
Ofelimos: Combinatorial Optimization via Proof-of-Useful-Work

A Provably Secure Blockchain Protocol

Matthias Fitzi

IOHK

matthias.fitzi@iohk.io

Aggelos Kiayias

University of Edinburgh & IOHK

akiayias@inf.ed.ac.uk

Giorgos Panagiotakos

IOHK

giorgos.panagiotakos@iohk.io

Alexander Russell

University of Connecticut & IOHK

acr@cse.uconn.edu

October 14, 2021

Abstract

Minimizing the energy cost and carbon footprint of the Bitcoin blockchain and related proto-
cols is one of the most widely identi�ed open questions in the cryptocurrency space. Substituting
the proof-of-work (PoW) primitive in Nakamoto's longest chain protocol with a proof of useful
work (PoUW) has been long theorized as an ideal solution in many respects but, to this day,
the concept still lacks a convincingly secure realization.

In this work we put forthOfelimos, a novel PoUW-based blockchain protocol whose consensus
mechanism simultaneously realizes a decentralized optimization-problem solver. Our protocol is
built around a novel local search algorithm, which we call Doubly Parallel Local Search (DPLS),
that is especially crafted to suit implementation as the PoUW component of our blockchain
protocol. We provide a thorough security analysis of our protocol and additionally present
metrics that re�ect the usefulness of the system. As an illustrative example we show how DPLS
can implement a variant of WalkSAT and experimentally demonstrate its competitiveness with
respect to a vanilla WalkSAT implementation. In this way, our work paves the way for safely
using blockchain systems as generic optimization engines for a variety of hard optimization
problems for which a publicly veri�able solution is desired.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 Doubly Parallel Local Search 7

3.1 Algorithm description . 7
3.2 Moderately-hard DAG computations . 10

4 The PoUW Blockchain Protocol 14

4.1 Protocol description . 14
4.2 Dealing with multiple instances . 17
4.3 Incentives structure . 18

5 Security Analysis 19

5.1 Ledger security . 19
5.1.1 Analysis of the Markov chain . 21
5.1.2 The mixing time; convergence to mutual independence 22
5.1.3 Bounds on the events of interest . 23
5.1.4 Bounds on the number of adversarial mining successes 25
5.1.5 Putting everything together . 31

5.2 DPLS security . 31
5.3 Protocol usefulness . 33

6 Applications 34

6.1 Suitable algorithms . 34
6.2 Real-world problems . 34
6.3 Concrete example . 35

A The Full Protocol 41

B Security under Ideal Conditions 43

C Characteristic-String Analysis: Forks, Margin, and Common Pre�x 43

C.1 Fork notation, closure . 44
C.2 Tines . 44
C.3 Fork trimming; dominance . 44
C.4 Advantage and margin . 45

D The protocol with honest restarts 46

2

1 Introduction

Blockchain protocols based on Proof of Work (PoW) capitalize on the work performed by protocol
participants, called miners, to ensure the security of the maintained transaction ledger. In the
most prominent blockchain designs following Bitcoin's paradigm [46] the work performed serves no
other purpose besides maintaining security. Such protocols are also permissionless and incentive-
driven and hence o�er rewards to prospective miners who decide to join the protocol and commit
computational e�ort. This has lead to an ever increasing energy expenditure in systems like Bitcoin.
At the time of this writing, Bitcoin has an annualized energy expenditure on par with many small
to medium countries (see e.g., the Cambridge Bitcoin Electricity Consumption Index, https://
cbeci.org).

The above trend has been identi�ed early on as an important aspect in the Bitcoin ecosystem
leading to two major avenues for potential improvement of the underlying blockchain protocol. The
�rst is aimed at changing the PoW mechanism to another resource that would have potentially
�greener� characteristics, e.g., proof of stake [17, 29, 37], proof of space [21, 50], proof of space-time
[44], and similar mechanisms. A common concern to these approaches however, is the change of
the underlying security primitive (from �work� to something else) and the inevitable impact of this
change to the system's security guarantees. The second direction which ameliorates this issue, and
is the focus of this work, is to repurpose the invested computational e�ort towards solving real-
world problems. This direction thus highlights a proof-of-useful-work (PoUW) design approach for
blockchain protocols.

Early designs and implementation attempts such as Noocoin [16] and Primecoin [38] highlighted
the fundamental issue that would henceforth plague progress towards a robust PoUW system. If
the work solved is truly useful then the attackers may direct the system towards solving problem
instances that are easy for them (e.g., due to precomputation or other private advantage due to the
underlying instance-space structure) and hence the security guarantees are dubious; at the same
time, minimizing the attacker's ability to manipulate the system may render the system's computa-
tions useless in practice (e.g., Primecoin [38] and Gapcoin [23] compute sequences of Cunningham
primes and gaps between primes respectively�both mathematical objects of dubious usefulness).

Our contributions. We propose the �rst PoUW-based blockchain protocol that is accompanied
by a thorough security and usefulness analysis. Central to our construction is a novel general-
purpose algorithm for stochastic local search called Doubly Parallel Local Search (DPLS). Our key
technique for protocol design is to mold the whole blockchain protocol execution into a DPLS engine
that demonstrably performs the steps of the algorithm in a publicly veri�able manner. The PoUW
operation in our consensus protocol has the miners collectively run DPLS on instances contributed
by interested clients. In more detail our results are the following.

(I) Doubly Parallel Local Search. We put forth a new stochastic algorithm for local search. With
DPLS we achieve the following two-pronged objective: (i) The algorithm suitably re�ects in its
structure the stochastic properties of the underlying permissionless blockchain operation so that it
will be feasible to view the blockchain execution as a virtual machine running the algorithm; (ii)
Stochastic local search is a powerful and generic algorithmic paradigm for solving computationally
hard optimization problems. Thus DPLS can be casted within the broad family of stochastic local
search algorithm variants and have its usefulness assessed with respect to problems of high real-world
value.

DPLS is a general purpose stochastic local-search algorithm that is based on an underlying al-
gorithm M , called the exploration algorithm, which examines a given set of points in the solution
space and produces another one, after some local exploration that requires a modicum of compu-

3

https://cbeci.org
https://cbeci.org

tational e�ort. Based on M , DPLS follows a �doubly� parallel search strategy where a number of
paths are pursued in parallel, and in each path a number of exploration threads via M are executed
of which the best one, according to a scoring function, is selected.

(II) Moderately hard DAG computations. To contemplate the possibility of using a DPLS solver
within a proof-of-work setting, it is essential to be able to express the hardness conditions under
which running the basic exploration sub-problem exhibits moderate hardness (MH). This property
is the necessary requirement for a computational problem to be applicable in the blockchain setting.
What makes the modeling more challenging compared to, say, the case of Bitcoin's PoW algorithm
is that we cannot resort to an idealized model (such as the Random Oracle Model) and we have
to express the moderate hardness property in a way that can be suitably utilized in the security
arguments of the blockchain protocol.

To capture this and at the same time re�ect the parallelizable nature of DPLS, we focus on the
DAG-computation abstraction which has been widely used in the modeling of parallel computations
(e.g., see [49, 2]). In the setting of DPLS the main computational unit is the exploration step M
and we are interested to express the MH of arbitrary DAG computations over M . The delicate
part of this modeling is to express the advantage ε̂ of the adversary over the honest parties as a
function of its ability to �grind� the randomness of the DAG computation as well as capitalize on
any advantage obtained from observing previously published steps in the computation.

(III) The PoUW-based blockchain protocol. At a high level, our protocol operates by having parties
post instances for problems of interest in the ledger, while locking funds denominated in the ledger's
native token to incentivize miners to work towards solving them. Maintaining the blockchain trans-
lates to performing steps of the DPLS algorithm for the instances in the ledger and being rewarded
for that�with foresight, we stress that solving such instances directly (or posting pre-solved in-
stances) will not help in extending the ledger. Problem setters can keep funding a particular DPLS
computation whenever its funds are getting depleted.

The cornerstone of our protocol is its PoUW process that operates in three stages. In the �pre-
hash� stage a random string is generated via hashing and testing whether a small hash value has
been attained as in a standard PoW. This string will constitute the random seed for the DPLS
exploration step M and will be essential for controlling grinding attacks. When the exploration
stage terminates, a �post-hash� step determines with a single hash query whether the resulting value
quali�es as a PoUW. This �sandwiching� of M between two small hashes is essential for security
since it forces an adversarial miner to seed the computation with a randomly selected seed and learn
that a successful block can be issued only after the exploration step M is complete. However, if
we apply this idea naively, there are two major disadvantages: �rst, a number of useful exploration
steps will go to waste, since they won't lead to a block, and second, adjusting the hardness of block
production (which is needed for blockchain security) would impact usefulness (since miners will
spend too much e�ort trying to �nd such small hashes).

We resolve these issues by two mechanisms. First, taking advantage of the scoring function g, we
have the miners publish the best value they have produced based on all their post-hash attempts; in
this way, progress in the DPLS computation is not lost. Note that deviating from this strategy may
only impact usefulness�the security of the protocol is maintained against any Byzantine deviation.
Second, by adapting the 2-for-1 PoW mechanism of [24], which allows to produce two types of
blocks with a single hash attempt: either an �input-block�, in which case it is inserted in the
blockchain as a transaction, or a �ranking-block� which extends the blockchain and contains any
number of input blocks. Using this decoupling mechanism, we can keep the steady progress of the
DPLS computation and adjust the underlying (ranking) block hardness independently. The crucial
emerging property here is that, as more miners join the protocol, the DPLS computation will be

4

sped up proportionally, while the ranking block production can be maintained steady as required for
the security of the underlying blockchain protocol. In this way, the more real-world useful problem
instances are submitted to the system (as evidenced by the increased funding locked with each one
and the platform's native token appreciation), the more computational power will be introduced to
the DPLS engine to solve them.

We prove our protocol secure under a standard �honest majority� type of assumption reminiscent
of the Bitcoin protocol analysis, where the distance from 1/2 depends, among other parameters,
also to the MH advantage ε̂ (we note that even if ε̂ = 1, i.e., MH entirely collapses, our protocol
remains secure with a bound close to 1/4).

(IV) Usefulness metrics. In a nutshell, our blockchain protocol can be thought as a decentralized
DPLS solver. This suggests the following two complementary metrics to measure its e�ective use-
fulness. The �rst one asks how good is the blockchain execution as a DPLS engine. This can be
done by measuring the ratio per unit of time of the number of steps that the blockchain protocol
spends in DPLS computations compared to its total number of steps. We call this metric Ueng, as
it can be thought as the e�ciency of the blockchain protocol as an �engine� that runs DPLS. The
second metric asks how useful are DPLS computations themselves and we denote it by Ualg. For a
given instance distribution we de�ne this metric as the ratio between the expected number of steps
of the best algorithm for that instance distribution divided by the expected number of steps that
DPLS takes. Note that identifying the best algorithm for a problem could be infeasible based on
current state of the art, so in this case the best algorithm can be simply substituted with the best
known algorithm for the problem at hand. Combining the above two metrics, we can obtain, as an
overall metric of usefulness, the product Ueng · Ualg.

Given the above formalism we observe that for our protocol it holds that (i) Ueng ≤ 1/2, which
stems from the fact that we balance the pre-hash probability of success to require the same e�ort as
the worst-case time complexity of M�this enables us to prove security for any advantage ε̂ in the
underlying MH assumption. (ii) Ueng will be close to 1/2, if the advantage ε̂ shows little sensitivity
to increased grinding. We note that the 1/2 bound can be surpassed by taking into account the
sensitivity of ε̂ and adaptively setting the pre-hash di�culty, however such a direction would be only
feasible if we restrict the class of exploration algorithms M to those whose hardness is well under-
stood. Estimating Ualg requires some real-world baseline. We explore this by implementing within
the DPLS engine WalkSAT [55, 35], a popular local search algorithm for satis�ability problems, and
compare how does the DPLS implementation fare with respect to running WalkSAT in isolation.
The instance distribution is also an important consideration; for illustrative purposes, we focus on
Blocks World Planning, a well known NP-hard problem in AI [32] for which there is an abundance
of public data sets. Using WalkSAT as the baseline, we show that a single-thread implementation
of DPLS performs reasonably well against WalkSAT, investing about twice as much computational
steps, i.e., something that amounts to an estimation of Ualg ≈ 1/2. Similar results are obtained
from additional experiments that re�ect adversarial deviations and the e�ect of parallelization.

The above results are evidence for the non-negligible real-world usefulness of our PoUW-based
blockchain protocol. We anticipate that investigating further the DPLS blockchain engine as an
optimization solver will be an exciting research direction from an algorithmic perspective. There is
yet another bene�cial dimension of using our blockchain protocol as a DPLS solver: optimization is
executed collaboratively in a publicly veri�able manner. Depending on the task, public veri�ability
has intrinsic usefulness and this can be seen as the price the system pays for the remaining ratio
1−Ueng·Ualg. For instance, optimization tasks such as athletic-competition tournament scheduling or
various matching problems (e.g., the allocation of residents to hospitals or radio frequency auctions)
can bene�t from public veri�ability; see Section 6 for further discussion and references.

5

Related work. Beyond the early work mentioned in PoUW coins and designs [16, 38, 23], a
number of other works investigated the concept. One line of work considered hybrid constructions
where the miner can choose between applying either standard PoW or doing some potentially useful
computation [48, 12, 60]. Further constructions for PoUW mining were given by Loe et al. [41], and
Dotan et al. [20], and, closer to our work, Baldominos et al. [8], and Lihu et al. [39], suggested to
base PoUW on stochastic search and machine-learning problems. In all these previous approaches
the security of the system was not rigorously analyzed and in many cases concrete attacks by e.g.,
an adversary who directly plants easy instances to solve, are feasible.

In contrast to the above, a formal security approach was taken in [9] but the published version
of the work retracted the �usefulness� dimension of the original paper. Also, their proof-of-work
construction is not suited for permissionless ledgers as it does not introduce any variance in puzzle-
completion time.

Finally, some alternative approaches to the problem at hand that are worth mentioning in our
context are the concept of �merged mining�, a technique employed in a number of cryptocurrencies
where the mining e�ort for the blockchain has a dual use as mining Bitcoin and hence it is useful
in this sense; Permacoin [43] where, via proofs of retrievability, the usefulness dimension is in
maintaining a public �le store; and useful work enforced via a trusted execution environment [59]
where, in contrast to the the above solutions, full trust in a speci�c hardware manufacturer is
required.

We note that, to the best of our knowledge, no prior fully decentralized, PoUW-based blockchain
protocol has been published along with a thorough security (or usefulness) analysis.

Organization of the paper. In Section 2 we describe the computational model and some basic
notation. DPLS and our notion of moderately hard computation are presented in Section 3. In
Section 4 we present our blockchain protocol, whose security and usefulness we analyze in Section 5.
Applications and experimental results are given in Section 6, while some of the code is presented in
the Appendix.

2 Preliminaries

Notation. For k ∈ N+, [k] denotes the set {1, . . . , k}. We denote sequences by (ai)i∈I , where I
is a countable index set. For a set X, x ← X denotes sampling an element from X uniformly at
random. For a distribution U over a set X, x ← U denotes sampling an element of X according
to U . By Um we denote the uniform distribution over {0, 1}m. We denote that some function f is
negligible in λ by f(λ) < negl(λ). We let λ denote the security parameter.

Security model. We adopt the computational model of [25], which is a variant of the model presented
in [24]. There, the set of parties {P1, . . . , Pn} running the protocol is �xed and the parties, the
environment Z, the adversary A, and the control program C coordinating the execution are all
modeled as IRAMs. The adversary A is active and can corrupt up to t parties in order to break
security.

Communication model. We follow the communication model used by most previous works [51, 7] that
analyze blockchain protocols in the cryptographic setting, where time is discrete and the network
is (partially) synchronous. In more detail, the protocol advances in rounds and communication
happens through a di�usion functionality. Honest parties can use it to send messages which may
be adaptively delayed for up to ∆ rounds by the adversary, but are guaranteed to be received by
everyone in the network. Communication is not authenticated, in the sense that the functionality
does not provide any guarantees regarding the origin of sent messages. Finally, the adversary is
rushing and can additionally choose to send its own messages only to a subset of the parties.

6

Setup. All parties have access to a common reference string (CRS), sampled from a known e�ciently
samplable distribution, which is used to instantiate a succinct non-interactive argument (SNARG)
system [30] SNARG = (S,P,V). Note that there are several ways to securely establish a CRS for
a SNARG in a permissionless blockchain environment. In particular, assuming the slightly stronger
notion of an updatable structured reference string (SRS) [31, 42], the construction of [36] allows to
obtain a common reference string.

Random Oracle. Parties have access to a random-oracle (RO) functionality [10]. We use both
RO and non-RO based moderately hard problems and, in order to argue about security, we need
to be able to compare their computational costs. We thus assume that a query to RO takes cH
computational steps both for the honest parties and the adversary.

Concrete modeling. A and Z have a concrete bound of t · cH steps they can take per round as well
as an upper bound θ on the number of messages they can send per round.

3 Doubly Parallel Local Search

One way to design a PoUW blockchain for optimization problems is to: (i) �rst pick your favorite
optimization algorithm, and then (ii) try to design a blockchain protocol around it. The disadvan-
tage of such an approach is that any change in the target optimization problem may result in vital
changes to the blockchain and consensus system, requiring new security proofs. Here, instead, we
adopt a modular approach where we �rst build a PoUW blockchain based on a generic optimization
algorithm, and later, with minimal overhead, instantiate it with the problem-speci�c parameters.
This allows for re-using our blockchain analysis for di�erent instantiations of the optimization al-
gorithm.

