Pi ∈ Sr will send f(j, i) to each other
party Pj , which in particular is received by the parties Pj ∈ Or+1 ∩ Or ∩ H,
and given that |Sr| ≥ 2t+ 1, the enhanced error-correction algorithm executed
by Pj will result in Pj recovering f(j, x), which is equal to f(x, j). Let Sr+1 :=
Or+1 ∩ Or ∩ H and note that (1) |Sr+1| ≥ 2t+ 1 and also each Pj ∈ Sr+1 has
f(x, j), (2) each Pj ∈ (Or+1 ∩ H) \ Sr+1 set their share to either f(x, j) or ⊥
due to the properties of the enhance error-correction mechanism, and (3) it (still)
holds that f(0, 0) = s. From the definition of bivariate sharings, it holds that
〈s〉Or+1 . ut

Transitioned Reconstruction. Another primitive that we will need in our
protocol, besides transferring shares from one set of parties to another, consists of
reconstructing a bivariate-shared value. Assume that the parties in round r have
〈s〉Or . If all parties in round r send their shares {f(0, j)}j to all other parties,
they can perform (enhanced) error correction to reconstruct s = f(0, 0). In this
way, the parties in Or ∩H are guaranteed to learn s. In particular, s is known
by the parties in Or+1 ∩ Or ∩ H, which contains at least 2t + 1 parties. This
protocol is denoted by s← Πrec(〈s〉Or ).

Remark 3. An important fact about the proof of Theorem 4 is that, it holds
that Sr+1 ⊆ Or+1 ∩Or ∩H. In addition, the reconstruction protocol from above
ensures that the parties in Or+1 ∩ Or ∩H, so in particular the parties in Sr+1,
learn the secret. This will be important in our main protocol in Section 6.3.
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6.2 Preprocessing and Input Phases

We assume that the functionality to be computed is given by a layered circuit
(x

(L)
1 , . . . , x

(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

), as defined in Section 2.3. Considering layered
circuits, in contrast to more general circuits, is useful for our construction since
in this case the values in a given layer completely determine the current state
of the computation, that is, the next layer, and in particular the remainder of
the computation, is fully determined by these values. This is important since,
as we will see, at the heart of our construction lies the possibility of a given set
of online parties to transmit their shared state to the online parties in the next
round, and, from the structure of the protocol, this state is comprised by the
shared values in a given layer.

For our main protocol, we assume that all the parties have certain bivariate-
shared multiplication triples (as specified below), plus bivariate shares of the
inputs of the computation. By making use of the B-assumption from Section B,
these shares can be computed by using any generic MPC protocol for these tasks,
together with our compiler from Section 4.2. This would incur a multiplicative
overhead of B in the number of rounds, however, the circuit representing this
computation is constant-depth, so this does not affect the overall result of this
section. Notice that this does not require all the parties to be online during the
computation of these sharings, but instead, the B-assumption, that requires every
honest party to come online once every B rounds, suffices.

The correlation required for the computation consists of secret-shared values
(〈a〉, 〈b〉, 〈c〉), one tuple for every multiplication gate in the circuit, where a, b ∈R F
and c = a · b.

6.3 Computation Phase

With the primitives described above, the protocol for computing the given
functionality F is relatively straightforward: by making use of the Πtransfer and
Πrec protocols, the parties can use the standard approach to secure computation
based on multiplication triples, making progress from round to round depending
on the set of parties that is online. This is possible since, at the end of the execution
of the method described in Section 6.2, all the parties hold the preprocessing
material and shares of the inputs (even if some parties were offline during certain
parts of the execution), together with the fact that |Or ∩ Or+1 ∩H| ≥ 2t+ 1 for
every round r, which enables share transfer and reconstruction. The protocol
is described in detail below. The security proof follows straightforwardly from
existing techniques, together with the properties proven in Section 6.1, and a
sketch of this proof can be found in Section D in the Supplementary Material.
Observe that the protocol requires only L rounds, which, added to the O(1) rounds
from the preprocessing and input phases, leads to a protocol with comparable
round efficiency to protocols in the stable (i.e. traditional) model.
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Protocol ΠMPC

Input: Secret-shared inputs 〈x(0)1 〉, . . . , 〈x
(0)
`0
〉, where `0 is the number of

input wires.
Preprocessing: A multiplication triple (〈a〉, 〈b〉, 〈c = a · b〉) for every
multiplication gate in the circuit.
Output: Let L be the final round of the protocol. The parties
have 〈x(L)

1 〉OL , . . . , 〈x(L)
`L
〉OL in round L, where (x

(L)
1 , . . . , x

(L)
`L

) =

F (x
(0)
1 , . . . , x

(0)
`0

).

For rounds r = 1, . . . , L:

– The parties in round r − 1 already have shares
〈x(r−1)1 〉Or−1 , . . . , 〈x(r−1)`r−1

〉Or−1 .

– The parties in round r obtain shares 〈x(r)1 〉Or , . . . , 〈x(r)`r
〉Or as follows:

1. For every addition gate with inputs 〈x〉Or−1 and 〈y〉Or−1 , the
parties locally obtain 〈x+y〉Or−1 and call 〈x+y〉Or ← Πtransfer(〈x+
y〉Or−1).

2. For every multiplication gate with inputs 〈x〉Or−1 and 〈y〉Or−1 ,
the parties proceed as follows:
(a) Let (〈a〉, 〈b〉, 〈c〉) be the next available multiplication triple.

The parties in round r−1 locally compute 〈d〉Or−1 = 〈x〉Or−1−
〈a〉Or−1 and 〈e〉Or−1 = 〈y〉Or−1 − 〈b〉Or−1 .

(b) The parties in round r learn d and e by calling d ←
Πrec(〈d〉Or−1) and e← Πrec(〈e〉Or−1).