We start, in Section 3.1, by giving a high level overview of DPLS, the generic optimization
algorithm that our blockchain protocol is implementing from a client's point of view, i.e., ignoring
the internal details of the blockchain algorithm. In Section 3.2, we then expand on the notion of
moderate hardness of useful computation, on which the security of our blockchain protocol is based.

3.1 Algorithm description

DPLS overview. Clients of our protocol publish on the blockchain the optimization problems that
they want miners to solve. Miners, on the other hand, run the Doubly Parallel Local Search (DPLS)
algorithm, which we introduce next, to solve these problems.

We �rst note that solving large optimization problems may require more work than what can be
computed by a node during the mining of a single block. Thus, we chose DPLS to be a distributed

algorithm where the computation result is obtained by multiple state updates, some of them possibly
occurring concurrently. Concurrent updates is the �rst source of parallelism of our doubly parallel
algorithm.

In its core, DPLS searches the solution space X by repeatedly exploring the neighborhood of
a currently selected location/point, looking for a neighboring point that promises progress towards
an optimal solution. More concretely, based on the description of a problem instance Λ, DPLS
gradually builds a DAG G recording the already explored locations in X. A single exploration step
then consists of invoking a generic exploration algorithm M on G, yielding a new location in X,
with the goal of extending G by a node representing a new location of better quality (computed by
a scoring algorithm gΛ), thereby progressing the exploration.

Note that, in a strictly sequential execution, a `linear' graph G may be su�cient. However,
maintaining a DAG of explored locations allows for more general �avors of local search where

7

multiple threads are concurrently explored by di�erent parties. Such an execution is presented in
Figure 1.

As the search algorithm is distributed, in an attempt to minimize communication and local pre-
computation, we cannot a�ord to publish every micro-update. For this reason, each party computes
a large number of local exploration steps in batches, publishing only the best exploration result
from the batch. To this end, the exploration algorithm M is parametrized by an inner state z
that determines the common state of the execution batch, e.g., a common starting location in G to
focus the batched search. Batched search is the second source of parallelism of our doubly parallel
algorithm.

Given the above, DPLS is parametrized by the following sub-algorithms:

• Initialization algorithm Init(Λ): A probabilistic algorithm taking as input an instance description
Λ and outputs a DAG G.

• Focus algorithm F(Λ, G): A probabilistic algorithm taking as input Λ, G and outputs an inner-
state string z.

• Exploration algorithm MΛ(G, z, r): A deterministic algorithm taking as input a DAG G, an
inner state z, and a seed r, and outputs a point x ∈ X.

• Scoring algorithm gΛ(x): A deterministic algorithm taking as input Λ and x ∈ X, and outputs
the score y ∈ R of x.

• Termination algorithm Finished(Λ, G): A deterministic algorithm taking as input Λ, G and
outputs 1 if the algorithm has �nished, and 0 otherwise.

(Λ,Init(Λ))

Update(..) Update(Λ, G)

G

Update(..)

Update(..)

Update(..)

Update(..)

Update(..)

Figure 1: An execution of the DPLS algorithm. Due to desynchronization state updates may be
computed on a partial view of the execution (view G).

DPLS modeled in a blockchain setting. Problem solving starts by the problem setter posting an
instance description Λ together with the output of Init(Λ) in the blockchain, in the form of a special
transaction.1 Miners work on such an instance by running the Update procedure (Algorithm 1),

1To further avoid adversarial manipulation, we can have parties run the initialization function themselves using
coins generated by hashing the block that includes the posted problem instance.

8

which makes use of the sub-algorithms introduced above. The outputs produced are posted to
the blockchain and are in turn used by other parties to produce additional updates. The search
algorithm ends when predicate Finished(Λ, G) is equal to 1.

Update takes as inputs the chosen instance description Λ and the party's current view of the
DAG G. The inner state z, passed as a parameter in Update, is generated using algorithm F(Λ, G),
while the number k of di�erent invocations of M is distributed according to the geometric distri-
bution, with the exact parameters of the distribution set by the protocol designer. The sampling
of k from the geometric distribution models its integration into the useful-work mining procedure
where each computation of M quali�es for block production with probability p2�to publish a state
update, the miner must �nd a block. After k is �xed, that many seeds (ri)i∈[k] are sampled at
random, and algorithm M(G, z, ri) is invoked k times, with the best-scoring result (according to
function g) being output by Update.

Algorithm 1 The state update procedure.

function Update(Λ, G)
z ← F(Λ, G) . Compute the inner state
k ← Geom(p2) . Sample from geometric
(ri)i∈[k] ← Ukm . Sample uniformly
S := {(z, ri, xi)|xi := M(G, z, ri), i ∈ [k]} . Invoke M
(z, r, x) := arg max(z,r,x)∈S g(x) . Pick best
return (z, r, x)

An example. We present a DPLS variant of the classical WalkSAT algorithm [55, 35] for the
SAT problem. First, we describe the original WalkSAT algorithm. Starting from some initial
con�guration, at each step, WalkSAT picks a variable to �ip (Algorithm 2) as follows: Given the
current con�guration, one of the unsatis�ed clauses is chosen at random. For each of the variables
involved in the clause, a grade is computed which is equal to the number of clauses that are going
to be broken (i.e, turn from satis�ed to unsatis�ed) if the chosen variable is �ipped. If there exist
variables that have grade 0, then one of them is selected at random and �ipped. Otherwise, a
variable is selected (and �ipped) at random, with probability wp coming from the selected clause,
and with probability 1 − wp coming from the variables with the best grade. The walk continues
until a solution is found (Algorithm 3), or some other condition is met, e.g., an upper bound on the
total number of �ips is reached. If no solution is found, the algorithm can be restarted from some
other point in the solution space.

In the DPLS variant, the instance description Λ encodes the description of the SAT instance,
i.e., the number of variables and the di�erent clauses, with the solution space X being equal to the
possible con�gurations of the SAT variables. To take advantage of the �rst level of parallelization,
Init(Λ) outputs a number of di�erent initial con�gurations in X; in each invocation of Update,
miners pick at random which location/con�guration in G to work on and encode this information
in z. Given this con�guration, exploration algorithm M(G, z, r) amounts to running WalkSAT for
a �xed number of �ips. Note, that the starting con�guration is the same for the di�erent runs of
M in a single Update invocation, allowing miners to focus their search. On the other hand, the
randomness used by the di�erent WalkSAT invocations come from the respective seeds (r), leading
to the exploration of di�erent points in the solution space. To choose the best among these points, g
counts the number of satis�ed clauses in the respective ending con�gurations that are at max depth
in the DAG. Hence, Update outputs the con�guration that maximizes g, which is then possibly
going to be used by another miner as the starting point of another run of Update. The algorithm
terminates after a prede�ned number of updates have been posted. We point the reader to Section 6

9

for the experimental evaluation of the performance of this algorithm.

Algorithm 2 The variable selection function of WalkSAT. It is parametrized by probability wp,
the set of clauses C, and the grade function gradeA,C(x), which counts the number of clauses in C
that will be broken if variable x is �ipped in con�guration A.

1: function PickVariable(A,C)
2: c← {c|c is an unsatis�ed clause in C }
3: s := min{gradeA,C(x)|x ∈ Var(c)} . Var outputs the variables in c.
4: if s = 0 then
5: V := {x ∈ Var(c)|gradeA,C(x) = s}
6: else

7: with probability wp do: V := Var(c)
8: otherwise do: V := {x ∈ Var(c)|gradeA,C(x) = s}
9: x← V . x is the variable selected to be �ipped.
10: return x

Algorithm 3 The WalkSAT algorithm. It is parameterized by con�guration A, the set of clauses
C, and a bound m on the number of trials. The randomness to be used by WalkSAT is passed in
parameter r.

1: function WalkSAT(A,C,m; r)
2: i := 0, f := false
3: while ((f = false) ∧ (i < m)) do

4: x← PickVariable(A,C)
5: A := flip(A, x) . Flip variable x in A.
6: f := (A satis�es all clauses in C)
7: i = i+ 1

8: if f = false then return ⊥
9: else return A

Next, we give a detailed description of the DAG computation involved in our algorithm, as well
as of the rest of the functions involved in the DPLS algorithm: Init, F, Finished (Algorithm 4). For
the DAG computation, sets X,Z represent the set of possible con�gurations of the SAT instance,
while g(x) is equal to the number of clauses satis�ed by con�guration x. The Init function generates
multiple initial con�gurations. Each of them is used as the starting point of a di�erent walk. A
party now picks one starting point Az at random using the F function, and then M selects the
best ending point that extends Az, and is at maximum depth, to use as the starting point in the
WalkSAT procedure invoked by M . The WalkSAT algorithm is only run for a bounded number
of �ips (parameter m). Following the schema presented in Section 3, the Update process invokes
M multiple times, with only the best con�guration among these invocations being output. The
algorithm terminates when a con�guration is found that satis�es all clauses.

3.2 Moderately-hard DAG computations

In DPLS, most of the work is spent running the exploration algorithm M . Hence it is natural to
base security on the moderate hardness of this computation. We now describe in detail the syntax
of M and its relevant security properties required for its use in a PoUW protocol.

As explained earlier, an important aspect is that state updates in DPLS are performed in a
distributed way, and without much coordination. Moreover, the parameters of the computations
performed will be possibly in�uenced by the adversary, in the sense that he may try to post a client

10

Algorithm 4 The Modi�ed WalkSAT algorithms. Function depthG(v) outputs the depth of v on
DAG G.

1: function Init(Λ, G)
2: (Ai)i ← X l . Sample l points from solution space
3: return {(i,⊥, Ai)}i . Return the DAG with the initial points

4:

5: function F(Λ, G)
6: z ← [l] . Next point selected is going to extend Az
7: return z
8:

9: function M(Λ, G, z, r)
10: C,m := Λ . Read the instance description
11: S := ...
12: {x′|∃r′ :6 ∃r′′, x′′ : (z, r′, x′), (z, r′′, x′′) ∈ V (G)...
13: ...∧ depthG(z, r′, x′) < depthG(z, r′′, x′′)}

. Select max depth points extending Az
14: x := arg maxx∈S g(x) . Select best
15: A′ ←WalkSAT(x,C,m; r) . Run for m �ips
16: return A′

17:

18: function Finished(Λ, G)
19: C,m := Λ
20: f := (∃(z, r, x) ∈ V (G) : x satis�es all clauses in C)
21: return f

problem to be solved, only with the purpose of subverting the underlying blockchain protocol. As
the security of the blockchain depends on the hardness of individual computations of M , we must
guarantee that they remain moderately hard even when parameters are chosen maliciously.

Based on these restrictions, we adopt a DAG structure for computations of M , where each
computation corresponds to a vertex on the DAG and depends on multiple previous vertices. Our
notion can be seen a generalization of the iterated computation paradigm [11, 26], where each
computation depends on a single vertex. New vertices are generated based on the current view
of the DAG, an inner-state string, and, an unpredictable seed. As explained earlier, the inner
state allows parties to focus their work in the context of DPLS, while the seed randomizes the
computation to force the adversary to do work of average-case complexity�in contrast to possibly
selecting �cheap� instances to gain an advantage in block production. Next, we formally introduce
the notion of a DAG computation.

De�nition 1. (DAG computation/transcript.) A DAG computation speci�es a sequence of instance
descriptions I = (Λλ)λ. For every value of the security parameter λ ∈ N, an instance description Λ
speci�es:

1. a �nite, non-empty set Z (inner state);

2. a �nite, non-empty set X (output);

3. a relation R described below.

11

A transcript of a DAG computation Λ corresponds to a labeled DAG G where each vertex
u ∈ V (G) is labeled with a tuple (z(u), r(u), x(u)) ∈ Z×{0, 1}λ×X (edges have no labels). R relates
transcripts to triplets in Z ×{0, 1}λ×X. Given a transcript G, a vertex u ∈ V (G) is R-compliant2

if it either has no incoming edges or it holds that (((z(ui), r(ui), x(ui)))i, (z
(u), r(u), x(u))) ⊆ R, where

{ui}i is the set of starting vertices of the incoming edges. We say that G is R-compliant if all of its
vertices are. We write Λ[Z,X,R] to indicate that Λ speci�es Z,X,R as above.

R essentially describes how a set of vertices, corresponding to computations of M , can be
extended by a new computation. By recursive application, R is su�cient to formalize the notion
of an R-compliant transcript of a DAG computation. A DAG computation also provides two
algorithms. For this purpose, we require that the instance descriptions, as well as the elements of
the sets Z,X, can be uniquely encoded as bit strings of length polynomial in λ. All algorithms are
parametrized by Λ[Z,X,R]:

• Veri�cation algorithm VΛ(G): A deterministic algorithm taking as input a transcript G and
outputs 1 if it is R-compliant and 0 otherwise; and

• Exploration algorithmMΛ(G, z, r): A deterministic algorithm taking as input a DAG G, an inner
state z, and a seed r, and outputs a point x ∈ X.

For simplicity, we will omit writing Λ as a parameter of V,M when it is clear from the context.
Moreover, we assume that M is correct, i.e., for x ← M(G, z, r) where G is R-compliant, it holds
that if we add a vertex u on G with label (z, r, x) that is connected to all other vertices, then the
resulting transcript is R-compliant. We denote extending a labeled DAG G with a new node labeled
with (z, r, x) and connected to all other nodes by G ⊕ (z, r, x), and merging two transcripts G,G′

by G ∪G′.
Moderate hardness. Next, we introduce a moderate-hardness (MH) notion for DAG computations.
Our notion builds on ideas found in [25, 26]. As we want to build a protocol that can accommodate
solving multiple optimization problems, MH is expressed w.r.t. a family of DAG computations (per
security parameter level), each corresponding to a di�erent instantiation of the DPLS algorithm.
While our protocol allows for exploration algorithms with di�erent time complexities, for simplicity,
we assume that they all have approximately the same worst-case complexity, i.e., we de�ne t̂ to be
equal to maxΛ,G,z,r{StepsMΛ

(G, z, r)}.
On a high level, we require that the time it takes to generate a given number of new vertexes

in the DAG, is proportional to their number as well as t̂, the worst case complexity of M . In more
detail, in the security experiment, the adversary has access to three oracles O,M,V. Its goal is to
compute m new vertices for seeds generated at random from oracle O in less than (1− ε̂) ·mt̂ steps,
where ε̂ re�ects the advantage of the adversary compared to M . The adversary is allowed to query
oracle O more than m times, and possibly use oraclesM and V to simulate new honestly computed
vertexes and verify whether a DAG computation is R-compliant, respectively. ε̂ is parameterized by
the respective rates of queries qO/m, qM/m, qV/m to re�ect the possible adversarial advantage. We
note, that oraclesM and V are provided to aid composition;3 Finally, we require that the property
holds with overwhelming probability and for m greater than some parameter k̂.

De�nition 2. Let I = ((Λλ,i)i)λ be a family of DAG computations. I is (t̂, ε̂, k̂)-Moderately Hard

(MH) if for any PPT RAM A = (A1,A2), λ ∈ N, and all polynomially large m ≥ k̂, it holds that
the adversary wins with probability negl(λ) in ExpMH

A,I,ε̂,t̂(1
λ,m)

2We adopt a terminology similar to the proof-carrying data (PCD) paradigm [13].
3In the blockchain setting, the adversary sees blocks generated by other parties, simulated by oracle M, and sends

out blocks that other parties may drop or adopt depending on whether they are valid, simulated by oracle V.

12



st← A1(1λ); ((Λi, Gi, zi, ri, xi))i∈[m] ← A
O,V,M
2 (st);

b1 := StepsAO,M,V
2

(1λ, st) < (1− ε̂(qO
m
,
qV
m
,
qM
m

))m · t̂;

b2 :=

m∧
i=1

((Gi, zi, ri) ∈ QO ∧ VΛi(Gi ⊕ (zi, ri, xi)) = 1);

ret b1 ∧ b2


where qO queries are made to oracle

O(Λ, G, z) =
{
r ← {0, 1}λ; return r

}
,

qV queries are made to oracle

V(Λ, G) =
{
if VΛ(G) = 0, then return 0, else return 1

}
,

and qM queries are made to oracle

M(Λ, G, z) =

{
if VΛ(G) = 0, then return ⊥
else, r ← {0, 1}λ; return (r,MΛ(G, z, r))

}
.

As hinted above, we require that the MH computation is also robust against grinding attacks
that take advantage of the seed oracleO. The intuition behind this is that the adversary can possibly
sample many seeds from O, and choose to do the computation only for the easier ones among them.
Security against such attacks boils down to upper-bounding the speed-up the adversary obtains by
making extra queries to O.

Since the adversary can always perform a DAG computation for a seed generated by O in t̂
steps, extra queries to O can only speed-up A by at most t̂ steps, i.e., for a ≥ 0

(1− ε̂(1, b, c))mt̂ ≤ (1− ε̂(1 + a, b, c))mt̂+mat̂ (1)

⇔ ε̂(1 + a, b, c) ≤ ε̂(1, b, c) + a.

This implies that any DAG computation enjoys some resistance to grinding attacks related to the
worst-case runtime of M . We formally state this in the following lemma.

Lemma 3. Let I be a family of DAG computations that is (t̂, ε̂, k̂)-MH. Then, for any function ε̄
where for any a ≥ 0 it holds that ε̄(1 + a, b, c)≤ε̂(1, b, c) + a, I is (t̂, ε̄, k̂)-MH.

Proof. For the sake of contradiction, assume that I is not (t̂, ε̄, k̂)-MH. This implies that there exist
an adversary A = (A1,A2), m ≥ k̂ and a ≥ 0, am polynomially large in λ, such that A wins in
ExpMH

A,I,ε̄,t̂(1
λ,m) with non-negligible probability. Since the total number of queries to oracle O is

bounded by a polynomial, by an averaging argument it holds that there exists some a ≥ 0 such
that the event that A wins in ExpMH

A,I,ε̄,t̂(1
λ,m) and the number of queries to O is exactly (1 + a)m

occurs with non-negligible probability. Let a be the smallest such value. If a = 0, then A can be
used to directly break the (t̂, ε̂, k̂)-MH property of I. Otherwise, we use A to construct an adversary
A′ = (A′1,A′2) that breaks the (t̂, ε̂, k̂)-MH property, as described in the following paragraph.
A′1 behaves exactly as A1 in the �rst phase of the experiment, and passes the generated state

st to A′2. A′2 runs A2 internally. Queries to oracles M,V made by A2 are answered by A′2 using
the appropriate oracles. On the other hand, only the �rst m queries to oracle O made by A2 are

13

answered using oracle O whereas all further responses for queries to O are simulated by A′2. In case
that A2 is successful and produces valid witnesses for m of the queries asked, A′2 collects the queries
that were only simulated, and solves their respective problems itself using the standard solver M .
Finally, it outputs the witnesses for the m queries made to O. Otherwise, it outputs ⊥.

We now analyze the winning probability of A′. First, note that A′1 runs in polynomial time and
produces exactly the same output as A1. A′2 runs solver M at most am times, since at most ām
of the queries asked to O by A2 are simulated. By assumption, the execution of A2 costs less than
(1− ε̂(1 + a, b, c))mt̂<(1− ε̂(1, b, c)− a)mt̂ steps; and the additional executions of M by A′2 cost at
most amt̂ steps. Thus, using qO = m queries to O, the overall steps taken by A′2 in the MH game
are less than

(1− ε̂(1, b, c)− a)mt̂+ amt̂ = (1− ε̂(1, b, c))mt̂ ,

implying that I is not (t̂, ε̂, k̂)-moderately hard, thus concluding the proof.

On achieving moderate hardness. It is important to note that (t̂, ε̂, k̂)-moderate hardness, for reason-
able parameters, is (probably) not achievable for all families of DAG computations. In particular,
to satisfy moderate hardness, we cannot allow for generic DAG computations.

To illustrate this, consider a family of DAG computations allowing for an instance to be crafted
in the following way: a key pair of a trapdoor permutation is generated, the public key is embedded
in the instance, and the exploration step is designed in such a way that it implies to compute the
pre-image of a random nonce. Clearly, such a DAG computation would not be moderately hard in
any reasonable way.

Although this example is extreme, it distinctly demonstrates the necessity to carefully restrict
the characterization of a DAG-computation family. In contrast, moderate hardness seems to be
a reasonable assumption for a large class of computations with su�ciently simple exploration and
veri�cation algorithms, e.g., for a large class of WalkSAT problems (since WalkSAT involves only
very elementary computation steps). The adversary now can still craft problems trying to gain
computational advantage in the DAG computation, but randomization can help to mitigate this
e�ect to a large extent.

Further research is still required on characterizing DAG-computation families with strong evi-
dence for moderate hardness (under reasonable parameters).

4 The PoUW Blockchain Protocol

In this section we describe and prove secure a generic PoUW blockchain protocol implementing the
DPLS algorithm.

4.1 Protocol description

We �rst summarize some informal requirements that our protocol must satisfy to qualify as a
candidate protocol for useful-work mining. We then describe our protocol while motivating the
design choices by these requirements. The requirements are motivated from both sides: blockchain
security, and, e�ciency of the DPLS algorithm:

1. Blockchain security:

(a) No grinding: the adversary cannot gain mining advantage by cherry-picking exploration steps
of low complexity.

14

(b) Precomputation resilience: problem instances cannot be adversarily manufactured such that
the adversary gains access to faster block production. Computation before seeing the head of
the chain to be extended cannot contribute towards computing the respective PoUW.

(c) Adjustable mining di�culty: The block di�culty can be adjusted to the mining power applied
by the network.

2. DPLS e�ciency:

(a) Frequent updates: Results about new points explored are published (relatively) fast.

(b) Small overhead: The computational overhead of integrating exploration algorithm M into
PoUW is small (implying that honest mining performs useful work).

The high-level architecture of the protocol is similar to Bitcoin, i.e., blocks are chained together
by referencing each other by hash, and, during each round, a miner selects the longest chain from
his view, and tries to extend it by a block. Two modi�cations are applied: standard PoW is replaced
by PoUW, and we apply 2-for-1 PoW [24] in order to accommodate di�erent types of blocks for
reasons explained below. See Figure 2 for further reference.

The core of the mining algorithm consists of applying the exploration algorithm M , consti-
tuting the �useful part� of the PoUW. To defend against precomputation (Requirement 1a), the
computation of M is prepended by hashing the candidate block (see �rst H box in Figure 2),
thereby randomizing the computation to be performed by M . Furthermore, similarly to Nakamoto
consensus, this �pre-hash� of the block must lie below an initial target T1, to antagonize grinding
for parameters of M that result in lower-than-average computation complexity: resampling new
parameters must be more expensive than the worst-case complexity of M .

By Requirement 1c, we must be able to reduce the mining-success probability below the suc-
cess probability of hashing against T1�which is currently fully determined by the computational
characteristics of the problem instance and unrelated to mining participation in the network. One
possibility to address this issue would be to further lower the target T1 to make pre-hashing as hard
as required for ledger security; however, this would come against a big loss in usefulness, as miners
would spend most of their time performing hashing. Instead, we have the miner feed the output of
M into one single round of �post-hashing� (see second H box in the �gure) that decides, against a
threshold T3, whether the block is eligible for publication. This second threshold adjusts the overall
mining di�culty to a level required by the security analysis to guarantee good and secure blockchain
characteristics. Note the additional e�ect of post-hashing to adapt mining di�culty: the miner only
learns whether a PoUW attempt is successful after executing M , i.e., the computation cannot be
cut short to speed up block creation.

A miner loops, many times, the computation sequence of pre-hashing (against T1), useful work,
and one post-hash, until the post-hash of a sequence lies below T3, allowing for the block to be
published. To preserve progress, the best point (by means of scoring algorithm g) from all recent
computation sequences is stored for eventual inclusion in a future block to be published. Note
that �nding a good new point is decoupled from mining success, thus helping to establish Require-
ment 1b. Furthermore, only publishing the best one from a batch of new points, rather than greedily
publishing all of them incrementally, helps to accommodate Requirement 2b.

Considering Requirement 2a under Bitcoin parameters, we cannot a�ord that a miner waits
with his update until he mines a block. For this reason, we incorporate 2-for-1 PoW to allow for
the publication of di�erent types of blocks, so-called ranking blocks which are �standard� Bitcoin
blocks of high di�culty (target T2), and so-called input blocks of low di�culty (target T3, i.e., hash
range T2 < h ≤ T3) which are not part of the chain but are rather handled like transactions to be

15

eventually referenced by a ranking block. A miner now includes his best point explored whenever he
hits either type of a block; and by setting the input-block di�culty low enough, the update rate per
miner is high enough to distribute progress in the explored points fast, while having no considerable
impact on the blockchain characteristics.

A block contains two points explored usingM : the �winner� one that lead to the small post-hash,
and the �best� one that is included to progress the DPLS algorithm. In order to accommodate 2b, we
minimize the cost of block veri�cation by having the miner append a SNARG proving correctness
of both exploration points contributing to the block, i.e., a SNARG proving membership to the
following language: L = {((Λ, G, z, r′, x′), (Λb, Gb, zb, r′b, x′))|VΛ(G ⊕ (z, r′, x′)) = 1 ∧ VΛb(Gb ⊕
(zb, r

′
b, x
′
b)) = 1}, where G⊕ (z, r′, x′) denotes the graph G extended with vertex (z, r′, x′) as de�ned

in Section 3.2.

H
SNARG

ranking block

store best run of M

H
< T1

else

state

< T3

else

nonce

M(G, z, r′)

input block

< T2

else

seed

Figure 2: A diagram of the PoUW mining procedure.

A detailed description of the PoUW procedure is given in Algorithm 5. The mining algorithm is
parametrized by the longest blockchain received C, the message to be included in the block m, the
problem instance Λ selected by the miner to work on,4 the related transcript G extracted from C, and
the selected inner state z. The pre-hash input includes these parameters, the hash of the previous
block s, and a random nonce r; and yields a unique seed r′ for M . At this point, all parameters of
M , Λ, G, z, and r′, are fully determined based on the data initially hashed, thus establishing that
each small pre-hash found by the adversary can only be used to perform one matching post-hash
attempt. We note that if, in a round, a miner does not have enough steps to �nish running the
PoUW procedure, e.g., he only manages to �nd a small pre-hash, he continues the next round from
the point it stopped.

Input blocks are processed on the application level of the protocol, as they are not essential
for consensus. In particular, for an input block to be considered by miners, it must satisfy certain
conditions: the related pre- and post-hashes are small enough, and the computation ofM is correct.
Note that ranking blocks are also treated as input blocks, and can be included in the payload of other
ranking blocks. As in [24], an input block can be included in the payload of di�erent ranking blocks
in diverging chains, which ensures that all input blocks mined by an honest party will eventually
be included in the main chain, and no progress is ever lost. The full protocol is presented in
Appendix A.

Remark 1. (SNARG overhead) Note usefulness is not necessarily substantially impacted by a large
SNARG-computation overhead as each state update involves a large number of exploration steps
(on average) but SNARGs for only two of the M -computations performed. This average number of

4 Even if clients do not post any such problem, we assume that miners can always generate a MH problem based
on the hash of the block they are extending. For example, the �xed-time hash-based PoW of [5, 14] can be used.
This amounts to a �fall-back� DPLS computation.

16

exploration steps can thus be raised in a trade-o� against the state-update frequency in the system,
helping to establish Requirement 2b.

Algorithm 5 The PoUW procedure is parameterized by hardness parameters T1, T2, T3 ∈ N, the
SNARG system, hash function H(·), the explore algorithm M and scoring algorithm g.

1: var (scoreb, sb,mb, comb,Λb, Gb, zb, rb, x
′
b) := (∞,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥) . Global

variables related to the best run. They are reset either when the miner �nds a block, or the instance he
is working on changes

2: var (z, com) := (⊥,⊥)
3: function PoUW(C, m, Λ, G)
4: s := H(head(C))
5: if (z = ⊥) then z ← F(Λ, G) . Compute inner state
6: r ← Uλ . Sample nonce
7: h := H(s,m, com,Λ, G, z, r) . Compute pre-hash
8: if (h < T1) then
9: r′ := H(s,m, com,Λ, G, z, r, h) . Compute seed
10: x′ := MΛ(G, z, r′) . DAG computation
11: h′ := H(s,m, com,Λ, G, z, r, h, x′) . Compute post-hash
12: if (h′ < T2 or T2 ≤ h′ < T3) then . New block
13: if (sb = ⊥) then (sb,mb, comb,Λb, Gb, zb, rb, x

′
b) := (s,m, com,Λ, G, z, r, x′)

14: π := SNARG.P(Σ, ((Λ, G, z, r′, x′), (Λb, Gb, zb, r
′
b, x

′
b))); . Compute correctness proof

15: B := 〈(sb,mb, comb,Λb, Gb, zb, rb, x
′
b), (s,m, com,Λ, G, z, r, x

′), π〉
16: if (h′ < T2) then C = CB . Return the new chain to the main function
17: else Diffuse((input,B)) . Else di�use the new input block
18: (scoreb, sb,mb, comb,Λb, Gb, zb, rb, x

′
b, z, com) := (∞,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥)

19: else . No block
20: if (Λ 6= Λb or gΛ(x′) > scoreb) then . Working on a di�erent instance, or found a better

point
21: (sb,mb, comb,Λb, Gb, zb, rb, x

′
b) := (s,m, com,Λ, G, z, r, x′) . Store best update

22: com := H(sb,mb, comb,Λb, Gb, zb, rb, x
′
b) . Commitment to previous best attempt

23: scoreb := gΛ(x′)

24: return C

4.2 Dealing with multiple instances

We now describe how to extend our design to handle multiple problem instances more e�ectively.
The main motivation is that, for certain operations in the solving process, the protocol participants
may want to establish a common view on the state of the algorithm in execution. For instance, the
problem issuer may want to govern the solving process by further extending or stopping it, based on
the quality of the solutions found. Moreover, agreement allows us to implement more complicated
behavior of the solving algorithm itself, e.g., restarting the solving process if the initial parameters
lead to a bad region of the solution space, a common technique in parallel stochastic local search.
Without full agreement such operations may be hard to implement or lead to ine�ciencies.

To achieve agreement we put forth the idea of pipelining. Analogously to pipelining in processor
architecture, our computational machinery has two stages: running the solving algorithm for a
problem, and establishing a common view on the state of the algorithm. Di�erent problem instances
are interleaved to cycle between these two stages during the protocol execution. In more detail, the
protocol de�nes an epoch-based schedule determining which problem is solved at each epoch, where
each epoch is de�ned bym consecutive blocks in the mainchain. For instance, the �rst epoch (blocks
1 to m) is assigned problem Λ1, the second epoch (blocks m+1 to 2m) problem Λ2, the third epoch

17

problem Λ1 again, etc. An epoch that a given problem is not assigned to, gives the parties enough
time to agree on all previous updates generated for the problem. While, in this example, only two
problems are solved, the schedule can contain a large number of them to be run one after another,
possibly with di�erent frequencies. We note that di�erent scheduling scenarios can be implemented
by making use of the information posted in the blockchain, e.g., selecting as the next instance to
be solved the one that o�ers the largest reward. Further, to achieve agreement, we allow related
updates to be included in the main chain only for a limited number of blocks k after the end of the
epoch that a problem was actively being solved. Parameter k must be large enough to ensure that
any honest update is guaranteed to be included in the mainchain.

Surprisingly, pipelining also helps to deal with input-block DoS attacks, while at the same time
allowing miners to consume unsettled input blocks during mining, thus boosting the performance
of DPLS. In more detail, in an input-block DoS attack, the adversary pre-mines a large amount
of input-blocks, and eventually releases them to �ood the network. To deal with such an attack,
Fruitchains [52] requires that valid ranking blocks only include recent input blocks, i.e., input blocks
that reference a recent ranking block. This mechanism does not work in our setting where we want
miners to refer to work by unsettled input blocks: the adversary can undetectedly backdate an
input block to prevent its eventual settlement, while an honest miner will still reference it in his
block�thus making the honest block invalid. Instead, following our architecture, we deal with DoS
attacks by only requiring that valid ranking blocks include input blocks that (i) are �fresh�, i.e.,
they reference a ranking block of the same epoch, and (ii) reference other input blocks that are
part of the main chain. This has the e�ect that old input blocks that are not part of the common
view established earlier are dismissed. Note, that despite these restrictions honest miners can still
reference �fresh� unsettled input blocks while mining for a new block, as they can be sure that there
is enough time for these blocks to be included in the main chain.

4.3 Incentives structure

Useful-work rewards in our protocol are given in epochs�periods of protocol execution measured
in �xed (ranking) block intervals. Clients who submit DPLS instances Λ for processing will lock
funds for executing the algorithm initializing a reward pool PΛ for the problem. At the end of each
epoch, the contribution of each miner towards solving a particular instance Λ will be measured
as the fraction of input-blocks they contributed out of the total that is directed to that instance.
Using this metric, miners will be rewarded proportionally from the reward pool of each problem.
Note that the fraction of PΛ to be allocated to a particular epoch will be determined by a function
selected by the client that takes as input the total work invested in that problem for that particular
epoch. Clients can keep increasing the reward pool PΛ as it gets depleted to ensure the continuous
interest of the miners to their problem instance.

The above mechanism essentially relies on the 2-for-1 mechanism and the fact that any set of
miners will produce a subset of updates roughly proportional to their computational power. In this
way our protocol is fair, and can be proven as such along the lines of Fruitchains [52]; we omit further
details. We note that, in addition to the above, miners can be further rewarded by transaction fees
and in�ation of the base coin supply by creating an additional reward pool that is not tied to any
optimization problem.

Using the above setup it is easy to see that rational miners have an incentive to stick to the
protocol under the assumption that the pool rewards o�set their operational costs. Note that
a �grie�ng� miner can still deviate somewhat by not publishing their best update for the useful
algorithm during the inner parallelization step and opting instead for, e.g., a randomly selected
update. This is a type of grie�ng since the miner does not gain anything by doing this (as the

18

work has been completed anyway). Even though dealing with such attacks is beyond the scope
of the present exposition, we note that it is possible to assess blocks for such grie�ng behavior by
statistically contrasting the �best� claimed update to the �winning� update associated with the small
post-hash.

Distributing the native coin of the ledger is done with an in�ation schedule that unlocks coins
via a block reward for each ranking block. Recall that in case no other problem instance is available
miners revert to the default problem instance (cf. footnote 4). Solving this instance does not have
any external value but it gives a way to bootstrap the platform (as miners will engage at genesis
with the intention of receiving tokens from the ranking blocks). The market that emerges around
the platform's native asset has the problem setters buying the token in the open market from miners
or speculators, so that they fund the problem instances they post in the platform.