(c) The parties in round r compute 〈x · y〉Or as d · 〈b〉Or + e ·
〈a〉Or + 〈c〉Or + d · e.a

3. For every identity gate with input 〈x〉Or−1 the parties call 〈x〉Or ←
Πtransfer(〈x〉Or−1).

a Here is where Remark 3 becomes relevant: parties in Or (or rather Sr) can
compute the linear combination defining 〈x · y〉Or since both the constants
and the sharings are known to the parties in Sr.

Remark 4 (About the output). In our protocol above, the parties in OL obtain
shares 〈x(L)

1 〉OL , . . . , 〈x(L)
`L
〉OL in round L, where (x(L)

1 , . . . , x
(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

)
is the result of the computation. This output can be dealt with in multiple different
ways:

– The parties in OL can reconstruct the output to each other. This way, the
parties in OL are guaranteed to learn the output, but parties outside this set
may not satisfy this.

– If the B-assumption holds for some B, the parties can reconstruct and transfer
this sharing for B more rounds so that all parties learn the output.
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Supplementary Material

A Unstable Network with Dropouts and Comebacks

Our starting point is a synchronous network, where an upper bound ∆ on the
time it takes for a message to be transmitted between any pair of parties is
known. The communication pattern proceeds in rounds, identified with integers
1, 2, 3, . . ., each taking ∆ time and consisting of all parties sending messages to
each other at the beginning of each round. Since each round r takes ∆ time,
it is guaranteed that all the messages sent at the beginning of round r will be
delivered within round r.

In an unstable network with dropouts and comebacks, the parties are allowed
to drop from the computation at any given round, potentially missing some of
the messages sent in that round, as well as failing to send some of their own
messages. Furthermore, as clarified in more detail later on, a crucial aspect of
our model is that the parties who return to the computation after dropping out
for one or more rounds are not assumed to receive the messages that were sent
to them during this offline period.

The set of parties who are set to go offline in each round is specified by the
adversary. We denote by Or the set of online parties in round r.9 Although several
dropouts and comebacks are likely to be caused by more “non-adversarial” events
(e.g. a party running MPC from a phone entering a tunnel while on a train),
allowing the adversary to control such scheduling makes our results stronger. We
assume a rushing adversary, which in particular means that the adversary gets
to decide which parties to set offline in a given round even after learning the
messages that the honest parties send to the corrupt parties. Additionally, once
the adversary has chosen which honest parties will be set to go offline in that
round, the adversary can choose which messages from and to these parties are
actually delivered.

Recall that an honest party does not know whether it was set to be offline
in a particular round. For example, an honest party may fail to receive certain
messages while still receiving others, and this could either be because the senders
were offline, or because the receiving honest party was offline. This imposes a big
challenge when designing protocols in an unstable network since it is not possible
for the parties to selectively send messages depending on whether the receiver is
online or not, for example.

Another complication of working in an unstable network with dropouts and
comebacks is that honest parties may not contribute to the computation anymore,
even if they eventually rejoin the computation. For example, imagine an honest
party that is offline for most of the computation, so it misses essentially all
the messages. This party may rejoin after a while, and maybe in the round in
which this party is online it manages to receive enough information to be able
to contribute in the next round. However, the problem here is that there are no
9 This notation is similar to the one in [16], except in that work Or denotes the set of
online and honest parties, which would correspond in our notation to Or ∩H.
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guarantees that this party will be online for contributing in the next round. In
general, we do not assume that a party who returns to the computation stays for
long enough time to receive the messages sent to it in the comeback round, as
well as sending messages in the following round.10

In what follows we describe in detail our model for an unstable network with
dropouts and comebacks.

A.1 UC Framework

The UC framework was initially introduced by Canetti [7]. However, different
variants and alternatives have been proposed in the literature. In our work, we
follow the definition of the universally-composable (UC) framework as defined in
[9, Chapter 4], which we find conceptually simpler than other alternatives in the
literature and lets us define more appropriately the concept of an unstable network.
We first provide a high level overview of this UC model, before proceeding to our
modifications for the unstable network in Section A.2.

We begin by discussing some basic concepts.

I/O automata. This is a recursive polytime machine (as defined in [9]) that
has named ports, which are common message tapes that the machine can
write to and read from. If different machines have the same named ports
then the resource is shared.

Ideal functionalities. These are I/O automatas that model the way the parties
can interact with each other. It has two connections to each of the parties, one
to send and another to receive messages. An ideal functionality may simply
model authenticated or secure channels, or it may model something more
involved such as an oblivious transfer channel. It is also used to model other
types of interaction like a complex computation done on the inputs received
from the parties. An ideal functionality also connects to the environment to
allow adversarial control, plus other low-level details like activations, which
dictates when a given party “acts” in the protocol.

Communication resource. A particular type of functionalities that are of
high relevance are communication resources. These functionalities model the
underlying network over which a given protocol is run, and we will use them
to model our stable and unstable networks.

Protocols. A protocol is a collection of I/O automatas {P1, . . . , Pn} connected
through a communication resource, and each connected to the environment.

Environment. This is an I/O automata Z that is connected to both the parties
and an ideal functionality serving as the communication resource. It is in
charge of several things, like providing inputs to the computation, orches-

10 If we require the adversary to let parties who return to the computation stay online
for at least two rounds (that is, if Pi ∈ Oc

r−1 ∩ Or then Pi ∈ Or+1), then several of
the obstacles we need to overcome in this work would not be present anymore. This
assumption is not too unrealistic.
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trating it by activating11 the machines it is connected to in certain specific
order, overriding the behavior of actively corrupt parties or manipulating
the communication resource. Finally, it is also Z the machine that has to
distinguish real/ideal executions, as described below.

Simulator. The goal of a protocol is to achieve the “same” behavior as some
given ideal functionality. The simulator S is an I/O automata that “sits
between” the corrupt parties (controlled by Z) and the ideal functionality
F that the protocol is supposed to instantiate. S connects to Z and F , and
Z executes the computation S just like it was doing it with the real parties.
The goal of S is then to ensure Z cannot distinguish between an execution
with real parties and one in which S is involved.