5 Security Analysis

Next, we formally analyze the security of our protocol. First, we show that�assuming that the
underlying DAG computation is moderately hard and that honest parties control the majority of the
computational power in the network�our protocol implements a robust transaction ledger. Then,
we de�ne and analyze the usefulness rate of the protocol.

5.1 Ledger security

Let Π denote our blockchain protocol. The consistency analysis of the longest chain rule appearing
in Π involves a number of new challenges, including an exotic Markov chain governing the mining
dynamics and the possibility of �restarts� in this chain generated by the delivery of a new block,
perhaps by the adversary. We adapt the language of [37, 6] to this setting and then develop the
tools necessary for the associated probabilistic analysis. (Our treatment below does not require
familiarity with these previous papers.)

For simplicity, in the main body of the paper, we discuss the case without restarts, which is to
say that the protocol carried out by the honest parties does not restart the mining process when it
learns of a longer chain, but rather completes the current computation. Intuitively, restarts improve
the security properties of the blockchain, as they help ensure that honest parties are mining on
current chains. However, the situation is somewhat complicated by the fact that restarts do permit
the adversary to correlate the states of the honest parties in the Markov chain. Speci�cally, note
that an adversary holding a chain that exceeds the length of those chains currently held by honest
parties may strategically release the chain to honest players�perhaps with detailed knowledge about
their current state�so as to achieve some short-term control over the distribution of honest mining
successes. Despite such correlations, we show in Appendix D that the intuition above is correct:
the adversarial advantage achieved by exposing adversarial blocks to honest miners is overshadowed
by the fact that such exposures increase the length of the blockchain held by the honest recipient;
in the language of the analysis below, such an exposure has an e�ect just as bene�cial as an honest
mining victory!

We adopt a discrete time model, dividing time into short �rounds� with duration cH equal to
the time taken to carry out a hash query. We re�ect the essential block-generation events of an
execution of the protocol with a characteristic string: this determines, for each round, the number of
adversarial and honest ranking blocks generated. Thus our characteristic strings have the structure
w = w1, . . . , wL where each wi = (hi, ai) ∈ N2 and hi and ai denotes the number of honest and
adversarial ranking block discoveries, respectively; here L is the lifetime of the protocol.

19

Ultimately, our protocol Π determines a blockchain of ranking blocks, which themselves refer to
input blocks. Such a structure determines a linear order on the collection of input blocks referenced
in the blockchain of ranking blocks (by ordering input blocks referenced in a particular ranking block
according to the order of their references in the ranking block). Ultimately, we wish to establish
the two fundamental ledger properties: liveness and persistence.

Persistence with parameter k ∈ N. Once a node of the system proclaims a certain input
block in the stable part of its ledger L, the remaining nodes either report the input block in the
same position of their ledgers, or report a stable ledger which is a pre�x of L. Here the notion
of stability is a predicate that is parametrized by a security parameter k; speci�cally, an input
block is declared stable if and only if it is in a (ranking) block that is more than k (ranking)
blocks deep in the ledger.

Liveness with parameter u ∈ N. If all honest nodes in the system attempt to include a certain
input block then, after the passing of time corresponding to u rounds, all nodes report the input
block as stable.

We establish these properties as consequences of three more elementary properties of the blockchain
of ranking blocks, originally formulated in [24] (we use a slightly adapted formulation from [18]):

• Common Pre�x (CP); with parameter k ∈ N. The chains C1, C2 adopted by two honest

parties at the onset of rounds r1 ≤ r2 are such that Cdk1 ≺ C2, where Cdk1 denotes the chain
obtained by removing the last k blocks from C1, and ≺ denotes the pre�x relation.

• Existential Chain Quality (ECQ); with parameter s ∈ N. Consider the chain C adopted
by an honest party at the onset of a round and any portion of C spanning s prior rounds; then
at least one honestly-generated block appears in this portion.

• Chain Growth (CG); with parameters τ ∈ (0, 1] and s ∈ N. Consider the chain C possessed
by an honest party at the onset of a round and any portion of C spanning s contiguous prior
rounds; then the number of blocks appearing in this portion of the chain is at least τs. We call
τ the speed coe�cient.

One of the important conclusions of previous work is that these properties (CP, CG, and ECQ) di-
rectly imply liveness and persistence and�from an analytic perspective�can be guaranteed merely
based on the characteristic string associated with a particular execution. This fact is fairly im-
mediate for CG and ECQ, whereas identi�cation of the properties of the characteristic string that
guarantee CP is more delicate.

We give a summary of this theory in Appendix C, both so that the article is self-contained
and so that we can describe the extension to restarts in Appendix D. Fortunately, it is possible to
succinctly re�ect the conclusions of this theory as they relate to our needs, which is the next order
of business.

To continue, we �rst introduce two assumptions related to the level of moderate hardness of the
underlying DAG-computation family I used by Π, and the complexity of the SNARG system used.

Assumption 1. For parameters t̂, ε̂, k̂, we assume that the DAG computation family I used in Π is
(t̂, ε̂, k̂)-moderately hard.

Assumption 2. For parameters cP, cV, cS, we assume that there exists a SNARG system SNARG
where running the prover (resp., veri�er, setup) takes cP (resp. cV, cS) steps.

20

Let w = w1, . . . , wL be a characteristic string, as above. We �x a constant Γ, a time period
with the following Γ-serializing guarantee: if a ranking block B2 is generated by an honest party P
at least Γ rounds after the honestly-generated ranking block B1 is di�used, then the full computation

supporting B2 (including the prehash) was carried out while P was aware of B1. In our setting,
Γ can be set to 2 + ∆ + cP/cH + t̂/cH (corresponding to the number of rounds taken to produce
the prehash (≤ 1), useful work (≤ t̂/cH), post-hash (≤ 1), and SNARG (cP/cH) for block B2 in
addition to any network delay). With this in mind, we say that t is a Γ-isolated uniquely successful

round if the region wt−Γ . . . wt . . . wt+Γ satis�es ht = 1 and, furthermore, that the sum
∑
hi = 1

over this region (recall wi = (ai, hi)). Note that a round cannot be isolated if it is not followed by
at least Γ symbols. For each t de�ne It to be an indicator variable for the event that t is an isolated
uniquely successful round.

The basic quantities of interest are given by two conventions for accounting for the balance of
adversarial and honest successes.

De�nition 4 (The barrier walk; the free walk.). Let x = x1, . . . , xn ∈ N∗. De�ne the barrier walk
B(x) by the recursive rule B(ε) = 0 (for the empty string ε) and, for any x ∈ N∗ and a ∈ N,
B(xa) = max(B(x) + a, 0). Likewise, de�ne the free walk F (x) =

∑
i xi.

De�nition 5. For a characteristic string w ∈ (N2)L and 0 < t ≤ L, de�ne the margin e�ect

w∗t = at − It ∈ N (and w∗ to be the sequence of elements of N given by this rule). We then de�ne
B∗(w) = B(w∗) and F (w) = F (w∗). Finally, for a characteristic string w = xy with |x| = `, we
de�ne the `-isolated margin of w to be β`(w) = B(x∗) + F (y∗).

The role of `-isolated margin is clari�ed by the following, which establishes a direct connection
to common pre�x.

Theorem 6. Let w ∈ (N2)L be the characteristic string associated with an execution satisfying the

Γ-serializing guarantee. Suppose, further, that (i.) the execution satis�es (k/s, s)-CG, and (ii.) for

any pre�x xy of w for which |y| ≥ s, we have β|x|(xy) < 0. Then the execution satis�es k-CP.

This is the major component in the following theorem; as noted, the details of this existing
theory are discussed in Appendix C.

Theorem 7. Let DΠ be a distribution on characteristic strings of length L (induced by a protocol

Π), λ a security parameter, and α > β two constants corresponding to the rate of uniquely isolated

blocks and the rate of adversarial blocks, respectively. Assume that for a constant δ < (α − β)/2,
when w is drawn from DΠ, every interval of w of length poly(λ) has at least α− δ uniquely isolated
blocks and no more than β+δ adversarial blocks except with negligible probability. Then, except with
negligible probability, the protocol satis�es (i.) CG with s = poly(λ) and constant speed coe�cient,

(ii.) ECQ with s = poly(λ), and (iii.) CP with parameter k = poly(λ).

5.1.1 Analysis of the Markov chain

In light of the description above, we are speci�cally interested in analyzing the sequence of (i.)
adversarial mining successes and (ii.) uniquely isolated honest successes. The analysis is simpli�ed
by the fact that the time evolution of the honest parties is independent. We focus on the Markov
chain pictured below, showing nodes for �pre-hash�, �post-hash�, and both �ranking� and �input�
block production. It is convenient for us to further decorate our transitions with delays: orange
edges are traversed in a single round (or cH time, corresponding to hash queries), the gray edges
are traversed instantaneously, and the blue edges have transition times given by the distribution of

21

useful work (upper bounded by t̂) and SNARG times (cP). (Note that the timing delays indicated
in this chain could be implemented with paths of individual states connected by edges with unit
delay, so this presentation can be re�ected with a standard Markov chain.) While the basic security
properties of the protocol depends only the production of ranking blocks, the dynamics of the
Markov chain depends on both ranking and input block production.

qpre qpost

qrank

qinput

1

1

p1 [work]

1− p1

1− (p2 + p3)

p2 [SNARG]

p3 [SNARG]

We begin by establishing that�despite the fact that honest parties begin the protocol syn-
chronized (in �pre�)�they quickly converge to mutually independent positions in the mining chain.
Looking ahead, this mixing argument will be instrumental to establish bounds on uniquely isolated
block production.

5.1.2 The mixing time; convergence to mutual independence

By a standard coupling argument we get the following:

Lemma 8. Consider m particles P1, . . . , Pm independently evolving on the Markov chain with any

�xed initial states. Let (S1, . . . , Sm) denote a random variable so that each coordinate is independent

and stationary on the chain. Then letting T = L(1 + (t̂+ cP)/cH),

‖(P T1 , . . . , P Tm)− (S1, . . . , Sm)‖t.v ≤ m(1− pcouple)L ,

where ‖X − Y ‖t.v denotes the distance in total variation between the random variables X and Y .
Here pcouple > 0 is a constant that depends only on cP/t̂.

Proof. We proceed with a standard coupling argument. Consider m particles (parties) P1, . . . , Pm,
initially in the state qpre, that carry out simultaneous, independent evolution according to the
dynamics of the chain. We wish to show that the joint distribution of positions of all the particles
quickly converges to m independent copies of the stationary distribution. For this purpose, consider
m additional particles R1, . . . , Rm on the chain, initially distributed independently according to the
stationary distribution. We let P ti and R

t
i denote the positions of the particles at time t. We give a

simple coupling C of the evolution of P t1, . . . , P
t
m with Rt1, . . . , R

t
m, and apply the standard �coupling

lemma� which establishes convergence to the stationary distribution. The coupling C is described,
at each time step, by a family of random variables U ti ; for each i ∈ {1, . . . ,m}, U ti : Q → Q is a
function where Q is the set of states of the chain (which is in fact larger than the diagram indicates
as a result of implementing the �long� transitions). The �update functions� Ui are chosen so that
the full ensemble of entries (U ti (q)) (over all t, i, and q ∈ Q) are independent and each Ui(q) is
distributed according to the de�ning distribution for the state q. Then Pi and Ri are updated
according to the same update: P t+1

i = Ui(P
t
i) and Rt+1

i = Ui(R
t
i). Observe that the dynamics of

the P ti are as promised, each independently evolving according to the chain; the same is true of the
Rti, which of course continue to be independent and stationary. Observe that if Rti = P ti at some
time t this property will be retained by the coupling in the future (as they are subject to the same
update function). Now, consider any time period of length E = 1+(t̂+ cP)/cH rounds and any pair
of particles Pi and Qi. Observe that both particles must visit the state qpre during this time period

22

(as t̂ and cP are upper bounds on the transition times of the blue transitions); it follows that if the
�rst of the two particles to visit qpre remains in that state for the remainder of the E time steps then
the two particles must couple (that is, coincide during this time period and forever after). Recalling
that we take T1 ≥ t̂/cH , we �nd that the probability that that �rst particle remains in qpre when

the second one arrives is at least pcouple := (1−p1)E/cH = (1−p1)(t̂+cP)/cH = [(1−p1)t̂/cH](1+cP/t̂) ≥
[(1−1/T1)T1](1+cP/t̂) ≥ (1/e−O(1/T1))(1+cP/t̂). Thus pcouple is a constant larger than zero (and can
be lower bounded as a function of the constant cP/t̂). Note that the events that Pi couples with
Ri (for distinct i) during such an epoch are independent, and it follows that after L such epochs
the probability that there is a pair (Pi, Ri) that has not coupled is no more than n(1 − pcouple)L.
By the standard coupling lemma (see, e.g., [4, �12]), after L epochs the distance in total variation
between (P1, . . . , Pm) and the independent stationary distribution in each coordinate is no more
than m(1− pcouple)L, which tends to zero exponentially quickly in L. This proves the lemma.

5.1.3 Bounds on the events of interest

Consider, as above, the population of particles (players) P1, . . . , Pn on the Markov chain. According
to an evolution of these particles, given by the random variables P ti , we are interested in establishing
upper bounds on the rate at which the adversary produces ranking blocks, and a lower bound on
the rate at which the honest players produce uniquely isolated blocks.

Lemma 9. Consider m parties, with arbitrary initial conditions but evolving independently on the

Markov chain. Let S = (t̂+cP)/cH+1 and consider any interval of R rounds, the �rst of which starts

at least S steps after the evolution begins. Then the probability that a particular player generates at

least k ranking blocks in this interval is no more than
(
R+S
k

)
(p1p2)k ≤ (R+ S)k(p1p2)k.

Proof. In order for a ranking block to be produced during the interval, the pre-hash associated
with the ranking block must have succeeded no earlier than S rounds prior to the beginning of the
interval. To analyze this event, let I denote the set of rounds consisting of all rounds referred to
in the statement of the theorem and the previous S rounds. Let A∗i and B∗i denote two families
of independent indicator random variables for which Pr[A∗i = 1] = p1 and Pr[B∗i = 1] = p2. Then
de�ne Ai to be the indicator random variable with the following de�nition: if the player completes
a pre-hash query during the ith round, then Ai is the indicator variable for the success of this
pre-hash; otherwise, there is no pre-hash completed and Ai = A∗i . Similarly, Bi is de�ned with
similar marginals: if round i contains a successful pre-hash, Bi is the indicator random variable for
the event that the subsequent post-hash is successful; otherwise, there was no successful pre-hash
in round i and Bi = B∗i . Observe that if there were k ranking blocks successfully generated during
R, then AiBi = 1 for at least k of these i. Furthermore, as a result of the conditional de�nitions
above, the families Ai and Bi are independent, Bernoulli random variables. Thus the probability of
k successes is no more than

(
R+S
k

)
(p1p2)k, as desired.

Lemma 10. Consider m independent parties walking on the Markov chain in the stationary distri-

bution. Let p∗rank denote the stationary probability of qrank, then

Pr[t is a uniquely isolated round] ≥ m(1− (3Γ)p1p2)mp∗rank .

Proof. We consider the event that a particular honest player Pw generates a uniquely isolated block
in round t. Let p∗rank denote the probability of qrank under the stationary distribution. Then the
probability of a success in round t is exactly p∗rank. In the event that Pw produces a ranking block in
round t, consider the trajectory of Pw through the Markov chain in which the loop between round t

23

and the previous visit to qpre is excised. The remaining trajectory follows the dynamics of the chain
without conditioning, and it follows that the probability that Pw produces a second block in this
region of size 2Γ + 1 is no more than 3Γ(p1p2) (note that the quantity S of the lemma above is no
more than (t̂+ cP)/cH + 1 ≤ Γ− 1). Again applying the previous lemma, the probability that the
remaining m−1 honest players produce no blocks in this region is at least (1−3Γp1p2)m−1. Noting
that the events that distinct players play the role of Pw above are non-intersecting, we conclude
that Pr[t is uniquely isolated] ≥ m(1− (3Γ)p1p2)mp∗rank, as desired.

In light of Lemma 8, the following is immediate.

Lemma 11. Consider m players evolving according to the Markov chain, where the players are

initially stationary and independent. Let pcouple denote the coupling constant of Lemma 8. Consider
two rounds š < s for which |š−s| ≥ L(1+(t̂+cP)/cH). Let Is denote the indicator random variable

for the event that s is uniquely isolated. Let C denote an arbitrary event depending only on the

players trajectories prior to š. Then |Pr[Is|C]− Pr[Is]| ≤ (1− pcouple)L.

Lemma 12. Consider m players evolving on the Markov chain with any �xed initial states. Let piso
denote the probability that a round is uniquely isolated under the stationary distribution, bounded

below by Lemma 10. Fix a parameter σ > 0 and de�ne L = ln(pisoσ/2)/ ln(1 − pcouple) and E =
L(1 + (t̂+ cP)/cH). Let {R, . . . , R+ S − 1} be a sequence of rounds for which R ≥ E. Let Is be the
event that the players produce a uniquely isolated block in round s. Then

Pr

[∑
s

Is ≤ (1− σ)pisoS

]
≤ E exp

(
−(1− σ/2)σ2piso · S

8E

)
.

Proof. We prove a slightly more parameterized version. Consider an arbitrary value of L > 0 and
de�ne δ = (1− pcouple)L and E = L(1 + (t̂+ cP)/cH) (consistent with the statement of the lemma).
We then show that for any γ > 0

Pr

[∑
s

Is ≤ (1− γ)(piso − δ)S

]
≤ E exp(−γ2S(piso − δ)/2E) .

The statement of the lemma follows by choosing γ = (1− σ/2) and L = ln(pisoσ/2)/ ln(1− pcouple)
so that δ = pisoσ/2.

Observe that the variables Is are not independent; however, for two su�ciently distant indices s
and s′, they are nearly independent as formulated in the lemma above and, in fact, the variable Is
is nearly independent of any conditioning on the variables I1, . . . , Iš for š < s−E. To exploit this,
we organize the random variables into E collections of �distant� variables: the ith collection consists
of the variables Ii, IE+i, I2E+i, Observe that all pairs of variables in a particular collection are
at least E-distant from each other and the collections partition the complete set of variables. While
the variables in a particular collection are not strictly independent, they do satisfy the requirement
E[Xi|Xj , j < i] ≥ piso−δ. Recall the basic Cherno� bound: if X1, . . . , Xn are independent indicator
random variables with Exp[Xi] = p then Pr[

∑
Xi < (1 − γ)np] ≤ exp(−γ2np/2). This very same

Cherno� bound applies to the variables in a single collection via a standard stochastic dominance
argument that compares them to i.i.d. variables with these same expectations. Observe, �nally, that
if
∑

s Is ≥ (1 − ε)(piso − δ)S/E for each collection, this same inequality applies over the whole set
of variables. Taking the union bound over these E bad events concludes the argument.

24

λ : security parameter
n : number of parties
t : adversarial party corruption bound
t′ : ampli�ed adversarial party corruption bound
cH : �mining� steps each party takes per round
cP, cV : SNARG prover/veri�er cost

ε̂, t̂, k̂ : MH DAG parameters
T1, p1 = T1/2

λ : target/success probability of prehash
T2, p2 = T2/2

λ : � of ranking block posthash

T3, p3 = T3−T2

2λ
: � of input block posthash

σ : concentration-bound parameter
∆,Γ : network/serialization worst-case delay
β : upper bound on ranking-block computation rate
δMH : adversarial advantage in DAG computation rate
δSteps : honest advantage in number of steps per round
δtot : upper bound on the total block computation rate

Table 1: The parameters of our analysis.

5.1.4 Bounds on the number of adversarial mining successes

Next, we proceed to bound the rate of adversarial mining successes. Our analysis is going to depend
on the level of moderate hardness of the underlying DAG computations family.

By Lemma 3 the speed-up the adversary gets by each extra query to oracle O is at most t̂ steps.
Thus, in order to protect our protocol from grinding attacks, we set the pre-hash hardness parameter
p1 to cH/((1 + σ)t̂ + 4), where σ ∈ (0, 1) is a parameter associated with the concentration bounds
we use later in our analysis. Setting p1 this way implies that computing a small pre-hash costs on
expectation cH/p1 = (1 + σ)t̂+ 4 > t̂ steps; the extra steps added are related to costs occurring in
our reduction later.

To simplify our presentation, we de�ne

t′ := t+ (2n+ 4(p2 + p3)(ncP + tcV)) · p1/cH

to be the increased corruption power the adversary gets, due to fact that our reduction from to the
MH of the DAG computation is not tight, mainly because of the cost of generating and verifying
SNARG proofs for the DAG computations. With foresight, we let β be an estimation of the rate at
which the adversary produces ranking blocks

β :=
p2

(1− ε̂(1, 2, 2n/t′))t̂+ (1
(1+σ)p1

+ 1)(cH − 4p1)
.

As expected β−1, the expected number of steps to �nd a block, is basically the number of attempts
needed to �nd a small post-hash (1/p2), times the number of steps needed to �nd a small pre-hash
(cH/p1) plus the time needed to perform the DAG computation ((1 − ε̂)t̂). The other constants
of the formula are related to our security analysis, i.e., our reduction from an attacker against the
blockchain to an attacker against the MH property. Finally, the parameters 0, 2, 2n/t′ of ε̂ relate to
the rate at which the adversary queries oracles qO, qV , qM as explained in Section 3.2.

Let r.v. Z(S) denote the maximum number of distinct blocks computed by the adversary during
S, where the pre-hash query for each of these blocks was also issued to the RO during S. We prove

25

that the adversary cannot mine fresh ranking blocks with rate and probability better than that
of breaking the moderate hardness experiment. The main proof idea is to use an adversary that
creates blocks fast, to create an adversary that breaks the moderate hardness of I. A summary of
our notation is given in Table 1.

Lemma 13. For any set of consecutive rounds S, where |S| ≥ k̂(1 + σ)p2/(β · t′cH), it holds that
Z(S) ≥ (1 + σ)β · t′cH |S| with probability negl(λ).

Proof. For the sake of contradiction, assume that the lemma does not hold. This implies that there
exists a round interval S = {i′|i ≤ i′ < i + s} such that the following event E occurs with non-
negligible probability in λ: the adversary computed at least (1 +σ)βt′cH |S| new blocks until round
i + s. Using A, we will construct an adversary A′ = (A′1,A′2) that breaks the moderate hardness
(De�nition 2) of I with non-negligible probability. For the rest of the proof letm := (1+σ)β ·t′cH |S|.
A′ is going to run internally A and Z, while at the same time simulating the work honest parties

do using the oraclesM and V provided by the moderate hardness experiment (De�nition 2). It is
also going to cheaply simulate the RO queries made by A2 and inject challenges generated by oracle
O for A2 to solve. By a hybrid argument, we will show that the view of A,Z is indistinguishable
both in the real and the simulated run, and thus the probability that E happens will be the same
in both cases.

Next, we describe the behavior of A′ in more detail�separately for both stages. First, A′1 sets
Ω as the common input for A and Z, where Ω has been generated using the SNARG CRS generator
S. Then, it perfectly simulates honest parties up to round i− 1 and at the same time runs A and Z
in a black-box way. To do that, whenever A queries the RO, it responds with a randomly sampled
value; w.l.o.g, we assume, in our analysis, that A does not repeat the same oracle query twice.
Finally, it outputs the contents of the registers of A and Z. It can do all this, since in the moderate
hardness experiment it has polynomial time on λ on its disposal. Note, that up until this point in
the eyes of A and Z the simulated execution is indistinguishable compared to the real.

For the second stage, A′2(st), is �rst using st to reset A and Z to their earlier state. We assume
that this can be done e�ciently, e.g., by having A and Z read from the registers where st is stored
whenever they perform some operation on their registers.

Next, we describe how A′2 simulates honest parties. For each honest party P , it �rst samples a
value l from the geometric distribution with parameter p2, the number of post-hash queries P has
to make until a small post-hash is found. Then, A′2 samples l values (ti)i∈[l] from the geometric
distribution with parameter p1. These values are the number of pre-hash queries P has to make until
l small pre-hashes are found. Next, A′2 queries oracleM l times, with appropriate inputs (Gi, ri).
Gi is determined by the view of P at the round it would supposedly make this computation, and
ri is sampled uniformly from the range of the hash. Finally, after

∑
i∈[l] ti + l · (t̂/cH + 1) rounds,

A′2 simulates P by di�using a new block by programming the RO in a way that the challenges ri,
and the pre-hash and post-hash values make the block look valid. It also has to compute a SNARG
proof for theM response that minimizes g and for the winningM response. The same process is
repeated until the end of interval S, to �nd the next round that P di�uses a new block.

While simulating honest parties, A′2 has to deal with incoming network tra�c coming from A2.
In the best case, A′2 has to verify a number of SNARG proofs equal to the number of valid input and
ranking blocks A2 can create. While A2 can potentially spam honest parties with incorrect SNARG
proofs, we note that such attacks can be dealt with by requiring parties to produce an additional
hash-based PoW based on the SNARG and the related block. The hardness of the PoW should
be appropriately set, so that on the one hand the adversary can only produce valid SNARG/PoW
pairs at a limited rate, while, on the other hand, honest parties do not spend a large amount of

26

their power on hashing compared to running M . For simplicity, in our analysis we assume that A2

does not di�use invalid blocks to the network.
A′2 also simulates queries made to the RO by A in a di�erent way than before. Each time A

queries the RO with string w, A′2 �rst checks if H(w) has a hard-coded response. If yes, it returns
the value it hard-coded earlier. Otherwise, (i) if w corresponds to a pre-hash string, it samples and
outputs a random string in the range of the hash and if the value is smaller than T1, it queries
oracle O and hard-codes the response as the value of5 H(w||H(w)), (ii) if w is a post-hash string,
it uses oracle V to check if the DAG computation described in w is valid, and if yes it stores it.
Then, again it samples and returns a random string. In both cases, if the string is smaller than
the respective targets T1, T2, T3, the result is stored and used in the simulation of honest parties to
determine whether a block is valid.

A′
1

A,Z

sim. Honest

A′
2

st

O

M

V

sim. RO

A,Z

sim. Honest

sim. RO

Figure 3: A schematic of the reduction. A′ simulates both the honest parties and queries to the
RO. In the second stage of the reduction, A′ makes use of the oracles that it has access to in the
MH experiment. It uses: O to inject new challenges to A, V to quickly verify the validity of the
DAG computations performed by A,M to quickly simulate the DAG computations performed by
honest parties.

Next, we analyze the probability of A′ breaking the moderate hardness of I. First, note that
A and Z cannot distinguish between the real execution and the simulated one we described above,
as queries to the RO are perfectly simulated and honest parties are perfectly simulated using oracle
M. Hence, E will occur in the simulated execution with non-negligible probability as well, i.e. A
will compute at least m new blocks starting from round i and up to round i + s. This implies
that A will issue at least m valid post-hash queries less than T2. We are going to use this fact to
lower-bound the probability of A′ winning. Due to the law of total probability we have that:

Pr[A′ breaks MH] =

= Pr[A′ breaks MH ∧ E] + Pr[A′ breaks MH ∧ ¬E]

≥ Pr[A′ breaks MH|E] Pr[E] .

Since Pr[E] is non-negligible, we next focus on lower bounding Pr[A′ breaks MH|E]. Let qH
be the number of queries A made to the simulated RO. For simplicity, we assume that the cost of
simulating an RO query as described above is insigni�cant compared to cH , the cost of an RO query
in the real execution. Now, let random variable U (resp. U ′) denote the number of ranking and
input blocks generated by honest parties (resp. the adversary) during S. Taking also in account the
oracle calls made by A′2, the total number of steps A′2 takes in any execution, denoted by StepsA′2 ,

5This hard-coding is always possible, since the probability of A querying H(w||H(w)) before querying H(w) is
negligible in λ.

27

is at most:

StepsA′2 ≤ s · tcH − qHcH + (qO + qM + qV) + UcP + U ′cV . (2)

Next, we prove that qM, qV , qO, i.e., the number of queries made to oraclesM,V,O, as well as
U,U ′, are upper-bounded as follows:

Claim 1. It holds that qV , qO < 2qHp1, qM < 2p1ns, and U < 4p1(p2 + p3)ns, U ′ < 4p1(p2 + p3)ts
with overwhelming probability in λ.

Proof. We �rst analyze the bound qM < 2p1ns. If some Pj �nished running an invocation of M ,
it should be the case that it computed a small pre-hash before. Hence, we can upper bound qM,
by computing an upper bound on the number pre-hashes that Pj successfully computed. Since, in
each round, Pj can perform at most one hash query, it succeeds with probability p1. Let r.v. Xi,j

be equal to 1 with probability p1, and 0 otherwise. We can upper bound the total number of small
pre-hashes computed by honest parties by X =

∑
i∈S,j∈[n]Xi,j . By an application of the Cherno�

bound it easily follows that Pr[X ≥ 2p1ns] < negl(λ).
In a similar fashion we can upper-bound the number of blocks generated by honest parties

(and thus the number of SNARGs computed). Let random variable R′i be equal to 1, if the i-
th invocation of M made by an honest party during S leads to the generation of either a new
ranking or a new input block. By our previous bound, we can de�ne R′ :=

∑
i∈[2p1ns]

R′i, where

E[R′] ≤ 2p1ns(p2 + p3) and R′ is an upper bound on the number of blocks generated by honest
parties during S with overwhelming probability. Again using the Cherno� bound, it follows that
U < 4p1(p2 + p3) · ns with overwhelming probability in λ.

To establish the bound qV , qO < 2qHp1, �rst note qV , qO ≤ qpre, by the fact that oracle O is
queried whenever a new valid successful pre-hash query is made, and distinct valid post-hash queries
must contain distinct valid small pre-hashes. Let R∗i be equal to 1 if the i-th distinct hash query was
a valid pre-hash. Let R∗ :=

∑
i∈[qH]R

∗
i . It holds that E[R∗] ≤ qHp1. Moreover, random variables in

{R∗i |i ∈ [qH]} are mutually independent. Thus, we can apply the Cherno� bound (w.l.o.g. assume
also that qH > λ):

Pr[R∗ ≥ (1 + σ)qHp1] ≤ Pr[R∗ ≥ (1 + σ)qHp1]

< e−qHp1σ2/3 < negl(λ) .

It follows that with overwhelming probability qV , qO ≤ qpre < 2qHp1. In a similar way as before we
can bound U ′ by 4qpre(p2 + p3) ≤ 4qHp1(p2 + p3) ≤ 4p1(p2 + p3)ts, since qH < ts.

Let D1 be the event that qV , qO < 2qHp1, qM < 2p1ns, and U < 4p1(p2 + p3)ns, U ′ < 4p1(p2 +
p3)ts. If D1 holds, by Inequality 2 we have that:

StepsA′2 ≤ s · tcH − qHcH + 4qHp1

+ sp1(2n+ 4(p2 + p3)(ncP + tcV))

= s · tcH − qH(cH − 4p1)

+ sp1(2n+ 4(p2 + p3)(ncP + tcV)) .

By the de�nition of β we have that 1/β ≤ cH
p1p2

. Using also the de�nition of m, we can bound the

rate at which A′ queries oracles V andM:

qV
m/((1 + σ)p2)

≤ 2p1p2qH
βt′cHs

≤ 2p1p2st

p1p2/cH · t′cHs
≤ 2

28

and
qM

m/((1 + σ)p2)
≤ 2p1p2ns

βt′cHs
≤ 2p1p2ns

p1p2/cH · t′cHs
≤ 2n/t′ .

For the rest of the proof we use ε̂(c) instead of ε̂(1 + c/(m/((1 + σ)p2), 2, 2n/t′), i.e., c denotes the
number of extra queries made to oracle O. By the de�nition of m we have that:

s · tcH ≤ m/((1 + σ)β)− sp1(2n+ 4(p2 + p3)(ncP + tcV))

≤ m

(1 + σ)p2

(
(1− ε̂(0))t̂+

(
1

(1 + σ)p1
+ 1

)
(cH − 4p1)

)
− sp1(2n+ 4(p2 + p3)(ncP + tcV)) .

Putting everything together, we get that:

StepsA′2 ≤
m

(1 + σ)p2
(1− ε̂(0))t̂

+

(
m

(1 + σ)p2

(
1

(1 + σ)p1
+ 1

)
− qH

)
(cH − 4p1) .

Furthermore, due to Lemma 3 and the above inequality, it holds that for any c ≥ 0:

StepsA′2 ≤
m

(1 + σ)p2
(1− ε̂(c))t̂ (3)

+

((
m

(1+σ)p2
+ c

(1 + σ)p1
+

m

(1 + σ)p2

)
− qH

)
(cH − 4p1) .

It remains to show that the second term in the right-hand side of the inequality is 0. As a
�rst step, we establish lower bounds on the number of pre-hash and post-hash queries to the RO
issued by A. Let qpre, qpost denote the number of distinct valid small, i.e., smaller than T1 and T2,
pre-hashes and post-hashes computed by A, respectively (not to be confused with qpre, qpost the
states of the Markov Chain presented earlier). Let qH,pre, qH,post denote the number of distinct valid
pre-hash and post-hash queries made to the RO, respectively.

Claim 2. For σ ∈ (0, 1) and any x ≥ λ it holds that:

• Pr[qpost ≥ x ∧ qH,post ≤ x
p2(1+σ)] ≤ e−Ω(λ);

• Pr[qpre ≥ x ∧ qH,pre ≥ x
p1(1+σ)] ≤ e−Ω(λ) .

Proof. First, we bound the probability that A generated x(≥ λ) or more blocks by querying the
RO less than x

p2(1+σ) times with post-hash queries. W.l.o.g., assume that qH,post = x
p2(1+σ) . Let

Ri be equal to 1 if the i-th post-hash query was successful, i.e., smaller than T2, and 0 otherwise.
Let R :=

∑
i∈[qH,post]

Ri, where qH,post is the number of distinct post-hash queries. It holds that

qpost ≤ R and E[R] = qH,post · p2 = x/(1 − σ). By an application of the Cherno� bound it holds
that:

Pr[R ≥ x] = Pr[R ≥ (1 + σ)E[R]] ≤ e−
E[R]σ2

3 = e
− xσ2

3(1+σ) ≤ negl(λ) .

Hence, the event that qpost ≥ x and qH,post ≤ x
p2(1+σ) happens with probability negl(λ).

Similarly, we bound the probability that A computed more than x(≥ λ) pre-hashes in less than
x

(1+σ)p1
pre-hash RO queries. Let R′i be equal to 1 if the i-th pre-hash query was successful, then

29

following a similar reasoning as before we have that:

Pr[R′ ≥ x] ≤ Pr[R′ ≥ (1 + σ)E[R′]] ≤ e−
E[R′]σ2

3

= e
− xσ2

(1+σ)3 = e−Ω(λ).

The claim follows.