Corruptions. The environment is also in charge of executing corruptions. For
the case of active corruptions, Z gets absolute control of the chosen t corrupt
parties during the xecution of the protocol. For the case of passive corruptions,
Z is only allowed to see the messages that the chosen t corrupt parties send
and receive.

Security. At a high level, a protocol Π for a given functionality F is secure if,
for every environment Z, there exists a simulator S that makes the real and
ideal executions indistinguishable. Computational security relates to the fact
that such indistinguishable is conditioned on a given computational problem
to be hard. Statistical security means that the distributions arising from the
real and ideal world are negligibly close, and perfect security means that
these two distributions are exactly the same.

We are deliberately using intuitive language, leaving a lot of details out of
our discussion. We remark that our intention is mostly to recap basic notions
which are useful when we discuss the extension to unstable networks, and we
refer the reader to the thorough description from, say [9], for full details.

Synchrony and Stable Networks. We take the approach from [9] of defining
synchrony as a restriction of the way in which the environment activates the
different parties in a protocol. This, in contrast to other approaches to defining
synchronous communication in the UC framework such as the one from [18], fits
much better our extension to an unstable network from Section A.2, and it is
conceptually much simpler.

Synchronous protocols proceed by rounds. Each round allows the parties to
send messages to the communication resource and hear back from it after it has
proceessed all the messages. A synchronous environment activate honest and
semi-honest parties within a round as dictated below. Actively corrupt parties
can be activated at any point.

1. For every Pi ∈ H ∪ SH, Z activates Pi and then sends (clockin, Pi) to the
communication resource R. Then Z activates R. Overall, this allows Pi to

11 Only active parties are allowed to run at a given time. A party is activated by
inputting a special activation token, which is returned upon termination of the
current activation step.
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send messages to the communication resource, which can then be processed.
The parties can be chosen in any order.

2. The environment possibly interacts with R.
3. For every Pi ∈ H ∪ SH, Z sends (clockout, Pi) to R and activates R. Then
Z activates Pi. Overall, this allows Pi to receive messages from the commu-
nication resource. The parties can be chosen in any order.

Synchronous communication per se does not depend only on how Z schedules
activations but also on how the communication resources manage messages. A
crucial communication resource we will consider in this work is given by FStableNet,
which is intended to model a synchronous stable network (in contrast to an
unstable network, discussed in Section A.2 below) in which parties send messages
to each other in each round, and all of these messages are received within the same
round. The purpose of having this communication resource is two-fold. First, it
serves as a basis for our communication resource FUnstableNet modelling an unstable
network with dropouts and comebacks. Second, it becomes the functionality that
we wish to instantiate in the FUnstableNet-hybrid model in order to obtain MPC
over an unstable network. We return to this discussion in Section A.3.

The functionality FStableNet is described below. It is inspired by the function-
ality FSC from [9, Section 4.4].

Functionality FStableNet

Let C and SH be the set of actively corrupt and semi-honest parties,
respectively. Upon activation, proceed as follows.

– On input (clockin, Pi), check for input from Pi and, if there is one,
parse it as (mi1,mi2, . . . ,min). Store (Pi,mi1, . . . ,min), and send
{mij}Pj∈C∪SH to Z.

– On input (change, Pi, {mij}nj=1), where Pi ∈ C, store
(Pi,mi1, . . . ,min), deleting any previous record of the same
form. This will be important for the simulation.

– Upon receiving a message (clockout, Pi) from Z, send {(Pj ,mji)}nj=1

to Pi, where mji = ⊥ if there is not a recorded message of the form
(Pj ,mj1, . . . ,mjn).

The functionality FStableNet, together with the restrictions of a synchronous
environment described above, constitute what a synchronous protocol looks like:
in every round, in the clockin phase each honest and semi-honest party gets the
chance to send a message to FStableNet, which is activated in order to process
these messages. Then, in the clockout phase the functionality sends the messages
back to the parties, which are activated in order to be able to retrieve them.

For simplicity in our protocols, we will not attempt to instantiate FStableNet

directly, but rather, we will instantiate a set of functionalities {FPi→Pj

StableNet}ni,j=1,
where each FPi→Pj

StableNet is defined as FStableNet, except that only Pi is clocked-in,
only Pj is clocked-out, and the message that Pi sends has the form (mij) (rather
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than (mi1, . . . ,min)). Similarly, the message that FPi→Pj

StableNet sends to Pj is only
comprised by the message that Pi sent, if there is any. This functionality models a
channel from Pi to Pj only. It is obvious that FStableNet can be securely instantiated
in the {FPi→Pj

StableNet}ni,j=1-hybrid model.

A.2 Unstable Networks

In an unstable network with dropouts and comebacks, the guarantees from a
stable network only need to hold for a subset Or of parties specified by Z for the
given round r. For parties outside this set, Z gets to choose who is allowed to
send and receive messages.

This is captured by the following functionality.

Functionality FUnstableNet

Let C and SH be the set of actively corrupt and semi-honest parties,
respectively. Upon activation, proceed as follows.

– On input (clockin, Pi), check for input from Pi and, if there is one,
parse it as (mi1,mi2, . . . ,min). Store (Pi,mi1, . . . ,min), and send
{mij}Pj∈C∪SH to Z.

– On input (change, Pi, {mij}nj=1), where Pi ∈ C, store
(Pi,mi1, . . . ,min), deleting any previous record of the same
form.

– On input (erase, Pi, Pj), look for a record of the form
(Pi,mi1, . . . ,min), and if there is one, replace mij with ⊥. This allows
Z to specify messages to be dropped.

– Upon receiving a message (clockout, Pi) from Z, send {(Pj ,mji)}nj=1

to Pi, where mji = ⊥ if there is not a recorded message of the form
(Pj ,mj1, . . . ,mjn).