Let D2 be the event where qpost ≥ m =⇒ qH,post >
m

p2(1+σ) and for any c ≤ qH , qpre ≥
m

p2(1+σ) + c =⇒ qH,pre >
m

p2(1+σ)
+c

p1(1+σ) . By the previous claim and an application of the union bound

we get that Pr[D2] ≥ 1− negl(λ).
Since each of D1 and D2 occurs with overwhelming probability, and E occurs with non-negligible

probability, by the de�nition of conditional probability it follows that D1 ∧D2|E occurs with over-
whelming probability:

Pr[D1 ∧D2|E] = 1− Pr[¬(D1 ∧D2)|E]

= 1− Pr[¬(D1 ∧D2) ∧ E]

Pr[E]

≥ 1− Pr[(¬D1) ∨ (¬D2)]

Pr[E]

≥ 1− Pr[¬D1] + Pr[¬D2]

Pr[E]
= 1− negl(λ)

where the last inequality follows from an application of the union bound.
We will next show that conditioned on E, D1∧D2 implies that A′ wins in the MH game. Firstly,

E implies that A issuedm valid small post-hash queries. It follows that qpost ≥ m, which in turn due
to D2 implies that qH,post >

m
p2(1+σ) . Since each pair (G, r) de�nes a unique output x, it holds that

each pre-hash query determines exactly one post-hash query (except with negligible probability).
Thus, qpre ≥ qH,post >

m
p2(1+σ) . Let qpre := m

p2(1+σ) + c, for c ≥ 0. For each small pre-hash query, a

query to oracle O must have been issued, thus qO := m
p2(1+σ) + c. Finally, again by D2, we get that

qH,pre ≥
m

p2(1+σ)
+c

p1(1+σ) .
Note now, that the pre-hash and post-has queries are distinct, hence qH ≥ qH,pre + qH,post, and

by our previous analysis A′2 has issued at least
m

(1+σ)p2
+ c

(1 + σ)p1
+

m

(1 + σ)p2

queries to the RO. Moreover, for each distinct small post-hash query A′2 has extracted a distinct
valid DAG computation on a challenge issued by oracle O, i.e., m

(1+σ)p2
(≥ βt′cH |S|/(1 + σ)p2 ≥ k̂)

valid DAG computations. By our bound on qH and Inequality 3, it also holds that StepsA′2 ≤
(1− ε̂(c))t̂ m

(1+σ)p2
. Hence, A′ wins in the MH game, since it has managed to perform m

(1+σ)p2
(≥ k̂)

valid DAG computations in at most (1−ε̂(c))t̂ m
(1+σ)p2

steps and querying oracle O at most m
(1+σ)p2

+c
times. Thus:

Pr[A′ breaks MH|E] ≥ Pr[D1 ∧D2|E] ≥ 1− negl(λ)

which implies that

Pr[A′ breaks MH] ≥ Pr[A′ breaks MH|E] Pr[E] > negl(λ)

since both parts of the product are non-negligible. This contradicts Assumption 1, and the lemma
follows.

30

5.1.5 Putting everything together

Next, we show that the probability that a uniquely successful round happens is larger than the
expected adversarial mining rate per round. Towards this purpose, our next assumption ensures that
the computational power advantage of honest parties outperforms the moderate hardness advantage
on the DAG computation of the adversary, while at the same time the rate at which blocks are
produced is upper bounded.

Assumption 3. There exist δMH, δSteps and δtot ∈ (0, 1), such that for su�ciently large λ ∈ N:
- (n− t)(1− δSteps) ≥ t′ (steps gap)
- p∗rank ≥ (1− δMH)βcH (MH gap)
- δSteps − δMH ≥ δtot (steps vs. MH gap)
- δtot > 3Γ · βcH(n− t) (bounded block rate) .

As promised, and based on Assumption 3, we prove the following lemma.

Lemma 14. It holds that piso > (1 + δtot)βt
′cH .

Proof. We have that:

piso ≥ (n− t)(1− (3Γ)p1p2)(n−t)p∗rank (Bernoulli)

> (n− t)(1− (3Γ)p1p2 · (n− t))p∗rank (block rate)

≥ (n− t)(1− δtot)p∗rank (MH gap)

≥ (n− t)(1− δtot)(1− δMH)βcH (steps gap)

≥ (1− δtot)(1− δMH)

1− δSteps
t′βcH (block rate)

≥ (1 + δtot)βt
′cH .

where the �rst inequality follows also from the fact that p1p2 ≤ βcH .

Together with the appropriate concentration bounds proved in Lemma 13 and Lemma 12,
Lemma 14 is su�cient to apply Theorem 7 for Π, which in turn implies that Π satis�es both
Persistence and Liveness with overwhelming probability. Finally, in Appendix B, we argue that
under ideal conditions, i.e. optimal MH, small SNARG costs, etc., Π can tolerate any dishonest
minority.

A more detailed treatment of useful work completion times. The analysis above calibrates pre-hash
hardness as a function of t̂, the worst-case completion time of useful work. In certain settings of
interest, the time complexity of the useful work task may satisfy a signi�cantly stronger bound with
very high probability, in which case this reduced bound can take the place of t̂ with only minimal
changes to the development above. Speci�cally, if the time complexity is t < t̂ except with negligible
probability, the value t can be uniformly substituted for t̂ above with the addition of negligible error
terms in the theorems above.

5.2 DPLS security

Executing DPLS in our permissionless PoUW setting potentially implies substantial adversarial
participation which can negatively in�uence the performance of the algorithm in multiple ways. In
particular, the adversary does not have to follow Algorithm 1, e.g., by publishing the result of the
worst execution of M , instead of the best one.

While the presentation of DPLS is agnostic to adversarial participation, we provide the respective
defenses in its embedding PoUW protocol. We present two important quality guarantees of our

31

implementation of DPLS by a PoUW protocol as long as the adversary only controls a minority of the
computational power: (i) during any su�ciently large round interval, honest parties contribute new
updates proportionally to their relative mining power�in particular, the honest parties contribute
more updates than the adversary; (ii) the adversary cannot extensively manipulate the score of its
updates, as we enforce each update to additionally include the result of a �random� execution of M
from the batch, which is taken in account if the �best� execution has worse score.

Next, we proceed to formalize the aforementioned properties. We start with an observation
about the rate at which the adversary produces updates in the context of the DPLS protocol, i.e.,
the total number of adversarial input and ranking blocks. Let Z̄(S) be the natural extension of
Z(S) that refers to both input and ranking blocks, and

β̄ :=
p2 + p3

(1− ε̂(1, 2, 2n/t′))t̂+ (1
(1+σ)p1

+ 1)(cH − 4p1)
.

Following the same steps as in Lemma 13, we get that:

Lemma 15. For any set of consecutive rounds S, where |S| ≥ k̂(1 + σ)(p2 + p3)/(β̄ · t′cH), it holds
that Z̄(S) ≥ (1 + σ)β̄ · t′cH |S| with probability negl(λ).

Using the previous lemma, we can show that the number of updates produced by the honest
parties outperforms that of the adversary.

Lemma 16. For any set of consecutive rounds S, where |S| ≥ k̂(1 + σ)(p2 + p3)/(β̄ · t′cH), it holds
that honest parties produce more updates than the adversary with overwhelming probability.

Proof. We can lower bound the rate at which honest blocks are produced based on the stationary
probability p∗ that an honest party is in an input-block or ranking-block producing state. We can
compute p∗ in a similar way to how we computed p∗rank in Appendix B. We get that:

p∗ :=
p2 + p3

1/p1 + 1 + t̂/cH + cP/cH(p2 + p3)
.

Based on Assumption 3, we have that the expected rate at which honest parties produce blocks
outperforms that of the adversary, i.e., (n− t)p∗ ≥ (1− δtot)t′β̄cH . The lemma follows easily.

Next, we turn our attention to the score of adversarial block updates. Since the blockchain
protocol dictates that if the score of the winning attempt is greater that the score of the best
attempt in a block, then the winning attempt should be considered in DPLS, we easily get the
following corollary.

Corollary 17. For any set of consecutive rounds S it holds that the score of the i-th adversarial

update corresponding to the i-th block in Z̄(S), is larger or equal to the score of the run of M that

corresponds to the related small post-hash attempt.

To negatively in�uence the quality of its updates, the adversary can at best select to not di�use
some of them, at the cost of decreased rewards and in�uence to the protocol. Otherwise, its updates
will not be much worse than uniform runs of M . Finally, notice that due to the pipeline design
presented at Section 4.2, the adversary only has a limited window, equal to an epoch, to choose
which of its blocks to drop.

32

5.3 Protocol usefulness

The goal of any PoUW-based blockchain protocol is to be used to solve some external to the
blockchain, moderately hard, computational problem. We say that a protocol has a high usefulness

rate if the total computational work spent to run the blockchain and solve the external problem is
not much bigger than just solving the problem with the best algorithm for the setting we consider,
denoted by Abest.

We study the usefulness rate of our protocol using two metrics. The �rst metric, Ueng, measures
the overall ratio of computational steps that the engine directs towards running the DPLS algorithm.
Intuitively this metric captures how e�ective the protocol is as a DPLS engine. We generically
calculate Ueng as follows (assuming that that the runtime of M is �xed):

Ueng := E[DPLS steps per block]/E[total steps per block]

=
t̂/(p2 + p3)

t̂/(p2 + p3) + 2 · cP + cH/(p1(p2 + p3))

= [1 + 2 · cP · (p2 + p3)/t̂+ cH/p1 · 1/t̂]−1 < 1/2

where the last inequality follows from the fact that the expected time to �nd a small pre-hash
(cH/p1) is close to M 's solving time t̂. Moreover, the smaller the SNARG proving cost (cP) is
compared to the expected DPLS work to generate a block (t̂/(p2 + p3)), the closer Ueng gets to 1/2.
Hence, by design, our protocol manages to direct approximately 1/2 of the work spent to generate
blocks, to the DPLS algorithm. We note that this rate can be improved by taking in account the
exact security bounds regarding grinding attacks against the moderately hard DAG computation
(see Remark 2).

The second metric, Ualg, compares the complexity of DPLS to algorithm Abest. Note, that
for Ualg we only take into account the DPLS computation steps and no other steps related to the
protocol, e.g, hashing, computing SNARGs.

Ualg := E[total steps of Abest]/E[total steps of DPLS]

Ualg cannot be studied generically as it depends on the speci�c external problem solved as well as
the computational model we consider. For example, we expect Ualg to be much larger when we
consider the best algorithm in a distributed setting compared to the best one in the single machine
setting. Instead, in Section 6, we perform an experimental analysis of Ualg for a DPLS variant of
WalkSAT.

The two metrics that we introduced capture both costs associated with the ledger protocol
(hashing and SNARGS) and costs that are induced by the speci�c algorithm we implement. In fact,
in the case where blocks are computed using the honest mining algorithm, the product of the two
metrics is a good approximation of the usefulness rate.

Remark 2. (Improved Ueng) To be able to prove the security of our protocol given any DAG compu-
tation, we set pre-hash hardness (T1) to be approximately equal to the worst-case time complexity
of the exploration algorithm M . While this has the e�ect that Ueng is less that 1/2, we note that
it is possible to improve Ueng by adjusting pre-hash hardness based on the MH of the speci�c DAG
computation considered. Speci�cally, for our security arguments to remain valid, it su�ces that:

cH/p1 := max
m,a

{
a · (ε̂(1 + a, 2, 2n/t′)− ε̂(1, 2, 2n/t′))t̂

}
.

Given now an MH DAG computation where ε̂(1+a, 2, 2n/t′)− ε̂(1, 2, 2n/t′) ≤ δa, for some δ ∈ [0, 1],
we get that

Ueng = [1 + 2 · cP · (p2 + p3)/t̂+ δ]−1

33

which, for favorable parameters, i.e, cP << t̂/(p2 + p3) and δ ≈ 0, implies that Ueng is close to 1.

6 Applications

In this section we describe the applications of our protocol to concrete, practice-relevant optimization
problems. First, we propose algorithms from the literature that can be cast as instantiations of the
generic DPLS algorithm, followed by a discussion of several real-world problems that can be solved
by our protocol. Finally, we evaluate the performance of a concrete example of a DPLS variant of
WalkSAT.

6.1 Suitable algorithms

A prime example for DPLS is the WalkSAT algorithm [55, 56], which we described in Section 3.
In fact, most well-known stochastic-local-search (SLS) algorithms [34] can be mapped to DPLS as
follows: The Init function provides the initial information needed, e.g., a number of di�erent starting
locations for parallel executions of WalkSAT. Given the current location,M is set to explore a single
location in its neighborhood and any randomness needed is provided by the seed. Consequently,
Update can be interpreted as exploring one or more locations in the neighborhood depending on
the post-hash parameters p2 and p3, and then returning the one that maximizes the scoring function
g. This location can then serve as the next point in the random walk. Note that DPLS allows both
for multiple-walk parallelism, in the sense that multiple walks can be executed concurrently by
di�erent miners coordinating through the blockchain, and for parallelism in each walk, i.e., before
a step is made multiple locations in the neighborhood are explored [58].

As argued above, DPLS is rather expressive. Still, we expect even better performance when
the following two conditions are met: (i) the number of neighborhood locations explored in each
step is large, such that the expected DPLS work to generate a block is a lot larger than the work
to create the respective SNARG proof�for the bene�t of usefulness, as explained in Section 5.3,
and, (ii) the total neighborhood size is su�ciently large, such that parties do not explore the same
locations due to desynchronization and the fact that the locations searched are randomly determined.
Furthermore, algorithms that search larger neighborhoods may also be better candidates regarding
moderate hardness, since a small neighborhood makes precomputation attacks potentially easier.

A subclass of SLS algorithms that has these two characteristics are Very Large Scale Neigh-
borhood search algorithms [3], where the algorithm (partially) searches a very large neighborhood
before making its next step. For example, in the Large Neighborhood Search heuristic [53], explor-
ing a neighborhood involves destroying part for the solution and then reconstructing it in a greedy
way, to �nd a new maximum. Depending on the way the reconstruction happens, the time it takes
to obtain a new solution can vary, e.g., if during reconstruction a Linear Programming problem
is solved, the whole process may be in the order of seconds. Another example is variable-depth
search methods [40, 3], where the k-exchange neighborhood is searched partially in an e�ort to �nd
solutions close to the local minimum of the neighborhood. As before, parameter k can be used to
adjust the time it takes for a single neighbor search.

6.2 Real-world problems

We now present some suitable real-world optimization problems for our protocol. One of the com-
petitive advantages of our system is that it can provide access to huge amounts of computational
power; Bitcoin's current power consumption compares to that of a medium-size country. An addi-

34

tional bene�t is public auditability: the results of our algorithm executions are publicly agreed and
come with a publicly veri�able correctness proof.

These properties are especially appealing for governance problems. For example, in 2016 the
US Federal Communications Commission (FCC) ran a radio spectrum auction [15] that involved
solving large instances of the station repacking problem [22]. The auction took place in rounds,
and organizers set a constraint of one minute to solve each instance, as the solution of di�erent
instances directly in�uenced the subsequent phases of the auction. The solving process followed by
FCC involved an SLS algorithm as its main component. Speed and public auditability would be
strong arguments in favor adopting our framework in this case.

A second example is the residents/hospital-matching problem. Initially, both the applicants and
the hospitals declare the order at which they prefer each other. Then, the relevant agency, e.g.,
NRMP in the USA, tries to �nd a matching between residents and hospitals minimizing vacant
positions while maximally respecting the preference order set by the involved parties. The problem
is a good candidate since several SLS algorithms [45, 54] have been proposed for solving it, and also
due to the fact that there is public interest that the matching is obtained in a fair manner.

Another relevant class of hard optimization problems is athletic-events scheduling. As an ex-
ample, the US National Football League uses an SLS algorithm [19] to create the schedule of each
season [47]. The associated optimization problem is generated by taking in consideration how much
each team has to travel, stadium availability and broadcasting channels' interests, among others.
The hardness of the problem and the fact that multiple parties with con�icting interests are involved
in the process makes our protocol a good �t.

6.3 Concrete example

In this section, we evaluate the performance of the DPLS variant of WalkSAT described in Section 3.
We stress that our objective here is to provide a proof-of-concept of our ideas, and not to give a
solution that can compete with the state-of-the-art.

On a high level each thread of DPLS runs the WalkSAT procedure (Section 3.1, Algorithms 2
and 3) for a bounded number of �ips. The scoring function, used by the Update procedure to pick
the best among these threads, outputs the number of satis�ed clauses in the �nal con�guration of
the walk. In addition, multiple such walks are run concurrently, with parties selecting at random
which walk to work on.

We experimentally evaluated the performance of the algorithm compared to the WalkSAT algo-
rithm. Our test set consisted of Automated Planning problem instances [28], namely Blocks World
Planning; more experiments on di�erent data sets were executed showing similarly good behavior
as demonstrated here. In more detail, the problem consists of �nding a plan to move blocks in a
table from an initial con�guration to a goal con�guration in a bounded number of moves, where
the only move allowed is moving a block from the top of a pile of blocks either to the table or on
top of another pile. For more information about the problem and the selected instances (instances
bw_large.b, bw_large.c, bw_large.d were used) we refer the reader to [1, 33].

For the sake of comparability, we choose to partially solve each of the three given instances by
allowing solutions to leave at most T clauses unsatis�ed, for some parameter T . This way we can
obtain a similar hardness level for the three instances of approximately 200k to 300k �ips when
running plain WalkSAT. An upper bound of 106 �ips is used in all our experiments. Following
Figure 4, we determined T to be 1, 13, and 33, for the di�erent instances.

We �rst examine the behavior of our algorithm assuming a single starting point and that all
updates are honestly produced one after another. As described earlier, our algorithm proceeds in
epochs, where, in each epoch, a number of di�erent threads run WalkSAT for a bounded number

35

Figure 4: Hardness of planning instances. On the x-axis we set the target T , while on the y-axis we
count the total number of �ips that it took WalkSAT to solve the problem. The standard deviation
of our experiments is shown as a vertical bar.

of �ips. Here, we �x the total number of �ips per epoch to 105, and study what happens when
the (expected) number of threads changes. The quantities of interest are: (i) the total number of
�ips our algorithm made before reaching a solution, and (ii) the depth that the longest walk in our
search reached. In Figure 5, we see that while increasing the number of threads has a negative e�ect
on the total number of �ips, it also leads to decreased depth, thus positively a�ecting how early a
solution is found. For the rest of the experiments we set the (expected) number of threads to 20
and the �ips per thread to 5000.

Figure 5: Varying the number of threads of DPLS for a �xed number of �ips per epoch.

Next, in Figure 6, we compare the performance of our algorithm to that of WalkSAT, and see
that our algorithm is approximately half as fast. Note, that this factor is not close to 1/20 (for 20
threads), implying that the extra threads have a noticeable e�ect in how fast a solution is found.

The next set of tests is concerned with the e�ect of faults in our algorithm. The type of faulty
behavior we consider is the adversary picking a random run of function M instead of the best
one when producing a new update. This behavior is quite realistic, as it is easy to detect if the
adversary publishes a solution a lot worse than a randomly sampled one, since each block additionally
contains the run of M that led to a small post-hash. The main thing we observe in Figure 6, is
that the performance of our algorithm deteriorates faster after the 50% fault mark, suggesting some
robustness to faults. Moreover, with faults at 50%, the performance of the algorithm su�ers a factor
of less than two.

Next, we examine the e�ect of multiple updates being produced in parallel in our algorithm.

36

Figure 6: DPLS vs. WalkSAT and the e�ect of increasing the fault rate on DPLS.

Figure 7 depicts the performance of DPLS when multiple starting points are considered. Again,
we are in the setting where all updates are computed honestly one after another. We observe that
while increasing the number of starting points (x-axis) leads to an increased total number of �ips,
this increase is not directly proportional to the number of starting points; doubling the number of
starting points does not double the number of steps. This implies that parallelization speeds up our
search, in the sense that depth is decreased.

Figure 7: Varying the number of starting points of DPLS.

Finally, in Figure 8, we examine the e�ect of increased SNARG costs on DPLS. We plot the
total cost of running DPLS with a single starting point assuming that the SNARG cost depends
linearly6 on the cost of the single thread of WalkSAT that is proven correct. The multiplicative
constant appears on the horizontal axis of the graph. Observe that for our test cases the total cost
doubles approximately when the SNARG costs 20 times more than the computation proven correct,
i.e., close to the number of threads in our DPLS execution. This con�rms our theoretical analysis
where we showed that the larger the number of threads, the less signi�cant the cost of SNARG is
compared to the total cost of our algorithm.

6Spartan [57] is an example of a SNARG system with this property.

37

	0

	500000

	1x106

	1.5x106

	2x106

	2.5x106

	0 	5 	10 	15 	20 	25 	30

To
ta
l	c
os
t

SNARG	constant

Effect	of	increased	SNARG	cost

set	5
set	6
set	7

Figure 8: The e�ect of increased SNARG cost on the total running time of DPLS.

Acknowledgments. We thank Laurent Michel for providing us with valuable information about
state-of-the-art stochastic local-search algorithms and their application to real-world problems.

References

[1] Sat-encoded blocks world planning problems. https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/

SAT/PLANNING/BlocksWorld/descr.html.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of prams. Theor. Comput. Sci.,
71(1):3�28, 1990.

[3] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale neighborhood search
techniques. Discrete Applied Mathematics, 123(1-3):75�102, 2002.

[4] D. Aldous and J. A. Fill. Reversible markov chains and random walks on graphs, 2002. Un�nished
monograph, recompiled 2014, available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.

[5] M. Andrychowicz and S. Dziembowski. Distributed cryptography based on the proofs of work. Cryp-
tology ePrint Archive, Report 2014/796, 2014. http://eprint.iacr.org/.

[6] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Consensus redux: Distributed ledgers in
the face of adversarial supremacy. IACR Cryptol. ePrint Arch., 2020:1021, 2020.

[7] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable
treatment. In J. Katz and H. Shacham, editors, Advances in Cryptology � CRYPTO 2017, pages
324�356, Cham, 2017. Springer International Publishing.

[8] A. Baldominos and Y. Saez. Coin. ai: A proof-of-useful-work scheme for blockchain-based distributed
deep learning. Entropy, 21(8):723, 2019.

[9] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from worst-case assumptions. In
Annual International Cryptology Conference, pages 789�819. Springer, 2018.

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing e�cient proto-
cols. In CCS '93, Proceedings of the 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, November 3-5, 1993., pages 62�73, 1993.

[11] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Veri�able delay functions. In Advances in Cryptology -
CRYPTO 2018.

[12] K. Chatterjee, A. K. Goharshady, and A. Pourdamghani. Hybrid mining: exploiting blockchain's com-
putational power for distributed problem solving. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pages 374�381, 2019.

38

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/PLANNING/BlocksWorld/descr.html
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/PLANNING/BlocksWorld/descr.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://eprint.iacr.org/

[13] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature cards. In In-
novations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010.
Proceedings.

[14] F. Coelho. An (almost) constant-e�ort solution-veri�cation proof-of-work protocol based on merkle
trees. Cryptology ePrint Archive, Report 2007/433, 2007. https://eprint.iacr.org/2007/433.

[15] F. C. Commission. Expanding the economic and innovation opportunities of spectrum through incentive
auctions. https://docs.fcc.gov/public/attachments/FCC-14-50A1.pdf, 2014.

[16] A. Coventry. Nooshare: A decentralized ledger of shared computational resources. https://www.

semanticscholar.org/paper/NooShare-%3A-A-decentralized-ledger-of-shared-Coventry/

4616e9784009f1274a7f4bf6087a6870cd62f122, 2012.

[17] P. Daian, R. Pass, and E. Shi. Snow white: Robustly recon�gurable consensus and applications to prov-
ably secure proof of stake. In International Conference on Financial Cryptography and Data Security,
pages 23�41. Springer, 2019.

[18] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure, semi-synchronous
proof-of-stake blockchain. In Advances in Cryptology - EUROCRYPT 2018.

[19] B. N. Dilkina and W. S. Havens. The us national football league scheduling problem. In AAAI, pages
814�819, 2004.

[20] M. Dotan and S. Tochner. Proofs of useless work�positive and negative results for wasteless mining
systems. arXiv preprint arXiv:2007.01046, 2020.

[21] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak. Proofs of space. In Annual Cryptology
Conference, 2015.

[22] A. Fréchette, N. Newman, and K. Leyton-Brown. Solving the station repacking problem. In Proceedings
of the AAAI Conference on Arti�cial Intelligence, volume 30, 2016.

[23] Gapcoin. Gapcoin, 2014. https://gapcoin.org/.

[24] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and applications.
In Advances in Cryptology - EUROCRYPT 2015.

[25] J. A. Garay, A. Kiayias, and G. Panagiotakos. Consensus from signatures of work. In Topics in
Cryptology � CT-RSA 2020.

[26] J. A. Garay, A. Kiayias, and G. Panagiotakos. Blockchains from non-idealized hash functions. In Theory
of Cryptography, 2020.

[27] P. Gazi, A. Kiayias, and A. Russell. Tight consistency bounds for bitcoin. In J. Ligatti, X. Ou, J. Katz,
and G. Vigna, editors, CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages 819�838. ACM, 2020.

[28] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: theory and practice. Elsevier, 2004.

[29] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements
for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, pages
51�68, 2017.

[30] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology � EURO-
CRYPT 2016.

[31] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updatable and universal common
reference strings with applications to zk-snarks. In Annual International Cryptology Conference.

[32] N. Gupta and D. S. Nau. On the complexity of blocks-world planning. Artif. Intell., 56(2-3):223�254,
1992.

[33] H. H. Hoos and T. Stützle. Satlib: An online resource for research on sat. Sat, 2000:283�292, 2000.

39

https://eprint.iacr.org/2007/433
https://www.semanticscholar.org/paper/NooShare-%3A-A-decentralized-ledger-of-shared-Coventry/4616e9784009f1274a7f4bf6087a6870cd62f122
https://www.semanticscholar.org/paper/NooShare-%3A-A-decentralized-ledger-of-shared-Coventry/4616e9784009f1274a7f4bf6087a6870cd62f122
https://www.semanticscholar.org/paper/NooShare-%3A-A-decentralized-ledger-of-shared-Coventry/4616e9784009f1274a7f4bf6087a6870cd62f122
https://gapcoin.org/

[34] H. H. Hoos and T. Stützle. Stochastic local search: Foundations and applications. Elsevier, 2004.

[35] H. Kautz, B. Selman, and D. McAllester. Walksat in the 2004 sat competition. In Proceedings of the
International Conference on Theory and Applications of Satis�ability Testing, 2004.

[36] T. Kerber, A. Kiayias, and M. Kohlweiss. Mining for privacy: How to bootstrap a snarky blockchain.
Cryptology ePrint Archive, Report 2020/401, 2020. https://eprint.iacr.org/2020/401.

[37] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. In Annual International Cryptology Conference, pages 357�388. Springer, 2017.

[38] S. King. Primecoin: Cryptocurrency with prime number proof-of-work, 2013.

[39] A. Lihu, J. Du, I. Barjaktarevic, P. Gerzanics, and M. Harvilla. A proof of useful work for arti�cial
intelligence on the blockchain. arXiv preprint arXiv:2001.09244, 2020.

[40] S. Lin and B. W. Kernighan. An e�ective heuristic algorithm for the traveling-salesman problem.
Operations research, 21(2):498�516, 1973.

[41] A. F. Loe and E. A. Quaglia. Conquering generals: an np-hard proof of useful work. In Proceedings of
the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, pages 54�59, 2018.

[42] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-knowledge snarks from linear-
size universal and updatable structured reference strings. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2111�2128, 2019.

[43] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin work for data
preservation. In 2014 IEEE Symposium on Security and Privacy, pages 475�490. IEEE, 2014.

[44] T. Moran and I. Orlov. Simple proofs of space-time and rational proofs of storage. In Advances in
Cryptology � CRYPTO 2019.

[45] D. Munera, D. Diaz, S. Abreu, F. Rossi, V. Saraswat, and P. Codognet. Solving hard stable matching
problems via local search and cooperative parallelization. In Proceedings of the AAAI Conference on
Arti�cial Intelligence, volume 29, 2015.

[46] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf, 2008.

[47] NFL. Creating the n� schedule. https://operations.n�.com/gameday/n�-schedule/creating-the-n�-
schedule/.

[48] C. G. Oliver, A. Ricottone, and P. Philippopoulos. Proposal for a fully decentralized blockchain and
proof-of-work algorithm for solving np-complete problems. arXiv preprint arXiv:1708.09419, 2017.

[49] C. H. Papadimitriou and J. D. Ullman. A communication-time tradeo�. SIAM J. Comput., 16(4):639�
646, 1987.

[50] S. Park, A. Kwon, G. Fuchsbauer, P. Gaºi, J. Alwen, and K. Pietrzak. Spacemint: A cryptocurrency
based on proofs of space. In International Conference on Financial Cryptography and Data Security,
2018.

[51] R. Pass, L. Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks.
Cryptology ePrint Archive, Report 2016/454.

[52] R. Pass and E. Shi. Fruitchains: A fair blockchain. In Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 315�324, 2017.

[53] D. Pisinger and S. Ropke. Large neighborhood search. In Handbook of metaheuristics, pages 99�127.
Springer, 2019.

[54] M. Sartori. A local search algorithm for matching hospitals to residents. 2013.

[55] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceedings of
the Twelfth National Conference on Arti�cial Intelligence (Vol. 1), AAAI '94, page 337â��343, USA,
1994.

40

https://eprint.iacr.org/2020/401

[56] B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satis�ability testing. In DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 521�532, 1996.

[57] S. Setty. Spartan: E�cient and general-purpose zksnarks without trusted setup. In Annual International
Cryptology Conference, 2020.

[58] M. G. A. Verhoeven and E. H. Aarts. Parallel local search. Journal of heuristics, 1(1):43�65, 1995.

[59] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Van Renesse. {REM}: Resource-e�cient mining for
blockchains. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages 1427�1444, 2017.

[60] W. Zheng, X. Chen, Z. Zheng, X. Luo, and J. Cui. Axechain: A secure and decentralized blockchain
for solving easily-veri�able problems. arXiv preprint arXiv:2003.13999, 2020.

A The Full Protocol

Our protocols follows the same high-level structure (Algorithm 6) as Bitcoin, formalized in [24].
In each round, miners fetch any new chains di�used in the network, and pick the longest valid
chain among the ones they have received (Algorithm 7 and 8). Then, based on the contents of
the selected chain and other messages received from the network, they select their block input m,
as well as information related to the DAG computation they are going to perform (Λ, G, z), and
run the PoUW generation function (Algorithm 5). If a new block is produced, it is di�used in the
network.

Algorithm 6 The main function of our protocol, parameterized by the input contribution function

I(·) and the chain reading function R(·).

1: C := BGen . Initialize to the genesis block BGen

2: st := ε, round := 0
3: while True do

4: C̃ ← maxvalid(C, any chain C′ found in Receive())
5: (st,m,Λ, G)← I(st, C̃, round, Input(),Receive())
6: Cnew ← PoUW(C̃,m,Λ, G)
7: if C 6= Cnew then

8: C ← Cnew
9: Diffuse(C)
10: round← round+ 1
11: if Input() contains Read then

12: write R(mC) to Output()

Algorithm 7 The function that �nds the �best� chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp := ε
3: for i = 1 to k do

4: if validate(Ci) then
5: temp := max(C, temp)
6: return temp

The protocol is parametrized by functions V (·), R(·), I(·). The content validation predicate
V (〈x1, . . . , xm〉) is true if its input is a valid ledger, i.e., it is in L. Valid ledgers for our protocol
contain transactions that move funds around, exactly as in Bitcoin, and valid or invalid input blocks

41

as described in Section 4.1. With foresight, we allow the existence of invalid input blocks in valid
ledgers, in order to be able to decouple the veri�cation of the �header� of the ranking block from its
contents; verifying the header includes verifying the pre-hash, the post-hash, and the SNARG, and
does not include verifying thatG was computed correctly. Note, that just verifying the headers of the
ranking blocks is su�cient to achieve consensus, according to our analysis in Section 5.1. Next, the
chain reading function R(C) returns the contents of the chain if they constitute a valid ledger, oth-
erwise it is unde�ned. Finally, the input contribution function I(st, C, round, Input(),Receive())
returns (st,m,Λ, G), where st is the new state and m is the largest subsequence of transactions and
valid input blocks in the input and receive tapes that constitute a valid ledger, with respect to the
contents of the chain the party already has, together with a randomly generated neutral transaction
to avoid collisions.

I(·) also encodes part of the DPLS algorithm logic, as it is used to select Λ and G. In more detail,
Λ is selected according to the scheduling procedure, as discussed in Section 4.2. G is selected to be
the transcript of Λ extracted from C plus any valid points/input-blocks that the miner has already
received and veri�ed. While we allow a valid ledger to contain invalid input blocks, function I should
only take into account valid input blocks where the pre and post hashes are small enough and the
DAG computation as well as the transcript used is correctly computed based on the referenced
chain pointer. Finally, we assume that I changes Λ and G only after either the miner successfully
computes a new block, or a new epoch starts according to Section 4.2. While it is easy to extend
our protocol to handle di�erent transcripts at every round, this would lead to a more complicated
Update function.

Algorithm 8 The validate procedure, parameterized by the hash functionH(·), the chain validation
predicate V (·), and the veri�cation algorithm V of SNARG. The input is C.

function validate(C)
b← V(mC) ∧ (tail(C) = BGen)

. mC describes the contents of chain C.
if b = False then

return b
s′ := H(BGen)
C ← C1e . Remove the genesis from C
while (C 6= ε ∧ b = True) do
〈(sb,mb, comb,Λb, Gb, zb, rb, x

′
b), ...

...(s,m, com,Λ, z, r, x′), π〉 ← tail(C)
s′′ := H(tail(C))
h := H(s,m, com,Λ, G, z, r)
r′ := H(s,m, com,Λ, G, z, r, h)
h′ := H(s,m, com,Λ, G, z, r, h, x′)
b0 := (s = s′) ∧ (h < T1) ∧ (h′ < T2)
b1 := (H(sb,mb, comb,Λb, Gb, zb, rb, x

′
b) = com)

b2 := SNARG.V(Σ, ((Λ, G, z, r′, x′), ...
...(Λb, Gb, zb, r

′
b, x

′
b)), π)

if (
∧
i∈{0,...,2} bi) then

s′ ← s′′ . Retain hash value
C ← C1e . Remove the tail from C

else

b← False
return b

42

B Security under Ideal Conditions

In this section, we argue that under ideal conditions, Π can tolerate any dishonest minority,
i.e., the adversary can corrupt close to 1/2 of the parties. By ideal conditions we mean that
σ, p3, cP, cV , ε̂, p1/cH are all close to 0.