The environment Z, on top of following the rules for synchrony described
before, follows this rule: at every round, and after clocking-in the honest and semi-
honest parties so that they send messages to FUnstableNet, Z internally chooses a
set Or ⊆ P. We require then that, for every Pi, Pj ∈ Or ∩H ∩ SH, Z does not
send (erase, Pi, Pj) to FUnstableNet. Furthermore, for simplicity, we assume that Z
sends (schedule,Or) to FUnstableNet after clocking-in the honest and semi-honest
parties. Intuitively, Or is the set of online parties in the given round r, which
means that all the messages they send are guaranteed to be received by parties
in this set. However, this only holds for honest and semi-honest parties, since
actively corrupt parties may simply refrain from sending or receiving messages
completely.

Notice that we do not place any restriction on Z besides ensuring a stable
network among the parties in Or. For example, Z may let some of the parties
outside Or send some of their messages, and some others may receive only part
of their intended messages, by making use of the erase command. Also, observe
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that this command completely deletes the stated message from FUnstableNet’s state,
which models the fact that a party that rejoins the computation at a later point
does not get messages sent to it in previous rounds. If we wanted to model, say,
the network in [16] in which parties who return to the computation get previous
missed messages, we could modify FUnstableNet so that erased messages do not get
completely deleted, but rather delayed.

A.3 MPC in the FStableNet-Hybrid Model

Basically, FStableNet allows an honest sender to transmit a message to another
party while ensuring confidentiality from the adversary, as well as guaranteeing
that the message will be received at the other end, and furthermore without
any alteration. Thus, this fuctionality effectively emulates a stable network with
private and authenticated channels.

Fortunately, the study of MPC over such type of networks is very extensive.
For instance, the following results can be obtained from existing works.

Theorem 5. – (e.g. [6]) Assume that t < n. Then there exists a computation-
ally secure protocol with abort in the FStableNet-hybrid model.

– (e.g. [15,5]) Assume that t < n/2. Then there exists a statistically secure
protocol with guaranteed output delivery in the FStableNet-hybrid model.12

– (e.g. [3]) Assume that t < n/3. Then there exists a perfectly secure protocol
with guaranteed output delivery in the FStableNet-hybrid model.

As a consequence of this, and due to the composability of our model, we see
that it suffices to develop protocols to instantiate the FStableNet functionality.

Intersections of online parties from round to round. Previous works, like
[16], characterize the feasibility of MPC in dynamic settings dependending on
the fraction of the online and honest parties on each round with respect to the
total number of parties. For example, in [16] it is shown that the set of honest
and online parties has to be at least 1

2n+ 1 in order for MPC to be possible in a
dynamic setting with computational security.13

In this work we take a different approach and characterize the feasibility of
MPC in an unstable network with dropouts and comebacks by measuring not
the amount of online and honest parties in each round, but rather the amount
of honest parties that are online from one round to the next one, that is, the
size of the set Or ∩ Or+1 ∩H (or Or ∩ Or+1 for passive security). This is more
flexible than a characterization in terms of the relative number of online and
honest parties with respect to n, since in particular it could be the case that n
is large and not so many parties are online in each round, as long as there are
enough parties that are online from each round to the next. This also reflects
12 These protocols require broadcast. We elaborate on this in Section A.4.
13 Recall, however, that [16] assumes that the parties who return to the computation

get the messages sent to them while being offline. See Section 1.3 for details.
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the intuition that, in order to get MPC, we need to get enough “quorum” that
transmits the states from one round to the next one, and this quorum is precisely
the set of parties that were allowed to receive messages in one round and also
send messages in the next one.

Perfect
security

Statistical
security

Computational
security

Passive adversary
|Or ∩ Or+1| ≥

t + 1 t + 1 1

Active adversary
|Or ∩ Or+1 ∩H| ≥

2t + 1 t + 1 1

Fig. 2 – Overview of the required intersection sizes for each setting considered in
this paper. The result for statistical and passive security follows from the one for
perfect and passive security.

An overview of the intersection sizes required in each of the settings considered
in our work is presented in Fig 2.

B-termination assumption. Now we introduce an assumption that we will
need throughout this work, which restricts the scheduling the adversary can make
with the goal of guaranteeing that honest parties receive messages. Intuitively, no
protocol can instantiate FPS→PR

StableNet if we allow the adversary to set parties offline
forever, since the functionality requires honest parties to receive messages sent
to them by other honest parties. Given this, we assume, in words, that every
party gets the chance to be online “with certain regularity”. This is quantified
by requiring that every party should be online at least “once every B rounds”,
which is captured in the following definition.

Definition 4 (Definition 1, re-stated). Let B be a positive integer. We say
that an adversary respects the B-assumption if, for every party Pi and for every
non-negative multiple of B, r ·B, there exists 1 ≤ k ≤ B such that Pi ∈ Or·B+k.

Consider a sender PS who wishes to send a message to a receiver PR. If it
is the adversary’s goal to delay this delivery as much as possible, while still
respecting the B-assumption, then a possible scheduling could consist of the
following: among the rounds r = 1, . . . , B, only set PS online in round B, and
PR in round 1; among the rounds r = B+1, . . . , 2B, only set PR online in round
2B. With this scheduling, we see that PR cannot get the message until round
2B, because it was only online in two rounds, 1 and 2B, but it cannot receive
the message on round 1 since up to that point PS has not been online in order
to send the message. Our protocols from Sections B, 4 and 5 guarantee that
each message is delivered within 2B rounds, which is optimal according to the
reasoning above.
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A.4 Broadcast in the Statistical Setting

When designing secure MPC protocols in the statistical setting with t < n/2, it is
well known that a broadcast channel is required (for computing general functions),
and furthermore, it cannot be instantiated from point-to-point channels alone.It
is possible to define a reasonable notion of broadcast over a unstable network:
parties that receive a broadcast message in a given round are guaranteed to receive
the exact same message, which in the case the sender is honest, corresponds to the
message this party intended to send. Unfortunately, this notion is insufficient to
instantiate an actual “stable” broadcast functionality in which all honest parties
(and not only these that are online at a given round) must agree on some value.
This is because a corrupt sender may behave honestly during almost all rounds
and then, before the last round, it changes its input towards the parties that are
online in that given round. This way, all the other parties output the old value,
while the parties online in the last round output the new, different value.