First, we obtain a lower bound on the stationary probability of qrank. In general, the stationary
probability of a state in a (�nite, irreducible, positive recurrent) Markov chain is the inverse of the
mean recurrence time. In the case of qrank, this mean recurrence time is easy to determine. Let
Rrank denote the mean recurrence time for qrank. Note that since the transition from qpre to qrank
is zero-cost (we only count the hashing, SNARK and M costs), Rrank is equal to the mean time to
transition to qrank from qpre (as there is a single outgoing transition from qrank). So we focus on this
mean transition time which we simply call R. Considering that returns to qpre are of four kinds, we
can expand R as follows:

R = (1− p1)(1 +R) + p1(1− p2 − p3)[t/cH + 2 +R]

+ p1p2((t+ cP)/cH + 2) + p1p3((t+ cP)/cH +R+ 2)

(where t is the mean useful work time and cP is treated as a constant). Thus

R =
(1− p1) + p1[(1− p2 − p3)[t/cH + 2]

p1p2

+
(p2 + p3)((t+ cP)/cH + 2)]

p1p2

and Rrank = R.
Next, we proceed to prove our lemma. We have that p∗rank = 1/Rrank = p2

1/p1+t̂/cH+1+(p2+p3)cP/cH
.

For σ, np1/cH , cP /cH , cV /cH , ε̂ << 1, we have that p∗rank ≈
p2

t̂/cH+1/p1+1
. Similarly, βcH ≈ p2

t̂/cH+1/p1+1
.

Hence, p∗rank ≈ βcH , and thus δMH ≈ 0. By setting δtot close to 0, we get that δSteps(= δtot+ δMH)
can be close to 0. Given also that under our assumptions t′ ≈ t, it is implied that n − t ≈ t, or
t ≈ n/2, i.e., any dishonest majority can be tolerated.

C Characteristic-String Analysis: Forks, Margin, and Common

Pre�x

In this appendix we survey the general theory of forks and margin that is used to prove Theorems 6
and 7 of the main body. A full account can be found in [37, 6].

The basic bookkeeping tool of the theory is the ∆-fork. A ∆-fork is a graph-theoretic abstrac-
tion that maintains the topology of the blocktree constructed by an execution of a Nakamato-style
consensus protocol. In particular, it determines the predecessor of each generated block, the round
in which each block is produced, and whether or not the block producer was honest or adversarial.
These details are su�cient for capturing the elementary liveness and persistence properties of the
execution. The parameter ∆ determines the time horizon at which the longest chain rule is guaran-
teed to operate for honest players: historically, this has been determined by network delays, which
is to say that any honestly generated block must have depth exceeding that of any block honestly
generated ∆ rounds previously. In our setting, the ∆ parameter (called Γ in the main body) has
actually been used to re�ect some further delays arising due to the Markov chain that dictates
mining dynamics. In any case, the basic role that the parameter plays in the approach is identical.

43

De�nition 18 (PoW ∆-fork). Let ∆ be a positive integer and L ∈ N. A PoW ∆-fork for the string
w ∈ (N2)L is a directed, rooted tree F = (V,E) with a pair of functions

l# : V → N and ltype : V → {h, a}

satisfying the axioms below. Edges are directed �away from� the root so that there is a unique
directed path from the root to any vertex. The value l#(v) is referred to as the label of v. The value
ltype(v) is referred to as the type of the vertex: when ltype(v) = h, we say that the vertex is honest ;
otherwise it is adversarial.

(i) the root r ∈ V is honest and has label l#(r) = 0;

(ii) the sequence of labels l#() along any directed path is non-decreasing;

(iii) if wi = (hi, ai), there are exactly hi honest vertices with the label i and no more than ai
adversarial vertices of F with the label i;

(iv) for any pair of honest vertices v, w for which l#(v) + ∆ ≤ l#(w), len(v) < len(w), where len()
denotes the depth of the vertex.

An advantage of this formalism is that it can easily re�ect a persistence failure: two chains, each
of equal length, that disagree in a particular round `.

C.1 Fork notation, closure

We write F `∆ w to indicate that F is a ∆-fork for the string w. If F ′ `∆ w′ for a pre�x w′ of w, we
say that F ′ is a subfork of F , denoted F ′ v F , if F contains F ′ as a consistently-labeled subgraph.
A fork F `∆ w is closed if all leaves are honest. By convention the trivial fork, consisting solely of
a root vertex, is closed. The closure of a fork F , denoted F , is the maximal closed subfork of F .

C.2 Tines

A path in a fork F originating at the root is called a tine (note that tines do not necessarily
terminate at a leaf). For a vertex v in F , F (v) denotes the tine in F terminating in v. Given this
one-to-one correspondence between vertices and tines of a fork, we routinely overload notation so
that it applies to both tines and vertices. For example, we let len(T) denote the length of the tine
T , equal to the number of edges on the path; recall that len(v) also indicates the depth of the vertex
v. To emphasize the fork from which v is drawn, we sometimes write lenF (v). We further overload
len() to apply to forks: len(F) denotes the length of the longest tine in a fork F . A tine is called
honest if it terminates in some vertex v with ltype(v) = h.

For two tines T, T ′ of a fork F , we write T ∼` T
′ if the two tines share a vertex with a label

greater or equal to `. Intuitively, T ∼` T
′ guarantees that the respective blockchains agree on the

state of the ledger up to time `. Looking ahead, the adversary can only make two honest parties
disagree on the state of the ledger up to time ` if she makes them hold two chains corresponding to
tines for which T 6∼` T

′.

C.3 Fork trimming; dominance

For a characteristic string w = w1 . . . wn ∈ Σn and a positive integer k, we let wbk = w1 . . . wn−k+1

denote the string obtained by removing the last k − 1 symbols. For a fork F `∆ w1 . . . wn we
let Fbk `∆ wbk denote the fork obtained by retaining only those vertices labeled from the set

44

{1, . . . , n−k+ 1}. Observe that honest tines appearing in Fb∆ are those that are necessarily visible
to honest players at a round just beyond the last one described by the characteristic string. We say
that a tine T in F is ∆-dominant if len(T) ≥ len(Fd∆) and simply call it dominant if ∆ is clear
from the context.

C.4 Advantage and margin

We develop some tools for reasoning about the settlement game. For a ∆-fork F `∆ w, we de�ne
the ∆-advantage of a tine T ∈ F as α∆

F (T) = len(T) − len(Fb∆). Observe that α∆
F (T) ≥ 0 if and

only if T is ∆-dominant in F . For ` ≥ 1, we de�ne the quantity of interest

β∆
` (F) = max

T 6∼`T ∗
T ∗ is ∆-dominant

α∆
F (T) ,

this maximum extended over all pairs of tines (T, T ∗) where T ∗ is ∆-dominant and T 6∼` T
∗. Note

that there might exist multiple such pairs in F , but under the condition ` ≥ 1 there will always
exist at least one such pair, as the trivial tine T0 containing only the root vertex satis�es T0 6∼` T
for any T and ` ≥ 1, in particular T0 6∼` T0. For this reason, we will always consider β∆

` only for
` ≥ 1. We overload the notation and let

β∆
` (w) = max

F`∆w
β∆
` (F) .

Intuitively, α∆
F (T) captures the length advantage (or de�cit) of the tine T against the longest

honest tine created at least ∆ rounds before the upcoming round, and hence now known to all honest
parties. Consequently, β∆

` (F) records the maximal advantage of any tine Ta in F that potentially
disagrees with some ∆-dominant tine Th about the chain state up to round `.

The crucial property motivating these de�nitions is that β∆
` () provides explicit control over

persistence failure events. This is re�ected in the lemma below.

Lemma 19. Fix a parameter k, and consider the sequence of forks F1 ` w1, F2 ` w1w2, . . . asso-
ciated with each step of a settlement game for characteristic string w = w1w2 Consider a tine

T held by an honest party in round r1, which is hence ∆-dominant in Fr1; let ` be a round associ-

ated with a vertex (block) B that is buried by k vertices (blocks) in T . If β`(w1 . . . wr) < 0 for all

r1 ≤ r ≤ r2, then any ∆-dominant tine T ′ of Fr2 contains the vertex B. In particular, persistence

is guaranteed for this block.

The proof of the lemma is a straightforward induction on r; for full details see [27]. Thus, in
order to rule out persistence violations it su�ces to establish that β∆

` (w) < 0 for appropriate ` and
w1 . . . w`+t (note that this bounds above β∆

` (F) for any relevant fork). Similar connections were
originally established for PoS forks [37] and more recently also for PoW forks [27, 6]. This yields
Theorem 6.

On the other hand, margin is well-behaved analytically. In the lockstep synchronous case,
it essentially increases for each adversarial PoW discovery and decreases for every honest PoW
discovery, with the understanding that it descends below zero prior to ` (thus motivating the barrier
walk of the main body). The situation with ∆ delays is more complex, but one fairly straightforward
fact is that margin is decreased by one for every uniquely isolated honest PoW discovery, and can
increase by no more than one for an adversarial PoW discovery; again one has the extra constraint
that it does not descend below zero prior to `. This is the content of the �barrier� and �free� walks
de�ned in the main body. The full inductive proofs appear in [6].

Returning to the main claims required for the body of the paper, for the reader's convenience
we recall how the basic chain properties are inferred from the assumptions of Theorem 7:

45

• CG over a large enough interval follows from the fact that the interval contains many uniquely
isolated honest blocks. Observe that across (the Γ-region around) any uniquely isolated suc-
cess, the height of every honestly held chain must increase.

• ECQ follows from a straightforward counting argument so long as (i.) the margin at the outset
of the interval is bounded, so that there is no adversarial chain of length that signi�cantly
exceeds those held by the honest players and (ii.) the number of uniquely isolated blocks in
the region exceeds the number of adversarial blocks.

• CP follows directly from control on margin and CG.

D The protocol with honest restarts

We give a sketch of the proof that �restarts� do not signi�cantly change the security analysis and, as
indicated in the main paper, in fact improve the security properties of the protocol. In a particular
round, there are three sorts of events we now wish to record: (i.) discovery of an honest mining
victory, (ii.) discovery of an adversarial mining victory, and (iii.) delivery of an adversarial block
to an honest party that increases the length of the chain held by the (honest) party. We remark
that events of this last variety are not re�ected by previous treatments but are essential in our
setting because these block delivery events can restart the mining process of honest parties (and,
fortunately, e�ect relative margin in a fashion consistent with new honest blocks).

To formally articulate this, we will focus on a new event: an �advance�. This is the event that
an honest party adopts a new blockchain via the longest-chain rule. Note that these are precisely
the events that cause parties in our existing analysis to �restart� the underlying Markov chain. We
may naturally associate a particular block with an advance event; namely, the deepest block on
the blockchain adopted by the honest party during the advance event. Considering network delays,
a given block may in fact be responsible for multiple advance events, as it may be delivered to
di�erent honest parties in di�erent rounds. However, two advance events associated with the same
block can be no more than ∆ rounds apart (as honest players are assumed to broadcast any new
chains at the moment they adopt them and advance events must necessarily increase the depth of
the chain held by the advancing party). While honest blocks are necessarily associated with at least
one advance event�arising from the honest player that created the block�adversarial blocks may
generate zero advance events even if they eventually appear on a chain adopted by an honest player
(in which case they would necessarily not be the last block on such a delivered chain).

To re�ect this, we work with a richer notion of ∆-fork that maintains, for each block, the set
of rounds in which the block generates an advance event. These new �advance-annotated� forks
will be associated with characteristic strings that likewise re�ect these events. Speci�cally, we
work with �advance-annotated� characteristic strings: our characteristic strings have the structure
w = w1, . . . , wL where each wi = (hi, ai; di, Di) ∈ N4: intuitively, the �rst two coordinates have
the same interpretation as their counterparts in standard characteristic strings, while the last two
coordinates re�ect advance events. Speci�cally,

• hi denotes the number of honest proof-of-work discoveries,

• ai denotes the number of adversarial proof-of-work discoveries,

• Di denotes the number of blocks, adversarial or honest, associated with an advance event in
this round, which is to say that an honest party adopts the blockchain terminating at the
block via the longest-chain rule; and

46

• di denotes the number of blocks, adversarial or honest, associated with an advance event for
the �rst time in this round.

Observe that hi ≤ di ≤ Di.

De�nition 20 (Delivery Augmented PoW ∆-fork). Let ∆ be a positive integer and L ∈ N. A
delivery-augmented PoW ∆-fork for the string w ∈ (N4)L is a directed, rooted tree F = (V,E) with
a triple of functions

l# : V → N, lA : V → 2L , and ltype : V → {h, a}

satisfying the axioms below. Edges are directed �away from� the root so that there is a unique
directed path from the root to any vertex. The value ltype(v) is referred to as the type of the vertex:
when ltype(v) = h, we say that the vertex is honestly generated ; otherwise ltype(v) = a and it is
adversarially generated. The value l#(v) is referred to as the creation time of the vertex v. When
lA(v) 6= ∅, the vertex is said to be advancing and, if s ∈ lA(v), we say that the vertex v has an
advance event associated with round s. For an advancing vertex v, the initial advance is the round
min lA(v).

(i) the root r ∈ V has type ltype(r) = h, has creation time l#(r) = 0 and lA(r) = {0};

(ii) for all v ∈ V and all s ∈ lA(v), l#(v) ≤ s; if ltype(v) = h then l#(v) ∈ lA(v);

(iii) the sequence of creation times l#() along any directed path is non-decreasing;

(iv) if wi = (hi, ai; di, Di), then there are

(a) exactly hi honestly generated vertices with creation time i,

(b) no more than ai adversarially generated vertices with creation time i,

(c) exactly Di vertices for which i ∈ lA(v), and

(d) exactly di vertices for which i = min lA(v);

(v) if two vertices u and v satisfy the property that there are a pair of rounds s ∈ lA(v) and
t ∈ lA(v) for which s+ ∆ ≤ t then the depth of v exceeds that of u.

We remark that the last axiom, re�ecting the combination of the longest chain rule with net-
working delays, can be reformulated in the following natural way. For a fork F , let Dt(F) denote the
induced subgraph given by the union of all paths terminating at vertices v for which min lA(v) ≤ t�
all vertices �delivered to honest parties� by time t. Then, if there is an element s of lA(v) for which
s ≥ t + ∆, the depth of v exceeds that of Dt(F). In terms of the longest chain rule, this captures
the intuition that any party carrying out the longest chain rule at time t observes all chains held
by honest parties at time t−∆.

As with ∆-forks, we adopt the notation F `A∆ w to indicate that F is an advance-annotated
∆-fork for the (advance-annotated) characteristic string w.

The analysis hinges on a re-evaluation of the behavior of margin β`() with these new symbols.
First of all, to re�ect the new types appearing in the notion of fork above, the notion of �honest� in
the standard notion of forks must be substituted with the notion of �advancing.� To be precise:

• The notion of closed is changed to refer a tine ending in an advancing vertex (rather than an
honest vertex). The closure of a fork then contains all vertices on chains adopted by honest
players using the longest-chain rule. (As mentioned above, with the convention that honest
players ignore delivered blocks that are not on chains that activate the longest-chain rule, the
closed fork intuitively re�ects all delivered blocks.)

47

• Fork trimming and dominance (as de�ned in Section C.3) must be suitably adapted to properly
handle lA(). Speci�cally, Fbk is (still) de�ned to include all vertices for which l#(v) ≤ n−k+1.
Of course, the de�nition of lA() is suitably updated to account for the trimmed set of rounds;
that is lA(v) ∩ {1, . . . , n − k + 1}. Observe that restricting lA() in this way may mean that
vertices which were advancing in F may no longer be advancing in Fbk (as the slots in which
they were to be delivered no longer exist).

With these conventions, the most important of which replaces �honest� vertices of the conven-
tional theory with �advancing� vertices, the direct connection between β`() and persistence failures
(Lemma 19) is retained.

We �rst discuss the lockstep synchronous case (with no network delays). In this case, lA(v) is
either empty or a singleton and Di = di. Observe that when β`(w) ≤ 0, there are no adversarial
blocks of depth exceeding the longest honest chain, so no adversarial block delivery can force an
honest party to abandon their chain. On the other hand, when β`(w) > 0 the adversary may indeed
deliver blocks of depth exceeding those held by the honest players; however, in this case the depth
of the chain held by the honest player is increased by at least one: in particular, this decreases β`.
For the case with network delays (or more exotic delays such as those considered in this paper),
note that the height of the longest chain observed by any honest player must increase across any
region with an honest PoW success or an adversarial block delivery (which necessarily increases
the height of the recipient's chain) with at least ∆ symbols on either side; this su�ces to decrease
margin over such an area, as desired. The full analysis then follows that of [6].

48

	Introduction
	Preliminaries
	Doubly Parallel Local Search
	Algorithm description
	Moderately-hard DAG computations

	The PoUW Blockchain Protocol
	Protocol description
	Dealing with multiple instances
	Incentives structure

	Security Analysis
	Ledger security
	Analysis of the Markov chain
	The mixing time; convergence to mutual independence
	Bounds on the events of interest
	Bounds on the number of adversarial mining successes
	Putting everything together

	DPLS security
	Protocol usefulness

	Applications
	Suitable algorithms
	Real-world problems
	Concrete example

	The Full Protocol
	Security under Ideal Conditions
	Characteristic-String Analysis: Forks, Margin, and Common Prefix
	Fork notation, closure
	Tines
	Fork trimming; dominance
	Advantage and margin

	The protocol with honest restarts