The above analysis is not intended to show an impossibility, but rather, to
illustrate how highly non-trivial is the problem of instantiating “stable” broadcast
over a unstable network, a problem which we believe is orthogonal to our results.
To further support this claim, we notice that the work of [16] is devoted almost
in its entirety to solving the problem of broadcast and agreement in a networking
model that, as discussed in Section 1.3 in the introduction, is in a way stronger
than ours.

In practice, even over a stable network, a statistically secure protocol for
secure computation with t < n/2 must assume the existence of a broadcast
channel. This can be instantiated, for example, using a bulletin board, and in
such case this type of instantiations would also work, from a practical perspective,
over an unstable network.

B Instantiating FPS→PR
StableNet with Computational Security

In this section we present protocols for instantiating the FPS→PR

StableNet functionality
in the computational setting, with both passive and active security.

B.1 Passive Security

Our protocol requires the existence of a PKI, which we model as a functionality
FPS ,PR

PKI that samples two secret/public key pairs (skR, pkR) and (skS , pkS) and
sends (skR, pkR, pkS) to PR, and (skS , pkS , pkR) to S.14 This functionality is
executed before the protocol starts. Observe that, since the environment Z
14 This means that to instantiate FStableNet in the {FPi→Pj

StableNet}
n
i,j=1-hybrid model, the

parties need to call FPS ,PR
PKI for every possible sender/receiver pair (PS , PR), which in

turn implies that each party Pi gets a different public key for each other party. This
can be avoided by having one single “global” functionality FPKI that assigns a single
secret/public key pair to each party, and calling this inside each protocol execution
Πcomp,passive

StableNet (PS , PR) when instantiating FStableNet.
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follows the rules for synchronized computation from Section A.1, it in particular
activates all the parties in every round, which means that the PKI is effectively
distributed, regardless of dropouts and comebacks.

We begin by presenting an instantiation of FStableNet in the passively secure
setting. In this case we assume that, for every round r, |Or ∩ Or+1| ≥ 1. The
reason why this is necessary is rather simple: if the intersection Or ∩ Or+1 is
allowed to be empty, then the adversary could choose two disjoint sets A1, A2 ⊆ P
and set O2k = A1 and O2k+1 = A2 for every k > 0, which means that the parties
in A1 only talk among themselves, and same for the parties in A2. In particular,
a sender PS ∈ A1 could not deliver a message to a receiver PR ∈ A2.

The construction is also quite simple: essentially the sender sends its message
on encrypted form to all other players, who then echo it to all others until we
know that the receiver has had a chance to see it.

Protocol Πcomp,passive
StableNet (PS , PR,m)

Setup: The parties call FPS ,PR

PKI , so each PR gets (skR, pkR, pkS) and PS

gets (skS , pkS , pkR).

– On input (m) from Z, PS does the following: In rounds 1, . . . , B, PS

sends (c, . . . , c) to FUnstableNet, where c = encpkR(m).

– Every party Pi initializes a variable msgi = ⊥. In rounds 1, . . . , 2B,
Pi does the following:
• If Pi receives a message {(Pj , cj)}nj=1 from FUnstableNet, then Pi

sets msgi to be equal to cj0 , where j0 is the smallest index such
that cj0 6= ⊥.

• If msgi 6= ⊥, then Pi sends (msgi, . . . , msgi) to FUnstableNet.

– In rounds B + 1, . . . , 2B, PR does the following: If PR receives a mes-
sage {(Pj , cj)}nj=1 from FUnstableNet, then PR outputs m = decskR(cj0),
where j0 is the smallest index such that cj0 6= ⊥.

Theorem 6. Assume that |Or∩Or+1| ≥ 1 for every round r > 0. Then, protocol
Πcomp,passive

StableNet (PS , PR) instantiates the functionality FPS→PR

StableNet in the (FPS ,PR

PKI ,FUnstableNet)-
hybrid model with computational security against an adversary passively corrupting
t < n parties.

Proof. We provide a proof with all the “bells and whistles”, although we will
reduce details in upcoming proofs. We will construct a simulator S that interacts
with the environment Z and with the ideal functionality FPS→PR

StableNet in such a
way that Z cannot distinguish in polynomial time between the execution of
Πcomp,passive

StableNet (PS , PR) and the execution of FPS→PR

StableNet with S.
The simulator S is defined as follows. First, it emulates the functionality

FPS→PR

PKI so when the parties request the PKI in the zeroth round it samples and
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distributes the necessary secret/public key pairs. S also emulates the functionality
FUnstableNet.

In what follows, S must emulate the execution of Πcomp,passive
StableNet (PS , PR). To

this end S emulates all the parties internally, and executes a local copy of the
protocol among these parties as instructed by Z (e.g. activating virtual parties
as Z indicates). Furthermore, for the first round r such that PS ∈ Or, S sends
(clockin, PS) to FPS→PR

StableNet, which allows the functionality FPS→PR

StableNet to receive input
from PS . When emulating PS in this round, S sets c = encpkR(0) if PR is honest,
or it sets c = encpkR(m) if PR /∈ H, where m is the value S receives from FStableNet

after clocking-in PS (recall that FStableNet immediately leaks to Z the values sent
to corrupt parties). Finally, for the first round r ∈ {B + 1, . . . , 2B} in which
PR ∈ Or, S sends (clockout, PR) to FPS→PR

StableNet, which allows PR to get the message
from the functionality.

Now we have to argue that Z cannot distinguish between the ideal and the
real execution. We first begin with the following claim.

Claim. There exists a round rR ∈ {B + 1, . . . , 2B} such that PR outputs m in
round rR, where m is the input from Z to PS .

To prove this claim, we first observe that, due to the B-assumption, there must
be a round 1 ≤ rS ≤ B in which PS ∈ OrS , so PS gets to send c = encpkR(m)
to all parties in OrS . Then, for each round r with rS ≤ r ≤ 2B, the following
invariant holds: all parties in Or know c (at the end of round r). Indeed, we
argue inductively. The invariant clearly holds for round rS . Since |Or∩Or+1| ≥ 1,
assuming that the invariant holds for a round r, we see that it also holds for
round r+1 since there is at least one party in Or ∩Or+1, and this party knows c
since it is in Or, and it also disseminates c to all parties in Or, being part of that
set as well. This shows that the invariant is preserved. This, together with the
fact that from the B-assumption there is a round rR such that B + 1 ≤ rR ≤ 2B
in which PR ∈ OrR , shows that PR gets c.

With this claim at hand, we can show the indistinguishability of the ideal
and real worlds via a reduction to the CPA security of the underlying encryption
scheme. We construct an adversary A that uses Z internally in order to break
the CPA-game. A works as follows. First, it runs Z and sees what message m
is provided as input for PS . A sets the two messages for the CPA-game to be 0
and m. Upon receiving a challenge ciphertext c = encpk(b), where b ∈R {0,m},
A plays the role of the simulator S defined above, interacting with Z, except
it uses pk as PR’s public key and the challenge c as the message PS sends. If
Z believes it is in the ideal execution, then A guesses the plaintext is 0, else it
guesses the plaintext is m.

To analyze the advantage of A, first observe the following:

– If b = 0, then this looks to Z exactly as the execution with the simulator in
the ideal world.

– If b = m, then this looks to Z exactly as the real execution. This is because
S runs exactly the real protocol, but with a “dummy” c. If b = m, however,
then S is given the real c, so the execution corresponds to the real protocol.
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Furthermore, in the simulated execution PR gets the message sent by PS

through the functionality FPS→PR

StableNet, but this also happens in the real execution
thanks to the claim above.

Given this, we see that the advantage of A is equal to the advantage of Z:

Adv(A) =|Pr[A = m | b = m]− Pr[A = m | b = 0]|
=|Pr[Z = real | b = m]− Pr[Z = real | b = 0]|
=|Pr[Z = real | real]− Pr[Z = real | ideal]| = Adv(Z).

We conclude then that Z’s advantage is negligible, given that A’s advantage is
negligible since the encryption scheme is CPA-secure. ut

B.2 Active Security

The protocol above does not work against active adversaries directly since a
corrupt party may lie when sending c. This can be fixed using signatures, since
this would allow a receiver to discard a message that was not originally signed
by the sender. This protocol also requires the PKI functionality FPR,PS

PKI .
In this setting we assume that |Or ∩ Or+1 ∩H| ≥ 1 for every round r.15 The

intuition why this is like necessary is similar to the one from the passive setting in
Section B.1: since the actively corrupt parties could simply refrain from sending
any message at all, allowing |Or ∩ Or+1 ∩H| = 0 would allow the parties to be
partitioned into two disjoint sets that do not communicate among each other.

In the description of the protocol below, and for the rest of the protocols in
this work, we relax the notation with respect to the usage of the functionality
FUnstableNet. For example, instead of saying that a party Pi inputs (mi1, . . . ,min)
to this functionality, we will say that Pi sends mij to Pj . Several other intuitive
relaxations are made.

Protocol Πcomp,active
StableNet (PR, PS ,m)

Setup: The parties call FPS ,PR

PKI , so each PR gets (skR, pkR, pkS) and PS

gets (skS , pkS , pkR).

– On input (m), PS does the following: In rounds 1, . . . , B, PS sends
(c, σ) to all parties, where c = encpkR(m) and σ = signskS (c).

– Every party Pi 6= PR initializes an variable msgi = ⊥. In rounds
1, . . . , 2B, Pi does the following:
• If Pi receives a message (cj , σj) from Pj , and if verifypkS (cj , σj) = 1,

then Pi sets msgi to be equal to cj .
• If msgi 6= ⊥, then Pi sends msgi to all parties.

15 This is in particular implied by the alternative assumption |Ok ∩H| > n/2 for every
k > 0, which is used in [16].
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– In rounds B + 1, . . . , 2B, PR does the following: If PR receives a
message (cj , σj) from a party Pj , and if verifypkS (cj , σj) = 1, then PR

outputs m = decskR(cj).

Theorem 7. Assume that |Or ∩ Or+1 ∩H| ≥ 1 for every r > 0. Then, protocol
Πcomp,active

StableNet (PR, PS) instantiates the functionality FPR→PS

StableNet in the (FPR,PS

PKI ,FUnstableNet)-
hybrid model with computational security against an adversary actively corrupting
t < n parties.

Proof. At a high level, the simulator S in this case is defined in a similar manner
as the one from the proof of Theorem 6: S emulates internal honest parties, and
executes the protocol exactly as in the real execution, except that it uses an
encryption of 0 for the case in which PR is honest, and the real m received from
FPS→PR

StableNet otherwise. However, since this time the environment is corrupting some
parties maliciously, certain modifications must be made to the simulation.

We assume for now that PS is honest, and we discuss the other case towards
the end. In this case, S simply emulates the honest parties as indicated above,
interacting with the actively corrupt parties that are controlled by Z. As in the
simulation from the proof of Theorem 6, S instructs FPS→PR

StableNet to read input from
PS in the round in which PS comes online for the first time, and it instructs
FPS→PR

StableNet to send output to PR in the first round in {B+1, . . . , 2B} in which PR

comes online, if PR is honest.
To show indistinguishability between the ideal and real worlds, we rely on

the following claim:

Claim. There exists a round rR ∈ {B + 1, . . . , 2B} such that PR outputs m in
round rR, where m is the input from Z to PS .

To see this, observe that, from the B-assumption, there must be a round 1 ≤
rS ≤ B in which PS ∈ OrS , so PS gets to send (c, σ) to all parties in OrS . The
invariant we claim here is that, for all rounds rS ≤ r ≤ 2B, all the parties
Pi ∈ Or ∩H set their internal variable msgi to the correct message-signature pair
(c, σ). To see that this invariant holds, we argue inductively: First, the invariant
clearly holds for round rS . This is because each party Pi ∈ OrS ∩H receives the
message (c, σ) from PS , and even if they receive other pairs (c′, σ′) with c 6= c′

and σ 6= σ′ from other parties, these messages are discarded as they will satisfy
verifypkS (c

′, σ′) = 0, since these are not produced by PS .16

Now, recall that |Ok ∩ Ok+1 ∩H| ≥ 1 for every k. Given this, assuming the
invariant holds for a round r, we see that it also holds for round r+1 since there
is at least one honest party Pi in Or ∩Or+1. This is because this party Pi knows
(c, σ) since by induction hypothesis all parties in Or ∩H know (c, σ), and also,

16 Here we are making use of the unforgeability of the signature scheme. This could be
made more formal by defining an adversary that breaks the EUF-CMA security of
the signature scheme, interacting with the environment and playing the role of the
simulator. However, we leave such formal approach out for the sake of simplicity.
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since Pi ∈ Or+1, Pi is able to send this to all parties in Or+1, which preserves
the invariant for round r + 1. This agains uses the fact that the parties can filter
out incorrectly-signed messages.

Finally, let rR ∈ {B+1, . . . , 2B} be a round in which PR ∈ OrR , which exists
due to the B-assumption. Due to the invariant, all the honest parties in OrR

know (c, σ). Hence, PR gets this pair in this round and is therefore able to learn
m.

With this claim at hand, the rest of the analysis is essentially the same as the
one from the proof of Theorem 6. We define an adversary A for the CPA-game
for the encryption scheme that interacts with Z while playing the role of S, and
outputs a guess based on the guess of Z. The key is that we can show that,
when using the “right” message in the simulation (the one given by Z to PS), the
execution looks exactly as the one from the real world, which makes use of the
claim above to argue that in the real world PR receives the message sent by PS ,
as in the simulated execution.

Finally, if PS is corrupt, the simulation proceeds with the following changes.
S emulates the honest parties as before, except that this time it can decrypt the
potentially multiple signed ciphertexts that PS sends. As a result, S, following the
protocol, is able to determine what is the message that at the end of the execution
PR is supposed to receive, and uses the change command on the FPS→PR

StableNet to
modify the input from PS to this new value. ut

C Proof of Theorem 2

Theorem 8 (Theorem 2 re-stated). Assume that |Or ∩ Or+1 ∩H| ≥ 2t+ 1

for every r > 0. Then, protocol Πperf,active
StableNet (PR, PS) instantiates the functionality

FPR→PS

StableNet in the FUnstableNet-hybrid model with perfect security against an adversary
actively corrupting t < n/3 parties.17

Proof. We claim that, in an execution of protocol Πperf,active
StableNet (PR, PS), PR learns

the value of m at the end of the interaction, and, if PR and PS are honest, the
adversary does not learn the value of m.

To see this, let rS ∈ {1, . . . , B} be the smallest value such that PS ∈ OrS .
We claim the following invariant: at the end of every round r with rS ≤ r ≤ 2B,
each Pi ∈ Or ∩H has fi 6= ⊥, and these polynomials satisfy that fi(x) = f(x, i),
where f(x, y) is the polynomial sampled by PS at the beginning of the protocol.
We use induction in order to show that the invariant holds. First, notice that the
invariant is true for r = rS given that parties Pi ∈ OrS ∩H receive the polynomial
directly from PS . For the inductive step assume that the invariant holds for some
round r, and we show that it holds for round r+1. By the hypothesis assumption
each party Pi ∈ Or ∩H has set its variable fi, and fi(x) = f(x, i). In particular,
this holds for the parties in Or ∩ Or+1 ∩H, which means that each party Pi in
this set sends fi(j) to every other party Pj in round r + 1, which is received by
17 In principle the restriction is simply t < n, but we have that n − t = |H| ≥
|Or ∩ Or+1 ∩H| ≥ 2t+ 1, so n ≥ 3t+ 1.

44



the parties in Or+1. Since |Or ∩ Or+1 ∩H| ≥ 2t+ 1, each party Pj ∈ Or+1 ∩H
receives at least 2t + 1 correct values fi(j) = f(j, i) = f(i, j). As discussed in
Section 2.1, even if Pj receives more shares, some of them potentially incorrect,
Pj can still recover f(x, j) via error correction, as instructed by the protocol. We
see then that for Pj fj = f(x, j), so the invariant is preserved.

Now, let rR ∈ {B + 1, . . . , 2B} be a round in which PR ∈ OrR . By the
invariant, the parties in OrR−1 have set their variables fi at the end of round
rR − 1 correctly, so in particular the parties in OrR−1 ∩ OrR ∩ H will send
fi(0) = f(0, i) to PR in round OrR . Since there are at least 2t+ 1 such parties,
this means that PR gets at least 2t+ 1 correct values f(0, i), which allows PR to
error-correct m = f(0, 0). The fact that the adversary does not learn anything if
both PS and PR are honest follows as in the proof of Theorem 1.

As with the case with passive security, the analysis above enables the con-
struction of a simulator S for the proof in a straightforward manner. As with
the proof of Theorem 7, the main complication with the actively secure setting
in contrast to the scenario with passive security is that a corrupt PS may send
inconsistent shares in the first round in which it becomes online. However, in this
case, S can simply emulate the protocol exactly as the honest parties would do,
and check if the receiver would be able to error-correct or not at the end of the
execution. Only if this is the case, S would make use of the change command in
the FPS→PR

StableNet functionality to set PS ’s message to be the one that is recovered by
PR, and then it would clock-out PR if PR is honest. ut

D Security of the Protocol from Section 6

In this section, we provide a sketch of the security properties of protocol ΠMPC

from Section 6.3. Recall that the function to be computed is assumed to be
given by a layered circuit (x

(L)
1 , . . . , x

(L)
`L

) = F (x
(0)
1 , . . . , x

(0)
`0

), as defined in
Section 2.3. Furthermore, it is assumed that the parties have bivariate shares
of the inputs 〈x(0)1 〉, . . . , 〈x

(0)
`0
〉, and also, for every multiplication gate, a triple

(〈a〉, 〈b〉, 〈c = a · b〉) with a, b uniformly random in F.18 Recall that 〈s〉Or means
that there is a large enough subset Sr ⊆ Or ∩H such that every party Pi ∈ Sr
has f(x, i) such that f(0, 0) = s, and parties in (Or ∩H) \ Sr either have f(x, i)
or a special symbol ⊥.

Assume the protocol starts in round 0. We claim that the following invariant
holds: In round r, the parties in Or have shares of the intermediate results in layer
r, namely 〈x(r)1 〉Or , . . . , 〈x(r)`r

〉Or . To see this we argue inductively. For r = 0 this
follows trivially as we assumed that the parties start with shares 〈x(0)1 〉, . . . , 〈x

(0)
`0
〉,

which in particular means they have shares 〈x(0)1 〉O0 , . . . , 〈x(0)`0
〉O0 .

Assume the invariant holds for r, and let us show it also holds for r + 1. Let
k ∈ {1, . . . , `r+1}. From the definition of a layered circuit, the value x(r+1)

k can
be computed in either one of three ways:
18 A simple “optimization” is that these shares do not need to be held by all the parties,

but rather by these that will make use of these sharings in each corresponding round.
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– Identity gate x(r+1)
k = x

(r)
i . In this case the protocol instructs that the parties

must call 〈x(r+1)
k 〉Or+1 ← Πtransfer(〈x(r)i 〉Or ).

– Addition gate x
(r+1)
k = x

(r)
i + x

(r)
j . In this case the protocol dictates the

parties to compute 〈x(r)k 〉Or = 〈x(r)i 〉Or+〈x(r)j 〉Or , followed by 〈x(r+1)
k 〉Or+1 ←

Πtransfer(〈x(r+1)
k 〉Or ).

– Multiplication gate x(r+1)
k = x

(r)
i · x

(r)
j . Here, the parties in Or first compute

locally 〈d〉Or = 〈x(r)i 〉Or − 〈a〉Or and 〈e〉Or = 〈x(r)j 〉Or − 〈b〉Or , and call
d← Πrec(〈d〉Or ) and e← Πrec(〈e〉Or−1), which enables the parties in Or ∩H,
which include Or ∩ Or+1 ∩H, to learn d and e. Observe that this does not
reveal anthing about x(r)i and x(r)j to the adversary since a and b are assumed
to be uniformly random and unknown to the adversary. Finally, these parties,
which define the set Sr+1, compute d · 〈b〉Or+1 + e · 〈a〉Or+1 + 〈c〉Or+1 + d · e,
which can be easily checked to be equal to 〈x(r)i ·x

(r)
j 〉Or+1 , which is the same

as 〈x(r+1)
k 〉Or+1 .

Since the invariant holds for every layer, in particular it holds for r = L,
which shows that, after L rounds, the parties obtain 〈x(L)

1 〉OL , . . . , 〈x(L)
`L
〉OL . As

mentioned in Remark 4 in Section 6.3, these shared outputs can be handled in
different ways, depending on the application under consideration.

E Results with Pre-Shared Keys

In this section we sketch how our results change if the parties are allowed to
interact with a setup functionality before the beginning of the protocol. For the
case of computational (malicious) security, nothing changes as the intersection
condition is clearly already minimal: if no honest player survives from one round
to the next, nothing can be transmitted.

We then consider perfect security. Assume that PS and PR have a random
shared key k ∈ F only known by the two of them. Then we only need to build a
protocol where PS sends c = m+ k (instead of m), which does not require any
privacy. For this, it is easy to see that the condition |Or ∩ Or+1 ∩H| ≥ t+ 1 for
every r > 0 is sufficient and necessary: PS can simply send c in the clear to all
parties, and all parties relay this message in every round; however, an honest
party only relays a message if it hears the given message either directly from
the sender, or from at least t+ 1 parties. The latter condition ensures that you
only relay something you heard from at least one honest party. On the other
hand, in each round every honest player will hear at least from the ≥ t+1 honest
survivors from that previous round.

For the case of statistical security, we can also let the receiver one-time pad
encrypt the message to be sent, so we only need a protocol that transmits a
public message m reliably. Recall that with a shared key K = (a, b), a value x
can be authenticated by sending along an “unconditional MAC” mK(x) = ax+ b
(computed in a finite field). The receiver recomputes the MAC and compares to

46



what she received. An adversary can make the receiver accept a different message
only by guessing a, which happens with negligible probability if a is chosen from
a sufficiently large field.

Now, let M(x) stand for the following operation: for each party Pi, PS takes
a fresh MAC-key K she shares with Pi and appends mK(x) to x. Thus, M(x)
consists of x followed by n MACs. Now, to send m to PR, PS will compute and
send M(M(· · ·M(m) · · · )) =M2B(m). Suppose that, in some round, Pi receives
a message that can be parsed as M j(m). Note that this means M j(m) consists
of M j−1(m) followed by n MACs, one of which is intended for Pi. If this MAC
verifies, she will send M j−1(m) to all parties in the next round.

This protocol works if |Or ∩ Or+1 ∩H| ≥ 1 for all r: in the round where PS

is online all honest players will get a message that they can verify, so at least one
of them will relay a correct message in the next round, where one layer of MACs
has been “peeled off”. This continues until PR comes online, which happens no
later than 2B rounds after PS started the exchange, so the parties will not “run
out” of MACs. The only way in which PR can receive an incorrect message is if a
MAC was forged, which happens with negligible probability.

As for the communication complexity, note that PS will need to attempt to
start the protocol in each of the first B rounds (she does not know in which of
them she is online). For each instance, O(Bn2) messages may be sent, so we have
O(B2n2) messages. Each message has size equal to the original message size plus
O(Bn) macs. Note here that even if the simple example mac we mentioned has
mac size that depends on the message size, it is well known that we can have
macs whose size depend only on the security parameter. Total communication is
therefore O(B2n2(`+Bnκ)) where ` is the message length and κ is the security
parameter.
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